1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2019 Joyent, Inc.
26  * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2024 Oxide Computer Company
29  */
30 
31 /* This file contains all TCP input processing functions. */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <sys/strsubr.h>
37 #include <sys/stropts.h>
38 #include <sys/strlog.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/suntpi.h>
42 #include <sys/xti_inet.h>
43 #include <sys/squeue_impl.h>
44 #include <sys/squeue.h>
45 #include <sys/tsol/tnet.h>
46 
47 #include <inet/common.h>
48 #include <inet/ip.h>
49 #include <inet/tcp.h>
50 #include <inet/tcp_impl.h>
51 #include <inet/tcp_cluster.h>
52 #include <inet/proto_set.h>
53 #include <inet/ipsec_impl.h>
54 #include <inet/tcp_sig.h>
55 
56 /*
57  * RFC7323-recommended phrasing of TSTAMP option, for easier parsing
58  */
59 
60 #ifdef _BIG_ENDIAN
61 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
62 	(TCPOPT_TSTAMP << 8) | 10)
63 #else
64 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
65 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
66 #endif
67 
68 /*
69  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
70  */
71 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
72 
73 /*
74  * Since tcp_listener is not cleared atomically with tcp_detached
75  * being cleared we need this extra bit to tell a detached connection
76  * apart from one that is in the process of being accepted.
77  */
78 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
79 	(TCP_IS_DETACHED(tcp) &&	\
80 	    (!(tcp)->tcp_hard_binding))
81 
82 /*
83  * Steps to do when a tcp_t moves to TIME-WAIT state.
84  *
85  * This connection is done, we don't need to account for it.  Decrement
86  * the listener connection counter if needed.
87  *
88  * Decrement the connection counter of the stack.  Note that this counter
89  * is per CPU.  So the total number of connections in a stack is the sum of all
90  * of them.  Since there is no lock for handling all of them exclusively, the
91  * resulting sum is only an approximation.
92  *
93  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
94  * connection won't interfere with new ones.
95  *
96  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
97  * the timer is handled within the context of this tcp_t.  When the timer
98  * fires, tcp_clean_death() is called.  If upper layer closes the connection
99  * during this period, tcp_time_wait_append() will be called to add this
100  * tcp_t to the global TIME-WAIT list.  Note that this means that the
101  * actual wait time in TIME-WAIT state will be longer than the
102  * tcps_time_wait_interval since the period before upper layer closes the
103  * connection is not accounted for when tcp_time_wait_append() is called.
104  *
105  * If upper layer has closed the connection, call tcp_time_wait_append()
106  * directly.
107  *
108  */
109 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
110 {								\
111 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
112 	if ((tcp)->tcp_listen_cnt != NULL)			\
113 		TCP_DECR_LISTEN_CNT(tcp);			\
114 	atomic_dec_64(						\
115 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
116 	(connp)->conn_exclbind = 0;				\
117 	if (!TCP_IS_DETACHED(tcp)) {				\
118 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
119 	} else {						\
120 		tcp_time_wait_append(tcp);			\
121 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
122 	}							\
123 }
124 
125 /*
126  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
127  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
128  * data, TCP will not respond with an ACK.  RFC 793 requires that
129  * TCP responds with an ACK for such a bogus ACK.  By not following
130  * the RFC, we prevent TCP from getting into an ACK storm if somehow
131  * an attacker successfully spoofs an acceptable segment to our
132  * peer; or when our peer is "confused."
133  */
134 static uint32_t tcp_drop_ack_unsent_cnt = 10;
135 
136 /*
137  * To protect TCP against attacker using a small window and requesting
138  * large amount of data (DoS attack by conuming memory), TCP checks the
139  * window advertised in the last ACK of the 3-way handshake.  TCP uses
140  * the tcp_mss (the size of one packet) value for comparion.  The window
141  * should be larger than tcp_mss.  But while a sane TCP should advertise
142  * a receive window larger than or equal to 4*MSS to avoid stop and go
143  * tarrfic, not all TCP stacks do that.  This is especially true when
144  * tcp_mss is a big value.
145  *
146  * To work around this issue, an additional fixed value for comparison
147  * is also used.  If the advertised window is smaller than both tcp_mss
148  * and tcp_init_wnd_chk, the ACK is considered as invalid.  So for large
149  * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
150  * smaller than 8K is considered to be OK.
151  */
152 static uint32_t tcp_init_wnd_chk = 4096;
153 
154 /* Process ICMP source quench message or not. */
155 static boolean_t tcp_icmp_source_quench = B_FALSE;
156 
157 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
158 
159 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
160 		    ip_recv_attr_t *);
161 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
162 		    ip_recv_attr_t *);
163 static boolean_t	tcp_drop_q0(tcp_t *);
164 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
165 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
166 		    ip_recv_attr_t *);
167 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
168 static boolean_t tcp_process_options(mblk_t *mp, tcp_t *, tcpha_t *,
169     ip_recv_attr_t *);
170 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
171 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
172 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
173 static void	tcp_set_rto(tcp_t *, hrtime_t);
174 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
175 
176 /*
177  * CC wrapper hook functions
178  */
179 static void
cc_ack_received(tcp_t * tcp,uint32_t seg_ack,int32_t bytes_acked,uint16_t type)180 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked,
181     uint16_t type)
182 {
183 	uint32_t old_cwnd = tcp->tcp_cwnd;
184 
185 	tcp->tcp_ccv.bytes_this_ack = bytes_acked;
186 	if (tcp->tcp_cwnd <= tcp->tcp_swnd)
187 		tcp->tcp_ccv.flags |= CCF_CWND_LIMITED;
188 	else
189 		tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED;
190 
191 	if (type == CC_ACK) {
192 		if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
193 			if (tcp->tcp_ccv.flags & CCF_RTO)
194 				tcp->tcp_ccv.flags &= ~CCF_RTO;
195 
196 			tcp->tcp_ccv.t_bytes_acked +=
197 			    min(tcp->tcp_ccv.bytes_this_ack,
198 			    tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss);
199 			if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) {
200 				tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd;
201 				tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND;
202 			}
203 		} else {
204 			tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND;
205 			tcp->tcp_ccv.t_bytes_acked = 0;
206 		}
207 	}
208 
209 	if (CC_ALGO(tcp)->ack_received != NULL) {
210 		/*
211 		 * The FreeBSD code where this originated had a comment "Find
212 		 * a way to live without this" in several places where curack
213 		 * got set.  If they eventually dump curack from the cc
214 		 * variables, we'll need to adapt our code.
215 		 */
216 		tcp->tcp_ccv.curack = seg_ack;
217 		CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type);
218 	}
219 
220 	DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd,
221 	    uint32_t, tcp->tcp_cwnd);
222 }
223 
224 void
cc_cong_signal(tcp_t * tcp,uint32_t seg_ack,uint32_t type)225 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type)
226 {
227 	uint32_t old_cwnd = tcp->tcp_cwnd;
228 	uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh;
229 	switch (type) {
230 	case CC_NDUPACK:
231 		if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) {
232 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
233 			if (tcp->tcp_ecn_ok) {
234 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
235 				tcp->tcp_cwr = B_TRUE;
236 				tcp->tcp_ecn_cwr_sent = B_FALSE;
237 			}
238 		}
239 		break;
240 	case CC_ECN:
241 		if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) {
242 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
243 			if (tcp->tcp_ecn_ok) {
244 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
245 				tcp->tcp_cwr = B_TRUE;
246 				tcp->tcp_ecn_cwr_sent = B_FALSE;
247 			}
248 		}
249 		break;
250 	case CC_RTO:
251 		tcp->tcp_ccv.flags |= CCF_RTO;
252 		tcp->tcp_dupack_cnt = 0;
253 		tcp->tcp_ccv.t_bytes_acked = 0;
254 		/*
255 		 * Give up on fast recovery and congestion recovery if we were
256 		 * attempting either.
257 		 */
258 		EXIT_RECOVERY(tcp->tcp_ccv.flags);
259 		if (CC_ALGO(tcp)->cong_signal == NULL) {
260 			/*
261 			 * RFC5681 Section 3.1
262 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
263 			 */
264 			tcp->tcp_cwnd_ssthresh = max(
265 			    (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss,
266 			    2) * tcp->tcp_mss;
267 			tcp->tcp_cwnd = tcp->tcp_mss;
268 		}
269 
270 		if (tcp->tcp_ecn_ok) {
271 			tcp->tcp_cwr = B_TRUE;
272 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
273 			tcp->tcp_ecn_cwr_sent = B_FALSE;
274 		}
275 		break;
276 	}
277 
278 	if (CC_ALGO(tcp)->cong_signal != NULL) {
279 		tcp->tcp_ccv.curack = seg_ack;
280 		CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type);
281 	}
282 
283 	DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd,
284 	    uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh,
285 	    uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type);
286 }
287 
288 static void
cc_post_recovery(tcp_t * tcp,uint32_t seg_ack)289 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack)
290 {
291 	uint32_t old_cwnd = tcp->tcp_cwnd;
292 
293 	if (CC_ALGO(tcp)->post_recovery != NULL) {
294 		tcp->tcp_ccv.curack = seg_ack;
295 		CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv);
296 	}
297 	tcp->tcp_ccv.t_bytes_acked = 0;
298 
299 	DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp,
300 	    uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd);
301 }
302 
303 /*
304  * Set the MSS associated with a particular tcp based on its current value,
305  * and a new one passed in. Observe minimums and maximums, and reset other
306  * state variables that we want to view as multiples of MSS.
307  *
308  * The value of MSS could be either increased or descreased.
309  */
310 void
tcp_mss_set(tcp_t * tcp,uint32_t mss)311 tcp_mss_set(tcp_t *tcp, uint32_t mss)
312 {
313 	uint32_t	mss_max;
314 	tcp_stack_t	*tcps = tcp->tcp_tcps;
315 	conn_t		*connp = tcp->tcp_connp;
316 
317 	if (connp->conn_ipversion == IPV4_VERSION)
318 		mss_max = tcps->tcps_mss_max_ipv4;
319 	else
320 		mss_max = tcps->tcps_mss_max_ipv6;
321 
322 	if (mss < tcps->tcps_mss_min)
323 		mss = tcps->tcps_mss_min;
324 	if (mss > mss_max)
325 		mss = mss_max;
326 	/*
327 	 * Unless naglim has been set by our client to
328 	 * a non-mss value, force naglim to track mss.
329 	 * This can help to aggregate small writes.
330 	 */
331 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
332 		tcp->tcp_naglim = mss;
333 	/*
334 	 * TCP should be able to buffer at least 4 MSS data for obvious
335 	 * performance reason.
336 	 */
337 	if ((mss << 2) > connp->conn_sndbuf)
338 		connp->conn_sndbuf = mss << 2;
339 
340 	/*
341 	 * Set the send lowater to at least twice of MSS.
342 	 */
343 	if ((mss << 1) > connp->conn_sndlowat)
344 		connp->conn_sndlowat = mss << 1;
345 
346 	/*
347 	 * Update tcp_cwnd according to the new value of MSS. Keep the
348 	 * previous ratio to preserve the transmit rate.
349 	 */
350 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
351 	tcp->tcp_cwnd_cnt = 0;
352 
353 	tcp->tcp_mss = mss;
354 	(void) tcp_maxpsz_set(tcp, B_TRUE);
355 }
356 
357 /*
358  * Extract option values from a tcp header.  We put any found values into the
359  * tcpopt struct and return a bitmask saying which options were found.
360  */
361 int
tcp_parse_options(tcpha_t * tcpha,tcp_opt_t * tcpopt)362 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
363 {
364 	uchar_t		*endp;
365 	int		len;
366 	uint32_t	mss;
367 	uchar_t		*up = (uchar_t *)tcpha;
368 	int		found = 0;
369 	int32_t		sack_len;
370 	tcp_seq		sack_begin, sack_end;
371 	tcp_t		*tcp;
372 
373 	endp = up + TCP_HDR_LENGTH(tcpha);
374 	up += TCP_MIN_HEADER_LENGTH;
375 	/*
376 	 * If timestamp option is aligned as recommended in RFC 7323 Appendix
377 	 * A, and is the only option, return quickly.
378 	 */
379 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
380 	    TCPOPT_REAL_TS_LEN &&
381 	    OK_32PTR(up) &&
382 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
383 		tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4));
384 		tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
385 
386 		return (TCP_OPT_TSTAMP_PRESENT);
387 	}
388 	while (up < endp) {
389 		len = endp - up;
390 		switch (*up) {
391 		case TCPOPT_EOL:
392 			break;
393 
394 		case TCPOPT_NOP:
395 			up++;
396 			continue;
397 
398 		case TCPOPT_MAXSEG:
399 			if (len < TCPOPT_MAXSEG_LEN ||
400 			    up[1] != TCPOPT_MAXSEG_LEN)
401 				break;
402 
403 			mss = BE16_TO_U16(up+2);
404 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
405 			tcpopt->tcp_opt_mss = mss;
406 			found |= TCP_OPT_MSS_PRESENT;
407 
408 			up += TCPOPT_MAXSEG_LEN;
409 			continue;
410 
411 		case TCPOPT_WSCALE:
412 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
413 				break;
414 
415 			if (up[2] > TCP_MAX_WINSHIFT)
416 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
417 			else
418 				tcpopt->tcp_opt_wscale = up[2];
419 			found |= TCP_OPT_WSCALE_PRESENT;
420 
421 			up += TCPOPT_WS_LEN;
422 			continue;
423 
424 		case TCPOPT_SACK_PERMITTED:
425 			if (len < TCPOPT_SACK_OK_LEN ||
426 			    up[1] != TCPOPT_SACK_OK_LEN)
427 				break;
428 			found |= TCP_OPT_SACK_OK_PRESENT;
429 			up += TCPOPT_SACK_OK_LEN;
430 			continue;
431 
432 		case TCPOPT_SACK:
433 			if (len <= 2 || up[1] <= 2 || len < up[1])
434 				break;
435 
436 			/* If TCP is not interested in SACK blks... */
437 			if ((tcp = tcpopt->tcp) == NULL) {
438 				up += up[1];
439 				continue;
440 			}
441 			sack_len = up[1] - TCPOPT_HEADER_LEN;
442 			up += TCPOPT_HEADER_LEN;
443 
444 			/*
445 			 * If the list is empty, allocate one and assume
446 			 * nothing is sack'ed.
447 			 */
448 			if (tcp->tcp_notsack_list == NULL) {
449 				tcp_notsack_update(&(tcp->tcp_notsack_list),
450 				    tcp->tcp_suna, tcp->tcp_snxt,
451 				    &(tcp->tcp_num_notsack_blk),
452 				    &(tcp->tcp_cnt_notsack_list));
453 
454 				/*
455 				 * Make sure tcp_notsack_list is not NULL.
456 				 * This happens when kmem_alloc(KM_NOSLEEP)
457 				 * returns NULL.
458 				 */
459 				if (tcp->tcp_notsack_list == NULL) {
460 					up += sack_len;
461 					continue;
462 				}
463 				tcp->tcp_fack = tcp->tcp_suna;
464 			}
465 
466 			while (sack_len > 0) {
467 				if (up + 8 > endp) {
468 					up = endp;
469 					break;
470 				}
471 				sack_begin = BE32_TO_U32(up);
472 				up += 4;
473 				sack_end = BE32_TO_U32(up);
474 				up += 4;
475 				sack_len -= 8;
476 				/*
477 				 * Bounds checking.  Make sure the SACK
478 				 * info is within tcp_suna and tcp_snxt.
479 				 * If this SACK blk is out of bound, ignore
480 				 * it but continue to parse the following
481 				 * blks.
482 				 */
483 				if (SEQ_LEQ(sack_end, sack_begin) ||
484 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
485 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
486 					continue;
487 				}
488 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
489 				    sack_begin, sack_end,
490 				    &(tcp->tcp_num_notsack_blk),
491 				    &(tcp->tcp_cnt_notsack_list));
492 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
493 					tcp->tcp_fack = sack_end;
494 				}
495 			}
496 			found |= TCP_OPT_SACK_PRESENT;
497 			continue;
498 
499 		case TCPOPT_TSTAMP:
500 			if (len < TCPOPT_TSTAMP_LEN ||
501 			    up[1] != TCPOPT_TSTAMP_LEN)
502 				break;
503 
504 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
505 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
506 
507 			found |= TCP_OPT_TSTAMP_PRESENT;
508 
509 			up += TCPOPT_TSTAMP_LEN;
510 			continue;
511 
512 		case TCPOPT_MD5:
513 			if (len < TCPOPT_MD5_LEN || up[1] != TCPOPT_MD5_LEN)
514 				break;
515 
516 			bcopy(up + 2, tcpopt->tcp_opt_sig,
517 			    sizeof (tcpopt->tcp_opt_sig));
518 
519 			found |= TCP_OPT_SIG_PRESENT;
520 			up += TCPOPT_MD5_LEN;
521 			continue;
522 
523 		default:
524 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
525 				break;
526 			up += up[1];
527 			continue;
528 		}
529 		break;
530 	}
531 	return (found);
532 }
533 
534 /*
535  * Process all TCP option in SYN segment.  Note that this function should
536  * be called after tcp_set_destination() is called so that the necessary info
537  * from IRE is already set in the tcp structure.
538  *
539  * This function sets up the correct tcp_mss value according to the
540  * MSS option value and our header size.  It also sets up the window scale
541  * and timestamp values, and initialize SACK info blocks.  But it does not
542  * change receive window size after setting the tcp_mss value.  The caller
543  * should do the appropriate change.
544  */
545 static boolean_t
tcp_process_options(mblk_t * mp,tcp_t * tcp,tcpha_t * tcpha,ip_recv_attr_t * ira)546 tcp_process_options(mblk_t *mp, tcp_t *tcp, tcpha_t *tcpha, ip_recv_attr_t *ira)
547 {
548 	int options;
549 	tcp_opt_t tcpopt;
550 	uint32_t mss_max;
551 	char *tmp_tcph;
552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
553 	conn_t		*connp = tcp->tcp_connp;
554 
555 	tcpopt.tcp = NULL;
556 	options = tcp_parse_options(tcpha, &tcpopt);
557 
558 	if (tcp->tcp_md5sig) {
559 		if ((options & TCP_OPT_SIG_PRESENT) == 0) {
560 			TCP_STAT(tcp->tcp_tcps, tcp_sig_no_option);
561 			return (B_FALSE);
562 		}
563 		if (!tcpsig_verify(mp->b_cont, tcp, tcpha, ira,
564 		    tcpopt.tcp_opt_sig)) {
565 			return (B_FALSE);
566 		}
567 	}
568 
569 	/*
570 	 * Process MSS option.  Note that MSS option value does not account
571 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
572 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
573 	 * IPv6.
574 	 */
575 	if (!(options & TCP_OPT_MSS_PRESENT)) {
576 		if (connp->conn_ipversion == IPV4_VERSION)
577 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
578 		else
579 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
580 	} else {
581 		if (connp->conn_ipversion == IPV4_VERSION)
582 			mss_max = tcps->tcps_mss_max_ipv4;
583 		else
584 			mss_max = tcps->tcps_mss_max_ipv6;
585 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
586 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
587 		else if (tcpopt.tcp_opt_mss > mss_max)
588 			tcpopt.tcp_opt_mss = mss_max;
589 	}
590 
591 	/* Process Window Scale option. */
592 	if (options & TCP_OPT_WSCALE_PRESENT) {
593 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
594 		tcp->tcp_snd_ws_ok = B_TRUE;
595 	} else {
596 		tcp->tcp_snd_ws = B_FALSE;
597 		tcp->tcp_snd_ws_ok = B_FALSE;
598 		tcp->tcp_rcv_ws = B_FALSE;
599 	}
600 
601 	/* Process Timestamp option. */
602 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
603 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
604 		tmp_tcph = (char *)tcp->tcp_tcpha;
605 
606 		tcp->tcp_snd_ts_ok = B_TRUE;
607 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
608 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
609 		ASSERT(OK_32PTR(tmp_tcph));
610 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
611 
612 		/* Fill in our template header with basic timestamp option. */
613 		tmp_tcph += connp->conn_ht_ulp_len;
614 		tmp_tcph[0] = TCPOPT_NOP;
615 		tmp_tcph[1] = TCPOPT_NOP;
616 		tmp_tcph[2] = TCPOPT_TSTAMP;
617 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
618 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
619 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
620 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
621 	} else {
622 		tcp->tcp_snd_ts_ok = B_FALSE;
623 	}
624 
625 	/*
626 	 * Process SACK options.  If SACK is enabled for this connection,
627 	 * then allocate the SACK info structure.  Note the following ways
628 	 * when tcp_snd_sack_ok is set to true.
629 	 *
630 	 * For active connection: in tcp_set_destination() called in
631 	 * tcp_connect().
632 	 *
633 	 * For passive connection: in tcp_set_destination() called in
634 	 * tcp_input_listener().
635 	 *
636 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
637 	 * That check makes sure that if we did not send a SACK OK option,
638 	 * we will not enable SACK for this connection even though the other
639 	 * side sends us SACK OK option.  For active connection, the SACK
640 	 * info structure has already been allocated.  So we need to free
641 	 * it if SACK is disabled.
642 	 */
643 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
644 	    (tcp->tcp_snd_sack_ok ||
645 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
646 		ASSERT(tcp->tcp_num_sack_blk == 0);
647 		ASSERT(tcp->tcp_notsack_list == NULL);
648 
649 		tcp->tcp_snd_sack_ok = B_TRUE;
650 		if (tcp->tcp_snd_ts_ok) {
651 			tcp->tcp_max_sack_blk = 3;
652 		} else {
653 			tcp->tcp_max_sack_blk = 4;
654 		}
655 	} else if (tcp->tcp_snd_sack_ok) {
656 		/*
657 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
658 		 * no SACK info will be used for this
659 		 * connection.  This assumes that SACK usage
660 		 * permission is negotiated.  This may need
661 		 * to be changed once this is clarified.
662 		 */
663 		ASSERT(tcp->tcp_num_sack_blk == 0);
664 		ASSERT(tcp->tcp_notsack_list == NULL);
665 		tcp->tcp_snd_sack_ok = B_FALSE;
666 	}
667 
668 	/*
669 	 * Now we know the exact TCP/IP header length, subtract
670 	 * that from tcp_mss to get our side's MSS.
671 	 */
672 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
673 
674 	/*
675 	 * Here we assume that the other side's header size will be equal to
676 	 * our header size.  We calculate the real MSS accordingly.  Need to
677 	 * take into additional stuffs IPsec puts in.
678 	 *
679 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
680 	 */
681 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
682 	    tcp->tcp_ipsec_overhead -
683 	    ((connp->conn_ipversion == IPV4_VERSION ?
684 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
685 
686 	/*
687 	 * Set MSS to the smaller one of both ends of the connection.
688 	 * We should not have called tcp_mss_set() before, but our
689 	 * side of the MSS should have been set to a proper value
690 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
691 	 * STREAM head parameters properly.
692 	 *
693 	 * If we have a larger-than-16-bit window but the other side
694 	 * didn't want to do window scale, tcp_rwnd_set() will take
695 	 * care of that.
696 	 */
697 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
698 
699 	/*
700 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
701 	 * updated properly.
702 	 */
703 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
704 
705 	if (tcp->tcp_cc_algo->conn_init != NULL)
706 		tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv);
707 
708 	return (B_TRUE);
709 }
710 
711 /*
712  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
713  * is filled, return as much as we can.  The message passed in may be
714  * multi-part, chained using b_cont.  "start" is the starting sequence
715  * number for this piece.
716  */
717 static mblk_t *
tcp_reass(tcp_t * tcp,mblk_t * mp,uint32_t start)718 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
719 {
720 	uint32_t	end, bytes;
721 	mblk_t		*mp1;
722 	mblk_t		*mp2;
723 	mblk_t		*next_mp;
724 	uint32_t	u1;
725 	tcp_stack_t	*tcps = tcp->tcp_tcps;
726 
727 
728 	/* Walk through all the new pieces. */
729 	do {
730 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
731 		    (uintptr_t)INT_MAX);
732 		end = start + (int)(mp->b_wptr - mp->b_rptr);
733 		next_mp = mp->b_cont;
734 		if (start == end) {
735 			/* Empty.  Blast it. */
736 			freeb(mp);
737 			continue;
738 		}
739 		bytes = end - start;
740 		mp->b_cont = NULL;
741 		TCP_REASS_SET_SEQ(mp, start);
742 		TCP_REASS_SET_END(mp, end);
743 		mp1 = tcp->tcp_reass_tail;
744 		if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) {
745 			if (mp1 != NULL) {
746 				/*
747 				 * New stuff is beyond the tail; link it on the
748 				 * end.
749 				 */
750 				mp1->b_cont = mp;
751 			} else {
752 				tcp->tcp_reass_head = mp;
753 			}
754 			tcp->tcp_reass_tail = mp;
755 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
756 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes);
757 			tcp->tcp_cs.tcp_in_data_unorder_segs++;
758 			tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes;
759 			continue;
760 		}
761 		mp1 = tcp->tcp_reass_head;
762 		u1 = TCP_REASS_SEQ(mp1);
763 		/* New stuff at the front? */
764 		if (SEQ_LT(start, u1)) {
765 			/* Yes... Check for overlap. */
766 			mp->b_cont = mp1;
767 			tcp->tcp_reass_head = mp;
768 			tcp_reass_elim_overlap(tcp, mp);
769 			continue;
770 		}
771 		/*
772 		 * The new piece fits somewhere between the head and tail.
773 		 * We find our slot, where mp1 precedes us and mp2 trails.
774 		 */
775 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
776 			u1 = TCP_REASS_SEQ(mp2);
777 			if (SEQ_LEQ(start, u1))
778 				break;
779 		}
780 		/* Link ourselves in */
781 		mp->b_cont = mp2;
782 		mp1->b_cont = mp;
783 
784 		/* Trim overlap with following mblk(s) first */
785 		tcp_reass_elim_overlap(tcp, mp);
786 
787 		/* Trim overlap with preceding mblk */
788 		tcp_reass_elim_overlap(tcp, mp1);
789 
790 	} while (start = end, mp = next_mp);
791 	mp1 = tcp->tcp_reass_head;
792 	/* Anything ready to go? */
793 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
794 		return (NULL);
795 	/* Eat what we can off the queue */
796 	for (;;) {
797 		mp = mp1->b_cont;
798 		end = TCP_REASS_END(mp1);
799 		TCP_REASS_SET_SEQ(mp1, 0);
800 		TCP_REASS_SET_END(mp1, 0);
801 		if (!mp) {
802 			tcp->tcp_reass_tail = NULL;
803 			break;
804 		}
805 		if (end != TCP_REASS_SEQ(mp)) {
806 			mp1->b_cont = NULL;
807 			break;
808 		}
809 		mp1 = mp;
810 	}
811 	mp1 = tcp->tcp_reass_head;
812 	tcp->tcp_reass_head = mp;
813 	return (mp1);
814 }
815 
816 /* Eliminate any overlap that mp may have over later mblks */
817 static void
tcp_reass_elim_overlap(tcp_t * tcp,mblk_t * mp)818 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
819 {
820 	uint32_t	end;
821 	mblk_t		*mp1;
822 	uint32_t	u1;
823 	tcp_stack_t	*tcps = tcp->tcp_tcps;
824 
825 	end = TCP_REASS_END(mp);
826 	while ((mp1 = mp->b_cont) != NULL) {
827 		u1 = TCP_REASS_SEQ(mp1);
828 		if (!SEQ_GT(end, u1))
829 			break;
830 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
831 			mp->b_wptr -= end - u1;
832 			TCP_REASS_SET_END(mp, u1);
833 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
834 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
835 			    end - u1);
836 			break;
837 		}
838 		mp->b_cont = mp1->b_cont;
839 		TCP_REASS_SET_SEQ(mp1, 0);
840 		TCP_REASS_SET_END(mp1, 0);
841 		freeb(mp1);
842 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
843 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
844 	}
845 	if (!mp1)
846 		tcp->tcp_reass_tail = mp;
847 }
848 
849 /*
850  * This function does PAWS protection check, per RFC 7323 section 5. Requires
851  * that timestamp options are already processed into tcpoptp. Returns B_TRUE if
852  * the segment passes the PAWS test, else returns B_FALSE.
853  */
854 boolean_t
tcp_paws_check(tcp_t * tcp,const tcp_opt_t * tcpoptp)855 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp)
856 {
857 	if (TSTMP_LT(tcpoptp->tcp_opt_ts_val,
858 	    tcp->tcp_ts_recent)) {
859 		if (LBOLT_FASTPATH64 <
860 		    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
861 			/* This segment is not acceptable. */
862 			return (B_FALSE);
863 		} else {
864 			/*
865 			 * Connection has been idle for
866 			 * too long.  Reset the timestamp
867 			 */
868 			tcp->tcp_ts_recent =
869 			    tcpoptp->tcp_opt_ts_val;
870 		}
871 	}
872 	return (B_TRUE);
873 }
874 
875 /*
876  * Defense for the SYN attack -
877  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
878  *    one from the list of droppable eagers. This list is a subset of q0.
879  *    see comments before the definition of MAKE_DROPPABLE().
880  * 2. Don't drop a SYN request before its first timeout. This gives every
881  *    request at least til the first timeout to complete its 3-way handshake.
882  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
883  *    requests currently on the queue that has timed out. This will be used
884  *    as an indicator of whether an attack is under way, so that appropriate
885  *    actions can be taken. (It's incremented in tcp_timer() and decremented
886  *    either when eager goes into ESTABLISHED, or gets freed up.)
887  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
888  *    # of timeout drops back to <= q0len/32 => SYN alert off
889  */
890 static boolean_t
tcp_drop_q0(tcp_t * tcp)891 tcp_drop_q0(tcp_t *tcp)
892 {
893 	tcp_t	*eager;
894 	mblk_t	*mp;
895 	tcp_stack_t	*tcps = tcp->tcp_tcps;
896 
897 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
898 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
899 
900 	/* Pick oldest eager from the list of droppable eagers */
901 	eager = tcp->tcp_eager_prev_drop_q0;
902 
903 	/* If list is empty. return B_FALSE */
904 	if (eager == tcp) {
905 		return (B_FALSE);
906 	}
907 
908 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
909 	if ((mp = allocb(0, BPRI_HI)) == NULL)
910 		return (B_FALSE);
911 
912 	/*
913 	 * Take this eager out from the list of droppable eagers since we are
914 	 * going to drop it.
915 	 */
916 	MAKE_UNDROPPABLE(eager);
917 
918 	if (tcp->tcp_connp->conn_debug) {
919 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
920 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
921 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
922 		    tcp->tcp_conn_req_cnt_q0,
923 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
924 	}
925 
926 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
927 
928 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
929 	CONN_INC_REF(eager->tcp_connp);
930 
931 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
932 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
933 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
934 
935 	return (B_TRUE);
936 }
937 
938 /*
939  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
940  */
941 static mblk_t *
tcp_conn_create_v6(conn_t * lconnp,conn_t * connp,mblk_t * mp,ip_recv_attr_t * ira)942 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
943     ip_recv_attr_t *ira)
944 {
945 	tcp_t		*ltcp = lconnp->conn_tcp;
946 	tcp_t		*tcp = connp->conn_tcp;
947 	mblk_t		*tpi_mp;
948 	ipha_t		*ipha;
949 	ip6_t		*ip6h;
950 	sin6_t		sin6;
951 	uint_t		ifindex = ira->ira_ruifindex;
952 	tcp_stack_t	*tcps = tcp->tcp_tcps;
953 
954 	if (ira->ira_flags & IRAF_IS_IPV4) {
955 		ipha = (ipha_t *)mp->b_rptr;
956 
957 		connp->conn_ipversion = IPV4_VERSION;
958 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
959 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
960 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
961 
962 		sin6 = sin6_null;
963 		sin6.sin6_addr = connp->conn_faddr_v6;
964 		sin6.sin6_port = connp->conn_fport;
965 		sin6.sin6_family = AF_INET6;
966 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
967 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
968 
969 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
970 			sin6_t	sin6d;
971 
972 			sin6d = sin6_null;
973 			sin6d.sin6_addr = connp->conn_laddr_v6;
974 			sin6d.sin6_port = connp->conn_lport;
975 			sin6d.sin6_family = AF_INET;
976 			tpi_mp = mi_tpi_extconn_ind(NULL,
977 			    (char *)&sin6d, sizeof (sin6_t),
978 			    (char *)&tcp,
979 			    (t_scalar_t)sizeof (intptr_t),
980 			    (char *)&sin6d, sizeof (sin6_t),
981 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
982 		} else {
983 			tpi_mp = mi_tpi_conn_ind(NULL,
984 			    (char *)&sin6, sizeof (sin6_t),
985 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
986 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
987 		}
988 	} else {
989 		ip6h = (ip6_t *)mp->b_rptr;
990 
991 		connp->conn_ipversion = IPV6_VERSION;
992 		connp->conn_laddr_v6 = ip6h->ip6_dst;
993 		connp->conn_faddr_v6 = ip6h->ip6_src;
994 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
995 
996 		sin6 = sin6_null;
997 		sin6.sin6_addr = connp->conn_faddr_v6;
998 		sin6.sin6_port = connp->conn_fport;
999 		sin6.sin6_family = AF_INET6;
1000 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
1001 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
1002 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
1003 
1004 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
1005 			/* Pass up the scope_id of remote addr */
1006 			sin6.sin6_scope_id = ifindex;
1007 		} else {
1008 			sin6.sin6_scope_id = 0;
1009 		}
1010 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
1011 			sin6_t	sin6d;
1012 
1013 			sin6d = sin6_null;
1014 			sin6.sin6_addr = connp->conn_laddr_v6;
1015 			sin6d.sin6_port = connp->conn_lport;
1016 			sin6d.sin6_family = AF_INET6;
1017 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
1018 				sin6d.sin6_scope_id = ifindex;
1019 
1020 			tpi_mp = mi_tpi_extconn_ind(NULL,
1021 			    (char *)&sin6d, sizeof (sin6_t),
1022 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1023 			    (char *)&sin6d, sizeof (sin6_t),
1024 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1025 		} else {
1026 			tpi_mp = mi_tpi_conn_ind(NULL,
1027 			    (char *)&sin6, sizeof (sin6_t),
1028 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1029 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1030 		}
1031 	}
1032 
1033 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
1034 	return (tpi_mp);
1035 }
1036 
1037 /* Handle a SYN on an AF_INET socket */
1038 static mblk_t *
tcp_conn_create_v4(conn_t * lconnp,conn_t * connp,mblk_t * mp,ip_recv_attr_t * ira)1039 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
1040     ip_recv_attr_t *ira)
1041 {
1042 	tcp_t		*ltcp = lconnp->conn_tcp;
1043 	tcp_t		*tcp = connp->conn_tcp;
1044 	sin_t		sin;
1045 	mblk_t		*tpi_mp = NULL;
1046 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1047 	ipha_t		*ipha;
1048 
1049 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
1050 	ipha = (ipha_t *)mp->b_rptr;
1051 
1052 	connp->conn_ipversion = IPV4_VERSION;
1053 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
1054 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
1055 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
1056 
1057 	sin = sin_null;
1058 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
1059 	sin.sin_port = connp->conn_fport;
1060 	sin.sin_family = AF_INET;
1061 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
1062 		sin_t	sind;
1063 
1064 		sind = sin_null;
1065 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
1066 		sind.sin_port = connp->conn_lport;
1067 		sind.sin_family = AF_INET;
1068 		tpi_mp = mi_tpi_extconn_ind(NULL,
1069 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
1070 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
1071 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1072 	} else {
1073 		tpi_mp = mi_tpi_conn_ind(NULL,
1074 		    (char *)&sin, sizeof (sin_t),
1075 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1076 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1077 	}
1078 
1079 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
1080 	return (tpi_mp);
1081 }
1082 
1083 /*
1084  * Called via squeue to get on to eager's perimeter. It sends a
1085  * TH_RST if eager is in the fanout table. The listener wants the
1086  * eager to disappear either by means of tcp_eager_blowoff() or
1087  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
1088  * called (via squeue) if the eager cannot be inserted in the
1089  * fanout table in tcp_input_listener().
1090  */
1091 /* ARGSUSED */
1092 void
tcp_eager_kill(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)1093 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1094 {
1095 	conn_t	*econnp = (conn_t *)arg;
1096 	tcp_t	*eager = econnp->conn_tcp;
1097 	tcp_t	*listener = eager->tcp_listener;
1098 
1099 	/*
1100 	 * We could be called because listener is closing. Since
1101 	 * the eager was using listener's queue's, we avoid
1102 	 * using the listeners queues from now on.
1103 	 */
1104 	ASSERT(eager->tcp_detached);
1105 	econnp->conn_rq = NULL;
1106 	econnp->conn_wq = NULL;
1107 
1108 	/*
1109 	 * An eager's conn_fanout will be NULL if it's a duplicate
1110 	 * for an existing 4-tuples in the conn fanout table.
1111 	 * We don't want to send an RST out in such case.
1112 	 */
1113 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
1114 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
1115 		    eager, eager->tcp_snxt, 0, TH_RST);
1116 	}
1117 
1118 	/* We are here because listener wants this eager gone */
1119 	if (listener != NULL) {
1120 		mutex_enter(&listener->tcp_eager_lock);
1121 		tcp_eager_unlink(eager);
1122 		if (eager->tcp_tconnind_started) {
1123 			/*
1124 			 * The eager has sent a conn_ind up to the
1125 			 * listener but listener decides to close
1126 			 * instead. We need to drop the extra ref
1127 			 * placed on eager in tcp_input_data() before
1128 			 * sending the conn_ind to listener.
1129 			 */
1130 			CONN_DEC_REF(econnp);
1131 		}
1132 		mutex_exit(&listener->tcp_eager_lock);
1133 		CONN_DEC_REF(listener->tcp_connp);
1134 	}
1135 
1136 	if (eager->tcp_state != TCPS_CLOSED)
1137 		tcp_close_detached(eager);
1138 }
1139 
1140 /*
1141  * Reset any eager connection hanging off this listener marked
1142  * with 'seqnum' and then reclaim it's resources.
1143  */
1144 boolean_t
tcp_eager_blowoff(tcp_t * listener,t_scalar_t seqnum)1145 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1146 {
1147 	tcp_t	*eager;
1148 	mblk_t	*mp;
1149 
1150 	eager = listener;
1151 	mutex_enter(&listener->tcp_eager_lock);
1152 	do {
1153 		eager = eager->tcp_eager_next_q;
1154 		if (eager == NULL) {
1155 			mutex_exit(&listener->tcp_eager_lock);
1156 			return (B_FALSE);
1157 		}
1158 	} while (eager->tcp_conn_req_seqnum != seqnum);
1159 
1160 	if (eager->tcp_closemp_used) {
1161 		mutex_exit(&listener->tcp_eager_lock);
1162 		return (B_TRUE);
1163 	}
1164 	eager->tcp_closemp_used = B_TRUE;
1165 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1166 	CONN_INC_REF(eager->tcp_connp);
1167 	mutex_exit(&listener->tcp_eager_lock);
1168 	mp = &eager->tcp_closemp;
1169 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1170 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1171 	return (B_TRUE);
1172 }
1173 
1174 /*
1175  * Reset any eager connection hanging off this listener
1176  * and then reclaim it's resources.
1177  */
1178 void
tcp_eager_cleanup(tcp_t * listener,boolean_t q0_only)1179 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1180 {
1181 	tcp_t	*eager;
1182 	mblk_t	*mp;
1183 	tcp_stack_t	*tcps = listener->tcp_tcps;
1184 
1185 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1186 
1187 	if (!q0_only) {
1188 		/* First cleanup q */
1189 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1190 		eager = listener->tcp_eager_next_q;
1191 		while (eager != NULL) {
1192 			if (!eager->tcp_closemp_used) {
1193 				eager->tcp_closemp_used = B_TRUE;
1194 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1195 				CONN_INC_REF(eager->tcp_connp);
1196 				mp = &eager->tcp_closemp;
1197 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1198 				    tcp_eager_kill, eager->tcp_connp, NULL,
1199 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1200 			}
1201 			eager = eager->tcp_eager_next_q;
1202 		}
1203 	}
1204 	/* Then cleanup q0 */
1205 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1206 	eager = listener->tcp_eager_next_q0;
1207 	while (eager != listener) {
1208 		if (!eager->tcp_closemp_used) {
1209 			eager->tcp_closemp_used = B_TRUE;
1210 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1211 			CONN_INC_REF(eager->tcp_connp);
1212 			mp = &eager->tcp_closemp;
1213 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1214 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1215 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1216 		}
1217 		eager = eager->tcp_eager_next_q0;
1218 	}
1219 }
1220 
1221 /*
1222  * If we are an eager connection hanging off a listener that hasn't
1223  * formally accepted the connection yet, get off its list and blow off
1224  * any data that we have accumulated.
1225  */
1226 void
tcp_eager_unlink(tcp_t * tcp)1227 tcp_eager_unlink(tcp_t *tcp)
1228 {
1229 	tcp_t	*listener = tcp->tcp_listener;
1230 
1231 	ASSERT(listener != NULL);
1232 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1233 	if (tcp->tcp_eager_next_q0 != NULL) {
1234 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1235 
1236 		/* Remove the eager tcp from q0 */
1237 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1238 		    tcp->tcp_eager_prev_q0;
1239 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1240 		    tcp->tcp_eager_next_q0;
1241 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1242 		listener->tcp_conn_req_cnt_q0--;
1243 
1244 		tcp->tcp_eager_next_q0 = NULL;
1245 		tcp->tcp_eager_prev_q0 = NULL;
1246 
1247 		/*
1248 		 * Take the eager out, if it is in the list of droppable
1249 		 * eagers.
1250 		 */
1251 		MAKE_UNDROPPABLE(tcp);
1252 
1253 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1254 			/* we have timed out before */
1255 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1256 			listener->tcp_syn_rcvd_timeout--;
1257 		}
1258 	} else {
1259 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1260 		tcp_t	*prev = NULL;
1261 
1262 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1263 			if (tcpp[0] == tcp) {
1264 				if (listener->tcp_eager_last_q == tcp) {
1265 					/*
1266 					 * If we are unlinking the last
1267 					 * element on the list, adjust
1268 					 * tail pointer. Set tail pointer
1269 					 * to nil when list is empty.
1270 					 */
1271 					ASSERT(tcp->tcp_eager_next_q == NULL);
1272 					if (listener->tcp_eager_last_q ==
1273 					    listener->tcp_eager_next_q) {
1274 						listener->tcp_eager_last_q =
1275 						    NULL;
1276 					} else {
1277 						/*
1278 						 * We won't get here if there
1279 						 * is only one eager in the
1280 						 * list.
1281 						 */
1282 						ASSERT(prev != NULL);
1283 						listener->tcp_eager_last_q =
1284 						    prev;
1285 					}
1286 				}
1287 				tcpp[0] = tcp->tcp_eager_next_q;
1288 				tcp->tcp_eager_next_q = NULL;
1289 				tcp->tcp_eager_last_q = NULL;
1290 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1291 				listener->tcp_conn_req_cnt_q--;
1292 				break;
1293 			}
1294 			prev = tcpp[0];
1295 		}
1296 	}
1297 	tcp->tcp_listener = NULL;
1298 }
1299 
1300 /* BEGIN CSTYLED */
1301 /*
1302  *
1303  * The sockfs ACCEPT path:
1304  * =======================
1305  *
1306  * The eager is now established in its own perimeter as soon as SYN is
1307  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1308  * completes the accept processing on the acceptor STREAM. The sending
1309  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1310  * listener but a TLI/XTI listener completes the accept processing
1311  * on the listener perimeter.
1312  *
1313  * Common control flow for 3 way handshake:
1314  * ----------------------------------------
1315  *
1316  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1317  *
1318  * incoming SYN-ACK-ACK (eager perim)	-> tcp_input_data()
1319  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1320  *
1321  * Sockfs ACCEPT Path:
1322  * -------------------
1323  *
1324  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1325  * as STREAM entry point)
1326  *
1327  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1328  *
1329  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1330  * association (we are not behind eager's squeue but sockfs is protecting us
1331  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1332  * is changed to point at tcp_wput().
1333  *
1334  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1335  * listener (done on listener's perimeter).
1336  *
1337  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1338  * accept.
1339  *
1340  * TLI/XTI client ACCEPT path:
1341  * ---------------------------
1342  *
1343  * soaccept() sends T_CONN_RES on the listener STREAM.
1344  *
1345  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1346  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1347  *
1348  * Locks:
1349  * ======
1350  *
1351  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1352  * and listeners->tcp_eager_next_q.
1353  *
1354  * Referencing:
1355  * ============
1356  *
1357  * 1) We start out in tcp_input_listener by eager placing a ref on
1358  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1359  *
1360  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1361  * doing so we place a ref on the eager. This ref is finally dropped at the
1362  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1363  * reference is dropped by the squeue framework.
1364  *
1365  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1366  *
1367  * The reference must be released by the same entity that added the reference
1368  * In the above scheme, the eager is the entity that adds and releases the
1369  * references. Note that tcp_accept_finish executes in the squeue of the eager
1370  * (albeit after it is attached to the acceptor stream). Though 1. executes
1371  * in the listener's squeue, the eager is nascent at this point and the
1372  * reference can be considered to have been added on behalf of the eager.
1373  *
1374  * Eager getting a Reset or listener closing:
1375  * ==========================================
1376  *
1377  * Once the listener and eager are linked, the listener never does the unlink.
1378  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1379  * a message on all eager perimeter. The eager then does the unlink, clears
1380  * any pointers to the listener's queue and drops the reference to the
1381  * listener. The listener waits in tcp_close outside the squeue until its
1382  * refcount has dropped to 1. This ensures that the listener has waited for
1383  * all eagers to clear their association with the listener.
1384  *
1385  * Similarly, if eager decides to go away, it can unlink itself and close.
1386  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1387  * the reference to eager is still valid because of the extra ref we put
1388  * in tcp_send_conn_ind.
1389  *
1390  * Listener can always locate the eager under the protection
1391  * of the listener->tcp_eager_lock, and then do a refhold
1392  * on the eager during the accept processing.
1393  *
1394  * The acceptor stream accesses the eager in the accept processing
1395  * based on the ref placed on eager before sending T_conn_ind.
1396  * The only entity that can negate this refhold is a listener close
1397  * which is mutually exclusive with an active acceptor stream.
1398  *
1399  * Eager's reference on the listener
1400  * ===================================
1401  *
1402  * If the accept happens (even on a closed eager) the eager drops its
1403  * reference on the listener at the start of tcp_accept_finish. If the
1404  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1405  * the reference is dropped in tcp_closei_local. If the listener closes,
1406  * the reference is dropped in tcp_eager_kill. In all cases the reference
1407  * is dropped while executing in the eager's context (squeue).
1408  */
1409 /* END CSTYLED */
1410 
1411 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1412 
1413 /*
1414  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1415  * tcp_input_data will not see any packets for listeners since the listener
1416  * has conn_recv set to tcp_input_listener.
1417  */
1418 /* ARGSUSED */
1419 static void
tcp_input_listener(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)1420 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1421 {
1422 	tcpha_t		*tcpha;
1423 	uint32_t	seg_seq;
1424 	tcp_t		*eager;
1425 	int		err;
1426 	conn_t		*econnp = NULL;
1427 	squeue_t	*new_sqp;
1428 	mblk_t		*mp1;
1429 	uint_t		ip_hdr_len;
1430 	conn_t		*lconnp = (conn_t *)arg;
1431 	tcp_t		*listener = lconnp->conn_tcp;
1432 	tcp_stack_t	*tcps = listener->tcp_tcps;
1433 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1434 	uint_t		flags;
1435 	mblk_t		*tpi_mp;
1436 	uint_t		ifindex = ira->ira_ruifindex;
1437 	boolean_t	tlc_set = B_FALSE;
1438 
1439 	ip_hdr_len = ira->ira_ip_hdr_length;
1440 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1441 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1442 
1443 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1444 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1445 	    __dtrace_tcp_tcph_t *, tcpha);
1446 
1447 	if (!(flags & TH_SYN)) {
1448 		if ((flags & TH_RST) || (flags & TH_URG)) {
1449 			freemsg(mp);
1450 			return;
1451 		}
1452 		if (flags & TH_ACK) {
1453 			/* Note this executes in listener's squeue */
1454 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1455 			return;
1456 		}
1457 
1458 		freemsg(mp);
1459 		return;
1460 	}
1461 
1462 	if (listener->tcp_state != TCPS_LISTEN)
1463 		goto error2;
1464 
1465 	ASSERT(IPCL_IS_BOUND(lconnp));
1466 
1467 	mutex_enter(&listener->tcp_eager_lock);
1468 
1469 	/*
1470 	 * The system is under memory pressure, so we need to do our part
1471 	 * to relieve the pressure.  So we only accept new request if there
1472 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1473 	 * handshake.  This means that busy listener will not get too many
1474 	 * new requests which they cannot handle in time while non-busy
1475 	 * listener is still functioning properly.
1476 	 */
1477 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1478 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1479 		mutex_exit(&listener->tcp_eager_lock);
1480 		TCP_STAT(tcps, tcp_listen_mem_drop);
1481 		goto error2;
1482 	}
1483 
1484 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1485 		mutex_exit(&listener->tcp_eager_lock);
1486 		TCP_STAT(tcps, tcp_listendrop);
1487 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1488 		if (lconnp->conn_debug) {
1489 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1490 			    "tcp_input_listener: listen backlog (max=%d) "
1491 			    "overflow (%d pending) on %s",
1492 			    listener->tcp_conn_req_max,
1493 			    listener->tcp_conn_req_cnt_q,
1494 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1495 		}
1496 		goto error2;
1497 	}
1498 
1499 	if (listener->tcp_conn_req_cnt_q0 >=
1500 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1501 		/*
1502 		 * Q0 is full. Drop a pending half-open req from the queue
1503 		 * to make room for the new SYN req. Also mark the time we
1504 		 * drop a SYN.
1505 		 *
1506 		 * A more aggressive defense against SYN attack will
1507 		 * be to set the "tcp_syn_defense" flag now.
1508 		 */
1509 		TCP_STAT(tcps, tcp_listendropq0);
1510 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1511 		if (!tcp_drop_q0(listener)) {
1512 			mutex_exit(&listener->tcp_eager_lock);
1513 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1514 			if (lconnp->conn_debug) {
1515 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1516 				    "tcp_input_listener: listen half-open "
1517 				    "queue (max=%d) full (%d pending) on %s",
1518 				    tcps->tcps_conn_req_max_q0,
1519 				    listener->tcp_conn_req_cnt_q0,
1520 				    tcp_display(listener, NULL,
1521 				    DISP_PORT_ONLY));
1522 			}
1523 			goto error2;
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Enforce the limit set on the number of connections per listener.
1529 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1530 	 * for comparison.
1531 	 */
1532 	if (listener->tcp_listen_cnt != NULL) {
1533 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1534 		int64_t now;
1535 
1536 		if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) {
1537 			mutex_exit(&listener->tcp_eager_lock);
1538 			now = ddi_get_lbolt64();
1539 			atomic_dec_32(&tlc->tlc_cnt);
1540 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1541 			tlc->tlc_drop++;
1542 			if (now - tlc->tlc_report_time >
1543 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1544 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1545 				    "Listener (port %d) connection max (%u) "
1546 				    "reached: %u attempts dropped total\n",
1547 				    ntohs(listener->tcp_connp->conn_lport),
1548 				    tlc->tlc_max, tlc->tlc_drop);
1549 				tlc->tlc_report_time = now;
1550 			}
1551 			goto error2;
1552 		}
1553 		tlc_set = B_TRUE;
1554 	}
1555 
1556 	mutex_exit(&listener->tcp_eager_lock);
1557 
1558 	/*
1559 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1560 	 * or based on the ring (for packets from GLD). Otherwise it is
1561 	 * set based on lbolt i.e., a somewhat random number.
1562 	 */
1563 	ASSERT(ira->ira_sqp != NULL);
1564 	new_sqp = ira->ira_sqp;
1565 
1566 	econnp = tcp_get_conn(arg2, tcps);
1567 	if (econnp == NULL)
1568 		goto error2;
1569 
1570 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1571 	econnp->conn_sqp = new_sqp;
1572 	econnp->conn_initial_sqp = new_sqp;
1573 	econnp->conn_ixa->ixa_sqp = new_sqp;
1574 
1575 	econnp->conn_fport = tcpha->tha_lport;
1576 	econnp->conn_lport = tcpha->tha_fport;
1577 
1578 	err = conn_inherit_parent(lconnp, econnp);
1579 	if (err != 0)
1580 		goto error3;
1581 
1582 	/* We already know the laddr of the new connection is ours */
1583 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1584 
1585 	ASSERT(OK_32PTR(mp->b_rptr));
1586 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1587 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1588 
1589 	if (lconnp->conn_family == AF_INET) {
1590 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1591 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1592 	} else {
1593 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1594 	}
1595 
1596 	if (tpi_mp == NULL)
1597 		goto error3;
1598 
1599 	eager = econnp->conn_tcp;
1600 	eager->tcp_detached = B_TRUE;
1601 	SOCK_CONNID_INIT(eager->tcp_connid);
1602 
1603 	/*
1604 	 * Initialize the eager's tcp_t and inherit some parameters from
1605 	 * the listener.
1606 	 */
1607 	tcp_init_values(eager, listener);
1608 
1609 	ASSERT((econnp->conn_ixa->ixa_flags &
1610 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1611 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1612 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1613 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1614 
1615 	if (!tcps->tcps_dev_flow_ctl)
1616 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1617 
1618 	/* Prepare for diffing against previous packets */
1619 	eager->tcp_recvifindex = 0;
1620 	eager->tcp_recvhops = 0xffffffffU;
1621 
1622 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1623 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1624 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1625 			econnp->conn_incoming_ifindex = ifindex;
1626 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1627 			econnp->conn_ixa->ixa_scopeid = ifindex;
1628 		}
1629 	}
1630 
1631 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1632 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1633 	    tcps->tcps_rev_src_routes) {
1634 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1635 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1636 
1637 		/* Source routing option copyover (reverse it) */
1638 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1639 		if (err != 0) {
1640 			freemsg(tpi_mp);
1641 			goto error3;
1642 		}
1643 		ip_pkt_source_route_reverse_v4(ipp);
1644 	}
1645 
1646 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1647 	ASSERT(!eager->tcp_tconnind_started);
1648 	/*
1649 	 * If the SYN came with a credential, it's a loopback packet or a
1650 	 * labeled packet; attach the credential to the TPI message.
1651 	 */
1652 	if (ira->ira_cred != NULL)
1653 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1654 
1655 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1656 	ASSERT(eager->tcp_ordrel_mp == NULL);
1657 
1658 	/* Inherit the listener's non-STREAMS flag */
1659 	if (IPCL_IS_NONSTR(lconnp)) {
1660 		econnp->conn_flags |= IPCL_NONSTR;
1661 		/* All non-STREAMS tcp_ts are sockets */
1662 		eager->tcp_issocket = B_TRUE;
1663 	} else {
1664 		/*
1665 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1666 		 * at close time, we will always have that to send up.
1667 		 * Otherwise, we need to do special handling in case the
1668 		 * allocation fails at that time.
1669 		 */
1670 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1671 			goto error3;
1672 	}
1673 	/*
1674 	 * Now that the IP addresses and ports are setup in econnp we
1675 	 * can do the IPsec policy work.
1676 	 */
1677 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1678 		if (lconnp->conn_policy != NULL) {
1679 			/*
1680 			 * Inherit the policy from the listener; use
1681 			 * actions from ira
1682 			 */
1683 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1684 				CONN_DEC_REF(econnp);
1685 				freemsg(mp);
1686 				goto error3;
1687 			}
1688 		}
1689 	}
1690 
1691 	/*
1692 	 * tcp_set_destination() may set tcp_rwnd according to the route
1693 	 * metrics. If it does not, the eager's receive window will be set
1694 	 * to the listener's receive window later in this function.
1695 	 */
1696 	eager->tcp_rwnd = 0;
1697 
1698 	if (is_system_labeled()) {
1699 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1700 
1701 		ASSERT(ira->ira_tsl != NULL);
1702 		/* Discard any old label */
1703 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1704 			ASSERT(ixa->ixa_tsl != NULL);
1705 			label_rele(ixa->ixa_tsl);
1706 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1707 			ixa->ixa_tsl = NULL;
1708 		}
1709 		if ((lconnp->conn_mlp_type != mlptSingle ||
1710 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1711 		    ira->ira_tsl != NULL) {
1712 			/*
1713 			 * If this is an MLP connection or a MAC-Exempt
1714 			 * connection with an unlabeled node, packets are to be
1715 			 * exchanged using the security label of the received
1716 			 * SYN packet instead of the server application's label.
1717 			 * tsol_check_dest called from ip_set_destination
1718 			 * might later update TSF_UNLABELED by replacing
1719 			 * ixa_tsl with a new label.
1720 			 */
1721 			label_hold(ira->ira_tsl);
1722 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1723 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1724 			    econnp, ts_label_t *, ixa->ixa_tsl)
1725 		} else {
1726 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1727 			DTRACE_PROBE2(syn_accept, conn_t *,
1728 			    econnp, ts_label_t *, ixa->ixa_tsl)
1729 		}
1730 		/*
1731 		 * conn_connect() called from tcp_set_destination will verify
1732 		 * the destination is allowed to receive packets at the
1733 		 * security label of the SYN-ACK we are generating. As part of
1734 		 * that, tsol_check_dest() may create a new effective label for
1735 		 * this connection.
1736 		 * Finally conn_connect() will call conn_update_label.
1737 		 * All that remains for TCP to do is to call
1738 		 * conn_build_hdr_template which is done as part of
1739 		 * tcp_set_destination.
1740 		 */
1741 	}
1742 
1743 	/*
1744 	 * Since we will clear tcp_listener before we clear tcp_detached
1745 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1746 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1747 	 */
1748 	eager->tcp_hard_binding = B_TRUE;
1749 
1750 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1751 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1752 
1753 	CL_INET_CONNECT(econnp, B_FALSE, err);
1754 	if (err != 0) {
1755 		tcp_bind_hash_remove(eager);
1756 		goto error3;
1757 	}
1758 
1759 	SOCK_CONNID_BUMP(eager->tcp_connid);
1760 
1761 	/*
1762 	 * Adapt our mss, ttl, ... based on the remote address.
1763 	 */
1764 
1765 	if (tcp_set_destination(eager) != 0) {
1766 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1767 		/* Undo the bind_hash_insert */
1768 		tcp_bind_hash_remove(eager);
1769 		goto error3;
1770 	}
1771 
1772 	/* Process all TCP options. */
1773 	if (!tcp_process_options(mp, eager, tcpha, ira)) {
1774 		tcp_bind_hash_remove(eager);
1775 		goto error3;
1776 	}
1777 
1778 	/* Is the other end ECN capable? */
1779 	if (tcps->tcps_ecn_permitted >= 1 &&
1780 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1781 		eager->tcp_ecn_ok = B_TRUE;
1782 	}
1783 
1784 	/*
1785 	 * The listener's conn_rcvbuf should be the default window size or a
1786 	 * window size changed via SO_RCVBUF option. First round up the
1787 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1788 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1789 	 * setting.
1790 	 *
1791 	 * Note if there is a rpipe metric associated with the remote host,
1792 	 * we should not inherit receive window size from listener.
1793 	 */
1794 	eager->tcp_rwnd = MSS_ROUNDUP(
1795 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1796 	    eager->tcp_rwnd), eager->tcp_mss);
1797 	if (eager->tcp_snd_ws_ok)
1798 		tcp_set_ws_value(eager);
1799 	/*
1800 	 * Note that this is the only place tcp_rwnd_set() is called for
1801 	 * accepting a connection.  We need to call it here instead of
1802 	 * after the 3-way handshake because we need to tell the other
1803 	 * side our rwnd in the SYN-ACK segment.
1804 	 */
1805 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1806 
1807 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1808 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1809 
1810 	ASSERT(econnp->conn_rcvbuf != 0 &&
1811 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1812 
1813 	/* Put a ref on the listener for the eager. */
1814 	CONN_INC_REF(lconnp);
1815 	mutex_enter(&listener->tcp_eager_lock);
1816 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1817 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1818 	listener->tcp_eager_next_q0 = eager;
1819 	eager->tcp_eager_prev_q0 = listener;
1820 
1821 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1822 	eager->tcp_listener = listener;
1823 	eager->tcp_saved_listener = listener;
1824 
1825 	/*
1826 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1827 	 * is decremented.
1828 	 */
1829 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1830 
1831 	/*
1832 	 * Tag this detached tcp vector for later retrieval
1833 	 * by our listener client in tcp_accept().
1834 	 */
1835 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1836 	listener->tcp_conn_req_cnt_q0++;
1837 	if (++listener->tcp_conn_req_seqnum == -1) {
1838 		/*
1839 		 * -1 is "special" and defined in TPI as something
1840 		 * that should never be used in T_CONN_IND
1841 		 */
1842 		++listener->tcp_conn_req_seqnum;
1843 	}
1844 	mutex_exit(&listener->tcp_eager_lock);
1845 
1846 	if (listener->tcp_syn_defense) {
1847 		/* Don't drop the SYN that comes from a good IP source */
1848 		ipaddr_t *addr_cache;
1849 
1850 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1851 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1852 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1853 			eager->tcp_dontdrop = B_TRUE;
1854 		}
1855 	}
1856 
1857 	/*
1858 	 * We need to insert the eager in its own perimeter but as soon
1859 	 * as we do that, we expose the eager to the classifier and
1860 	 * should not touch any field outside the eager's perimeter.
1861 	 * So do all the work necessary before inserting the eager
1862 	 * in its own perimeter. Be optimistic that conn_connect()
1863 	 * will succeed but undo everything if it fails.
1864 	 */
1865 	seg_seq = ntohl(tcpha->tha_seq);
1866 	eager->tcp_irs = seg_seq;
1867 	eager->tcp_rack = seg_seq;
1868 	eager->tcp_rnxt = seg_seq + 1;
1869 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1870 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1871 	eager->tcp_state = TCPS_SYN_RCVD;
1872 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1873 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1874 	    int32_t, TCPS_LISTEN);
1875 
1876 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1877 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1878 	if (mp1 == NULL) {
1879 		/*
1880 		 * Increment the ref count as we are going to
1881 		 * enqueueing an mp in squeue
1882 		 */
1883 		CONN_INC_REF(econnp);
1884 		goto error;
1885 	}
1886 
1887 	/*
1888 	 * We need to start the rto timer. In normal case, we start
1889 	 * the timer after sending the packet on the wire (or at
1890 	 * least believing that packet was sent by waiting for
1891 	 * conn_ip_output() to return). Since this is the first packet
1892 	 * being sent on the wire for the eager, our initial tcp_rto
1893 	 * is at least tcp_rexmit_interval_min which is a fairly
1894 	 * large value to allow the algorithm to adjust slowly to large
1895 	 * fluctuations of RTT during first few transmissions.
1896 	 *
1897 	 * Starting the timer first and then sending the packet in this
1898 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1899 	 * is of the order of several 100ms and starting the timer
1900 	 * first and then sending the packet will result in difference
1901 	 * of few micro seconds.
1902 	 *
1903 	 * Without this optimization, we are forced to hold the fanout
1904 	 * lock across the ipcl_bind_insert() and sending the packet
1905 	 * so that we don't race against an incoming packet (maybe RST)
1906 	 * for this eager.
1907 	 *
1908 	 * It is necessary to acquire an extra reference on the eager
1909 	 * at this point and hold it until after tcp_send_data() to
1910 	 * ensure against an eager close race.
1911 	 */
1912 
1913 	CONN_INC_REF(econnp);
1914 
1915 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1916 
1917 	/*
1918 	 * Insert the eager in its own perimeter now. We are ready to deal
1919 	 * with any packets on eager.
1920 	 */
1921 	if (ipcl_conn_insert(econnp) != 0)
1922 		goto error;
1923 
1924 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1925 	freemsg(mp);
1926 	/*
1927 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1928 	 * only used by one thread at a time.
1929 	 */
1930 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1931 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1932 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1933 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1934 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1935 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1936 		CONN_DEC_REF(econnp);
1937 	} else {
1938 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1939 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1940 	}
1941 	return;
1942 error:
1943 	freemsg(mp1);
1944 	eager->tcp_closemp_used = B_TRUE;
1945 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1946 	mp1 = &eager->tcp_closemp;
1947 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1948 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1949 
1950 	/*
1951 	 * If a connection already exists, send the mp to that connections so
1952 	 * that it can be appropriately dealt with.
1953 	 */
1954 	ipst = tcps->tcps_netstack->netstack_ip;
1955 
1956 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1957 		if (!IPCL_IS_CONNECTED(econnp)) {
1958 			/*
1959 			 * Something bad happened. ipcl_conn_insert()
1960 			 * failed because a connection already existed
1961 			 * in connected hash but we can't find it
1962 			 * anymore (someone blew it away). Just
1963 			 * free this message and hopefully remote
1964 			 * will retransmit at which time the SYN can be
1965 			 * treated as a new connection or dealth with
1966 			 * a TH_RST if a connection already exists.
1967 			 */
1968 			CONN_DEC_REF(econnp);
1969 			freemsg(mp);
1970 		} else {
1971 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1972 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1973 		}
1974 	} else {
1975 		/* Nobody wants this packet */
1976 		freemsg(mp);
1977 	}
1978 	return;
1979 error3:
1980 	CONN_DEC_REF(econnp);
1981 error2:
1982 	freemsg(mp);
1983 	if (tlc_set)
1984 		atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt);
1985 }
1986 
1987 /*
1988  * In an ideal case of vertical partition in NUMA architecture, its
1989  * beneficial to have the listener and all the incoming connections
1990  * tied to the same squeue. The other constraint is that incoming
1991  * connections should be tied to the squeue attached to interrupted
1992  * CPU for obvious locality reason so this leaves the listener to
1993  * be tied to the same squeue. Our only problem is that when listener
1994  * is binding, the CPU that will get interrupted by the NIC whose
1995  * IP address the listener is binding to is not even known. So
1996  * the code below allows us to change that binding at the time the
1997  * CPU is interrupted by virtue of incoming connection's squeue.
1998  *
1999  * This is usefull only in case of a listener bound to a specific IP
2000  * address. For other kind of listeners, they get bound the
2001  * very first time and there is no attempt to rebind them.
2002  */
2003 void
tcp_input_listener_unbound(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)2004 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
2005     ip_recv_attr_t *ira)
2006 {
2007 	conn_t		*connp = (conn_t *)arg;
2008 	squeue_t	*sqp = (squeue_t *)arg2;
2009 	squeue_t	*new_sqp;
2010 	uint32_t	conn_flags;
2011 
2012 	/*
2013 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
2014 	 * or based on the ring (for packets from GLD). Otherwise it is
2015 	 * set based on lbolt i.e., a somewhat random number.
2016 	 */
2017 	ASSERT(ira->ira_sqp != NULL);
2018 	new_sqp = ira->ira_sqp;
2019 
2020 	if (connp->conn_fanout == NULL)
2021 		goto done;
2022 
2023 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
2024 		mutex_enter(&connp->conn_fanout->connf_lock);
2025 		mutex_enter(&connp->conn_lock);
2026 		/*
2027 		 * No one from read or write side can access us now
2028 		 * except for already queued packets on this squeue.
2029 		 * But since we haven't changed the squeue yet, they
2030 		 * can't execute. If they are processed after we have
2031 		 * changed the squeue, they are sent back to the
2032 		 * correct squeue down below.
2033 		 * But a listner close can race with processing of
2034 		 * incoming SYN. If incoming SYN processing changes
2035 		 * the squeue then the listener close which is waiting
2036 		 * to enter the squeue would operate on the wrong
2037 		 * squeue. Hence we don't change the squeue here unless
2038 		 * the refcount is exactly the minimum refcount. The
2039 		 * minimum refcount of 4 is counted as - 1 each for
2040 		 * TCP and IP, 1 for being in the classifier hash, and
2041 		 * 1 for the mblk being processed.
2042 		 */
2043 
2044 		if (connp->conn_ref != 4 ||
2045 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
2046 			mutex_exit(&connp->conn_lock);
2047 			mutex_exit(&connp->conn_fanout->connf_lock);
2048 			goto done;
2049 		}
2050 		if (connp->conn_sqp != new_sqp) {
2051 			while (connp->conn_sqp != new_sqp)
2052 				(void) atomic_cas_ptr(&connp->conn_sqp, sqp,
2053 				    new_sqp);
2054 			/* No special MT issues for outbound ixa_sqp hint */
2055 			connp->conn_ixa->ixa_sqp = new_sqp;
2056 		}
2057 
2058 		do {
2059 			conn_flags = connp->conn_flags;
2060 			conn_flags |= IPCL_FULLY_BOUND;
2061 			(void) atomic_cas_32(&connp->conn_flags,
2062 			    connp->conn_flags, conn_flags);
2063 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
2064 
2065 		mutex_exit(&connp->conn_fanout->connf_lock);
2066 		mutex_exit(&connp->conn_lock);
2067 
2068 		/*
2069 		 * Assume we have picked a good squeue for the listener. Make
2070 		 * subsequent SYNs not try to change the squeue.
2071 		 */
2072 		connp->conn_recv = tcp_input_listener;
2073 	}
2074 
2075 done:
2076 	if (connp->conn_sqp != sqp) {
2077 		CONN_INC_REF(connp);
2078 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
2079 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
2080 	} else {
2081 		tcp_input_listener(connp, mp, sqp, ira);
2082 	}
2083 }
2084 
2085 /*
2086  * Send up all messages queued on tcp_rcv_list.
2087  */
2088 uint_t
tcp_rcv_drain(tcp_t * tcp)2089 tcp_rcv_drain(tcp_t *tcp)
2090 {
2091 	mblk_t *mp;
2092 	uint_t ret = 0;
2093 #ifdef DEBUG
2094 	uint_t cnt = 0;
2095 #endif
2096 	queue_t	*q = tcp->tcp_connp->conn_rq;
2097 
2098 	/* Can't drain on an eager connection */
2099 	if (tcp->tcp_listener != NULL)
2100 		return (ret);
2101 
2102 	/* Can't be a non-STREAMS connection */
2103 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
2104 
2105 	/* No need for the push timer now. */
2106 	if (tcp->tcp_push_tid != 0) {
2107 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
2108 		tcp->tcp_push_tid = 0;
2109 	}
2110 
2111 	/*
2112 	 * Handle two cases here: we are currently fused or we were
2113 	 * previously fused and have some urgent data to be delivered
2114 	 * upstream.  The latter happens because we either ran out of
2115 	 * memory or were detached and therefore sending the SIGURG was
2116 	 * deferred until this point.  In either case we pass control
2117 	 * over to tcp_fuse_rcv_drain() since it may need to complete
2118 	 * some work.
2119 	 */
2120 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
2121 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
2122 		    &tcp->tcp_fused_sigurg_mp))
2123 			return (ret);
2124 	}
2125 
2126 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2127 		tcp->tcp_rcv_list = mp->b_next;
2128 		mp->b_next = NULL;
2129 #ifdef DEBUG
2130 		cnt += msgdsize(mp);
2131 #endif
2132 		putnext(q, mp);
2133 	}
2134 #ifdef DEBUG
2135 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2136 #endif
2137 	tcp->tcp_rcv_last_head = NULL;
2138 	tcp->tcp_rcv_last_tail = NULL;
2139 	tcp->tcp_rcv_cnt = 0;
2140 
2141 	if (canputnext(q))
2142 		return (tcp_rwnd_reopen(tcp));
2143 
2144 	return (ret);
2145 }
2146 
2147 /*
2148  * Queue data on tcp_rcv_list which is a b_next chain.
2149  * tcp_rcv_last_head/tail is the last element of this chain.
2150  * Each element of the chain is a b_cont chain.
2151  *
2152  * M_DATA messages are added to the current element.
2153  * Other messages are added as new (b_next) elements.
2154  */
2155 void
tcp_rcv_enqueue(tcp_t * tcp,mblk_t * mp,uint_t seg_len,cred_t * cr)2156 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2157 {
2158 	ASSERT(seg_len == msgdsize(mp));
2159 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2160 
2161 	if (is_system_labeled()) {
2162 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2163 		/*
2164 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2165 		 * db_cpid unchanged.
2166 		 * The cred could have already been set.
2167 		 */
2168 		if (cr != NULL)
2169 			mblk_setcred(mp, cr, NOPID);
2170 	}
2171 
2172 	if (tcp->tcp_rcv_list == NULL) {
2173 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2174 		tcp->tcp_rcv_list = mp;
2175 		tcp->tcp_rcv_last_head = mp;
2176 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2177 		tcp->tcp_rcv_last_tail->b_cont = mp;
2178 	} else {
2179 		tcp->tcp_rcv_last_head->b_next = mp;
2180 		tcp->tcp_rcv_last_head = mp;
2181 	}
2182 
2183 	while (mp->b_cont)
2184 		mp = mp->b_cont;
2185 
2186 	tcp->tcp_rcv_last_tail = mp;
2187 	tcp->tcp_rcv_cnt += seg_len;
2188 	tcp->tcp_rwnd -= seg_len;
2189 }
2190 
2191 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2192 mblk_t *
tcp_ack_mp(tcp_t * tcp)2193 tcp_ack_mp(tcp_t *tcp)
2194 {
2195 	uint32_t	seq_no;
2196 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2197 	conn_t		*connp = tcp->tcp_connp;
2198 
2199 	/*
2200 	 * There are a few cases to be considered while setting the sequence no.
2201 	 * Essentially, we can come here while processing an unacceptable pkt
2202 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2203 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2204 	 * If we are here for a zero window probe, stick with suna. In all
2205 	 * other cases, we check if suna + swnd encompasses snxt and set
2206 	 * the sequence number to snxt, if so. If snxt falls outside the
2207 	 * window (the receiver probably shrunk its window), we will go with
2208 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2209 	 * receiver.
2210 	 */
2211 	if (tcp->tcp_zero_win_probe) {
2212 		seq_no = tcp->tcp_suna;
2213 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2214 		ASSERT(tcp->tcp_swnd == 0);
2215 		seq_no = tcp->tcp_snxt;
2216 	} else {
2217 		seq_no = SEQ_GT(tcp->tcp_snxt,
2218 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2219 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2220 	}
2221 
2222 	if (tcp->tcp_valid_bits || tcp->tcp_md5sig) {
2223 		/*
2224 		 * For the complex cases where we have to send some
2225 		 * controls (FIN or SYN), or add an MD5 signature
2226 		 * option, let tcp_xmit_mp do it.
2227 		 */
2228 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2229 		    NULL, B_FALSE));
2230 	} else {
2231 		/* Generate a simple ACK */
2232 		int	data_length;
2233 		uchar_t	*rptr;
2234 		tcpha_t	*tcpha;
2235 		mblk_t	*mp1;
2236 		int32_t	total_hdr_len;
2237 		int32_t	tcp_hdr_len;
2238 		int32_t	num_sack_blk = 0;
2239 		int32_t sack_opt_len;
2240 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2241 
2242 		/*
2243 		 * Allocate space for TCP + IP headers
2244 		 * and link-level header
2245 		 */
2246 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2247 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2248 			    tcp->tcp_num_sack_blk);
2249 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2250 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2251 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2252 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2253 		} else {
2254 			total_hdr_len = connp->conn_ht_iphc_len;
2255 			tcp_hdr_len = connp->conn_ht_ulp_len;
2256 		}
2257 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2258 		if (!mp1)
2259 			return (NULL);
2260 
2261 		/* Update the latest receive window size in TCP header. */
2262 		tcp->tcp_tcpha->tha_win =
2263 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2264 		/* copy in prototype TCP + IP header */
2265 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2266 		mp1->b_rptr = rptr;
2267 		mp1->b_wptr = rptr + total_hdr_len;
2268 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2269 
2270 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2271 
2272 		/* Set the TCP sequence number. */
2273 		tcpha->tha_seq = htonl(seq_no);
2274 
2275 		/* Set up the TCP flag field. */
2276 		tcpha->tha_flags = (uchar_t)TH_ACK;
2277 		if (tcp->tcp_ecn_echo_on)
2278 			tcpha->tha_flags |= TH_ECE;
2279 
2280 		tcp->tcp_rack = tcp->tcp_rnxt;
2281 		tcp->tcp_rack_cnt = 0;
2282 
2283 		/* fill in timestamp option if in use */
2284 		if (tcp->tcp_snd_ts_ok) {
2285 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2286 
2287 			U32_TO_BE32(llbolt,
2288 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2289 			U32_TO_BE32(tcp->tcp_ts_recent,
2290 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2291 		}
2292 
2293 		/* Fill in SACK options */
2294 		if (num_sack_blk > 0) {
2295 			uchar_t *wptr = (uchar_t *)tcpha +
2296 			    connp->conn_ht_ulp_len;
2297 			sack_blk_t *tmp;
2298 			int32_t	i;
2299 
2300 			wptr[0] = TCPOPT_NOP;
2301 			wptr[1] = TCPOPT_NOP;
2302 			wptr[2] = TCPOPT_SACK;
2303 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2304 			    sizeof (sack_blk_t);
2305 			wptr += TCPOPT_REAL_SACK_LEN;
2306 
2307 			tmp = tcp->tcp_sack_list;
2308 			for (i = 0; i < num_sack_blk; i++) {
2309 				U32_TO_BE32(tmp[i].begin, wptr);
2310 				wptr += sizeof (tcp_seq);
2311 				U32_TO_BE32(tmp[i].end, wptr);
2312 				wptr += sizeof (tcp_seq);
2313 			}
2314 			tcpha->tha_offset_and_reserved +=
2315 			    ((num_sack_blk * 2 + 1) << 4);
2316 		}
2317 
2318 		ixa->ixa_pktlen = total_hdr_len;
2319 
2320 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2321 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2322 		} else {
2323 			ip6_t *ip6 = (ip6_t *)rptr;
2324 
2325 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2326 		}
2327 
2328 		/*
2329 		 * Prime pump for checksum calculation in IP.  Include the
2330 		 * adjustment for a source route if any.
2331 		 */
2332 		data_length = tcp_hdr_len + connp->conn_sum;
2333 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2334 		tcpha->tha_sum = htons(data_length);
2335 
2336 		if (tcp->tcp_ip_forward_progress) {
2337 			tcp->tcp_ip_forward_progress = B_FALSE;
2338 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2339 		} else {
2340 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2341 		}
2342 		return (mp1);
2343 	}
2344 }
2345 
2346 /*
2347  * Dummy socket upcalls for if/when the conn_t gets detached from a
2348  * direct-callback sonode via a user-driven close().  Easy to catch with
2349  * DTrace FBT, and should be mostly harmless.
2350  */
2351 
2352 /* ARGSUSED */
2353 static sock_upper_handle_t
tcp_dummy_newconn(sock_upper_handle_t x,sock_lower_handle_t y,sock_downcalls_t * z,cred_t * cr,pid_t pid,sock_upcalls_t ** ignored)2354 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2355     sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2356 {
2357 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2358 	return (NULL);
2359 }
2360 
2361 /* ARGSUSED */
2362 static void
tcp_dummy_connected(sock_upper_handle_t x,sock_connid_t y,cred_t * cr,pid_t pid)2363 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2364     pid_t pid)
2365 {
2366 	ASSERT(x == NULL);
2367 	/* Normally we'd crhold(cr) and attach it to socket state. */
2368 	/* LINTED */
2369 }
2370 
2371 /* ARGSUSED */
2372 static int
tcp_dummy_disconnected(sock_upper_handle_t x,sock_connid_t y,int blah)2373 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2374 {
2375 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2376 	return (-1);
2377 }
2378 
2379 /* ARGSUSED */
2380 static void
tcp_dummy_opctl(sock_upper_handle_t x,sock_opctl_action_t y,uintptr_t blah)2381 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2382 {
2383 	ASSERT(x == NULL);
2384 	/* We really want this one to be a harmless NOP for now. */
2385 	/* LINTED */
2386 }
2387 
2388 /* ARGSUSED */
2389 static ssize_t
tcp_dummy_recv(sock_upper_handle_t x,mblk_t * mp,size_t len,int flags,int * error,boolean_t * push)2390 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2391     int *error, boolean_t *push)
2392 {
2393 	ASSERT(x == NULL);
2394 
2395 	/*
2396 	 * Consume the message, set ESHUTDOWN, and return an error.
2397 	 * Nobody's home!
2398 	 */
2399 	freemsg(mp);
2400 	*error = ESHUTDOWN;
2401 	return (-1);
2402 }
2403 
2404 /* ARGSUSED */
2405 static void
tcp_dummy_set_proto_props(sock_upper_handle_t x,struct sock_proto_props * y)2406 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2407 {
2408 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2409 }
2410 
2411 /* ARGSUSED */
2412 static void
tcp_dummy_txq_full(sock_upper_handle_t x,boolean_t y)2413 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2414 {
2415 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2416 }
2417 
2418 /* ARGSUSED */
2419 static void
tcp_dummy_signal_oob(sock_upper_handle_t x,ssize_t len)2420 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2421 {
2422 	ASSERT(x == NULL);
2423 	/* Otherwise, this would signal socket state about OOB data. */
2424 }
2425 
2426 /* ARGSUSED */
2427 static void
tcp_dummy_set_error(sock_upper_handle_t x,int err)2428 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2429 {
2430 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2431 }
2432 
2433 /* ARGSUSED */
2434 static void
tcp_dummy_onearg(sock_upper_handle_t x)2435 tcp_dummy_onearg(sock_upper_handle_t x)
2436 {
2437 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2438 }
2439 
2440 static sock_upcalls_t tcp_dummy_upcalls = {
2441 	tcp_dummy_newconn,
2442 	tcp_dummy_connected,
2443 	tcp_dummy_disconnected,
2444 	tcp_dummy_opctl,
2445 	tcp_dummy_recv,
2446 	tcp_dummy_set_proto_props,
2447 	tcp_dummy_txq_full,
2448 	tcp_dummy_signal_oob,
2449 	tcp_dummy_onearg,
2450 	tcp_dummy_set_error,
2451 	tcp_dummy_onearg
2452 };
2453 
2454 /*
2455  * Handle M_DATA messages from IP. Its called directly from IP via
2456  * squeue for received IP packets.
2457  *
2458  * The first argument is always the connp/tcp to which the mp belongs.
2459  * There are no exceptions to this rule. The caller has already put
2460  * a reference on this connp/tcp and once tcp_input_data() returns,
2461  * the squeue will do the refrele.
2462  *
2463  * The TH_SYN for the listener directly go to tcp_input_listener via
2464  * squeue. ICMP errors go directly to tcp_icmp_input().
2465  *
2466  * sqp: NULL = recursive, sqp != NULL means called from squeue
2467  */
2468 void
tcp_input_data(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)2469 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2470 {
2471 	int32_t		bytes_acked;
2472 	int32_t		gap;
2473 	mblk_t		*mp1;
2474 	uint_t		flags;
2475 	uint32_t	new_swnd = 0;
2476 	uchar_t		*iphdr;
2477 	uchar_t		*rptr;
2478 	int32_t		rgap;
2479 	uint32_t	seg_ack;
2480 	int		seg_len;
2481 	uint_t		ip_hdr_len;
2482 	uint32_t	seg_seq;
2483 	tcpha_t		*tcpha;
2484 	int		urp;
2485 	tcp_opt_t	tcpopt;
2486 	ip_pkt_t	ipp;
2487 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2488 	uint32_t	cwnd;
2489 	int		mss;
2490 	conn_t		*connp = (conn_t *)arg;
2491 	squeue_t	*sqp = (squeue_t *)arg2;
2492 	tcp_t		*tcp = connp->conn_tcp;
2493 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2494 	sock_upcalls_t	*sockupcalls;
2495 
2496 	/*
2497 	 * RST from fused tcp loopback peer should trigger an unfuse.
2498 	 */
2499 	if (tcp->tcp_fused) {
2500 		TCP_STAT(tcps, tcp_fusion_aborted);
2501 		tcp_unfuse(tcp);
2502 	}
2503 
2504 	mss = 0;
2505 	iphdr = mp->b_rptr;
2506 	rptr = mp->b_rptr;
2507 	ASSERT(OK_32PTR(rptr));
2508 
2509 	ip_hdr_len = ira->ira_ip_hdr_length;
2510 	if (connp->conn_recv_ancillary.crb_all != 0) {
2511 		/*
2512 		 * Record packet information in the ip_pkt_t
2513 		 */
2514 		ipp.ipp_fields = 0;
2515 		if (ira->ira_flags & IRAF_IS_IPV4) {
2516 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2517 			    B_FALSE);
2518 		} else {
2519 			uint8_t nexthdrp;
2520 
2521 			/*
2522 			 * IPv6 packets can only be received by applications
2523 			 * that are prepared to receive IPv6 addresses.
2524 			 * The IP fanout must ensure this.
2525 			 */
2526 			ASSERT(connp->conn_family == AF_INET6);
2527 
2528 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2529 			    &nexthdrp);
2530 			ASSERT(nexthdrp == IPPROTO_TCP);
2531 
2532 			/* Could have caused a pullup? */
2533 			iphdr = mp->b_rptr;
2534 			rptr = mp->b_rptr;
2535 		}
2536 	}
2537 	ASSERT(DB_TYPE(mp) == M_DATA);
2538 	ASSERT(mp->b_next == NULL);
2539 
2540 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2541 	seg_seq = ntohl(tcpha->tha_seq);
2542 	seg_ack = ntohl(tcpha->tha_ack);
2543 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2544 	seg_len = (int)(mp->b_wptr - rptr) -
2545 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2546 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2547 		do {
2548 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2549 			    (uintptr_t)INT_MAX);
2550 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2551 		} while ((mp1 = mp1->b_cont) != NULL &&
2552 		    mp1->b_datap->db_type == M_DATA);
2553 	}
2554 
2555 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2556 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2557 	    __dtrace_tcp_tcph_t *, tcpha);
2558 
2559 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2560 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2561 		    seg_len, tcpha, ira);
2562 		return;
2563 	}
2564 
2565 	if (sqp != NULL) {
2566 		/*
2567 		 * This is the correct place to update tcp_last_recv_time. Note
2568 		 * that it is also updated for tcp structure that belongs to
2569 		 * global and listener queues which do not really need updating.
2570 		 * But that should not cause any harm.  And it is updated for
2571 		 * all kinds of incoming segments, not only for data segments.
2572 		 */
2573 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2574 	}
2575 
2576 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2577 
2578 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
2579 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2580 
2581 	if ((flags & TH_URG) && sqp != NULL) {
2582 		/*
2583 		 * TCP can't handle urgent pointers that arrive before
2584 		 * the connection has been accept()ed since it can't
2585 		 * buffer OOB data.  Discard segment if this happens.
2586 		 *
2587 		 * We can't just rely on a non-null tcp_listener to indicate
2588 		 * that the accept() has completed since unlinking of the
2589 		 * eager and completion of the accept are not atomic.
2590 		 * tcp_detached, when it is not set (B_FALSE) indicates
2591 		 * that the accept() has completed.
2592 		 *
2593 		 * Nor can it reassemble urgent pointers, so discard
2594 		 * if it's not the next segment expected.
2595 		 *
2596 		 * Otherwise, collapse chain into one mblk (discard if
2597 		 * that fails).  This makes sure the headers, retransmitted
2598 		 * data, and new data all are in the same mblk.
2599 		 */
2600 		ASSERT(mp != NULL);
2601 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2602 			freemsg(mp);
2603 			return;
2604 		}
2605 		/* Update pointers into message */
2606 		iphdr = rptr = mp->b_rptr;
2607 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2608 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2609 			/*
2610 			 * Since we can't handle any data with this urgent
2611 			 * pointer that is out of sequence, we expunge
2612 			 * the data.  This allows us to still register
2613 			 * the urgent mark and generate the M_PCSIG,
2614 			 * which we can do.
2615 			 */
2616 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2617 			seg_len = 0;
2618 		}
2619 	}
2620 
2621 	sockupcalls = connp->conn_upcalls;
2622 	/* A conn_t may have belonged to a now-closed socket.  Be careful. */
2623 	if (sockupcalls == NULL)
2624 		sockupcalls = &tcp_dummy_upcalls;
2625 
2626 	switch (tcp->tcp_state) {
2627 	case TCPS_SYN_SENT:
2628 		if (connp->conn_final_sqp == NULL &&
2629 		    tcp_outbound_squeue_switch && sqp != NULL) {
2630 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2631 			connp->conn_final_sqp = sqp;
2632 			if (connp->conn_final_sqp != connp->conn_sqp) {
2633 				DTRACE_PROBE1(conn__final__sqp__switch,
2634 				    conn_t *, connp);
2635 				CONN_INC_REF(connp);
2636 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2637 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2638 				    tcp_input_data, connp, ira, ip_squeue_flag,
2639 				    SQTAG_CONNECT_FINISH);
2640 				return;
2641 			}
2642 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2643 		}
2644 		if (flags & TH_ACK) {
2645 			/*
2646 			 * Note that our stack cannot send data before a
2647 			 * connection is established, therefore the
2648 			 * following check is valid.  Otherwise, it has
2649 			 * to be changed.
2650 			 */
2651 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2652 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2653 				freemsg(mp);
2654 				if (flags & TH_RST)
2655 					return;
2656 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2657 				    tcp, seg_ack, 0, TH_RST);
2658 				return;
2659 			}
2660 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2661 		}
2662 		if (flags & TH_RST) {
2663 			if (flags & TH_ACK) {
2664 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2665 				    ip_xmit_attr_t *, connp->conn_ixa,
2666 				    void_ip_t *, iphdr, tcp_t *, tcp,
2667 				    tcph_t *, tcpha);
2668 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2669 			}
2670 			freemsg(mp);
2671 			return;
2672 		}
2673 		if (!(flags & TH_SYN)) {
2674 			freemsg(mp);
2675 			return;
2676 		}
2677 
2678 		/* Process all TCP options. */
2679 		if (!tcp_process_options(mp, tcp, tcpha, ira)) {
2680 			freemsg(mp);
2681 			return;
2682 		}
2683 		/*
2684 		 * The following changes our rwnd to be a multiple of the
2685 		 * MIN(peer MSS, our MSS) for performance reason.
2686 		 */
2687 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2688 		    tcp->tcp_mss));
2689 
2690 		/* Is the other end ECN capable? */
2691 		if (tcp->tcp_ecn_ok) {
2692 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2693 				tcp->tcp_ecn_ok = B_FALSE;
2694 			}
2695 		}
2696 		/*
2697 		 * Clear ECN flags because it may interfere with later
2698 		 * processing.
2699 		 */
2700 		flags &= ~(TH_ECE|TH_CWR);
2701 
2702 		tcp->tcp_irs = seg_seq;
2703 		tcp->tcp_rack = seg_seq;
2704 		tcp->tcp_rnxt = seg_seq + 1;
2705 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2706 		if (!TCP_IS_DETACHED(tcp)) {
2707 			/* Allocate room for SACK options if needed. */
2708 			connp->conn_wroff = connp->conn_ht_iphc_len;
2709 			if (tcp->tcp_snd_sack_ok)
2710 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2711 			if (!tcp->tcp_loopback)
2712 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2713 
2714 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2715 			    connp->conn_wroff);
2716 		}
2717 		if (flags & TH_ACK) {
2718 			/*
2719 			 * If we can't get the confirmation upstream, pretend
2720 			 * we didn't even see this one.
2721 			 *
2722 			 * XXX: how can we pretend we didn't see it if we
2723 			 * have updated rnxt et. al.
2724 			 *
2725 			 * For loopback we defer sending up the T_CONN_CON
2726 			 * until after some checks below.
2727 			 */
2728 			mp1 = NULL;
2729 			/*
2730 			 * tcp_sendmsg() checks tcp_state without entering
2731 			 * the squeue so tcp_state should be updated before
2732 			 * sending up connection confirmation.  Probe the
2733 			 * state change below when we are sure the connection
2734 			 * confirmation has been sent.
2735 			 */
2736 			tcp->tcp_state = TCPS_ESTABLISHED;
2737 			if (!tcp_conn_con(tcp, iphdr, mp,
2738 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2739 				tcp->tcp_state = TCPS_SYN_SENT;
2740 				freemsg(mp);
2741 				return;
2742 			}
2743 			TCPS_CONN_INC(tcps);
2744 			/* SYN was acked - making progress */
2745 			tcp->tcp_ip_forward_progress = B_TRUE;
2746 
2747 			/* One for the SYN */
2748 			tcp->tcp_suna = tcp->tcp_iss + 1;
2749 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2750 
2751 			/*
2752 			 * If SYN was retransmitted, need to reset all
2753 			 * retransmission info.  This is because this
2754 			 * segment will be treated as a dup ACK.
2755 			 */
2756 			if (tcp->tcp_rexmit) {
2757 				tcp->tcp_rexmit = B_FALSE;
2758 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2759 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2760 				tcp->tcp_ms_we_have_waited = 0;
2761 
2762 				/*
2763 				 * Set tcp_cwnd back to 1 MSS, per
2764 				 * recommendation from
2765 				 * draft-floyd-incr-init-win-01.txt,
2766 				 * Increasing TCP's Initial Window.
2767 				 */
2768 				DTRACE_PROBE3(cwnd__retransmitted__syn,
2769 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
2770 				    uint32_t, tcp->tcp_mss);
2771 				tcp->tcp_cwnd = tcp->tcp_mss;
2772 			}
2773 
2774 			tcp->tcp_swl1 = seg_seq;
2775 			tcp->tcp_swl2 = seg_ack;
2776 
2777 			new_swnd = ntohs(tcpha->tha_win);
2778 			tcp->tcp_swnd = new_swnd;
2779 			if (new_swnd > tcp->tcp_max_swnd)
2780 				tcp->tcp_max_swnd = new_swnd;
2781 
2782 			/*
2783 			 * Always send the three-way handshake ack immediately
2784 			 * in order to make the connection complete as soon as
2785 			 * possible on the accepting host.
2786 			 */
2787 			flags |= TH_ACK_NEEDED;
2788 
2789 			/*
2790 			 * Trace connect-established here.
2791 			 */
2792 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2793 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2794 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2795 
2796 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2797 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2798 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2799 			    void, NULL, int32_t, TCPS_SYN_SENT);
2800 
2801 			/*
2802 			 * Special case for loopback.  At this point we have
2803 			 * received SYN-ACK from the remote endpoint.  In
2804 			 * order to ensure that both endpoints reach the
2805 			 * fused state prior to any data exchange, the final
2806 			 * ACK needs to be sent before we indicate T_CONN_CON
2807 			 * to the module upstream.
2808 			 */
2809 			if (tcp->tcp_loopback) {
2810 				mblk_t *ack_mp;
2811 
2812 				ASSERT(!tcp->tcp_unfusable);
2813 				ASSERT(mp1 != NULL);
2814 				/*
2815 				 * For loopback, we always get a pure SYN-ACK
2816 				 * and only need to send back the final ACK
2817 				 * with no data (this is because the other
2818 				 * tcp is ours and we don't do T/TCP).  This
2819 				 * final ACK triggers the passive side to
2820 				 * perform fusion in ESTABLISHED state.
2821 				 */
2822 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2823 					if (tcp->tcp_ack_tid != 0) {
2824 						(void) TCP_TIMER_CANCEL(tcp,
2825 						    tcp->tcp_ack_tid);
2826 						tcp->tcp_ack_tid = 0;
2827 					}
2828 					tcp_send_data(tcp, ack_mp);
2829 					TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
2830 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2831 
2832 					if (!IPCL_IS_NONSTR(connp)) {
2833 						/* Send up T_CONN_CON */
2834 						if (ira->ira_cred != NULL) {
2835 							mblk_setcred(mp1,
2836 							    ira->ira_cred,
2837 							    ira->ira_cpid);
2838 						}
2839 						putnext(connp->conn_rq, mp1);
2840 					} else {
2841 						(*sockupcalls->su_connected)
2842 						    (connp->conn_upper_handle,
2843 						    tcp->tcp_connid,
2844 						    ira->ira_cred,
2845 						    ira->ira_cpid);
2846 						freemsg(mp1);
2847 					}
2848 
2849 					freemsg(mp);
2850 					return;
2851 				}
2852 				/*
2853 				 * Forget fusion; we need to handle more
2854 				 * complex cases below.  Send the deferred
2855 				 * T_CONN_CON message upstream and proceed
2856 				 * as usual.  Mark this tcp as not capable
2857 				 * of fusion.
2858 				 */
2859 				TCP_STAT(tcps, tcp_fusion_unfusable);
2860 				tcp->tcp_unfusable = B_TRUE;
2861 				if (!IPCL_IS_NONSTR(connp)) {
2862 					if (ira->ira_cred != NULL) {
2863 						mblk_setcred(mp1, ira->ira_cred,
2864 						    ira->ira_cpid);
2865 					}
2866 					putnext(connp->conn_rq, mp1);
2867 				} else {
2868 					(*sockupcalls->su_connected)
2869 					    (connp->conn_upper_handle,
2870 					    tcp->tcp_connid, ira->ira_cred,
2871 					    ira->ira_cpid);
2872 					freemsg(mp1);
2873 				}
2874 			}
2875 
2876 			/*
2877 			 * Check to see if there is data to be sent.  If
2878 			 * yes, set the transmit flag.  Then check to see
2879 			 * if received data processing needs to be done.
2880 			 * If not, go straight to xmit_check.  This short
2881 			 * cut is OK as we don't support T/TCP.
2882 			 */
2883 			if (tcp->tcp_unsent)
2884 				flags |= TH_XMIT_NEEDED;
2885 
2886 			if (seg_len == 0 && !(flags & TH_URG)) {
2887 				freemsg(mp);
2888 				goto xmit_check;
2889 			}
2890 
2891 			flags &= ~TH_SYN;
2892 			seg_seq++;
2893 			break;
2894 		}
2895 		tcp->tcp_state = TCPS_SYN_RCVD;
2896 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2897 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2898 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2899 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2900 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2901 		if (mp1 != NULL) {
2902 			tcp_send_data(tcp, mp1);
2903 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2904 		}
2905 		freemsg(mp);
2906 		return;
2907 	case TCPS_SYN_RCVD:
2908 		if (flags & TH_ACK) {
2909 			uint32_t pinit_wnd;
2910 
2911 			/*
2912 			 * In this state, a SYN|ACK packet is either bogus
2913 			 * because the other side must be ACKing our SYN which
2914 			 * indicates it has seen the ACK for their SYN and
2915 			 * shouldn't retransmit it or we're crossing SYNs
2916 			 * on active open.
2917 			 */
2918 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2919 				freemsg(mp);
2920 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2921 				    tcp, seg_ack, 0, TH_RST);
2922 				return;
2923 			}
2924 			/*
2925 			 * NOTE: RFC 793 pg. 72 says this should be
2926 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2927 			 * but that would mean we have an ack that ignored
2928 			 * our SYN.
2929 			 */
2930 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2931 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2932 				freemsg(mp);
2933 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2934 				    tcp, seg_ack, 0, TH_RST);
2935 				return;
2936 			}
2937 			/*
2938 			 * No sane TCP stack will send such a small window
2939 			 * without receiving any data.  Just drop this invalid
2940 			 * ACK.  We also shorten the abort timeout in case
2941 			 * this is an attack.
2942 			 */
2943 			pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2944 			if (pinit_wnd < tcp->tcp_mss &&
2945 			    pinit_wnd < tcp_init_wnd_chk) {
2946 				freemsg(mp);
2947 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2948 				tcp->tcp_second_ctimer_threshold =
2949 				    tcp_early_abort * SECONDS;
2950 				return;
2951 			}
2952 		}
2953 		break;
2954 	case TCPS_LISTEN:
2955 		/*
2956 		 * Only a TLI listener can come through this path when a
2957 		 * acceptor is going back to be a listener and a packet
2958 		 * for the acceptor hits the classifier. For a socket
2959 		 * listener, this can never happen because a listener
2960 		 * can never accept connection on itself and hence a
2961 		 * socket acceptor can not go back to being a listener.
2962 		 */
2963 		ASSERT(!TCP_IS_SOCKET(tcp));
2964 		/*FALLTHRU*/
2965 	case TCPS_CLOSED:
2966 	case TCPS_BOUND: {
2967 		conn_t	*new_connp;
2968 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2969 
2970 		/*
2971 		 * Don't accept any input on a closed tcp as this TCP logically
2972 		 * does not exist on the system. Don't proceed further with
2973 		 * this TCP. For instance, this packet could trigger another
2974 		 * close of this tcp which would be disastrous for tcp_refcnt.
2975 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2976 		 * be called at most once on a TCP. In this case we need to
2977 		 * refeed the packet into the classifier and figure out where
2978 		 * the packet should go.
2979 		 */
2980 		new_connp = ipcl_classify(mp, ira, ipst);
2981 		if (new_connp != NULL) {
2982 			/* Drops ref on new_connp */
2983 			tcp_reinput(new_connp, mp, ira, ipst);
2984 			return;
2985 		}
2986 		/* We failed to classify. For now just drop the packet */
2987 		freemsg(mp);
2988 		return;
2989 	}
2990 	case TCPS_IDLE:
2991 		/*
2992 		 * Handle the case where the tcp_clean_death() has happened
2993 		 * on a connection (application hasn't closed yet) but a packet
2994 		 * was already queued on squeue before tcp_clean_death()
2995 		 * was processed. Calling tcp_clean_death() twice on same
2996 		 * connection can result in weird behaviour.
2997 		 */
2998 		freemsg(mp);
2999 		return;
3000 	default:
3001 		break;
3002 	}
3003 
3004 	/*
3005 	 * Already on the correct queue/perimeter.
3006 	 * If this is a detached connection and not an eager
3007 	 * connection hanging off a listener then new data
3008 	 * (past the FIN) will cause a reset.
3009 	 * We do a special check here where it
3010 	 * is out of the main line, rather than check
3011 	 * if we are detached every time we see new
3012 	 * data down below.
3013 	 */
3014 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
3015 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
3016 		TCPS_BUMP_MIB(tcps, tcpInClosed);
3017 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
3018 		freemsg(mp);
3019 		tcp_xmit_ctl("new data when detached", tcp,
3020 		    tcp->tcp_snxt, 0, TH_RST);
3021 		(void) tcp_clean_death(tcp, EPROTO);
3022 		return;
3023 	}
3024 
3025 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
3026 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
3027 	new_swnd = ntohs(tcpha->tha_win) <<
3028 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
3029 
3030 	/*
3031 	 * We are interested in three TCP options: timestamps (if negotiated),
3032 	 * SACK (if negotiated) and MD5. Skip option parsing if none of these
3033 	 * is enabled/negotiated.
3034 	 */
3035 	if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok || tcp->tcp_md5sig) {
3036 		int options;
3037 
3038 		if (tcp->tcp_snd_sack_ok)
3039 			tcpopt.tcp = tcp;
3040 		else
3041 			tcpopt.tcp = NULL;
3042 
3043 		options = tcp_parse_options(tcpha, &tcpopt);
3044 
3045 		if (tcp->tcp_md5sig) {
3046 			if ((options & TCP_OPT_SIG_PRESENT) == 0) {
3047 				TCP_STAT(tcp->tcp_tcps, tcp_sig_no_option);
3048 				freemsg(mp);
3049 				return;
3050 			}
3051 			if (!tcpsig_verify(mp, tcp, tcpha, ira,
3052 			    tcpopt.tcp_opt_sig)) {
3053 				freemsg(mp);
3054 				return;
3055 			}
3056 		}
3057 		/*
3058 		 * RST segments must not be subject to PAWS and are not
3059 		 * required to have timestamps.
3060 		 * We do not drop keepalive segments without
3061 		 * timestamps, to maintain compatibility with legacy TCP stacks.
3062 		 */
3063 		boolean_t keepalive = (seg_len == 0 || seg_len == 1) &&
3064 		    (seg_seq + 1 == tcp->tcp_rnxt);
3065 		if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) {
3066 			/*
3067 			 * Per RFC 7323 section 3.2., silently drop non-RST
3068 			 * segments without expected TSopt. This is a 'SHOULD'
3069 			 * requirement.
3070 			 * We accept keepalives without TSopt to maintain
3071 			 * interoperability with tcp implementations that omit
3072 			 * the TSopt on these. Keepalive data is discarded, so
3073 			 * there is no risk corrupting data by accepting these.
3074 			 */
3075 			if (!(options & TCP_OPT_TSTAMP_PRESENT)) {
3076 				/*
3077 				 * Leave a breadcrumb for people to detect this
3078 				 * behavior.
3079 				 */
3080 				DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp);
3081 				freemsg(mp);
3082 				return;
3083 			}
3084 
3085 			if (!tcp_paws_check(tcp, &tcpopt)) {
3086 				/*
3087 				 * This segment is not acceptable.
3088 				 * Drop it and send back an ACK.
3089 				 */
3090 				freemsg(mp);
3091 				flags |= TH_ACK_NEEDED;
3092 				goto ack_check;
3093 			}
3094 		}
3095 	}
3096 try_again:;
3097 	mss = tcp->tcp_mss;
3098 	gap = seg_seq - tcp->tcp_rnxt;
3099 	rgap = tcp->tcp_rwnd - (gap + seg_len);
3100 	/*
3101 	 * gap is the amount of sequence space between what we expect to see
3102 	 * and what we got for seg_seq.  A positive value for gap means
3103 	 * something got lost.  A negative value means we got some old stuff.
3104 	 */
3105 	if (gap < 0) {
3106 		/* Old stuff present.  Is the SYN in there? */
3107 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
3108 		    (seg_len != 0)) {
3109 			flags &= ~TH_SYN;
3110 			seg_seq++;
3111 			urp--;
3112 			/* Recompute the gaps after noting the SYN. */
3113 			goto try_again;
3114 		}
3115 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
3116 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
3117 		    (seg_len > -gap ? -gap : seg_len));
3118 		/* Remove the old stuff from seg_len. */
3119 		seg_len += gap;
3120 		/*
3121 		 * Anything left?
3122 		 * Make sure to check for unack'd FIN when rest of data
3123 		 * has been previously ack'd.
3124 		 */
3125 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
3126 			/*
3127 			 * Resets are only valid if they lie within our offered
3128 			 * window.  If the RST bit is set, we just ignore this
3129 			 * segment.
3130 			 */
3131 			if (flags & TH_RST) {
3132 				freemsg(mp);
3133 				return;
3134 			}
3135 
3136 			/*
3137 			 * The arriving of dup data packets indicate that we
3138 			 * may have postponed an ack for too long, or the other
3139 			 * side's RTT estimate is out of shape. Start acking
3140 			 * more often.
3141 			 */
3142 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
3143 			    tcp->tcp_rack_cnt >= 1 &&
3144 			    tcp->tcp_rack_abs_max > 2) {
3145 				tcp->tcp_rack_abs_max--;
3146 			}
3147 			tcp->tcp_rack_cur_max = 1;
3148 
3149 			/*
3150 			 * This segment is "unacceptable".  None of its
3151 			 * sequence space lies within our advertized window.
3152 			 *
3153 			 * Adjust seg_len to the original value for tracing.
3154 			 */
3155 			seg_len -= gap;
3156 			if (connp->conn_debug) {
3157 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3158 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
3159 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
3160 				    "seg_len %d, rnxt %u, snxt %u, %s",
3161 				    gap, rgap, flags, seg_seq, seg_ack,
3162 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3163 				    tcp_display(tcp, NULL,
3164 				    DISP_ADDR_AND_PORT));
3165 			}
3166 
3167 			/*
3168 			 * Arrange to send an ACK in response to the
3169 			 * unacceptable segment per RFC 793 page 69. There
3170 			 * is only one small difference between ours and the
3171 			 * acceptability test in the RFC - we accept ACK-only
3172 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3173 			 * will be generated.
3174 			 *
3175 			 * Note that we have to ACK an ACK-only packet at least
3176 			 * for stacks that send 0-length keep-alives with
3177 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3178 			 * section 4.2.3.6. As long as we don't ever generate
3179 			 * an unacceptable packet in response to an incoming
3180 			 * packet that is unacceptable, it should not cause
3181 			 * "ACK wars".
3182 			 */
3183 			flags |= TH_ACK_NEEDED;
3184 
3185 			/*
3186 			 * Continue processing this segment in order to use the
3187 			 * ACK information it contains, but skip all other
3188 			 * sequence-number processing.	Processing the ACK
3189 			 * information is necessary in order to
3190 			 * re-synchronize connections that may have lost
3191 			 * synchronization.
3192 			 *
3193 			 * We clear seg_len and flag fields related to
3194 			 * sequence number processing as they are not
3195 			 * to be trusted for an unacceptable segment.
3196 			 */
3197 			seg_len = 0;
3198 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3199 			goto process_ack;
3200 		}
3201 
3202 		/* Fix seg_seq, and chew the gap off the front. */
3203 		seg_seq = tcp->tcp_rnxt;
3204 		urp += gap;
3205 		do {
3206 			mblk_t	*mp2;
3207 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3208 			    (uintptr_t)UINT_MAX);
3209 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3210 			if (gap > 0) {
3211 				mp->b_rptr = mp->b_wptr - gap;
3212 				break;
3213 			}
3214 			mp2 = mp;
3215 			mp = mp->b_cont;
3216 			freeb(mp2);
3217 		} while (gap < 0);
3218 		/*
3219 		 * If the urgent data has already been acknowledged, we
3220 		 * should ignore TH_URG below
3221 		 */
3222 		if (urp < 0)
3223 			flags &= ~TH_URG;
3224 	}
3225 	/*
3226 	 * rgap is the amount of stuff received out of window.  A negative
3227 	 * value is the amount out of window.
3228 	 */
3229 	if (rgap < 0) {
3230 		mblk_t	*mp2;
3231 
3232 		if (tcp->tcp_rwnd == 0) {
3233 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
3234 			tcp->tcp_cs.tcp_in_zwnd_probes++;
3235 		} else {
3236 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
3237 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
3238 		}
3239 
3240 		/*
3241 		 * seg_len does not include the FIN, so if more than
3242 		 * just the FIN is out of window, we act like we don't
3243 		 * see it.  (If just the FIN is out of window, rgap
3244 		 * will be zero and we will go ahead and acknowledge
3245 		 * the FIN.)
3246 		 */
3247 		flags &= ~TH_FIN;
3248 
3249 		/* Fix seg_len and make sure there is something left. */
3250 		seg_len += rgap;
3251 		if (seg_len <= 0) {
3252 			/*
3253 			 * Resets are only valid if they lie within our offered
3254 			 * window.  If the RST bit is set, we just ignore this
3255 			 * segment.
3256 			 */
3257 			if (flags & TH_RST) {
3258 				freemsg(mp);
3259 				return;
3260 			}
3261 
3262 			/* Per RFC 793, we need to send back an ACK. */
3263 			flags |= TH_ACK_NEEDED;
3264 
3265 			/*
3266 			 * Send SIGURG as soon as possible i.e. even
3267 			 * if the TH_URG was delivered in a window probe
3268 			 * packet (which will be unacceptable).
3269 			 *
3270 			 * We generate a signal if none has been generated
3271 			 * for this connection or if this is a new urgent
3272 			 * byte. Also send a zero-length "unmarked" message
3273 			 * to inform SIOCATMARK that this is not the mark.
3274 			 *
3275 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
3276 			 * is sent up. This plus the check for old data
3277 			 * (gap >= 0) handles the wraparound of the sequence
3278 			 * number space without having to always track the
3279 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3280 			 * this max in its rcv_up variable).
3281 			 *
3282 			 * This prevents duplicate SIGURGS due to a "late"
3283 			 * zero-window probe when the T_EXDATA_IND has already
3284 			 * been sent up.
3285 			 */
3286 			if ((flags & TH_URG) &&
3287 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3288 			    tcp->tcp_urp_last))) {
3289 				if (IPCL_IS_NONSTR(connp)) {
3290 					if (!TCP_IS_DETACHED(tcp)) {
3291 						(*sockupcalls->su_signal_oob)
3292 						    (connp->conn_upper_handle,
3293 						    urp);
3294 					}
3295 				} else {
3296 					mp1 = allocb(0, BPRI_MED);
3297 					if (mp1 == NULL) {
3298 						freemsg(mp);
3299 						return;
3300 					}
3301 					if (!TCP_IS_DETACHED(tcp) &&
3302 					    !putnextctl1(connp->conn_rq,
3303 					    M_PCSIG, SIGURG)) {
3304 						/* Try again on the rexmit. */
3305 						freemsg(mp1);
3306 						freemsg(mp);
3307 						return;
3308 					}
3309 					/*
3310 					 * If the next byte would be the mark
3311 					 * then mark with MARKNEXT else mark
3312 					 * with NOTMARKNEXT.
3313 					 */
3314 					if (gap == 0 && urp == 0)
3315 						mp1->b_flag |= MSGMARKNEXT;
3316 					else
3317 						mp1->b_flag |= MSGNOTMARKNEXT;
3318 					freemsg(tcp->tcp_urp_mark_mp);
3319 					tcp->tcp_urp_mark_mp = mp1;
3320 					flags |= TH_SEND_URP_MARK;
3321 				}
3322 				tcp->tcp_urp_last_valid = B_TRUE;
3323 				tcp->tcp_urp_last = urp + seg_seq;
3324 			}
3325 			/*
3326 			 * If this is a zero window probe, continue to
3327 			 * process the ACK part.  But we need to set seg_len
3328 			 * to 0 to avoid data processing.  Otherwise just
3329 			 * drop the segment and send back an ACK.
3330 			 */
3331 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3332 				flags &= ~(TH_SYN | TH_URG);
3333 				seg_len = 0;
3334 				goto process_ack;
3335 			} else {
3336 				freemsg(mp);
3337 				goto ack_check;
3338 			}
3339 		}
3340 		/* Pitch out of window stuff off the end. */
3341 		rgap = seg_len;
3342 		mp2 = mp;
3343 		do {
3344 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3345 			    (uintptr_t)INT_MAX);
3346 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3347 			if (rgap < 0) {
3348 				mp2->b_wptr += rgap;
3349 				if ((mp1 = mp2->b_cont) != NULL) {
3350 					mp2->b_cont = NULL;
3351 					freemsg(mp1);
3352 				}
3353 				break;
3354 			}
3355 		} while ((mp2 = mp2->b_cont) != NULL);
3356 	}
3357 ok:;
3358 	/*
3359 	 * TCP should check ECN info for segments inside the window only.
3360 	 * Therefore the check should be done here.
3361 	 */
3362 	if (tcp->tcp_ecn_ok) {
3363 		if (flags & TH_CWR) {
3364 			tcp->tcp_ecn_echo_on = B_FALSE;
3365 		}
3366 		/*
3367 		 * Note that both ECN_CE and CWR can be set in the
3368 		 * same segment.  In this case, we once again turn
3369 		 * on ECN_ECHO.
3370 		 */
3371 		if (connp->conn_ipversion == IPV4_VERSION) {
3372 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3373 
3374 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3375 				tcp->tcp_ecn_echo_on = B_TRUE;
3376 			}
3377 		} else {
3378 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3379 
3380 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3381 			    htonl(IPH_ECN_CE << 20)) {
3382 				tcp->tcp_ecn_echo_on = B_TRUE;
3383 			}
3384 		}
3385 	}
3386 
3387 	/*
3388 	 * Check whether we can update tcp_ts_recent. This test is from RFC
3389 	 * 7323, section 5.3.
3390 	 */
3391 	if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) &&
3392 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3393 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3394 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3395 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3396 	}
3397 
3398 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3399 		/*
3400 		 * FIN in an out of order segment.  We record this in
3401 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3402 		 * Clear the FIN so that any check on FIN flag will fail.
3403 		 * Remember that FIN also counts in the sequence number
3404 		 * space.  So we need to ack out of order FIN only segments.
3405 		 */
3406 		if (flags & TH_FIN) {
3407 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3408 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3409 			flags &= ~TH_FIN;
3410 			flags |= TH_ACK_NEEDED;
3411 		}
3412 		if (seg_len > 0) {
3413 			/* Fill in the SACK blk list. */
3414 			if (tcp->tcp_snd_sack_ok) {
3415 				tcp_sack_insert(tcp->tcp_sack_list,
3416 				    seg_seq, seg_seq + seg_len,
3417 				    &(tcp->tcp_num_sack_blk));
3418 			}
3419 
3420 			/*
3421 			 * Attempt reassembly and see if we have something
3422 			 * ready to go.
3423 			 */
3424 			mp = tcp_reass(tcp, mp, seg_seq);
3425 			/* Always ack out of order packets */
3426 			flags |= TH_ACK_NEEDED | TH_PUSH;
3427 			if (mp) {
3428 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3429 				    (uintptr_t)INT_MAX);
3430 				seg_len = mp->b_cont ? msgdsize(mp) :
3431 				    (int)(mp->b_wptr - mp->b_rptr);
3432 				seg_seq = tcp->tcp_rnxt;
3433 				/*
3434 				 * A gap is filled and the seq num and len
3435 				 * of the gap match that of a previously
3436 				 * received FIN, put the FIN flag back in.
3437 				 */
3438 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3439 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3440 					flags |= TH_FIN;
3441 					tcp->tcp_valid_bits &=
3442 					    ~TCP_OFO_FIN_VALID;
3443 				}
3444 				if (tcp->tcp_reass_tid != 0) {
3445 					(void) TCP_TIMER_CANCEL(tcp,
3446 					    tcp->tcp_reass_tid);
3447 					/*
3448 					 * Restart the timer if there is still
3449 					 * data in the reassembly queue.
3450 					 */
3451 					if (tcp->tcp_reass_head != NULL) {
3452 						tcp->tcp_reass_tid = TCP_TIMER(
3453 						    tcp, tcp_reass_timer,
3454 						    tcps->tcps_reass_timeout);
3455 					} else {
3456 						tcp->tcp_reass_tid = 0;
3457 					}
3458 				}
3459 			} else {
3460 				/*
3461 				 * Keep going even with NULL mp.
3462 				 * There may be a useful ACK or something else
3463 				 * we don't want to miss.
3464 				 *
3465 				 * But TCP should not perform fast retransmit
3466 				 * because of the ack number.  TCP uses
3467 				 * seg_len == 0 to determine if it is a pure
3468 				 * ACK.  And this is not a pure ACK.
3469 				 */
3470 				seg_len = 0;
3471 				ofo_seg = B_TRUE;
3472 
3473 				if (tcps->tcps_reass_timeout != 0 &&
3474 				    tcp->tcp_reass_tid == 0) {
3475 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3476 					    tcp_reass_timer,
3477 					    tcps->tcps_reass_timeout);
3478 				}
3479 			}
3480 		}
3481 	} else if (seg_len > 0) {
3482 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3483 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3484 		tcp->tcp_cs.tcp_in_data_inorder_segs++;
3485 		tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len;
3486 
3487 		/*
3488 		 * If an out of order FIN was received before, and the seq
3489 		 * num and len of the new segment match that of the FIN,
3490 		 * put the FIN flag back in.
3491 		 */
3492 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3493 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3494 			flags |= TH_FIN;
3495 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3496 		}
3497 	}
3498 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3499 	if (flags & TH_RST) {
3500 		freemsg(mp);
3501 		switch (tcp->tcp_state) {
3502 		case TCPS_SYN_RCVD:
3503 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3504 			break;
3505 		case TCPS_ESTABLISHED:
3506 		case TCPS_FIN_WAIT_1:
3507 		case TCPS_FIN_WAIT_2:
3508 		case TCPS_CLOSE_WAIT:
3509 			(void) tcp_clean_death(tcp, ECONNRESET);
3510 			break;
3511 		case TCPS_CLOSING:
3512 		case TCPS_LAST_ACK:
3513 			(void) tcp_clean_death(tcp, 0);
3514 			break;
3515 		default:
3516 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3517 			(void) tcp_clean_death(tcp, ENXIO);
3518 			break;
3519 		}
3520 		return;
3521 	}
3522 	if (flags & TH_SYN) {
3523 		/*
3524 		 * See RFC 793, Page 71
3525 		 *
3526 		 * The seq number must be in the window as it should
3527 		 * be "fixed" above.  If it is outside window, it should
3528 		 * be already rejected.  Note that we allow seg_seq to be
3529 		 * rnxt + rwnd because we want to accept 0 window probe.
3530 		 */
3531 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3532 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3533 		freemsg(mp);
3534 		/*
3535 		 * If the ACK flag is not set, just use our snxt as the
3536 		 * seq number of the RST segment.
3537 		 */
3538 		if (!(flags & TH_ACK)) {
3539 			seg_ack = tcp->tcp_snxt;
3540 		}
3541 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3542 		    TH_RST|TH_ACK);
3543 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3544 		(void) tcp_clean_death(tcp, ECONNRESET);
3545 		return;
3546 	}
3547 	/*
3548 	 * urp could be -1 when the urp field in the packet is 0
3549 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3550 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3551 	 */
3552 	if ((flags & TH_URG) && urp >= 0) {
3553 		if (!tcp->tcp_urp_last_valid ||
3554 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3555 			/*
3556 			 * Non-STREAMS sockets handle the urgent data a litte
3557 			 * differently from STREAMS based sockets. There is no
3558 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3559 			 * flags to keep SIOCATMARK happy. Instead a
3560 			 * su_signal_oob upcall is made to update the mark.
3561 			 * Neither is a T_EXDATA_IND mblk needed to be
3562 			 * prepended to the urgent data. The urgent data is
3563 			 * delivered using the su_recv upcall, where we set
3564 			 * the MSG_OOB flag to indicate that it is urg data.
3565 			 *
3566 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3567 			 * are used by non-STREAMS sockets.
3568 			 */
3569 			if (IPCL_IS_NONSTR(connp)) {
3570 				if (!TCP_IS_DETACHED(tcp)) {
3571 					(*sockupcalls->su_signal_oob)
3572 					    (connp->conn_upper_handle, urp);
3573 				}
3574 			} else {
3575 				/*
3576 				 * If we haven't generated the signal yet for
3577 				 * this urgent pointer value, do it now.  Also,
3578 				 * send up a zero-length M_DATA indicating
3579 				 * whether or not this is the mark. The latter
3580 				 * is not needed when a T_EXDATA_IND is sent up.
3581 				 * However, if there are allocation failures
3582 				 * this code relies on the sender retransmitting
3583 				 * and the socket code for determining the mark
3584 				 * should not block waiting for the peer to
3585 				 * transmit. Thus, for simplicity we always
3586 				 * send up the mark indication.
3587 				 */
3588 				mp1 = allocb(0, BPRI_MED);
3589 				if (mp1 == NULL) {
3590 					freemsg(mp);
3591 					return;
3592 				}
3593 				if (!TCP_IS_DETACHED(tcp) &&
3594 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3595 				    SIGURG)) {
3596 					/* Try again on the rexmit. */
3597 					freemsg(mp1);
3598 					freemsg(mp);
3599 					return;
3600 				}
3601 				/*
3602 				 * Mark with NOTMARKNEXT for now.
3603 				 * The code below will change this to MARKNEXT
3604 				 * if we are at the mark.
3605 				 *
3606 				 * If there are allocation failures (e.g. in
3607 				 * dupmsg below) the next time tcp_input_data
3608 				 * sees the urgent segment it will send up the
3609 				 * MSGMARKNEXT message.
3610 				 */
3611 				mp1->b_flag |= MSGNOTMARKNEXT;
3612 				freemsg(tcp->tcp_urp_mark_mp);
3613 				tcp->tcp_urp_mark_mp = mp1;
3614 				flags |= TH_SEND_URP_MARK;
3615 #ifdef DEBUG
3616 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3617 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3618 				    "last %x, %s",
3619 				    seg_seq, urp, tcp->tcp_urp_last,
3620 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3621 #endif /* DEBUG */
3622 			}
3623 			tcp->tcp_urp_last_valid = B_TRUE;
3624 			tcp->tcp_urp_last = urp + seg_seq;
3625 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3626 			/*
3627 			 * An allocation failure prevented the previous
3628 			 * tcp_input_data from sending up the allocated
3629 			 * MSG*MARKNEXT message - send it up this time
3630 			 * around.
3631 			 */
3632 			flags |= TH_SEND_URP_MARK;
3633 		}
3634 
3635 		/*
3636 		 * If the urgent byte is in this segment, make sure that it is
3637 		 * all by itself.  This makes it much easier to deal with the
3638 		 * possibility of an allocation failure on the T_exdata_ind.
3639 		 * Note that seg_len is the number of bytes in the segment, and
3640 		 * urp is the offset into the segment of the urgent byte.
3641 		 * urp < seg_len means that the urgent byte is in this segment.
3642 		 */
3643 		if (urp < seg_len) {
3644 			if (seg_len != 1) {
3645 				uint32_t  tmp_rnxt;
3646 				/*
3647 				 * Break it up and feed it back in.
3648 				 * Re-attach the IP header.
3649 				 */
3650 				mp->b_rptr = iphdr;
3651 				if (urp > 0) {
3652 					/*
3653 					 * There is stuff before the urgent
3654 					 * byte.
3655 					 */
3656 					mp1 = dupmsg(mp);
3657 					if (!mp1) {
3658 						/*
3659 						 * Trim from urgent byte on.
3660 						 * The rest will come back.
3661 						 */
3662 						(void) adjmsg(mp,
3663 						    urp - seg_len);
3664 						tcp_input_data(connp,
3665 						    mp, NULL, ira);
3666 						return;
3667 					}
3668 					(void) adjmsg(mp1, urp - seg_len);
3669 					/* Feed this piece back in. */
3670 					tmp_rnxt = tcp->tcp_rnxt;
3671 					tcp_input_data(connp, mp1, NULL, ira);
3672 					/*
3673 					 * If the data passed back in was not
3674 					 * processed (ie: bad ACK) sending
3675 					 * the remainder back in will cause a
3676 					 * loop. In this case, drop the
3677 					 * packet and let the sender try
3678 					 * sending a good packet.
3679 					 */
3680 					if (tmp_rnxt == tcp->tcp_rnxt) {
3681 						freemsg(mp);
3682 						return;
3683 					}
3684 				}
3685 				if (urp != seg_len - 1) {
3686 					uint32_t  tmp_rnxt;
3687 					/*
3688 					 * There is stuff after the urgent
3689 					 * byte.
3690 					 */
3691 					mp1 = dupmsg(mp);
3692 					if (!mp1) {
3693 						/*
3694 						 * Trim everything beyond the
3695 						 * urgent byte.  The rest will
3696 						 * come back.
3697 						 */
3698 						(void) adjmsg(mp,
3699 						    urp + 1 - seg_len);
3700 						tcp_input_data(connp,
3701 						    mp, NULL, ira);
3702 						return;
3703 					}
3704 					(void) adjmsg(mp1, urp + 1 - seg_len);
3705 					tmp_rnxt = tcp->tcp_rnxt;
3706 					tcp_input_data(connp, mp1, NULL, ira);
3707 					/*
3708 					 * If the data passed back in was not
3709 					 * processed (ie: bad ACK) sending
3710 					 * the remainder back in will cause a
3711 					 * loop. In this case, drop the
3712 					 * packet and let the sender try
3713 					 * sending a good packet.
3714 					 */
3715 					if (tmp_rnxt == tcp->tcp_rnxt) {
3716 						freemsg(mp);
3717 						return;
3718 					}
3719 				}
3720 				tcp_input_data(connp, mp, NULL, ira);
3721 				return;
3722 			}
3723 			/*
3724 			 * This segment contains only the urgent byte.  We
3725 			 * have to allocate the T_exdata_ind, if we can.
3726 			 */
3727 			if (IPCL_IS_NONSTR(connp)) {
3728 				int error;
3729 
3730 				(*sockupcalls->su_recv)
3731 				    (connp->conn_upper_handle, mp, seg_len,
3732 				    MSG_OOB, &error, NULL);
3733 				/*
3734 				 * We should never be in middle of a
3735 				 * fallback, the squeue guarantees that.
3736 				 */
3737 				ASSERT(error != EOPNOTSUPP);
3738 				mp = NULL;
3739 				goto update_ack;
3740 			} else if (!tcp->tcp_urp_mp) {
3741 				struct T_exdata_ind *tei;
3742 				mp1 = allocb(sizeof (struct T_exdata_ind),
3743 				    BPRI_MED);
3744 				if (!mp1) {
3745 					/*
3746 					 * Sigh... It'll be back.
3747 					 * Generate any MSG*MARK message now.
3748 					 */
3749 					freemsg(mp);
3750 					seg_len = 0;
3751 					if (flags & TH_SEND_URP_MARK) {
3752 
3753 
3754 						ASSERT(tcp->tcp_urp_mark_mp);
3755 						tcp->tcp_urp_mark_mp->b_flag &=
3756 						    ~MSGNOTMARKNEXT;
3757 						tcp->tcp_urp_mark_mp->b_flag |=
3758 						    MSGMARKNEXT;
3759 					}
3760 					goto ack_check;
3761 				}
3762 				mp1->b_datap->db_type = M_PROTO;
3763 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3764 				tei->PRIM_type = T_EXDATA_IND;
3765 				tei->MORE_flag = 0;
3766 				mp1->b_wptr = (uchar_t *)&tei[1];
3767 				tcp->tcp_urp_mp = mp1;
3768 #ifdef DEBUG
3769 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3770 				    "tcp_rput: allocated exdata_ind %s",
3771 				    tcp_display(tcp, NULL,
3772 				    DISP_PORT_ONLY));
3773 #endif /* DEBUG */
3774 				/*
3775 				 * There is no need to send a separate MSG*MARK
3776 				 * message since the T_EXDATA_IND will be sent
3777 				 * now.
3778 				 */
3779 				flags &= ~TH_SEND_URP_MARK;
3780 				freemsg(tcp->tcp_urp_mark_mp);
3781 				tcp->tcp_urp_mark_mp = NULL;
3782 			}
3783 			/*
3784 			 * Now we are all set.  On the next putnext upstream,
3785 			 * tcp_urp_mp will be non-NULL and will get prepended
3786 			 * to what has to be this piece containing the urgent
3787 			 * byte.  If for any reason we abort this segment below,
3788 			 * if it comes back, we will have this ready, or it
3789 			 * will get blown off in close.
3790 			 */
3791 		} else if (urp == seg_len) {
3792 			/*
3793 			 * The urgent byte is the next byte after this sequence
3794 			 * number. If this endpoint is non-STREAMS, then there
3795 			 * is nothing to do here since the socket has already
3796 			 * been notified about the urg pointer by the
3797 			 * su_signal_oob call above.
3798 			 *
3799 			 * In case of STREAMS, some more work might be needed.
3800 			 * If there is data it is marked with MSGMARKNEXT and
3801 			 * and any tcp_urp_mark_mp is discarded since it is not
3802 			 * needed. Otherwise, if the code above just allocated
3803 			 * a zero-length tcp_urp_mark_mp message, that message
3804 			 * is tagged with MSGMARKNEXT. Sending up these
3805 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3806 			 * even though the T_EXDATA_IND will not be sent up
3807 			 * until the urgent byte arrives.
3808 			 */
3809 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3810 				if (seg_len != 0) {
3811 					flags |= TH_MARKNEXT_NEEDED;
3812 					freemsg(tcp->tcp_urp_mark_mp);
3813 					tcp->tcp_urp_mark_mp = NULL;
3814 					flags &= ~TH_SEND_URP_MARK;
3815 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3816 					flags |= TH_SEND_URP_MARK;
3817 					tcp->tcp_urp_mark_mp->b_flag &=
3818 					    ~MSGNOTMARKNEXT;
3819 					tcp->tcp_urp_mark_mp->b_flag |=
3820 					    MSGMARKNEXT;
3821 				}
3822 			}
3823 #ifdef DEBUG
3824 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3825 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3826 			    seg_len, flags,
3827 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3828 #endif /* DEBUG */
3829 		}
3830 #ifdef DEBUG
3831 		else {
3832 			/* Data left until we hit mark */
3833 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3834 			    "tcp_rput: URP %d bytes left, %s",
3835 			    urp - seg_len, tcp_display(tcp, NULL,
3836 			    DISP_PORT_ONLY));
3837 		}
3838 #endif /* DEBUG */
3839 	}
3840 
3841 process_ack:
3842 	if (!(flags & TH_ACK)) {
3843 		freemsg(mp);
3844 		goto xmit_check;
3845 	}
3846 	}
3847 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3848 
3849 	if (bytes_acked > 0)
3850 		tcp->tcp_ip_forward_progress = B_TRUE;
3851 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3852 		/*
3853 		 * tcp_sendmsg() checks tcp_state without entering
3854 		 * the squeue so tcp_state should be updated before
3855 		 * sending up a connection confirmation or a new
3856 		 * connection indication.
3857 		 */
3858 		tcp->tcp_state = TCPS_ESTABLISHED;
3859 
3860 		/*
3861 		 * We are seeing the final ack in the three way
3862 		 * hand shake of a active open'ed connection
3863 		 * so we must send up a T_CONN_CON
3864 		 */
3865 		if (tcp->tcp_active_open) {
3866 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3867 				freemsg(mp);
3868 				tcp->tcp_state = TCPS_SYN_RCVD;
3869 				return;
3870 			}
3871 			/*
3872 			 * Don't fuse the loopback endpoints for
3873 			 * simultaneous active opens.
3874 			 */
3875 			if (tcp->tcp_loopback) {
3876 				TCP_STAT(tcps, tcp_fusion_unfusable);
3877 				tcp->tcp_unfusable = B_TRUE;
3878 			}
3879 			/*
3880 			 * For simultaneous active open, trace receipt of final
3881 			 * ACK as tcp:::connect-established.
3882 			 */
3883 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3884 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3885 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3886 		} else if (IPCL_IS_NONSTR(connp)) {
3887 			/*
3888 			 * 3-way handshake has completed, so notify socket
3889 			 * of the new connection.
3890 			 *
3891 			 * We are here means eager is fine but it can
3892 			 * get a TH_RST at any point between now and till
3893 			 * accept completes and disappear. We need to
3894 			 * ensure that reference to eager is valid after
3895 			 * we get out of eager's perimeter. So we do
3896 			 * an extra refhold.
3897 			 */
3898 			CONN_INC_REF(connp);
3899 
3900 			if (!tcp_newconn_notify(tcp, ira)) {
3901 				/*
3902 				 * The state-change probe for SYN_RCVD ->
3903 				 * ESTABLISHED has not fired yet. We reset
3904 				 * the state to SYN_RCVD so that future
3905 				 * state-change probes report correct state
3906 				 * transistions.
3907 				 */
3908 				tcp->tcp_state = TCPS_SYN_RCVD;
3909 				freemsg(mp);
3910 				/* notification did not go up, so drop ref */
3911 				CONN_DEC_REF(connp);
3912 				/* ... and close the eager */
3913 				ASSERT(TCP_IS_DETACHED(tcp));
3914 				(void) tcp_close_detached(tcp);
3915 				return;
3916 			}
3917 			/*
3918 			 * tcp_newconn_notify() changes conn_upcalls and
3919 			 * connp->conn_upper_handle.  Fix things now, in case
3920 			 * there's data attached to this ack.
3921 			 */
3922 			if (connp->conn_upcalls != NULL)
3923 				sockupcalls = connp->conn_upcalls;
3924 			/*
3925 			 * For passive open, trace receipt of final ACK as
3926 			 * tcp:::accept-established.
3927 			 */
3928 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3929 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3930 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3931 		} else {
3932 			/*
3933 			 * 3-way handshake complete - this is a STREAMS based
3934 			 * socket, so pass up the T_CONN_IND.
3935 			 */
3936 			tcp_t	*listener = tcp->tcp_listener;
3937 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3938 
3939 			tcp->tcp_tconnind_started = B_TRUE;
3940 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3941 			ASSERT(mp != NULL);
3942 			/*
3943 			 * We are here means eager is fine but it can
3944 			 * get a TH_RST at any point between now and till
3945 			 * accept completes and disappear. We need to
3946 			 * ensure that reference to eager is valid after
3947 			 * we get out of eager's perimeter. So we do
3948 			 * an extra refhold.
3949 			 */
3950 			CONN_INC_REF(connp);
3951 
3952 			/*
3953 			 * The listener also exists because of the refhold
3954 			 * done in tcp_input_listener. Its possible that it
3955 			 * might have closed. We will check that once we
3956 			 * get inside listeners context.
3957 			 */
3958 			CONN_INC_REF(listener->tcp_connp);
3959 			if (listener->tcp_connp->conn_sqp ==
3960 			    connp->conn_sqp) {
3961 				/*
3962 				 * We optimize by not calling an SQUEUE_ENTER
3963 				 * on the listener since we know that the
3964 				 * listener and eager squeues are the same.
3965 				 * We are able to make this check safely only
3966 				 * because neither the eager nor the listener
3967 				 * can change its squeue. Only an active connect
3968 				 * can change its squeue
3969 				 */
3970 				tcp_send_conn_ind(listener->tcp_connp, mp,
3971 				    listener->tcp_connp->conn_sqp);
3972 				CONN_DEC_REF(listener->tcp_connp);
3973 			} else if (!tcp->tcp_loopback) {
3974 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3975 				    mp, tcp_send_conn_ind,
3976 				    listener->tcp_connp, NULL, SQ_FILL,
3977 				    SQTAG_TCP_CONN_IND);
3978 			} else {
3979 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3980 				    mp, tcp_send_conn_ind,
3981 				    listener->tcp_connp, NULL, SQ_NODRAIN,
3982 				    SQTAG_TCP_CONN_IND);
3983 			}
3984 			/*
3985 			 * For passive open, trace receipt of final ACK as
3986 			 * tcp:::accept-established.
3987 			 */
3988 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3989 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3990 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3991 		}
3992 		TCPS_CONN_INC(tcps);
3993 
3994 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3995 		bytes_acked--;
3996 		/* SYN was acked - making progress */
3997 		tcp->tcp_ip_forward_progress = B_TRUE;
3998 
3999 		/*
4000 		 * If SYN was retransmitted, need to reset all
4001 		 * retransmission info as this segment will be
4002 		 * treated as a dup ACK.
4003 		 */
4004 		if (tcp->tcp_rexmit) {
4005 			tcp->tcp_rexmit = B_FALSE;
4006 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4007 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
4008 			tcp->tcp_ms_we_have_waited = 0;
4009 			DTRACE_PROBE3(cwnd__retransmitted__syn,
4010 			    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
4011 			    uint32_t, tcp->tcp_mss);
4012 			tcp->tcp_cwnd = mss;
4013 		}
4014 
4015 		/*
4016 		 * We set the send window to zero here.
4017 		 * This is needed if there is data to be
4018 		 * processed already on the queue.
4019 		 * Later (at swnd_update label), the
4020 		 * "new_swnd > tcp_swnd" condition is satisfied
4021 		 * the XMIT_NEEDED flag is set in the current
4022 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
4023 		 * called if there is already data on queue in
4024 		 * this state.
4025 		 */
4026 		tcp->tcp_swnd = 0;
4027 
4028 		if (new_swnd > tcp->tcp_max_swnd)
4029 			tcp->tcp_max_swnd = new_swnd;
4030 		tcp->tcp_swl1 = seg_seq;
4031 		tcp->tcp_swl2 = seg_ack;
4032 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
4033 
4034 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
4035 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4036 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4037 		    int32_t, TCPS_SYN_RCVD);
4038 
4039 		/* Fuse when both sides are in ESTABLISHED state */
4040 		if (tcp->tcp_loopback && do_tcp_fusion)
4041 			tcp_fuse(tcp, iphdr, tcpha);
4042 
4043 	}
4044 	/* This code follows 4.4BSD-Lite2 mostly. */
4045 	if (bytes_acked < 0)
4046 		goto est;
4047 
4048 	/*
4049 	 * If TCP is ECN capable and the congestion experience bit is
4050 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
4051 	 * done once per window (or more loosely, per RTT).
4052 	 */
4053 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
4054 		tcp->tcp_cwr = B_FALSE;
4055 	if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) {
4056 		cc_cong_signal(tcp, seg_ack, CC_ECN);
4057 		/*
4058 		 * If the cwnd is 0, use the timer to clock out
4059 		 * new segments.  This is required by the ECN spec.
4060 		 */
4061 		if (tcp->tcp_cwnd == 0)
4062 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4063 		tcp->tcp_cwr = B_TRUE;
4064 		/*
4065 		 * This marks the end of the current window of in
4066 		 * flight data.  That is why we don't use
4067 		 * tcp_suna + tcp_swnd.  Only data in flight can
4068 		 * provide ECN info.
4069 		 */
4070 		tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4071 	}
4072 
4073 	mp1 = tcp->tcp_xmit_head;
4074 	if (bytes_acked == 0) {
4075 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
4076 			int dupack_cnt;
4077 
4078 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
4079 			/*
4080 			 * Fast retransmit.  When we have seen exactly three
4081 			 * identical ACKs while we have unacked data
4082 			 * outstanding we take it as a hint that our peer
4083 			 * dropped something.
4084 			 *
4085 			 * If TCP is retransmitting, don't do fast retransmit.
4086 			 */
4087 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
4088 			    ! tcp->tcp_rexmit) {
4089 				/* Do Limited Transmit */
4090 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
4091 				    tcps->tcps_dupack_fast_retransmit) {
4092 					cc_ack_received(tcp, seg_ack,
4093 					    bytes_acked, CC_DUPACK);
4094 					/*
4095 					 * RFC 3042
4096 					 *
4097 					 * What we need to do is temporarily
4098 					 * increase tcp_cwnd so that new
4099 					 * data can be sent if it is allowed
4100 					 * by the receive window (tcp_rwnd).
4101 					 * tcp_wput_data() will take care of
4102 					 * the rest.
4103 					 *
4104 					 * If the connection is SACK capable,
4105 					 * only do limited xmit when there
4106 					 * is SACK info.
4107 					 *
4108 					 * Note how tcp_cwnd is incremented.
4109 					 * The first dup ACK will increase
4110 					 * it by 1 MSS.  The second dup ACK
4111 					 * will increase it by 2 MSS.  This
4112 					 * means that only 1 new segment will
4113 					 * be sent for each dup ACK.
4114 					 */
4115 					if (tcp->tcp_unsent > 0 &&
4116 					    (!tcp->tcp_snd_sack_ok ||
4117 					    (tcp->tcp_snd_sack_ok &&
4118 					    tcp->tcp_notsack_list != NULL))) {
4119 						tcp->tcp_cwnd += mss <<
4120 						    (tcp->tcp_dupack_cnt - 1);
4121 						flags |= TH_LIMIT_XMIT;
4122 					}
4123 				} else if (dupack_cnt ==
4124 				    tcps->tcps_dupack_fast_retransmit) {
4125 
4126 				/*
4127 				 * If we have reduced tcp_ssthresh
4128 				 * because of ECN, do not reduce it again
4129 				 * unless it is already one window of data
4130 				 * away.  After one window of data, tcp_cwr
4131 				 * should then be cleared.  Note that
4132 				 * for non ECN capable connection, tcp_cwr
4133 				 * should always be false.
4134 				 *
4135 				 * Adjust cwnd since the duplicate
4136 				 * ack indicates that a packet was
4137 				 * dropped (due to congestion.)
4138 				 */
4139 				if (!tcp->tcp_cwr) {
4140 					cc_cong_signal(tcp, seg_ack,
4141 					    CC_NDUPACK);
4142 					cc_ack_received(tcp, seg_ack,
4143 					    bytes_acked, CC_DUPACK);
4144 				}
4145 				if (tcp->tcp_ecn_ok) {
4146 					tcp->tcp_cwr = B_TRUE;
4147 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4148 					tcp->tcp_ecn_cwr_sent = B_FALSE;
4149 				}
4150 
4151 				/*
4152 				 * We do Hoe's algorithm.  Refer to her
4153 				 * paper "Improving the Start-up Behavior
4154 				 * of a Congestion Control Scheme for TCP,"
4155 				 * appeared in SIGCOMM'96.
4156 				 *
4157 				 * Save highest seq no we have sent so far.
4158 				 * Be careful about the invisible FIN byte.
4159 				 */
4160 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4161 				    (tcp->tcp_unsent == 0)) {
4162 					tcp->tcp_rexmit_max = tcp->tcp_fss;
4163 				} else {
4164 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
4165 				}
4166 
4167 				/*
4168 				 * For SACK:
4169 				 * Calculate tcp_pipe, which is the
4170 				 * estimated number of bytes in
4171 				 * network.
4172 				 *
4173 				 * tcp_fack is the highest sack'ed seq num
4174 				 * TCP has received.
4175 				 *
4176 				 * tcp_pipe is explained in the above quoted
4177 				 * Fall and Floyd's paper.  tcp_fack is
4178 				 * explained in Mathis and Mahdavi's
4179 				 * "Forward Acknowledgment: Refining TCP
4180 				 * Congestion Control" in SIGCOMM '96.
4181 				 */
4182 				if (tcp->tcp_snd_sack_ok) {
4183 					if (tcp->tcp_notsack_list != NULL) {
4184 						tcp->tcp_pipe = tcp->tcp_snxt -
4185 						    tcp->tcp_fack;
4186 						tcp->tcp_sack_snxt = seg_ack;
4187 						flags |= TH_NEED_SACK_REXMIT;
4188 					} else {
4189 						/*
4190 						 * Always initialize tcp_pipe
4191 						 * even though we don't have
4192 						 * any SACK info.  If later
4193 						 * we get SACK info and
4194 						 * tcp_pipe is not initialized,
4195 						 * funny things will happen.
4196 						 */
4197 						tcp->tcp_pipe =
4198 						    tcp->tcp_cwnd_ssthresh;
4199 					}
4200 				} else {
4201 					flags |= TH_REXMIT_NEEDED;
4202 				} /* tcp_snd_sack_ok */
4203 
4204 				} else {
4205 					cc_ack_received(tcp, seg_ack,
4206 					    bytes_acked, CC_DUPACK);
4207 					/*
4208 					 * Here we perform congestion
4209 					 * avoidance, but NOT slow start.
4210 					 * This is known as the Fast
4211 					 * Recovery Algorithm.
4212 					 */
4213 					if (tcp->tcp_snd_sack_ok &&
4214 					    tcp->tcp_notsack_list != NULL) {
4215 						flags |= TH_NEED_SACK_REXMIT;
4216 						tcp->tcp_pipe -= mss;
4217 						if (tcp->tcp_pipe < 0)
4218 							tcp->tcp_pipe = 0;
4219 					} else {
4220 					/*
4221 					 * We know that one more packet has
4222 					 * left the pipe thus we can update
4223 					 * cwnd.
4224 					 */
4225 					cwnd = tcp->tcp_cwnd + mss;
4226 					if (cwnd > tcp->tcp_cwnd_max)
4227 						cwnd = tcp->tcp_cwnd_max;
4228 					DTRACE_PROBE3(cwnd__fast__recovery,
4229 					    tcp_t *, tcp,
4230 					    uint32_t, tcp->tcp_cwnd,
4231 					    uint32_t, cwnd);
4232 					tcp->tcp_cwnd = cwnd;
4233 					if (tcp->tcp_unsent > 0)
4234 						flags |= TH_XMIT_NEEDED;
4235 					}
4236 				}
4237 			}
4238 		} else if (tcp->tcp_zero_win_probe) {
4239 			/*
4240 			 * If the window has opened, need to arrange
4241 			 * to send additional data.
4242 			 */
4243 			if (new_swnd != 0) {
4244 				/* tcp_suna != tcp_snxt */
4245 				/* Packet contains a window update */
4246 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
4247 				tcp->tcp_zero_win_probe = 0;
4248 				tcp->tcp_timer_backoff = 0;
4249 				tcp->tcp_ms_we_have_waited = 0;
4250 
4251 				/*
4252 				 * Transmit starting with tcp_suna since
4253 				 * the one byte probe is not ack'ed.
4254 				 * If TCP has sent more than one identical
4255 				 * probe, tcp_rexmit will be set.  That means
4256 				 * tcp_ss_rexmit() will send out the one
4257 				 * byte along with new data.  Otherwise,
4258 				 * fake the retransmission.
4259 				 */
4260 				flags |= TH_XMIT_NEEDED;
4261 				if (!tcp->tcp_rexmit) {
4262 					tcp->tcp_rexmit = B_TRUE;
4263 					tcp->tcp_dupack_cnt = 0;
4264 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4265 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4266 				}
4267 			}
4268 		}
4269 		goto swnd_update;
4270 	}
4271 
4272 	/*
4273 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4274 	 * If the ACK value acks something that we have not yet sent, it might
4275 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
4276 	 * other side.
4277 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4278 	 * state is handled above, so we can always just drop the segment and
4279 	 * send an ACK here.
4280 	 *
4281 	 * In the case where the peer shrinks the window, we see the new window
4282 	 * update, but all the data sent previously is queued up by the peer.
4283 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4284 	 * number, which was already sent, and within window, is recorded.
4285 	 * tcp_snxt is then updated.
4286 	 *
4287 	 * If the window has previously shrunk, and an ACK for data not yet
4288 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
4289 	 * the ACK is for data within the window at the time the window was
4290 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4291 	 * the sequence number ACK'ed.
4292 	 *
4293 	 * If the ACK covers all the data sent at the time the window was
4294 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4295 	 *
4296 	 * Should we send ACKs in response to ACK only segments?
4297 	 */
4298 
4299 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4300 		if ((tcp->tcp_is_wnd_shrnk) &&
4301 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4302 			uint32_t data_acked_ahead_snxt;
4303 
4304 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4305 			tcp_update_xmit_tail(tcp, seg_ack);
4306 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4307 		} else {
4308 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4309 			/* drop the received segment */
4310 			freemsg(mp);
4311 
4312 			/*
4313 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4314 			 * greater than 0, check if the number of such
4315 			 * bogus ACks is greater than that count.  If yes,
4316 			 * don't send back any ACK.  This prevents TCP from
4317 			 * getting into an ACK storm if somehow an attacker
4318 			 * successfully spoofs an acceptable segment to our
4319 			 * peer.  If this continues (count > 2 X threshold),
4320 			 * we should abort this connection.
4321 			 */
4322 			if (tcp_drop_ack_unsent_cnt > 0 &&
4323 			    ++tcp->tcp_in_ack_unsent >
4324 			    tcp_drop_ack_unsent_cnt) {
4325 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4326 				if (tcp->tcp_in_ack_unsent > 2 *
4327 				    tcp_drop_ack_unsent_cnt) {
4328 					(void) tcp_clean_death(tcp, EPROTO);
4329 				}
4330 				return;
4331 			}
4332 			mp = tcp_ack_mp(tcp);
4333 			if (mp != NULL) {
4334 				TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
4335 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4336 				tcp_send_data(tcp, mp);
4337 			}
4338 			return;
4339 		}
4340 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4341 	    tcp->tcp_snxt_shrunk)) {
4342 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4343 	}
4344 
4345 	/*
4346 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4347 	 * blocks that are covered by this ACK.
4348 	 */
4349 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4350 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4351 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4352 	}
4353 
4354 	/*
4355 	 * If we got an ACK after fast retransmit, check to see
4356 	 * if it is a partial ACK.  If it is not and the congestion
4357 	 * window was inflated to account for the other side's
4358 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4359 	 */
4360 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4361 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4362 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4363 			tcp->tcp_dupack_cnt = 0;
4364 
4365 			cc_post_recovery(tcp, seg_ack);
4366 
4367 			tcp->tcp_rexmit_max = seg_ack;
4368 
4369 			/*
4370 			 * Remove all notsack info to avoid confusion with
4371 			 * the next fast retrasnmit/recovery phase.
4372 			 */
4373 			if (tcp->tcp_snd_sack_ok) {
4374 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4375 				    tcp);
4376 			}
4377 		} else {
4378 			if (tcp->tcp_snd_sack_ok &&
4379 			    tcp->tcp_notsack_list != NULL) {
4380 				flags |= TH_NEED_SACK_REXMIT;
4381 				tcp->tcp_pipe -= mss;
4382 				if (tcp->tcp_pipe < 0)
4383 					tcp->tcp_pipe = 0;
4384 			} else {
4385 				/*
4386 				 * Hoe's algorithm:
4387 				 *
4388 				 * Retransmit the unack'ed segment and
4389 				 * restart fast recovery.  Note that we
4390 				 * need to scale back tcp_cwnd to the
4391 				 * original value when we started fast
4392 				 * recovery.  This is to prevent overly
4393 				 * aggressive behaviour in sending new
4394 				 * segments.
4395 				 */
4396 				cwnd = tcp->tcp_cwnd_ssthresh +
4397 				    tcps->tcps_dupack_fast_retransmit * mss;
4398 				DTRACE_PROBE3(cwnd__fast__retransmit__part__ack,
4399 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
4400 				    uint32_t, cwnd);
4401 				tcp->tcp_cwnd = cwnd;
4402 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4403 				flags |= TH_REXMIT_NEEDED;
4404 			}
4405 		}
4406 	} else {
4407 		tcp->tcp_dupack_cnt = 0;
4408 		if (tcp->tcp_rexmit) {
4409 			/*
4410 			 * TCP is retranmitting.  If the ACK ack's all
4411 			 * outstanding data, update tcp_rexmit_max and
4412 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4413 			 * to the correct value.
4414 			 *
4415 			 * Note that SEQ_LEQ() is used.  This is to avoid
4416 			 * unnecessary fast retransmit caused by dup ACKs
4417 			 * received when TCP does slow start retransmission
4418 			 * after a time out.  During this phase, TCP may
4419 			 * send out segments which are already received.
4420 			 * This causes dup ACKs to be sent back.
4421 			 */
4422 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4423 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4424 					tcp->tcp_rexmit_nxt = seg_ack;
4425 				}
4426 				if (seg_ack != tcp->tcp_rexmit_max) {
4427 					flags |= TH_XMIT_NEEDED;
4428 				}
4429 			} else {
4430 				tcp->tcp_rexmit = B_FALSE;
4431 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4432 			}
4433 			tcp->tcp_ms_we_have_waited = 0;
4434 		}
4435 	}
4436 
4437 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4438 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4439 	tcp->tcp_suna = seg_ack;
4440 	if (tcp->tcp_zero_win_probe != 0) {
4441 		tcp->tcp_zero_win_probe = 0;
4442 		tcp->tcp_timer_backoff = 0;
4443 	}
4444 
4445 	/*
4446 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4447 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4448 	 * will not reach here.
4449 	 */
4450 	if (mp1 == NULL) {
4451 		goto fin_acked;
4452 	}
4453 
4454 	/*
4455 	 * Update the congestion window.
4456 	 *
4457 	 * If TCP is not ECN capable or TCP is ECN capable but the
4458 	 * congestion experience bit is not set, increase the tcp_cwnd as
4459 	 * usual.
4460 	 */
4461 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4462 		if (IN_RECOVERY(tcp->tcp_ccv.flags)) {
4463 			EXIT_RECOVERY(tcp->tcp_ccv.flags);
4464 		}
4465 		cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK);
4466 	}
4467 
4468 	/* See if the latest urgent data has been acknowledged */
4469 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4470 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4471 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4472 
4473 	/*
4474 	 * Update the RTT estimates. Note that we don't use the TCP
4475 	 * timestamp option to calculate RTT even if one is present. This is
4476 	 * because the timestamp option's resolution (CPU tick) is
4477 	 * too coarse to measure modern datacenter networks' microsecond
4478 	 * latencies. The timestamp field's resolution is limited by its
4479 	 * 4-byte width (see RFC1323), and since we always store a
4480 	 * high-resolution nanosecond presision timestamp along with the data,
4481 	 * there is no point to ever using the timestamp option.
4482 	 */
4483 	if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4484 		/*
4485 		 * An ACK sequence we haven't seen before, so get the RTT
4486 		 * and update the RTO. But first check if the timestamp is
4487 		 * valid to use.
4488 		 */
4489 		if ((mp1->b_next != NULL) &&
4490 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) {
4491 			tcp_set_rto(tcp, gethrtime() -
4492 			    (hrtime_t)(intptr_t)mp1->b_prev);
4493 		} else {
4494 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4495 		}
4496 
4497 		/* Remeber the last sequence to be ACKed */
4498 		tcp->tcp_csuna = seg_ack;
4499 		if (tcp->tcp_set_timer == 1) {
4500 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4501 			tcp->tcp_set_timer = 0;
4502 		}
4503 	} else {
4504 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4505 	}
4506 
4507 	/* Eat acknowledged bytes off the xmit queue. */
4508 	for (;;) {
4509 		mblk_t	*mp2;
4510 		uchar_t	*wptr;
4511 
4512 		wptr = mp1->b_wptr;
4513 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4514 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4515 		if (bytes_acked < 0) {
4516 			mp1->b_rptr = wptr + bytes_acked;
4517 			/*
4518 			 * Set a new timestamp if all the bytes timed by the
4519 			 * old timestamp have been ack'ed.
4520 			 */
4521 			if (SEQ_GT(seg_ack,
4522 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4523 				mp1->b_prev =
4524 				    (mblk_t *)(intptr_t)gethrtime();
4525 				mp1->b_next = NULL;
4526 			}
4527 			break;
4528 		}
4529 		mp1->b_next = NULL;
4530 		mp1->b_prev = NULL;
4531 		mp2 = mp1;
4532 		mp1 = mp1->b_cont;
4533 
4534 		/*
4535 		 * This notification is required for some zero-copy
4536 		 * clients to maintain a copy semantic. After the data
4537 		 * is ack'ed, client is safe to modify or reuse the buffer.
4538 		 */
4539 		if (tcp->tcp_snd_zcopy_aware &&
4540 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4541 			tcp_zcopy_notify(tcp);
4542 		freeb(mp2);
4543 		if (bytes_acked == 0) {
4544 			if (mp1 == NULL) {
4545 				/* Everything is ack'ed, clear the tail. */
4546 				tcp->tcp_xmit_tail = NULL;
4547 				/*
4548 				 * Cancel the timer unless we are still
4549 				 * waiting for an ACK for the FIN packet.
4550 				 */
4551 				if (tcp->tcp_timer_tid != 0 &&
4552 				    tcp->tcp_snxt == tcp->tcp_suna) {
4553 					(void) TCP_TIMER_CANCEL(tcp,
4554 					    tcp->tcp_timer_tid);
4555 					tcp->tcp_timer_tid = 0;
4556 				}
4557 				goto pre_swnd_update;
4558 			}
4559 			if (mp2 != tcp->tcp_xmit_tail)
4560 				break;
4561 			tcp->tcp_xmit_tail = mp1;
4562 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4563 			    (uintptr_t)INT_MAX);
4564 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4565 			    mp1->b_rptr);
4566 			break;
4567 		}
4568 		if (mp1 == NULL) {
4569 			/*
4570 			 * More was acked but there is nothing more
4571 			 * outstanding.  This means that the FIN was
4572 			 * just acked or that we're talking to a clown.
4573 			 */
4574 fin_acked:
4575 			ASSERT(tcp->tcp_fin_sent);
4576 			tcp->tcp_xmit_tail = NULL;
4577 			if (tcp->tcp_fin_sent) {
4578 				/* FIN was acked - making progress */
4579 				if (!tcp->tcp_fin_acked)
4580 					tcp->tcp_ip_forward_progress = B_TRUE;
4581 				tcp->tcp_fin_acked = B_TRUE;
4582 				if (tcp->tcp_linger_tid != 0 &&
4583 				    TCP_TIMER_CANCEL(tcp,
4584 				    tcp->tcp_linger_tid) >= 0) {
4585 					tcp_stop_lingering(tcp);
4586 					freemsg(mp);
4587 					mp = NULL;
4588 				}
4589 			} else {
4590 				/*
4591 				 * We should never get here because
4592 				 * we have already checked that the
4593 				 * number of bytes ack'ed should be
4594 				 * smaller than or equal to what we
4595 				 * have sent so far (it is the
4596 				 * acceptability check of the ACK).
4597 				 * We can only get here if the send
4598 				 * queue is corrupted.
4599 				 *
4600 				 * Terminate the connection and
4601 				 * panic the system.  It is better
4602 				 * for us to panic instead of
4603 				 * continuing to avoid other disaster.
4604 				 */
4605 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4606 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4607 				panic("Memory corruption "
4608 				    "detected for connection %s.",
4609 				    tcp_display(tcp, NULL,
4610 				    DISP_ADDR_AND_PORT));
4611 				/*NOTREACHED*/
4612 			}
4613 			goto pre_swnd_update;
4614 		}
4615 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4616 	}
4617 	if (tcp->tcp_unsent) {
4618 		flags |= TH_XMIT_NEEDED;
4619 	}
4620 pre_swnd_update:
4621 	tcp->tcp_xmit_head = mp1;
4622 swnd_update:
4623 	/*
4624 	 * The following check is different from most other implementations.
4625 	 * For bi-directional transfer, when segments are dropped, the
4626 	 * "normal" check will not accept a window update in those
4627 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4628 	 * segments which are outside receiver's window.  As TCP accepts
4629 	 * the ack in those retransmitted segments, if the window update in
4630 	 * the same segment is not accepted, TCP will incorrectly calculates
4631 	 * that it can send more segments.  This can create a deadlock
4632 	 * with the receiver if its window becomes zero.
4633 	 */
4634 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4635 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4636 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4637 		/*
4638 		 * The criteria for update is:
4639 		 *
4640 		 * 1. the segment acknowledges some data.  Or
4641 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4642 		 * 3. the segment is not old and the advertised window is
4643 		 * larger than the previous advertised window.
4644 		 */
4645 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4646 			flags |= TH_XMIT_NEEDED;
4647 		tcp->tcp_swnd = new_swnd;
4648 		if (new_swnd > tcp->tcp_max_swnd)
4649 			tcp->tcp_max_swnd = new_swnd;
4650 		tcp->tcp_swl1 = seg_seq;
4651 		tcp->tcp_swl2 = seg_ack;
4652 	}
4653 est:
4654 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4655 
4656 		switch (tcp->tcp_state) {
4657 		case TCPS_FIN_WAIT_1:
4658 			if (tcp->tcp_fin_acked) {
4659 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4660 				DTRACE_TCP6(state__change, void, NULL,
4661 				    ip_xmit_attr_t *, connp->conn_ixa,
4662 				    void, NULL, tcp_t *, tcp, void, NULL,
4663 				    int32_t, TCPS_FIN_WAIT_1);
4664 				/*
4665 				 * We implement the non-standard BSD/SunOS
4666 				 * FIN_WAIT_2 flushing algorithm.
4667 				 * If there is no user attached to this
4668 				 * TCP endpoint, then this TCP struct
4669 				 * could hang around forever in FIN_WAIT_2
4670 				 * state if the peer forgets to send us
4671 				 * a FIN.  To prevent this, we wait only
4672 				 * 2*MSL (a convenient time value) for
4673 				 * the FIN to arrive.  If it doesn't show up,
4674 				 * we flush the TCP endpoint.  This algorithm,
4675 				 * though a violation of RFC-793, has worked
4676 				 * for over 10 years in BSD systems.
4677 				 * Note: SunOS 4.x waits 675 seconds before
4678 				 * flushing the FIN_WAIT_2 connection.
4679 				 */
4680 				TCP_TIMER_RESTART(tcp,
4681 				    tcp->tcp_fin_wait_2_flush_interval);
4682 			}
4683 			break;
4684 		case TCPS_FIN_WAIT_2:
4685 			break;	/* Shutdown hook? */
4686 		case TCPS_LAST_ACK:
4687 			freemsg(mp);
4688 			if (tcp->tcp_fin_acked) {
4689 				(void) tcp_clean_death(tcp, 0);
4690 				return;
4691 			}
4692 			goto xmit_check;
4693 		case TCPS_CLOSING:
4694 			if (tcp->tcp_fin_acked) {
4695 				SET_TIME_WAIT(tcps, tcp, connp);
4696 				DTRACE_TCP6(state__change, void, NULL,
4697 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4698 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4699 				    TCPS_CLOSING);
4700 			}
4701 			/*FALLTHRU*/
4702 		case TCPS_CLOSE_WAIT:
4703 			freemsg(mp);
4704 			goto xmit_check;
4705 		default:
4706 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4707 			break;
4708 		}
4709 	}
4710 	if (flags & TH_FIN) {
4711 		/* Make sure we ack the fin */
4712 		flags |= TH_ACK_NEEDED;
4713 		if (!tcp->tcp_fin_rcvd) {
4714 			tcp->tcp_fin_rcvd = B_TRUE;
4715 			tcp->tcp_rnxt++;
4716 			tcpha = tcp->tcp_tcpha;
4717 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4718 
4719 			/*
4720 			 * Generate the ordrel_ind at the end unless the
4721 			 * conn is detached or it is a STREAMS based eager.
4722 			 * In the eager case we defer the notification until
4723 			 * tcp_accept_finish has run.
4724 			 */
4725 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4726 			    (tcp->tcp_listener == NULL &&
4727 			    !tcp->tcp_hard_binding)))
4728 				flags |= TH_ORDREL_NEEDED;
4729 			switch (tcp->tcp_state) {
4730 			case TCPS_SYN_RCVD:
4731 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4732 				DTRACE_TCP6(state__change, void, NULL,
4733 				    ip_xmit_attr_t *, connp->conn_ixa,
4734 				    void, NULL, tcp_t *, tcp, void, NULL,
4735 				    int32_t, TCPS_SYN_RCVD);
4736 				/* Keepalive? */
4737 				break;
4738 			case TCPS_ESTABLISHED:
4739 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4740 				DTRACE_TCP6(state__change, void, NULL,
4741 				    ip_xmit_attr_t *, connp->conn_ixa,
4742 				    void, NULL, tcp_t *, tcp, void, NULL,
4743 				    int32_t, TCPS_ESTABLISHED);
4744 				/* Keepalive? */
4745 				break;
4746 			case TCPS_FIN_WAIT_1:
4747 				if (!tcp->tcp_fin_acked) {
4748 					tcp->tcp_state = TCPS_CLOSING;
4749 					DTRACE_TCP6(state__change, void, NULL,
4750 					    ip_xmit_attr_t *, connp->conn_ixa,
4751 					    void, NULL, tcp_t *, tcp, void,
4752 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4753 					break;
4754 				}
4755 				/* FALLTHRU */
4756 			case TCPS_FIN_WAIT_2:
4757 				SET_TIME_WAIT(tcps, tcp, connp);
4758 				DTRACE_TCP6(state__change, void, NULL,
4759 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4760 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4761 				    TCPS_FIN_WAIT_2);
4762 				if (seg_len) {
4763 					/*
4764 					 * implies data piggybacked on FIN.
4765 					 * break to handle data.
4766 					 */
4767 					break;
4768 				}
4769 				freemsg(mp);
4770 				goto ack_check;
4771 			}
4772 		}
4773 	}
4774 	if (mp == NULL)
4775 		goto xmit_check;
4776 	if (seg_len == 0) {
4777 		freemsg(mp);
4778 		goto xmit_check;
4779 	}
4780 	if (mp->b_rptr == mp->b_wptr) {
4781 		/*
4782 		 * The header has been consumed, so we remove the
4783 		 * zero-length mblk here.
4784 		 */
4785 		mp1 = mp;
4786 		mp = mp->b_cont;
4787 		freeb(mp1);
4788 	}
4789 update_ack:
4790 	tcpha = tcp->tcp_tcpha;
4791 	tcp->tcp_rack_cnt++;
4792 	{
4793 		uint32_t cur_max;
4794 
4795 		cur_max = tcp->tcp_rack_cur_max;
4796 		if (tcp->tcp_rack_cnt >= cur_max) {
4797 			/*
4798 			 * We have more unacked data than we should - send
4799 			 * an ACK now.
4800 			 */
4801 			flags |= TH_ACK_NEEDED;
4802 			cur_max++;
4803 			if (cur_max > tcp->tcp_rack_abs_max)
4804 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4805 			else
4806 				tcp->tcp_rack_cur_max = cur_max;
4807 		} else if (tcp->tcp_quickack) {
4808 			/* The executable asked that we ack each packet */
4809 			flags |= TH_ACK_NEEDED;
4810 		} else if (TCP_IS_DETACHED(tcp)) {
4811 			/* We don't have an ACK timer for detached TCP. */
4812 			flags |= TH_ACK_NEEDED;
4813 		} else if (seg_len < mss) {
4814 			/*
4815 			 * If we get a segment that is less than an mss, and we
4816 			 * already have unacknowledged data, and the amount
4817 			 * unacknowledged is not a multiple of mss, then we
4818 			 * better generate an ACK now.  Otherwise, this may be
4819 			 * the tail piece of a transaction, and we would rather
4820 			 * wait for the response.
4821 			 */
4822 			uint32_t udif;
4823 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4824 			    (uintptr_t)INT_MAX);
4825 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4826 			if (udif && (udif % mss))
4827 				flags |= TH_ACK_NEEDED;
4828 			else
4829 				flags |= TH_ACK_TIMER_NEEDED;
4830 		} else {
4831 			/* Start delayed ack timer */
4832 			flags |= TH_ACK_TIMER_NEEDED;
4833 		}
4834 	}
4835 	tcp->tcp_rnxt += seg_len;
4836 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4837 
4838 	if (mp == NULL)
4839 		goto xmit_check;
4840 
4841 	/* Update SACK list */
4842 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4843 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4844 		    &(tcp->tcp_num_sack_blk));
4845 	}
4846 
4847 	if (tcp->tcp_urp_mp) {
4848 		tcp->tcp_urp_mp->b_cont = mp;
4849 		mp = tcp->tcp_urp_mp;
4850 		tcp->tcp_urp_mp = NULL;
4851 		/* Ready for a new signal. */
4852 		tcp->tcp_urp_last_valid = B_FALSE;
4853 #ifdef DEBUG
4854 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4855 		    "tcp_rput: sending exdata_ind %s",
4856 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4857 #endif /* DEBUG */
4858 	}
4859 
4860 	/*
4861 	 * Check for ancillary data changes compared to last segment.
4862 	 */
4863 	if (connp->conn_recv_ancillary.crb_all != 0) {
4864 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4865 		if (mp == NULL)
4866 			return;
4867 	}
4868 
4869 	if (IPCL_IS_NONSTR(connp)) {
4870 		/*
4871 		 * Non-STREAMS socket
4872 		 */
4873 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4874 		int error;
4875 
4876 		if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4877 		    mp, seg_len, 0, &error, &push) <= 0) {
4878 			/*
4879 			 * We should never be in middle of a
4880 			 * fallback, the squeue guarantees that.
4881 			 */
4882 			ASSERT(error != EOPNOTSUPP);
4883 			if (error == ENOSPC)
4884 				tcp->tcp_rwnd -= seg_len;
4885 		} else if (push) {
4886 			/* PUSH bit set and sockfs is not flow controlled */
4887 			flags |= tcp_rwnd_reopen(tcp);
4888 		}
4889 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4890 		/*
4891 		 * Side queue inbound data until the accept happens.
4892 		 * tcp_accept/tcp_rput drains this when the accept happens.
4893 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4894 		 * T_EXDATA_IND) it is queued on b_next.
4895 		 * XXX Make urgent data use this. Requires:
4896 		 *	Removing tcp_listener check for TH_URG
4897 		 *	Making M_PCPROTO and MARK messages skip the eager case
4898 		 */
4899 
4900 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4901 	} else {
4902 		/* Active STREAMS socket */
4903 		if (mp->b_datap->db_type != M_DATA ||
4904 		    (flags & TH_MARKNEXT_NEEDED)) {
4905 			if (tcp->tcp_rcv_list != NULL) {
4906 				flags |= tcp_rcv_drain(tcp);
4907 			}
4908 			ASSERT(tcp->tcp_rcv_list == NULL ||
4909 			    tcp->tcp_fused_sigurg);
4910 
4911 			if (flags & TH_MARKNEXT_NEEDED) {
4912 #ifdef DEBUG
4913 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4914 				    "tcp_rput: sending MSGMARKNEXT %s",
4915 				    tcp_display(tcp, NULL,
4916 				    DISP_PORT_ONLY));
4917 #endif /* DEBUG */
4918 				mp->b_flag |= MSGMARKNEXT;
4919 				flags &= ~TH_MARKNEXT_NEEDED;
4920 			}
4921 
4922 			if (is_system_labeled())
4923 				tcp_setcred_data(mp, ira);
4924 
4925 			putnext(connp->conn_rq, mp);
4926 			if (!canputnext(connp->conn_rq))
4927 				tcp->tcp_rwnd -= seg_len;
4928 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4929 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4930 			if (tcp->tcp_rcv_list != NULL) {
4931 				/*
4932 				 * Enqueue the new segment first and then
4933 				 * call tcp_rcv_drain() to send all data
4934 				 * up.  The other way to do this is to
4935 				 * send all queued data up and then call
4936 				 * putnext() to send the new segment up.
4937 				 * This way can remove the else part later
4938 				 * on.
4939 				 *
4940 				 * We don't do this to avoid one more call to
4941 				 * canputnext() as tcp_rcv_drain() needs to
4942 				 * call canputnext().
4943 				 */
4944 				tcp_rcv_enqueue(tcp, mp, seg_len,
4945 				    ira->ira_cred);
4946 				flags |= tcp_rcv_drain(tcp);
4947 			} else {
4948 				if (is_system_labeled())
4949 					tcp_setcred_data(mp, ira);
4950 
4951 				putnext(connp->conn_rq, mp);
4952 				if (!canputnext(connp->conn_rq))
4953 					tcp->tcp_rwnd -= seg_len;
4954 			}
4955 		} else {
4956 			/*
4957 			 * Enqueue all packets when processing an mblk
4958 			 * from the co queue and also enqueue normal packets.
4959 			 */
4960 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4961 		}
4962 		/*
4963 		 * Make sure the timer is running if we have data waiting
4964 		 * for a push bit. This provides resiliency against
4965 		 * implementations that do not correctly generate push bits.
4966 		 */
4967 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4968 			/*
4969 			 * The connection may be closed at this point, so don't
4970 			 * do anything for a detached tcp.
4971 			 */
4972 			if (!TCP_IS_DETACHED(tcp))
4973 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4974 				    tcp_push_timer,
4975 				    tcps->tcps_push_timer_interval);
4976 		}
4977 	}
4978 
4979 xmit_check:
4980 	/* Is there anything left to do? */
4981 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4982 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4983 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4984 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4985 		goto done;
4986 
4987 	/* Any transmit work to do and a non-zero window? */
4988 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4989 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4990 		if (flags & TH_REXMIT_NEEDED) {
4991 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4992 
4993 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4994 			if (snd_size > mss)
4995 				snd_size = mss;
4996 			if (snd_size > tcp->tcp_swnd)
4997 				snd_size = tcp->tcp_swnd;
4998 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4999 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
5000 			    B_TRUE);
5001 
5002 			if (mp1 != NULL) {
5003 				tcp->tcp_xmit_head->b_prev =
5004 				    (mblk_t *)(intptr_t)gethrtime();
5005 				tcp->tcp_csuna = tcp->tcp_snxt;
5006 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
5007 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
5008 				    snd_size);
5009 				tcp->tcp_cs.tcp_out_retrans_segs++;
5010 				tcp->tcp_cs.tcp_out_retrans_bytes += snd_size;
5011 				tcp_send_data(tcp, mp1);
5012 			}
5013 		}
5014 		if (flags & TH_NEED_SACK_REXMIT) {
5015 			tcp_sack_rexmit(tcp, &flags);
5016 		}
5017 		/*
5018 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
5019 		 * out new segment.  Note that tcp_rexmit should not be
5020 		 * set, otherwise TH_LIMIT_XMIT should not be set.
5021 		 */
5022 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
5023 			if (!tcp->tcp_rexmit) {
5024 				tcp_wput_data(tcp, NULL, B_FALSE);
5025 			} else {
5026 				tcp_ss_rexmit(tcp);
5027 			}
5028 		}
5029 		/*
5030 		 * Adjust tcp_cwnd back to normal value after sending
5031 		 * new data segments.
5032 		 */
5033 		if (flags & TH_LIMIT_XMIT) {
5034 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
5035 			/*
5036 			 * This will restart the timer.  Restarting the
5037 			 * timer is used to avoid a timeout before the
5038 			 * limited transmitted segment's ACK gets back.
5039 			 */
5040 			if (tcp->tcp_xmit_head != NULL) {
5041 				tcp->tcp_xmit_head->b_prev =
5042 				    (mblk_t *)(intptr_t)gethrtime();
5043 			}
5044 		}
5045 
5046 		/* Anything more to do? */
5047 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
5048 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
5049 			goto done;
5050 	}
5051 ack_check:
5052 	if (flags & TH_SEND_URP_MARK) {
5053 		ASSERT(tcp->tcp_urp_mark_mp);
5054 		ASSERT(!IPCL_IS_NONSTR(connp));
5055 		/*
5056 		 * Send up any queued data and then send the mark message
5057 		 */
5058 		if (tcp->tcp_rcv_list != NULL) {
5059 			flags |= tcp_rcv_drain(tcp);
5060 
5061 		}
5062 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5063 		mp1 = tcp->tcp_urp_mark_mp;
5064 		tcp->tcp_urp_mark_mp = NULL;
5065 		if (is_system_labeled())
5066 			tcp_setcred_data(mp1, ira);
5067 
5068 		putnext(connp->conn_rq, mp1);
5069 #ifdef DEBUG
5070 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
5071 		    "tcp_rput: sending zero-length %s %s",
5072 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
5073 		    "MSGNOTMARKNEXT"),
5074 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5075 #endif /* DEBUG */
5076 		flags &= ~TH_SEND_URP_MARK;
5077 	}
5078 	if (flags & TH_ACK_NEEDED) {
5079 		/*
5080 		 * Time to send an ack for some reason.
5081 		 */
5082 		mp1 = tcp_ack_mp(tcp);
5083 
5084 		if (mp1 != NULL) {
5085 			tcp_send_data(tcp, mp1);
5086 			TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
5087 			TCPS_BUMP_MIB(tcps, tcpOutAck);
5088 		}
5089 		if (tcp->tcp_ack_tid != 0) {
5090 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
5091 			tcp->tcp_ack_tid = 0;
5092 		}
5093 	}
5094 	if (flags & TH_ACK_TIMER_NEEDED) {
5095 		/*
5096 		 * Arrange for deferred ACK or push wait timeout.
5097 		 * Start timer if it is not already running.
5098 		 */
5099 		if (tcp->tcp_ack_tid == 0) {
5100 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
5101 			    tcp->tcp_localnet ?
5102 			    tcps->tcps_local_dack_interval :
5103 			    tcps->tcps_deferred_ack_interval);
5104 		}
5105 	}
5106 	if (flags & TH_ORDREL_NEEDED) {
5107 		/*
5108 		 * Notify upper layer about an orderly release. If this is
5109 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
5110 		 * we send up an ordrel_ind, unless this is an eager, in which
5111 		 * case the ordrel will be sent when tcp_accept_finish runs.
5112 		 * Note that for non-STREAMS we make an upcall even if it is an
5113 		 * eager, because we have an upper handle to send it to.
5114 		 */
5115 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
5116 		ASSERT(!tcp->tcp_detached);
5117 
5118 		if (IPCL_IS_NONSTR(connp)) {
5119 			ASSERT(tcp->tcp_ordrel_mp == NULL);
5120 			tcp->tcp_ordrel_done = B_TRUE;
5121 			(*sockupcalls->su_opctl)(connp->conn_upper_handle,
5122 			    SOCK_OPCTL_SHUT_RECV, 0);
5123 			goto done;
5124 		}
5125 
5126 		if (tcp->tcp_rcv_list != NULL) {
5127 			/*
5128 			 * Push any mblk(s) enqueued from co processing.
5129 			 */
5130 			flags |= tcp_rcv_drain(tcp);
5131 		}
5132 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5133 
5134 		mp1 = tcp->tcp_ordrel_mp;
5135 		tcp->tcp_ordrel_mp = NULL;
5136 		tcp->tcp_ordrel_done = B_TRUE;
5137 		putnext(connp->conn_rq, mp1);
5138 	}
5139 done:
5140 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5141 }
5142 
5143 /*
5144  * Attach ancillary data to a received TCP segments for the
5145  * ancillary pieces requested by the application that are
5146  * different than they were in the previous data segment.
5147  *
5148  * Save the "current" values once memory allocation is ok so that
5149  * when memory allocation fails we can just wait for the next data segment.
5150  */
5151 static mblk_t *
tcp_input_add_ancillary(tcp_t * tcp,mblk_t * mp,ip_pkt_t * ipp,ip_recv_attr_t * ira)5152 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
5153     ip_recv_attr_t *ira)
5154 {
5155 	struct T_optdata_ind *todi;
5156 	int optlen;
5157 	uchar_t *optptr;
5158 	struct T_opthdr *toh;
5159 	crb_t addflag;	/* Which pieces to add */
5160 	mblk_t *mp1;
5161 	conn_t	*connp = tcp->tcp_connp;
5162 
5163 	optlen = 0;
5164 	addflag.crb_all = 0;
5165 
5166 	/* If app asked for TOS and it has changed ... */
5167 	if (connp->conn_recv_ancillary.crb_recvtos &&
5168 	    ipp->ipp_type_of_service != tcp->tcp_recvtos &&
5169 	    (ira->ira_flags & IRAF_IS_IPV4)) {
5170 		optlen += sizeof (struct T_opthdr) +
5171 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5172 		addflag.crb_recvtos = 1;
5173 	}
5174 	/* If app asked for pktinfo and the index has changed ... */
5175 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
5176 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
5177 		optlen += sizeof (struct T_opthdr) +
5178 		    sizeof (struct in6_pktinfo);
5179 		addflag.crb_ip_recvpktinfo = 1;
5180 	}
5181 	/* If app asked for hoplimit and it has changed ... */
5182 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
5183 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
5184 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5185 		addflag.crb_ipv6_recvhoplimit = 1;
5186 	}
5187 	/* If app asked for tclass and it has changed ... */
5188 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
5189 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
5190 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5191 		addflag.crb_ipv6_recvtclass = 1;
5192 	}
5193 
5194 	/*
5195 	 * If app asked for hop-by-hop headers and it has changed ...
5196 	 * For security labels, note that (1) security labels can't change on
5197 	 * a connected socket at all, (2) we're connected to at most one peer,
5198 	 * (3) if anything changes, then it must be some other extra option.
5199 	 */
5200 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
5201 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
5202 	    (ipp->ipp_fields & IPPF_HOPOPTS),
5203 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
5204 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
5205 		addflag.crb_ipv6_recvhopopts = 1;
5206 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
5207 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
5208 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
5209 			return (mp);
5210 	}
5211 	/* If app asked for dst headers before routing headers ... */
5212 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
5213 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
5214 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5215 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
5216 		optlen += sizeof (struct T_opthdr) +
5217 		    ipp->ipp_rthdrdstoptslen;
5218 		addflag.crb_ipv6_recvrthdrdstopts = 1;
5219 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
5220 		    &tcp->tcp_rthdrdstoptslen,
5221 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5222 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
5223 			return (mp);
5224 	}
5225 	/* If app asked for routing headers and it has changed ... */
5226 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
5227 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
5228 	    (ipp->ipp_fields & IPPF_RTHDR),
5229 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
5230 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
5231 		addflag.crb_ipv6_recvrthdr = 1;
5232 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
5233 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
5234 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
5235 			return (mp);
5236 	}
5237 	/* If app asked for dest headers and it has changed ... */
5238 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
5239 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
5240 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
5241 	    (ipp->ipp_fields & IPPF_DSTOPTS),
5242 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
5243 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
5244 		addflag.crb_ipv6_recvdstopts = 1;
5245 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
5246 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
5247 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
5248 			return (mp);
5249 	}
5250 
5251 	if (optlen == 0) {
5252 		/* Nothing to add */
5253 		return (mp);
5254 	}
5255 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5256 	if (mp1 == NULL) {
5257 		/*
5258 		 * Defer sending ancillary data until the next TCP segment
5259 		 * arrives.
5260 		 */
5261 		return (mp);
5262 	}
5263 	mp1->b_cont = mp;
5264 	mp = mp1;
5265 	mp->b_wptr += sizeof (*todi) + optlen;
5266 	mp->b_datap->db_type = M_PROTO;
5267 	todi = (struct T_optdata_ind *)mp->b_rptr;
5268 	todi->PRIM_type = T_OPTDATA_IND;
5269 	todi->DATA_flag = 1;	/* MORE data */
5270 	todi->OPT_length = optlen;
5271 	todi->OPT_offset = sizeof (*todi);
5272 	optptr = (uchar_t *)&todi[1];
5273 
5274 	/* If app asked for TOS and it has changed ... */
5275 	if (addflag.crb_recvtos) {
5276 		toh = (struct T_opthdr *)optptr;
5277 		toh->level = IPPROTO_IP;
5278 		toh->name = IP_RECVTOS;
5279 		toh->len = sizeof (*toh) +
5280 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5281 		toh->status = 0;
5282 		optptr += sizeof (*toh);
5283 		*(uint8_t *)optptr = ipp->ipp_type_of_service;
5284 		optptr = (uchar_t *)toh + toh->len;
5285 		ASSERT(__TPI_TOPT_ISALIGNED(optptr));
5286 		/* Save as "last" value */
5287 		tcp->tcp_recvtos = ipp->ipp_type_of_service;
5288 	}
5289 
5290 	/*
5291 	 * If app asked for pktinfo and the index has changed ...
5292 	 * Note that the local address never changes for the connection.
5293 	 */
5294 	if (addflag.crb_ip_recvpktinfo) {
5295 		struct in6_pktinfo *pkti;
5296 		uint_t ifindex;
5297 
5298 		ifindex = ira->ira_ruifindex;
5299 		toh = (struct T_opthdr *)optptr;
5300 		toh->level = IPPROTO_IPV6;
5301 		toh->name = IPV6_PKTINFO;
5302 		toh->len = sizeof (*toh) + sizeof (*pkti);
5303 		toh->status = 0;
5304 		optptr += sizeof (*toh);
5305 		pkti = (struct in6_pktinfo *)optptr;
5306 		pkti->ipi6_addr = connp->conn_laddr_v6;
5307 		pkti->ipi6_ifindex = ifindex;
5308 		optptr += sizeof (*pkti);
5309 		ASSERT(OK_32PTR(optptr));
5310 		/* Save as "last" value */
5311 		tcp->tcp_recvifindex = ifindex;
5312 	}
5313 	/* If app asked for hoplimit and it has changed ... */
5314 	if (addflag.crb_ipv6_recvhoplimit) {
5315 		toh = (struct T_opthdr *)optptr;
5316 		toh->level = IPPROTO_IPV6;
5317 		toh->name = IPV6_HOPLIMIT;
5318 		toh->len = sizeof (*toh) + sizeof (uint_t);
5319 		toh->status = 0;
5320 		optptr += sizeof (*toh);
5321 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5322 		optptr += sizeof (uint_t);
5323 		ASSERT(OK_32PTR(optptr));
5324 		/* Save as "last" value */
5325 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5326 	}
5327 	/* If app asked for tclass and it has changed ... */
5328 	if (addflag.crb_ipv6_recvtclass) {
5329 		toh = (struct T_opthdr *)optptr;
5330 		toh->level = IPPROTO_IPV6;
5331 		toh->name = IPV6_TCLASS;
5332 		toh->len = sizeof (*toh) + sizeof (uint_t);
5333 		toh->status = 0;
5334 		optptr += sizeof (*toh);
5335 		*(uint_t *)optptr = ipp->ipp_tclass;
5336 		optptr += sizeof (uint_t);
5337 		ASSERT(OK_32PTR(optptr));
5338 		/* Save as "last" value */
5339 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5340 	}
5341 	if (addflag.crb_ipv6_recvhopopts) {
5342 		toh = (struct T_opthdr *)optptr;
5343 		toh->level = IPPROTO_IPV6;
5344 		toh->name = IPV6_HOPOPTS;
5345 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5346 		toh->status = 0;
5347 		optptr += sizeof (*toh);
5348 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5349 		optptr += ipp->ipp_hopoptslen;
5350 		ASSERT(OK_32PTR(optptr));
5351 		/* Save as last value */
5352 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5353 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5354 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5355 	}
5356 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5357 		toh = (struct T_opthdr *)optptr;
5358 		toh->level = IPPROTO_IPV6;
5359 		toh->name = IPV6_RTHDRDSTOPTS;
5360 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5361 		toh->status = 0;
5362 		optptr += sizeof (*toh);
5363 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5364 		optptr += ipp->ipp_rthdrdstoptslen;
5365 		ASSERT(OK_32PTR(optptr));
5366 		/* Save as last value */
5367 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5368 		    &tcp->tcp_rthdrdstoptslen,
5369 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5370 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5371 	}
5372 	if (addflag.crb_ipv6_recvrthdr) {
5373 		toh = (struct T_opthdr *)optptr;
5374 		toh->level = IPPROTO_IPV6;
5375 		toh->name = IPV6_RTHDR;
5376 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5377 		toh->status = 0;
5378 		optptr += sizeof (*toh);
5379 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5380 		optptr += ipp->ipp_rthdrlen;
5381 		ASSERT(OK_32PTR(optptr));
5382 		/* Save as last value */
5383 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5384 		    (ipp->ipp_fields & IPPF_RTHDR),
5385 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5386 	}
5387 	if (addflag.crb_ipv6_recvdstopts) {
5388 		toh = (struct T_opthdr *)optptr;
5389 		toh->level = IPPROTO_IPV6;
5390 		toh->name = IPV6_DSTOPTS;
5391 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5392 		toh->status = 0;
5393 		optptr += sizeof (*toh);
5394 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5395 		optptr += ipp->ipp_dstoptslen;
5396 		ASSERT(OK_32PTR(optptr));
5397 		/* Save as last value */
5398 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5399 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5400 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5401 	}
5402 	ASSERT(optptr == mp->b_wptr);
5403 	return (mp);
5404 }
5405 
5406 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */
5407 #define	TCP_SD_MIN	400000000
5408 
5409 /*
5410  * Set RTO for this connection based on a new round-trip time measurement.
5411  * The formula is from Jacobson and Karels' "Congestion Avoidance and Control"
5412  * in SIGCOMM '88.  The variable names are the same as those in Appendix A.2
5413  * of that paper.
5414  *
5415  * m = new measurement
5416  * sa = smoothed RTT average (8 * average estimates).
5417  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5418  */
5419 static void
tcp_set_rto(tcp_t * tcp,hrtime_t rtt)5420 tcp_set_rto(tcp_t *tcp, hrtime_t rtt)
5421 {
5422 	hrtime_t m = rtt;
5423 	hrtime_t sa = tcp->tcp_rtt_sa;
5424 	hrtime_t sv = tcp->tcp_rtt_sd;
5425 	tcp_stack_t *tcps = tcp->tcp_tcps;
5426 
5427 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5428 	tcp->tcp_rtt_update++;
5429 	tcp->tcp_rtt_sum += m;
5430 	tcp->tcp_rtt_cnt++;
5431 
5432 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5433 	if (sa != 0) {
5434 		/*
5435 		 * Update average estimator (see section 2.3 of RFC6298):
5436 		 *	SRTT = 7/8 SRTT + 1/8 rtt
5437 		 *
5438 		 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to:
5439 		 *	tcp_rtt_sa = 7 * SRTT + rtt
5440 		 *	tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt
5441 		 *	tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt
5442 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8))
5443 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3))
5444 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3))
5445 		 *
5446 		 * (rtt - tcp_rtt_sa / 8) is simply the difference
5447 		 * between the new rtt measurement and the existing smoothed
5448 		 * RTT average. This is referred to as "Error" in subsequent
5449 		 * calculations.
5450 		 */
5451 
5452 		/* m is now Error. */
5453 		m -= sa >> 3;
5454 		if ((sa += m) <= 0) {
5455 			/*
5456 			 * Don't allow the smoothed average to be negative.
5457 			 * We use 0 to denote reinitialization of the
5458 			 * variables.
5459 			 */
5460 			sa = 1;
5461 		}
5462 
5463 		/*
5464 		 * Update deviation estimator:
5465 		 *  mdev = 3/4 mdev + 1/4 abs(Error)
5466 		 *
5467 		 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to:
5468 		 *  tcp_rtt_sd = 3 * mdev + abs(Error)
5469 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error)
5470 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error)
5471 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error)
5472 		 */
5473 		if (m < 0)
5474 			m = -m;
5475 		m -= sv >> 2;
5476 		sv += m;
5477 	} else {
5478 		/*
5479 		 * This follows BSD's implementation.  So the reinitialized
5480 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5481 		 * link is bandwidth dominated, doubling the window size
5482 		 * during slow start means doubling the RTT.  We want to be
5483 		 * more conservative when we reinitialize our estimates.  3
5484 		 * is just a convenient number.
5485 		 */
5486 		sa = m << 3;
5487 		sv = m << 1;
5488 	}
5489 	if (sv < TCP_SD_MIN) {
5490 		/*
5491 		 * Since a receiver doesn't delay its ACKs during a long run of
5492 		 * segments, sa may not have captured the effect of delayed ACK
5493 		 * timeouts on the RTT.  To make sure we always account for the
5494 		 * possible delay (and avoid the unnecessary retransmission),
5495 		 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of
5496 		 * 200ms on older SunOS/BSD systems and modern Windows systems
5497 		 * (as of 2019).  This means that the minimum possible mean
5498 		 * deviation is 100 ms.
5499 		 */
5500 		sv = TCP_SD_MIN;
5501 	}
5502 	tcp->tcp_rtt_sa = sa;
5503 	tcp->tcp_rtt_sd = sv;
5504 
5505 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
5506 
5507 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5508 	tcp->tcp_timer_backoff = 0;
5509 }
5510 
5511 /*
5512  * On a labeled system we have some protocols above TCP, such as RPC, which
5513  * appear to assume that every mblk in a chain has a db_credp.
5514  */
5515 static void
tcp_setcred_data(mblk_t * mp,ip_recv_attr_t * ira)5516 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5517 {
5518 	ASSERT(is_system_labeled());
5519 	ASSERT(ira->ira_cred != NULL);
5520 
5521 	while (mp != NULL) {
5522 		mblk_setcred(mp, ira->ira_cred, NOPID);
5523 		mp = mp->b_cont;
5524 	}
5525 }
5526 
5527 uint_t
tcp_rwnd_reopen(tcp_t * tcp)5528 tcp_rwnd_reopen(tcp_t *tcp)
5529 {
5530 	uint_t ret = 0;
5531 	uint_t thwin;
5532 	conn_t *connp = tcp->tcp_connp;
5533 
5534 	/* Learn the latest rwnd information that we sent to the other side. */
5535 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5536 	    << tcp->tcp_rcv_ws;
5537 	/* This is peer's calculated send window (our receive window). */
5538 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5539 	/*
5540 	 * Increase the receive window to max.  But we need to do receiver
5541 	 * SWS avoidance.  This means that we need to check the increase of
5542 	 * of receive window is at least 1 MSS.
5543 	 */
5544 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5545 		/*
5546 		 * If the window that the other side knows is less than max
5547 		 * deferred acks segments, send an update immediately.
5548 		 */
5549 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5550 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5551 			ret = TH_ACK_NEEDED;
5552 		}
5553 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5554 	}
5555 	return (ret);
5556 }
5557 
5558 /*
5559  * Handle a packet that has been reclassified by TCP.
5560  * This function drops the ref on connp that the caller had.
5561  */
5562 void
tcp_reinput(conn_t * connp,mblk_t * mp,ip_recv_attr_t * ira,ip_stack_t * ipst)5563 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5564 {
5565 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5566 
5567 	if (connp->conn_incoming_ifindex != 0 &&
5568 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5569 		freemsg(mp);
5570 		CONN_DEC_REF(connp);
5571 		return;
5572 	}
5573 	if (connp->conn_min_ttl != 0 && connp->conn_min_ttl > ira->ira_ttl) {
5574 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5575 		ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5576 		freemsg(mp);
5577 		CONN_DEC_REF(connp);
5578 		return;
5579 	}
5580 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5581 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5582 		ip6_t *ip6h;
5583 		ipha_t *ipha;
5584 
5585 		if (ira->ira_flags & IRAF_IS_IPV4) {
5586 			ipha = (ipha_t *)mp->b_rptr;
5587 			ip6h = NULL;
5588 		} else {
5589 			ipha = NULL;
5590 			ip6h = (ip6_t *)mp->b_rptr;
5591 		}
5592 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5593 		if (mp == NULL) {
5594 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5595 			/* Note that mp is NULL */
5596 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5597 			CONN_DEC_REF(connp);
5598 			return;
5599 		}
5600 	}
5601 
5602 	if (IPCL_IS_TCP(connp)) {
5603 		/*
5604 		 * do not drain, certain use cases can blow
5605 		 * the stack
5606 		 */
5607 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5608 		    connp->conn_recv, connp, ira,
5609 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5610 	} else {
5611 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5612 		(connp->conn_recv)(connp, mp, NULL,
5613 		    ira);
5614 		CONN_DEC_REF(connp);
5615 	}
5616 
5617 }
5618 
5619 /* ARGSUSED */
5620 static void
tcp_rsrv_input(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)5621 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5622 {
5623 	conn_t	*connp = (conn_t *)arg;
5624 	tcp_t	*tcp = connp->conn_tcp;
5625 	queue_t	*q = connp->conn_rq;
5626 
5627 	ASSERT(!IPCL_IS_NONSTR(connp));
5628 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5629 	tcp->tcp_rsrv_mp = mp;
5630 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5631 
5632 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5633 		return;
5634 	}
5635 
5636 	if (tcp->tcp_fused) {
5637 		tcp_fuse_backenable(tcp);
5638 		return;
5639 	}
5640 
5641 	if (canputnext(q)) {
5642 		/* Not flow-controlled, open rwnd */
5643 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5644 
5645 		/*
5646 		 * Send back a window update immediately if TCP is above
5647 		 * ESTABLISHED state and the increase of the rcv window
5648 		 * that the other side knows is at least 1 MSS after flow
5649 		 * control is lifted.
5650 		 */
5651 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5652 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5653 			tcp_xmit_ctl(NULL, tcp,
5654 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5655 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5656 		}
5657 	}
5658 }
5659 
5660 /*
5661  * The read side service routine is called mostly when we get back-enabled as a
5662  * result of flow control relief.  Since we don't actually queue anything in
5663  * TCP, we have no data to send out of here.  What we do is clear the receive
5664  * window, and send out a window update.
5665  */
5666 int
tcp_rsrv(queue_t * q)5667 tcp_rsrv(queue_t *q)
5668 {
5669 	conn_t		*connp = Q_TO_CONN(q);
5670 	tcp_t		*tcp = connp->conn_tcp;
5671 	mblk_t		*mp;
5672 
5673 	/* No code does a putq on the read side */
5674 	ASSERT(q->q_first == NULL);
5675 
5676 	/*
5677 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5678 	 * been run.  So just return.
5679 	 */
5680 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5681 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5682 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5683 		return (0);
5684 	}
5685 	tcp->tcp_rsrv_mp = NULL;
5686 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5687 
5688 	CONN_INC_REF(connp);
5689 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5690 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5691 	return (0);
5692 }
5693 
5694 /* At minimum we need 8 bytes in the TCP header for the lookup */
5695 #define	ICMP_MIN_TCP_HDR	8
5696 
5697 /*
5698  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5699  * passed up by IP. The message is always received on the correct tcp_t.
5700  * Assumes that IP has pulled up everything up to and including the ICMP header.
5701  */
5702 /* ARGSUSED2 */
5703 void
tcp_icmp_input(void * arg1,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)5704 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5705 {
5706 	conn_t		*connp = (conn_t *)arg1;
5707 	icmph_t		*icmph;
5708 	ipha_t		*ipha;
5709 	int		iph_hdr_length;
5710 	tcpha_t		*tcpha;
5711 	uint32_t	seg_seq;
5712 	tcp_t		*tcp = connp->conn_tcp;
5713 
5714 	/* Assume IP provides aligned packets */
5715 	ASSERT(OK_32PTR(mp->b_rptr));
5716 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5717 
5718 	/*
5719 	 * It's possible we have a closed, but not yet destroyed, TCP
5720 	 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid
5721 	 * in the closed state, so don't take any chances and drop the packet.
5722 	 */
5723 	if (tcp->tcp_state == TCPS_CLOSED) {
5724 		freemsg(mp);
5725 		return;
5726 	}
5727 
5728 	/*
5729 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5730 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5731 	 */
5732 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5733 		tcp_icmp_error_ipv6(tcp, mp, ira);
5734 		return;
5735 	}
5736 
5737 	/* Skip past the outer IP and ICMP headers */
5738 	iph_hdr_length = ira->ira_ip_hdr_length;
5739 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5740 	/*
5741 	 * If we don't have the correct outer IP header length
5742 	 * or if we don't have a complete inner IP header
5743 	 * drop it.
5744 	 */
5745 	if (iph_hdr_length < sizeof (ipha_t) ||
5746 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5747 noticmpv4:
5748 		freemsg(mp);
5749 		return;
5750 	}
5751 	ipha = (ipha_t *)&icmph[1];
5752 
5753 	/* Skip past the inner IP and find the ULP header */
5754 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5755 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5756 	/*
5757 	 * If we don't have the correct inner IP header length or if the ULP
5758 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5759 	 * bytes of TCP header, drop it.
5760 	 */
5761 	if (iph_hdr_length < sizeof (ipha_t) ||
5762 	    ipha->ipha_protocol != IPPROTO_TCP ||
5763 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5764 		goto noticmpv4;
5765 	}
5766 
5767 	seg_seq = ntohl(tcpha->tha_seq);
5768 	switch (icmph->icmph_type) {
5769 	case ICMP_DEST_UNREACHABLE:
5770 		switch (icmph->icmph_code) {
5771 		case ICMP_FRAGMENTATION_NEEDED:
5772 			/*
5773 			 * Update Path MTU, then try to send something out.
5774 			 */
5775 			tcp_update_pmtu(tcp, B_TRUE);
5776 			tcp_rexmit_after_error(tcp);
5777 			break;
5778 		case ICMP_PORT_UNREACHABLE:
5779 		case ICMP_PROTOCOL_UNREACHABLE:
5780 			switch (tcp->tcp_state) {
5781 			case TCPS_SYN_SENT:
5782 			case TCPS_SYN_RCVD:
5783 				/*
5784 				 * ICMP can snipe away incipient
5785 				 * TCP connections as long as
5786 				 * seq number is same as initial
5787 				 * send seq number.
5788 				 */
5789 				if (seg_seq == tcp->tcp_iss) {
5790 					(void) tcp_clean_death(tcp,
5791 					    ECONNREFUSED);
5792 				}
5793 				break;
5794 			}
5795 			break;
5796 		case ICMP_HOST_UNREACHABLE:
5797 		case ICMP_NET_UNREACHABLE:
5798 			/* Record the error in case we finally time out. */
5799 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5800 				tcp->tcp_client_errno = EHOSTUNREACH;
5801 			else
5802 				tcp->tcp_client_errno = ENETUNREACH;
5803 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5804 				if (tcp->tcp_listener != NULL &&
5805 				    tcp->tcp_listener->tcp_syn_defense) {
5806 					/*
5807 					 * Ditch the half-open connection if we
5808 					 * suspect a SYN attack is under way.
5809 					 */
5810 					(void) tcp_clean_death(tcp,
5811 					    tcp->tcp_client_errno);
5812 				}
5813 			}
5814 			break;
5815 		default:
5816 			break;
5817 		}
5818 		break;
5819 	case ICMP_SOURCE_QUENCH: {
5820 		/*
5821 		 * use a global boolean to control
5822 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5823 		 * The default is false.
5824 		 */
5825 		if (tcp_icmp_source_quench) {
5826 			/*
5827 			 * Reduce the sending rate as if we got a
5828 			 * retransmit timeout
5829 			 */
5830 			uint32_t npkt;
5831 
5832 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5833 			    tcp->tcp_mss;
5834 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5835 
5836 			DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp,
5837 			    uint32_t, tcp->tcp_cwnd,
5838 			    uint32_t, tcp->tcp_mss);
5839 			tcp->tcp_cwnd = tcp->tcp_mss;
5840 			tcp->tcp_cwnd_cnt = 0;
5841 		}
5842 		break;
5843 	}
5844 	}
5845 	freemsg(mp);
5846 }
5847 
5848 /*
5849  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5850  * error messages passed up by IP.
5851  * Assumes that IP has pulled up all the extension headers as well
5852  * as the ICMPv6 header.
5853  */
5854 static void
tcp_icmp_error_ipv6(tcp_t * tcp,mblk_t * mp,ip_recv_attr_t * ira)5855 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5856 {
5857 	icmp6_t		*icmp6;
5858 	ip6_t		*ip6h;
5859 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5860 	tcpha_t		*tcpha;
5861 	uint8_t		*nexthdrp;
5862 	uint32_t	seg_seq;
5863 
5864 	/*
5865 	 * Verify that we have a complete IP header.
5866 	 */
5867 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5868 
5869 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5870 	ip6h = (ip6_t *)&icmp6[1];
5871 	/*
5872 	 * Verify if we have a complete ICMP and inner IP header.
5873 	 */
5874 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5875 noticmpv6:
5876 		freemsg(mp);
5877 		return;
5878 	}
5879 
5880 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5881 		goto noticmpv6;
5882 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5883 	/*
5884 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5885 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5886 	 * packet.
5887 	 */
5888 	if ((*nexthdrp != IPPROTO_TCP) ||
5889 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5890 		goto noticmpv6;
5891 	}
5892 
5893 	seg_seq = ntohl(tcpha->tha_seq);
5894 	switch (icmp6->icmp6_type) {
5895 	case ICMP6_PACKET_TOO_BIG:
5896 		/*
5897 		 * Update Path MTU, then try to send something out.
5898 		 */
5899 		tcp_update_pmtu(tcp, B_TRUE);
5900 		tcp_rexmit_after_error(tcp);
5901 		break;
5902 	case ICMP6_DST_UNREACH:
5903 		switch (icmp6->icmp6_code) {
5904 		case ICMP6_DST_UNREACH_NOPORT:
5905 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5906 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5907 			    (seg_seq == tcp->tcp_iss)) {
5908 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5909 			}
5910 			break;
5911 		case ICMP6_DST_UNREACH_ADMIN:
5912 		case ICMP6_DST_UNREACH_NOROUTE:
5913 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5914 		case ICMP6_DST_UNREACH_ADDR:
5915 			/* Record the error in case we finally time out. */
5916 			tcp->tcp_client_errno = EHOSTUNREACH;
5917 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5918 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5919 			    (seg_seq == tcp->tcp_iss)) {
5920 				if (tcp->tcp_listener != NULL &&
5921 				    tcp->tcp_listener->tcp_syn_defense) {
5922 					/*
5923 					 * Ditch the half-open connection if we
5924 					 * suspect a SYN attack is under way.
5925 					 */
5926 					(void) tcp_clean_death(tcp,
5927 					    tcp->tcp_client_errno);
5928 				}
5929 			}
5930 
5931 
5932 			break;
5933 		default:
5934 			break;
5935 		}
5936 		break;
5937 	case ICMP6_PARAM_PROB:
5938 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5939 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5940 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5941 		    (uchar_t *)nexthdrp) {
5942 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5943 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5944 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5945 			}
5946 			break;
5947 		}
5948 		break;
5949 
5950 	case ICMP6_TIME_EXCEEDED:
5951 	default:
5952 		break;
5953 	}
5954 	freemsg(mp);
5955 }
5956 
5957 /*
5958  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5959  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5960  *
5961  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5962  * error messages received by IP. The message is always received on the correct
5963  * tcp_t.
5964  */
5965 /* ARGSUSED */
5966 boolean_t
tcp_verifyicmp(conn_t * connp,void * arg2,icmph_t * icmph,icmp6_t * icmp6,ip_recv_attr_t * ira)5967 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5968     ip_recv_attr_t *ira)
5969 {
5970 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5971 	uint32_t	seq = ntohl(tcpha->tha_seq);
5972 	tcp_t		*tcp = connp->conn_tcp;
5973 
5974 	/*
5975 	 * TCP sequence number contained in payload of the ICMP error message
5976 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5977 	 * the message is either a stale ICMP error, or an attack from the
5978 	 * network. Fail the verification.
5979 	 */
5980 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5981 		return (B_FALSE);
5982 
5983 	/* For "too big" we also check the ignore flag */
5984 	if (ira->ira_flags & IRAF_IS_IPV4) {
5985 		ASSERT(icmph != NULL);
5986 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5987 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5988 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5989 			return (B_FALSE);
5990 	} else {
5991 		ASSERT(icmp6 != NULL);
5992 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5993 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5994 			return (B_FALSE);
5995 	}
5996 	return (B_TRUE);
5997 }
5998