xref: /illumos-gate/usr/src/cmd/fs.d/ufs/mkfs/mkfs.c (revision 6d24e334)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 
42 /*
43  * The maximum supported file system size (in sectors) is the
44  * number of frags that can be represented in an int32_t field
45  * (INT_MAX) times the maximum number of sectors per frag.  Since
46  * the maximum frag size is MAXBSIZE, the maximum number of sectors
47  * per frag is MAXBSIZE/DEV_BSIZE.
48  */
49 #define	FS_MAX	(((diskaddr_t)INT_MAX) * (MAXBSIZE/DEV_BSIZE))
50 
51 /*
52  * make file system for cylinder-group style file systems
53  *
54  * usage:
55  *
56  *    mkfs [-F FSType] [-V] [-G [-P]] [-M dirname] [-m] [options]
57  *	[-o specific_options]  special size
58  *	[nsect ntrack bsize fsize cpg	minfree	rps nbpi opt apc rotdelay
59  *	  2     3      4     5     6	7	8   9	 10  11  12
60  *	nrpos maxcontig mtb]
61  *	13    14	15
62  *
63  *  where specific_options are:
64  *	N - no create
65  *	nsect - The number of sectors per track
66  *	ntrack - The number of tracks per cylinder
67  *	bsize - block size
68  *	fragsize - fragment size
69  *	cgsize - The number of disk cylinders per cylinder group.
70  * 	free - minimum free space
71  *	rps - rotational speed (rev/sec).
72  *	nbpi - number of data bytes per allocated inode
73  *	opt - optimization (space, time)
74  *	apc - number of alternates
75  *	gap - gap size
76  *	nrpos - number of rotational positions
77  *	maxcontig - maximum number of logical blocks that will be
78  *		allocated contiguously before inserting rotational delay
79  *	mtb - if "y", set up file system for eventual growth to over a
80  *		a terabyte
81  * -P Do not grow the file system, but print on stdout the maximal
82  *    size in sectors to which the file system can be increased. The calculated
83  *    size is limited by the value provided by the operand size.
84  *
85  * Note that -P is a project-private interface and together with -G intended
86  * to be used only by the growfs script. It is therefore purposely not
87  * documented in the man page.
88  * The -P option is covered by PSARC case 2003/422.
89  */
90 
91 /*
92  * The following constants set the defaults used for the number
93  * of sectors/track (fs_nsect), and number of tracks/cyl (fs_ntrak).
94  *
95  *			NSECT		NTRAK
96  *	72MB CDC	18		9
97  *	30MB CDC	18		5
98  *	720KB Diskette	9		2
99  *
100  * However the defaults will be different for disks larger than CHSLIMIT.
101  */
102 
103 #define	DFLNSECT	32
104 #define	DFLNTRAK	16
105 
106 /*
107  * The following default sectors and tracks values are used for
108  * non-efi disks that are larger than the CHS addressing limit. The
109  * existing default cpg of 16 (DESCPG) holds good for larger disks too.
110  */
111 #define	DEF_SECTORS_EFI	128
112 #define	DEF_TRACKS_EFI	48
113 
114 /*
115  * The maximum number of cylinders in a group depends upon how much
116  * information can be stored on a single cylinder. The default is to
117  * use 16 cylinders per group.  This is effectively tradition - it was
118  * the largest value acceptable under SunOs 4.1
119  */
120 #define	DESCPG		16	/* desired fs_cpg */
121 
122 /*
123  * The following two constants set the default block and fragment sizes.
124  * Both constants must be a power of 2 and meet the following constraints:
125  *	MINBSIZE <= DESBLKSIZE <= MAXBSIZE
126  *	DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
127  *	DESBLKSIZE / DESFRAGSIZE <= 8
128  */
129 #define	DESBLKSIZE	8192
130 #define	DESFRAGSIZE	1024
131 
132 /*
133  * MINFREE gives the minimum acceptable percentage of file system
134  * blocks which may be free. If the freelist drops below this level
135  * only the superuser may continue to allocate blocks. This may
136  * be set to 0 if no reserve of free blocks is deemed necessary,
137  * however throughput drops by fifty percent if the file system
138  * is run at between 90% and 100% full; thus the default value of
139  * fs_minfree is 10%. With 10% free space, fragmentation is not a
140  * problem, so we choose to optimize for time.
141  */
142 #define	MINFREE		10
143 #define	DEFAULTOPT	FS_OPTTIME
144 
145 /*
146  * ROTDELAY gives the minimum number of milliseconds to initiate
147  * another disk transfer on the same cylinder. It is no longer used
148  * and will always default to 0.
149  */
150 #define	ROTDELAY	0
151 
152 /*
153  * MAXBLKPG determines the maximum number of data blocks which are
154  * placed in a single cylinder group. The default is one indirect
155  * block worth of data blocks.
156  */
157 #define	MAXBLKPG(bsize)	((bsize) / sizeof (daddr32_t))
158 
159 /*
160  * Each file system has a number of inodes statically allocated.
161  * We allocate one inode slot per NBPI bytes, expecting this
162  * to be far more than we will ever need.
163  */
164 #define	NBPI		2048	/* Number Bytes Per Inode */
165 #define	MTB_NBPI	(MB)	/* Number Bytes Per Inode for multi-terabyte */
166 
167 /*
168  * Disks are assumed to rotate at 60HZ, unless otherwise specified.
169  */
170 #define	DEFHZ		60
171 
172 /*
173  * Cylinder group related limits.
174  *
175  * For each cylinder we keep track of the availability of blocks at different
176  * rotational positions, so that we can lay out the data to be picked
177  * up with minimum rotational latency.  NRPOS is the number of rotational
178  * positions which we distinguish.  With NRPOS 8 the resolution of our
179  * summary information is 2ms for a typical 3600 rpm drive.
180  */
181 #define	NRPOS		8	/* number distinct rotational positions */
182 
183 #ifdef DEBUG
184 #define	dprintf(x)	printf x
185 #else
186 #define	dprintf(x)
187 #endif
188 
189 /*
190  * For the -N option, when calculating the backup superblocks, do not print
191  * them if we are not really sure. We may have to try an alternate method of
192  * arriving at the superblocks. So defer printing till a handful of superblocks
193  * look good.
194  */
195 #define	tprintf(x)	if (Nflag && retry) \
196 				(void) strncat(tmpbuf, x, strlen(x)); \
197 			else \
198 				(void) fprintf(stderr, x);
199 
200 #define	ALTSB		32	/* Location of first backup superblock */
201 
202 /*
203  * range_check "user_supplied" flag values.
204  */
205 #define	RC_DEFAULT	0
206 #define	RC_KEYWORD	1
207 #define	RC_POSITIONAL	2
208 
209 /*
210  * ufs hole
211  */
212 #define	UFS_HOLE	-1
213 
214 #ifndef	STANDALONE
215 #include	<stdio.h>
216 #include	<sys/mnttab.h>
217 #endif
218 
219 #include	<stdlib.h>
220 #include	<unistd.h>
221 #include	<malloc.h>
222 #include	<string.h>
223 #include	<strings.h>
224 #include	<ctype.h>
225 #include	<errno.h>
226 #include	<sys/param.h>
227 #include	<time.h>
228 #include	<sys/types.h>
229 #include	<sys/sysmacros.h>
230 #include	<sys/vnode.h>
231 #include	<sys/fs/ufs_fsdir.h>
232 #include	<sys/fs/ufs_inode.h>
233 #include	<sys/fs/ufs_fs.h>
234 #include	<sys/fs/ufs_log.h>
235 #include	<sys/mntent.h>
236 #include	<sys/filio.h>
237 #include	<limits.h>
238 #include	<sys/int_const.h>
239 #include	<signal.h>
240 #include	<sys/efi_partition.h>
241 #include	"roll_log.h"
242 
243 #define	bcopy(f, t, n)    (void) memcpy(t, f, n)
244 #define	bzero(s, n)	(void) memset(s, 0, n)
245 #define	bcmp(s, d, n)	memcmp(s, d, n)
246 
247 #define	index(s, r)	strchr(s, r)
248 #define	rindex(s, r)	strrchr(s, r)
249 
250 #include	<sys/stat.h>
251 #include	<sys/statvfs.h>
252 #include	<locale.h>
253 #include	<fcntl.h>
254 #include 	<sys/isa_defs.h>	/* for ENDIAN defines */
255 #include	<sys/vtoc.h>
256 
257 #include	<sys/dkio.h>
258 #include	<sys/asynch.h>
259 
260 extern offset_t	llseek();
261 extern char	*getfullblkname();
262 extern long	lrand48();
263 
264 extern int	optind;
265 extern char	*optarg;
266 
267 
268 /*
269  * The size of a cylinder group is calculated by CGSIZE. The maximum size
270  * is limited by the fact that cylinder groups are at most one block.
271  * Its size is derived from the size of the maps maintained in the
272  * cylinder group and the (struct cg) size.
273  */
274 #define	CGSIZE(fs) \
275 	/* base cg		*/ (sizeof (struct cg) + \
276 	/* blktot size	*/ (fs)->fs_cpg * sizeof (long) + \
277 	/* blks size	*/ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof (short) + \
278 	/* inode map	*/ howmany((fs)->fs_ipg, NBBY) + \
279 	/* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
280 
281 /*
282  * We limit the size of the inode map to be no more than a
283  * third of the cylinder group space, since we must leave at
284  * least an equal amount of space for the block map.
285  *
286  * N.B.: MAXIpG must be a multiple of INOPB(fs).
287  */
288 #define	MAXIpG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
289 
290 /*
291  * Same as MAXIpG, but parameterized by the block size (b) and the
292  * cylinder group divisor (d), which is the reciprocal of the fraction of the
293  * cylinder group overhead block that is used for the inode map.  So for
294  * example, if d = 5, the macro's computation assumes that 1/5 of the
295  * cylinder group overhead block can be dedicated to the inode map.
296  */
297 #define	MAXIpG_B(b, d)	roundup((b) * NBBY / (d), (b) / sizeof (struct dinode))
298 
299 #define	UMASK		0755
300 #define	MAXINOPB	(MAXBSIZE / sizeof (struct dinode))
301 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
302 #define	MB		(1024*1024)
303 #define	BETWEEN(x, l, h)	((x) >= (l) && (x) <= (h))
304 
305 /*
306  * Used to set the inode generation number. Since both inodes and dinodes
307  * are dealt with, we really need a pointer to an icommon here.
308  */
309 #define	IRANDOMIZE(icp)	(icp)->ic_gen = lrand48();
310 
311 /*
312  * Flags for number()
313  */
314 #define	ALLOW_PERCENT	0x01	/* allow trailing `%' on number */
315 #define	ALLOW_MS1	0x02	/* allow trailing `ms', state 1 */
316 #define	ALLOW_MS2	0x04	/* allow trailing `ms', state 2 */
317 #define	ALLOW_END_ONLY	0x08	/* must be at end of number & suffixes */
318 
319 #define	MAXAIO	1000	/* maximum number of outstanding I/O's we'll manage */
320 #define	BLOCK	1	/* block in aiowait */
321 #define	NOBLOCK	0	/* don't block in aiowait */
322 
323 #define	RELEASE 1	/* free an aio buffer after use */
324 #define	SAVE	0	/* don't free the buffer */
325 
326 typedef struct aio_trans {
327 	aio_result_t resultbuf;
328 	diskaddr_t bno;
329 	char *buffer;
330 	int size;
331 	int release;
332 	struct aio_trans *next;
333 } aio_trans;
334 
335 typedef struct aio_results {
336 	int max;
337 	int outstanding;
338 	int maxpend;
339 	aio_trans *trans;
340 } aio_results;
341 
342 int aio_inited = 0;
343 aio_results results;
344 
345 /*
346  * Allow up to MAXBUF aio requests that each have a unique buffer.
347  * More aio's might be done, but not using memory through the getbuf()
348  * interface.  This can be raised, but you run into the potential of
349  * using more memory than is physically available on the machine,
350  * and if you start swapping, you can forget about performance.
351  * To prevent this, we also limit the total memory used for a given
352  * type of buffer to MAXBUFMEM.
353  *
354  * Tests indicate a cylinder group's worth of inodes takes:
355  *
356  *	NBPI	Size of Inode Buffer
357  *	 2k	1688k
358  *	 8k	 424k
359  *
360  * initcg() stores all the inodes for a cylinder group in one buffer,
361  * so allowing 20 buffers could take 32 MB if not limited by MAXBUFMEM.
362  */
363 #define	MAXBUF		20
364 #define	MAXBUFMEM	(8 * 1024 * 1024)
365 
366 /*
367  * header information for buffers managed by getbuf() and freebuf()
368  */
369 typedef struct bufhdr {
370 	struct bufhdr *head;
371 	struct bufhdr *next;
372 } bufhdr;
373 
374 int bufhdrsize;
375 
376 bufhdr inodebuf = { NULL, NULL };
377 bufhdr cgsumbuf = { NULL, NULL };
378 
379 #define	SECTORS_PER_TERABYTE	(1LL << 31)
380 /*
381  * The following constant specifies an upper limit for file system size
382  * that is actually a lot bigger than we expect to support with UFS. (Since
383  * it's specified in sectors, the file system size would be 2**44 * 512,
384  * which is 2**53, which is 8192 Terabytes.)  However, it's useful
385  * for checking the basic sanity of a size value that is input on the
386  * command line.
387  */
388 #define	FS_SIZE_UPPER_LIMIT	0x100000000000LL
389 
390 /*
391  * Forward declarations
392  */
393 static char *getbuf(bufhdr *bufhead, int size);
394 static void freebuf(char *buf);
395 static void freetrans(aio_trans *transp);
396 static aio_trans *get_aiop();
397 static aio_trans *wait_for_write(int block);
398 static void initcg(int cylno);
399 static void fsinit();
400 static int makedir(struct direct *protodir, int entries);
401 static void iput(struct inode *ip);
402 static void rdfs(diskaddr_t bno, int size, char *bf);
403 static void wtfs(diskaddr_t bno, int size, char *bf);
404 static void awtfs(diskaddr_t bno, int size, char *bf, int release);
405 static void wtfs_breakup(diskaddr_t bno, int size, char *bf);
406 static int isblock(struct fs *fs, unsigned char *cp, int h);
407 static void clrblock(struct fs *fs, unsigned char *cp, int h);
408 static void setblock(struct fs *fs, unsigned char *cp, int h);
409 static void usage();
410 static void dump_fscmd(char *fsys, int fsi);
411 static uint64_t number(uint64_t d_value, char *param, int flags);
412 static int match(char *s);
413 static char checkopt(char *optim);
414 static char checkmtb(char *mtbarg);
415 static void range_check(long *varp, char *name, long minimum,
416     long maximum, long def_val, int user_supplied);
417 static void range_check_64(uint64_t *varp, char *name, uint64_t minimum,
418     uint64_t maximum, uint64_t def_val, int user_supplied);
419 static daddr32_t alloc(int size, int mode);
420 static diskaddr_t get_max_size(int fd);
421 static long get_max_track_size(int fd);
422 static void block_sigint(sigset_t *old_mask);
423 static void unblock_sigint(sigset_t *old_mask);
424 static void recover_from_sigint(int signum);
425 static int confirm_abort(void);
426 static int getline(FILE *fp, char *loc, int maxlen);
427 static void flush_writes(void);
428 static long compute_maxcpg(long, long, long, long, long);
429 static int in_64bit_mode(void);
430 static int validate_size(int fd, diskaddr_t size);
431 static void dump_sblock(void);
432 
433 union {
434 	struct fs fs;
435 	char pad[SBSIZE];
436 } fsun, altfsun;
437 #define	sblock	fsun.fs
438 #define	altsblock	altfsun.fs
439 
440 struct	csum *fscs;
441 
442 union cgun {
443 	struct cg cg;
444 	char pad[MAXBSIZE];
445 } cgun;
446 
447 #define	acg	cgun.cg
448 /*
449  * Size of screen in cols in which to fit output
450  */
451 #define	WIDTH	80
452 
453 struct dinode zino[MAXBSIZE / sizeof (struct dinode)];
454 
455 /*
456  * file descriptors used for rdfs(fsi) and wtfs(fso).
457  * Initialized to an illegal file descriptor number.
458  */
459 int	fsi = -1;
460 int	fso = -1;
461 
462 /*
463  * The BIG parameter is machine dependent.  It should be a longlong integer
464  * constant that can be used by the number parser to check the validity
465  * of numeric parameters.
466  */
467 
468 #define	BIG		0x7fffffffffffffffLL
469 
470 /* Used to indicate to number() that a bogus value should cause us to exit */
471 #define	NO_DEFAULT	LONG_MIN
472 
473 /*
474  * INVALIDSBLIMIT is the number of bad backup superblocks that will be
475  * tolerated before we decide to try arriving at a different set of them
476  * using a different logic. This is applicable for non-EFI disks only.
477  */
478 #define	INVALIDSBLIMIT	10
479 
480 /*
481  * The *_flag variables are used to indicate that the user specified
482  * the values, rather than that we made them up ourselves.  We can
483  * complain about the user giving us bogus values.
484  */
485 
486 /* semi-constants */
487 long	sectorsize = DEV_BSIZE;		/* bytes/sector from param.h */
488 long	bbsize = BBSIZE;		/* boot block size */
489 long	sbsize = SBSIZE;		/* superblock size */
490 
491 /* parameters */
492 diskaddr_t	fssize_db;		/* file system size in disk blocks */
493 diskaddr_t	fssize_frag;		/* file system size in frags */
494 long	cpg;				/* cylinders/cylinder group */
495 int	cpg_flag = RC_DEFAULT;
496 long	rotdelay = -1;			/* rotational delay between blocks */
497 int	rotdelay_flag = RC_DEFAULT;
498 long	maxcontig;			/* max contiguous blocks to allocate */
499 int	maxcontig_flag = RC_DEFAULT;
500 long	nsect = DFLNSECT;		/* sectors per track */
501 int	nsect_flag = RC_DEFAULT;
502 long	ntrack = DFLNTRAK;		/* tracks per cylinder group */
503 int	ntrack_flag = RC_DEFAULT;
504 long	bsize = DESBLKSIZE;		/* filesystem block size */
505 int	bsize_flag = RC_DEFAULT;
506 long	fragsize = DESFRAGSIZE; 	/* filesystem fragment size */
507 int	fragsize_flag = RC_DEFAULT;
508 long	minfree = MINFREE; 		/* fs_minfree */
509 int	minfree_flag = RC_DEFAULT;
510 long	rps = DEFHZ;			/* revolutions/second of drive */
511 int	rps_flag = RC_DEFAULT;
512 long	nbpi = NBPI;			/* number of bytes per inode */
513 int	nbpi_flag = RC_DEFAULT;
514 long	nrpos = NRPOS;			/* number of rotational positions */
515 int	nrpos_flag = RC_DEFAULT;
516 long	apc = 0;			/* alternate sectors per cylinder */
517 int	apc_flag = RC_DEFAULT;
518 char	opt = 't';			/* optimization style, `t' or `s' */
519 char	mtb = 'n';			/* multi-terabyte format, 'y' or 'n' */
520 
521 long	debug = 0;			/* enable debugging output */
522 
523 int	spc_flag = 0;			/* alternate sectors specified or */
524 					/* found */
525 
526 /* global state */
527 int	Nflag;		/* do not write to disk */
528 int	mflag;		/* return the command line used to create this FS */
529 int	rflag;		/* report the superblock in an easily-parsed form */
530 int	Rflag;		/* dump the superblock in binary */
531 char	*fsys;
532 time_t	mkfstime;
533 char	*string;
534 int	label_type;
535 
536 /*
537  * logging support
538  */
539 int	ismdd;			/* true if device is a SVM device */
540 int	islog;			/* true if ufs or SVM logging is enabled */
541 int	islogok;		/* true if ufs/SVM log state is good */
542 
543 static int	isufslog;	/* true if ufs logging is enabled */
544 static int	waslog;		/* true when ufs logging disabled during grow */
545 
546 /*
547  * growfs defines, globals, and forward references
548  */
549 #define	NOTENOUGHSPACE 33
550 int		grow;
551 static int	Pflag;		/* probe to which size the fs can be grown */
552 int		ismounted;
553 char		*directory;
554 diskaddr_t	grow_fssize;
555 long		grow_fs_size;
556 long		grow_fs_ncg;
557 diskaddr_t		grow_fs_csaddr;
558 long		grow_fs_cssize;
559 int		grow_fs_clean;
560 struct csum	*grow_fscs;
561 diskaddr_t		grow_sifrag;
562 int		test;
563 int		testforce;
564 diskaddr_t		testfrags;
565 int		inlockexit;
566 int		isbad;
567 
568 void		lockexit(int);
569 void		randomgeneration(void);
570 void		checksummarysize(void);
571 int		checksblock(struct fs, int);
572 void		growinit(char *);
573 void		checkdev(char *, char  *);
574 void		checkmount(struct mnttab *, char *);
575 struct dinode	*gdinode(ino_t);
576 int		csfraginrange(daddr32_t);
577 struct csfrag	*findcsfrag(daddr32_t, struct csfrag **);
578 void		checkindirect(ino_t, daddr32_t *, daddr32_t, int);
579 void		addcsfrag(ino_t, daddr32_t, struct csfrag **);
580 void		delcsfrag(daddr32_t, struct csfrag **);
581 void		checkdirect(ino_t, daddr32_t *, daddr32_t *, int);
582 void		findcsfragino(void);
583 void		fixindirect(daddr32_t, int);
584 void		fixdirect(caddr_t, daddr32_t, daddr32_t *, int);
585 void		fixcsfragino(void);
586 void		extendsummaryinfo(void);
587 int		notenoughspace(void);
588 void		unalloccsfragino(void);
589 void		unalloccsfragfree(void);
590 void		findcsfragfree(void);
591 void		copycsfragino(void);
592 void		rdcg(long);
593 void		wtcg(void);
594 void		flcg(void);
595 void		allocfrags(long, daddr32_t *, long *);
596 void		alloccsfragino(void);
597 void		alloccsfragfree(void);
598 void		freefrags(daddr32_t, long, long);
599 int		findfreerange(long *, long *);
600 void		resetallocinfo(void);
601 void		extendcg(long);
602 void		ulockfs(void);
603 void		wlockfs(void);
604 void		clockfs(void);
605 void		wtsb(void);
606 static int64_t	checkfragallocated(daddr32_t);
607 static struct csum 	*read_summaryinfo(struct fs *);
608 static diskaddr_t 	probe_summaryinfo();
609 
610 int
611 main(int argc, char *argv[])
612 {
613 	long i, mincpc, mincpg, ibpcl;
614 	long cylno, rpos, blk, j, warn = 0;
615 	long mincpgcnt, maxcpg;
616 	uint64_t used, bpcg, inospercg;
617 	long mapcramped, inodecramped;
618 	long postblsize, rotblsize, totalsbsize;
619 	FILE *mnttab;
620 	struct mnttab mntp;
621 	char *special;
622 	struct statvfs64 fs;
623 	struct dk_geom dkg;
624 	struct dk_cinfo dkcinfo;
625 	char pbuf[sizeof (uint64_t) * 3 + 1];
626 	char *tmpbuf;
627 	int width, plen;
628 	uint64_t num;
629 	int c, saverr;
630 	diskaddr_t max_fssize;
631 	long tmpmaxcontig = -1;
632 	struct sigaction sigact;
633 	uint64_t nbytes64;
634 	int remaining_cg;
635 	int do_dot = 0;
636 	int use_efi_dflts = 0, retry = 0;
637 	int invalid_sb_cnt, ret, skip_this_sb, cg_too_small;
638 	int geom_nsect, geom_ntrack, geom_cpg;
639 
640 	(void) setlocale(LC_ALL, "");
641 
642 #if !defined(TEXT_DOMAIN)
643 #define	TEXT_DOMAIN "SYS_TEST"
644 #endif
645 	(void) textdomain(TEXT_DOMAIN);
646 
647 	while ((c = getopt(argc, argv, "F:bmo:VPGM:T:t:")) != EOF) {
648 		switch (c) {
649 
650 		case 'F':
651 			string = optarg;
652 			if (strcmp(string, "ufs") != 0)
653 				usage();
654 			break;
655 
656 		case 'm':	/* return command line used to create this FS */
657 			mflag++;
658 			break;
659 
660 		case 'o':
661 			/*
662 			 * ufs specific options.
663 			 */
664 			string = optarg;
665 			while (*string != '\0') {
666 				if (match("nsect=")) {
667 					nsect = number(DFLNSECT, "nsect", 0);
668 					nsect_flag = RC_KEYWORD;
669 				} else if (match("ntrack=")) {
670 					ntrack = number(DFLNTRAK, "ntrack", 0);
671 					ntrack_flag = RC_KEYWORD;
672 				} else if (match("bsize=")) {
673 					bsize = number(DESBLKSIZE, "bsize", 0);
674 					bsize_flag = RC_KEYWORD;
675 				} else if (match("fragsize=")) {
676 					fragsize = number(DESFRAGSIZE,
677 					    "fragsize", 0);
678 					fragsize_flag = RC_KEYWORD;
679 				} else if (match("cgsize=")) {
680 					cpg = number(DESCPG, "cgsize", 0);
681 					cpg_flag = RC_KEYWORD;
682 				} else if (match("free=")) {
683 					minfree = number(MINFREE, "free",
684 					    ALLOW_PERCENT);
685 					minfree_flag = RC_KEYWORD;
686 				} else if (match("maxcontig=")) {
687 					tmpmaxcontig =
688 					    number(-1, "maxcontig", 0);
689 					maxcontig_flag = RC_KEYWORD;
690 				} else if (match("nrpos=")) {
691 					nrpos = number(NRPOS, "nrpos", 0);
692 					nrpos_flag = RC_KEYWORD;
693 				} else if (match("rps=")) {
694 					rps = number(DEFHZ, "rps", 0);
695 					rps_flag = RC_KEYWORD;
696 				} else if (match("nbpi=")) {
697 					nbpi = number(NBPI, "nbpi", 0);
698 					nbpi_flag = RC_KEYWORD;
699 				} else if (match("opt=")) {
700 					opt = checkopt(string);
701 				} else if (match("mtb=")) {
702 					mtb = checkmtb(string);
703 				} else if (match("apc=")) {
704 					apc = number(0, "apc", 0);
705 					apc_flag = RC_KEYWORD;
706 				} else if (match("gap=")) {
707 					(void) number(0, "gap", ALLOW_MS1);
708 					rotdelay = ROTDELAY;
709 					rotdelay_flag = RC_DEFAULT;
710 				} else if (match("debug=")) {
711 					debug = number(0, "debug", 0);
712 				} else if (match("N")) {
713 					Nflag++;
714 				} else if (match("calcsb")) {
715 					rflag++;
716 					Nflag++;
717 				} else if (match("calcbinsb")) {
718 					rflag++;
719 					Rflag++;
720 					Nflag++;
721 				} else if (*string == '\0') {
722 					break;
723 				} else {
724 					(void) fprintf(stderr, gettext(
725 						"illegal option: %s\n"),
726 						string);
727 					usage();
728 				}
729 
730 				if (*string == ',') string++;
731 				if (*string == ' ') string++;
732 			}
733 			break;
734 
735 		case 'V':
736 			{
737 				char	*opt_text;
738 				int	opt_count;
739 
740 				(void) fprintf(stdout, gettext("mkfs -F ufs "));
741 				for (opt_count = 1; opt_count < argc;
742 								opt_count++) {
743 					opt_text = argv[opt_count];
744 					if (opt_text)
745 					    (void) fprintf(stdout, " %s ",
746 								opt_text);
747 				}
748 				(void) fprintf(stdout, "\n");
749 			}
750 			break;
751 
752 		case 'b':	/* do nothing for this */
753 			break;
754 
755 		case 'M':	/* grow the mounted file system */
756 			directory = optarg;
757 
758 			/* FALLTHROUGH */
759 		case 'G':	/* grow the file system */
760 			grow = 1;
761 			break;
762 		case 'P':	/* probe the file system growing size 	*/
763 			Pflag = 1;
764 			grow = 1; /* probe mode implies fs growing	*/
765 			break;
766 		case 'T':	/* For testing */
767 			testforce = 1;
768 
769 			/* FALLTHROUGH */
770 		case 't':
771 			test = 1;
772 			string = optarg;
773 			testfrags = number(NO_DEFAULT, "testfrags", 0);
774 			break;
775 
776 		case '?':
777 			usage();
778 			break;
779 		}
780 	}
781 #ifdef MKFS_DEBUG
782 	/*
783 	 * Turning on MKFS_DEBUG causes mkfs to produce a filesystem
784 	 * that can be reproduced by setting the time to 0 and seeding
785 	 * the random number generator to a constant.
786 	 */
787 	mkfstime = 0;	/* reproducible results */
788 #else
789 	(void) time(&mkfstime);
790 #endif
791 
792 	if (optind >= (argc - 1)) {
793 		if (optind > (argc - 1)) {
794 			(void) fprintf(stderr,
795 			    gettext("special not specified\n"));
796 			usage();
797 		} else if (mflag == 0) {
798 			(void) fprintf(stderr,
799 			    gettext("size not specified\n"));
800 			usage();
801 		}
802 	}
803 	argc -= optind;
804 	argv = &argv[optind];
805 
806 	fsys = argv[0];
807 	fsi = open64(fsys, O_RDONLY);
808 	if (fsi < 0) {
809 		(void) fprintf(stderr, gettext("%s: cannot open\n"), fsys);
810 		lockexit(32);
811 	}
812 
813 	if (mflag) {
814 		dump_fscmd(fsys, fsi);
815 		lockexit(0);
816 	}
817 
818 	/*
819 	 * The task of setting all of the configuration parameters for a
820 	 * UFS file system is basically a matter of solving n equations
821 	 * in m variables.  Typically, m is greater than n, so there is
822 	 * usually more than one valid solution.  Since this is usually
823 	 * an under-constrained problem, it's not always obvious what the
824 	 * "best" configuration is.
825 	 *
826 	 * In general, the approach is to
827 	 * 1. Determine the values for the file system parameters
828 	 *    that are externally contrained and therefore not adjustable
829 	 *    by mkfs (such as the device's size and maxtransfer size).
830 	 * 2. Acquire the user's requested setting for all configuration
831 	 *    values that can be set on the command line.
832 	 * 3. Determine the final value of all configuration values, by
833 	 *    the following approach:
834 	 *	- set the file system block size (fs_bsize).  Although
835 	 *	  this could be regarded as an adjustable parameter, in
836 	 *	  fact, it's pretty much a constant.  At this time, it's
837 	 *	  generally set to 8k (with older hardware, it can
838 	 *	  sometimes make sense to set it to 4k, but those
839 	 *	  situations are pretty rare now).
840 	 *	- re-adjust the maximum file system size based on the
841 	 *	  value of the file system block size.  Since the
842 	 *	  frag size can't be any larger than a file system
843 	 *	  block, and the number of frags in the file system
844 	 *	  has to fit into 31 bits, the file system block size
845 	 *	  affects the maximum file system size.
846 	 *	- now that the real maximum file system is known, set the
847 	 *	  actual size of the file system to be created to
848 	 *	  MIN(requested size, maximum file system size).
849 	 *	- now validate, and if necessary, adjust the following
850 	 *	  values:
851 	 *		rotdelay
852 	 *		nsect
853 	 *		maxcontig
854 	 *		apc
855 	 *		frag_size
856 	 *		rps
857 	 *		minfree
858 	 *		nrpos
859 	 *		nrack
860 	 *		nbpi
861 	 *	- calculate maxcpg (the maximum value of the cylinders-per-
862 	 *	  cylinder-group configuration parameters).  There are two
863 	 *	  algorithms for calculating maxcpg:  an old one, which is
864 	 *	  used for file systems of less than 1 terabyte, and a
865 	 *	  new one, implemented in the function compute_maxcpg(),
866 	 *	  which is used for file systems of greater than 1 TB.
867 	 *	  The difference between them is that compute_maxcpg()
868 	 *	  really tries to maximize the cpg value.  The old
869 	 *	  algorithm fails to take advantage of smaller frags and
870 	 *	  lower inode density when determining the maximum cpg,
871 	 *	  and thus comes up with much lower numbers in some
872 	 *	  configurations.  At some point, we might use the
873 	 *	  new algorithm for determining maxcpg for all file
874 	 *	  systems, but at this time, the changes implemented for
875 	 *	  multi-terabyte UFS are NOT being automatically applied
876 	 *	  to UFS file systems of less than a terabyte (in the
877 	 *	  interest of not changing existing UFS policy too much
878 	 *	  until the ramifications of the changes are well-understood
879 	 *	  and have been evaluated for their effects on performance.)
880 	 *	- check the current values of the configuration parameters
881 	 *	  against the various constraints imposed by UFS.  These
882 	 *	  include:
883 	 *		* There must be at least one inode in each
884 	 *		  cylinder group.
885 	 *		* The cylinder group overhead block, which
886 	 *		  contains the inode and frag bigmaps, must fit
887 	 *		  within one file system block.
888 	 *		* The space required for inode maps should
889 	 *		  occupy no more than a third of the cylinder
890 	 *		  group overhead block.
891 	 *		* The rotational position tables have to fit
892 	 *		  within the available space in the super block.
893 	 *	  Adjust the configuration values that can be adjusted
894 	 *	  so that these constraints are satisfied.  The
895 	 *	  configuration values that are adjustable are:
896 	 *		* frag size
897 	 *		* cylinders per group
898 	 *		* inode density (can be increased)
899 	 *		* number of rotational positions (the rotational
900 	 *		  position tables are eliminated altogether if
901 	 *		  there isn't enough room for them.)
902 	 * 4. Set the values for all the dependent configuration
903 	 *    values (those that aren't settable on the command
904 	 *    line and which are completely dependent on the
905 	 *    adjustable parameters).  This include cpc (cycles
906 	 *    per cylinder, spc (sectors-per-cylinder), and many others.
907 	 */
908 
909 	max_fssize = get_max_size(fsi);
910 
911 	/*
912 	 * Get and check positional arguments, if any.
913 	 */
914 	switch (argc - 1) {
915 	default:
916 		usage();
917 		/*NOTREACHED*/
918 	case 15:
919 		mtb = checkmtb(argv[15]);
920 		/* FALLTHROUGH */
921 	case 14:
922 		string = argv[14];
923 		tmpmaxcontig = number(-1, "maxcontig", 0);
924 		maxcontig_flag = RC_POSITIONAL;
925 		/* FALLTHROUGH */
926 	case 13:
927 		string = argv[13];
928 		nrpos = number(NRPOS, "nrpos", 0);
929 		nrpos_flag = RC_POSITIONAL;
930 		/* FALLTHROUGH */
931 	case 12:
932 		string = argv[12];
933 		rotdelay = ROTDELAY;
934 		rotdelay_flag = RC_DEFAULT;
935 		/* FALLTHROUGH */
936 	case 11:
937 		string = argv[11];
938 		apc = number(0, "apc", 0);
939 		apc_flag = RC_POSITIONAL;
940 		/* FALLTHROUGH */
941 	case 10:
942 		opt = checkopt(argv[10]);
943 		/* FALLTHROUGH */
944 	case 9:
945 		string = argv[9];
946 		nbpi = number(NBPI, "nbpi", 0);
947 		nbpi_flag = RC_POSITIONAL;
948 		/* FALLTHROUGH */
949 	case 8:
950 		string = argv[8];
951 		rps = number(DEFHZ, "rps", 0);
952 		rps_flag = RC_POSITIONAL;
953 		/* FALLTHROUGH */
954 	case 7:
955 		string = argv[7];
956 		minfree = number(MINFREE, "free", ALLOW_PERCENT);
957 		minfree_flag = RC_POSITIONAL;
958 		/* FALLTHROUGH */
959 	case 6:
960 		string = argv[6];
961 		cpg = number(DESCPG, "cgsize", 0);
962 		cpg_flag = RC_POSITIONAL;
963 		/* FALLTHROUGH */
964 	case 5:
965 		string = argv[5];
966 		fragsize = number(DESFRAGSIZE, "fragsize", 0);
967 		fragsize_flag = RC_POSITIONAL;
968 		/* FALLTHROUGH */
969 	case 4:
970 		string = argv[4];
971 		bsize = number(DESBLKSIZE, "bsize", 0);
972 		bsize_flag = RC_POSITIONAL;
973 		/* FALLTHROUGH */
974 	case 3:
975 		string = argv[3];
976 		ntrack = number(DFLNTRAK, "ntrack", 0);
977 		ntrack_flag = RC_POSITIONAL;
978 		/* FALLTHROUGH */
979 	case 2:
980 		string = argv[2];
981 		nsect = number(DFLNSECT, "nsect", 0);
982 		nsect_flag = RC_POSITIONAL;
983 		/* FALLTHROUGH */
984 	case 1:
985 		string = argv[1];
986 		fssize_db = number(max_fssize, "size", 0);
987 	}
988 
989 
990 	if ((maxcontig_flag == RC_DEFAULT) || (tmpmaxcontig == -1) ||
991 		(maxcontig == -1)) {
992 		long maxtrax = get_max_track_size(fsi);
993 		maxcontig = maxtrax / bsize;
994 
995 	} else {
996 		maxcontig = tmpmaxcontig;
997 	}
998 	dprintf(("DeBuG maxcontig : %ld\n", maxcontig));
999 
1000 	if (rotdelay == -1) {	/* default by newfs and mkfs */
1001 		rotdelay = ROTDELAY;
1002 	}
1003 
1004 	if (cpg_flag == RC_DEFAULT) { /* If not explicity set, use default */
1005 		cpg = DESCPG;
1006 	}
1007 	dprintf(("DeBuG cpg : %ld\n", cpg));
1008 
1009 	/*
1010 	 * Now that we have the semi-sane args, either positional, via -o,
1011 	 * or by defaulting, handle inter-dependencies and range checks.
1012 	 */
1013 
1014 	/*
1015 	 * Settle the file system block size first, since it's a fixed
1016 	 * parameter once set and so many other parameters, including
1017 	 * max_fssize, depend on it.
1018 	 */
1019 	range_check(&bsize, "bsize", MINBSIZE, MAXBSIZE, DESBLKSIZE,
1020 	    bsize_flag);
1021 
1022 	if (!POWEROF2(bsize)) {
1023 		(void) fprintf(stderr,
1024 		    gettext("block size must be a power of 2, not %ld\n"),
1025 		    bsize);
1026 		bsize = DESBLKSIZE;
1027 		(void) fprintf(stderr,
1028 		    gettext("mkfs: bsize reset to default %ld\n"),
1029 		    bsize);
1030 	}
1031 
1032 	if (fssize_db > max_fssize && validate_size(fsi, fssize_db)) {
1033 		(void) fprintf(stderr, gettext(
1034 		    "Warning: the requested size of this file system\n"
1035 		    "(%lld sectors) is greater than the size of the\n"
1036 		    "device reported by the driver (%lld sectors).\n"
1037 		    "However, a read of the device at the requested size\n"
1038 		    "does succeed, so the requested size will be used.\n"),
1039 		    fssize_db, max_fssize);
1040 		max_fssize = fssize_db;
1041 	}
1042 	/*
1043 	 * Since the maximum allocatable unit (the frag) must be less than
1044 	 * or equal to bsize, and the number of frags must be less than or
1045 	 * equal to INT_MAX, the total size of the file system (in
1046 	 * bytes) must be less than or equal to bsize * INT_MAX.
1047 	 */
1048 
1049 	if (max_fssize > ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX)
1050 		max_fssize = ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX;
1051 	range_check_64(&fssize_db, "size", 1024LL, max_fssize, max_fssize, 1);
1052 
1053 	if (fssize_db >= SECTORS_PER_TERABYTE) {
1054 		mtb = 'y';
1055 		if (!in_64bit_mode()) {
1056 			(void) fprintf(stderr, gettext(
1057 "mkfs:  Warning: Creating a file system greater than 1 terabyte on a\n"
1058 "       system running a 32-bit kernel.  This file system will not be\n"
1059 "       accessible until the system is rebooted with a 64-bit kernel.\n"));
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * With newer and much larger disks, the newfs(1M) and mkfs_ufs(1M)
1065 	 * commands had problems in correctly handling the "native" geometries
1066 	 * for various storage devices.
1067 	 *
1068 	 * To handle the new age disks, mkfs_ufs(1M) will use the EFI style
1069 	 * for non-EFI disks that are larger than the CHS addressing limit
1070 	 * ( > 8GB approx ) and ignore the disk geometry information for
1071 	 * these drives. This is what is currently done for multi-terrabyte
1072 	 * filesystems on EFI disks.
1073 	 *
1074 	 * However if the user asked for a specific layout by supplying values
1075 	 * for even one of the three parameters (nsect, ntrack, cpg), honour
1076 	 * the user supplied parameters.
1077 	 *
1078 	 * Choosing EFI style or native geometry style can make a lot of
1079 	 * difference, because the size of a cylinder group is dependent on
1080 	 * this choice. This in turn means that the position of alternate
1081 	 * superblocks varies depending on the style chosen. It is not
1082 	 * necessary that all disks of size > CHSLIMIT have EFI style layout.
1083 	 * There can be disks which are > CHSLIMIT size, but have native
1084 	 * geometry style layout, thereby warranting the need for alternate
1085 	 * logic in superblock detection.
1086 	 */
1087 
1088 	if (mtb != 'y' && label_type == LABEL_TYPE_VTOC &&
1089 	    ((ntrack == -1 || (grow && ntrack_flag == RC_DEFAULT)) ||
1090 	    (nsect_flag == RC_DEFAULT && ntrack_flag == RC_DEFAULT &&
1091 	    cpg_flag == RC_DEFAULT))) {
1092 		/*
1093 		 * "-1" indicates that we were called from newfs and ntracks
1094 		 * was not specified in newfs command line. Calculate nsect
1095 		 * and ntrack in the same manner as newfs.
1096 		 *
1097 		 * This is required because, the defaults for nsect and ntrack
1098 		 * is hardcoded in mkfs, whereas to generate the alternate
1099 		 * superblock locations for the -N option, there is a need for
1100 		 * the geometry based values that newfs would have arrived at.
1101 		 * Newfs would have arrived at these values as below.
1102 		 */
1103 
1104 		if (ioctl(fsi, DKIOCGGEOM, &dkg)) {
1105 		    dprintf(("%s: Unable to read Disk geometry", fsys));
1106 		    perror(gettext("Unable to read Disk geometry"));
1107 		    lockexit(32);
1108 		} else {
1109 		    nsect = dkg.dkg_nsect;
1110 		    ntrack = dkg.dkg_nhead;
1111 #ifdef i386	/* Bug 1170182 */
1112 		    if (ntrack > 32 && (ntrack % 16) != 0) {
1113 			ntrack -= (ntrack % 16);
1114 		    }
1115 #endif
1116 		    if ((dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect)
1117 				> CHSLIMIT) {
1118 			use_efi_dflts = 1;
1119 			retry = 1;
1120 		    }
1121 		}
1122 		dprintf(("DeBuG CHSLIMIT = %d geom = %ld\n", CHSLIMIT,
1123 			dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect));
1124 	}
1125 
1126 	/*
1127 	 * For the newfs -N case, even if the disksize is > CHSLIMIT, do not
1128 	 * blindly follow EFI style. If the fs_version indicates a geometry
1129 	 * based layout, try that one first. If it fails we can always try the
1130 	 * other logic.
1131 	 *
1132 	 * If we were called from growfs, we will have a problem if we mix
1133 	 * and match the filesystem creation and growth styles. For example,
1134 	 * if we create using EFI style, we have to also grow using EFI
1135 	 * style. So follow the style indicated by the fs_version.
1136 	 *
1137 	 * Read and verify the primary superblock. If it looks sane, use the
1138 	 * fs_version from the superblock. If the primary superblock does
1139 	 * not look good, read and verify the first alternate superblock at
1140 	 * ALTSB. Use the fs_version to decide whether to use the
1141 	 * EFI style logic or the old geometry based logic to calculate
1142 	 * the alternate superblock locations.
1143 	 */
1144 	if ((Nflag && use_efi_dflts) || (grow)) {
1145 		if (grow && ntrack_flag != RC_DEFAULT)
1146 			goto start_fs_creation;
1147 		rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize,
1148 			(char *)&altsblock);
1149 		ret = checksblock(altsblock, 1);
1150 
1151 		if (!ret) {
1152 			if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1153 				mtb = 'y';
1154 				goto start_fs_creation;
1155 			}
1156 			use_efi_dflts = (altsblock.fs_version ==
1157 				UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1158 		} else {
1159 			/*
1160 			 * The primary superblock didn't help in determining
1161 			 * the fs_version. Try the first alternate superblock.
1162 			 */
1163 			dprintf(("DeBuG checksblock() failed - error : %d"
1164 				" for sb : %d\n", ret, SBOFF/sectorsize));
1165 			rdfs((diskaddr_t)ALTSB, (int)sbsize,
1166 				(char *)&altsblock);
1167 			ret = checksblock(altsblock, 1);
1168 
1169 			if (!ret) {
1170 			    if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1171 				mtb = 'y';
1172 				goto start_fs_creation;
1173 			    }
1174 			    use_efi_dflts = (altsblock.fs_version ==
1175 				UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1176 			}
1177 			dprintf(("DeBuG checksblock() returned : %d"
1178 				" for sb : %d\n", ret, ALTSB));
1179 		}
1180 	}
1181 
1182 	geom_nsect = nsect;
1183 	geom_ntrack = ntrack;
1184 	geom_cpg = cpg;
1185 	dprintf(("DeBuG geom_nsect=%d, geom_ntrack=%d, geom_cpg=%d\n",
1186 		geom_nsect, geom_ntrack, geom_cpg));
1187 
1188 start_fs_creation:
1189 retry_alternate_logic:
1190 	invalid_sb_cnt = 0;
1191 	cg_too_small = 0;
1192 	if (use_efi_dflts) {
1193 		nsect = DEF_SECTORS_EFI;
1194 		ntrack = DEF_TRACKS_EFI;
1195 		cpg = DESCPG;
1196 		dprintf(("\nDeBuG Using EFI defaults\n"));
1197 	} else {
1198 		nsect = geom_nsect;
1199 		ntrack = geom_ntrack;
1200 		cpg = geom_cpg;
1201 		dprintf(("\nDeBuG Using Geometry\n"));
1202 		/*
1203 		 * 32K based on max block size of 64K, and rotational layout
1204 		 * test of nsect <= (256 * sectors/block).  Current block size
1205 		 * limit is not 64K, but it's growing soon.
1206 		 */
1207 		range_check(&nsect, "nsect", 1, 32768, DFLNSECT, nsect_flag);
1208 		/*
1209 		 * ntrack is the number of tracks per cylinder.
1210 		 * The ntrack value must be between 1 and the total number of
1211 		 * sectors in the file system.
1212 		 */
1213 		range_check(&ntrack, "ntrack", 1,
1214 		    fssize_db > INT_MAX ? INT_MAX : (uint32_t)fssize_db,
1215 		    DFLNTRAK, ntrack_flag);
1216 	}
1217 
1218 	range_check(&apc, "apc", 0, nsect - 1, 0, apc_flag);
1219 
1220 	if (mtb == 'y')
1221 		fragsize = bsize;
1222 
1223 	range_check(&fragsize, "fragsize", sectorsize, bsize,
1224 	    MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)), fragsize_flag);
1225 
1226 	if ((bsize / MAXFRAG) > fragsize) {
1227 		(void) fprintf(stderr, gettext(
1228 "fragment size %ld is too small, minimum with block size %ld is %ld\n"),
1229 		    fragsize, bsize, bsize / MAXFRAG);
1230 		(void) fprintf(stderr,
1231 		    gettext("mkfs: fragsize reset to minimum %ld\n"),
1232 		    bsize / MAXFRAG);
1233 		fragsize = bsize / MAXFRAG;
1234 	}
1235 
1236 	if (!POWEROF2(fragsize)) {
1237 		(void) fprintf(stderr,
1238 		    gettext("fragment size must be a power of 2, not %ld\n"),
1239 		    fragsize);
1240 		fragsize = MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize));
1241 		(void) fprintf(stderr,
1242 		    gettext("mkfs: fragsize reset to %ld\n"),
1243 		    fragsize);
1244 	}
1245 
1246 	/* At this point, bsize must be >= fragsize, so no need to check it */
1247 
1248 	if (bsize < PAGESIZE) {
1249 		(void) fprintf(stderr, gettext(
1250 		    "WARNING: filesystem block size (%ld) is smaller than "
1251 		    "memory page size (%ld).\nResulting filesystem can not be "
1252 		    "mounted on this system.\n\n"),
1253 		    bsize, (long)PAGESIZE);
1254 	}
1255 
1256 	range_check(&rps, "rps", 1, 1000, DEFHZ, rps_flag);
1257 	range_check(&minfree, "free", 0, 99, MINFREE, minfree_flag);
1258 	range_check(&nrpos, "nrpos", 1, nsect, MIN(nsect, NRPOS), nrpos_flag);
1259 
1260 	/*
1261 	 * nbpi is variable, but 2MB seems a reasonable upper limit,
1262 	 * as 4MB tends to cause problems (using otherwise-default
1263 	 * parameters).  The true limit is where we end up with one
1264 	 * inode per cylinder group.  If this file system is being
1265 	 * configured for multi-terabyte access, nbpi must be at least 1MB.
1266 	 */
1267 	if (mtb == 'y' && nbpi < MTB_NBPI) {
1268 		(void) fprintf(stderr, gettext("mkfs: bad value for nbpi: "
1269 			"must be at least 1048576 for multi-terabyte, "
1270 			"nbpi reset to default 1048576\n"));
1271 		nbpi = MTB_NBPI;
1272 	}
1273 
1274 	if (mtb == 'y')
1275 		range_check(&nbpi, "nbpi", MTB_NBPI, 2 * MB, MTB_NBPI,
1276 			nbpi_flag);
1277 	else
1278 		range_check(&nbpi, "nbpi", DEV_BSIZE, 2 * MB, NBPI, nbpi_flag);
1279 
1280 	/*
1281 	 * maxcpg is another variably-limited parameter.  Calculate
1282 	 * the limit based on what we've got for its dependent
1283 	 * variables.  Effectively, it's how much space is left in the
1284 	 * superblock after all the other bits are accounted for.  We
1285 	 * only fill in sblock fields so we can use MAXIpG.
1286 	 *
1287 	 * If the calculation of maxcpg below (for the mtb == 'n'
1288 	 * case) is changed, update newfs as well.
1289 	 *
1290 	 * For old-style, non-MTB format file systems, use the old
1291 	 * algorithm for calculating the maximum cylinder group size,
1292 	 * even though it limits the cylinder group more than necessary.
1293 	 * Since layout can affect performance, we don't want to change
1294 	 * the default layout for non-MTB file systems at this time.
1295 	 * However, for MTB file systems, use the new maxcpg calculation,
1296 	 * which really maxes out the cylinder group size.
1297 	 */
1298 
1299 	sblock.fs_bsize = bsize;
1300 	sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1301 
1302 	if (mtb == 'n') {
1303 		maxcpg = (bsize - sizeof (struct cg) -
1304 		    howmany(MAXIpG(&sblock), NBBY)) /
1305 		    (sizeof (long) + nrpos * sizeof (short) +
1306 		    nsect / (MAXFRAG * NBBY));
1307 	} else {
1308 		maxcpg = compute_maxcpg(bsize, fragsize, nbpi, nrpos,
1309 		    nsect * ntrack);
1310 	}
1311 
1312 	dprintf(("DeBuG cpg : %ld\n", cpg));
1313 	if (cpg == -1)
1314 		cpg = maxcpg;
1315 	dprintf(("DeBuG cpg : %ld\n", cpg));
1316 
1317 	/*
1318 	 * mincpg is variable in complex ways, so we really can't
1319 	 * do a sane lower-end limit check at this point.
1320 	 */
1321 	range_check(&cpg, "cgsize", 1, maxcpg, MIN(maxcpg, DESCPG), cpg_flag);
1322 
1323 	/*
1324 	 * get the controller info
1325 	 */
1326 	ismdd = 0;
1327 	islog = 0;
1328 	islogok = 0;
1329 	waslog = 0;
1330 
1331 	if (ioctl(fsi, DKIOCINFO, &dkcinfo) == 0)
1332 		/*
1333 		 * if it is an MDD (disksuite) device
1334 		 */
1335 		if (dkcinfo.dki_ctype == DKC_MD) {
1336 			ismdd++;
1337 			/*
1338 			 * check the logging device
1339 			 */
1340 			if (ioctl(fsi, _FIOISLOG, NULL) == 0) {
1341 				islog++;
1342 				if (ioctl(fsi, _FIOISLOGOK, NULL) == 0)
1343 					islogok++;
1344 			}
1345 		}
1346 
1347 	/*
1348 	 * Do not grow the file system, but print on stdout the maximum
1349 	 * size in sectors to which the file system can be increased.
1350 	 * The calculated size is limited by fssize_db.
1351 	 * Note that we don't lock the filesystem and therefore under rare
1352 	 * conditions (the filesystem is mounted, the free block count is
1353 	 * almost zero, and the superuser is still changing it) the calculated
1354 	 * size can be imprecise.
1355 	 */
1356 	if (Pflag) {
1357 		(void) printf("%llu\n", probe_summaryinfo());
1358 		exit(0);
1359 	}
1360 
1361 	/*
1362 	 * If we're growing an existing filesystem, then we're about
1363 	 * to start doing things that can require recovery efforts if
1364 	 * we get interrupted, so make sure we get a chance to do so.
1365 	 */
1366 	if (grow) {
1367 		sigact.sa_handler = recover_from_sigint;
1368 		sigemptyset(&sigact.sa_mask);
1369 		sigact.sa_flags = SA_RESTART;
1370 
1371 		if (sigaction(SIGINT, &sigact, (struct sigaction *)NULL) < 0) {
1372 			perror(gettext("Could not register SIGINT handler"));
1373 			lockexit(3);
1374 		}
1375 	}
1376 
1377 	if (!Nflag) {
1378 		/*
1379 		 * Check if MNTTAB is trustable
1380 		 */
1381 		if (statvfs64(MNTTAB, &fs) < 0) {
1382 			(void) fprintf(stderr, gettext("can't statvfs %s\n"),
1383 				MNTTAB);
1384 			exit(32);
1385 		}
1386 
1387 		if (strcmp(MNTTYPE_MNTFS, fs.f_basetype) != 0) {
1388 			(void) fprintf(stderr, gettext(
1389 				"%s file system type is not %s, can't mkfs\n"),
1390 				MNTTAB, MNTTYPE_MNTFS);
1391 			exit(32);
1392 		}
1393 
1394 		special = getfullblkname(fsys);
1395 		checkdev(fsys, special);
1396 
1397 		/*
1398 		 * If we found the block device name,
1399 		 * then check the mount table.
1400 		 * if mounted, and growing write lock the file system
1401 		 *
1402 		 */
1403 		if ((special != NULL) && (*special != '\0')) {
1404 			if ((mnttab = fopen(MNTTAB, "r")) == NULL) {
1405 				(void) fprintf(stderr, gettext(
1406 					"can't open %s\n"), MNTTAB);
1407 				exit(32);
1408 			}
1409 			while ((getmntent(mnttab, &mntp)) == NULL) {
1410 				if (grow) {
1411 					checkmount(&mntp, special);
1412 					continue;
1413 				}
1414 				if (strcmp(special, mntp.mnt_special) == 0) {
1415 					(void) fprintf(stderr, gettext(
1416 					    "%s is mounted, can't mkfs\n"),
1417 					    special);
1418 					exit(32);
1419 				}
1420 			}
1421 			(void) fclose(mnttab);
1422 		}
1423 
1424 		if (directory && (ismounted == 0)) {
1425 			(void) fprintf(stderr, gettext("%s is not mounted\n"),
1426 			    special);
1427 			lockexit(32);
1428 		}
1429 
1430 		fso = (grow) ? open64(fsys, O_WRONLY) : creat64(fsys, 0666);
1431 		if (fso < 0) {
1432 			saverr = errno;
1433 			(void) fprintf(stderr,
1434 			    gettext("%s: cannot create: %s\n"),
1435 			    fsys, strerror(saverr));
1436 			lockexit(32);
1437 		}
1438 
1439 	} else {
1440 
1441 		/*
1442 		 * For the -N case, a file descriptor is needed for the llseek()
1443 		 * in wtfs(). See the comment in wtfs() for more information.
1444 		 *
1445 		 * Get a file descriptor that's read-only so that this code
1446 		 * doesn't accidentally write to the file.
1447 		 */
1448 		fso = open64(fsys, O_RDONLY);
1449 		if (fso < 0) {
1450 			saverr = errno;
1451 			(void) fprintf(stderr, gettext("%s: cannot open: %s\n"),
1452 			    fsys, strerror(saverr));
1453 			lockexit(32);
1454 		}
1455 	}
1456 
1457 	/*
1458 	 * seed random # generator (for ic_generation)
1459 	 */
1460 #ifdef MKFS_DEBUG
1461 	srand48(12962);	/* reproducible results */
1462 #else
1463 	srand48((long)(time((time_t *)NULL) + getpid()));
1464 #endif
1465 
1466 	if (grow) {
1467 		growinit(fsys);
1468 		goto grow00;
1469 	}
1470 
1471 	/*
1472 	 * Validate the given file system size.
1473 	 * Verify that its last block can actually be accessed.
1474 	 *
1475 	 * Note: it's ok to use sblock as a buffer because it is immediately
1476 	 * overwritten by the rdfs() of the superblock in the next line.
1477 	 *
1478 	 * ToDo: Because the size checking is done in rdfs()/wtfs(), the
1479 	 * error message for specifying an illegal size is very unfriendly.
1480 	 * In the future, one could replace the rdfs()/wtfs() calls
1481 	 * below with in-line calls to read() or write(). This allows better
1482 	 * error messages to be put in place.
1483 	 */
1484 	rdfs(fssize_db - 1, (int)sectorsize, (char *)&sblock);
1485 
1486 	/*
1487 	 * make the fs unmountable
1488 	 */
1489 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1490 	sblock.fs_magic = -1;
1491 	sblock.fs_clean = FSBAD;
1492 	sblock.fs_state = FSOKAY - sblock.fs_time;
1493 	wtfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1494 	bzero(&sblock, (size_t)sbsize);
1495 
1496 	sblock.fs_nsect = nsect;
1497 	sblock.fs_ntrak = ntrack;
1498 
1499 	/*
1500 	 * Validate specified/determined spc
1501 	 * and calculate minimum cylinders per group.
1502 	 */
1503 
1504 	/*
1505 	 * sectors/cyl = tracks/cyl * sectors/track
1506 	 */
1507 	sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect;
1508 
1509 grow00:
1510 	if (apc_flag) {
1511 		sblock.fs_spc -= apc;
1512 	}
1513 	/*
1514 	 * Have to test for this separately from apc_flag, due to
1515 	 * the growfs case....
1516 	 */
1517 	if (sblock.fs_spc != sblock.fs_ntrak * sblock.fs_nsect) {
1518 		spc_flag = 1;
1519 	}
1520 	if (grow)
1521 		goto grow10;
1522 
1523 	sblock.fs_nrpos = nrpos;
1524 	sblock.fs_bsize = bsize;
1525 	sblock.fs_fsize = fragsize;
1526 	sblock.fs_minfree = minfree;
1527 
1528 grow10:
1529 	if (nbpi < sblock.fs_fsize) {
1530 		(void) fprintf(stderr, gettext(
1531 		"warning: wasteful data byte allocation / inode (nbpi):\n"));
1532 		(void) fprintf(stderr, gettext(
1533 		    "%ld smaller than allocatable fragment size of %d\n"),
1534 		    nbpi, sblock.fs_fsize);
1535 	}
1536 	if (grow)
1537 		goto grow20;
1538 
1539 	if (opt == 's')
1540 		sblock.fs_optim = FS_OPTSPACE;
1541 	else
1542 		sblock.fs_optim = FS_OPTTIME;
1543 
1544 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
1545 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
1546 	/*
1547 	 * Planning now for future expansion.
1548 	 */
1549 #if defined(_BIG_ENDIAN)
1550 		sblock.fs_qbmask.val[0] = 0;
1551 		sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
1552 		sblock.fs_qfmask.val[0] = 0;
1553 		sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
1554 #endif
1555 #if defined(_LITTLE_ENDIAN)
1556 		sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
1557 		sblock.fs_qbmask.val[1] = 0;
1558 		sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
1559 		sblock.fs_qfmask.val[1] = 0;
1560 #endif
1561 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
1562 		sblock.fs_bshift++;
1563 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
1564 		sblock.fs_fshift++;
1565 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
1566 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
1567 		sblock.fs_fragshift++;
1568 	if (sblock.fs_frag > MAXFRAG) {
1569 		(void) fprintf(stderr, gettext(
1570 	"fragment size %d is too small, minimum with block size %d is %d\n"),
1571 		    sblock.fs_fsize, sblock.fs_bsize,
1572 		    sblock.fs_bsize / MAXFRAG);
1573 		lockexit(32);
1574 	}
1575 	sblock.fs_nindir = sblock.fs_bsize / sizeof (daddr32_t);
1576 	sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1577 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
1578 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
1579 		sblock.fs_fsbtodb++;
1580 
1581 	/*
1582 	 * Compute the super-block, cylinder group, and inode blocks.
1583 	 * Note that these "blkno" are really fragment addresses.
1584 	 * For example, on an 8K/1K (block/fragment) system, fs_sblkno is 16,
1585 	 * fs_cblkno is 24, and fs_iblkno is 32. This is why CGSIZE is so
1586 	 * important: only 1 FS block is allocated for the cg struct (fragment
1587 	 * numbers 24 through 31).
1588 	 */
1589 	sblock.fs_sblkno =
1590 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
1591 	sblock.fs_cblkno = (daddr32_t)(sblock.fs_sblkno +
1592 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
1593 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
1594 
1595 	sblock.fs_cgoffset = roundup(
1596 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
1597 	for (sblock.fs_cgmask = -1, i = sblock.fs_ntrak; i > 1; i >>= 1)
1598 		sblock.fs_cgmask <<= 1;
1599 	if (!POWEROF2(sblock.fs_ntrak))
1600 		sblock.fs_cgmask <<= 1;
1601 	/*
1602 	 * Validate specified/determined spc
1603 	 * and calculate minimum cylinders per group.
1604 	 */
1605 
1606 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
1607 	    sblock.fs_cpc > 1 && (i & 1) == 0;
1608 	    sblock.fs_cpc >>= 1, i >>= 1)
1609 		/* void */;
1610 	mincpc = sblock.fs_cpc;
1611 
1612 	/* if these calculations are changed, check dump_fscmd also */
1613 	bpcg = (uint64_t)sblock.fs_spc * sectorsize;
1614 	inospercg = (uint64_t)roundup(bpcg / sizeof (struct dinode),
1615 	    INOPB(&sblock));
1616 	if (inospercg > MAXIpG(&sblock))
1617 		inospercg = MAXIpG(&sblock);
1618 	used = (uint64_t)(sblock.fs_iblkno + inospercg /
1619 	    INOPF(&sblock)) * NSPF(&sblock);
1620 	mincpgcnt = (long)howmany((uint64_t)sblock.fs_cgoffset *
1621 	    (~sblock.fs_cgmask) + used, sblock.fs_spc);
1622 	mincpg = roundup(mincpgcnt, mincpc);
1623 	/*
1624 	 * Insure that cylinder group with mincpg has enough space
1625 	 * for block maps
1626 	 */
1627 	sblock.fs_cpg = mincpg;
1628 	sblock.fs_ipg = (int32_t)inospercg;
1629 	mapcramped = 0;
1630 
1631 	/*
1632 	 * Make sure the cg struct fits within the file system block.
1633 	 * Use larger block sizes until it fits
1634 	 */
1635 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
1636 		mapcramped = 1;
1637 		if (sblock.fs_bsize < MAXBSIZE) {
1638 			sblock.fs_bsize <<= 1;
1639 			if ((i & 1) == 0) {
1640 				i >>= 1;
1641 			} else {
1642 				sblock.fs_cpc <<= 1;
1643 				mincpc <<= 1;
1644 				mincpg = roundup(mincpgcnt, mincpc);
1645 				sblock.fs_cpg = mincpg;
1646 			}
1647 			sblock.fs_frag <<= 1;
1648 			sblock.fs_fragshift += 1;
1649 			if (sblock.fs_frag <= MAXFRAG)
1650 				continue;
1651 		}
1652 
1653 		/*
1654 		 * Looped far enough. The fragment is now as large as the
1655 		 * filesystem block!
1656 		 */
1657 		if (sblock.fs_fsize == sblock.fs_bsize) {
1658 			(void) fprintf(stderr, gettext(
1659 		    "There is no block size that can support this disk\n"));
1660 			lockexit(32);
1661 		}
1662 
1663 		/*
1664 		 * Try a larger fragment. Double the fragment size.
1665 		 */
1666 		sblock.fs_frag >>= 1;
1667 		sblock.fs_fragshift -= 1;
1668 		sblock.fs_fsize <<= 1;
1669 		sblock.fs_nspf <<= 1;
1670 	}
1671 	/*
1672 	 * Insure that cylinder group with mincpg has enough space for inodes
1673 	 */
1674 	inodecramped = 0;
1675 	used *= sectorsize;
1676 	nbytes64 = (uint64_t)mincpg * bpcg - used;
1677 	inospercg = (uint64_t)roundup((nbytes64 / nbpi), INOPB(&sblock));
1678 	sblock.fs_ipg = (int32_t)inospercg;
1679 	while (inospercg > MAXIpG(&sblock)) {
1680 		inodecramped = 1;
1681 		if (mincpc == 1 || sblock.fs_frag == 1 ||
1682 		    sblock.fs_bsize == MINBSIZE)
1683 			break;
1684 		nbytes64 = (uint64_t)mincpg * bpcg - used;
1685 		(void) fprintf(stderr,
1686 		    gettext("With a block size of %d %s %lu\n"),
1687 		    sblock.fs_bsize, gettext("minimum bytes per inode is"),
1688 		    (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1689 		sblock.fs_bsize >>= 1;
1690 		sblock.fs_frag >>= 1;
1691 		sblock.fs_fragshift -= 1;
1692 		mincpc >>= 1;
1693 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
1694 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
1695 			sblock.fs_bsize <<= 1;
1696 			break;
1697 		}
1698 		mincpg = sblock.fs_cpg;
1699 		nbytes64 = (uint64_t)mincpg * bpcg - used;
1700 		inospercg = (uint64_t)roundup((nbytes64 / nbpi),
1701 			INOPB(&sblock));
1702 		sblock.fs_ipg = (int32_t)inospercg;
1703 	}
1704 	if (inodecramped) {
1705 		if (inospercg > MAXIpG(&sblock)) {
1706 			nbytes64 = (uint64_t)mincpg * bpcg - used;
1707 			(void) fprintf(stderr, gettext(
1708 			    "Minimum bytes per inode is %d\n"),
1709 			    (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1710 		} else if (!mapcramped) {
1711 			(void) fprintf(stderr, gettext(
1712 	    "With %ld bytes per inode, minimum cylinders per group is %ld\n"),
1713 			    nbpi, mincpg);
1714 		}
1715 	}
1716 	if (mapcramped) {
1717 		(void) fprintf(stderr, gettext(
1718 		    "With %d sectors per cylinder, minimum cylinders "
1719 		    "per group is %ld\n"),
1720 		    sblock.fs_spc, mincpg);
1721 	}
1722 	if (inodecramped || mapcramped) {
1723 		/*
1724 		 * To make this at least somewhat comprehensible in
1725 		 * the world of i18n, figure out what we're going to
1726 		 * say and then say it all at one time.  The days of
1727 		 * needing to scrimp on string space are behind us....
1728 		 */
1729 		if ((sblock.fs_bsize != bsize) &&
1730 		    (sblock.fs_fsize != fragsize)) {
1731 			(void) fprintf(stderr, gettext(
1732 	    "This requires the block size to be changed from %ld to %d\n"
1733 	    "and the fragment size to be changed from %ld to %d\n"),
1734 			    bsize, sblock.fs_bsize,
1735 			    fragsize, sblock.fs_fsize);
1736 		} else if (sblock.fs_bsize != bsize) {
1737 			(void) fprintf(stderr, gettext(
1738 	    "This requires the block size to be changed from %ld to %d\n"),
1739 			    bsize, sblock.fs_bsize);
1740 		} else if (sblock.fs_fsize != fragsize) {
1741 			(void) fprintf(stderr, gettext(
1742 	    "This requires the fragment size to be changed from %ld to %d\n"),
1743 			    fragsize, sblock.fs_fsize);
1744 		} else {
1745 			(void) fprintf(stderr, gettext(
1746 	    "Unable to make filesystem fit with the given constraints\n"));
1747 		}
1748 		(void) fprintf(stderr, gettext(
1749 		    "Please re-run mkfs with corrected parameters\n"));
1750 		lockexit(32);
1751 	}
1752 	/*
1753 	 * Calculate the number of cylinders per group
1754 	 */
1755 	sblock.fs_cpg = cpg;
1756 	if (sblock.fs_cpg % mincpc != 0) {
1757 		(void) fprintf(stderr, gettext(
1758 		    "Warning: cylinder groups must have a multiple "
1759 		    "of %ld cylinders with the given\n         parameters\n"),
1760 		    mincpc);
1761 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
1762 		(void) fprintf(stderr, gettext("Rounded cgsize up to %d\n"),
1763 		    sblock.fs_cpg);
1764 	}
1765 	/*
1766 	 * Must insure there is enough space for inodes
1767 	 */
1768 	/* if these calculations are changed, check dump_fscmd also */
1769 	nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1770 	sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), INOPB(&sblock));
1771 
1772 	/*
1773 	 * Slim down cylinders per group, until the inodes can fit.
1774 	 */
1775 	while (sblock.fs_ipg > MAXIpG(&sblock)) {
1776 		inodecramped = 1;
1777 		sblock.fs_cpg -= mincpc;
1778 		nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1779 		sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1780 			INOPB(&sblock));
1781 	}
1782 	/*
1783 	 * Must insure there is enough space to hold block map.
1784 	 * Cut down on cylinders per group, until the cg struct fits in a
1785 	 * filesystem block.
1786 	 */
1787 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
1788 		mapcramped = 1;
1789 		sblock.fs_cpg -= mincpc;
1790 		nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1791 		sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1792 			INOPB(&sblock));
1793 	}
1794 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
1795 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
1796 		(void) fprintf(stderr,
1797 		gettext("newfs: panic (fs_cpg * fs_spc) %% NSPF != 0\n"));
1798 		lockexit(32);
1799 	}
1800 	if (sblock.fs_cpg < mincpg) {
1801 		(void) fprintf(stderr, gettext(
1802 "With the given parameters, cgsize must be at least %ld; please re-run mkfs\n"),
1803 			mincpg);
1804 		lockexit(32);
1805 	}
1806 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
1807 grow20:
1808 	/*
1809 	 * Now have size for file system and nsect and ntrak.
1810 	 * Determine number of cylinders and blocks in the file system.
1811 	 */
1812 	fssize_frag = (int64_t)dbtofsb(&sblock, fssize_db);
1813 	if (fssize_frag > INT_MAX) {
1814 		(void) fprintf(stderr, gettext(
1815 "There are too many fragments in the system, increase fragment size\n"),
1816 		    mincpg);
1817 		lockexit(32);
1818 	}
1819 	sblock.fs_size = (int32_t)fssize_frag;
1820 	sblock.fs_ncyl = (int32_t)(fssize_frag * NSPF(&sblock) / sblock.fs_spc);
1821 	if (fssize_frag * NSPF(&sblock) >
1822 	    (uint64_t)sblock.fs_ncyl * sblock.fs_spc) {
1823 		sblock.fs_ncyl++;
1824 		warn = 1;
1825 	}
1826 	if (sblock.fs_ncyl < 1) {
1827 		(void) fprintf(stderr, gettext(
1828 			"file systems must have at least one cylinder\n"));
1829 		lockexit(32);
1830 	}
1831 	if (grow)
1832 		goto grow30;
1833 	/*
1834 	 * Determine feasability/values of rotational layout tables.
1835 	 *
1836 	 * The size of the rotational layout tables is limited by the size
1837 	 * of the file system block, fs_bsize.  The amount of space
1838 	 * available for tables is calculated as (fs_bsize - sizeof (struct
1839 	 * fs)).  The size of these tables is inversely proportional to the
1840 	 * block size of the file system. The size increases if sectors per
1841 	 * track are not powers of two, because more cylinders must be
1842 	 * described by the tables before the rotational pattern repeats
1843 	 * (fs_cpc).
1844 	 */
1845 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
1846 	sblock.fs_sbsize = fragroundup(&sblock, sizeof (struct fs));
1847 	sblock.fs_npsect = sblock.fs_nsect;
1848 	if (sblock.fs_ntrak == 1) {
1849 		sblock.fs_cpc = 0;
1850 		goto next;
1851 	}
1852 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof (short);
1853 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
1854 	totalsbsize = sizeof (struct fs) + rotblsize;
1855 
1856 	/* do static allocation if nrpos == 8 and fs_cpc == 16  */
1857 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
1858 		/* use old static table space */
1859 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
1860 		    (char *)(&sblock.fs_link);
1861 		sblock.fs_rotbloff = &sblock.fs_space[0] -
1862 		    (uchar_t *)(&sblock.fs_link);
1863 	} else {
1864 		/* use 4.3 dynamic table space */
1865 		sblock.fs_postbloff = &sblock.fs_space[0] -
1866 		    (uchar_t *)(&sblock.fs_link);
1867 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
1868 		totalsbsize += postblsize;
1869 	}
1870 	if (totalsbsize > sblock.fs_bsize ||
1871 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
1872 		(void) fprintf(stderr, gettext(
1873 		    "Warning: insufficient space in super block for\n"
1874 		    "rotational layout tables with nsect %d, ntrack %d, "
1875 		    "and nrpos %d.\nOmitting tables - file system "
1876 		    "performance may be impaired.\n"),
1877 		    sblock.fs_nsect, sblock.fs_ntrak, sblock.fs_nrpos);
1878 
1879 		/*
1880 		 * Setting fs_cpc to 0 tells alloccgblk() in ufs_alloc.c to
1881 		 * ignore the positional layout table and rotational
1882 		 * position table.
1883 		 */
1884 		sblock.fs_cpc = 0;
1885 		goto next;
1886 	}
1887 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
1888 
1889 
1890 	/*
1891 	 * calculate the available blocks for each rotational position
1892 	 */
1893 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
1894 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
1895 			fs_postbl(&sblock, cylno)[rpos] = -1;
1896 	for (i = (rotblsize - 1) * sblock.fs_frag;
1897 	    i >= 0; i -= sblock.fs_frag) {
1898 		cylno = cbtocylno(&sblock, i);
1899 		rpos = cbtorpos(&sblock, i);
1900 		blk = fragstoblks(&sblock, i);
1901 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
1902 			fs_rotbl(&sblock)[blk] = 0;
1903 		else
1904 			fs_rotbl(&sblock)[blk] =
1905 			    fs_postbl(&sblock, cylno)[rpos] - blk;
1906 		fs_postbl(&sblock, cylno)[rpos] = blk;
1907 	}
1908 next:
1909 grow30:
1910 	/*
1911 	 * Compute/validate number of cylinder groups.
1912 	 * Note that if an excessively large filesystem is specified
1913 	 * (e.g., more than 16384 cylinders for an 8K filesystem block), it
1914 	 * does not get detected until checksummarysize()
1915 	 */
1916 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
1917 	if (sblock.fs_ncyl % sblock.fs_cpg)
1918 		sblock.fs_ncg++;
1919 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
1920 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
1921 	ibpcl = cgdmin(&sblock, i) - cgbase(&sblock, i);
1922 	if (ibpcl >= sblock.fs_fpg) {
1923 		(void) fprintf(stderr, gettext(
1924 		    "inode blocks/cyl group (%d) >= data blocks (%d)\n"),
1925 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
1926 		    sblock.fs_fpg / sblock.fs_frag);
1927 		if ((ibpcl < 0) || (sblock.fs_fpg < 0)) {
1928 			(void) fprintf(stderr, gettext(
1929 	    "number of cylinders per cylinder group (%d) must be decreased.\n"),
1930 			    sblock.fs_cpg);
1931 		} else {
1932 			(void) fprintf(stderr, gettext(
1933 	    "number of cylinders per cylinder group (%d) must be increased.\n"),
1934 			    sblock.fs_cpg);
1935 		}
1936 		(void) fprintf(stderr, gettext(
1937 "Note that cgsize may have been adjusted to allow struct cg to fit.\n"));
1938 		lockexit(32);
1939 	}
1940 	j = sblock.fs_ncg - 1;
1941 	if ((i = fssize_frag - j * sblock.fs_fpg) < sblock.fs_fpg &&
1942 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
1943 		(void) fprintf(stderr, gettext(
1944 		    "Warning: inode blocks/cyl group (%d) >= data "
1945 		    "blocks (%ld) in last\n    cylinder group. This "
1946 		    "implies %ld sector(s) cannot be allocated.\n"),
1947 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
1948 		    i / sblock.fs_frag, i * NSPF(&sblock));
1949 		/*
1950 		 * If there is only one cylinder group and that is not even
1951 		 * big enough to hold the inodes, exit.
1952 		 */
1953 		if (sblock.fs_ncg == 1)
1954 			cg_too_small = 1;
1955 		sblock.fs_ncg--;
1956 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
1957 		sblock.fs_size = fssize_frag =
1958 		    (int64_t)sblock.fs_ncyl * (int64_t)sblock.fs_spc /
1959 		    (int64_t)NSPF(&sblock);
1960 		warn = 0;
1961 	}
1962 	if (warn && !spc_flag) {
1963 		(void) fprintf(stderr, gettext(
1964 		    "Warning: %d sector(s) in last cylinder unallocated\n"),
1965 		    sblock.fs_spc - (uint32_t)(fssize_frag * NSPF(&sblock) -
1966 		    (uint64_t)(sblock.fs_ncyl - 1) * sblock.fs_spc));
1967 	}
1968 	/*
1969 	 * fill in remaining fields of the super block
1970 	 */
1971 
1972 	/*
1973 	 * The csum records are stored in cylinder group 0, starting at
1974 	 * cgdmin, the first data block.
1975 	 */
1976 	sblock.fs_csaddr = cgdmin(&sblock, 0);
1977 	sblock.fs_cssize =
1978 	    fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum));
1979 	i = sblock.fs_bsize / sizeof (struct csum);
1980 	sblock.fs_csmask = ~(i - 1);
1981 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
1982 		sblock.fs_csshift++;
1983 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
1984 
1985 	checksummarysize();
1986 	if (mtb == 'y') {
1987 		sblock.fs_magic = MTB_UFS_MAGIC;
1988 		sblock.fs_version = MTB_UFS_VERSION_1;
1989 	} else {
1990 		sblock.fs_magic = FS_MAGIC;
1991 		if (use_efi_dflts)
1992 			sblock.fs_version = UFS_EFISTYLE4NONEFI_VERSION_2;
1993 		else
1994 			sblock.fs_version = UFS_VERSION_MIN;
1995 	}
1996 
1997 	if (grow) {
1998 		bcopy((caddr_t)grow_fscs, (caddr_t)fscs, (int)grow_fs_cssize);
1999 		extendsummaryinfo();
2000 		goto grow40;
2001 	}
2002 	sblock.fs_rotdelay = rotdelay;
2003 	sblock.fs_maxcontig = maxcontig;
2004 	sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
2005 
2006 	sblock.fs_rps = rps;
2007 	sblock.fs_cgrotor = 0;
2008 	sblock.fs_cstotal.cs_ndir = 0;
2009 	sblock.fs_cstotal.cs_nbfree = 0;
2010 	sblock.fs_cstotal.cs_nifree = 0;
2011 	sblock.fs_cstotal.cs_nffree = 0;
2012 	sblock.fs_fmod = 0;
2013 	sblock.fs_ronly = 0;
2014 	sblock.fs_time = mkfstime;
2015 	sblock.fs_state = FSOKAY - sblock.fs_time;
2016 	sblock.fs_clean = FSCLEAN;
2017 grow40:
2018 
2019 	/*
2020 	 * If all that's needed is a dump of the superblock we
2021 	 * would use by default, we've got it now.  So, splat it
2022 	 * out and leave.
2023 	 */
2024 	if (rflag) {
2025 		dump_sblock();
2026 		lockexit(0);
2027 	}
2028 	/*
2029 	 * Dump out summary information about file system.
2030 	 */
2031 	(void) fprintf(stderr, gettext(
2032 	    "%s:\t%lld sectors in %d cylinders of %d tracks, %d sectors\n"),
2033 	    fsys, (uint64_t)sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
2034 	    sblock.fs_ntrak, sblock.fs_nsect);
2035 	(void) fprintf(stderr, gettext(
2036 	    "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n"),
2037 	    (float)sblock.fs_size * sblock.fs_fsize / MB, sblock.fs_ncg,
2038 	    sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize / MB,
2039 	    sblock.fs_ipg);
2040 
2041 	tmpbuf = calloc(sblock.fs_ncg / 50 + 500, 1);
2042 	if (tmpbuf == NULL) {
2043 		perror("calloc");
2044 		lockexit(32);
2045 	}
2046 	if (cg_too_small) {
2047 		(void) fprintf(stderr, gettext("File system creation failed. "
2048 			"There is only one cylinder group and\nthat is "
2049 			"not even big enough to hold the inodes.\n"));
2050 		lockexit(32);
2051 	}
2052 	/*
2053 	 * Now build the cylinders group blocks and
2054 	 * then print out indices of cylinder groups.
2055 	 */
2056 	tprintf(gettext(
2057 	    "super-block backups (for fsck -F ufs -o b=#) at:\n"));
2058 	for (width = cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) {
2059 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2060 			initcg(cylno);
2061 		num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2062 		/*
2063 		 * If Nflag and if the disk is larger than the CHSLIMIT,
2064 		 * then sanity test the superblocks before reporting. If there
2065 		 * are too many superblocks which look insane, we have
2066 		 * to retry with alternate logic. If both methods have
2067 		 * failed, then our efforts to arrive at alternate
2068 		 * superblocks failed, so complain and exit.
2069 		 */
2070 		if (Nflag && retry) {
2071 		    skip_this_sb = 0;
2072 		    rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2073 		    ret = checksblock(altsblock, 1);
2074 		    if (ret) {
2075 			skip_this_sb = 1;
2076 			invalid_sb_cnt++;
2077 			dprintf(("DeBuG checksblock() failed - error : %d"
2078 			    " for sb : %llu invalid_sb_cnt : %d\n",
2079 			    ret, num, invalid_sb_cnt));
2080 		    } else {
2081 			/*
2082 			 * Though the superblock looks sane, verify if the
2083 			 * fs_version in the superblock and the logic that
2084 			 * we are using to arrive at the superblocks match.
2085 			 */
2086 			if (use_efi_dflts && altsblock.fs_version
2087 			    != UFS_EFISTYLE4NONEFI_VERSION_2) {
2088 				skip_this_sb = 1;
2089 				invalid_sb_cnt++;
2090 			}
2091 		    }
2092 		    if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2093 			if (retry > 1) {
2094 			    (void) fprintf(stderr, gettext(
2095 				"Error determining alternate "
2096 				"superblock locations\n"));
2097 			    free(tmpbuf);
2098 			    lockexit(32);
2099 			}
2100 			retry++;
2101 			use_efi_dflts = !use_efi_dflts;
2102 			free(tmpbuf);
2103 			goto retry_alternate_logic;
2104 		    }
2105 		    if (skip_this_sb)
2106 			continue;
2107 		}
2108 		(void) sprintf(pbuf, " %llu,", num);
2109 		plen = strlen(pbuf);
2110 		if ((width + plen) > (WIDTH - 1)) {
2111 			width = plen;
2112 			tprintf("\n");
2113 		} else {
2114 			width += plen;
2115 		}
2116 		if (Nflag && retry)
2117 			(void) strncat(tmpbuf, pbuf, strlen(pbuf));
2118 		else
2119 			(void) fprintf(stderr, "%s", pbuf);
2120 	}
2121 	tprintf("\n");
2122 
2123 	remaining_cg = sblock.fs_ncg - cylno;
2124 
2125 	/*
2126 	 * If there are more than 300 cylinder groups still to be
2127 	 * initialized, print a "." for every 50 cylinder groups.
2128 	 */
2129 	if (remaining_cg > 300) {
2130 		tprintf(gettext("Initializing cylinder groups:\n"));
2131 		do_dot = 1;
2132 	}
2133 
2134 	/*
2135 	 * Now initialize all cylinder groups between the first ten
2136 	 * and the last ten.
2137 	 *
2138 	 * If the number of cylinder groups was less than 10, all of the
2139 	 * cylinder group offsets would have printed in the last loop
2140 	 * and cylno will already be equal to sblock.fs_ncg and so this
2141 	 * loop will not be entered.  If there are less than 20 cylinder
2142 	 * groups, cylno is already less than fs_ncg - 10, so this loop
2143 	 * won't be entered in that case either.
2144 	 */
2145 
2146 	i = 0;
2147 	for (; cylno < sblock.fs_ncg - 10; cylno++) {
2148 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2149 			initcg(cylno);
2150 		if (do_dot && cylno % 50 == 0) {
2151 			tprintf(".");
2152 			i++;
2153 			if (i == WIDTH - 1) {
2154 				tprintf("\n");
2155 				i = 0;
2156 			}
2157 		}
2158 	}
2159 
2160 	/*
2161 	 * Now print the cylinder group offsets for the last 10
2162 	 * cylinder groups, if any are left.
2163 	 */
2164 
2165 	if (do_dot) {
2166 		tprintf(gettext(
2167 	    "\nsuper-block backups for last 10 cylinder groups at:\n"));
2168 	}
2169 	for (width = 0; cylno < sblock.fs_ncg; cylno++) {
2170 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2171 			initcg(cylno);
2172 		num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2173 		if (Nflag && retry) {
2174 		    skip_this_sb = 0;
2175 		    rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2176 		    ret = checksblock(altsblock, 1);
2177 		    if (ret) {
2178 			skip_this_sb = 1;
2179 			invalid_sb_cnt++;
2180 			dprintf(("DeBuG checksblock() failed - error : %d"
2181 			    " for sb : %llu invalid_sb_cnt : %d\n",
2182 			    ret, num, invalid_sb_cnt));
2183 		    } else {
2184 			/*
2185 			 * Though the superblock looks sane, verify if the
2186 			 * fs_version in the superblock and the logic that
2187 			 * we are using to arrive at the superblocks match.
2188 			 */
2189 			if (use_efi_dflts && altsblock.fs_version
2190 			    != UFS_EFISTYLE4NONEFI_VERSION_2) {
2191 				skip_this_sb = 1;
2192 				invalid_sb_cnt++;
2193 			}
2194 		    }
2195 		    if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2196 			if (retry > 1) {
2197 			    (void) fprintf(stderr, gettext(
2198 				"Error determining alternate "
2199 				"superblock locations\n"));
2200 			    free(tmpbuf);
2201 			    lockexit(32);
2202 			}
2203 			retry++;
2204 			use_efi_dflts = !use_efi_dflts;
2205 			free(tmpbuf);
2206 			goto retry_alternate_logic;
2207 		    }
2208 		    if (skip_this_sb)
2209 			continue;
2210 		}
2211 		/* Don't print ',' for the last superblock */
2212 		if (cylno == sblock.fs_ncg-1)
2213 			(void) sprintf(pbuf, " %llu", num);
2214 		else
2215 			(void) sprintf(pbuf, " %llu,", num);
2216 		plen = strlen(pbuf);
2217 		if ((width + plen) > (WIDTH - 1)) {
2218 			width = plen;
2219 			tprintf("\n");
2220 		} else {
2221 			width += plen;
2222 		}
2223 		if (Nflag && retry)
2224 			(void) strncat(tmpbuf, pbuf, strlen(pbuf));
2225 		else
2226 			(void) fprintf(stderr, "%s", pbuf);
2227 	}
2228 	tprintf("\n");
2229 	if (Nflag) {
2230 		if (retry)
2231 			(void) fprintf(stderr, "%s", tmpbuf);
2232 		free(tmpbuf);
2233 		lockexit(0);
2234 	}
2235 
2236 	free(tmpbuf);
2237 	if (grow)
2238 		goto grow50;
2239 
2240 	/*
2241 	 * Now construct the initial file system,
2242 	 * then write out the super-block.
2243 	 */
2244 	fsinit();
2245 grow50:
2246 	/*
2247 	 * write the superblock and csum information
2248 	 */
2249 	wtsb();
2250 
2251 	/*
2252 	 * extend the last cylinder group in the original file system
2253 	 */
2254 	if (grow) {
2255 		extendcg(grow_fs_ncg-1);
2256 		wtsb();
2257 	}
2258 
2259 	/*
2260 	 * Write out the duplicate super blocks to the first 10
2261 	 * cylinder groups (or fewer, if there are fewer than 10
2262 	 * cylinder groups).
2263 	 */
2264 	for (cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++)
2265 		awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2266 		    (int)sbsize, (char *)&sblock, SAVE);
2267 
2268 	/*
2269 	 * Now write out duplicate super blocks to the remaining
2270 	 * cylinder groups.  In the case of multi-terabyte file
2271 	 * systems, just write out the super block to the last ten
2272 	 * cylinder groups (or however many are left).
2273 	 */
2274 	if (mtb == 'y') {
2275 		if (sblock.fs_ncg <= 10)
2276 			cylno = sblock.fs_ncg;
2277 		else if (sblock.fs_ncg <= 20)
2278 			cylno = 10;
2279 		else
2280 			cylno = sblock.fs_ncg - 10;
2281 	}
2282 
2283 	for (; cylno < sblock.fs_ncg; cylno++)
2284 		awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2285 		    (int)sbsize, (char *)&sblock, SAVE);
2286 
2287 	/*
2288 	 * Flush out all the AIO writes we've done.  It's not
2289 	 * necessary to do this explicitly, but it's the only
2290 	 * way to report any errors from those writes.
2291 	 */
2292 	flush_writes();
2293 
2294 	/*
2295 	 * set clean flag
2296 	 */
2297 	if (grow)
2298 		sblock.fs_clean = grow_fs_clean;
2299 	else
2300 		sblock.fs_clean = FSCLEAN;
2301 	sblock.fs_time = mkfstime;
2302 	sblock.fs_state = FSOKAY - sblock.fs_time;
2303 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
2304 	isbad = 0;
2305 
2306 	if (fsync(fso) == -1) {
2307 		saverr = errno;
2308 		(void) fprintf(stderr,
2309 		    gettext("mkfs: fsync failed on write disk: %s\n"),
2310 		    strerror(saverr));
2311 		/* we're just cleaning up, so keep going */
2312 	}
2313 	if (close(fsi) == -1) {
2314 		saverr = errno;
2315 		(void) fprintf(stderr,
2316 		    gettext("mkfs: close failed on read disk: %s\n"),
2317 		    strerror(saverr));
2318 		/* we're just cleaning up, so keep going */
2319 	}
2320 	if (close(fso) == -1) {
2321 		saverr = errno;
2322 		(void) fprintf(stderr,
2323 		    gettext("mkfs: close failed on write disk: %s\n"),
2324 		    strerror(saverr));
2325 		/* we're just cleaning up, so keep going */
2326 	}
2327 	fsi = fso = -1;
2328 
2329 #ifndef STANDALONE
2330 	lockexit(0);
2331 #endif
2332 
2333 	return (0);
2334 }
2335 
2336 /*
2337  * Figure out how big the partition we're dealing with is.
2338  * The value returned is in disk blocks (sectors);
2339  */
2340 static diskaddr_t
2341 get_max_size(int fd)
2342 {
2343 	struct vtoc vtoc;
2344 	dk_gpt_t *efi_vtoc;
2345 	diskaddr_t	slicesize;
2346 
2347 	int index = read_vtoc(fd, &vtoc);
2348 
2349 	if (index >= 0) {
2350 		label_type = LABEL_TYPE_VTOC;
2351 	} else {
2352 		if (index == VT_ENOTSUP || index == VT_ERROR) {
2353 			/* it might be an EFI label */
2354 			index = efi_alloc_and_read(fd, &efi_vtoc);
2355 			label_type = LABEL_TYPE_EFI;
2356 		}
2357 	}
2358 
2359 	if (index < 0) {
2360 		switch (index) {
2361 		case VT_ERROR:
2362 			break;
2363 		case VT_EIO:
2364 			errno = EIO;
2365 			break;
2366 		case VT_EINVAL:
2367 			errno = EINVAL;
2368 		}
2369 		perror(gettext("Can not determine partition size"));
2370 		lockexit(32);
2371 	}
2372 
2373 	if (label_type == LABEL_TYPE_EFI) {
2374 		slicesize = efi_vtoc->efi_parts[index].p_size;
2375 		efi_free(efi_vtoc);
2376 	} else {
2377 		/*
2378 		 * In the vtoc struct, p_size is a 32-bit signed quantity.
2379 		 * In the dk_gpt struct (efi's version of the vtoc), p_size
2380 		 * is an unsigned 64-bit quantity.  By casting the vtoc's
2381 		 * psize to an unsigned 32-bit quantity, it will be copied
2382 		 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without
2383 		 * sign extension.
2384 		 */
2385 
2386 		slicesize = (uint32_t)vtoc.v_part[index].p_size;
2387 	}
2388 
2389 	dprintf(("DeBuG get_max_size index = %d, p_size = %lld, dolimit = %d\n",
2390 	    index, slicesize, (slicesize > FS_MAX)));
2391 
2392 	/*
2393 	 * The next line limits a UFS file system to the maximum
2394 	 * supported size.
2395 	 */
2396 
2397 	if (slicesize > FS_MAX)
2398 		return (FS_MAX);
2399 	return (slicesize);
2400 }
2401 
2402 static long
2403 get_max_track_size(int fd)
2404 {
2405 	struct dk_cinfo ci;
2406 	long track_size = -1;
2407 
2408 	if (ioctl(fd, DKIOCINFO, &ci) == 0) {
2409 		track_size = ci.dki_maxtransfer * DEV_BSIZE;
2410 	}
2411 
2412 	if ((track_size < 0)) {
2413 		int	error = 0;
2414 		int	maxphys;
2415 		int	gotit = 0;
2416 
2417 		gotit = fsgetmaxphys(&maxphys, &error);
2418 		if (gotit) {
2419 			track_size = MIN(MB, maxphys);
2420 		} else {
2421 			(void) fprintf(stderr, gettext(
2422 "Warning: Could not get system value for maxphys. The value for\n"
2423 "maxcontig will default to 1MB.\n"));
2424 			track_size = MB;
2425 		}
2426 	}
2427 	return (track_size);
2428 }
2429 
2430 /*
2431  * Initialize a cylinder group.
2432  */
2433 static void
2434 initcg(int cylno)
2435 {
2436 	diskaddr_t cbase, d;
2437 	diskaddr_t dlower;	/* last data block before cg metadata */
2438 	diskaddr_t dupper;	/* first data block after cg metadata */
2439 	diskaddr_t dmax;
2440 	int64_t i;
2441 	struct csum *cs;
2442 	struct dinode *inode_buffer;
2443 	int size;
2444 
2445 	/*
2446 	 * Variables used to store intermediate results as a part of
2447 	 * the internal implementation of the cbtocylno() macros.
2448 	 */
2449 	diskaddr_t bno;		/* UFS block number (not sector number) */
2450 	int	cbcylno;	/* current cylinder number */
2451 	int	cbcylno_sect;	/* sector offset within cylinder */
2452 	int	cbsect_incr;	/* amount to increment sector offset */
2453 
2454 	/*
2455 	 * Variables used to store intermediate results as a part of
2456 	 * the internal implementation of the cbtorpos() macros.
2457 	 */
2458 	short	*cgblks;	/* pointer to array of free blocks in cg */
2459 	int	trackrpos;	/* tmp variable for rotation position */
2460 	int	trackoff;	/* offset within a track */
2461 	int	trackoff_incr;	/* amount to increment trackoff */
2462 	int	rpos;		/* rotation position of current block */
2463 	int	rpos_incr;	/* amount to increment rpos per block */
2464 
2465 	union cgun *icgun;	/* local pointer to a cg summary block */
2466 #define	icg	(icgun->cg)
2467 
2468 	icgun = (union cgun *)getbuf(&cgsumbuf, sizeof (union cgun));
2469 
2470 	/*
2471 	 * Determine block bounds for cylinder group.
2472 	 * Allow space for super block summary information in first
2473 	 * cylinder group.
2474 	 */
2475 	cbase = cgbase(&sblock, cylno);
2476 	dmax = cbase + sblock.fs_fpg;
2477 	if (dmax > sblock.fs_size)	/* last cg may be smaller than normal */
2478 		dmax = sblock.fs_size;
2479 	dlower = cgsblock(&sblock, cylno) - cbase;
2480 	dupper = cgdmin(&sblock, cylno) - cbase;
2481 	if (cylno == 0)
2482 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
2483 	cs = fscs + cylno;
2484 	icg.cg_time = mkfstime;
2485 	icg.cg_magic = CG_MAGIC;
2486 	icg.cg_cgx = cylno;
2487 	/* last one gets whatever's left */
2488 	if (cylno == sblock.fs_ncg - 1)
2489 		icg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
2490 	else
2491 		icg.cg_ncyl = sblock.fs_cpg;
2492 	icg.cg_niblk = sblock.fs_ipg;
2493 	icg.cg_ndblk = dmax - cbase;
2494 	icg.cg_cs.cs_ndir = 0;
2495 	icg.cg_cs.cs_nffree = 0;
2496 	icg.cg_cs.cs_nbfree = 0;
2497 	icg.cg_cs.cs_nifree = 0;
2498 	icg.cg_rotor = 0;
2499 	icg.cg_frotor = 0;
2500 	icg.cg_irotor = 0;
2501 	icg.cg_btotoff = &icg.cg_space[0] - (uchar_t *)(&icg.cg_link);
2502 	icg.cg_boff = icg.cg_btotoff + sblock.fs_cpg * sizeof (long);
2503 	icg.cg_iusedoff = icg.cg_boff +
2504 		sblock.fs_cpg * sblock.fs_nrpos * sizeof (short);
2505 	icg.cg_freeoff = icg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
2506 	icg.cg_nextfreeoff = icg.cg_freeoff +
2507 		howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
2508 	for (i = 0; i < sblock.fs_frag; i++) {
2509 		icg.cg_frsum[i] = 0;
2510 	}
2511 	bzero((caddr_t)cg_inosused(&icg), icg.cg_freeoff - icg.cg_iusedoff);
2512 	icg.cg_cs.cs_nifree += sblock.fs_ipg;
2513 	if (cylno == 0)
2514 		for (i = 0; i < UFSROOTINO; i++) {
2515 			setbit(cg_inosused(&icg), i);
2516 			icg.cg_cs.cs_nifree--;
2517 		}
2518 
2519 	/*
2520 	 * Initialize all the inodes in the cylinder group using
2521 	 * random numbers.
2522 	 */
2523 	size = sblock.fs_ipg * sizeof (struct dinode);
2524 	inode_buffer = (struct dinode *)getbuf(&inodebuf, size);
2525 
2526 	for (i = 0; i < sblock.fs_ipg; i++) {
2527 		IRANDOMIZE(&(inode_buffer[i].di_ic));
2528 	}
2529 
2530 	/*
2531 	 * Write all inodes in a single write for performance.
2532 	 */
2533 	awtfs(fsbtodb(&sblock, (uint64_t)cgimin(&sblock, cylno)), (int)size,
2534 	    (char *)inode_buffer, RELEASE);
2535 
2536 	bzero((caddr_t)cg_blktot(&icg), icg.cg_boff - icg.cg_btotoff);
2537 	bzero((caddr_t)cg_blks(&sblock, &icg, 0),
2538 	    icg.cg_iusedoff - icg.cg_boff);
2539 	bzero((caddr_t)cg_blksfree(&icg), icg.cg_nextfreeoff - icg.cg_freeoff);
2540 
2541 	if (cylno > 0) {
2542 		for (d = 0; d < dlower; d += sblock.fs_frag) {
2543 			setblock(&sblock, cg_blksfree(&icg), d/sblock.fs_frag);
2544 			icg.cg_cs.cs_nbfree++;
2545 			cg_blktot(&icg)[cbtocylno(&sblock, d)]++;
2546 			cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2547 			    [cbtorpos(&sblock, d)]++;
2548 		}
2549 		sblock.fs_dsize += dlower;
2550 	}
2551 	sblock.fs_dsize += icg.cg_ndblk - dupper;
2552 	if ((i = dupper % sblock.fs_frag) != 0) {
2553 		icg.cg_frsum[sblock.fs_frag - i]++;
2554 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
2555 			setbit(cg_blksfree(&icg), dupper);
2556 			icg.cg_cs.cs_nffree++;
2557 		}
2558 	}
2559 
2560 	/*
2561 	 * WARNING: The following code is somewhat confusing, but
2562 	 * results in a substantial performance improvement in mkfs.
2563 	 *
2564 	 * Instead of using cbtocylno() and cbtorpos() macros, we
2565 	 * keep track of all the intermediate state of those macros
2566 	 * in some variables.  This allows simple addition to be
2567 	 * done to calculate the results as we step through the
2568 	 * blocks in an orderly fashion instead of the slower
2569 	 * multiplication and division the macros are forced to
2570 	 * used so they can support random input.  (Multiplication,
2571 	 * division, and remainder operations typically take about
2572 	 * 10x as many processor cycles as other operations.)
2573 	 *
2574 	 * The basic idea is to take code:
2575 	 *
2576 	 *	for (x = starting_x; x < max; x++)
2577 	 *		y = (x * c) / z
2578 	 *
2579 	 * and rewrite it to take advantage of the fact that
2580 	 * the variable x is incrementing in an orderly way:
2581 	 *
2582 	 *	intermediate = starting_x * c
2583 	 *	yval = intermediate / z
2584 	 *	for (x = starting_x; x < max; x++) {
2585 	 *		y = yval;
2586 	 *		intermediate += c
2587 	 *		if (intermediate > z) {
2588 	 *			yval++;
2589 	 *			intermediate -= z
2590 	 *		}
2591 	 *	}
2592 	 *
2593 	 * Performance has improved as much as 4X using this code.
2594 	 */
2595 
2596 	/*
2597 	 * Initialize the starting points for all the cbtocylno()
2598 	 * macro variables and figure out the increments needed each
2599 	 * time through the loop.
2600 	 */
2601 	cbcylno_sect = dupper * NSPF(&sblock);
2602 	cbsect_incr = sblock.fs_frag * NSPF(&sblock);
2603 	cbcylno = cbcylno_sect / sblock.fs_spc;
2604 	cbcylno_sect %= sblock.fs_spc;
2605 	cgblks = cg_blks(&sblock, &icg, cbcylno);
2606 	bno = dupper / sblock.fs_frag;
2607 
2608 	/*
2609 	 * Initialize the starting points for all the cbtorpos()
2610 	 * macro variables and figure out the increments needed each
2611 	 * time through the loop.
2612 	 *
2613 	 * It's harder to simplify the cbtorpos() macro if there were
2614 	 * alternate sectors specified (or if they previously existed
2615 	 * in the growfs case).  Since this is rare, we just revert to
2616 	 * using the macros in this case and skip the variable setup.
2617 	 */
2618 	if (!spc_flag) {
2619 		trackrpos = (cbcylno_sect % sblock.fs_nsect) * sblock.fs_nrpos;
2620 		rpos = trackrpos / sblock.fs_nsect;
2621 		trackoff = trackrpos % sblock.fs_nsect;
2622 		trackoff_incr = cbsect_incr * sblock.fs_nrpos;
2623 		rpos_incr = (trackoff_incr / sblock.fs_nsect) % sblock.fs_nrpos;
2624 		trackoff_incr = trackoff_incr % sblock.fs_nsect;
2625 	}
2626 
2627 	/*
2628 	 * Loop through all the blocks, marking them free and
2629 	 * updating totals kept in the superblock and cg summary.
2630 	 */
2631 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
2632 		setblock(&sblock, cg_blksfree(&icg),  bno);
2633 		icg.cg_cs.cs_nbfree++;
2634 
2635 		cg_blktot(&icg)[cbcylno]++;
2636 
2637 		if (!spc_flag)
2638 			cgblks[rpos]++;
2639 		else
2640 			cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2641 			    [cbtorpos(&sblock, d)]++;
2642 
2643 		d += sblock.fs_frag;
2644 		bno++;
2645 
2646 		/*
2647 		 * Increment the sector offset within the cylinder
2648 		 * for the cbtocylno() macro reimplementation.  If
2649 		 * we're beyond the end of the cylinder, update the
2650 		 * cylinder number, calculate the offset in the
2651 		 * new cylinder, and update the cgblks pointer
2652 		 * to the next rotational position.
2653 		 */
2654 		cbcylno_sect += cbsect_incr;
2655 		if (cbcylno_sect >= sblock.fs_spc) {
2656 			cbcylno++;
2657 			cbcylno_sect -= sblock.fs_spc;
2658 			cgblks += sblock.fs_nrpos;
2659 		}
2660 
2661 		/*
2662 		 * If there aren't alternate sectors, increment the
2663 		 * rotational position variables for the cbtorpos()
2664 		 * reimplementation.  Note that we potentially
2665 		 * increment rpos twice.  Once by rpos_incr, and one
2666 		 * more time when we wrap to a new track because
2667 		 * trackoff >= fs_nsect.
2668 		 */
2669 		if (!spc_flag) {
2670 			trackoff += trackoff_incr;
2671 			rpos += rpos_incr;
2672 			if (trackoff >= sblock.fs_nsect) {
2673 				trackoff -= sblock.fs_nsect;
2674 				rpos++;
2675 			}
2676 			if (rpos >= sblock.fs_nrpos)
2677 				rpos -= sblock.fs_nrpos;
2678 		}
2679 	}
2680 
2681 	if (d < dmax - cbase) {
2682 		icg.cg_frsum[dmax - cbase - d]++;
2683 		for (; d < dmax - cbase; d++) {
2684 			setbit(cg_blksfree(&icg), d);
2685 			icg.cg_cs.cs_nffree++;
2686 		}
2687 	}
2688 	sblock.fs_cstotal.cs_ndir += icg.cg_cs.cs_ndir;
2689 	sblock.fs_cstotal.cs_nffree += icg.cg_cs.cs_nffree;
2690 	sblock.fs_cstotal.cs_nbfree += icg.cg_cs.cs_nbfree;
2691 	sblock.fs_cstotal.cs_nifree += icg.cg_cs.cs_nifree;
2692 	*cs = icg.cg_cs;
2693 	awtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, cylno)),
2694 		sblock.fs_bsize, (char *)&icg, RELEASE);
2695 }
2696 
2697 /*
2698  * initialize the file system
2699  */
2700 struct inode node;
2701 
2702 #define	LOSTDIR
2703 #ifdef LOSTDIR
2704 #define	PREDEFDIR 3
2705 #else
2706 #define	PREDEFDIR 2
2707 #endif
2708 
2709 struct direct root_dir[] = {
2710 	{ UFSROOTINO, sizeof (struct direct), 1, "." },
2711 	{ UFSROOTINO, sizeof (struct direct), 2, ".." },
2712 #ifdef LOSTDIR
2713 	{ LOSTFOUNDINO, sizeof (struct direct), 10, "lost+found" },
2714 #endif
2715 };
2716 #ifdef LOSTDIR
2717 struct direct lost_found_dir[] = {
2718 	{ LOSTFOUNDINO, sizeof (struct direct), 1, "." },
2719 	{ UFSROOTINO, sizeof (struct direct), 2, ".." },
2720 	{ 0, DIRBLKSIZ, 0, 0 },
2721 };
2722 #endif
2723 char buf[MAXBSIZE];
2724 
2725 static void
2726 fsinit()
2727 {
2728 	int i;
2729 
2730 
2731 	/*
2732 	 * initialize the node
2733 	 */
2734 	node.i_atime = mkfstime;
2735 	node.i_mtime = mkfstime;
2736 	node.i_ctime = mkfstime;
2737 #ifdef LOSTDIR
2738 	/*
2739 	 * create the lost+found directory
2740 	 */
2741 	(void) makedir(lost_found_dir, 2);
2742 	for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) {
2743 		bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
2744 	}
2745 	node.i_number = LOSTFOUNDINO;
2746 	node.i_smode = node.i_mode = IFDIR | 0700;
2747 	node.i_nlink = 2;
2748 	node.i_size = sblock.fs_bsize;
2749 	node.i_db[0] = alloc((int)node.i_size, node.i_mode);
2750 	node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2751 	IRANDOMIZE(&node.i_ic);
2752 	wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), (int)node.i_size, buf);
2753 	iput(&node);
2754 #endif
2755 	/*
2756 	 * create the root directory
2757 	 */
2758 	node.i_number = UFSROOTINO;
2759 	node.i_mode = node.i_smode = IFDIR | UMASK;
2760 	node.i_nlink = PREDEFDIR;
2761 	node.i_size = makedir(root_dir, PREDEFDIR);
2762 	node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
2763 	/* i_size < 2GB because we are initializing the file system */
2764 	node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2765 	IRANDOMIZE(&node.i_ic);
2766 	wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), sblock.fs_fsize, buf);
2767 	iput(&node);
2768 }
2769 
2770 /*
2771  * construct a set of directory entries in "buf".
2772  * return size of directory.
2773  */
2774 static int
2775 makedir(struct direct *protodir, int entries)
2776 {
2777 	char *cp;
2778 	int i;
2779 	ushort_t spcleft;
2780 
2781 	spcleft = DIRBLKSIZ;
2782 	for (cp = buf, i = 0; i < entries - 1; i++) {
2783 		protodir[i].d_reclen = DIRSIZ(&protodir[i]);
2784 		bcopy(&protodir[i], cp, protodir[i].d_reclen);
2785 		cp += protodir[i].d_reclen;
2786 		spcleft -= protodir[i].d_reclen;
2787 	}
2788 	protodir[i].d_reclen = spcleft;
2789 	bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
2790 	return (DIRBLKSIZ);
2791 }
2792 
2793 /*
2794  * allocate a block or frag
2795  */
2796 static daddr32_t
2797 alloc(int size, int mode)
2798 {
2799 	int i, frag;
2800 	daddr32_t d;
2801 
2802 	rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2803 	    (char *)&acg);
2804 	if (acg.cg_magic != CG_MAGIC) {
2805 		(void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2806 		lockexit(32);
2807 	}
2808 	if (acg.cg_cs.cs_nbfree == 0) {
2809 		(void) fprintf(stderr,
2810 			gettext("first cylinder group ran out of space\n"));
2811 		lockexit(32);
2812 	}
2813 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
2814 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
2815 			goto goth;
2816 	(void) fprintf(stderr,
2817 	    gettext("internal error: can't find block in cyl 0\n"));
2818 	lockexit(32);
2819 goth:
2820 	clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
2821 	acg.cg_cs.cs_nbfree--;
2822 	sblock.fs_cstotal.cs_nbfree--;
2823 	fscs[0].cs_nbfree--;
2824 	if (mode & IFDIR) {
2825 		acg.cg_cs.cs_ndir++;
2826 		sblock.fs_cstotal.cs_ndir++;
2827 		fscs[0].cs_ndir++;
2828 	}
2829 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
2830 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
2831 	if (size != sblock.fs_bsize) {
2832 		frag = howmany(size, sblock.fs_fsize);
2833 		fscs[0].cs_nffree += sblock.fs_frag - frag;
2834 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
2835 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
2836 		acg.cg_frsum[sblock.fs_frag - frag]++;
2837 		for (i = frag; i < sblock.fs_frag; i++)
2838 			setbit(cg_blksfree(&acg), d + i);
2839 	}
2840 	wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2841 	    (char *)&acg);
2842 	return (d);
2843 }
2844 
2845 /*
2846  * Allocate an inode on the disk
2847  */
2848 static void
2849 iput(struct inode *ip)
2850 {
2851 	struct dinode buf[MAXINOPB];
2852 	diskaddr_t d;
2853 
2854 	rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2855 	    (char *)&acg);
2856 	if (acg.cg_magic != CG_MAGIC) {
2857 		(void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2858 		lockexit(32);
2859 	}
2860 	acg.cg_cs.cs_nifree--;
2861 	setbit(cg_inosused(&acg), ip->i_number);
2862 	wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2863 	    (char *)&acg);
2864 	sblock.fs_cstotal.cs_nifree--;
2865 	fscs[0].cs_nifree--;
2866 	if ((int)ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
2867 		(void) fprintf(stderr,
2868 			gettext("fsinit: inode value out of range (%d).\n"),
2869 			ip->i_number);
2870 		lockexit(32);
2871 	}
2872 	d = fsbtodb(&sblock, (uint64_t)itod(&sblock, (int)ip->i_number));
2873 	rdfs(d, sblock.fs_bsize, (char *)buf);
2874 	buf[itoo(&sblock, (int)ip->i_number)].di_ic = ip->i_ic;
2875 	wtfs(d, sblock.fs_bsize, (char *)buf);
2876 }
2877 
2878 /*
2879  * getbuf()	-- Get a buffer for use in an AIO operation.  Buffer
2880  *		is zero'd the first time returned, left with whatever
2881  *		was in memory after that.  This function actually gets
2882  *		enough memory the first time it's called to support
2883  *		MAXBUF buffers like a slab allocator.  When all the
2884  *		buffers are in use, it waits for an aio to complete
2885  *		and make a buffer available.
2886  *
2887  *		Never returns an error.  Either succeeds or exits.
2888  */
2889 static char *
2890 getbuf(bufhdr *bufhead, int size)
2891 {
2892 	bufhdr *pbuf;
2893 	bufhdr *prev;
2894 	int i;
2895 	int buf_size, max_bufs;
2896 
2897 	/*
2898 	 * Initialize all the buffers
2899 	 */
2900 	if (bufhead->head == NULL) {
2901 		/*
2902 		 * round up the size of our buffer header to a
2903 		 * 16 byte boundary so the address we return to
2904 		 * the caller is "suitably aligned".
2905 		 */
2906 		bufhdrsize = (sizeof (bufhdr) + 15) & ~15;
2907 
2908 		/*
2909 		 * Add in our header to the buffer and round it all up to
2910 		 * a 16 byte boundry so each member of the slab is aligned.
2911 		 */
2912 		buf_size = (size + bufhdrsize + 15) & ~15;
2913 
2914 		/*
2915 		 * Limit number of buffers to lesser of MAXBUFMEM's worth
2916 		 * or MAXBUF, whichever is less.
2917 		 */
2918 		max_bufs = MAXBUFMEM / buf_size;
2919 		if (max_bufs > MAXBUF)
2920 			max_bufs = MAXBUF;
2921 
2922 		pbuf = (bufhdr *)calloc(max_bufs, buf_size);
2923 		if (pbuf == NULL) {
2924 			perror("calloc");
2925 			lockexit(32);
2926 		}
2927 
2928 		bufhead->head = bufhead;
2929 		prev = bufhead;
2930 		for (i = 0; i < max_bufs; i++) {
2931 			pbuf->head = bufhead;
2932 			prev->next = pbuf;
2933 			prev = pbuf;
2934 			pbuf = (bufhdr *)((char *)pbuf + buf_size);
2935 		}
2936 	}
2937 
2938 	/*
2939 	 * Get an available buffer, waiting for I/O if necessary
2940 	 */
2941 	wait_for_write(NOBLOCK);
2942 	while (bufhead->next == NULL)
2943 		wait_for_write(BLOCK);
2944 
2945 	/*
2946 	 * Take the buffer off the list
2947 	 */
2948 	pbuf = bufhead->next;
2949 	bufhead->next = pbuf->next;
2950 	pbuf->next = NULL;
2951 
2952 	/*
2953 	 * return the empty buffer space just past the header
2954 	 */
2955 	return ((char *)pbuf + bufhdrsize);
2956 }
2957 
2958 /*
2959  * freebuf()	-- Free a buffer gotten previously through getbuf.
2960  *		Puts the buffer back on the appropriate list for
2961  *		later use.  Never calls free().
2962  *
2963  * Assumes that SIGINT is blocked.
2964  */
2965 static void
2966 freebuf(char *buf)
2967 {
2968 	bufhdr *pbuf;
2969 	bufhdr *bufhead;
2970 
2971 	/*
2972 	 * get the header for this buffer
2973 	 */
2974 	pbuf = (bufhdr *)(buf - bufhdrsize);
2975 
2976 	/*
2977 	 * Put it back on the list of available buffers
2978 	 */
2979 	bufhead = pbuf->head;
2980 	pbuf->next = bufhead->next;
2981 	bufhead->next = pbuf;
2982 }
2983 
2984 /*
2985  * freetrans()	-- Free a transaction gotten previously through getaiop.
2986  *		Puts the transaction struct back on the appropriate list for
2987  *		later use.  Never calls free().
2988  *
2989  * Assumes that SIGINT is blocked.
2990  */
2991 static void
2992 freetrans(aio_trans *transp)
2993 {
2994 	/*
2995 	 * free the buffer associated with this AIO if needed
2996 	 */
2997 	if (transp->release == RELEASE)
2998 		freebuf(transp->buffer);
2999 
3000 	/*
3001 	 * Put transaction on the free list
3002 	 */
3003 	transp->next = results.trans;
3004 	results.trans = transp;
3005 }
3006 
3007 /*
3008  * wait_for_write()	-- Wait for an aio write to complete.  Return
3009  *			the transaction structure for that write.
3010  *
3011  * Blocks SIGINT if necessary.
3012  */
3013 aio_trans *
3014 wait_for_write(int block)
3015 {
3016 	aio_trans	*transp;
3017 	aio_result_t	*resultp;
3018 	static struct timeval  zero_wait = { 0, 0 };
3019 	sigset_t	old_mask;
3020 
3021 	/*
3022 	 * If we know there aren't any outstanding transactions, just return
3023 	 */
3024 	if (results.outstanding == 0)
3025 		return ((aio_trans *) 0);
3026 
3027 	block_sigint(&old_mask);
3028 
3029 	resultp = aiowait(block ? NULL : &zero_wait);
3030 	if (resultp == NULL ||
3031 	    (resultp == (aio_result_t *)-1 && errno == EINVAL)) {
3032 		unblock_sigint(&old_mask);
3033 		return ((aio_trans *) 0);
3034 	}
3035 
3036 	results.outstanding--;
3037 	transp = (aio_trans *)resultp;
3038 
3039 	if (resultp->aio_return != transp->size) {
3040 		if (resultp->aio_return == -1) {
3041 			/*
3042 			 * The aiowrite() may have failed because the
3043 			 * kernel didn't have enough memory to do the job.
3044 			 * Flush all pending writes and try a normal
3045 			 * write().  wtfs_breakup() will call exit if it
3046 			 * fails, so we don't worry about errors here.
3047 			 */
3048 			flush_writes();
3049 			wtfs_breakup(transp->bno, transp->size, transp->buffer);
3050 		} else {
3051 			(void) fprintf(stderr, gettext(
3052 			    "short write (%d of %d bytes) on sector %lld\n"),
3053 			    resultp->aio_return, transp->size,
3054 			    transp->bno);
3055 			/*
3056 			 * Don't unblock SIGINT, to avoid potential
3057 			 * looping due to queued interrupts and
3058 			 * error handling.
3059 			 */
3060 			lockexit(32);
3061 		}
3062 	}
3063 
3064 	resultp->aio_return = 0;
3065 	freetrans(transp);
3066 	unblock_sigint(&old_mask);
3067 	return (transp);
3068 }
3069 
3070 /*
3071  * flush_writes()	-- flush all the outstanding aio writes.
3072  */
3073 static void
3074 flush_writes(void)
3075 {
3076 	while (wait_for_write(BLOCK))
3077 		;
3078 }
3079 
3080 /*
3081  * get_aiop()	-- find and return an aio_trans structure on which a new
3082  *		aio can be done.  Blocks on aiowait() if needed.  Reaps
3083  *		all outstanding completed aio's.
3084  *
3085  * Assumes that SIGINT is blocked.
3086  */
3087 aio_trans *
3088 get_aiop()
3089 {
3090 	int i;
3091 	aio_trans *transp;
3092 	aio_trans *prev;
3093 
3094 	/*
3095 	 * initialize aio stuff
3096 	 */
3097 	if (!aio_inited) {
3098 		aio_inited = 1;
3099 
3100 		results.maxpend = 0;
3101 		results.outstanding = 0;
3102 		results.max = MAXAIO;
3103 
3104 		results.trans = (aio_trans *)calloc(results.max,
3105 						sizeof (aio_trans));
3106 		if (results.trans == NULL) {
3107 			perror("calloc");
3108 			lockexit(32);
3109 		}
3110 
3111 		/*
3112 		 * Initialize the linked list of aio transaction
3113 		 * structures.  Note that the final "next" pointer
3114 		 * will be NULL since we got the buffer from calloc().
3115 		 */
3116 		prev = results.trans;
3117 		for (i = 1; i < results.max; i++) {
3118 			prev->next = &(results.trans[i]);
3119 			prev = prev->next;
3120 		}
3121 	}
3122 
3123 	wait_for_write(NOBLOCK);
3124 	while (results.trans == NULL)
3125 		wait_for_write(BLOCK);
3126 	transp = results.trans;
3127 	results.trans = results.trans->next;
3128 
3129 	transp->next = 0;
3130 	transp->resultbuf.aio_return = AIO_INPROGRESS;
3131 	return (transp);
3132 }
3133 
3134 /*
3135  * read a block from the file system
3136  */
3137 static void
3138 rdfs(diskaddr_t bno, int size, char *bf)
3139 {
3140 	int n, saverr;
3141 
3142 	/*
3143 	 * In case we need any data that's pending in an aiowrite(),
3144 	 * we wait for them all to complete before doing a read.
3145 	 */
3146 	flush_writes();
3147 
3148 	/*
3149 	 * Note: the llseek() can succeed, even if the offset is out of range.
3150 	 * It's not until the file i/o operation (the read()) that one knows
3151 	 * for sure if the raw device can handle the offset.
3152 	 */
3153 	if (llseek(fsi, (offset_t)bno * sectorsize, 0) < 0) {
3154 		saverr = errno;
3155 		(void) fprintf(stderr,
3156 		    gettext("seek error on sector %lld: %s\n"),
3157 		    bno, strerror(saverr));
3158 		lockexit(32);
3159 	}
3160 	n = read(fsi, bf, size);
3161 	if (n != size) {
3162 		saverr = errno;
3163 		if (n == -1)
3164 			(void) fprintf(stderr,
3165 			    gettext("read error on sector %lld: %s\n"),
3166 			    bno, strerror(saverr));
3167 		else
3168 			(void) fprintf(stderr, gettext(
3169 			    "short read (%d of %d bytes) on sector %lld\n"),
3170 			    n, size, bno);
3171 		lockexit(32);
3172 	}
3173 }
3174 
3175 /*
3176  * write a block to the file system
3177  */
3178 static void
3179 wtfs(diskaddr_t bno, int size, char *bf)
3180 {
3181 	int n, saverr;
3182 
3183 	if (fso == -1)
3184 		return;
3185 
3186 	/*
3187 	 * Note: the llseek() can succeed, even if the offset is out of range.
3188 	 * It's not until the file i/o operation (the write()) that one knows
3189 	 * for sure if the raw device can handle the offset.
3190 	 */
3191 	if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3192 		saverr = errno;
3193 		(void) fprintf(stderr,
3194 		    gettext("seek error on sector %lld: %s\n"),
3195 		    bno, strerror(saverr));
3196 		lockexit(32);
3197 	}
3198 	if (Nflag)
3199 		return;
3200 	n = write(fso, bf, size);
3201 	if (n != size) {
3202 		saverr = errno;
3203 		if (n == -1)
3204 			(void) fprintf(stderr,
3205 			    gettext("write error on sector %lld: %s\n"),
3206 			    bno, strerror(saverr));
3207 		else
3208 			(void) fprintf(stderr, gettext(
3209 			    "short write (%d of %d bytes) on sector %lld\n"),
3210 			    n, size, bno);
3211 		lockexit(32);
3212 	}
3213 }
3214 
3215 /*
3216  * write a block to the file system -- buffered with aio
3217  */
3218 static void
3219 awtfs(diskaddr_t bno, int size, char *bf, int release)
3220 {
3221 	int n;
3222 	aio_trans 	*transp;
3223 	sigset_t 	old_mask;
3224 
3225 	if (fso == -1)
3226 		return;
3227 
3228 	/*
3229 	 * We need to keep things consistent if we get interrupted,
3230 	 * so defer any expected interrupts for the time being.
3231 	 */
3232 	block_sigint(&old_mask);
3233 
3234 	if (Nflag) {
3235 		if (release == RELEASE)
3236 			freebuf(bf);
3237 	} else {
3238 		transp = get_aiop();
3239 		transp->bno = bno;
3240 		transp->buffer = bf;
3241 		transp->size = size;
3242 		transp->release = release;
3243 
3244 		n = aiowrite(fso, bf, size, (off_t)bno * sectorsize,
3245 				SEEK_SET, &transp->resultbuf);
3246 
3247 		if (n < 0) {
3248 			/*
3249 			 * The aiowrite() may have failed because the
3250 			 * kernel didn't have enough memory to do the job.
3251 			 * Flush all pending writes and try a normal
3252 			 * write().  wtfs_breakup() will call exit if it
3253 			 * fails, so we don't worry about errors here.
3254 			 */
3255 			flush_writes();
3256 			wtfs_breakup(transp->bno, transp->size, transp->buffer);
3257 			freetrans(transp);
3258 		} else {
3259 			/*
3260 			 * Keep track of our pending writes.
3261 			 */
3262 			results.outstanding++;
3263 			if (results.outstanding > results.maxpend)
3264 			    results.maxpend = results.outstanding;
3265 		}
3266 	}
3267 
3268 	unblock_sigint(&old_mask);
3269 }
3270 
3271 
3272 /*
3273  * write a block to the file system, but break it up into sbsize
3274  * chunks to avoid forcing a large amount of memory to be locked down.
3275  * Only used as a fallback when an aio write has failed.
3276  */
3277 static void
3278 wtfs_breakup(diskaddr_t bno, int size, char *bf)
3279 {
3280 	int n, saverr;
3281 	int wsize;
3282 	int block_incr = sbsize / sectorsize;
3283 
3284 	if (size < sbsize)
3285 		wsize = size;
3286 	else
3287 		wsize = sbsize;
3288 
3289 	n = 0;
3290 	while (size) {
3291 		/*
3292 		 * Note: the llseek() can succeed, even if the offset is
3293 		 * out of range.  It's not until the file i/o operation
3294 		 * (the write()) that one knows for sure if the raw device
3295 		 * can handle the offset.
3296 		 */
3297 		if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3298 			saverr = errno;
3299 			(void) fprintf(stderr,
3300 			    gettext("seek error on sector %lld: %s\n"),
3301 			    bno, strerror(saverr));
3302 			lockexit(32);
3303 		}
3304 
3305 		n = write(fso, bf, wsize);
3306 		if (n == -1) {
3307 			saverr = errno;
3308 			(void) fprintf(stderr,
3309 			    gettext("write error on sector %lld: %s\n"),
3310 			    bno, strerror(saverr));
3311 			lockexit(32);
3312 		}
3313 		if (n != wsize) {
3314 			saverr = errno;
3315 			(void) fprintf(stderr, gettext(
3316 			    "short write (%d of %d bytes) on sector %lld\n"),
3317 			    n, size, bno);
3318 			lockexit(32);
3319 		}
3320 
3321 		bno += block_incr;
3322 		bf += wsize;
3323 		size -= wsize;
3324 		if (size < wsize)
3325 			wsize = size;
3326 	}
3327 }
3328 
3329 
3330 /*
3331  * check if a block is available
3332  */
3333 static int
3334 isblock(struct fs *fs, unsigned char *cp, int h)
3335 {
3336 	unsigned char mask;
3337 
3338 	switch (fs->fs_frag) {
3339 	case 8:
3340 		return (cp[h] == 0xff);
3341 	case 4:
3342 		mask = 0x0f << ((h & 0x1) << 2);
3343 		return ((cp[h >> 1] & mask) == mask);
3344 	case 2:
3345 		mask = 0x03 << ((h & 0x3) << 1);
3346 		return ((cp[h >> 2] & mask) == mask);
3347 	case 1:
3348 		mask = 0x01 << (h & 0x7);
3349 		return ((cp[h >> 3] & mask) == mask);
3350 	default:
3351 		(void) fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
3352 		return (0);
3353 	}
3354 }
3355 
3356 /*
3357  * take a block out of the map
3358  */
3359 static void
3360 clrblock(struct fs *fs, unsigned char *cp, int h)
3361 {
3362 	switch ((fs)->fs_frag) {
3363 	case 8:
3364 		cp[h] = 0;
3365 		return;
3366 	case 4:
3367 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
3368 		return;
3369 	case 2:
3370 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
3371 		return;
3372 	case 1:
3373 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
3374 		return;
3375 	default:
3376 		(void) fprintf(stderr,
3377 		    gettext("clrblock: bad fs_frag value %d\n"), fs->fs_frag);
3378 		return;
3379 	}
3380 }
3381 
3382 /*
3383  * put a block into the map
3384  */
3385 static void
3386 setblock(struct fs *fs, unsigned char *cp, int h)
3387 {
3388 	switch (fs->fs_frag) {
3389 	case 8:
3390 		cp[h] = 0xff;
3391 		return;
3392 	case 4:
3393 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
3394 		return;
3395 	case 2:
3396 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
3397 		return;
3398 	case 1:
3399 		cp[h >> 3] |= (0x01 << (h & 0x7));
3400 		return;
3401 	default:
3402 		(void) fprintf(stderr,
3403 		    gettext("setblock: bad fs_frag value %d\n"), fs->fs_frag);
3404 		return;
3405 	}
3406 }
3407 
3408 static void
3409 usage()
3410 {
3411 	(void) fprintf(stderr,
3412 	    gettext("ufs usage: mkfs [-F FSType] [-V] [-m] [-o options] "
3413 		"special "			/* param 0 */
3414 		"size(sectors) \\ \n"));	/* param 1 */
3415 	(void) fprintf(stderr,
3416 		"[nsect "			/* param 2 */
3417 		"ntrack "			/* param 3 */
3418 		"bsize "			/* param 4 */
3419 		"fragsize "			/* param 5 */
3420 		"cpg "				/* param 6 */
3421 		"free "				/* param 7 */
3422 		"rps "				/* param 8 */
3423 		"nbpi "				/* param 9 */
3424 		"opt "				/* param 10 */
3425 		"apc "				/* param 11 */
3426 		"gap "				/* param 12 */
3427 		"nrpos "			/* param 13 */
3428 		"maxcontig "			/* param 14 */
3429 		"mtb]\n");			/* param 15 */
3430 	(void) fprintf(stderr,
3431 		gettext(" -m : dump fs cmd line used to make this partition\n"
3432 		" -V :print this command line and return\n"
3433 		" -o :ufs options: :nsect=%d,ntrack=%d,bsize=%d,fragsize=%d\n"
3434 		" -o :ufs options: :cgsize=%d,free=%d,rps=%d,nbpi=%d,opt=%c\n"
3435 		" -o :ufs options: :apc=%d,gap=%d,nrpos=%d,maxcontig=%d\n"
3436 		" -o :ufs options: :mtb=%c,calcsb,calcbinsb\n"
3437 "NOTE that all -o suboptions: must be separated only by commas so as to\n"
3438 "be parsed as a single argument\n"),
3439 		nsect, ntrack, bsize, fragsize, cpg, sblock.fs_minfree, rps,
3440 		nbpi, opt, apc, (rotdelay == -1) ? 0 : rotdelay,
3441 		sblock.fs_nrpos, maxcontig, mtb);
3442 	lockexit(32);
3443 }
3444 
3445 /*ARGSUSED*/
3446 static void
3447 dump_fscmd(char *fsys, int fsi)
3448 {
3449 	int64_t used, bpcg, inospercg;
3450 	int64_t nbpi;
3451 	uint64_t nbytes64;
3452 
3453 	bzero((char *)&sblock, sizeof (sblock));
3454 	rdfs((diskaddr_t)SBLOCK, SBSIZE, (char *)&sblock);
3455 
3456 	/*
3457 	 * ensure a valid file system and if not, exit with error or else
3458 	 * we will end up computing block numbers etc and dividing by zero
3459 	 * which will cause floating point errors in this routine.
3460 	 */
3461 
3462 	if ((sblock.fs_magic != FS_MAGIC) &&
3463 	    (sblock.fs_magic != MTB_UFS_MAGIC)) {
3464 	    (void) fprintf(stderr, gettext(
3465 		"[not currently a valid file system - bad superblock]\n"));
3466 		lockexit(32);
3467 	}
3468 
3469 	if (sblock.fs_magic == FS_MAGIC &&
3470 	    (sblock.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3471 	    sblock.fs_version != UFS_VERSION_MIN)) {
3472 	    (void) fprintf(stderr, gettext(
3473 		"Unknown version of UFS format: %d\n"), sblock.fs_version);
3474 		lockexit(32);
3475 	}
3476 
3477 	if (sblock.fs_magic == MTB_UFS_MAGIC &&
3478 	    (sblock.fs_version > MTB_UFS_VERSION_1 ||
3479 	    sblock.fs_version < MTB_UFS_VERSION_MIN)) {
3480 	    (void) fprintf(stderr, gettext(
3481 		"Unknown version of UFS format: %d\n"), sblock.fs_version);
3482 		lockexit(32);
3483 	}
3484 
3485 	/*
3486 	 * Compute a reasonable nbpi value.
3487 	 * The algorithm for "used" is copied from code
3488 	 * in main() verbatim.
3489 	 * The nbpi equation is taken from main where the
3490 	 * fs_ipg value is set for the last time.  The INOPB(...) - 1
3491 	 * is used to account for the roundup.
3492 	 * The problem is that a range of nbpi values map to
3493 	 * the same file system layout.  So it is not possible
3494 	 * to calculate the exact value specified when the file
3495 	 * system was created.  So instead we determine the top
3496 	 * end of the range of values.
3497 	 */
3498 	bpcg = sblock.fs_spc * sectorsize;
3499 	inospercg = (int64_t)roundup(bpcg / sizeof (struct dinode),
3500 	    INOPB(&sblock));
3501 	if (inospercg > MAXIpG(&sblock))
3502 		inospercg = MAXIpG(&sblock);
3503 	used = (int64_t)
3504 	    (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
3505 	used *= sectorsize;
3506 	nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
3507 
3508 	/*
3509 	 * The top end of the range of values for nbpi may not be
3510 	 * a valid command line value for mkfs. Report the bottom
3511 	 * end instead.
3512 	 */
3513 	nbpi = (int64_t)(nbytes64 / (sblock.fs_ipg));
3514 
3515 	(void) fprintf(stdout, gettext("mkfs -F ufs -o "), fsys);
3516 	(void) fprintf(stdout, "nsect=%d,ntrack=%d,",
3517 	    sblock.fs_nsect, sblock.fs_ntrak);
3518 	(void) fprintf(stdout, "bsize=%d,fragsize=%d,cgsize=%d,free=%d,",
3519 	    sblock.fs_bsize, sblock.fs_fsize, sblock.fs_cpg, sblock.fs_minfree);
3520 	(void) fprintf(stdout, "rps=%d,nbpi=%lld,opt=%c,apc=%d,gap=%d,",
3521 	    sblock.fs_rps, nbpi, (sblock.fs_optim == FS_OPTSPACE) ? 's' : 't',
3522 	    (sblock.fs_ntrak * sblock.fs_nsect) - sblock.fs_spc,
3523 	    sblock.fs_rotdelay);
3524 	(void) fprintf(stdout, "nrpos=%d,maxcontig=%d,mtb=%c ",
3525 	    sblock.fs_nrpos, sblock.fs_maxcontig,
3526 	    ((sblock.fs_magic == MTB_UFS_MAGIC) ? 'y' : 'n'));
3527 	(void) fprintf(stdout, "%s %lld\n", fsys,
3528 	    fsbtodb(&sblock, sblock.fs_size));
3529 
3530 	bzero((char *)&sblock, sizeof (sblock));
3531 }
3532 
3533 /* number ************************************************************* */
3534 /*									*/
3535 /* Convert a numeric string arg to binary				*/
3536 /*									*/
3537 /* Args:	d_value - default value, if have parse error		*/
3538 /*		param - the name of the argument, for error messages	*/
3539 /*		flags - parser state and what's allowed in the arg	*/
3540 /* Global arg:  string - pointer to command arg				*/
3541 /*									*/
3542 /* Valid forms: 123 | 123k | 123*123 | 123x123				*/
3543 /*									*/
3544 /* Return:	converted number					*/
3545 /*									*/
3546 /* ******************************************************************** */
3547 
3548 static uint64_t
3549 number(uint64_t d_value, char *param, int flags)
3550 {
3551 	char *cs;
3552 	uint64_t n, t;
3553 	uint64_t cut = BIG / 10;    /* limit to avoid overflow */
3554 	int minus = 0;
3555 
3556 	cs = string;
3557 	if (*cs == '-') {
3558 		minus = 1;
3559 		cs += 1;
3560 	}
3561 	if ((*cs < '0') || (*cs > '9')) {
3562 		goto bail_out;
3563 	}
3564 	n = 0;
3565 	while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
3566 		n = n*10 + *cs++ - '0';
3567 	}
3568 	if (minus)
3569 	    n = -n;
3570 	for (;;) {
3571 		switch (*cs++) {
3572 		case 'k':
3573 			if (flags & ALLOW_END_ONLY)
3574 				goto bail_out;
3575 			if (n > (BIG / 1024))
3576 				goto overflow;
3577 			n *= 1024;
3578 			continue;
3579 
3580 		case '*':
3581 		case 'x':
3582 			if (flags & ALLOW_END_ONLY)
3583 				goto bail_out;
3584 			string = cs;
3585 			t = number(d_value, param, flags);
3586 			if (n > (BIG / t))
3587 				goto overflow;
3588 			n *= t;
3589 			cs = string + 1; /* adjust for -- below */
3590 
3591 			/* recursion has read rest of expression */
3592 			/* FALLTHROUGH */
3593 
3594 		case ',':
3595 		case '\0':
3596 			cs--;
3597 			string = cs;
3598 			return (n);
3599 
3600 		case '%':
3601 			if (flags & ALLOW_END_ONLY)
3602 				goto bail_out;
3603 			if (flags & ALLOW_PERCENT) {
3604 				flags &= ~ALLOW_PERCENT;
3605 				flags |= ALLOW_END_ONLY;
3606 				continue;
3607 			}
3608 			goto bail_out;
3609 
3610 		case 'm':
3611 			if (flags & ALLOW_END_ONLY)
3612 				goto bail_out;
3613 			if (flags & ALLOW_MS1) {
3614 				flags &= ~ALLOW_MS1;
3615 				flags |= ALLOW_MS2;
3616 				continue;
3617 			}
3618 			goto bail_out;
3619 
3620 		case 's':
3621 			if (flags & ALLOW_END_ONLY)
3622 				goto bail_out;
3623 			if (flags & ALLOW_MS2) {
3624 				flags &= ~ALLOW_MS2;
3625 				flags |= ALLOW_END_ONLY;
3626 				continue;
3627 			}
3628 			goto bail_out;
3629 
3630 		case '0': case '1': case '2': case '3': case '4':
3631 		case '5': case '6': case '7': case '8': case '9':
3632 overflow:
3633 			(void) fprintf(stderr,
3634 			    gettext("mkfs: value for %s overflowed\n"),
3635 			    param);
3636 			while ((*cs != '\0') && (*cs != ','))
3637 				cs++;
3638 			string = cs;
3639 			return (BIG);
3640 
3641 		default:
3642 bail_out:
3643 			(void) fprintf(stderr, gettext(
3644 			    "mkfs: bad numeric arg for %s: \"%s\"\n"),
3645 			    param, string);
3646 			while ((*cs != '\0') && (*cs != ','))
3647 				cs++;
3648 			string = cs;
3649 			if (d_value != NO_DEFAULT) {
3650 				(void) fprintf(stderr,
3651 				    gettext("mkfs: %s reset to default %lld\n"),
3652 				    param, d_value);
3653 				return (d_value);
3654 			}
3655 			lockexit(2);
3656 
3657 		}
3658 	} /* never gets here */
3659 }
3660 
3661 /* match ************************************************************** */
3662 /*									*/
3663 /* Compare two text strings for equality				*/
3664 /*									*/
3665 /* Arg:	 s - pointer to string to match with a command arg		*/
3666 /* Global arg:  string - pointer to command arg				*/
3667 /*									*/
3668 /* Return:	1 if match, 0 if no match				*/
3669 /*		If match, also reset `string' to point to the text	*/
3670 /*		that follows the matching text.				*/
3671 /*									*/
3672 /* ******************************************************************** */
3673 
3674 static int
3675 match(char *s)
3676 {
3677 	char *cs;
3678 
3679 	cs = string;
3680 	while (*cs++ == *s) {
3681 		if (*s++ == '\0') {
3682 			goto true;
3683 		}
3684 	}
3685 	if (*s != '\0') {
3686 		return (0);
3687 	}
3688 
3689 true:
3690 	cs--;
3691 	string = cs;
3692 	return (1);
3693 }
3694 
3695 /*
3696  * GROWFS ROUTINES
3697  */
3698 
3699 /* ARGSUSED */
3700 void
3701 lockexit(int exitstatus)
3702 {
3703 	if (Pflag) {
3704 		/* the probe mode neither changes nor locks the filesystem */
3705 		exit(exitstatus);
3706 	}
3707 
3708 	/*
3709 	 * flush the dirty cylinder group
3710 	 */
3711 	if (inlockexit == 0) {
3712 		inlockexit = 1;
3713 		flcg();
3714 	}
3715 
3716 	if (aio_inited) {
3717 		flush_writes();
3718 	}
3719 
3720 	/*
3721 	 * make sure the file system is unlocked before exiting
3722 	 */
3723 	if ((inlockexit == 1) && (!isbad)) {
3724 		inlockexit = 2;
3725 		ulockfs();
3726 		/*
3727 		 * if logging was enabled, then re-enable it
3728 		 */
3729 		if (waslog) {
3730 			if (rl_log_control(fsys, _FIOLOGENABLE) != RL_SUCCESS) {
3731 				(void) fprintf(stderr, gettext(
3732 					"failed to re-enable logging\n"));
3733 			}
3734 		}
3735 	} else if (grow) {
3736 		if (isbad) {
3737 			(void) fprintf(stderr, gettext(
3738 				"Filesystem is currently inconsistent.  It "
3739 				"must be repaired with fsck(1M)\nbefore being "
3740 				"used.  Use the following command to "
3741 				"do this:\n\n\tfsck %s\n\n"),
3742 					fsys);
3743 
3744 			if (ismounted) {
3745 				(void) fprintf(stderr, gettext(
3746 					"You will be told that the filesystem "
3747 					"is already mounted, and asked if you\n"
3748 					"wish to continue.  Answer `yes' to "
3749 					"this question.\n\n"));
3750 			}
3751 
3752 			(void) fprintf(stderr, gettext(
3753 					"One problem should be reported, that "
3754 					"the summary information is bad.\n"
3755 					"You will then be asked if it "
3756 					"should be salvaged.  Answer `yes' "
3757 					"to\nthis question.\n\n"));
3758 		}
3759 
3760 		if (ismounted) {
3761 			/*
3762 			 * In theory, there's no way to get here without
3763 			 * isbad also being set, but be robust in the
3764 			 * face of future code changes.
3765 			 */
3766 			(void) fprintf(stderr, gettext(
3767 				"The filesystem is currently mounted "
3768 				"read-only and write-locked.  "));
3769 			if (isbad) {
3770 				(void) fprintf(stderr, gettext(
3771 					"After\nrunning fsck, unlock the "
3772 					"filesystem and "));
3773 			} else {
3774 				(void) fprintf(stderr, gettext(
3775 					"Unlock the filesystem\nand "));
3776 			}
3777 
3778 			(void) fprintf(stderr, gettext(
3779 				"re-enable writing with\nthe following "
3780 				"command:\n\n\tlockfs -u %s\n\n"),
3781 					directory);
3782 		}
3783 	}
3784 
3785 	exit(exitstatus);
3786 }
3787 
3788 void
3789 randomgeneration()
3790 {
3791 	int		 i;
3792 	struct dinode	*dp;
3793 
3794 	/*
3795 	 * always perform fsirand(1) function... newfs will notice that
3796 	 * the inodes have been randomized and will not call fsirand itself
3797 	 */
3798 	for (i = 0, dp = zino; i < sblock.fs_inopb; ++i, ++dp)
3799 		IRANDOMIZE(&dp->di_ic);
3800 }
3801 
3802 /*
3803  * Check the size of the summary information.
3804  * Fields in sblock are not changed in this function.
3805  *
3806  * For an 8K filesystem block, the maximum number of cylinder groups is 16384.
3807  *     MAXCSBUFS {32}  *   8K  {FS block size}
3808  *                         divided by (sizeof csum) {16}
3809  *
3810  * Note that MAXCSBUFS is not used in the kernel; as of Solaris 2.6 build 32,
3811  * this is the only place where it's referenced.
3812  */
3813 void
3814 checksummarysize()
3815 {
3816 	diskaddr_t	dmax;
3817 	diskaddr_t	dmin;
3818 	int64_t	cg0frags;
3819 	int64_t	cg0blocks;
3820 	int64_t	maxncg;
3821 	int64_t	maxfrags;
3822 	uint64_t	fs_size;
3823 	uint64_t maxfs_blocks; /* filesystem blocks for max filesystem size */
3824 
3825 	/*
3826 	 * compute the maximum summary info size
3827 	 */
3828 	dmin = cgdmin(&sblock, 0);
3829 	dmax = cgbase(&sblock, 0) + sblock.fs_fpg;
3830 	fs_size = (grow) ? grow_fs_size : sblock.fs_size;
3831 	if (dmax > fs_size)
3832 		dmax = fs_size;
3833 	cg0frags  = dmax - dmin;
3834 	cg0blocks = cg0frags / sblock.fs_frag;
3835 	cg0frags = cg0blocks * sblock.fs_frag;
3836 	maxncg   = (longlong_t)cg0blocks *
3837 	    (longlong_t)(sblock.fs_bsize / sizeof (struct csum));
3838 
3839 	maxfs_blocks = FS_MAX;
3840 
3841 	if (maxncg > ((longlong_t)maxfs_blocks / (longlong_t)sblock.fs_fpg) + 1)
3842 		maxncg = ((longlong_t)maxfs_blocks /
3843 		    (longlong_t)sblock.fs_fpg) + 1;
3844 
3845 	maxfrags = maxncg * (longlong_t)sblock.fs_fpg;
3846 
3847 	if (maxfrags > maxfs_blocks)
3848 		maxfrags = maxfs_blocks;
3849 
3850 
3851 	/*
3852 	 * remember for later processing in extendsummaryinfo()
3853 	 */
3854 	if (test)
3855 		grow_sifrag = dmin + (cg0blocks * sblock.fs_frag);
3856 	if (testfrags == 0)
3857 		testfrags = cg0frags;
3858 	if (testforce)
3859 		if (testfrags > cg0frags) {
3860 			(void) fprintf(stderr,
3861 				gettext("Too many test frags (%lld); "
3862 				"try %lld\n"), testfrags, cg0frags);
3863 			lockexit(32);
3864 		}
3865 
3866 	/*
3867 	 * if summary info is too large (too many cg's) tell the user and exit
3868 	 */
3869 	if ((longlong_t)sblock.fs_size > maxfrags) {
3870 		(void) fprintf(stderr, gettext(
3871 		    "Too many cylinder groups with %llu sectors;\n    try "
3872 		    "increasing cgsize, or decreasing fssize to %llu\n"),
3873 		    fsbtodb(&sblock, (uint64_t)sblock.fs_size),
3874 		    fsbtodb(&sblock, (uint64_t)maxfrags));
3875 		lockexit(32);
3876 	}
3877 }
3878 
3879 /*
3880  * checksblock() has two uses:
3881  *	- One is to sanity test the superblock and is used when newfs(1M)
3882  *	  is invoked with the "-N" option. If any discrepancy was found,
3883  *	  just return whatever error was found and do not exit.
3884  *	- the other use of it is in places where you expect the superblock
3885  *	  to be sane, and if it isn't, then we exit.
3886  * Which of the above two actions to take is indicated with the second argument.
3887  */
3888 
3889 int
3890 checksblock(struct fs sb, int proceed)
3891 {
3892 	int err = 0;
3893 	char *errmsg;
3894 
3895 	if ((sb.fs_magic != FS_MAGIC) && (sb.fs_magic != MTB_UFS_MAGIC)) {
3896 	    err = 1;
3897 	    errmsg = gettext("Bad superblock; magic number wrong\n");
3898 	} else if ((sb.fs_magic == FS_MAGIC &&
3899 		(sb.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3900 		sb.fs_version != UFS_VERSION_MIN)) ||
3901 		(sb.fs_magic == MTB_UFS_MAGIC &&
3902 		(sb.fs_version > MTB_UFS_VERSION_1 ||
3903 		sb.fs_version < MTB_UFS_VERSION_MIN))) {
3904 	    err = 2;
3905 	    errmsg = gettext("Unrecognized version of UFS\n");
3906 	} else if (sb.fs_ncg < 1) {
3907 	    err = 3;
3908 	    errmsg = gettext("Bad superblock; ncg out of range\n");
3909 	} else if (sb.fs_cpg < 1) {
3910 	    err = 4;
3911 	    errmsg = gettext("Bad superblock; cpg out of range\n");
3912 	} else if (sb.fs_ncg * sb.fs_cpg < sb.fs_ncyl ||
3913 		(sb.fs_ncg - 1) * sb.fs_cpg >= sb.fs_ncyl) {
3914 	    err = 5;
3915 	    errmsg = gettext("Bad superblock; ncyl out of range\n");
3916 	} else if (sb.fs_sbsize <= 0 || sb.fs_sbsize > sb.fs_bsize) {
3917 	    err = 6;
3918 	    errmsg = gettext("Bad superblock; superblock size out of range\n");
3919 	}
3920 
3921 	if (proceed) {
3922 		if (err) dprintf(("%s", errmsg));
3923 		return (err);
3924 	}
3925 
3926 	if (err) {
3927 		fprintf(stderr, "%s", errmsg);
3928 		lockexit(32);
3929 	}
3930 	return (32);
3931 }
3932 
3933 /*
3934  * Roll the embedded log, if any, and set up the global variables
3935  * islog, islogok and isufslog.
3936  */
3937 static void
3938 logsetup(char *devstr)
3939 {
3940 	void		*buf, *ud_buf;
3941 	extent_block_t	*ebp;
3942 	ml_unit_t	*ul;
3943 	ml_odunit_t	*ud;
3944 
3945 	/*
3946 	 * Does the superblock indicate that we are supposed to have a log ?
3947 	 */
3948 	if (sblock.fs_logbno == 0) {
3949 		/*
3950 		 * No log present, nothing to do.
3951 		 */
3952 		islogok = 0;
3953 		islog = 0;
3954 		isufslog = 0;
3955 		return;
3956 	} else {
3957 		/*
3958 		 * There's a log in a yet unknown state, attempt to roll it.
3959 		 */
3960 		islog = 1;
3961 		islogok = 0;
3962 		isufslog = 0;
3963 
3964 		/*
3965 		 * We failed to roll the log, bail out.
3966 		 */
3967 		if (rl_roll_log(devstr) != RL_SUCCESS)
3968 			return;
3969 
3970 		isufslog = 1;
3971 
3972 		/* log is not okay; check the fs */
3973 		if ((FSOKAY != (sblock.fs_state + sblock.fs_time)) ||
3974 		    (sblock.fs_clean != FSLOG))
3975 			return;
3976 
3977 		/* get the log allocation block */
3978 		buf = (void *)malloc(DEV_BSIZE);
3979 		if (buf == (void *) NULL)
3980 			return;
3981 
3982 		ud_buf = (void *)malloc(DEV_BSIZE);
3983 		if (ud_buf == (void *) NULL) {
3984 			free(buf);
3985 			return;
3986 		}
3987 
3988 		rdfs((diskaddr_t)logbtodb(&sblock, sblock.fs_logbno),
3989 		    DEV_BSIZE, buf);
3990 		ebp = (extent_block_t *)buf;
3991 
3992 		/* log allocation block is not okay; check the fs */
3993 		if (ebp->type != LUFS_EXTENTS) {
3994 			free(buf);
3995 			free(ud_buf);
3996 			return;
3997 		}
3998 
3999 		/* get the log state block(s) */
4000 		rdfs((diskaddr_t)logbtodb(&sblock, ebp->extents[0].pbno),
4001 		    DEV_BSIZE, ud_buf);
4002 		ud = (ml_odunit_t *)ud_buf;
4003 		ul = (ml_unit_t *)malloc(sizeof (*ul));
4004 		ul->un_ondisk = *ud;
4005 
4006 		/* log state is okay */
4007 		if ((ul->un_chksum == ul->un_head_ident + ul->un_tail_ident) &&
4008 		    (ul->un_version == LUFS_VERSION_LATEST) &&
4009 		    (ul->un_badlog == 0))
4010 			islogok = 1;
4011 		free(ud_buf);
4012 		free(buf);
4013 		free(ul);
4014 	}
4015 }
4016 
4017 void
4018 growinit(char *devstr)
4019 {
4020 	int	i;
4021 	char	buf[DEV_BSIZE];
4022 
4023 	/*
4024 	 * Read and verify the superblock
4025 	 */
4026 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4027 	(void) checksblock(sblock, 0);
4028 	if (sblock.fs_postblformat != FS_DYNAMICPOSTBLFMT) {
4029 		(void) fprintf(stderr,
4030 			gettext("old file system format; can't growfs\n"));
4031 		lockexit(32);
4032 	}
4033 
4034 	/*
4035 	 * can't shrink a file system
4036 	 */
4037 	grow_fssize = fsbtodb(&sblock, (uint64_t)sblock.fs_size);
4038 	if (fssize_db < grow_fssize) {
4039 		(void) fprintf(stderr,
4040 		    gettext("%lld sectors < current size of %lld sectors\n"),
4041 		    fssize_db, grow_fssize);
4042 		lockexit(32);
4043 	}
4044 
4045 	/*
4046 	 * can't grow a system to over a terabyte unless it was set up
4047 	 * as an MTB UFS file system.
4048 	 */
4049 	if (mtb == 'y' && sblock.fs_magic != MTB_UFS_MAGIC) {
4050 		if (fssize_db >= SECTORS_PER_TERABYTE) {
4051 			(void) fprintf(stderr, gettext(
4052 "File system was not set up with the multi-terabyte format.\n"));
4053 			(void) fprintf(stderr, gettext(
4054 "Its size cannot be increased to a terabyte or more.\n"));
4055 		} else {
4056 			(void) fprintf(stderr, gettext(
4057 "Cannot convert file system to multi-terabyte format.\n"));
4058 		}
4059 		lockexit(32);
4060 	}
4061 
4062 	logsetup(devstr);
4063 
4064 	/*
4065 	 * can't growfs when logging device has errors
4066 	 */
4067 	if ((islog && !islogok) ||
4068 	    ((FSOKAY == (sblock.fs_state + sblock.fs_time)) &&
4069 	    (sblock.fs_clean == FSLOG && !islog))) {
4070 		(void) fprintf(stderr,
4071 			gettext("logging device has errors; can't growfs\n"));
4072 		lockexit(32);
4073 	}
4074 
4075 	/*
4076 	 * disable ufs logging for growing
4077 	 */
4078 	if (isufslog) {
4079 		if (rl_log_control(devstr, _FIOLOGDISABLE) != RL_SUCCESS) {
4080 			(void) fprintf(stderr, gettext(
4081 				"failed to disable logging\n"));
4082 			lockexit(32);
4083 		}
4084 		islog = 0;
4085 		waslog = 1;
4086 	}
4087 
4088 	/*
4089 	 * if mounted write lock the file system to be grown
4090 	 */
4091 	if (ismounted)
4092 		wlockfs();
4093 
4094 	/*
4095 	 * refresh dynamic superblock state - disabling logging will have
4096 	 * changed the amount of free space available in the file system
4097 	 */
4098 	rdfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4099 
4100 	/*
4101 	 * make sure device is big enough
4102 	 */
4103 	rdfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4104 	wtfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4105 
4106 	/*
4107 	 * read current summary information
4108 	 */
4109 	grow_fscs = read_summaryinfo(&sblock);
4110 
4111 	/*
4112 	 * save some current size related fields from the superblock
4113 	 * These are used in extendsummaryinfo()
4114 	 */
4115 	grow_fs_size	= sblock.fs_size;
4116 	grow_fs_ncg	= sblock.fs_ncg;
4117 	grow_fs_csaddr	= (diskaddr_t)sblock.fs_csaddr;
4118 	grow_fs_cssize	= sblock.fs_cssize;
4119 
4120 	/*
4121 	 * save and reset the clean flag
4122 	 */
4123 	if (FSOKAY == (sblock.fs_state + sblock.fs_time))
4124 		grow_fs_clean = sblock.fs_clean;
4125 	else
4126 		grow_fs_clean = FSBAD;
4127 	sblock.fs_clean = FSBAD;
4128 	sblock.fs_state = FSOKAY - sblock.fs_time;
4129 	isbad = 1;
4130 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4131 }
4132 
4133 void
4134 checkdev(char *rdev, char *bdev)
4135 {
4136 	struct stat64	statarea;
4137 
4138 	if (stat64(bdev, &statarea) < 0) {
4139 		(void) fprintf(stderr, gettext("can't check mount point; "));
4140 		(void) fprintf(stderr, gettext("can't stat %s\n"), bdev);
4141 		lockexit(32);
4142 	}
4143 	if ((statarea.st_mode & S_IFMT) != S_IFBLK) {
4144 		(void) fprintf(stderr, gettext(
4145 		    "can't check mount point; %s is not a block device\n"),
4146 		    bdev);
4147 		lockexit(32);
4148 	}
4149 	if (stat64(rdev, &statarea) < 0) {
4150 		(void) fprintf(stderr, gettext("can't stat %s\n"), rdev);
4151 		lockexit(32);
4152 	}
4153 	if ((statarea.st_mode & S_IFMT) != S_IFCHR) {
4154 		(void) fprintf(stderr,
4155 			gettext("%s is not a character device\n"), rdev);
4156 		lockexit(32);
4157 	}
4158 }
4159 
4160 void
4161 checkmount(struct mnttab *mntp, char *bdevname)
4162 {
4163 	struct stat64	statdir;
4164 	struct stat64	statdev;
4165 
4166 	if (strcmp(bdevname, mntp->mnt_special) == 0) {
4167 		if (stat64(mntp->mnt_mountp, &statdir) == -1) {
4168 			(void) fprintf(stderr, gettext("can't stat %s\n"),
4169 				mntp->mnt_mountp);
4170 			lockexit(32);
4171 		}
4172 		if (stat64(mntp->mnt_special, &statdev) == -1) {
4173 			(void) fprintf(stderr, gettext("can't stat %s\n"),
4174 				mntp->mnt_special);
4175 			lockexit(32);
4176 		}
4177 		if (statdir.st_dev != statdev.st_rdev) {
4178 			(void) fprintf(stderr, gettext(
4179 				"%s is not mounted on %s; mnttab(4) wrong\n"),
4180 				mntp->mnt_special, mntp->mnt_mountp);
4181 			lockexit(32);
4182 		}
4183 		ismounted = 1;
4184 		if (directory) {
4185 			if (strcmp(mntp->mnt_mountp, directory) != 0) {
4186 				(void) fprintf(stderr,
4187 				gettext("%s is mounted on %s, not %s\n"),
4188 				    bdevname, mntp->mnt_mountp, directory);
4189 				lockexit(32);
4190 			}
4191 		} else {
4192 			if (grow)
4193 				(void) fprintf(stderr, gettext(
4194 				    "%s is mounted on %s; can't growfs\n"),
4195 				    bdevname, mntp->mnt_mountp);
4196 			else
4197 				(void) fprintf(stderr,
4198 				    gettext("%s is mounted, can't mkfs\n"),
4199 				    bdevname);
4200 			lockexit(32);
4201 		}
4202 	}
4203 }
4204 
4205 struct dinode	*dibuf	= 0;
4206 diskaddr_t	difrag	= 0;
4207 
4208 struct dinode *
4209 gdinode(ino_t ino)
4210 {
4211 	/*
4212 	 * read the block of inodes containing inode number ino
4213 	 */
4214 	if (dibuf == 0)
4215 		dibuf = (struct dinode *)malloc((unsigned)sblock.fs_bsize);
4216 	if (itod(&sblock, ino) != difrag) {
4217 		difrag = itod(&sblock, ino);
4218 		rdfs(fsbtodb(&sblock, (uint64_t)difrag), (int)sblock.fs_bsize,
4219 			(char *)dibuf);
4220 	}
4221 	return (dibuf + (ino % INOPB(&sblock)));
4222 }
4223 
4224 /*
4225  * structure that manages the frags we need for extended summary info
4226  *	These frags can be:
4227  *		free
4228  *		data  block
4229  *		alloc block
4230  */
4231 struct csfrag {
4232 	struct csfrag	*next;		/* next entry */
4233 	daddr32_t	 ofrag;		/* old frag */
4234 	daddr32_t	 nfrag;		/* new frag */
4235 	long		 cylno;		/* cylno of nfrag */
4236 	long		 frags;		/* number of frags */
4237 	long		 size;		/* size in bytes */
4238 	ino_t		 ino;		/* inode number */
4239 	long		 fixed;		/* Boolean - Already fixed? */
4240 };
4241 struct csfrag	*csfrag;		/* state unknown */
4242 struct csfrag	*csfragino;		/* frags belonging to an inode */
4243 struct csfrag	*csfragfree;		/* frags that are free */
4244 
4245 daddr32_t maxcsfrag	= 0;		/* maximum in range */
4246 daddr32_t mincsfrag	= 0x7fffffff;	/* minimum in range */
4247 
4248 int
4249 csfraginrange(daddr32_t frag)
4250 {
4251 	return ((frag >= mincsfrag) && (frag <= maxcsfrag));
4252 }
4253 
4254 struct csfrag *
4255 findcsfrag(daddr32_t frag, struct csfrag **cfap)
4256 {
4257 	struct csfrag	*cfp;
4258 
4259 	if (!csfraginrange(frag))
4260 		return (NULL);
4261 
4262 	for (cfp = *cfap; cfp; cfp = cfp->next)
4263 		if (cfp->ofrag == frag)
4264 			return (cfp);
4265 	return (NULL);
4266 }
4267 
4268 void
4269 checkindirect(ino_t ino, daddr32_t *fragsp, daddr32_t frag, int level)
4270 {
4271 	int			i;
4272 	int			ne	= sblock.fs_bsize / sizeof (daddr32_t);
4273 	daddr32_t			fsb[MAXBSIZE / sizeof (daddr32_t)];
4274 
4275 	if (frag == 0)
4276 		return;
4277 
4278 	rdfs(fsbtodb(&sblock, frag), (int)sblock.fs_bsize,
4279 	    (char *)fsb);
4280 
4281 	checkdirect(ino, fragsp, fsb, sblock.fs_bsize / sizeof (daddr32_t));
4282 
4283 	if (level)
4284 		for (i = 0; i < ne && *fragsp; ++i)
4285 			checkindirect(ino, fragsp, fsb[i], level-1);
4286 }
4287 
4288 void
4289 addcsfrag(ino_t ino, daddr32_t frag, struct csfrag **cfap)
4290 {
4291 	struct csfrag	*cfp, *curr, *prev;
4292 
4293 	/*
4294 	 * establish a range for faster checking in csfraginrange()
4295 	 */
4296 	if (frag > maxcsfrag)
4297 		maxcsfrag = frag;
4298 	if (frag < mincsfrag)
4299 		mincsfrag = frag;
4300 
4301 	/*
4302 	 * if this frag belongs to an inode and is not the start of a block
4303 	 *	then see if it is part of a frag range for this inode
4304 	 */
4305 	if (ino && (frag % sblock.fs_frag))
4306 		for (cfp = *cfap; cfp; cfp = cfp->next) {
4307 			if (ino != cfp->ino)
4308 				continue;
4309 			if (frag != cfp->ofrag + cfp->frags)
4310 				continue;
4311 			cfp->frags++;
4312 			cfp->size += sblock.fs_fsize;
4313 			return;
4314 		}
4315 	/*
4316 	 * allocate a csfrag entry and insert it in an increasing order into the
4317 	 * specified list
4318 	 */
4319 	cfp = (struct csfrag *)calloc(1, sizeof (struct csfrag));
4320 	cfp->ino	= ino;
4321 	cfp->ofrag	= frag;
4322 	cfp->frags	= 1;
4323 	cfp->size	= sblock.fs_fsize;
4324 	for (prev = NULL, curr = *cfap; curr != NULL;
4325 		prev = curr, curr = curr->next) {
4326 		if (frag < curr->ofrag) {
4327 			cfp->next = curr;
4328 			if (prev)
4329 				prev->next = cfp;	/* middle element */
4330 			else
4331 				*cfap = cfp;		/* first element */
4332 			break;
4333 		}
4334 		if (curr->next == NULL) {
4335 			curr->next = cfp;		/* last element	*/
4336 			break;
4337 		}
4338 	}
4339 	if (*cfap == NULL)	/* will happen only once */
4340 		*cfap = cfp;
4341 }
4342 
4343 void
4344 delcsfrag(daddr32_t frag, struct csfrag **cfap)
4345 {
4346 	struct csfrag	*cfp;
4347 	struct csfrag	**cfpp;
4348 
4349 	/*
4350 	 * free up entry whose beginning frag matches
4351 	 */
4352 	for (cfpp = cfap; *cfpp; cfpp = &(*cfpp)->next) {
4353 		if (frag == (*cfpp)->ofrag) {
4354 			cfp = *cfpp;
4355 			*cfpp = (*cfpp)->next;
4356 			free((char *)cfp);
4357 			return;
4358 		}
4359 	}
4360 }
4361 
4362 /*
4363  * See whether any of the direct blocks in the array pointed by "db" and of
4364  * length "ne" are within the range of frags needed to extend the cylinder
4365  * summary. If so, remove those frags from the "as-yet-unclassified" list
4366  * (csfrag) and add them to the "owned-by-inode" list (csfragino).
4367  * For each such frag found, decrement the frag count pointed to by fragsp.
4368  * "ino" is the inode that contains (either directly or indirectly) the frags
4369  * being checked.
4370  */
4371 void
4372 checkdirect(ino_t ino, daddr32_t *fragsp, daddr32_t *db, int ne)
4373 {
4374 	int	 i;
4375 	int	 j;
4376 	int	 found;
4377 	diskaddr_t	 frag;
4378 
4379 	/*
4380 	 * scan for allocation within the new summary info range
4381 	 */
4382 	for (i = 0; i < ne && *fragsp; ++i) {
4383 		if ((frag = *db++) != 0) {
4384 			found = 0;
4385 			for (j = 0; j < sblock.fs_frag && *fragsp; ++j) {
4386 				if (found || (found = csfraginrange(frag))) {
4387 					addcsfrag(ino, frag, &csfragino);
4388 					delcsfrag(frag, &csfrag);
4389 				}
4390 				++frag;
4391 				--(*fragsp);
4392 			}
4393 		}
4394 	}
4395 }
4396 
4397 void
4398 findcsfragino()
4399 {
4400 	int		 i;
4401 	int		 j;
4402 	daddr32_t		 frags;
4403 	struct dinode	*dp;
4404 
4405 	/*
4406 	 * scan all old inodes looking for allocations in the new
4407 	 * summary info range.  Move the affected frag from the
4408 	 * generic csfrag list onto the `owned-by-inode' list csfragino.
4409 	 */
4410 	for (i = UFSROOTINO; i < grow_fs_ncg*sblock.fs_ipg && csfrag; ++i) {
4411 		dp = gdinode((ino_t)i);
4412 		switch (dp->di_mode & IFMT) {
4413 			case IFSHAD	:
4414 			case IFLNK 	:
4415 			case IFDIR 	:
4416 			case IFREG 	: break;
4417 			default		: continue;
4418 		}
4419 
4420 		frags   = dbtofsb(&sblock, dp->di_blocks);
4421 
4422 		checkdirect((ino_t)i, &frags, &dp->di_db[0], NDADDR+NIADDR);
4423 		for (j = 0; j < NIADDR && frags; ++j) {
4424 			/* Negate the block if its an fallocate'd block */
4425 			if (dp->di_ib[j] < 0 && dp->di_ib[j] != UFS_HOLE)
4426 				checkindirect((ino_t)i, &frags,
4427 				    -(dp->di_ib[j]), j);
4428 			else
4429 				checkindirect((ino_t)i, &frags,
4430 				    dp->di_ib[j], j);
4431 		}
4432 	}
4433 }
4434 
4435 void
4436 fixindirect(daddr32_t frag, int level)
4437 {
4438 	int			 i;
4439 	int			 ne	= sblock.fs_bsize / sizeof (daddr32_t);
4440 	daddr32_t			fsb[MAXBSIZE / sizeof (daddr32_t)];
4441 
4442 	if (frag == 0)
4443 		return;
4444 
4445 	rdfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4446 	    (char *)fsb);
4447 
4448 	fixdirect((caddr_t)fsb, frag, fsb, ne);
4449 
4450 	if (level)
4451 		for (i = 0; i < ne; ++i)
4452 			fixindirect(fsb[i], level-1);
4453 }
4454 
4455 void
4456 fixdirect(caddr_t bp, daddr32_t frag, daddr32_t *db, int ne)
4457 {
4458 	int	 i;
4459 	struct csfrag	*cfp;
4460 
4461 	for (i = 0; i < ne; ++i, ++db) {
4462 		if (*db == 0)
4463 			continue;
4464 		if ((cfp = findcsfrag(*db, &csfragino)) == NULL)
4465 			continue;
4466 		*db = cfp->nfrag;
4467 		cfp->fixed = 1;
4468 		wtfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4469 		    bp);
4470 	}
4471 }
4472 
4473 void
4474 fixcsfragino()
4475 {
4476 	int		 i;
4477 	struct dinode	*dp;
4478 	struct csfrag	*cfp;
4479 
4480 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4481 		if (cfp->fixed)
4482 			continue;
4483 		dp = gdinode((ino_t)cfp->ino);
4484 		fixdirect((caddr_t)dibuf, difrag, dp->di_db, NDADDR+NIADDR);
4485 		for (i = 0; i < NIADDR; ++i)
4486 			fixindirect(dp->di_ib[i], i);
4487 	}
4488 }
4489 
4490 /*
4491  * Read the cylinders summary information specified by settings in the
4492  * passed 'fs' structure into a new allocated array of csum structures.
4493  * The caller is responsible for freeing the returned array.
4494  * Return a pointer to an array of csum structures.
4495  */
4496 static struct csum *
4497 read_summaryinfo(struct	fs *fsp)
4498 {
4499 	struct csum 	*csp;
4500 	int		i;
4501 
4502 	if ((csp = malloc((size_t)fsp->fs_cssize)) == NULL) {
4503 		(void) fprintf(stderr, gettext("cannot create csum list,"
4504 			" not enough memory\n"));
4505 		exit(32);
4506 	}
4507 
4508 	for (i = 0; i < fsp->fs_cssize; i += fsp->fs_bsize) {
4509 		rdfs(fsbtodb(fsp,
4510 			(uint64_t)(fsp->fs_csaddr + numfrags(fsp, i))),
4511 			(int)(fsp->fs_cssize - i < fsp->fs_bsize ?
4512 			fsp->fs_cssize - i : fsp->fs_bsize),
4513 			((caddr_t)csp) + i);
4514 	}
4515 
4516 	return (csp);
4517 }
4518 
4519 /*
4520  * Check the allocation of fragments that are to be made part of a csum block.
4521  * A fragment is allocated if it is either in the csfragfree list or, it is
4522  * in the csfragino list and has new frags associated with it.
4523  * Return the number of allocated fragments.
4524  */
4525 int64_t
4526 checkfragallocated(daddr32_t frag)
4527 {
4528 	struct 	csfrag	*cfp;
4529 	/*
4530 	 * Since the lists are sorted we can break the search if the asked
4531 	 * frag is smaller then the one in the list.
4532 	 */
4533 	for (cfp = csfragfree; cfp != NULL && frag >= cfp->ofrag;
4534 		cfp = cfp->next) {
4535 		if (frag == cfp->ofrag)
4536 			return (1);
4537 	}
4538 	for (cfp = csfragino; cfp != NULL && frag >= cfp->ofrag;
4539 		cfp = cfp->next) {
4540 		if (frag == cfp->ofrag && cfp->nfrag != 0)
4541 			return (cfp->frags);
4542 	}
4543 
4544 	return (0);
4545 }
4546 
4547 /*
4548  * Figure out how much the filesystem can be grown. The limiting factor is
4549  * the available free space needed to extend the cg summary info block.
4550  * The free space is determined in three steps:
4551  * - Try to extend the cg summary block to the required size.
4552  * - Find free blocks in last cg.
4553  * - Find free space in the last already allocated fragment of the summary info
4554  *   block, and use it for additional csum structures.
4555  * Return the maximum size of the new filesystem or 0 if it can't be grown.
4556  * Please note that this function leaves the global list pointers csfrag,
4557  * csfragfree, and csfragino initialized, and the caller is responsible for
4558  * freeing the lists.
4559  */
4560 diskaddr_t
4561 probe_summaryinfo()
4562 {
4563 	/* fragments by which the csum block can be extended. */
4564 	int64_t 	growth_csum_frags = 0;
4565 	/* fragments by which the filesystem can be extended. */
4566 	int64_t		growth_fs_frags = 0;
4567 	int64_t		new_fs_cssize;	/* size of csum blk in the new FS */
4568 	int64_t		new_fs_ncg;	/* number of cg in the new FS */
4569 	int64_t 	spare_csum;
4570 	daddr32_t	oldfrag_daddr;
4571 	daddr32_t	newfrag_daddr;
4572 	daddr32_t	daddr;
4573 	int		i;
4574 
4575 	/*
4576 	 * read and verify the superblock
4577 	 */
4578 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4579 	(void) checksblock(sblock, 0);
4580 
4581 	/*
4582 	 * check how much we can extend the cg summary info block
4583 	 */
4584 
4585 	/*
4586 	 * read current summary information
4587 	 */
4588 	fscs = read_summaryinfo(&sblock);
4589 
4590 	/*
4591 	 * build list of frags needed for cg summary info block extension
4592 	 */
4593 	oldfrag_daddr = howmany(sblock.fs_cssize, sblock.fs_fsize) +
4594 		sblock.fs_csaddr;
4595 	new_fs_ncg = howmany(dbtofsb(&sblock, fssize_db), sblock.fs_fpg);
4596 	new_fs_cssize = fragroundup(&sblock, new_fs_ncg * sizeof (struct csum));
4597 	newfrag_daddr = howmany(new_fs_cssize, sblock.fs_fsize) +
4598 		sblock.fs_csaddr;
4599 	/*
4600 	 * add all of the frags that are required to grow the cyl summary to the
4601 	 * csfrag list, which is the generic/unknown list, since at this point
4602 	 * we don't yet know the state of those frags.
4603 	 */
4604 	for (daddr = oldfrag_daddr; daddr < newfrag_daddr; daddr++)
4605 		addcsfrag((ino_t)0, daddr, &csfrag);
4606 
4607 	/*
4608 	 * filter free fragments and allocate them. Note that the free frags
4609 	 * must be allocated first otherwise they could be grabbed by
4610 	 * alloccsfragino() for data frags.
4611 	 */
4612 	findcsfragfree();
4613 	alloccsfragfree();
4614 
4615 	/*
4616 	 * filter fragments owned by inodes and allocate them
4617 	 */
4618 	grow_fs_ncg = sblock.fs_ncg; /* findcsfragino() needs this glob. var. */
4619 	findcsfragino();
4620 	alloccsfragino();
4621 
4622 	if (notenoughspace()) {
4623 		/*
4624 		 * check how many consecutive fragments could be allocated
4625 		 * in both lists.
4626 		 */
4627 		int64_t tmp_frags;
4628 		for (daddr = oldfrag_daddr; daddr < newfrag_daddr;
4629 			daddr += tmp_frags) {
4630 			if ((tmp_frags = checkfragallocated(daddr)) > 0)
4631 				growth_csum_frags += tmp_frags;
4632 			else
4633 				break;
4634 		}
4635 	} else {
4636 		/*
4637 		 * We have all we need for the new desired size,
4638 		 * so clean up and report back.
4639 		 */
4640 		return (fssize_db);
4641 	}
4642 
4643 	/*
4644 	 * given the number of fragments by which the csum block can be grown
4645 	 * compute by how many new fragments the FS can be increased.
4646 	 * It is the number of csum instances per fragment multiplied by
4647 	 * `growth_csum_frags' and the number of fragments per cylinder group.
4648 	 */
4649 	growth_fs_frags = howmany(sblock.fs_fsize, sizeof (struct csum)) *
4650 		growth_csum_frags * sblock.fs_fpg;
4651 
4652 	/*
4653 	 * compute free fragments in the last cylinder group
4654 	 */
4655 	rdcg(sblock.fs_ncg - 1);
4656 	growth_fs_frags += sblock.fs_fpg - acg.cg_ndblk;
4657 
4658 	/*
4659 	 * compute how many csum instances are unused in the old csum block.
4660 	 * For each unused csum instance the FS can be grown by one cylinder
4661 	 * group without extending the csum block.
4662 	 */
4663 	spare_csum = howmany(sblock.fs_cssize, sizeof (struct csum)) -
4664 		sblock.fs_ncg;
4665 	if (spare_csum > 0)
4666 		growth_fs_frags += spare_csum * sblock.fs_fpg;
4667 
4668 	/*
4669 	 * recalculate the new filesystem size in sectors, shorten it by
4670 	 * the requested size `fssize_db' if necessary.
4671 	 */
4672 	if (growth_fs_frags > 0) {
4673 		diskaddr_t sect;
4674 		sect = (sblock.fs_size + growth_fs_frags) * sblock.fs_nspf;
4675 		return ((sect > fssize_db) ? fssize_db : sect);
4676 	}
4677 
4678 	return (0);
4679 }
4680 
4681 void
4682 extendsummaryinfo()
4683 {
4684 	int64_t		i;
4685 	int		localtest	= test;
4686 	int64_t		frags;
4687 	daddr32_t		oldfrag;
4688 	daddr32_t		newfrag;
4689 
4690 	/*
4691 	 * if no-write (-N), don't bother
4692 	 */
4693 	if (Nflag)
4694 		return;
4695 
4696 again:
4697 	flcg();
4698 	/*
4699 	 * summary info did not change size -- do nothing unless in test mode
4700 	 */
4701 	if (grow_fs_cssize == sblock.fs_cssize)
4702 		if (!localtest)
4703 			return;
4704 
4705 	/*
4706 	 * build list of frags needed for additional summary information
4707 	 */
4708 	oldfrag = howmany(grow_fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4709 	newfrag = howmany(sblock.fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4710 	/*
4711 	 * add all of the frags that are required to grow the cyl summary to the
4712 	 * csfrag list, which is the generic/unknown list, since at this point
4713 	 * we don't yet know the state of those frags.
4714 	 */
4715 	for (i = oldfrag, frags = 0; i < newfrag; ++i, ++frags)
4716 		addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4717 	/*
4718 	 * reduce the number of data blocks in the file system (fs_dsize) by
4719 	 * the number of frags that need to be added to the cyl summary
4720 	 */
4721 	sblock.fs_dsize -= (newfrag - oldfrag);
4722 
4723 	/*
4724 	 * In test mode, we move more data than necessary from
4725 	 * cylinder group 0.  The lookup/allocate/move code can be
4726 	 * better stressed without having to create HUGE file systems.
4727 	 */
4728 	if (localtest)
4729 		for (i = newfrag; i < grow_sifrag; ++i) {
4730 			if (frags >= testfrags)
4731 				break;
4732 			frags++;
4733 			addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4734 		}
4735 
4736 	/*
4737 	 * move frags to free or inode lists, depending on owner
4738 	 */
4739 	findcsfragfree();
4740 	findcsfragino();
4741 
4742 	/*
4743 	 * if not all frags can be located, file system must be inconsistent
4744 	 */
4745 	if (csfrag) {
4746 		isbad = 1;	/* should already be set, but make sure */
4747 		lockexit(32);
4748 	}
4749 
4750 	/*
4751 	 * allocate the free frags. Note that the free frags must be allocated
4752 	 * first otherwise they could be grabbed by alloccsfragino() for data
4753 	 * frags.
4754 	 */
4755 	alloccsfragfree();
4756 	/*
4757 	 * allocate extra space for inode frags
4758 	 */
4759 	alloccsfragino();
4760 
4761 	/*
4762 	 * not enough space
4763 	 */
4764 	if (notenoughspace()) {
4765 		unalloccsfragfree();
4766 		unalloccsfragino();
4767 		if (localtest && !testforce) {
4768 			localtest = 0;
4769 			goto again;
4770 		}
4771 		(void) fprintf(stderr, gettext("Not enough free space\n"));
4772 		lockexit(NOTENOUGHSPACE);
4773 	}
4774 
4775 	/*
4776 	 * copy the data from old frags to new frags
4777 	 */
4778 	copycsfragino();
4779 
4780 	/*
4781 	 * fix the inodes to point to the new frags
4782 	 */
4783 	fixcsfragino();
4784 
4785 	/*
4786 	 * We may have moved more frags than we needed.  Free them.
4787 	 */
4788 	rdcg((long)0);
4789 	for (i = newfrag; i <= maxcsfrag; ++i)
4790 		setbit(cg_blksfree(&acg), i-cgbase(&sblock, 0));
4791 	wtcg();
4792 
4793 	flcg();
4794 }
4795 
4796 /*
4797  * Check if all fragments in the `csfragino' list were reallocated.
4798  */
4799 int
4800 notenoughspace()
4801 {
4802 	struct csfrag	*cfp;
4803 
4804 	/*
4805 	 * If any element in the csfragino array has a "new frag location"
4806 	 * of 0, the allocfrags() function was unsuccessful in allocating
4807 	 * space for moving the frag represented by this array element.
4808 	 */
4809 	for (cfp = csfragino; cfp; cfp = cfp->next)
4810 		if (cfp->nfrag == 0)
4811 			return (1);
4812 	return (0);
4813 }
4814 
4815 void
4816 unalloccsfragino()
4817 {
4818 	struct csfrag	*cfp;
4819 
4820 	while ((cfp = csfragino) != NULL) {
4821 		if (cfp->nfrag)
4822 			freefrags(cfp->nfrag, cfp->frags, cfp->cylno);
4823 		delcsfrag(cfp->ofrag, &csfragino);
4824 	}
4825 }
4826 
4827 void
4828 unalloccsfragfree()
4829 {
4830 	struct csfrag	*cfp;
4831 
4832 	while ((cfp = csfragfree) != NULL) {
4833 		freefrags(cfp->ofrag, cfp->frags, cfp->cylno);
4834 		delcsfrag(cfp->ofrag, &csfragfree);
4835 	}
4836 }
4837 
4838 /*
4839  * For each frag in the "as-yet-unclassified" list (csfrag), see if
4840  * it's free (i.e., its bit is set in the free frag bit map).  If so,
4841  * move it from the "as-yet-unclassified" list to the csfragfree list.
4842  */
4843 void
4844 findcsfragfree()
4845 {
4846 	struct csfrag	*cfp;
4847 	struct csfrag	*cfpnext;
4848 
4849 	/*
4850 	 * move free frags onto the free-frag list
4851 	 */
4852 	rdcg((long)0);
4853 	for (cfp = csfrag; cfp; cfp = cfpnext) {
4854 		cfpnext = cfp->next;
4855 		if (isset(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0))) {
4856 			addcsfrag(cfp->ino, cfp->ofrag, &csfragfree);
4857 			delcsfrag(cfp->ofrag, &csfrag);
4858 		}
4859 	}
4860 }
4861 
4862 void
4863 copycsfragino()
4864 {
4865 	struct csfrag	*cfp;
4866 	char		buf[MAXBSIZE];
4867 
4868 	/*
4869 	 * copy data from old frags to newly allocated frags
4870 	 */
4871 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4872 		rdfs(fsbtodb(&sblock, (uint64_t)cfp->ofrag), (int)cfp->size,
4873 		    buf);
4874 		wtfs(fsbtodb(&sblock, (uint64_t)cfp->nfrag), (int)cfp->size,
4875 		    buf);
4876 	}
4877 }
4878 
4879 long	curcylno	= -1;
4880 int	cylnodirty	= 0;
4881 
4882 void
4883 rdcg(long cylno)
4884 {
4885 	if (cylno != curcylno) {
4886 		flcg();
4887 		curcylno = cylno;
4888 		rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4889 			(int)sblock.fs_cgsize, (char *)&acg);
4890 	}
4891 }
4892 
4893 void
4894 flcg()
4895 {
4896 	if (cylnodirty) {
4897 		if (debug && Pflag) {
4898 			(void) fprintf(stderr,
4899 				"Assert: cylnodirty set in probe mode\n");
4900 			return;
4901 		}
4902 		resetallocinfo();
4903 		wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4904 			(int)sblock.fs_cgsize, (char *)&acg);
4905 		cylnodirty = 0;
4906 	}
4907 	curcylno = -1;
4908 }
4909 
4910 void
4911 wtcg()
4912 {
4913 	if (!Pflag) {
4914 		/* probe mode should never write to disk */
4915 		cylnodirty = 1;
4916 	}
4917 }
4918 
4919 void
4920 allocfrags(long frags, daddr32_t *fragp, long *cylnop)
4921 {
4922 	int	 i;
4923 	int	 j;
4924 	long	 bits;
4925 	long	 bit;
4926 
4927 	/*
4928 	 * Allocate a free-frag range in an old cylinder group
4929 	 */
4930 	for (i = 0, *fragp = 0; i < grow_fs_ncg; ++i) {
4931 		if (((fscs+i)->cs_nffree < frags) && ((fscs+i)->cs_nbfree == 0))
4932 			continue;
4933 		rdcg((long)i);
4934 		bit = bits = 0;
4935 		while (findfreerange(&bit, &bits)) {
4936 			if (frags <= bits)  {
4937 				for (j = 0; j < frags; ++j)
4938 					clrbit(cg_blksfree(&acg), bit+j);
4939 				wtcg();
4940 				*cylnop = i;
4941 				*fragp  = bit + cgbase(&sblock, i);
4942 				return;
4943 			}
4944 			bit += bits;
4945 		}
4946 	}
4947 }
4948 
4949 /*
4950  * Allocate space for frags that need to be moved in order to free up space for
4951  * expanding the cylinder summary info.
4952  * For each frag that needs to be moved (each frag or range of frags in
4953  * the csfragino list), allocate a new location and store the frag number
4954  * of that new location in the nfrag field of the csfrag struct.
4955  * If a new frag can't be allocated for any element in the csfragino list,
4956  * set the new frag number for that element to 0 and return immediately.
4957  * The notenoughspace() function will detect this condition.
4958  */
4959 void
4960 alloccsfragino()
4961 {
4962 	struct csfrag	*cfp;
4963 
4964 	/*
4965 	 * allocate space for inode frag ranges
4966 	 */
4967 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4968 		allocfrags(cfp->frags, &cfp->nfrag, &cfp->cylno);
4969 		if (cfp->nfrag == 0)
4970 			break;
4971 	}
4972 }
4973 
4974 void
4975 alloccsfragfree()
4976 {
4977 	struct csfrag	*cfp;
4978 
4979 	/*
4980 	 * allocate the free frags needed for extended summary info
4981 	 */
4982 	rdcg((long)0);
4983 
4984 	for (cfp = csfragfree; cfp; cfp = cfp->next)
4985 		clrbit(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0));
4986 
4987 	wtcg();
4988 }
4989 
4990 void
4991 freefrags(daddr32_t frag, long frags, long cylno)
4992 {
4993 	int	i;
4994 
4995 	/*
4996 	 * free frags
4997 	 */
4998 	rdcg(cylno);
4999 	for (i = 0; i < frags; ++i) {
5000 		setbit(cg_blksfree(&acg), (frag+i) - cgbase(&sblock, cylno));
5001 	}
5002 	wtcg();
5003 }
5004 
5005 int
5006 findfreerange(long *bitp, long *bitsp)
5007 {
5008 	long	 bit;
5009 
5010 	/*
5011 	 * find a range of free bits in a cylinder group bit map
5012 	 */
5013 	for (bit = *bitp, *bitsp = 0; bit < acg.cg_ndblk; ++bit)
5014 		if (isset(cg_blksfree(&acg), bit))
5015 			break;
5016 
5017 	if (bit >= acg.cg_ndblk)
5018 		return (0);
5019 
5020 	*bitp  = bit;
5021 	*bitsp = 1;
5022 	for (++bit; bit < acg.cg_ndblk; ++bit, ++(*bitsp)) {
5023 		if ((bit % sblock.fs_frag) == 0)
5024 			break;
5025 		if (isclr(cg_blksfree(&acg), bit))
5026 			break;
5027 	}
5028 	return (1);
5029 }
5030 
5031 void
5032 resetallocinfo()
5033 {
5034 	long	cno;
5035 	long	bit;
5036 	long	bits;
5037 
5038 	/*
5039 	 * Compute the free blocks/frags info and update the appropriate
5040 	 * inmemory superblock, summary info, and cylinder group fields
5041 	 */
5042 	sblock.fs_cstotal.cs_nffree -= acg.cg_cs.cs_nffree;
5043 	sblock.fs_cstotal.cs_nbfree -= acg.cg_cs.cs_nbfree;
5044 
5045 	acg.cg_cs.cs_nffree = 0;
5046 	acg.cg_cs.cs_nbfree = 0;
5047 
5048 	bzero((caddr_t)acg.cg_frsum, sizeof (acg.cg_frsum));
5049 	bzero((caddr_t)cg_blktot(&acg), (int)(acg.cg_iusedoff-acg.cg_btotoff));
5050 
5051 	bit = bits = 0;
5052 	while (findfreerange(&bit, &bits)) {
5053 		if (bits == sblock.fs_frag) {
5054 			acg.cg_cs.cs_nbfree++;
5055 			cno = cbtocylno(&sblock, bit);
5056 			cg_blktot(&acg)[cno]++;
5057 			cg_blks(&sblock, &acg, cno)[cbtorpos(&sblock, bit)]++;
5058 		} else {
5059 			acg.cg_cs.cs_nffree += bits;
5060 			acg.cg_frsum[bits]++;
5061 		}
5062 		bit += bits;
5063 	}
5064 
5065 	*(fscs + acg.cg_cgx) = acg.cg_cs;
5066 
5067 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
5068 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
5069 }
5070 
5071 void
5072 extendcg(long cylno)
5073 {
5074 	int	i;
5075 	diskaddr_t	dupper;
5076 	diskaddr_t	cbase;
5077 	diskaddr_t	dmax;
5078 
5079 	/*
5080 	 * extend the cylinder group at the end of the old file system
5081 	 * if it was partially allocated becase of lack of space
5082 	 */
5083 	flcg();
5084 	rdcg(cylno);
5085 
5086 	dupper = acg.cg_ndblk;
5087 	if (cylno == sblock.fs_ncg - 1)
5088 		acg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
5089 	else
5090 		acg.cg_ncyl = sblock.fs_cpg;
5091 	cbase = cgbase(&sblock, cylno);
5092 	dmax = cbase + sblock.fs_fpg;
5093 	if (dmax > sblock.fs_size)
5094 		dmax = sblock.fs_size;
5095 	acg.cg_ndblk = dmax - cbase;
5096 
5097 	for (i = dupper; i < acg.cg_ndblk; ++i)
5098 		setbit(cg_blksfree(&acg), i);
5099 
5100 	sblock.fs_dsize += (acg.cg_ndblk - dupper);
5101 
5102 	wtcg();
5103 	flcg();
5104 }
5105 
5106 struct lockfs	lockfs;
5107 int		lockfd;
5108 int		islocked;
5109 int		lockfskey;
5110 char		lockfscomment[128];
5111 
5112 void
5113 ulockfs()
5114 {
5115 	/*
5116 	 * if the file system was locked, unlock it before exiting
5117 	 */
5118 	if (islocked == 0)
5119 		return;
5120 
5121 	/*
5122 	 * first, check if the lock held
5123 	 */
5124 	lockfs.lf_flags = LOCKFS_MOD;
5125 	if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5126 		perror(directory);
5127 		lockexit(32);
5128 	}
5129 
5130 	if (LOCKFS_IS_MOD(&lockfs)) {
5131 		(void) fprintf(stderr,
5132 			gettext("FILE SYSTEM CHANGED DURING GROWFS!\n"));
5133 		(void) fprintf(stderr,
5134 			gettext("   See lockfs(1), umount(1), and fsck(1)\n"));
5135 		lockexit(32);
5136 	}
5137 	/*
5138 	 * unlock the file system
5139 	 */
5140 	lockfs.lf_lock  = LOCKFS_ULOCK;
5141 	lockfs.lf_flags = 0;
5142 	lockfs.lf_key   = lockfskey;
5143 	clockfs();
5144 	if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5145 		perror(directory);
5146 		lockexit(32);
5147 	}
5148 }
5149 
5150 void
5151 wlockfs()
5152 {
5153 
5154 	/*
5155 	 * if no-write (-N), don't bother
5156 	 */
5157 	if (Nflag)
5158 		return;
5159 	/*
5160 	 * open the mountpoint, and write lock the file system
5161 	 */
5162 	if ((lockfd = open64(directory, O_RDONLY)) == -1) {
5163 		perror(directory);
5164 		lockexit(32);
5165 	}
5166 
5167 	/*
5168 	 * check if it is already locked
5169 	 */
5170 	if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5171 		perror(directory);
5172 		lockexit(32);
5173 	}
5174 
5175 	if (lockfs.lf_lock != LOCKFS_WLOCK) {
5176 		lockfs.lf_lock  = LOCKFS_WLOCK;
5177 		lockfs.lf_flags = 0;
5178 		lockfs.lf_key   = 0;
5179 		clockfs();
5180 		if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5181 			perror(directory);
5182 			lockexit(32);
5183 		}
5184 	}
5185 	islocked = 1;
5186 	lockfskey = lockfs.lf_key;
5187 }
5188 
5189 void
5190 clockfs()
5191 {
5192 	time_t	t;
5193 	char	*ct;
5194 
5195 	(void) time(&t);
5196 	ct = ctime(&t);
5197 	ct[strlen(ct)-1] = '\0';
5198 
5199 	(void) sprintf(lockfscomment, "%s -- mkfs pid %d", ct, getpid());
5200 	lockfs.lf_comlen  = strlen(lockfscomment)+1;
5201 	lockfs.lf_comment = lockfscomment;
5202 }
5203 
5204 /*
5205  * Write the csum records and the superblock
5206  */
5207 void
5208 wtsb()
5209 {
5210 	long	i;
5211 
5212 	/*
5213 	 * write summary information
5214 	 */
5215 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
5216 		wtfs(fsbtodb(&sblock, (uint64_t)(sblock.fs_csaddr +
5217 			numfrags(&sblock, i))),
5218 			(int)(sblock.fs_cssize - i < sblock.fs_bsize ?
5219 			sblock.fs_cssize - i : sblock.fs_bsize),
5220 			((char *)fscs) + i);
5221 
5222 	/*
5223 	 * write superblock
5224 	 */
5225 	sblock.fs_time = mkfstime;
5226 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
5227 }
5228 
5229 /*
5230  * Verify that the optimization selection is reasonable, and advance
5231  * the global "string" appropriately.
5232  */
5233 static char
5234 checkopt(char *optim)
5235 {
5236 	char	opt;
5237 	int	limit = strcspn(optim, ",");
5238 
5239 	switch (limit) {
5240 	case 0:	/* missing indicator (have comma or nul) */
5241 		(void) fprintf(stderr, gettext(
5242 		    "mkfs: missing optimization flag reset to `t' (time)\n"));
5243 		opt = 't';
5244 		break;
5245 
5246 	case 1: /* single-character indicator */
5247 		opt = *optim;
5248 		if ((opt != 's') && (opt != 't')) {
5249 			(void) fprintf(stderr, gettext(
5250 		    "mkfs: bad optimization value `%c' reset to `t' (time)\n"),
5251 			    opt);
5252 			opt = 't';
5253 		}
5254 		break;
5255 
5256 	default: /* multi-character indicator */
5257 		(void) fprintf(stderr, gettext(
5258 	    "mkfs: bad optimization value `%*.*s' reset to `t' (time)\n"),
5259 		    limit, limit, optim);
5260 		opt = 't';
5261 		break;
5262 	}
5263 
5264 	string += limit;
5265 
5266 	return (opt);
5267 }
5268 
5269 /*
5270  * Verify that the mtb selection is reasonable, and advance
5271  * the global "string" appropriately.
5272  */
5273 static char
5274 checkmtb(char *mtbarg)
5275 {
5276 	char	mtbc;
5277 	int	limit = strcspn(mtbarg, ",");
5278 
5279 	switch (limit) {
5280 	case 0:	/* missing indicator (have comma or nul) */
5281 		(void) fprintf(stderr, gettext(
5282 		    "mkfs: missing mtb flag reset to `n' (no mtb support)\n"));
5283 		mtbc = 'n';
5284 		break;
5285 
5286 	case 1: /* single-character indicator */
5287 		mtbc = tolower(*mtbarg);
5288 		if ((mtbc != 'y') && (mtbc != 'n')) {
5289 			(void) fprintf(stderr, gettext(
5290 		    "mkfs: bad mtb value `%c' reset to `n' (no mtb support)\n"),
5291 			    mtbc);
5292 			mtbc = 'n';
5293 		}
5294 		break;
5295 
5296 	default: /* multi-character indicator */
5297 		(void) fprintf(stderr, gettext(
5298 	    "mkfs: bad mtb value `%*.*s' reset to `n' (no mtb support)\n"),
5299 		    limit, limit, mtbarg);
5300 		opt = 'n';
5301 		break;
5302 	}
5303 
5304 	string += limit;
5305 
5306 	return (mtbc);
5307 }
5308 
5309 /*
5310  * Verify that a value is in a range.  If it is not, resets it to
5311  * its default value if one is supplied, exits otherwise.
5312  *
5313  * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5314  */
5315 static void
5316 range_check(long *varp, char *name, long minimum, long maximum,
5317     long def_val, int user_supplied)
5318 {
5319 	dprintf(("DeBuG %s : %ld (%ld %ld %ld)\n",
5320 		name, *varp, minimum, maximum, def_val));
5321 
5322 	if ((*varp < minimum) || (*varp > maximum)) {
5323 		if (user_supplied != RC_DEFAULT) {
5324 			(void) fprintf(stderr, gettext(
5325 	    "mkfs: bad value for %s: %ld must be between %ld and %ld\n"),
5326 			    name, *varp, minimum, maximum);
5327 		}
5328 		if (def_val != NO_DEFAULT) {
5329 			if (user_supplied) {
5330 				(void) fprintf(stderr,
5331 				    gettext("mkfs: %s reset to default %ld\n"),
5332 				    name, def_val);
5333 			}
5334 			*varp = def_val;
5335 			dprintf(("DeBuG %s : %ld\n", name, *varp));
5336 			return;
5337 		}
5338 		lockexit(2);
5339 		/*NOTREACHED*/
5340 	}
5341 }
5342 
5343 /*
5344  * Verify that a value is in a range.  If it is not, resets it to
5345  * its default value if one is supplied, exits otherwise.
5346  *
5347  * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5348  */
5349 static void
5350 range_check_64(uint64_t *varp, char *name, uint64_t minimum, uint64_t maximum,
5351     uint64_t def_val, int user_supplied)
5352 {
5353 	if ((*varp < minimum) || (*varp > maximum)) {
5354 		if (user_supplied != RC_DEFAULT) {
5355 			(void) fprintf(stderr, gettext(
5356 	    "mkfs: bad value for %s: %lld must be between %lld and %lld\n"),
5357 			    name, *varp, minimum, maximum);
5358 		}
5359 		if (def_val != NO_DEFAULT) {
5360 			if (user_supplied) {
5361 				(void) fprintf(stderr,
5362 				    gettext("mkfs: %s reset to default %lld\n"),
5363 				    name, def_val);
5364 			}
5365 			*varp = def_val;
5366 			return;
5367 		}
5368 		lockexit(2);
5369 		/*NOTREACHED*/
5370 	}
5371 }
5372 
5373 /*
5374  * Blocks SIGINT from delivery.  Returns the previous mask in the
5375  * buffer provided, so that mask may be later restored.
5376  */
5377 static void
5378 block_sigint(sigset_t *old_mask)
5379 {
5380 	sigset_t block_mask;
5381 
5382 	if (sigemptyset(&block_mask) < 0) {
5383 		fprintf(stderr, gettext("Could not clear signal mask\n"));
5384 		lockexit(3);
5385 	}
5386 	if (sigaddset(&block_mask, SIGINT) < 0) {
5387 		fprintf(stderr, gettext("Could not set signal mask\n"));
5388 		lockexit(3);
5389 	}
5390 	if (sigprocmask(SIG_BLOCK, &block_mask, old_mask) < 0) {
5391 		fprintf(stderr, gettext("Could not block SIGINT\n"));
5392 		lockexit(3);
5393 	}
5394 }
5395 
5396 /*
5397  * Restores the signal mask that was in force before a call
5398  * to block_sigint().  This may actually still have SIGINT blocked,
5399  * if we've been recursively invoked.
5400  */
5401 static void
5402 unblock_sigint(sigset_t *old_mask)
5403 {
5404 	if (sigprocmask(SIG_UNBLOCK, old_mask, (sigset_t *)NULL) < 0) {
5405 		fprintf(stderr, gettext("Could not restore signal mask\n"));
5406 		lockexit(3);
5407 	}
5408 }
5409 
5410 /*
5411  * Attempt to be somewhat graceful about being interrupted, rather than
5412  * just silently leaving the filesystem in an unusable state.
5413  *
5414  * The kernel has blocked SIGINT upon entry, so we don't have to worry
5415  * about recursion if the user starts pounding on the keyboard.
5416  */
5417 static void
5418 recover_from_sigint(int signum)
5419 {
5420 	if (fso > -1) {
5421 		if ((Nflag != 0) || confirm_abort()) {
5422 			lockexit(4);
5423 		}
5424 	}
5425 }
5426 
5427 static int
5428 confirm_abort(void)
5429 {
5430 	char line[80];
5431 
5432 	printf(gettext("\n\nAborting at this point will leave the filesystem "
5433 		"in an inconsistent\nstate.  If you do choose to stop, "
5434 		"you will be given instructions on how to\nrecover "
5435 		"the filesystem.  Do you wish to cancel the filesystem "
5436 		"grow\noperation (y/n)?"));
5437 	if (getline(stdin, line, sizeof (line)) == EOF)
5438 		line[0] = 'y';
5439 
5440 	printf("\n");
5441 	if (line[0] == 'y' || line[0] == 'Y')
5442 		return (1);
5443 	else {
5444 		return (0);
5445 	}
5446 }
5447 
5448 static int
5449 getline(FILE *fp, char *loc, int maxlen)
5450 {
5451 	int n;
5452 	char *p, *lastloc;
5453 
5454 	p = loc;
5455 	lastloc = &p[maxlen-1];
5456 	while ((n = getc(fp)) != '\n') {
5457 		if (n == EOF)
5458 			return (EOF);
5459 		if (!isspace(n) && p < lastloc)
5460 			*p++ = n;
5461 	}
5462 	*p = 0;
5463 	return (p - loc);
5464 }
5465 
5466 /*
5467  * Calculate the maximum value of cylinders-per-group for a file
5468  * system with the characteristics:
5469  *
5470  *	bsize - file system block size
5471  *	fragsize - frag size
5472  *	nbpi - number of bytes of disk space per inode
5473  *	nrpos - number of rotational positions
5474  *	spc - sectors per cylinder
5475  *
5476  * These five characteristic are not adjustable (by this function).
5477  * The only attribute of the file system which IS adjusted by this
5478  * function in order to maximize cylinders-per-group is the proportion
5479  * of the cylinder group overhead block used for the inode map.  The
5480  * inode map cannot occupy more than one-third of the cylinder group
5481  * overhead block, but it's OK for it to occupy less than one-third
5482  * of the overhead block.
5483  *
5484  * The setting of nbpi determines one possible value for the maximum
5485  * size of a cylinder group.  It does so because it determines the total
5486  * number of inodes in the file system (file system size is fixed, and
5487  * nbpi is fixed, so the total number of inodes is fixed too).  The
5488  * cylinder group has to be small enough so that the number of inodes
5489  * in the cylinder group is less than or equal to the number of bits
5490  * in one-third (or whatever proportion is assumed) of a file system
5491  * block.  The details of the calculation are:
5492  *
5493  *     The macro MAXIpG_B(bsize, inode_divisor) determines the maximum
5494  *     number of inodes that can be in a cylinder group, given the
5495  *     proportion of the cylinder group overhead block used for the
5496  *     inode bitmaps (an inode_divisor of 3 means that 1/3 of the
5497  *     block is used for inode bitmaps; an inode_divisor of 12 means
5498  *     that 1/12 of the block is used for inode bitmaps.)
5499  *
5500  *     Once the number of inodes per cylinder group is known, the
5501  *     maximum value of cylinders-per-group (determined by nbpi)
5502  *     is calculated by the formula
5503  *
5504  *     maxcpg_given_nbpi = (size of a cylinder group)/(size of a cylinder)
5505  *
5506  *			 = (inodes-per-cg * nbpi)/(spc * DEV_BSIZE)
5507  *
5508  *     (Interestingly, the size of the file system never enters
5509  *     into this calculation.)
5510  *
5511  * Another possible value for the maximum cylinder group size is determined
5512  * by frag_size and nrpos.  The frags in the cylinder group must be
5513  * representable in the frag bitmaps in the cylinder overhead block and the
5514  * rotational positions for each cylinder must be represented in the
5515  * rotational position tables.  The calculation of the maximum cpg
5516  * value, given the frag and nrpos vales, is:
5517  *
5518  *     maxcpg_given_fragsize =
5519  *	  (available space in the overhead block) / (size of per-cylinder data)
5520  *
5521  *     The available space in the overhead block =
5522  *	  bsize - sizeof (struct cg) - space_used_for_inode_bitmaps
5523  *
5524  *     The size of the per-cylinder data is:
5525  *	    sizeof(long)            # for the "blocks avail per cylinder" field
5526  *	    + nrpos * sizeof(short)   # for the rotational position table entry
5527  *	    + frags-per-cylinder/NBBY # number of bytes to represent this
5528  *				      # cylinder in the frag bitmap
5529  *
5530  * The two calculated maximum values of cylinder-per-group will typically
5531  * turn out to be different, since they are derived from two different
5532  * constraints.  Usually, maxcpg_given_nbpi is much bigger than
5533  * maxcpg_given_fragsize.  But they can be brought together by
5534  * adjusting the proportion of the overhead block dedicated to
5535  * the inode bitmaps.  Decreasing the proportion of the cylinder
5536  * group overhead block used for inode maps will decrease
5537  * maxcpg_given_nbpi and increase maxcpg_given_fragsize.
5538  *
5539  * This function calculates the initial values of maxcpg_given_nbpi
5540  * and maxcpg_given_fragsize assuming that 1/3 of the cg overhead
5541  * block is used for inode bitmaps.  Then it decreases the proportion
5542  * of the cg overhead block used for inode bitmaps (by increasing
5543  * the value of inode_divisor) until maxcpg_given_nbpi and
5544  * maxcpg_given_fragsize are the same, or stop changing, or
5545  * maxcpg_given_nbpi is less than maxcpg_given_fragsize.
5546  *
5547  * The loop terminates when any of the following occur:
5548  *	* maxcpg_given_fragsize is greater than or equal to
5549  *	  maxcpg_given_nbpi
5550  *	* neither maxcpg_given_fragsize nor maxcpg_given_nbpi
5551  *	  change in the expected direction
5552  *
5553  * The loop is guaranteed to terminate because it only continues
5554  * while maxcpg_given_fragsize and maxcpg_given_nbpi are approaching
5555  * each other.  As soon they cross each other, or neither one changes
5556  * in the direction of the other, or one of them moves in the wrong
5557  * direction, the loop completes.
5558  */
5559 
5560 static long
5561 compute_maxcpg(long bsize, long fragsize, long nbpi, long nrpos, long spc)
5562 {
5563 	int	maxcpg_given_nbpi;	/* in cylinders */
5564 	int	maxcpg_given_fragsize;	/* in cylinders */
5565 	int	spf;			/* sectors per frag */
5566 	int	inode_divisor;
5567 	int	old_max_given_frag = 0;
5568 	int	old_max_given_nbpi = INT_MAX;
5569 
5570 	spf = fragsize / DEV_BSIZE;
5571 	inode_divisor = 3;
5572 
5573 	while (1) {
5574 		maxcpg_given_nbpi =
5575 		    (((int64_t)(MAXIpG_B(bsize, inode_divisor))) * nbpi) /
5576 		    (DEV_BSIZE * ((int64_t)spc));
5577 		maxcpg_given_fragsize =
5578 		    (bsize - (sizeof (struct cg)) - (bsize / inode_divisor)) /
5579 		    (sizeof (long) + nrpos * sizeof (short) +
5580 						(spc / spf) / NBBY);
5581 
5582 		if (maxcpg_given_fragsize >= maxcpg_given_nbpi)
5583 			return (maxcpg_given_nbpi);
5584 
5585 		/*
5586 		 * If neither value moves toward the other, return the
5587 		 * least of the old values (we use the old instead of the
5588 		 * new because: if the old is the same as the new, it
5589 		 * doesn't matter which ones we use.  If one of the
5590 		 * values changed, but in the wrong direction, the
5591 		 * new values are suspect.  Better use the old.  This
5592 		 * shouldn't happen, but it's best to check.
5593 		 */
5594 
5595 		if (!(maxcpg_given_nbpi < old_max_given_nbpi) &&
5596 		    !(maxcpg_given_fragsize > old_max_given_frag))
5597 			return (MIN(old_max_given_nbpi, old_max_given_frag));
5598 
5599 		/*
5600 		 * This is probably impossible, but if one of the maxcpg
5601 		 * values moved in the "right" direction and one moved
5602 		 * in the "wrong" direction (that is, the two values moved
5603 		 * in the same direction), the previous conditional won't
5604 		 * recognize that the values aren't converging (since at
5605 		 * least one value moved in the "right" direction, the
5606 		 * last conditional says "keep going").
5607 		 *
5608 		 * Just to make absolutely certain that the loop terminates,
5609 		 * check for one of the values moving in the "wrong" direction
5610 		 * and terminate the loop if it happens.
5611 		 */
5612 
5613 		if (maxcpg_given_nbpi > old_max_given_nbpi ||
5614 		    maxcpg_given_fragsize < old_max_given_frag)
5615 			return (MIN(old_max_given_nbpi, old_max_given_frag));
5616 
5617 		old_max_given_nbpi = maxcpg_given_nbpi;
5618 		old_max_given_frag = maxcpg_given_fragsize;
5619 
5620 		inode_divisor++;
5621 	}
5622 }
5623 
5624 static int
5625 in_64bit_mode(void)
5626 {
5627 	/*  cmd must be an absolute path, for security */
5628 	char *cmd = "/usr/bin/isainfo -b";
5629 	char buf[BUFSIZ];
5630 	FILE *ptr;
5631 	int retval = 0;
5632 
5633 	putenv("IFS= \t");
5634 	if ((ptr = popen(cmd, "r")) != NULL) {
5635 		if (fgets(buf, BUFSIZ, ptr) != NULL &&
5636 		    strncmp(buf, "64", 2) == 0)
5637 			retval = 1;
5638 		(void) pclose(ptr);
5639 	}
5640 	return (retval);
5641 }
5642 
5643 /*
5644  * validate_size
5645  *
5646  * Return 1 if the device appears to be at least "size" sectors long.
5647  * Return 0 if it's shorter or we can't read it.
5648  */
5649 
5650 static int
5651 validate_size(int fd, diskaddr_t size)
5652 {
5653 	char 		buf[DEV_BSIZE];
5654 	int rc;
5655 
5656 	if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
5657 	    (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
5658 		rc = 0;
5659 	else
5660 		rc = 1;
5661 	return (rc);
5662 }
5663 
5664 /*
5665  * Print every field of the calculated superblock, along with
5666  * its value.  To make parsing easier on the caller, the value
5667  * is printed first, then the name.  Additionally, there's only
5668  * one name/value pair per line.  All values are reported in
5669  * hexadecimal (with the traditional 0x prefix), as that's slightly
5670  * easier for humans to read.  Not that they're expected to, but
5671  * debugging happens.
5672  */
5673 static void
5674 dump_sblock(void)
5675 {
5676 	int row, column, pending, written;
5677 	caddr_t source;
5678 
5679 	if (Rflag) {
5680 		pending = sizeof (sblock);
5681 		source = (caddr_t)&sblock;
5682 		do {
5683 			written = write(fileno(stdout), source, pending);
5684 			pending -= written;
5685 			source += written;
5686 		} while ((pending > 0) && (written > 0));
5687 
5688 		if (written < 0) {
5689 			perror(gettext("Binary dump of superblock failed"));
5690 			lockexit(1);
5691 		}
5692 		return;
5693 	} else {
5694 		printf("0x%x sblock.fs_link\n", sblock.fs_link);
5695 		printf("0x%x sblock.fs_rolled\n", sblock.fs_rolled);
5696 		printf("0x%x sblock.fs_sblkno\n", sblock.fs_sblkno);
5697 		printf("0x%x sblock.fs_cblkno\n", sblock.fs_cblkno);
5698 		printf("0x%x sblock.fs_iblkno\n", sblock.fs_iblkno);
5699 		printf("0x%x sblock.fs_dblkno\n", sblock.fs_dblkno);
5700 		printf("0x%x sblock.fs_cgoffset\n", sblock.fs_cgoffset);
5701 		printf("0x%x sblock.fs_cgmask\n", sblock.fs_cgmask);
5702 		printf("0x%x sblock.fs_time\n", sblock.fs_time);
5703 		printf("0x%x sblock.fs_size\n", sblock.fs_size);
5704 		printf("0x%x sblock.fs_dsize\n", sblock.fs_dsize);
5705 		printf("0x%x sblock.fs_ncg\n", sblock.fs_ncg);
5706 		printf("0x%x sblock.fs_bsize\n", sblock.fs_bsize);
5707 		printf("0x%x sblock.fs_fsize\n", sblock.fs_fsize);
5708 		printf("0x%x sblock.fs_frag\n", sblock.fs_frag);
5709 		printf("0x%x sblock.fs_minfree\n", sblock.fs_minfree);
5710 		printf("0x%x sblock.fs_rotdelay\n", sblock.fs_rotdelay);
5711 		printf("0x%x sblock.fs_rps\n", sblock.fs_rps);
5712 		printf("0x%x sblock.fs_bmask\n", sblock.fs_bmask);
5713 		printf("0x%x sblock.fs_fmask\n", sblock.fs_fmask);
5714 		printf("0x%x sblock.fs_bshift\n", sblock.fs_bshift);
5715 		printf("0x%x sblock.fs_fshift\n", sblock.fs_fshift);
5716 		printf("0x%x sblock.fs_maxcontig\n", sblock.fs_maxcontig);
5717 		printf("0x%x sblock.fs_maxbpg\n", sblock.fs_maxbpg);
5718 		printf("0x%x sblock.fs_fragshift\n", sblock.fs_fragshift);
5719 		printf("0x%x sblock.fs_fsbtodb\n", sblock.fs_fsbtodb);
5720 		printf("0x%x sblock.fs_sbsize\n", sblock.fs_sbsize);
5721 		printf("0x%x sblock.fs_csmask\n", sblock.fs_csmask);
5722 		printf("0x%x sblock.fs_csshift\n", sblock.fs_csshift);
5723 		printf("0x%x sblock.fs_nindir\n", sblock.fs_nindir);
5724 		printf("0x%x sblock.fs_inopb\n", sblock.fs_inopb);
5725 		printf("0x%x sblock.fs_nspf\n", sblock.fs_nspf);
5726 		printf("0x%x sblock.fs_optim\n", sblock.fs_optim);
5727 #ifdef _LITTLE_ENDIAN
5728 		printf("0x%x sblock.fs_state\n", sblock.fs_state);
5729 #else
5730 		printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5731 #endif
5732 		printf("0x%x sblock.fs_si\n", sblock.fs_si);
5733 		printf("0x%x sblock.fs_trackskew\n", sblock.fs_trackskew);
5734 		printf("0x%x sblock.fs_id[0]\n", sblock.fs_id[0]);
5735 		printf("0x%x sblock.fs_id[1]\n", sblock.fs_id[1]);
5736 		printf("0x%x sblock.fs_csaddr\n", sblock.fs_csaddr);
5737 		printf("0x%x sblock.fs_cssize\n", sblock.fs_cssize);
5738 		printf("0x%x sblock.fs_cgsize\n", sblock.fs_cgsize);
5739 		printf("0x%x sblock.fs_ntrak\n", sblock.fs_ntrak);
5740 		printf("0x%x sblock.fs_nsect\n", sblock.fs_nsect);
5741 		printf("0x%x sblock.fs_spc\n", sblock.fs_spc);
5742 		printf("0x%x sblock.fs_ncyl\n", sblock.fs_ncyl);
5743 		printf("0x%x sblock.fs_cpg\n", sblock.fs_cpg);
5744 		printf("0x%x sblock.fs_ipg\n", sblock.fs_ipg);
5745 		printf("0x%x sblock.fs_fpg\n", sblock.fs_fpg);
5746 		printf("0x%x sblock.fs_cstotal\n", sblock.fs_cstotal);
5747 		printf("0x%x sblock.fs_fmod\n", sblock.fs_fmod);
5748 		printf("0x%x sblock.fs_clean\n", sblock.fs_clean);
5749 		printf("0x%x sblock.fs_ronly\n", sblock.fs_ronly);
5750 		printf("0x%x sblock.fs_flags\n", sblock.fs_flags);
5751 		printf("0x%x sblock.fs_fsmnt\n", sblock.fs_fsmnt);
5752 		printf("0x%x sblock.fs_cgrotor\n", sblock.fs_cgrotor);
5753 		printf("0x%x sblock.fs_u.fs_csp\n", sblock.fs_u.fs_csp);
5754 		printf("0x%x sblock.fs_cpc\n", sblock.fs_cpc);
5755 
5756 		/*
5757 		 * No macros are defined for the dimensions of the
5758 		 * opostbl array.
5759 		 */
5760 		for (row = 0; row < 16; row++) {
5761 			for (column = 0; column < 8; column++) {
5762 				printf("0x%x sblock.fs_opostbl[%d][%d]\n",
5763 				    sblock.fs_opostbl[row][column],
5764 				    row, column);
5765 			}
5766 		}
5767 
5768 		/*
5769 		 * Ditto the size of sparecon.
5770 		 */
5771 		for (row = 0; row < 51; row++) {
5772 			printf("0x%x sblock.fs_sparecon[%d]\n",
5773 			    sblock.fs_sparecon[row], row);
5774 		}
5775 
5776 		printf("0x%x sblock.fs_version\n", sblock.fs_version);
5777 		printf("0x%x sblock.fs_logbno\n", sblock.fs_logbno);
5778 		printf("0x%x sblock.fs_reclaim\n", sblock.fs_reclaim);
5779 		printf("0x%x sblock.fs_sparecon2\n", sblock.fs_sparecon2);
5780 #ifdef _LITTLE_ENDIAN
5781 		printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5782 #else
5783 		printf("0x%x sblock.fs_state\n", sblock.fs_state);
5784 #endif
5785 		printf("0x%llx sblock.fs_qbmask\n", sblock.fs_qbmask);
5786 		printf("0x%llx sblock.fs_qfmask\n", sblock.fs_qfmask);
5787 		printf("0x%x sblock.fs_postblformat\n", sblock.fs_postblformat);
5788 		printf("0x%x sblock.fs_nrpos\n", sblock.fs_nrpos);
5789 		printf("0x%x sblock.fs_postbloff\n", sblock.fs_postbloff);
5790 		printf("0x%x sblock.fs_rotbloff\n", sblock.fs_rotbloff);
5791 		printf("0x%x sblock.fs_magic\n", sblock.fs_magic);
5792 
5793 		/*
5794 		 * fs_space isn't of much use in this context, so we'll
5795 		 * just ignore it for now.
5796 		 */
5797 	}
5798 }
5799