xref: /illumos-gate/usr/src/cmd/acct/acctprc.c (revision 2a8bcb4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 /*
32  *      acctprc
33  *      reads std. input (acct.h format),
34  *      writes std. output (tacct format)
35  *      sorted by uid
36  *      adds login names
37  */
38 
39 #include <stdio.h>
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include "acctdef.h"
43 #include <sys/acct.h>
44 #include <string.h>
45 #include <search.h>
46 #include <stdlib.h>
47 
48 struct  acct    ab;
49 struct  ptmp    pb;
50 struct  tacct   tb;
51 
52 struct  utab    {
53         uid_t   ut_uid;
54         char    ut_name[NSZ];
55         float   ut_cpu[2];      /* cpu time (mins) */
56         float   ut_kcore[2];    /* kcore-mins */
57         long    ut_pc;          /* # processes */
58 } * ub;
59 static int usize;
60 void **root = NULL;
61 
62 void output(void);
63 void enter(struct ptmp *);
64 
65 int
main(int argc,char ** argv)66 main(int argc, char **argv)
67 {
68 	long		elaps[2];
69 	ulong_t		etime, stime;
70 	unsigned long	mem;
71 #ifdef uts
72 	float   expand();
73 #else
74 	ulong_t expand();
75 #endif
76 
77         while (fread(&ab, sizeof(ab), 1, stdin) == 1) {
78                 if (!MYKIND(ab.ac_flag))
79                         continue;
80                 pb.pt_uid = ab.ac_uid;
81                 CPYN(pb.pt_name, NULL);
82                 /*
83                  * approximate cpu P/NP split as same as elapsed time
84                  */
85                 if ((etime = SECS(expand(ab.ac_etime))) == 0)
86                         etime = 1;
87                 stime = expand(ab.ac_stime) + expand(ab.ac_utime);
88                 mem = expand(ab.ac_mem);
89                 if(pnpsplit(ab.ac_btime, etime, elaps) == 0) {
90 			fprintf(stderr, "acctprc: could not calculate prime/non-prime hours\n");
91 
92 			exit(1);
93 		}
94                 pb.pt_cpu[0] = (double)stime * (double)elaps[0] / etime;
95                 pb.pt_cpu[1] = (stime > pb.pt_cpu[0])? stime - pb.pt_cpu[0] : 0;
96                 pb.pt_cpu[1] = stime - pb.pt_cpu[0];
97                 if (stime)
98                         pb.pt_mem = (mem + stime - 1) / stime;
99                 else
100                         pb.pt_mem = 0;  /* unlikely */
101                 enter(&pb);
102         }
103         output();
104 	exit(0);
105 }
106 
node_compare(const void * node1,const void * node2)107 int node_compare(const void *node1, const void *node2)
108 {
109 	if (((const struct utab *)node1)->ut_uid > \
110 		((const struct utab *)node2)->ut_uid)
111 		return(1);
112 	else if (((const struct utab *)node1)->ut_uid < \
113 		((const struct utab *)node2)->ut_uid)
114 		return(-1);
115 	else	return(0);
116 }
117 
118 void
enter(struct ptmp * p)119 enter(struct ptmp *p)
120 {
121         double memk;
122         struct utab **pt;
123 
124 	if ((ub = (struct utab *)malloc(sizeof (struct utab))) == NULL) {
125 		fprintf(stderr, "acctprc: malloc fail!\n");
126 		exit(2);
127 	}
128 
129         ub->ut_uid = p->pt_uid;
130         CPYN(ub->ut_name, p->pt_name);
131         ub->ut_cpu[0] = MINT(p->pt_cpu[0]);
132         ub->ut_cpu[1] = MINT(p->pt_cpu[1]);
133         memk = KCORE(pb.pt_mem);
134         ub->ut_kcore[0] = memk * MINT(p->pt_cpu[0]);
135         ub->ut_kcore[1] = memk * MINT(p->pt_cpu[1]);
136         ub->ut_pc = 1;
137 
138         if (*(pt = (struct utab **)tsearch((void *)ub, (void **)&root,  \
139                 node_compare)) == NULL) {
140                 fprintf(stderr, "Not enough space available to build tree\n");
141                 exit(1);
142 	}
143 
144 	if (*pt != ub) {
145         	(*pt)->ut_cpu[0] += MINT(p->pt_cpu[0]);
146         	(*pt)->ut_cpu[1] += MINT(p->pt_cpu[1]);
147         	(*pt)->ut_kcore[0] += memk * MINT(p->pt_cpu[0]);
148         	(*pt)->ut_kcore[1] += memk * MINT(p->pt_cpu[1]);
149 		(*pt)->ut_pc++;
150 		free(ub);
151         }
152 }
153 
print_node(const void * node,VISIT order,int level)154 void print_node(const void *node, VISIT order, int level) {
155 
156 	if (order == postorder || order == leaf) {
157 		tb.ta_uid = (*(struct utab **)node)->ut_uid;
158 		CPYN(tb.ta_name, (char *)uidtonam((*(struct utab **)node)->ut_uid));
159 		tb.ta_cpu[0] = (*(struct utab **)node)->ut_cpu[0];
160 		tb.ta_cpu[1] = (*(struct utab **)node)->ut_cpu[1];
161                 tb.ta_kcore[0] = (*(struct utab **)node)->ut_kcore[0];
162                 tb.ta_kcore[1] = (*(struct utab **)node)->ut_kcore[1];
163                 tb.ta_pc = (*(struct utab **)node)->ut_pc;
164                 fwrite(&tb, sizeof(tb), 1, stdout);
165 	}
166 }
167 
168 void
output(void)169 output(void)
170 {
171                 twalk((struct utab *)root, print_node);
172 }
173