1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright 2019 Joyent, Inc.
26  */
27 
28 #include <assert.h>
29 #include <stddef.h>
30 #include <strings.h>
31 #include <libuutil.h>
32 #include <libzfs.h>
33 #include <fm/fmd_api.h>
34 #include <fm/libtopo.h>
35 #include <sys/types.h>
36 #include <sys/time.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/fs/zfs.h>
40 
41 /*
42  * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io,probe}'.
43  * This #define reserves enough space for two 64-bit hex values plus the length
44  * of the longest string.
45  */
46 #define	MAX_SERDLEN	(16 * 2 + sizeof ("zfs___checksum"))
47 
48 /*
49  * On-disk case structure.  This must maintain backwards compatibility with
50  * previous versions of the DE.  By default, any members appended to the end
51  * will be filled with zeros if they don't exist in a previous version.
52  */
53 typedef struct zfs_case_data {
54 	uint64_t	zc_version;
55 	uint64_t	zc_ena;
56 	uint64_t	zc_pool_guid;
57 	uint64_t	zc_vdev_guid;
58 	int		zc_has_timer;		/* defunct */
59 	int		zc_pool_state;
60 	char		zc_serd_checksum[MAX_SERDLEN];
61 	char		zc_serd_io[MAX_SERDLEN];
62 	int		zc_has_remove_timer;
63 	char		zc_serd_probe[MAX_SERDLEN];
64 } zfs_case_data_t;
65 
66 /*
67  * Time-of-day
68  */
69 typedef struct er_timeval {
70 	uint64_t	ertv_sec;
71 	uint64_t	ertv_nsec;
72 } er_timeval_t;
73 
74 /*
75  * In-core case structure.
76  */
77 typedef struct zfs_case {
78 	boolean_t	zc_present;
79 	uint32_t	zc_version;
80 	zfs_case_data_t	zc_data;
81 	fmd_case_t	*zc_case;
82 	uu_list_node_t	zc_node;
83 	id_t		zc_remove_timer;
84 	char		*zc_fru;
85 	er_timeval_t	zc_when;
86 } zfs_case_t;
87 
88 #define	CASE_DATA			"data"
89 #define	CASE_FRU			"fru"
90 #define	CASE_DATA_VERSION_INITIAL	1
91 #define	CASE_DATA_VERSION_SERD		2
92 
93 /* The length of the maximum uint64 rendered as a decimal string. */
94 #define	MAX_ULL_STR 21
95 
96 typedef struct zfs_de_stats {
97 	fmd_stat_t	old_drops;
98 	fmd_stat_t	dev_drops;
99 	fmd_stat_t	vdev_drops;
100 	fmd_stat_t	import_drops;
101 	fmd_stat_t	resource_drops;
102 	fmd_stat_t	pool_drops;
103 } zfs_de_stats_t;
104 
105 zfs_de_stats_t zfs_stats = {
106 	{ "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" },
107 	{ "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"},
108 	{ "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"},
109 	{ "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" },
110 	{ "resource_drops", FMD_TYPE_UINT64, "resource related ereports" },
111 	{ "pool_drops", FMD_TYPE_UINT64, "ereports dropped (pool iter failed)"},
112 };
113 
114 static hrtime_t zfs_remove_timeout;
115 
116 uu_list_pool_t *zfs_case_pool;
117 uu_list_t *zfs_cases;
118 
119 #define	ZFS_MAKE_RSRC(type)	\
120     FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
121 #define	ZFS_MAKE_EREPORT(type)	\
122     FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
123 
124 /*
125  * Write out the persistent representation of an active case.
126  */
127 static void
zfs_case_serialize(fmd_hdl_t * hdl,zfs_case_t * zcp)128 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp)
129 {
130 	/*
131 	 * Always update cases to the latest version, even if they were the
132 	 * previous version when unserialized.
133 	 */
134 	zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
135 	fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data,
136 	    sizeof (zcp->zc_data));
137 
138 	if (zcp->zc_fru != NULL)
139 		fmd_buf_write(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
140 		    strlen(zcp->zc_fru));
141 }
142 
143 /*
144  * Read back the persistent representation of an active case.
145  */
146 static zfs_case_t *
zfs_case_unserialize(fmd_hdl_t * hdl,fmd_case_t * cp)147 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
148 {
149 	zfs_case_t *zcp;
150 	size_t frulen;
151 
152 	zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
153 	zcp->zc_case = cp;
154 
155 	fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
156 	    sizeof (zcp->zc_data));
157 
158 	if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
159 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
160 		return (NULL);
161 	}
162 
163 	if ((frulen = fmd_buf_size(hdl, zcp->zc_case, CASE_FRU)) > 0) {
164 		zcp->zc_fru = fmd_hdl_alloc(hdl, frulen + 1, FMD_SLEEP);
165 		fmd_buf_read(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
166 		    frulen);
167 		zcp->zc_fru[frulen] = '\0';
168 	}
169 
170 	/*
171 	 * fmd_buf_read() will have already zeroed out the remainder of the
172 	 * buffer, so we don't have to do anything special if the version
173 	 * doesn't include the SERD engine name.
174 	 */
175 
176 	if (zcp->zc_data.zc_has_remove_timer)
177 		zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
178 		    NULL, zfs_remove_timeout);
179 
180 	(void) uu_list_insert_before(zfs_cases, NULL, zcp);
181 
182 	fmd_case_setspecific(hdl, cp, zcp);
183 
184 	return (zcp);
185 }
186 
187 /*
188  * Iterate over any active cases.  If any cases are associated with a pool or
189  * vdev which is no longer present on the system, close the associated case.
190  */
191 static void
zfs_mark_vdev(uint64_t pool_guid,nvlist_t * vd,er_timeval_t * loaded)192 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded)
193 {
194 	uint64_t vdev_guid;
195 	uint_t c, children;
196 	nvlist_t **child;
197 	zfs_case_t *zcp;
198 	int ret;
199 
200 	ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
201 	assert(ret == 0);
202 
203 	/*
204 	 * Mark any cases associated with this (pool, vdev) pair.
205 	 */
206 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
207 	    zcp = uu_list_next(zfs_cases, zcp)) {
208 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
209 		    zcp->zc_data.zc_vdev_guid == vdev_guid) {
210 			zcp->zc_present = B_TRUE;
211 			zcp->zc_when = *loaded;
212 		}
213 	}
214 
215 	/*
216 	 * Iterate over all children.
217 	 */
218 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
219 	    &children) == 0) {
220 		for (c = 0; c < children; c++)
221 			zfs_mark_vdev(pool_guid, child[c], loaded);
222 	}
223 
224 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
225 	    &children) == 0) {
226 		for (c = 0; c < children; c++)
227 			zfs_mark_vdev(pool_guid, child[c], loaded);
228 	}
229 
230 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
231 	    &children) == 0) {
232 		for (c = 0; c < children; c++)
233 			zfs_mark_vdev(pool_guid, child[c], loaded);
234 	}
235 }
236 
237 /*ARGSUSED*/
238 static int
zfs_mark_pool(zpool_handle_t * zhp,void * unused)239 zfs_mark_pool(zpool_handle_t *zhp, void *unused)
240 {
241 	zfs_case_t *zcp;
242 	uint64_t pool_guid;
243 	uint64_t *tod;
244 	er_timeval_t loaded = { 0 };
245 	nvlist_t *config, *vd;
246 	uint_t nelem = 0;
247 	int ret;
248 
249 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
250 	/*
251 	 * Mark any cases associated with just this pool.
252 	 */
253 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
254 	    zcp = uu_list_next(zfs_cases, zcp)) {
255 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
256 		    zcp->zc_data.zc_vdev_guid == 0)
257 			zcp->zc_present = B_TRUE;
258 	}
259 
260 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
261 		zpool_close(zhp);
262 		return (-1);
263 	}
264 
265 	(void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
266 	    &tod, &nelem);
267 	if (nelem == 2) {
268 		loaded.ertv_sec = tod[0];
269 		loaded.ertv_nsec = tod[1];
270 		for (zcp = uu_list_first(zfs_cases); zcp != NULL;
271 		    zcp = uu_list_next(zfs_cases, zcp)) {
272 			if (zcp->zc_data.zc_pool_guid == pool_guid &&
273 			    zcp->zc_data.zc_vdev_guid == 0) {
274 				zcp->zc_when = loaded;
275 			}
276 		}
277 	}
278 
279 	ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
280 	assert(ret == 0);
281 
282 	zfs_mark_vdev(pool_guid, vd, &loaded);
283 
284 	zpool_close(zhp);
285 
286 	return (0);
287 }
288 
289 /*
290  * Find a pool with a matching GUID.
291  */
292 typedef struct find_cbdata {
293 	uint64_t	cb_guid;
294 	zpool_handle_t	*cb_zhp;
295 } find_cbdata_t;
296 
297 static int
find_pool(zpool_handle_t * zhp,void * data)298 find_pool(zpool_handle_t *zhp, void *data)
299 {
300 	find_cbdata_t *cbp = data;
301 
302 	if (cbp->cb_guid ==
303 	    zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
304 		cbp->cb_zhp = zhp;
305 		return (0);
306 	}
307 
308 	zpool_close(zhp);
309 	return (0);
310 }
311 
312 struct load_time_arg {
313 	uint64_t lt_guid;
314 	er_timeval_t *lt_time;
315 	boolean_t lt_found;
316 };
317 
318 static int
zpool_find_load_time(zpool_handle_t * zhp,void * arg)319 zpool_find_load_time(zpool_handle_t *zhp, void *arg)
320 {
321 	struct load_time_arg *lta = arg;
322 	uint64_t pool_guid;
323 	uint64_t *tod;
324 	nvlist_t *config;
325 	uint_t nelem;
326 
327 	if (lta->lt_found) {
328 		zpool_close(zhp);
329 		return (0);
330 	}
331 
332 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
333 	if (pool_guid != lta->lt_guid) {
334 		zpool_close(zhp);
335 		return (0);
336 	}
337 
338 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
339 		zpool_close(zhp);
340 		return (-1);
341 	}
342 
343 	if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
344 	    &tod, &nelem) == 0 && nelem == 2) {
345 		lta->lt_found = B_TRUE;
346 		lta->lt_time->ertv_sec = tod[0];
347 		lta->lt_time->ertv_nsec = tod[1];
348 	}
349 
350 	zpool_close(zhp);
351 
352 	return (0);
353 }
354 
355 static void
zfs_purge_cases(fmd_hdl_t * hdl)356 zfs_purge_cases(fmd_hdl_t *hdl)
357 {
358 	zfs_case_t *zcp;
359 	uu_list_walk_t *walk;
360 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
361 
362 	/*
363 	 * There is no way to open a pool by GUID, or lookup a vdev by GUID.  No
364 	 * matter what we do, we're going to have to stomach a O(vdevs * cases)
365 	 * algorithm.  In reality, both quantities are likely so small that
366 	 * neither will matter. Given that iterating over pools is more
367 	 * expensive than iterating over the in-memory case list, we opt for a
368 	 * 'present' flag in each case that starts off cleared.  We then iterate
369 	 * over all pools, marking those that are still present, and removing
370 	 * those that aren't found.
371 	 *
372 	 * Note that we could also construct an FMRI and rely on
373 	 * fmd_nvl_fmri_present(), but this would end up doing the same search.
374 	 */
375 
376 	/*
377 	 * Mark the cases an not present.
378 	 */
379 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
380 	    zcp = uu_list_next(zfs_cases, zcp))
381 		zcp->zc_present = B_FALSE;
382 
383 	/*
384 	 * Iterate over all pools and mark the pools and vdevs found.  If this
385 	 * fails (most probably because we're out of memory), then don't close
386 	 * any of the cases and we cannot be sure they are accurate.
387 	 */
388 	if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
389 		return;
390 
391 	/*
392 	 * Remove those cases which were not found.
393 	 */
394 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
395 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
396 		if (!zcp->zc_present)
397 			fmd_case_close(hdl, zcp->zc_case);
398 	}
399 	uu_list_walk_end(walk);
400 }
401 
402 /*
403  * Construct the name of a serd engine given the pool/vdev GUID and type (io,
404  * checksum, or probe).
405  */
406 static void
zfs_serd_name(char * buf,uint64_t pool_guid,uint64_t vdev_guid,const char * type)407 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
408     const char *type)
409 {
410 	(void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid,
411 	    vdev_guid, type);
412 }
413 
414 /*
415  * Solve a given ZFS case.  This first checks to make sure the diagnosis is
416  * still valid, as well as cleaning up any pending timer associated with the
417  * case.
418  */
419 static void
zfs_case_solve(fmd_hdl_t * hdl,zfs_case_t * zcp,const char * faultname,boolean_t checkunusable)420 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname,
421     boolean_t checkunusable)
422 {
423 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
424 	nvlist_t *detector, *fault;
425 	boolean_t serialize;
426 	nvlist_t *fmri, *fru;
427 	topo_hdl_t *thp;
428 	int err;
429 
430 	/*
431 	 * Construct the detector from the case data.  The detector is in the
432 	 * ZFS scheme, and is either the pool or the vdev, depending on whether
433 	 * this is a vdev or pool fault.
434 	 */
435 	detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
436 
437 	(void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
438 	(void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
439 	(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
440 	    zcp->zc_data.zc_pool_guid);
441 	if (zcp->zc_data.zc_vdev_guid != 0) {
442 		(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
443 		    zcp->zc_data.zc_vdev_guid);
444 	}
445 
446 	/*
447 	 * We also want to make sure that the detector (pool or vdev) properly
448 	 * reflects the diagnosed state, when the fault corresponds to internal
449 	 * ZFS state (i.e. not checksum or I/O error-induced).  Otherwise, a
450 	 * device which was unavailable early in boot (because the driver/file
451 	 * wasn't available) and is now healthy will be mis-diagnosed.
452 	 */
453 	if (!fmd_nvl_fmri_present(hdl, detector) ||
454 	    (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) {
455 		fmd_case_close(hdl, zcp->zc_case);
456 		nvlist_free(detector);
457 		return;
458 	}
459 
460 
461 	fru = NULL;
462 	if (zcp->zc_fru != NULL &&
463 	    (thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION)) != NULL) {
464 		/*
465 		 * If the vdev had an associated FRU, then get the FRU nvlist
466 		 * from the topo handle and use that in the suspect list.  We
467 		 * explicitly lookup the FRU because the fmri reported from the
468 		 * kernel may not have up to date details about the disk itself
469 		 * (serial, part, etc).
470 		 */
471 		if (topo_fmri_str2nvl(thp, zcp->zc_fru, &fmri, &err) == 0) {
472 			/*
473 			 * If the disk is part of the system chassis, but the
474 			 * FRU indicates a different chassis ID than our
475 			 * current system, then ignore the error.  This
476 			 * indicates that the device was part of another
477 			 * cluster head, and for obvious reasons cannot be
478 			 * imported on this system.
479 			 */
480 			if (libzfs_fru_notself(zhdl, zcp->zc_fru)) {
481 				fmd_case_close(hdl, zcp->zc_case);
482 				nvlist_free(fmri);
483 				fmd_hdl_topo_rele(hdl, thp);
484 				nvlist_free(detector);
485 				return;
486 			}
487 
488 			/*
489 			 * If the device is no longer present on the system, or
490 			 * topo_fmri_fru() fails for other reasons, then fall
491 			 * back to the fmri specified in the vdev.
492 			 */
493 			if (topo_fmri_fru(thp, fmri, &fru, &err) != 0)
494 				fru = fmd_nvl_dup(hdl, fmri, FMD_SLEEP);
495 			nvlist_free(fmri);
496 		}
497 
498 		fmd_hdl_topo_rele(hdl, thp);
499 	}
500 
501 	fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
502 	    fru, detector);
503 	fmd_case_add_suspect(hdl, zcp->zc_case, fault);
504 
505 	nvlist_free(fru);
506 
507 	fmd_case_solve(hdl, zcp->zc_case);
508 
509 	serialize = B_FALSE;
510 	if (zcp->zc_data.zc_has_remove_timer) {
511 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
512 		zcp->zc_data.zc_has_remove_timer = 0;
513 		serialize = B_TRUE;
514 	}
515 	if (serialize)
516 		zfs_case_serialize(hdl, zcp);
517 
518 	nvlist_free(detector);
519 }
520 
521 /*
522  * This #define and function access a private interface of the FMA
523  * framework.  Ereports include a time-of-day upper bound.
524  * We want to look at that so we can compare it to when pools get
525  * loaded.
526  */
527 #define	FMD_EVN_TOD	"__tod"
528 
529 static boolean_t
timeval_earlier(er_timeval_t * a,er_timeval_t * b)530 timeval_earlier(er_timeval_t *a, er_timeval_t *b)
531 {
532 	return (a->ertv_sec < b->ertv_sec ||
533 	    (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec));
534 }
535 
536 /*ARGSUSED*/
537 static void
zfs_ereport_when(fmd_hdl_t * hdl,nvlist_t * nvl,er_timeval_t * when)538 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when)
539 {
540 	uint64_t *tod;
541 	uint_t	nelem;
542 
543 	if (nvlist_lookup_uint64_array(nvl, FMD_EVN_TOD, &tod, &nelem) == 0 &&
544 	    nelem == 2) {
545 		when->ertv_sec = tod[0];
546 		when->ertv_nsec = tod[1];
547 	} else {
548 		when->ertv_sec = when->ertv_nsec = UINT64_MAX;
549 	}
550 }
551 
552 /*
553  * Main fmd entry point.
554  */
555 /*ARGSUSED*/
556 static void
zfs_fm_recv(fmd_hdl_t * hdl,fmd_event_t * ep,nvlist_t * nvl,const char * class)557 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
558 {
559 	zfs_case_t *zcp, *dcp;
560 	libzfs_handle_t *zhdl;
561 	zpool_handle_t *zhp;
562 
563 	int32_t pool_state;
564 	uint64_t ena, pool_guid, vdev_guid;
565 	er_timeval_t pool_load;
566 	er_timeval_t er_when;
567 	nvlist_t *detector;
568 	boolean_t pool_found = B_FALSE;
569 	boolean_t isresource;
570 	boolean_t is_inactive_spare, islog, iscache;
571 	nvlist_t *vd_nvl = NULL;
572 	char *fru, *type, *vdg;
573 	find_cbdata_t cb;
574 
575 	/*
576 	 * We subscribe to notifications for vdev or pool removal.  In these
577 	 * cases, there may be cases that no longer apply.  Purge any cases
578 	 * that no longer apply.
579 	 */
580 	if (fmd_nvl_class_match(hdl, nvl, "resource.sysevent.EC_zfs.*")) {
581 		zfs_purge_cases(hdl);
582 		zfs_stats.resource_drops.fmds_value.ui64++;
583 		return;
584 	}
585 
586 	isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
587 
588 	if (isresource) {
589 		/*
590 		 * For resources, we don't have a normal payload.
591 		 */
592 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
593 		    &vdev_guid) != 0)
594 			pool_state = SPA_LOAD_OPEN;
595 		else
596 			pool_state = SPA_LOAD_NONE;
597 		detector = NULL;
598 	} else {
599 		(void) nvlist_lookup_nvlist(nvl,
600 		    FM_EREPORT_DETECTOR, &detector);
601 		(void) nvlist_lookup_int32(nvl,
602 		    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
603 	}
604 
605 	/*
606 	 * We also ignore all ereports generated during an import of a pool,
607 	 * since the only possible fault (.pool) would result in import failure,
608 	 * and hence no persistent fault.  Some day we may want to do something
609 	 * with these ereports, so we continue generating them internally.
610 	 */
611 	if (pool_state == SPA_LOAD_IMPORT) {
612 		zfs_stats.import_drops.fmds_value.ui64++;
613 		return;
614 	}
615 
616 	/*
617 	 * Device I/O errors are ignored during pool open.
618 	 */
619 	if (pool_state == SPA_LOAD_OPEN &&
620 	    (fmd_nvl_class_match(hdl, nvl,
621 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
622 	    fmd_nvl_class_match(hdl, nvl,
623 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
624 	    fmd_nvl_class_match(hdl, nvl,
625 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) {
626 		zfs_stats.dev_drops.fmds_value.ui64++;
627 		return;
628 	}
629 
630 	/*
631 	 * We ignore ereports for anything except disks and files.
632 	 */
633 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
634 	    &type) == 0) {
635 		if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
636 		    strcmp(type, VDEV_TYPE_FILE) != 0) {
637 			zfs_stats.vdev_drops.fmds_value.ui64++;
638 			return;
639 		}
640 	}
641 
642 	/*
643 	 * Determine if this ereport corresponds to an open case.  Previous
644 	 * incarnations of this DE used the ENA to chain events together as
645 	 * part of the same case.  The problem with this is that we rely on
646 	 * global uniqueness of cases based on (pool_guid, vdev_guid) pair when
647 	 * generating SERD engines.  Instead, we have a case for each vdev or
648 	 * pool, regardless of the ENA.
649 	 */
650 	(void) nvlist_lookup_uint64(nvl,
651 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
652 	if (nvlist_lookup_uint64(nvl,
653 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
654 		vdev_guid = 0;
655 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
656 		ena = 0;
657 
658 	zfs_ereport_when(hdl, nvl, &er_when);
659 
660 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
661 	    zcp = uu_list_next(zfs_cases, zcp)) {
662 		if (zcp->zc_data.zc_pool_guid == pool_guid) {
663 			pool_found = B_TRUE;
664 			pool_load = zcp->zc_when;
665 		}
666 		if (zcp->zc_data.zc_vdev_guid == vdev_guid &&
667 		    zcp->zc_data.zc_pool_guid == pool_guid)
668 			break;
669 	}
670 
671 	if (pool_found) {
672 		fmd_hdl_debug(hdl, "pool %llx, "
673 		    "ereport time %lld.%lld, pool load time = %lld.%lld\n",
674 		    pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
675 		    pool_load.ertv_sec, pool_load.ertv_nsec);
676 	}
677 
678 	/*
679 	 * Avoid falsely accusing a pool of being faulty.  Do so by
680 	 * not replaying ereports that were generated prior to the
681 	 * current import.  If the failure that generated them was
682 	 * transient because the device was actually removed but we
683 	 * didn't receive the normal asynchronous notification, we
684 	 * don't want to mark it as faulted and potentially panic. If
685 	 * there is still a problem we'd expect not to be able to
686 	 * import the pool, or that new ereports will be generated
687 	 * once the pool is used.
688 	 */
689 	if (pool_found && timeval_earlier(&er_when, &pool_load)) {
690 		zfs_stats.old_drops.fmds_value.ui64++;
691 		return;
692 	}
693 
694 	if (!pool_found) {
695 		/*
696 		 * Haven't yet seen this pool, but same situation
697 		 * may apply.
698 		 */
699 		libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
700 		struct load_time_arg la;
701 
702 		la.lt_guid = pool_guid;
703 		la.lt_time = &pool_load;
704 		la.lt_found = B_FALSE;
705 
706 		if (zhdl != NULL &&
707 		    zpool_iter(zhdl, zpool_find_load_time, &la) == 0 &&
708 		    la.lt_found == B_TRUE) {
709 			pool_found = B_TRUE;
710 			fmd_hdl_debug(hdl, "pool %llx, "
711 			    "ereport time %lld.%lld, "
712 			    "pool load time = %lld.%lld\n",
713 			    pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
714 			    pool_load.ertv_sec, pool_load.ertv_nsec);
715 			if (timeval_earlier(&er_when, &pool_load)) {
716 				zfs_stats.old_drops.fmds_value.ui64++;
717 				return;
718 			}
719 		}
720 	}
721 
722 	if (zcp == NULL) {
723 		fmd_case_t *cs;
724 		zfs_case_data_t data = { 0 };
725 
726 		/*
727 		 * If this is one of our 'fake' resource ereports, and there is
728 		 * no case open, simply discard it.
729 		 */
730 		if (isresource) {
731 			zfs_stats.resource_drops.fmds_value.ui64++;
732 			return;
733 		}
734 
735 		/*
736 		 * Open a new case.
737 		 */
738 		cs = fmd_case_open(hdl, NULL);
739 
740 		/*
741 		 * Initialize the case buffer.  To commonize code, we actually
742 		 * create the buffer with existing data, and then call
743 		 * zfs_case_unserialize() to instantiate the in-core structure.
744 		 */
745 		fmd_buf_create(hdl, cs, CASE_DATA,
746 		    sizeof (zfs_case_data_t));
747 
748 		data.zc_version = CASE_DATA_VERSION_SERD;
749 		data.zc_ena = ena;
750 		data.zc_pool_guid = pool_guid;
751 		data.zc_vdev_guid = vdev_guid;
752 		data.zc_pool_state = (int)pool_state;
753 
754 		fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
755 
756 		zcp = zfs_case_unserialize(hdl, cs);
757 		assert(zcp != NULL);
758 		if (pool_found)
759 			zcp->zc_when = pool_load;
760 	}
761 
762 
763 	/*
764 	 * If this is an ereport for a case with an associated vdev FRU, make
765 	 * sure it is accurate and up to date.
766 	 */
767 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
768 	    &fru) == 0) {
769 		topo_hdl_t *thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
770 		if (zcp->zc_fru == NULL ||
771 		    !topo_fmri_strcmp(thp, zcp->zc_fru, fru)) {
772 			if (zcp->zc_fru != NULL) {
773 				fmd_hdl_strfree(hdl, zcp->zc_fru);
774 				fmd_buf_destroy(hdl, zcp->zc_case, CASE_FRU);
775 			}
776 			zcp->zc_fru = fmd_hdl_strdup(hdl, fru, FMD_SLEEP);
777 			zfs_case_serialize(hdl, zcp);
778 		}
779 		fmd_hdl_topo_rele(hdl, thp);
780 	}
781 
782 	if (isresource) {
783 		if (fmd_nvl_class_match(hdl, nvl,
784 		    ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
785 			/*
786 			 * The 'resource.fs.zfs.autoreplace' event indicates
787 			 * that the pool was loaded with the 'autoreplace'
788 			 * property set.  In this case, any pending device
789 			 * failures should be ignored, as the asynchronous
790 			 * autoreplace handling will take care of them.
791 			 */
792 			fmd_case_close(hdl, zcp->zc_case);
793 		} else if (fmd_nvl_class_match(hdl, nvl,
794 		    ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
795 			/*
796 			 * The 'resource.fs.zfs.removed' event indicates that
797 			 * device removal was detected, and the device was
798 			 * closed asynchronously.  If this is the case, we
799 			 * assume that any recent I/O errors were due to the
800 			 * device removal, not any fault of the device itself.
801 			 * We reset the SERD engine, and cancel any pending
802 			 * timers.
803 			 */
804 			if (zcp->zc_data.zc_has_remove_timer) {
805 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
806 				zcp->zc_data.zc_has_remove_timer = 0;
807 				zfs_case_serialize(hdl, zcp);
808 			}
809 			if (zcp->zc_data.zc_serd_io[0] != '\0')
810 				fmd_serd_reset(hdl,
811 				    zcp->zc_data.zc_serd_io);
812 			if (zcp->zc_data.zc_serd_checksum[0] != '\0')
813 				fmd_serd_reset(hdl,
814 				    zcp->zc_data.zc_serd_checksum);
815 			if (zcp->zc_data.zc_serd_probe[0] != '\0')
816 				fmd_serd_reset(hdl, zcp->zc_data.zc_serd_probe);
817 		}
818 		zfs_stats.resource_drops.fmds_value.ui64++;
819 		return;
820 	}
821 
822 	/*
823 	 * Associate the ereport with this case.
824 	 */
825 	fmd_case_add_ereport(hdl, zcp->zc_case, ep);
826 
827 	/*
828 	 * Don't do anything else if this case is already solved.
829 	 */
830 	if (fmd_case_solved(hdl, zcp->zc_case))
831 		return;
832 
833 	zhdl = fmd_hdl_getspecific(hdl);
834 
835 	/*
836 	 * Find the corresponding pool.
837 	 */
838 	cb.cb_guid = pool_guid;
839 	cb.cb_zhp = NULL;
840 	if (zhdl != NULL && zpool_iter(zhdl, find_pool, &cb) != 0) {
841 		zfs_stats.pool_drops.fmds_value.ui64++;
842 		return;
843 	}
844 
845 	zhp = cb.cb_zhp; /* NULL if pool was not found. */
846 	if (zhp != NULL) {
847 		/*
848 		 * The libzfs API takes a string representation of a base-10
849 		 * guid here instead of a number, likely because the primary
850 		 * libzfs consumers are the CLI tools.
851 		 */
852 		vdg = fmd_hdl_zalloc(hdl, MAX_ULL_STR, FMD_SLEEP);
853 		(void) snprintf(vdg, MAX_ULL_STR, "%" PRIx64, vdev_guid);
854 
855 		/*
856 		 * According to libzfs the 'spare' bit is set when the spare is
857 		 * unused, and unset when in use.
858 		 *
859 		 * We don't really care about the returned nvlist. We're only
860 		 * interested in the boolean flags.
861 		 */
862 		if ((vd_nvl = zpool_find_vdev(zhp, vdg,
863 		    &is_inactive_spare, &islog, &iscache)) != NULL) {
864 			nvlist_free(vd_nvl);
865 		}
866 		fmd_hdl_free(hdl, vdg, MAX_ULL_STR);
867 	}
868 
869 	/*
870 	 * Determine if we should solve the case and generate a fault.  We solve
871 	 * a case if:
872 	 *
873 	 *	a. A pool failed to open (ereport.fs.zfs.pool)
874 	 *	b. A device failed to open (ereport.fs.zfs.pool) while a pool
875 	 *	   was up and running.
876 	 *
877 	 * We may see a series of ereports associated with a pool open, all
878 	 * chained together by the same ENA.  If the pool open succeeds, then
879 	 * we'll see no further ereports.  To detect when a pool open has
880 	 * succeeded, we associate a timer with the event.  When it expires, we
881 	 * close the case.
882 	 */
883 	if (fmd_nvl_class_match(hdl, nvl,
884 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
885 		/*
886 		 * Pool level fault.  Before solving the case, go through and
887 		 * close any open device cases that may be pending.
888 		 */
889 		for (dcp = uu_list_first(zfs_cases); dcp != NULL;
890 		    dcp = uu_list_next(zfs_cases, dcp)) {
891 			if (dcp->zc_data.zc_pool_guid ==
892 			    zcp->zc_data.zc_pool_guid &&
893 			    dcp->zc_data.zc_vdev_guid != 0)
894 				fmd_case_close(hdl, dcp->zc_case);
895 		}
896 
897 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE);
898 	} else if (fmd_nvl_class_match(hdl, nvl,
899 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
900 		/*
901 		 * Pool level fault for reading the intent logs.
902 		 */
903 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE);
904 	} else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
905 		/*
906 		 * Device fault.
907 		 */
908 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.device",  B_TRUE);
909 	} else if (fmd_nvl_class_match(hdl, nvl,
910 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
911 	    fmd_nvl_class_match(hdl, nvl,
912 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
913 	    fmd_nvl_class_match(hdl, nvl,
914 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
915 	    fmd_nvl_class_match(hdl, nvl,
916 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
917 		char *failmode = NULL;
918 		boolean_t checkremove = B_FALSE;
919 
920 		/*
921 		 * If this is a checksum, I/O, or probe error, then toss it into
922 		 * the appropriate SERD engine and check to see if it has fired.
923 		 * Ideally, we want to do something more sophisticated,
924 		 * (persistent errors for a single data block, etc).  For now,
925 		 * a single SERD engine is sufficient.
926 		 */
927 		if (fmd_nvl_class_match(hdl, nvl,
928 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
929 			if (zcp->zc_data.zc_serd_io[0] == '\0') {
930 				zfs_serd_name(zcp->zc_data.zc_serd_io,
931 				    pool_guid, vdev_guid, "io");
932 				fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
933 				    fmd_prop_get_int32(hdl, "io_N"),
934 				    fmd_prop_get_int64(hdl, "io_T"));
935 				zfs_case_serialize(hdl, zcp);
936 			}
937 			if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
938 				checkremove = B_TRUE;
939 		} else if (fmd_nvl_class_match(hdl, nvl,
940 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
941 			if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
942 				zfs_serd_name(zcp->zc_data.zc_serd_checksum,
943 				    pool_guid, vdev_guid, "checksum");
944 				fmd_serd_create(hdl,
945 				    zcp->zc_data.zc_serd_checksum,
946 				    fmd_prop_get_int32(hdl, "checksum_N"),
947 				    fmd_prop_get_int64(hdl, "checksum_T"));
948 				zfs_case_serialize(hdl, zcp);
949 			}
950 			if (fmd_serd_record(hdl,
951 			    zcp->zc_data.zc_serd_checksum, ep)) {
952 				zfs_case_solve(hdl, zcp,
953 				    "fault.fs.zfs.vdev.checksum", B_FALSE);
954 			}
955 		} else if (fmd_nvl_class_match(hdl, nvl,
956 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
957 		    (nvlist_lookup_string(nvl,
958 		    FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
959 		    failmode != NULL) {
960 			if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
961 			    strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
962 				zfs_case_solve(hdl, zcp,
963 				    "fault.fs.zfs.io_failure_continue",
964 				    B_FALSE);
965 			} else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
966 			    strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
967 				zfs_case_solve(hdl, zcp,
968 				    "fault.fs.zfs.io_failure_wait", B_FALSE);
969 			}
970 		} else if (fmd_nvl_class_match(hdl, nvl,
971 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
972 			if (zcp->zc_data.zc_serd_probe[0] == '\0') {
973 				zfs_serd_name(zcp->zc_data.zc_serd_probe,
974 				    pool_guid, vdev_guid, "probe");
975 				fmd_serd_create(hdl, zcp->zc_data.zc_serd_probe,
976 				    fmd_prop_get_int32(hdl, "probe_N"),
977 				    fmd_prop_get_int64(hdl, "probe_T"));
978 				zfs_case_serialize(hdl, zcp);
979 			}
980 
981 			/*
982 			 * We only want to wait for SERD triggers for spare
983 			 * vdevs. Normal pool vdevs should be diagnosed
984 			 * immediately if a probe failure is received.
985 			 */
986 			if (!is_inactive_spare || fmd_serd_record(hdl,
987 			    zcp->zc_data.zc_serd_probe, ep)) {
988 				checkremove = B_TRUE;
989 			}
990 		}
991 
992 		/*
993 		 * Because I/O errors may be due to device removal, we postpone
994 		 * any diagnosis until we're sure that we aren't about to
995 		 * receive a 'resource.fs.zfs.removed' event.
996 		 */
997 		if (checkremove) {
998 			if (zcp->zc_data.zc_has_remove_timer)
999 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
1000 			zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
1001 			    zfs_remove_timeout);
1002 			if (!zcp->zc_data.zc_has_remove_timer) {
1003 				zcp->zc_data.zc_has_remove_timer = 1;
1004 				zfs_case_serialize(hdl, zcp);
1005 			}
1006 		}
1007 	}
1008 }
1009 
1010 /*
1011  * The timeout is fired when we diagnosed an I/O error, and it was not due to
1012  * device removal (which would cause the timeout to be cancelled).
1013  */
1014 /* ARGSUSED */
1015 static void
zfs_fm_timeout(fmd_hdl_t * hdl,id_t id,void * data)1016 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
1017 {
1018 	zfs_case_t *zcp = data;
1019 
1020 	if (id == zcp->zc_remove_timer)
1021 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE);
1022 }
1023 
1024 static void
zfs_fm_close(fmd_hdl_t * hdl,fmd_case_t * cs)1025 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
1026 {
1027 	zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
1028 
1029 	if (zcp->zc_data.zc_serd_checksum[0] != '\0')
1030 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
1031 	if (zcp->zc_data.zc_serd_io[0] != '\0')
1032 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
1033 	if (zcp->zc_data.zc_serd_probe[0] != '\0')
1034 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_probe);
1035 	if (zcp->zc_data.zc_has_remove_timer)
1036 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
1037 	uu_list_remove(zfs_cases, zcp);
1038 	fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1039 }
1040 
1041 /*
1042  * We use the fmd gc entry point to look for old cases that no longer apply.
1043  * This allows us to keep our set of case data small in a long running system.
1044  */
1045 static void
zfs_fm_gc(fmd_hdl_t * hdl)1046 zfs_fm_gc(fmd_hdl_t *hdl)
1047 {
1048 	zfs_purge_cases(hdl);
1049 }
1050 
1051 static const fmd_hdl_ops_t fmd_ops = {
1052 	zfs_fm_recv,	/* fmdo_recv */
1053 	zfs_fm_timeout,	/* fmdo_timeout */
1054 	zfs_fm_close,	/* fmdo_close */
1055 	NULL,		/* fmdo_stats */
1056 	zfs_fm_gc,	/* fmdo_gc */
1057 };
1058 
1059 static const fmd_prop_t fmd_props[] = {
1060 	{ "checksum_N", FMD_TYPE_UINT32, "10" },
1061 	{ "checksum_T", FMD_TYPE_TIME, "10min" },
1062 	{ "io_N", FMD_TYPE_UINT32, "10" },
1063 	{ "io_T", FMD_TYPE_TIME, "10min" },
1064 	{ "probe_N", FMD_TYPE_UINT32, "5" },
1065 	{ "probe_T", FMD_TYPE_TIME, "24hour" },
1066 	{ "remove_timeout", FMD_TYPE_TIME, "15sec" },
1067 	{ NULL, 0, NULL }
1068 };
1069 
1070 static const fmd_hdl_info_t fmd_info = {
1071 	"ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
1072 };
1073 
1074 void
_fmd_init(fmd_hdl_t * hdl)1075 _fmd_init(fmd_hdl_t *hdl)
1076 {
1077 	fmd_case_t *cp;
1078 	libzfs_handle_t *zhdl;
1079 
1080 	if ((zhdl = libzfs_init()) == NULL)
1081 		return;
1082 
1083 	if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
1084 	    sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
1085 	    NULL, 0)) == NULL) {
1086 		libzfs_fini(zhdl);
1087 		return;
1088 	}
1089 
1090 	if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) {
1091 		uu_list_pool_destroy(zfs_case_pool);
1092 		libzfs_fini(zhdl);
1093 		return;
1094 	}
1095 
1096 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
1097 		uu_list_destroy(zfs_cases);
1098 		uu_list_pool_destroy(zfs_case_pool);
1099 		libzfs_fini(zhdl);
1100 		return;
1101 	}
1102 
1103 	fmd_hdl_setspecific(hdl, zhdl);
1104 
1105 	(void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) /
1106 	    sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats);
1107 
1108 	/*
1109 	 * Iterate over all active cases and unserialize the associated buffers,
1110 	 * adding them to our list of open cases.
1111 	 */
1112 	for (cp = fmd_case_next(hdl, NULL);
1113 	    cp != NULL; cp = fmd_case_next(hdl, cp))
1114 		(void) zfs_case_unserialize(hdl, cp);
1115 
1116 	/*
1117 	 * Clear out any old cases that are no longer valid.
1118 	 */
1119 	zfs_purge_cases(hdl);
1120 
1121 	zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout");
1122 }
1123 
1124 void
_fmd_fini(fmd_hdl_t * hdl)1125 _fmd_fini(fmd_hdl_t *hdl)
1126 {
1127 	zfs_case_t *zcp;
1128 	uu_list_walk_t *walk;
1129 	libzfs_handle_t *zhdl;
1130 
1131 	/*
1132 	 * Remove all active cases.
1133 	 */
1134 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
1135 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
1136 		uu_list_remove(zfs_cases, zcp);
1137 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1138 	}
1139 	uu_list_walk_end(walk);
1140 
1141 	uu_list_destroy(zfs_cases);
1142 	uu_list_pool_destroy(zfs_case_pool);
1143 
1144 	zhdl = fmd_hdl_getspecific(hdl);
1145 	libzfs_fini(zhdl);
1146 }
1147