1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent, Inc.  All rights reserved.
25  * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2022 Garrett D'Amore
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/kmem.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/debug.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/file.h>
46 #include <sys/user.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/vmsystm.h>
56 #include <sys/policy.h>
57 #include <sys/limits.h>
58 
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 
62 #include <sys/isa_defs.h>
63 #include <sys/inttypes.h>
64 #include <sys/systm.h>
65 #include <sys/cpuvar.h>
66 #include <sys/filio.h>
67 #include <sys/sendfile.h>
68 #include <sys/ddi.h>
69 #include <vm/seg.h>
70 #include <vm/seg_map.h>
71 #include <vm/seg_kpm.h>
72 
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76 
77 #ifdef SOCK_TEST
78 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
79 #else
80 #define	do_useracc	1
81 #endif /* SOCK_TEST */
82 
83 extern int	xnet_truncate_print;
84 
85 /*
86  * Kernel component of socket creation.
87  *
88  * The socket library determines which version number to use.
89  * First the library calls this with a NULL devpath. If this fails
90  * to find a transport (using solookup) the library will look in /etc/netconfig
91  * for the appropriate transport. If one is found it will pass in the
92  * devpath for the kernel to use.
93  */
94 int
so_socket(int family,int type_w_flags,int protocol,char * devpath,int version)95 so_socket(int family, int type_w_flags, int protocol, char *devpath,
96     int version)
97 {
98 	struct sonode *so;
99 	vnode_t *vp;
100 	struct file *fp;
101 	int fd;
102 	int error;
103 	int type;
104 
105 	type = type_w_flags & SOCK_TYPE_MASK;
106 	type_w_flags &= ~SOCK_TYPE_MASK;
107 	if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
108 		return (set_errno(EINVAL));
109 
110 	if (devpath != NULL) {
111 		char *buf;
112 		size_t kdevpathlen = 0;
113 
114 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
115 		if ((error = copyinstr(devpath, buf,
116 		    MAXPATHLEN, &kdevpathlen)) != 0) {
117 			kmem_free(buf, MAXPATHLEN);
118 			return (set_errno(error));
119 		}
120 		so = socket_create(family, type, protocol, buf, NULL,
121 		    SOCKET_SLEEP, version, CRED(), &error);
122 		kmem_free(buf, MAXPATHLEN);
123 	} else {
124 		so = socket_create(family, type, protocol, NULL, NULL,
125 		    SOCKET_SLEEP, version, CRED(), &error);
126 	}
127 	if (so == NULL)
128 		return (set_errno(error));
129 
130 	/* Allocate a file descriptor for the socket */
131 	vp = SOTOV(so);
132 	error = falloc(vp, FWRITE|FREAD, &fp, &fd);
133 	if (error != 0) {
134 		(void) socket_close(so, 0, CRED());
135 		socket_destroy(so);
136 		return (set_errno(error));
137 	}
138 
139 	/*
140 	 * Now fill in the entries that falloc reserved
141 	 */
142 	if (type_w_flags & SOCK_NDELAY) {
143 		so->so_state |= SS_NDELAY;
144 		fp->f_flag |= FNDELAY;
145 	}
146 	if (type_w_flags & SOCK_NONBLOCK) {
147 		so->so_state |= SS_NONBLOCK;
148 		fp->f_flag |= FNONBLOCK;
149 	}
150 	mutex_exit(&fp->f_tlock);
151 	setf(fd, fp);
152 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
153 		f_setfd(fd, FD_CLOEXEC);
154 	}
155 
156 	return (fd);
157 }
158 
159 /*
160  * Map from a file descriptor to a socket node.
161  * Returns with the file descriptor held i.e. the caller has to
162  * use releasef when done with the file descriptor.
163  */
164 struct sonode *
getsonode(int sock,int * errorp,file_t ** fpp)165 getsonode(int sock, int *errorp, file_t **fpp)
166 {
167 	file_t *fp;
168 	vnode_t *vp;
169 	struct sonode *so;
170 
171 	if ((fp = getf(sock)) == NULL) {
172 		*errorp = EBADF;
173 		eprintline(*errorp);
174 		return (NULL);
175 	}
176 	vp = fp->f_vnode;
177 	/* Check if it is a socket */
178 	if (vp->v_type != VSOCK) {
179 		releasef(sock);
180 		*errorp = ENOTSOCK;
181 		eprintline(*errorp);
182 		return (NULL);
183 	}
184 	/*
185 	 * Use the stream head to find the real socket vnode.
186 	 * This is needed when namefs sits above sockfs.
187 	 */
188 	if (vp->v_stream) {
189 		ASSERT(vp->v_stream->sd_vnode);
190 		vp = vp->v_stream->sd_vnode;
191 
192 		so = VTOSO(vp);
193 		if (so->so_version == SOV_STREAM) {
194 			releasef(sock);
195 			*errorp = ENOTSOCK;
196 			eprintsoline(so, *errorp);
197 			return (NULL);
198 		}
199 	} else {
200 		so = VTOSO(vp);
201 	}
202 	if (fpp)
203 		*fpp = fp;
204 	return (so);
205 }
206 
207 /*
208  * Allocate and copyin a sockaddr.
209  * Ensures NULL termination for AF_UNIX addresses by extending them
210  * with one NULL byte if need be. Verifies that the length is not
211  * excessive to prevent an application from consuming all of kernel
212  * memory. Returns NULL when an error occurred.
213  */
214 static struct sockaddr *
copyin_name(struct sonode * so,struct sockaddr * name,socklen_t * namelenp,int * errorp)215 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
216     int *errorp)
217 {
218 	char	*faddr;
219 	size_t	namelen = (size_t)*namelenp;
220 
221 	ASSERT(namelen != 0);
222 	if (namelen > SO_MAXARGSIZE) {
223 		*errorp = EINVAL;
224 		eprintsoline(so, *errorp);
225 		return (NULL);
226 	}
227 
228 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
229 	if (copyin(name, faddr, namelen)) {
230 		kmem_free(faddr, namelen);
231 		*errorp = EFAULT;
232 		eprintsoline(so, *errorp);
233 		return (NULL);
234 	}
235 
236 	/*
237 	 * Add space for NULL termination if needed.
238 	 * Do a quick check if the last byte is NUL.
239 	 */
240 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
241 		/* Check if there is any NULL termination */
242 		size_t	i;
243 		int foundnull = 0;
244 
245 		for (i = sizeof (name->sa_family); i < namelen; i++) {
246 			if (faddr[i] == '\0') {
247 				foundnull = 1;
248 				break;
249 			}
250 		}
251 		if (!foundnull) {
252 			/* Add extra byte for NUL padding */
253 			char *nfaddr;
254 
255 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
256 			bcopy(faddr, nfaddr, namelen);
257 			kmem_free(faddr, namelen);
258 
259 			/* NUL terminate */
260 			nfaddr[namelen] = '\0';
261 			namelen++;
262 			ASSERT((socklen_t)namelen == namelen);
263 			*namelenp = (socklen_t)namelen;
264 			faddr = nfaddr;
265 		}
266 	}
267 	return ((struct sockaddr *)faddr);
268 }
269 
270 /*
271  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
272  */
273 static int
copyout_arg(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)274 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
275     socklen_t klen)
276 {
277 	if (uaddr != NULL) {
278 		if (ulen > klen)
279 			ulen = klen;
280 
281 		if (ulen != 0) {
282 			if (copyout(kaddr, uaddr, ulen))
283 				return (EFAULT);
284 		}
285 	} else
286 		ulen = 0;
287 
288 	if (ulenp != NULL) {
289 		if (copyout(&ulen, ulenp, sizeof (ulen)))
290 			return (EFAULT);
291 	}
292 	return (0);
293 }
294 
295 /*
296  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
297  * If klen is greater than ulen it still uses the non-truncated
298  * klen to update ulenp.
299  */
300 static int
copyout_name(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)301 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
302     socklen_t klen)
303 {
304 	if (uaddr != NULL) {
305 		if (ulen >= klen)
306 			ulen = klen;
307 		else if (ulen != 0 && xnet_truncate_print) {
308 			printf("sockfs: truncating copyout of address using "
309 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
310 			    curproc->p_pid, klen, ulen);
311 		}
312 
313 		if (ulen != 0) {
314 			if (copyout(kaddr, uaddr, ulen))
315 				return (EFAULT);
316 		} else
317 			klen = 0;
318 	} else
319 		klen = 0;
320 
321 	if (ulenp != NULL) {
322 		if (copyout(&klen, ulenp, sizeof (klen)))
323 			return (EFAULT);
324 	}
325 	return (0);
326 }
327 
328 /*
329  * The socketpair() code in libsocket creates two sockets (using
330  * the /etc/netconfig fallback if needed) before calling this routine
331  * to connect the two sockets together.
332  *
333  * For a SOCK_STREAM socketpair a listener is needed - in that case this
334  * routine will create a new file descriptor as part of accepting the
335  * connection. The library socketpair() will check if svs[2] has changed
336  * in which case it will close the changed fd.
337  *
338  * Note that this code could use the TPI feature of accepting the connection
339  * on the listening endpoint. However, that would require significant changes
340  * to soaccept.
341  */
342 int
so_socketpair(int sv[2])343 so_socketpair(int sv[2])
344 {
345 	int svs[2];
346 	struct sonode *so1, *so2;
347 	int error;
348 	int orig_flags;
349 	struct sockaddr_ux *name;
350 	size_t namelen;
351 	sotpi_info_t *sti1;
352 	sotpi_info_t *sti2;
353 
354 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
355 
356 	error = useracc(sv, sizeof (svs), B_WRITE);
357 	if (error && do_useracc)
358 		return (set_errno(EFAULT));
359 
360 	if (copyin(sv, svs, sizeof (svs)))
361 		return (set_errno(EFAULT));
362 
363 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
364 		return (set_errno(error));
365 
366 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
367 		releasef(svs[0]);
368 		return (set_errno(error));
369 	}
370 
371 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
372 		error = EOPNOTSUPP;
373 		goto done;
374 	}
375 
376 	sti1 = SOTOTPI(so1);
377 	sti2 = SOTOTPI(so2);
378 
379 	/*
380 	 * The code below makes assumptions about the "sockfs" implementation.
381 	 * So make sure that the correct implementation is really used.
382 	 */
383 	ASSERT(so1->so_ops == &sotpi_sonodeops);
384 	ASSERT(so2->so_ops == &sotpi_sonodeops);
385 
386 	if (so1->so_type == SOCK_DGRAM) {
387 		/*
388 		 * Bind both sockets and connect them with each other.
389 		 * Need to allocate name/namelen for soconnect.
390 		 */
391 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
392 		if (error) {
393 			eprintsoline(so1, error);
394 			goto done;
395 		}
396 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
397 		if (error) {
398 			eprintsoline(so2, error);
399 			goto done;
400 		}
401 		namelen = sizeof (struct sockaddr_ux);
402 		name = kmem_alloc(namelen, KM_SLEEP);
403 		name->sou_family = AF_UNIX;
404 		name->sou_addr = sti2->sti_ux_laddr;
405 		error = socket_connect(so1,
406 		    (struct sockaddr *)name,
407 		    (socklen_t)namelen,
408 		    0, _SOCONNECT_NOXLATE, CRED());
409 		if (error) {
410 			kmem_free(name, namelen);
411 			eprintsoline(so1, error);
412 			goto done;
413 		}
414 		name->sou_addr = sti1->sti_ux_laddr;
415 		error = socket_connect(so2,
416 		    (struct sockaddr *)name,
417 		    (socklen_t)namelen,
418 		    0, _SOCONNECT_NOXLATE, CRED());
419 		kmem_free(name, namelen);
420 		if (error) {
421 			eprintsoline(so2, error);
422 			goto done;
423 		}
424 		releasef(svs[0]);
425 		releasef(svs[1]);
426 	} else {
427 		/*
428 		 * Bind both sockets, with so1 being a listener.
429 		 * Connect so2 to so1 - nonblocking to avoid waiting for
430 		 * soaccept to complete.
431 		 * Accept a connection on so1. Pass out the new fd as sv[0].
432 		 * The library will detect the changed fd and close
433 		 * the original one.
434 		 */
435 		struct sonode *nso;
436 		struct vnode *nvp;
437 		struct file *nfp;
438 		int nfd;
439 
440 		/*
441 		 * We could simply call socket_listen() here (which would do the
442 		 * binding automatically) if the code didn't rely on passing
443 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
444 		 */
445 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
446 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
447 		    CRED());
448 		if (error) {
449 			eprintsoline(so1, error);
450 			goto done;
451 		}
452 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
453 		if (error) {
454 			eprintsoline(so2, error);
455 			goto done;
456 		}
457 
458 		namelen = sizeof (struct sockaddr_ux);
459 		name = kmem_alloc(namelen, KM_SLEEP);
460 		name->sou_family = AF_UNIX;
461 		name->sou_addr = sti1->sti_ux_laddr;
462 		error = socket_connect(so2,
463 		    (struct sockaddr *)name,
464 		    (socklen_t)namelen,
465 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
466 		kmem_free(name, namelen);
467 		if (error) {
468 			if (error != EINPROGRESS) {
469 				eprintsoline(so2, error); goto done;
470 			}
471 		}
472 
473 		error = socket_accept(so1, 0, CRED(), &nso);
474 		if (error) {
475 			eprintsoline(so1, error);
476 			goto done;
477 		}
478 
479 		/* wait for so2 being SS_CONNECTED ignoring signals */
480 		mutex_enter(&so2->so_lock);
481 		error = sowaitconnected(so2, 0, 1);
482 		mutex_exit(&so2->so_lock);
483 		if (error != 0) {
484 			(void) socket_close(nso, 0, CRED());
485 			socket_destroy(nso);
486 			eprintsoline(so2, error);
487 			goto done;
488 		}
489 
490 		nvp = SOTOV(nso);
491 		error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd);
492 		if (error != 0) {
493 			(void) socket_close(nso, 0, CRED());
494 			socket_destroy(nso);
495 			eprintsoline(nso, error);
496 			goto done;
497 		}
498 		/*
499 		 * copy over FNONBLOCK and FNDELAY flags should they exist
500 		 */
501 		if (so1->so_state & SS_NONBLOCK)
502 			nfp->f_flag |= FNONBLOCK;
503 		if (so1->so_state & SS_NDELAY)
504 			nfp->f_flag |= FNDELAY;
505 
506 		/*
507 		 * fill in the entries that falloc reserved
508 		 */
509 		mutex_exit(&nfp->f_tlock);
510 		setf(nfd, nfp);
511 
512 		/*
513 		 * get the original flags before we release
514 		 */
515 		VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
516 
517 		releasef(svs[0]);
518 		releasef(svs[1]);
519 
520 		/*
521 		 * If FD_CLOEXEC was set on the filedescriptor we're
522 		 * swapping out, we should set it on the new one too.
523 		 */
524 		if (orig_flags & FD_CLOEXEC) {
525 			f_setfd(nfd, FD_CLOEXEC);
526 		}
527 
528 		/*
529 		 * The socketpair library routine will close the original
530 		 * svs[0] when this code passes out a different file
531 		 * descriptor.
532 		 */
533 		svs[0] = nfd;
534 
535 		if (copyout(svs, sv, sizeof (svs))) {
536 			(void) closeandsetf(nfd, NULL);
537 			eprintline(EFAULT);
538 			return (set_errno(EFAULT));
539 		}
540 	}
541 	return (0);
542 
543 done:
544 	releasef(svs[0]);
545 	releasef(svs[1]);
546 	return (set_errno(error));
547 }
548 
549 int
bind(int sock,struct sockaddr * name,socklen_t namelen,int version)550 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
551 {
552 	struct sonode *so;
553 	int error;
554 
555 	dprint(1, ("bind(%d, %p, %d)\n",
556 	    sock, (void *)name, namelen));
557 
558 	if ((so = getsonode(sock, &error, NULL)) == NULL)
559 		return (set_errno(error));
560 
561 	/* Allocate and copyin name */
562 	/*
563 	 * X/Open test does not expect EFAULT with NULL name and non-zero
564 	 * namelen.
565 	 */
566 	if (name != NULL && namelen != 0) {
567 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
568 		name = copyin_name(so, name, &namelen, &error);
569 		if (name == NULL) {
570 			releasef(sock);
571 			return (set_errno(error));
572 		}
573 	} else {
574 		name = NULL;
575 		namelen = 0;
576 	}
577 
578 	switch (version) {
579 	default:
580 		error = socket_bind(so, name, namelen, 0, CRED());
581 		break;
582 	case SOV_XPG4_2:
583 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
584 		break;
585 	case SOV_SOCKBSD:
586 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
587 		break;
588 	}
589 done:
590 	releasef(sock);
591 	if (name != NULL)
592 		kmem_free(name, (size_t)namelen);
593 
594 	if (error)
595 		return (set_errno(error));
596 	return (0);
597 }
598 
599 /* ARGSUSED2 */
600 int
listen(int sock,int backlog,int version)601 listen(int sock, int backlog, int version)
602 {
603 	struct sonode *so;
604 	int error;
605 
606 	dprint(1, ("listen(%d, %d)\n",
607 	    sock, backlog));
608 
609 	if ((so = getsonode(sock, &error, NULL)) == NULL)
610 		return (set_errno(error));
611 
612 	error = socket_listen(so, backlog, CRED());
613 
614 	releasef(sock);
615 	if (error)
616 		return (set_errno(error));
617 	return (0);
618 }
619 
620 /*ARGSUSED3*/
621 int
accept(int sock,struct sockaddr * name,socklen_t * namelenp,int version,int flags)622 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
623     int flags)
624 {
625 	struct sonode *so;
626 	file_t *fp;
627 	int error;
628 	socklen_t namelen;
629 	struct sonode *nso;
630 	struct vnode *nvp;
631 	struct file *nfp;
632 	int nfd;
633 	int ssflags;
634 	struct sockaddr *addrp;
635 	socklen_t addrlen;
636 
637 	dprint(1, ("accept(%d, %p, %p)\n",
638 	    sock, (void *)name, (void *)namelenp));
639 
640 	if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
641 		return (set_errno(EINVAL));
642 	}
643 
644 	/* Translate SOCK_ flags to their SS_ variant */
645 	ssflags = 0;
646 	if (flags & SOCK_NONBLOCK)
647 		ssflags |= SS_NONBLOCK;
648 	if (flags & SOCK_NDELAY)
649 		ssflags |= SS_NDELAY;
650 
651 	if ((so = getsonode(sock, &error, &fp)) == NULL)
652 		return (set_errno(error));
653 
654 	if (name != NULL) {
655 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
656 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
657 			releasef(sock);
658 			return (set_errno(EFAULT));
659 		}
660 		if (namelen != 0) {
661 			error = useracc(name, (size_t)namelen, B_WRITE);
662 			if (error && do_useracc) {
663 				releasef(sock);
664 				return (set_errno(EFAULT));
665 			}
666 		} else
667 			name = NULL;
668 	} else {
669 		namelen = 0;
670 	}
671 
672 	/*
673 	 * Allocate the user fd before socket_accept() in order to
674 	 * catch EMFILE errors before calling socket_accept().
675 	 */
676 	if ((nfd = ufalloc(0)) == -1) {
677 		eprintsoline(so, EMFILE);
678 		releasef(sock);
679 		return (set_errno(EMFILE));
680 	}
681 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
682 	if (error) {
683 		setf(nfd, NULL);
684 		releasef(sock);
685 		return (set_errno(error));
686 	}
687 
688 	nvp = SOTOV(nso);
689 
690 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
691 	if (namelen != 0) {
692 		addrlen = so->so_max_addr_len;
693 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
694 
695 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
696 		    &addrlen, B_TRUE, CRED())) == 0) {
697 			error = copyout_name(name, namelen, namelenp,
698 			    addrp, addrlen);
699 		} else {
700 			ASSERT(error == EINVAL || error == ENOTCONN);
701 			error = ECONNABORTED;
702 		}
703 		kmem_free(addrp, so->so_max_addr_len);
704 	}
705 
706 	if (error) {
707 		setf(nfd, NULL);
708 		(void) socket_close(nso, 0, CRED());
709 		socket_destroy(nso);
710 		releasef(sock);
711 		return (set_errno(error));
712 	}
713 	error = falloc(NULL, FWRITE|FREAD, &nfp, NULL);
714 	if (error != 0) {
715 		setf(nfd, NULL);
716 		(void) socket_close(nso, 0, CRED());
717 		socket_destroy(nso);
718 		eprintsoline(so, error);
719 		releasef(sock);
720 		return (set_errno(error));
721 	}
722 	/*
723 	 * fill in the entries that falloc reserved
724 	 */
725 	nfp->f_vnode = nvp;
726 	mutex_exit(&nfp->f_tlock);
727 	setf(nfd, nfp);
728 
729 	/*
730 	 * Act on SOCK_CLOEXEC from flags
731 	 */
732 	if (flags & SOCK_CLOEXEC) {
733 		f_setfd(nfd, FD_CLOEXEC);
734 	}
735 
736 	/*
737 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
738 	 * and from ssflags
739 	 */
740 	if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
741 		uint_t oflag = nfp->f_flag;
742 		int arg = 0;
743 
744 		if ((ssflags | so->so_state) & SS_NONBLOCK)
745 			arg |= FNONBLOCK;
746 		else if ((ssflags | so->so_state) & SS_NDELAY)
747 			arg |= FNDELAY;
748 
749 		/*
750 		 * This code is a simplification of the F_SETFL code in fcntl()
751 		 * Ignore any errors from VOP_SETFL.
752 		 */
753 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
754 		    != 0) {
755 			eprintsoline(so, error);
756 			error = 0;
757 		} else {
758 			mutex_enter(&nfp->f_tlock);
759 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
760 			nfp->f_flag |= arg;
761 			mutex_exit(&nfp->f_tlock);
762 		}
763 	}
764 	releasef(sock);
765 	return (nfd);
766 }
767 
768 int
connect(int sock,struct sockaddr * name,socklen_t namelen,int version)769 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
770 {
771 	struct sonode *so;
772 	file_t *fp;
773 	int error;
774 
775 	dprint(1, ("connect(%d, %p, %d)\n",
776 	    sock, (void *)name, namelen));
777 
778 	if ((so = getsonode(sock, &error, &fp)) == NULL)
779 		return (set_errno(error));
780 
781 	/* Allocate and copyin name */
782 	if (namelen != 0) {
783 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
784 		name = copyin_name(so, name, &namelen, &error);
785 		if (name == NULL) {
786 			releasef(sock);
787 			return (set_errno(error));
788 		}
789 	} else
790 		name = NULL;
791 
792 	error = socket_connect(so, name, namelen, fp->f_flag,
793 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
794 	releasef(sock);
795 	if (name)
796 		kmem_free(name, (size_t)namelen);
797 	if (error)
798 		return (set_errno(error));
799 	return (0);
800 }
801 
802 /*ARGSUSED2*/
803 int
shutdown(int sock,int how,int version)804 shutdown(int sock, int how, int version)
805 {
806 	struct sonode *so;
807 	int error;
808 
809 	dprint(1, ("shutdown(%d, %d)\n",
810 	    sock, how));
811 
812 	if ((so = getsonode(sock, &error, NULL)) == NULL)
813 		return (set_errno(error));
814 
815 	error = socket_shutdown(so, how, CRED());
816 
817 	releasef(sock);
818 	if (error)
819 		return (set_errno(error));
820 	return (0);
821 }
822 
823 /*
824  * Common receive routine.
825  */
826 static ssize_t
recvit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags,socklen_t * namelenp,socklen_t * controllenp,int * flagsp)827 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags,
828     socklen_t *namelenp, socklen_t *controllenp, int *flagsp)
829 {
830 	struct sonode *so;
831 	file_t *fp;
832 	void *name;
833 	socklen_t namelen;
834 	void *control;
835 	socklen_t controllen, free_controllen;
836 	ssize_t len;
837 	int error;
838 
839 	if ((so = getsonode(sock, &error, &fp)) == NULL)
840 		return (set_errno(error));
841 
842 	len = uiop->uio_resid;
843 	uiop->uio_fmode = fp->f_flag;
844 	uiop->uio_extflg = UIO_COPY_CACHED;
845 
846 	name = msg->msg_name;
847 	namelen = msg->msg_namelen;
848 	control = msg->msg_control;
849 	controllen = msg->msg_controllen;
850 
851 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
852 	    MSG_DONTWAIT | MSG_XPG4_2);
853 
854 	error = socket_recvmsg(so, msg, uiop, CRED());
855 	if (error) {
856 		releasef(sock);
857 		return (set_errno(error));
858 	}
859 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
860 	releasef(sock);
861 
862 	free_controllen = msg->msg_controllen;
863 
864 	error = copyout_name(name, namelen, namelenp,
865 	    msg->msg_name, msg->msg_namelen);
866 	if (error)
867 		goto err;
868 
869 	if (flagsp != NULL) {
870 		/*
871 		 * Clear internal flag.
872 		 */
873 		msg->msg_flags &= ~MSG_XPG4_2;
874 
875 		/*
876 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
877 		 * when controllen is zero and there is control data to
878 		 * copy out.
879 		 */
880 		if (controllen != 0 &&
881 		    (msg->msg_controllen > controllen || control == NULL)) {
882 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
883 			    msg->msg_controllen, controllen, control));
884 
885 			msg->msg_flags |= MSG_CTRUNC;
886 		}
887 		if (copyout(&msg->msg_flags, flagsp,
888 		    sizeof (msg->msg_flags))) {
889 			error = EFAULT;
890 			goto err;
891 		}
892 	}
893 
894 	if (controllen != 0) {
895 		if (!(flags & MSG_XPG4_2)) {
896 			/*
897 			 * Good old msg_accrights can only return a multiple
898 			 * of 4 bytes.
899 			 */
900 			controllen &= ~((int)sizeof (uint32_t) - 1);
901 		}
902 
903 		if (msg->msg_controllen > controllen || control == NULL) {
904 			/*
905 			 * If the truncated part contains file descriptors,
906 			 * then they must be closed in the kernel as they
907 			 * will not be included in the data returned to
908 			 * user space. Close them now so that the header size
909 			 * can be safely adjusted prior to copyout. In case of
910 			 * an error during copyout, the remaining file
911 			 * descriptors will be closed in the error handler
912 			 * below.
913 			 */
914 			so_closefds(msg->msg_control, msg->msg_controllen,
915 			    !(flags & MSG_XPG4_2),
916 			    control == NULL ? 0 : controllen);
917 
918 			/*
919 			 * In the case of a truncated control message, the last
920 			 * cmsg header that fits into the available buffer
921 			 * space must be adjusted to reflect the actual amount
922 			 * of associated data that will be returned. This only
923 			 * needs to be done for XPG4 messages as non-XPG4
924 			 * messages are not structured (they are just a
925 			 * buffer and a length - msg_accrights(len)).
926 			 */
927 			if (control != NULL && (flags & MSG_XPG4_2)) {
928 				so_truncatecmsg(msg->msg_control,
929 				    msg->msg_controllen, controllen);
930 				msg->msg_controllen = controllen;
931 			}
932 		}
933 
934 		error = copyout_arg(control, controllen, controllenp,
935 		    msg->msg_control, msg->msg_controllen);
936 
937 		if (error)
938 			goto err;
939 
940 	}
941 	if (msg->msg_namelen != 0)
942 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
943 	if (free_controllen != 0)
944 		kmem_free(msg->msg_control, (size_t)free_controllen);
945 	return (len - uiop->uio_resid);
946 
947 err:
948 	/*
949 	 * If we fail and the control part contains file descriptors
950 	 * we have to close them. For a truncated control message, the
951 	 * descriptors which were cut off have already been closed and the
952 	 * length adjusted so that they will not be closed again.
953 	 */
954 	if (msg->msg_controllen != 0)
955 		so_closefds(msg->msg_control, msg->msg_controllen,
956 		    !(flags & MSG_XPG4_2), 0);
957 	if (msg->msg_namelen != 0)
958 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
959 	if (free_controllen != 0)
960 		kmem_free(msg->msg_control, (size_t)free_controllen);
961 	return (set_errno(error));
962 }
963 
964 /*
965  * Native system call
966  */
967 ssize_t
recv(int sock,void * buffer,size_t len,int flags)968 recv(int sock, void *buffer, size_t len, int flags)
969 {
970 	struct nmsghdr lmsg;
971 	struct uio auio;
972 	struct iovec aiov[1];
973 
974 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
975 	    sock, buffer, len, flags));
976 
977 	if ((ssize_t)len < 0) {
978 		return (set_errno(EINVAL));
979 	}
980 
981 	aiov[0].iov_base = buffer;
982 	aiov[0].iov_len = len;
983 	auio.uio_loffset = 0;
984 	auio.uio_iov = aiov;
985 	auio.uio_iovcnt = 1;
986 	auio.uio_resid = len;
987 	auio.uio_segflg = UIO_USERSPACE;
988 	auio.uio_limit = 0;
989 
990 	lmsg.msg_namelen = 0;
991 	lmsg.msg_controllen = 0;
992 	lmsg.msg_flags = 0;
993 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
994 }
995 
996 ssize_t
recvfrom(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t * namelenp)997 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name,
998     socklen_t *namelenp)
999 {
1000 	struct nmsghdr lmsg;
1001 	struct uio auio;
1002 	struct iovec aiov[1];
1003 
1004 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
1005 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
1006 
1007 	if ((ssize_t)len < 0) {
1008 		return (set_errno(EINVAL));
1009 	}
1010 
1011 	aiov[0].iov_base = buffer;
1012 	aiov[0].iov_len = len;
1013 	auio.uio_loffset = 0;
1014 	auio.uio_iov = aiov;
1015 	auio.uio_iovcnt = 1;
1016 	auio.uio_resid = len;
1017 	auio.uio_segflg = UIO_USERSPACE;
1018 	auio.uio_limit = 0;
1019 
1020 	lmsg.msg_name = (char *)name;
1021 	if (namelenp != NULL) {
1022 		if (copyin(namelenp, &lmsg.msg_namelen,
1023 		    sizeof (lmsg.msg_namelen)))
1024 			return (set_errno(EFAULT));
1025 	} else {
1026 		lmsg.msg_namelen = 0;
1027 	}
1028 	lmsg.msg_controllen = 0;
1029 	lmsg.msg_flags = 0;
1030 
1031 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1032 }
1033 
1034 /*
1035  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1036  * struct omsghdr or struct nmsghdr.
1037  */
1038 ssize_t
recvmsg(int sock,struct nmsghdr * msg,int flags)1039 recvmsg(int sock, struct nmsghdr *msg, int flags)
1040 {
1041 	STRUCT_DECL(nmsghdr, u_lmsg);
1042 	STRUCT_HANDLE(nmsghdr, umsgptr);
1043 	struct nmsghdr lmsg;
1044 	struct uio auio;
1045 	struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1046 	ssize_t iovsize = 0;
1047 	int iovcnt;
1048 	ssize_t len, rval;
1049 	int i;
1050 	int *flagsp;
1051 	model_t	model;
1052 
1053 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1054 	    sock, (void *)msg, flags));
1055 
1056 	model = get_udatamodel();
1057 	STRUCT_INIT(u_lmsg, model);
1058 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1059 
1060 	if (flags & MSG_XPG4_2) {
1061 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1062 			return (set_errno(EFAULT));
1063 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1064 	} else {
1065 		/*
1066 		 * Assumes that nmsghdr and omsghdr are identically shaped
1067 		 * except for the added msg_flags field.
1068 		 */
1069 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1070 		    SIZEOF_STRUCT(omsghdr, model)))
1071 			return (set_errno(EFAULT));
1072 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1073 		flagsp = NULL;
1074 	}
1075 
1076 	/*
1077 	 * Code below us will kmem_alloc memory and hang it
1078 	 * off msg_control and msg_name fields. This forces
1079 	 * us to copy the structure to its native form.
1080 	 */
1081 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1082 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1083 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1084 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1085 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1086 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1087 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1088 
1089 	iovcnt = lmsg.msg_iovlen;
1090 
1091 	if (iovcnt <= 0 || iovcnt > IOV_MAX) {
1092 		return (set_errno(EMSGSIZE));
1093 	}
1094 
1095 	if (iovcnt > IOV_MAX_STACK) {
1096 		iovsize = iovcnt * sizeof (struct iovec);
1097 		aiov = kmem_alloc(iovsize, KM_SLEEP);
1098 	}
1099 
1100 #ifdef _SYSCALL32_IMPL
1101 	/*
1102 	 * 32-bit callers need to have their iovec expanded, while ensuring
1103 	 * that they can't move more than 2Gbytes of data in a single call.
1104 	 */
1105 	if (model == DATAMODEL_ILP32) {
1106 		struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1107 		ssize_t iov32size;
1108 		ssize32_t count32;
1109 
1110 		iov32size = iovcnt * sizeof (struct iovec32);
1111 		if (iovsize != 0)
1112 			aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1113 
1114 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1115 			if (iovsize != 0) {
1116 				kmem_free(aiov32, iov32size);
1117 				kmem_free(aiov, iovsize);
1118 			}
1119 
1120 			return (set_errno(EFAULT));
1121 		}
1122 
1123 		count32 = 0;
1124 		for (i = 0; i < iovcnt; i++) {
1125 			ssize32_t iovlen32;
1126 
1127 			iovlen32 = aiov32[i].iov_len;
1128 			count32 += iovlen32;
1129 			if (iovlen32 < 0 || count32 < 0) {
1130 				if (iovsize != 0) {
1131 					kmem_free(aiov32, iov32size);
1132 					kmem_free(aiov, iovsize);
1133 				}
1134 
1135 				return (set_errno(EINVAL));
1136 			}
1137 
1138 			aiov[i].iov_len = iovlen32;
1139 			aiov[i].iov_base =
1140 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1141 		}
1142 
1143 		if (iovsize != 0)
1144 			kmem_free(aiov32, iov32size);
1145 	} else
1146 #endif /* _SYSCALL32_IMPL */
1147 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1148 		if (iovsize != 0)
1149 			kmem_free(aiov, iovsize);
1150 
1151 		return (set_errno(EFAULT));
1152 	}
1153 	len = 0;
1154 	for (i = 0; i < iovcnt; i++) {
1155 		ssize_t iovlen = aiov[i].iov_len;
1156 		len += iovlen;
1157 		if (iovlen < 0 || len < 0) {
1158 			if (iovsize != 0)
1159 				kmem_free(aiov, iovsize);
1160 
1161 			return (set_errno(EINVAL));
1162 		}
1163 	}
1164 	auio.uio_loffset = 0;
1165 	auio.uio_iov = aiov;
1166 	auio.uio_iovcnt = iovcnt;
1167 	auio.uio_resid = len;
1168 	auio.uio_segflg = UIO_USERSPACE;
1169 	auio.uio_limit = 0;
1170 
1171 	if (lmsg.msg_control != NULL &&
1172 	    (do_useracc == 0 ||
1173 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1174 	    B_WRITE) != 0)) {
1175 		if (iovsize != 0)
1176 			kmem_free(aiov, iovsize);
1177 
1178 		return (set_errno(EFAULT));
1179 	}
1180 
1181 	rval = recvit(sock, &lmsg, &auio, flags,
1182 	    STRUCT_FADDR(umsgptr, msg_namelen),
1183 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp);
1184 
1185 	if (iovsize != 0)
1186 		kmem_free(aiov, iovsize);
1187 
1188 	return (rval);
1189 }
1190 
1191 /*
1192  * Common send function.
1193  */
1194 static ssize_t
sendit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags)1195 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1196 {
1197 	struct sonode *so;
1198 	file_t *fp;
1199 	void *name;
1200 	socklen_t namelen;
1201 	void *control;
1202 	socklen_t controllen;
1203 	ssize_t len;
1204 	int error;
1205 
1206 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1207 		return (set_errno(error));
1208 
1209 	uiop->uio_fmode = fp->f_flag;
1210 
1211 	if (so->so_family == AF_UNIX)
1212 		uiop->uio_extflg = UIO_COPY_CACHED;
1213 	else
1214 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1215 
1216 	/* Allocate and copyin name and control */
1217 	name = msg->msg_name;
1218 	namelen = msg->msg_namelen;
1219 	if (name != NULL && namelen != 0) {
1220 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1221 		name = copyin_name(so,
1222 		    (struct sockaddr *)name,
1223 		    &namelen, &error);
1224 		if (name == NULL)
1225 			goto done3;
1226 		/* copyin_name null terminates addresses for AF_UNIX */
1227 		msg->msg_namelen = namelen;
1228 		msg->msg_name = name;
1229 	} else {
1230 		msg->msg_name = name = NULL;
1231 		msg->msg_namelen = namelen = 0;
1232 	}
1233 
1234 	control = msg->msg_control;
1235 	controllen = msg->msg_controllen;
1236 	if ((control != NULL) && (controllen != 0)) {
1237 		/*
1238 		 * Verify that the length is not excessive to prevent
1239 		 * an application from consuming all of kernel memory.
1240 		 */
1241 		if (controllen > SO_MAXARGSIZE) {
1242 			error = EINVAL;
1243 			goto done2;
1244 		}
1245 		control = kmem_alloc(controllen, KM_SLEEP);
1246 
1247 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1248 		if (copyin(msg->msg_control, control, controllen)) {
1249 			error = EFAULT;
1250 			goto done1;
1251 		}
1252 		msg->msg_control = control;
1253 	} else {
1254 		msg->msg_control = control = NULL;
1255 		msg->msg_controllen = controllen = 0;
1256 	}
1257 
1258 	len = uiop->uio_resid;
1259 	msg->msg_flags = flags;
1260 
1261 	error = socket_sendmsg(so, msg, uiop, CRED());
1262 done1:
1263 	if (control != NULL)
1264 		kmem_free(control, controllen);
1265 done2:
1266 	if (name != NULL)
1267 		kmem_free(name, namelen);
1268 done3:
1269 	if (error != 0) {
1270 		releasef(sock);
1271 		return (set_errno(error));
1272 	}
1273 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1274 	releasef(sock);
1275 	return (len - uiop->uio_resid);
1276 }
1277 
1278 /*
1279  * Native system call
1280  */
1281 ssize_t
send(int sock,void * buffer,size_t len,int flags)1282 send(int sock, void *buffer, size_t len, int flags)
1283 {
1284 	struct nmsghdr lmsg;
1285 	struct uio auio;
1286 	struct iovec aiov[1];
1287 
1288 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1289 	    sock, buffer, len, flags));
1290 
1291 	if ((ssize_t)len < 0) {
1292 		return (set_errno(EINVAL));
1293 	}
1294 
1295 	aiov[0].iov_base = buffer;
1296 	aiov[0].iov_len = len;
1297 	auio.uio_loffset = 0;
1298 	auio.uio_iov = aiov;
1299 	auio.uio_iovcnt = 1;
1300 	auio.uio_resid = len;
1301 	auio.uio_segflg = UIO_USERSPACE;
1302 	auio.uio_limit = 0;
1303 
1304 	lmsg.msg_name = NULL;
1305 	lmsg.msg_control = NULL;
1306 	if (!(flags & MSG_XPG4_2)) {
1307 		/*
1308 		 * In order to be compatible with the libsocket/sockmod
1309 		 * implementation we set EOR for all send* calls.
1310 		 */
1311 		flags |= MSG_EOR;
1312 	}
1313 	return (sendit(sock, &lmsg, &auio, flags));
1314 }
1315 
1316 /*
1317  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1318  * struct omsghdr or struct nmsghdr.
1319  */
1320 ssize_t
sendmsg(int sock,struct nmsghdr * msg,int flags)1321 sendmsg(int sock, struct nmsghdr *msg, int flags)
1322 {
1323 	struct nmsghdr lmsg;
1324 	STRUCT_DECL(nmsghdr, u_lmsg);
1325 	struct uio auio;
1326 	struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1327 	ssize_t iovsize = 0;
1328 	int iovcnt;
1329 	ssize_t len, rval;
1330 	int i;
1331 	model_t	model;
1332 
1333 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1334 
1335 	model = get_udatamodel();
1336 	STRUCT_INIT(u_lmsg, model);
1337 
1338 	if (flags & MSG_XPG4_2) {
1339 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1340 		    STRUCT_SIZE(u_lmsg)))
1341 			return (set_errno(EFAULT));
1342 	} else {
1343 		/*
1344 		 * Assumes that nmsghdr and omsghdr are identically shaped
1345 		 * except for the added msg_flags field.
1346 		 */
1347 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1348 		    SIZEOF_STRUCT(omsghdr, model)))
1349 			return (set_errno(EFAULT));
1350 		/*
1351 		 * In order to be compatible with the libsocket/sockmod
1352 		 * implementation we set EOR for all send* calls.
1353 		 */
1354 		flags |= MSG_EOR;
1355 	}
1356 
1357 	/*
1358 	 * Code below us will kmem_alloc memory and hang it
1359 	 * off msg_control and msg_name fields. This forces
1360 	 * us to copy the structure to its native form.
1361 	 */
1362 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1363 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1364 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1365 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1366 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1367 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1368 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1369 
1370 	iovcnt = lmsg.msg_iovlen;
1371 
1372 	if (iovcnt <= 0 || iovcnt > IOV_MAX) {
1373 		/*
1374 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1375 		 * be compatible with SunOS 4.X and 4.4BSD.
1376 		 */
1377 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1378 			return (set_errno(EMSGSIZE));
1379 	}
1380 
1381 	if (iovcnt > IOV_MAX_STACK) {
1382 		iovsize = iovcnt * sizeof (struct iovec);
1383 		aiov = kmem_alloc(iovsize, KM_SLEEP);
1384 	}
1385 
1386 #ifdef _SYSCALL32_IMPL
1387 	/*
1388 	 * 32-bit callers need to have their iovec expanded, while ensuring
1389 	 * that they can't move more than 2Gbytes of data in a single call.
1390 	 */
1391 	if (model == DATAMODEL_ILP32) {
1392 		struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1393 		ssize_t iov32size;
1394 		ssize32_t count32;
1395 
1396 		iov32size = iovcnt * sizeof (struct iovec32);
1397 		if (iovsize != 0)
1398 			aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1399 
1400 		if (iovcnt != 0 &&
1401 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1402 			if (iovsize != 0) {
1403 				kmem_free(aiov32, iov32size);
1404 				kmem_free(aiov, iovsize);
1405 			}
1406 
1407 			return (set_errno(EFAULT));
1408 		}
1409 
1410 		count32 = 0;
1411 		for (i = 0; i < iovcnt; i++) {
1412 			ssize32_t iovlen32;
1413 
1414 			iovlen32 = aiov32[i].iov_len;
1415 			count32 += iovlen32;
1416 			if (iovlen32 < 0 || count32 < 0) {
1417 				if (iovsize != 0) {
1418 					kmem_free(aiov32, iov32size);
1419 					kmem_free(aiov, iovsize);
1420 				}
1421 
1422 				return (set_errno(EINVAL));
1423 			}
1424 
1425 			aiov[i].iov_len = iovlen32;
1426 			aiov[i].iov_base =
1427 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1428 		}
1429 
1430 		if (iovsize != 0)
1431 			kmem_free(aiov32, iov32size);
1432 	} else
1433 #endif /* _SYSCALL32_IMPL */
1434 	if (iovcnt != 0 &&
1435 	    copyin(lmsg.msg_iov, aiov,
1436 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1437 		if (iovsize != 0)
1438 			kmem_free(aiov, iovsize);
1439 
1440 		return (set_errno(EFAULT));
1441 	}
1442 	len = 0;
1443 	for (i = 0; i < iovcnt; i++) {
1444 		ssize_t iovlen = aiov[i].iov_len;
1445 		len += iovlen;
1446 		if (iovlen < 0 || len < 0) {
1447 			if (iovsize != 0)
1448 				kmem_free(aiov, iovsize);
1449 
1450 			return (set_errno(EINVAL));
1451 		}
1452 	}
1453 	auio.uio_loffset = 0;
1454 	auio.uio_iov = aiov;
1455 	auio.uio_iovcnt = iovcnt;
1456 	auio.uio_resid = len;
1457 	auio.uio_segflg = UIO_USERSPACE;
1458 	auio.uio_limit = 0;
1459 
1460 	rval = sendit(sock, &lmsg, &auio, flags);
1461 
1462 	if (iovsize != 0)
1463 		kmem_free(aiov, iovsize);
1464 
1465 	return (rval);
1466 }
1467 
1468 ssize_t
sendto(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t namelen)1469 sendto(int sock, void *buffer, size_t len, int flags,
1470     struct sockaddr *name, socklen_t namelen)
1471 {
1472 	struct nmsghdr lmsg;
1473 	struct uio auio;
1474 	struct iovec aiov[1];
1475 
1476 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1477 	    sock, buffer, len, flags, (void *)name, namelen));
1478 
1479 	if ((ssize_t)len < 0) {
1480 		return (set_errno(EINVAL));
1481 	}
1482 
1483 	aiov[0].iov_base = buffer;
1484 	aiov[0].iov_len = len;
1485 	auio.uio_loffset = 0;
1486 	auio.uio_iov = aiov;
1487 	auio.uio_iovcnt = 1;
1488 	auio.uio_resid = len;
1489 	auio.uio_segflg = UIO_USERSPACE;
1490 	auio.uio_limit = 0;
1491 
1492 	lmsg.msg_name = (char *)name;
1493 	lmsg.msg_namelen = namelen;
1494 	lmsg.msg_control = NULL;
1495 	if (!(flags & MSG_XPG4_2)) {
1496 		/*
1497 		 * In order to be compatible with the libsocket/sockmod
1498 		 * implementation we set EOR for all send* calls.
1499 		 */
1500 		flags |= MSG_EOR;
1501 	}
1502 	return (sendit(sock, &lmsg, &auio, flags));
1503 }
1504 
1505 /*ARGSUSED3*/
1506 int
getpeername(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1507 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1508 {
1509 	struct sonode *so;
1510 	int error;
1511 	socklen_t namelen;
1512 	socklen_t sock_addrlen;
1513 	struct sockaddr *sock_addrp;
1514 
1515 	dprint(1, ("getpeername(%d, %p, %p)\n",
1516 	    sock, (void *)name, (void *)namelenp));
1517 
1518 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1519 		goto bad;
1520 
1521 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1522 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1523 	    (name == NULL && namelen != 0)) {
1524 		error = EFAULT;
1525 		goto rel_out;
1526 	}
1527 	sock_addrlen = so->so_max_addr_len;
1528 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1529 
1530 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1531 	    B_FALSE, CRED())) == 0) {
1532 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1533 		error = copyout_name(name, namelen, namelenp,
1534 		    (void *)sock_addrp, sock_addrlen);
1535 	}
1536 	kmem_free(sock_addrp, so->so_max_addr_len);
1537 rel_out:
1538 	releasef(sock);
1539 bad:	return (error != 0 ? set_errno(error) : 0);
1540 }
1541 
1542 /*ARGSUSED3*/
1543 int
getsockname(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1544 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1545 {
1546 	struct sonode *so;
1547 	int error;
1548 	socklen_t namelen, sock_addrlen;
1549 	struct sockaddr *sock_addrp;
1550 
1551 	dprint(1, ("getsockname(%d, %p, %p)\n",
1552 	    sock, (void *)name, (void *)namelenp));
1553 
1554 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1555 		goto bad;
1556 
1557 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1558 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1559 	    (name == NULL && namelen != 0)) {
1560 		error = EFAULT;
1561 		goto rel_out;
1562 	}
1563 
1564 	sock_addrlen = so->so_max_addr_len;
1565 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1566 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1567 	    CRED())) == 0) {
1568 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1569 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1570 		error = copyout_name(name, namelen, namelenp,
1571 		    (void *)sock_addrp, sock_addrlen);
1572 	}
1573 	kmem_free(sock_addrp, so->so_max_addr_len);
1574 rel_out:
1575 	releasef(sock);
1576 bad:	return (error != 0 ? set_errno(error) : 0);
1577 }
1578 
1579 /*ARGSUSED5*/
1580 int
getsockopt(int sock,int level,int option_name,void * option_value,socklen_t * option_lenp,int version)1581 getsockopt(int sock, int level, int option_name, void *option_value,
1582     socklen_t *option_lenp, int version)
1583 {
1584 	struct sonode *so;
1585 	socklen_t optlen, optlen_res;
1586 	void *optval;
1587 	int error;
1588 
1589 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1590 	    sock, level, option_name, option_value, (void *)option_lenp));
1591 
1592 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1593 		return (set_errno(error));
1594 
1595 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1596 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1597 		releasef(sock);
1598 		return (set_errno(EFAULT));
1599 	}
1600 	/*
1601 	 * Verify that the length is not excessive to prevent
1602 	 * an application from consuming all of kernel memory.
1603 	 */
1604 	if (optlen > SO_MAXARGSIZE) {
1605 		error = EINVAL;
1606 		releasef(sock);
1607 		return (set_errno(error));
1608 	}
1609 	optval = kmem_alloc(optlen, KM_SLEEP);
1610 	optlen_res = optlen;
1611 	error = socket_getsockopt(so, level, option_name, optval,
1612 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1613 	    CRED());
1614 	releasef(sock);
1615 	if (error) {
1616 		kmem_free(optval, optlen);
1617 		return (set_errno(error));
1618 	}
1619 	error = copyout_arg(option_value, optlen, option_lenp,
1620 	    optval, optlen_res);
1621 	kmem_free(optval, optlen);
1622 	if (error)
1623 		return (set_errno(error));
1624 	return (0);
1625 }
1626 
1627 /*ARGSUSED5*/
1628 int
setsockopt(int sock,int level,int option_name,void * option_value,socklen_t option_len,int version)1629 setsockopt(int sock, int level, int option_name, void *option_value,
1630     socklen_t option_len, int version)
1631 {
1632 	struct sonode *so;
1633 	intptr_t buffer[2];
1634 	void *optval = NULL;
1635 	int error;
1636 
1637 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1638 	    sock, level, option_name, option_value, option_len));
1639 
1640 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1641 		return (set_errno(error));
1642 
1643 	if (option_value != NULL) {
1644 		if (option_len != 0) {
1645 			/*
1646 			 * Verify that the length is not excessive to prevent
1647 			 * an application from consuming all of kernel memory.
1648 			 */
1649 			if (option_len > SO_MAXARGSIZE) {
1650 				error = EINVAL;
1651 				goto done2;
1652 			}
1653 			optval = option_len <= sizeof (buffer) ?
1654 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1655 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1656 			if (copyin(option_value, optval, (size_t)option_len)) {
1657 				error = EFAULT;
1658 				goto done1;
1659 			}
1660 		}
1661 	} else
1662 		option_len = 0;
1663 
1664 	error = socket_setsockopt(so, level, option_name, optval,
1665 	    (t_uscalar_t)option_len, CRED());
1666 done1:
1667 	if (optval != buffer)
1668 		kmem_free(optval, (size_t)option_len);
1669 done2:
1670 	releasef(sock);
1671 	if (error)
1672 		return (set_errno(error));
1673 	return (0);
1674 }
1675 
1676 static int
sockconf_add_sock(int family,int type,int protocol,char * name)1677 sockconf_add_sock(int family, int type, int protocol, char *name)
1678 {
1679 	int error = 0;
1680 	char *kdevpath = NULL;
1681 	char *kmodule = NULL;
1682 	char *buf = NULL;
1683 	size_t pathlen = 0;
1684 	struct sockparams *sp;
1685 
1686 	if (name == NULL)
1687 		return (EINVAL);
1688 	/*
1689 	 * Copyin the name.
1690 	 * This also makes it possible to check for too long pathnames.
1691 	 * Compress the space needed for the name before passing it
1692 	 * to soconfig - soconfig will store the string until
1693 	 * the configuration is removed.
1694 	 */
1695 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1696 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1697 		kmem_free(buf, MAXPATHLEN);
1698 		return (error);
1699 	}
1700 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1701 		/* For device */
1702 		kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1703 		bcopy(buf, kdevpath, pathlen);
1704 		kdevpath[pathlen - 1] = '\0';
1705 	} else {
1706 		/* For socket module */
1707 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1708 		bcopy(buf, kmodule, pathlen);
1709 		kmodule[pathlen - 1] = '\0';
1710 		pathlen = 0;
1711 	}
1712 	kmem_free(buf, MAXPATHLEN);
1713 
1714 	/* sockparams_create frees mod name and devpath upon failure */
1715 	sp = sockparams_create(family, type, protocol, kmodule,
1716 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1717 	if (sp != NULL) {
1718 		error = sockparams_add(sp);
1719 		if (error != 0)
1720 			sockparams_destroy(sp);
1721 	}
1722 
1723 	return (error);
1724 }
1725 
1726 static int
sockconf_remove_sock(int family,int type,int protocol)1727 sockconf_remove_sock(int family, int type, int protocol)
1728 {
1729 	return (sockparams_delete(family, type, protocol));
1730 }
1731 
1732 static int
sockconfig_remove_filter(const char * uname)1733 sockconfig_remove_filter(const char *uname)
1734 {
1735 	char kname[SOF_MAXNAMELEN];
1736 	size_t len;
1737 	int error;
1738 	sof_entry_t *ent;
1739 
1740 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1741 		return (error);
1742 
1743 	ent = sof_entry_remove_by_name(kname);
1744 	if (ent == NULL)
1745 		return (ENXIO);
1746 
1747 	mutex_enter(&ent->sofe_lock);
1748 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1749 	if (ent->sofe_refcnt == 0) {
1750 		mutex_exit(&ent->sofe_lock);
1751 		sof_entry_free(ent);
1752 	} else {
1753 		/* let the last socket free the filter */
1754 		ent->sofe_flags |= SOFEF_CONDEMED;
1755 		mutex_exit(&ent->sofe_lock);
1756 	}
1757 
1758 	return (0);
1759 }
1760 
1761 static int
sockconfig_add_filter(const char * uname,void * ufilpropp)1762 sockconfig_add_filter(const char *uname, void *ufilpropp)
1763 {
1764 	struct sockconfig_filter_props filprop;
1765 	sof_entry_t *ent;
1766 	int error;
1767 	size_t tuplesz, len;
1768 	char hintbuf[SOF_MAXNAMELEN];
1769 
1770 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1771 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1772 
1773 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1774 	    &len)) != 0) {
1775 		sof_entry_free(ent);
1776 		return (error);
1777 	}
1778 
1779 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1780 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1781 			sof_entry_free(ent);
1782 			return (EFAULT);
1783 		}
1784 	}
1785 #ifdef	_SYSCALL32_IMPL
1786 	else {
1787 		struct sockconfig_filter_props32 filprop32;
1788 
1789 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1790 			sof_entry_free(ent);
1791 			return (EFAULT);
1792 		}
1793 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1794 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1795 		filprop.sfp_hint = filprop32.sfp_hint;
1796 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1797 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1798 		filprop.sfp_socktuple =
1799 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1800 	}
1801 #endif	/* _SYSCALL32_IMPL */
1802 
1803 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1804 	    sizeof (ent->sofe_modname), &len)) != 0) {
1805 		sof_entry_free(ent);
1806 		return (error);
1807 	}
1808 
1809 	/*
1810 	 * A filter must specify at least one socket tuple.
1811 	 */
1812 	if (filprop.sfp_socktuple_cnt == 0 ||
1813 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1814 		sof_entry_free(ent);
1815 		return (EINVAL);
1816 	}
1817 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1818 	ent->sofe_hint = filprop.sfp_hint;
1819 
1820 	/*
1821 	 * Verify the hint, and copy in the hint argument, if necessary.
1822 	 */
1823 	switch (ent->sofe_hint) {
1824 	case SOF_HINT_BEFORE:
1825 	case SOF_HINT_AFTER:
1826 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1827 		    sizeof (hintbuf), &len)) != 0) {
1828 			sof_entry_free(ent);
1829 			return (error);
1830 		}
1831 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1832 		bcopy(hintbuf, ent->sofe_hintarg, len);
1833 		/* FALLTHRU */
1834 	case SOF_HINT_TOP:
1835 	case SOF_HINT_BOTTOM:
1836 		/* hints cannot be used with programmatic filters */
1837 		if (ent->sofe_flags & SOFEF_PROG) {
1838 			sof_entry_free(ent);
1839 			return (EINVAL);
1840 		}
1841 		break;
1842 	case SOF_HINT_NONE:
1843 		break;
1844 	default:
1845 		/* bad hint value */
1846 		sof_entry_free(ent);
1847 		return (EINVAL);
1848 	}
1849 
1850 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1851 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1852 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1853 
1854 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1855 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1856 		    tuplesz)) {
1857 			sof_entry_free(ent);
1858 			return (EFAULT);
1859 		}
1860 	}
1861 #ifdef	_SYSCALL32_IMPL
1862 	else {
1863 		int i;
1864 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1865 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1866 		sof_socktuple32_t tup32;
1867 
1868 		tup = ent->sofe_socktuple;
1869 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1870 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1871 
1872 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1873 				sof_entry_free(ent);
1874 				return (EFAULT);
1875 			}
1876 			tup->sofst_family = tup32.sofst_family;
1877 			tup->sofst_type = tup32.sofst_type;
1878 			tup->sofst_protocol = tup32.sofst_protocol;
1879 
1880 			data += sizeof (tup32);
1881 		}
1882 	}
1883 #endif	/* _SYSCALL32_IMPL */
1884 
1885 	/* Sockets can start using the filter as soon as the filter is added */
1886 	if ((error = sof_entry_add(ent)) != 0)
1887 		sof_entry_free(ent);
1888 
1889 	return (error);
1890 }
1891 
1892 /*
1893  * Socket configuration system call. It is used to add and remove
1894  * socket types.
1895  */
1896 int
sockconfig(int cmd,void * arg1,void * arg2,void * arg3,void * arg4)1897 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1898 {
1899 	int error = 0;
1900 
1901 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1902 		return (set_errno(EPERM));
1903 
1904 	switch (cmd) {
1905 	case SOCKCONFIG_ADD_SOCK:
1906 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1907 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1908 		break;
1909 	case SOCKCONFIG_REMOVE_SOCK:
1910 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1911 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1912 		break;
1913 	case SOCKCONFIG_ADD_FILTER:
1914 		error = sockconfig_add_filter((const char *)arg1, arg2);
1915 		break;
1916 	case SOCKCONFIG_REMOVE_FILTER:
1917 		error = sockconfig_remove_filter((const char *)arg1);
1918 		break;
1919 	case SOCKCONFIG_GET_SOCKTABLE:
1920 		error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1921 		break;
1922 	default:
1923 #ifdef	DEBUG
1924 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1925 #endif
1926 		error = EINVAL;
1927 		break;
1928 	}
1929 
1930 	if (error != 0) {
1931 		eprintline(error);
1932 		return (set_errno(error));
1933 	}
1934 	return (0);
1935 }
1936 
1937 
1938 /*
1939  * Sendfile is implemented through two schemes, direct I/O or by
1940  * caching in the filesystem page cache. We cache the input file by
1941  * default and use direct I/O only if sendfile_max_size is set
1942  * appropriately as explained below. Note that this logic is consistent
1943  * with other filesystems where caching is turned on by default
1944  * unless explicitly turned off by using the DIRECTIO ioctl.
1945  *
1946  * We choose a slightly different scheme here. One can turn off
1947  * caching by setting sendfile_max_size to 0. One can also enable
1948  * caching of files <= sendfile_max_size by setting sendfile_max_size
1949  * to an appropriate value. By default sendfile_max_size is set to the
1950  * maximum value so that all files are cached. In future, we may provide
1951  * better interfaces for caching the file.
1952  *
1953  * Sendfile through Direct I/O (Zero copy)
1954  * --------------------------------------
1955  *
1956  * As disks are normally slower than the network, we can't have a
1957  * single thread that reads the disk and writes to the network. We
1958  * need to have parallelism. This is done by having the sendfile
1959  * thread create another thread that reads from the filesystem
1960  * and queues it for network processing. In this scheme, the data
1961  * is never copied anywhere i.e it is zero copy unlike the other
1962  * scheme.
1963  *
1964  * We have a sendfile queue (snfq) where each sendfile
1965  * request (snf_req_t) is queued for processing by a thread. Number
1966  * of threads is dynamically allocated and they exit if they are idling
1967  * beyond a specified amount of time. When each request (snf_req_t) is
1968  * processed by a thread, it produces a number of mblk_t structures to
1969  * be consumed by the sendfile thread. snf_deque and snf_enque are
1970  * used for consuming and producing mblks. Size of the filesystem
1971  * read is determined by the tunable (sendfile_read_size). A single
1972  * mblk holds sendfile_read_size worth of data (except the last
1973  * read of the file) which is sent down as a whole to the network.
1974  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1975  * value for the UFS filesystem backed by a striped storage array.
1976  *
1977  * Synchronisation between read (producer) and write (consumer) threads.
1978  * --------------------------------------------------------------------
1979  *
1980  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1981  * adding and deleting items in this list. Error can happen anytime
1982  * during read or write. There could be unprocessed mblks in the
1983  * sr_ib_XXX list when a read or write error occurs. Whenever error
1984  * is encountered, we need two things to happen :
1985  *
1986  * a) One of the threads need to clean the mblks.
1987  * b) When one thread encounters an error, the other should stop.
1988  *
1989  * For (a), we don't want to penalize the reader thread as it could do
1990  * some useful work processing other requests. For (b), the error can
1991  * be detected by examining sr_read_error or sr_write_error.
1992  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1993  * writer encounters error, we need to report the write error back to
1994  * the application as that's what would have happened if the operations
1995  * were done sequentially. With this in mind, following should work :
1996  *
1997  *	- Check for errors before read or write.
1998  *	- If the reader encounters error, set the error in sr_read_error.
1999  *	  Check sr_write_error, if it is set, send cv_signal as it is
2000  *	  waiting for reader to complete. If it is not set, the writer
2001  *	  is either running sinking data to the network or blocked
2002  *        because of flow control. For handling the latter case, we
2003  *	  always send a signal. In any case, it will examine sr_read_error
2004  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
2005  *	  the writer that the reader is done in all the cases.
2006  *	- If the writer encounters error, set the error in sr_write_error.
2007  *	  The reader thread is either blocked because of flow control or
2008  *	  running reading data from the disk. For the former, we need to
2009  *	  wakeup the thread. Again to keep it simple, we always wake up
2010  *	  the reader thread. Then, wait for the read thread to complete
2011  *	  if it is not done yet. Cleanup and return.
2012  *
2013  * High and low water marks for the read thread.
2014  * --------------------------------------------
2015  *
2016  * If sendfile() is used to send data over a slow network, we need to
2017  * make sure that the read thread does not produce data at a faster
2018  * rate than the network. This can happen if the disk is faster than
2019  * the network. In such a case, we don't want to build a very large queue.
2020  * But we would still like to get all of the network throughput possible.
2021  * This implies that network should never block waiting for data.
2022  * As there are lot of disk throughput/network throughput combinations
2023  * possible, it is difficult to come up with an accurate number.
2024  * A typical 10K RPM disk has a max seek latency 17ms and rotational
2025  * latency of 3ms for reading a disk block. Thus, the total latency to
2026  * initiate a new read, transfer data from the disk and queue for
2027  * transmission would take about a max of 25ms. Todays max transfer rate
2028  * for network is 100MB/sec. If the thread is blocked because of flow
2029  * control, it would take 25ms to get new data ready for transmission.
2030  * We have to make sure that network is not idling, while we are initiating
2031  * new transfers. So, at 100MB/sec, to keep network busy we would need
2032  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
2033  * We need to pick a high water mark so that the woken up thread would
2034  * do considerable work before blocking again to prevent thrashing. Currently,
2035  * we pick this to be 10 times that of the low water mark.
2036  *
2037  * Sendfile with segmap caching (One copy from page cache to mblks).
2038  * ----------------------------------------------------------------
2039  *
2040  * We use the segmap cache for caching the file, if the size of file
2041  * is <= sendfile_max_size. In this case we don't use threads as VM
2042  * is reasonably fast enough to keep up with the network. If the underlying
2043  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
2044  * of data into segmap space, and use the virtual address from segmap
2045  * directly through desballoc() to avoid copy. Once the transport is done
2046  * with the data, the mapping will be released through segmap_release()
2047  * called by the call-back routine.
2048  *
2049  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
2050  * to copy the data from the filesystem into our temporary network buffer.
2051  *
2052  * To disable caching, set sendfile_max_size to 0.
2053  */
2054 
2055 uint_t sendfile_read_size = 1024 * 1024;
2056 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
2057 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
2058 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
2059 struct sendfile_stats sf_stats;
2060 struct sendfile_queue *snfq;
2061 clock_t snfq_timeout;
2062 off64_t sendfile_max_size;
2063 
2064 static void snf_enque(snf_req_t *, mblk_t *);
2065 static mblk_t *snf_deque(snf_req_t *);
2066 
2067 void
sendfile_init(void)2068 sendfile_init(void)
2069 {
2070 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2071 
2072 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2073 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2074 	snfq->snfq_max_threads = max_ncpus;
2075 	snfq_timeout = SNFQ_TIMEOUT;
2076 	/* Cache all files by default. */
2077 	sendfile_max_size = MAXOFFSET_T;
2078 }
2079 
2080 /*
2081  * Queues a mblk_t for network processing.
2082  */
2083 static void
snf_enque(snf_req_t * sr,mblk_t * mp)2084 snf_enque(snf_req_t *sr, mblk_t *mp)
2085 {
2086 	mp->b_next = NULL;
2087 	mutex_enter(&sr->sr_lock);
2088 	if (sr->sr_mp_head == NULL) {
2089 		sr->sr_mp_head = sr->sr_mp_tail = mp;
2090 		cv_signal(&sr->sr_cv);
2091 	} else {
2092 		sr->sr_mp_tail->b_next = mp;
2093 		sr->sr_mp_tail = mp;
2094 	}
2095 	sr->sr_qlen += MBLKL(mp);
2096 	while ((sr->sr_qlen > sr->sr_hiwat) &&
2097 	    (sr->sr_write_error == 0)) {
2098 		sf_stats.ss_full_waits++;
2099 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2100 	}
2101 	mutex_exit(&sr->sr_lock);
2102 }
2103 
2104 /*
2105  * De-queues a mblk_t for network processing.
2106  */
2107 static mblk_t *
snf_deque(snf_req_t * sr)2108 snf_deque(snf_req_t *sr)
2109 {
2110 	mblk_t *mp;
2111 
2112 	mutex_enter(&sr->sr_lock);
2113 	/*
2114 	 * If we have encountered an error on read or read is
2115 	 * completed and no more mblks, return NULL.
2116 	 * We need to check for NULL sr_mp_head also as
2117 	 * the reads could have completed and there is
2118 	 * nothing more to come.
2119 	 */
2120 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2121 	    ((sr->sr_read_error & SR_READ_DONE) &&
2122 	    sr->sr_mp_head == NULL)) {
2123 		mutex_exit(&sr->sr_lock);
2124 		return (NULL);
2125 	}
2126 	/*
2127 	 * To start with neither SR_READ_DONE is marked nor
2128 	 * the error is set. When we wake up from cv_wait,
2129 	 * following are the possibilities :
2130 	 *
2131 	 *	a) sr_read_error is zero and mblks are queued.
2132 	 *	b) sr_read_error is set to SR_READ_DONE
2133 	 *	   and mblks are queued.
2134 	 *	c) sr_read_error is set to SR_READ_DONE
2135 	 *	   and no mblks.
2136 	 *	d) sr_read_error is set to some error other
2137 	 *	   than SR_READ_DONE.
2138 	 */
2139 
2140 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2141 		sf_stats.ss_empty_waits++;
2142 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2143 	}
2144 	/* Handle (a) and (b) first  - the normal case. */
2145 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2146 	    (sr->sr_mp_head != NULL)) {
2147 		mp = sr->sr_mp_head;
2148 		sr->sr_mp_head = mp->b_next;
2149 		sr->sr_qlen -= MBLKL(mp);
2150 		if (sr->sr_qlen < sr->sr_lowat)
2151 			cv_signal(&sr->sr_cv);
2152 		mutex_exit(&sr->sr_lock);
2153 		mp->b_next = NULL;
2154 		return (mp);
2155 	}
2156 	/* Handle (c) and (d). */
2157 	mutex_exit(&sr->sr_lock);
2158 	return (NULL);
2159 }
2160 
2161 /*
2162  * Reads data from the filesystem and queues it for network processing.
2163  */
2164 void
snf_async_read(snf_req_t * sr)2165 snf_async_read(snf_req_t *sr)
2166 {
2167 	size_t iosize;
2168 	u_offset_t fileoff;
2169 	u_offset_t size;
2170 	int ret_size;
2171 	int error;
2172 	file_t *fp;
2173 	mblk_t *mp;
2174 	struct vnode *vp;
2175 	int extra = 0;
2176 	int maxblk = 0;
2177 	int wroff = 0;
2178 	struct sonode *so;
2179 
2180 	fp = sr->sr_fp;
2181 	size = sr->sr_file_size;
2182 	fileoff = sr->sr_file_off;
2183 
2184 	/*
2185 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2186 	 */
2187 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2188 	    kcred, NULL, NULL);
2189 
2190 	vp = sr->sr_vp;
2191 	if (vp->v_type == VSOCK) {
2192 		stdata_t *stp;
2193 
2194 		/*
2195 		 * Get the extra space to insert a header and a trailer.
2196 		 */
2197 		so = VTOSO(vp);
2198 		stp = vp->v_stream;
2199 		if (stp == NULL) {
2200 			wroff = so->so_proto_props.sopp_wroff;
2201 			maxblk = so->so_proto_props.sopp_maxblk;
2202 			extra = wroff + so->so_proto_props.sopp_tail;
2203 		} else {
2204 			wroff = (int)(stp->sd_wroff);
2205 			maxblk = (int)(stp->sd_maxblk);
2206 			extra = wroff + (int)(stp->sd_tail);
2207 		}
2208 	}
2209 
2210 	while ((size != 0) && (sr->sr_write_error == 0)) {
2211 
2212 		iosize = (int)MIN(sr->sr_maxpsz, size);
2213 
2214 		/*
2215 		 * Socket filters can limit the mblk size,
2216 		 * so limit reads to maxblk if there are
2217 		 * filters present.
2218 		 */
2219 		if (vp->v_type == VSOCK &&
2220 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2221 			iosize = (int)MIN(iosize, maxblk);
2222 
2223 		if (is_system_labeled()) {
2224 			mp = allocb_cred(iosize + extra, CRED(),
2225 			    curproc->p_pid);
2226 		} else {
2227 			mp = allocb(iosize + extra, BPRI_MED);
2228 		}
2229 		if (mp == NULL) {
2230 			error = EAGAIN;
2231 			break;
2232 		}
2233 
2234 		mp->b_rptr += wroff;
2235 
2236 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2237 
2238 		/* Error or Reached EOF ? */
2239 		if ((error != 0) || (ret_size == 0)) {
2240 			freeb(mp);
2241 			break;
2242 		}
2243 		mp->b_wptr = mp->b_rptr + ret_size;
2244 
2245 		snf_enque(sr, mp);
2246 		size -= ret_size;
2247 		fileoff += ret_size;
2248 	}
2249 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2250 	    kcred, NULL, NULL);
2251 	mutex_enter(&sr->sr_lock);
2252 	sr->sr_read_error = error;
2253 	sr->sr_read_error |= SR_READ_DONE;
2254 	cv_signal(&sr->sr_cv);
2255 	mutex_exit(&sr->sr_lock);
2256 }
2257 
2258 void
snf_async_thread(void)2259 snf_async_thread(void)
2260 {
2261 	snf_req_t *sr;
2262 	callb_cpr_t cprinfo;
2263 	clock_t time_left = 1;
2264 
2265 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2266 
2267 	mutex_enter(&snfq->snfq_lock);
2268 	for (;;) {
2269 		/*
2270 		 * If we didn't find a entry, then block until woken up
2271 		 * again and then look through the queues again.
2272 		 */
2273 		while ((sr = snfq->snfq_req_head) == NULL) {
2274 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2275 			if (time_left <= 0) {
2276 				snfq->snfq_svc_threads--;
2277 				CALLB_CPR_EXIT(&cprinfo);
2278 				thread_exit();
2279 				/* NOTREACHED */
2280 			}
2281 			snfq->snfq_idle_cnt++;
2282 
2283 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2284 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2285 			snfq->snfq_idle_cnt--;
2286 
2287 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2288 		}
2289 		snfq->snfq_req_head = sr->sr_next;
2290 		snfq->snfq_req_cnt--;
2291 		mutex_exit(&snfq->snfq_lock);
2292 		snf_async_read(sr);
2293 		mutex_enter(&snfq->snfq_lock);
2294 	}
2295 }
2296 
2297 
2298 snf_req_t *
create_thread(int operation,struct vnode * vp,file_t * fp,u_offset_t fileoff,u_offset_t size)2299 create_thread(int operation, struct vnode *vp, file_t *fp,
2300     u_offset_t fileoff, u_offset_t size)
2301 {
2302 	snf_req_t *sr;
2303 	stdata_t *stp;
2304 
2305 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2306 
2307 	sr->sr_vp = vp;
2308 	sr->sr_fp = fp;
2309 	stp = vp->v_stream;
2310 
2311 	/*
2312 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2313 	 * stream might be closed before thread returns from snf_async_read.
2314 	 */
2315 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2316 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2317 	} else {
2318 		sr->sr_maxpsz = MAXBSIZE;
2319 	}
2320 
2321 	sr->sr_operation = operation;
2322 	sr->sr_file_off = fileoff;
2323 	sr->sr_file_size = size;
2324 	sr->sr_hiwat = sendfile_req_hiwat;
2325 	sr->sr_lowat = sendfile_req_lowat;
2326 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2327 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2328 	/*
2329 	 * See whether we need another thread for servicing this
2330 	 * request. If there are already enough requests queued
2331 	 * for the threads, create one if not exceeding
2332 	 * snfq_max_threads.
2333 	 */
2334 	mutex_enter(&snfq->snfq_lock);
2335 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2336 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2337 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2338 		    TS_RUN, minclsyspri);
2339 		snfq->snfq_svc_threads++;
2340 	}
2341 	if (snfq->snfq_req_head == NULL) {
2342 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2343 		cv_signal(&snfq->snfq_cv);
2344 	} else {
2345 		snfq->snfq_req_tail->sr_next = sr;
2346 		snfq->snfq_req_tail = sr;
2347 	}
2348 	snfq->snfq_req_cnt++;
2349 	mutex_exit(&snfq->snfq_lock);
2350 	return (sr);
2351 }
2352 
2353 int
snf_direct_io(file_t * fp,file_t * rfp,u_offset_t fileoff,u_offset_t size,ssize_t * count)2354 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2355     ssize_t *count)
2356 {
2357 	snf_req_t *sr;
2358 	mblk_t *mp;
2359 	int iosize;
2360 	int error = 0;
2361 	short fflag;
2362 	struct vnode *vp;
2363 	int ksize;
2364 	struct nmsghdr msg;
2365 
2366 	ksize = 0;
2367 	*count = 0;
2368 	bzero(&msg, sizeof (msg));
2369 
2370 	vp = fp->f_vnode;
2371 	fflag = fp->f_flag;
2372 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2373 		return (EAGAIN);
2374 
2375 	/*
2376 	 * We check for read error in snf_deque. It has to check
2377 	 * for successful READ_DONE and return NULL, and we might
2378 	 * as well make an additional check there.
2379 	 */
2380 	while ((mp = snf_deque(sr)) != NULL) {
2381 
2382 		if (ISSIG(curthread, JUSTLOOKING)) {
2383 			freeb(mp);
2384 			error = EINTR;
2385 			break;
2386 		}
2387 		iosize = MBLKL(mp);
2388 
2389 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2390 
2391 		if (error != 0) {
2392 			if (mp != NULL)
2393 				freeb(mp);
2394 			break;
2395 		}
2396 		ksize += iosize;
2397 	}
2398 	*count = ksize;
2399 
2400 	mutex_enter(&sr->sr_lock);
2401 	sr->sr_write_error = error;
2402 	/* Look at the big comments on why we cv_signal here. */
2403 	cv_signal(&sr->sr_cv);
2404 
2405 	/* Wait for the reader to complete always. */
2406 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2407 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2408 	}
2409 	/* If there is no write error, check for read error. */
2410 	if (error == 0)
2411 		error = (sr->sr_read_error & ~SR_READ_DONE);
2412 
2413 	if (error != 0) {
2414 		mblk_t *next_mp;
2415 
2416 		mp = sr->sr_mp_head;
2417 		while (mp != NULL) {
2418 			next_mp = mp->b_next;
2419 			mp->b_next = NULL;
2420 			freeb(mp);
2421 			mp = next_mp;
2422 		}
2423 	}
2424 	mutex_exit(&sr->sr_lock);
2425 	kmem_free(sr, sizeof (snf_req_t));
2426 	return (error);
2427 }
2428 
2429 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2430 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2431 
2432 /*
2433  * Maximum no.of elements in the list returned by vpm, including
2434  * NULL for the last entry
2435  */
2436 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2437 
2438 typedef struct {
2439 	unsigned int	snfv_ref;
2440 	frtn_t		snfv_frtn;
2441 	vnode_t		*snfv_vp;
2442 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2443 } snf_vmap_desbinfo;
2444 
2445 typedef struct {
2446 	frtn_t		snfi_frtn;
2447 	caddr_t		snfi_base;
2448 	uint_t		snfi_mapoff;
2449 	size_t		snfi_len;
2450 	vnode_t		*snfi_vp;
2451 } snf_smap_desbinfo;
2452 
2453 /*
2454  * The callback function used for vpm mapped mblks called when the last ref of
2455  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2456  * can be the driver too due to lazy reclaim.
2457  */
2458 void
snf_vmap_desbfree(snf_vmap_desbinfo * snfv)2459 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2460 {
2461 	ASSERT(snfv->snfv_ref != 0);
2462 	if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2463 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2464 		VN_RELE(snfv->snfv_vp);
2465 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2466 	}
2467 }
2468 
2469 /*
2470  * The callback function used for segmap'ped mblks called when the last ref of
2471  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2472  * can be the driver too due to lazy reclaim.
2473  */
2474 void
snf_smap_desbfree(snf_smap_desbinfo * snfi)2475 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2476 {
2477 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2478 		/*
2479 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2480 		 * segmap_kpm as long as the latter never falls back to
2481 		 * "use_segmap_range". (See segmap_getmapflt().)
2482 		 *
2483 		 * Using S_OTHER saves an redundant hat_setref() in
2484 		 * segmap_unlock()
2485 		 */
2486 		(void) segmap_fault(kas.a_hat, segkmap,
2487 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2488 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2489 		    F_SOFTUNLOCK, S_OTHER);
2490 	}
2491 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2492 	VN_RELE(snfi->snfi_vp);
2493 	kmem_free(snfi, sizeof (*snfi));
2494 }
2495 
2496 /*
2497  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2498  * When segmap is used, the mblk contains a segmap slot of no more
2499  * than MAXBSIZE.
2500  *
2501  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2502  * in each iteration and sent by socket_sendmblk until an error occurs or
2503  * the requested size has been transferred. An mblk is esballoca'ed from
2504  * each mapped page and a chain of these mblk is sent to the transport layer.
2505  * vpm will be called to unmap the pages when all mblks have been freed by
2506  * free_func.
2507  *
2508  * At the end of the whole sendfile() operation, we wait till the data from
2509  * the last mblk is ack'ed by the transport before returning so that the
2510  * caller of sendfile() can safely modify the file content.
2511  *
2512  * The caller of this function should make sure that total_size does not exceed
2513  * the actual file size of fvp.
2514  */
2515 int
snf_segmap(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t total_size,ssize_t * count,boolean_t nowait)2516 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2517     ssize_t *count, boolean_t nowait)
2518 {
2519 	caddr_t base;
2520 	int mapoff;
2521 	vnode_t *vp;
2522 	mblk_t *mp = NULL;
2523 	int chain_size;
2524 	int error;
2525 	clock_t deadlk_wait;
2526 	short fflag;
2527 	int ksize;
2528 	struct vattr va;
2529 	boolean_t dowait = B_FALSE;
2530 	struct nmsghdr msg;
2531 
2532 	vp = fp->f_vnode;
2533 	fflag = fp->f_flag;
2534 	ksize = 0;
2535 	bzero(&msg, sizeof (msg));
2536 
2537 	for (;;) {
2538 		if (ISSIG(curthread, JUSTLOOKING)) {
2539 			error = EINTR;
2540 			break;
2541 		}
2542 
2543 		if (vpm_enable) {
2544 			snf_vmap_desbinfo *snfv;
2545 			mblk_t *nmp;
2546 			int mblk_size;
2547 			int maxsize;
2548 			int i;
2549 
2550 			mapoff = fileoff & PAGEOFFSET;
2551 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2552 
2553 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2554 			    KM_SLEEP);
2555 
2556 			/*
2557 			 * Get vpm mappings for maxsize with read access.
2558 			 * If the pages aren't available yet, we get
2559 			 * DEADLK, so wait and try again a little later using
2560 			 * an increasing wait. We might be here a long time.
2561 			 *
2562 			 * If delay_sig returns EINTR, be sure to exit and
2563 			 * pass it up to the caller.
2564 			 */
2565 			deadlk_wait = 0;
2566 			while ((error = vpm_map_pages(fvp, fileoff,
2567 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2568 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2569 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2570 				if ((error = delay_sig(deadlk_wait)) != 0) {
2571 					break;
2572 				}
2573 			}
2574 			if (error != 0) {
2575 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2576 				error = (error == EINTR) ? EINTR : EIO;
2577 				goto out;
2578 			}
2579 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2580 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2581 
2582 			/* Construct the mblk chain from the page mappings */
2583 			chain_size = 0;
2584 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2585 			    total_size > 0; i++) {
2586 				ASSERT(chain_size < maxsize);
2587 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2588 				    mapoff, total_size);
2589 				nmp = esballoca(
2590 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2591 				    mapoff, mblk_size, BPRI_HI,
2592 				    &snfv->snfv_frtn);
2593 
2594 				/*
2595 				 * We return EAGAIN after unmapping the pages
2596 				 * if we cannot allocate the the head of the
2597 				 * chain. Otherwise, we continue sending the
2598 				 * mblks constructed so far.
2599 				 */
2600 				if (nmp == NULL) {
2601 					if (i == 0) {
2602 						vpm_unmap_pages(snfv->snfv_vml,
2603 						    S_READ);
2604 						kmem_free(snfv,
2605 						    sizeof (snf_vmap_desbinfo));
2606 						error = EAGAIN;
2607 						goto out;
2608 					}
2609 					break;
2610 				}
2611 				/* Mark this dblk with the zero-copy flag */
2612 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2613 				nmp->b_wptr += mblk_size;
2614 				chain_size += mblk_size;
2615 				fileoff += mblk_size;
2616 				total_size -= mblk_size;
2617 				snfv->snfv_ref++;
2618 				mapoff = 0;
2619 				if (i > 0)
2620 					linkb(mp, nmp);
2621 				else
2622 					mp = nmp;
2623 			}
2624 			VN_HOLD(fvp);
2625 			snfv->snfv_vp = fvp;
2626 		} else {
2627 			/* vpm not supported. fallback to segmap */
2628 			snf_smap_desbinfo *snfi;
2629 
2630 			mapoff = fileoff & MAXBOFFSET;
2631 			chain_size = MAXBSIZE - mapoff;
2632 			if (chain_size > total_size)
2633 				chain_size = total_size;
2634 			/*
2635 			 * we don't forcefault because we'll call
2636 			 * segmap_fault(F_SOFTLOCK) next.
2637 			 *
2638 			 * S_READ will get the ref bit set (by either
2639 			 * segmap_getmapflt() or segmap_fault()) and page
2640 			 * shared locked.
2641 			 */
2642 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2643 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2644 
2645 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2646 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2647 			    PAGESIZE)- (mapoff & PAGEMASK);
2648 			/*
2649 			 * We must call segmap_fault() even for segmap_kpm
2650 			 * because that's how error gets returned.
2651 			 * (segmap_getmapflt() never fails but segmap_fault()
2652 			 * does.)
2653 			 *
2654 			 * If the pages aren't available yet, we get
2655 			 * DEADLK, so wait and try again a little later using
2656 			 * an increasing wait. We might be here a long time.
2657 			 *
2658 			 * If delay_sig returns EINTR, be sure to exit and
2659 			 * pass it up to the caller.
2660 			 */
2661 			deadlk_wait = 0;
2662 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2663 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2664 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2665 			    S_READ))) == EDEADLK) {
2666 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2667 				if ((error = delay_sig(deadlk_wait)) != 0) {
2668 					break;
2669 				}
2670 			}
2671 			if (error != 0) {
2672 				(void) segmap_release(segkmap, base, 0);
2673 				kmem_free(snfi, sizeof (*snfi));
2674 				error = (error == EINTR) ? EINTR : EIO;
2675 				goto out;
2676 			}
2677 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2678 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2679 			snfi->snfi_base = base;
2680 			snfi->snfi_mapoff = mapoff;
2681 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2682 			    BPRI_HI, &snfi->snfi_frtn);
2683 
2684 			if (mp == NULL) {
2685 				(void) segmap_fault(kas.a_hat, segkmap,
2686 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2687 				    mapoff) & PAGEMASK), snfi->snfi_len,
2688 				    F_SOFTUNLOCK, S_OTHER);
2689 				(void) segmap_release(segkmap, base, 0);
2690 				kmem_free(snfi, sizeof (*snfi));
2691 				freemsg(mp);
2692 				error = EAGAIN;
2693 				goto out;
2694 			}
2695 			VN_HOLD(fvp);
2696 			snfi->snfi_vp = fvp;
2697 			mp->b_wptr += chain_size;
2698 
2699 			/* Mark this dblk with the zero-copy flag */
2700 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2701 			fileoff += chain_size;
2702 			total_size -= chain_size;
2703 		}
2704 
2705 		if (total_size == 0 && !nowait) {
2706 			ASSERT(!dowait);
2707 			dowait = B_TRUE;
2708 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2709 		}
2710 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2711 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2712 		if (error != 0) {
2713 			/*
2714 			 * mp contains the mblks that were not sent by
2715 			 * socket_sendmblk. Use its size to update *count
2716 			 */
2717 			*count = ksize + (chain_size - msgdsize(mp));
2718 			if (mp != NULL)
2719 				freemsg(mp);
2720 			return (error);
2721 		}
2722 		ksize += chain_size;
2723 		if (total_size == 0)
2724 			goto done;
2725 
2726 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2727 		va.va_mask = AT_SIZE;
2728 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2729 		if (error)
2730 			break;
2731 		/* Read as much as possible. */
2732 		if (fileoff >= va.va_size)
2733 			break;
2734 		if (total_size + fileoff > va.va_size)
2735 			total_size = va.va_size - fileoff;
2736 	}
2737 out:
2738 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2739 done:
2740 	*count = ksize;
2741 	if (dowait) {
2742 		stdata_t *stp;
2743 
2744 		stp = vp->v_stream;
2745 		if (stp == NULL) {
2746 			struct sonode *so;
2747 			so = VTOSO(vp);
2748 			error = so_zcopy_wait(so);
2749 		} else {
2750 			mutex_enter(&stp->sd_lock);
2751 			while (!(stp->sd_flag & STZCNOTIFY)) {
2752 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2753 				    &stp->sd_lock) == 0) {
2754 					error = EINTR;
2755 					break;
2756 				}
2757 			}
2758 			stp->sd_flag &= ~STZCNOTIFY;
2759 			mutex_exit(&stp->sd_lock);
2760 		}
2761 	}
2762 	return (error);
2763 }
2764 
2765 int
snf_cache(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t size,uint_t maxpsz,ssize_t * count)2766 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2767     uint_t maxpsz, ssize_t *count)
2768 {
2769 	struct vnode *vp;
2770 	mblk_t *mp;
2771 	int iosize;
2772 	int extra = 0;
2773 	int error;
2774 	short fflag;
2775 	int ksize;
2776 	int ioflag;
2777 	struct uio auio;
2778 	struct iovec aiov;
2779 	struct vattr va;
2780 	int maxblk = 0;
2781 	int wroff = 0;
2782 	struct sonode *so;
2783 	struct nmsghdr msg;
2784 
2785 	vp = fp->f_vnode;
2786 	if (vp->v_type == VSOCK) {
2787 		stdata_t *stp;
2788 
2789 		/*
2790 		 * Get the extra space to insert a header and a trailer.
2791 		 */
2792 		so = VTOSO(vp);
2793 		stp = vp->v_stream;
2794 		if (stp == NULL) {
2795 			wroff = so->so_proto_props.sopp_wroff;
2796 			maxblk = so->so_proto_props.sopp_maxblk;
2797 			extra = wroff + so->so_proto_props.sopp_tail;
2798 		} else {
2799 			wroff = (int)(stp->sd_wroff);
2800 			maxblk = (int)(stp->sd_maxblk);
2801 			extra = wroff + (int)(stp->sd_tail);
2802 		}
2803 	}
2804 	bzero(&msg, sizeof (msg));
2805 	fflag = fp->f_flag;
2806 	ksize = 0;
2807 	auio.uio_iov = &aiov;
2808 	auio.uio_iovcnt = 1;
2809 	auio.uio_segflg = UIO_SYSSPACE;
2810 	auio.uio_llimit = MAXOFFSET_T;
2811 	auio.uio_fmode = fflag;
2812 	auio.uio_extflg = UIO_COPY_CACHED;
2813 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2814 	/* If read sync is not asked for, filter sync flags */
2815 	if ((ioflag & FRSYNC) == 0)
2816 		ioflag &= ~(FSYNC|FDSYNC);
2817 	for (;;) {
2818 		if (ISSIG(curthread, JUSTLOOKING)) {
2819 			error = EINTR;
2820 			break;
2821 		}
2822 		iosize = (int)MIN(maxpsz, size);
2823 
2824 		/*
2825 		 * Socket filters can limit the mblk size,
2826 		 * so limit reads to maxblk if there are
2827 		 * filters present.
2828 		 */
2829 		if (vp->v_type == VSOCK &&
2830 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2831 			iosize = (int)MIN(iosize, maxblk);
2832 
2833 		if (is_system_labeled()) {
2834 			mp = allocb_cred(iosize + extra, CRED(),
2835 			    curproc->p_pid);
2836 		} else {
2837 			mp = allocb(iosize + extra, BPRI_MED);
2838 		}
2839 		if (mp == NULL) {
2840 			error = EAGAIN;
2841 			break;
2842 		}
2843 
2844 		mp->b_rptr += wroff;
2845 
2846 		aiov.iov_base = (caddr_t)mp->b_rptr;
2847 		aiov.iov_len = iosize;
2848 		auio.uio_loffset = fileoff;
2849 		auio.uio_resid = iosize;
2850 
2851 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2852 		iosize -= auio.uio_resid;
2853 
2854 		if (error == EINTR && iosize != 0)
2855 			error = 0;
2856 
2857 		if (error != 0 || iosize == 0) {
2858 			freeb(mp);
2859 			break;
2860 		}
2861 		mp->b_wptr = mp->b_rptr + iosize;
2862 
2863 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2864 
2865 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2866 
2867 		if (error != 0) {
2868 			*count = ksize;
2869 			if (mp != NULL)
2870 				freeb(mp);
2871 			return (error);
2872 		}
2873 		ksize += iosize;
2874 		size -= iosize;
2875 		if (size == 0)
2876 			goto done;
2877 
2878 		fileoff += iosize;
2879 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2880 		va.va_mask = AT_SIZE;
2881 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2882 		if (error)
2883 			break;
2884 		/* Read as much as possible. */
2885 		if (fileoff >= va.va_size)
2886 			size = 0;
2887 		else if (size + fileoff > va.va_size)
2888 			size = va.va_size - fileoff;
2889 	}
2890 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2891 done:
2892 	*count = ksize;
2893 	return (error);
2894 }
2895 
2896 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2897 /*
2898  * Largefile support for 32 bit applications only.
2899  */
2900 int
sosendfile64(file_t * fp,file_t * rfp,const struct ksendfilevec64 * sfv,ssize32_t * count32)2901 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2902     ssize32_t *count32)
2903 {
2904 	ssize32_t sfv_len;
2905 	u_offset_t sfv_off, va_size;
2906 	struct vnode *vp, *fvp, *realvp;
2907 	struct vattr va;
2908 	stdata_t *stp;
2909 	ssize_t count = 0;
2910 	int error = 0;
2911 	boolean_t dozcopy = B_FALSE;
2912 	uint_t maxpsz;
2913 
2914 	sfv_len = (ssize32_t)sfv->sfv_len;
2915 	if (sfv_len < 0) {
2916 		error = EINVAL;
2917 		goto out;
2918 	}
2919 
2920 	if (sfv_len == 0) goto out;
2921 
2922 	sfv_off = (u_offset_t)sfv->sfv_off;
2923 
2924 	/* Same checks as in pread */
2925 	if (sfv_off > MAXOFFSET_T) {
2926 		error = EINVAL;
2927 		goto out;
2928 	}
2929 	if (sfv_off + sfv_len > MAXOFFSET_T)
2930 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2931 
2932 	/*
2933 	 * There are no more checks on sfv_len. So, we cast it to
2934 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2935 	 * 32 bit and 64 bit.
2936 	 *
2937 	 * TODO: should do nbl_need_check() like read()?
2938 	 */
2939 	if (sfv_len > sendfile_max_size) {
2940 		sf_stats.ss_file_not_cached++;
2941 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2942 		    &count);
2943 		goto out;
2944 	}
2945 	fvp = rfp->f_vnode;
2946 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2947 		fvp = realvp;
2948 	/*
2949 	 * Grab the lock as a reader to prevent the file size
2950 	 * from changing underneath.
2951 	 */
2952 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2953 	va.va_mask = AT_SIZE;
2954 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2955 	va_size = va.va_size;
2956 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2957 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2958 		goto out;
2959 	}
2960 	/* Read as much as possible. */
2961 	if (sfv_off + sfv_len > va_size)
2962 		sfv_len = va_size - sfv_off;
2963 
2964 	vp = fp->f_vnode;
2965 	stp = vp->v_stream;
2966 	/*
2967 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2968 	 * transfer size is large enough. This prevents performance loss
2969 	 * when the caller sends the file piece by piece.
2970 	 */
2971 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2972 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2973 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2974 		uint_t copyflag;
2975 		copyflag = stp != NULL ? stp->sd_copyflag :
2976 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2977 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2978 			int on = 1;
2979 
2980 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2981 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2982 				dozcopy = B_TRUE;
2983 		} else {
2984 			dozcopy = copyflag & STZCVMSAFE;
2985 		}
2986 	}
2987 	if (dozcopy) {
2988 		sf_stats.ss_file_segmap++;
2989 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2990 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2991 	} else {
2992 		if (vp->v_type == VSOCK && stp == NULL) {
2993 			sonode_t *so = VTOSO(vp);
2994 			maxpsz = so->so_proto_props.sopp_maxpsz;
2995 		} else if (stp != NULL) {
2996 			maxpsz = stp->sd_qn_maxpsz;
2997 		} else {
2998 			maxpsz = maxphys;
2999 		}
3000 
3001 		if (maxpsz == INFPSZ)
3002 			maxpsz = maxphys;
3003 		else
3004 			maxpsz = roundup(maxpsz, MAXBSIZE);
3005 		sf_stats.ss_file_cached++;
3006 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
3007 		    maxpsz, &count);
3008 	}
3009 out:
3010 	releasef(sfv->sfv_fd);
3011 	*count32 = (ssize32_t)count;
3012 	return (error);
3013 }
3014 #endif
3015 
3016 #ifdef _SYSCALL32_IMPL
3017 /*
3018  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
3019  * ssize_t rather than ssize32_t; see the comments above read32 for details.
3020  */
3021 
3022 ssize_t
recv32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)3023 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
3024 {
3025 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
3026 }
3027 
3028 ssize_t
recvfrom32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,caddr32_t namelenp)3029 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
3030     caddr32_t name, caddr32_t namelenp)
3031 {
3032 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
3033 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
3034 }
3035 
3036 ssize_t
send32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)3037 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
3038 {
3039 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
3040 }
3041 
3042 ssize_t
sendto32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,socklen_t namelen)3043 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
3044     caddr32_t name, socklen_t namelen)
3045 {
3046 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
3047 	    (void *)(uintptr_t)name, namelen));
3048 }
3049 #endif	/* _SYSCALL32_IMPL */
3050 
3051 /*
3052  * Function wrappers (mostly around the sonode switch) for
3053  * backward compatibility.
3054  */
3055 
3056 int
soaccept(struct sonode * so,int fflag,struct sonode ** nsop)3057 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
3058 {
3059 	return (socket_accept(so, fflag, CRED(), nsop));
3060 }
3061 
3062 int
sobind(struct sonode * so,struct sockaddr * name,socklen_t namelen,int backlog,int flags)3063 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3064     int backlog, int flags)
3065 {
3066 	int	error;
3067 
3068 	error = socket_bind(so, name, namelen, flags, CRED());
3069 	if (error == 0 && backlog != 0)
3070 		return (socket_listen(so, backlog, CRED()));
3071 
3072 	return (error);
3073 }
3074 
3075 int
solisten(struct sonode * so,int backlog)3076 solisten(struct sonode *so, int backlog)
3077 {
3078 	return (socket_listen(so, backlog, CRED()));
3079 }
3080 
3081 int
soconnect(struct sonode * so,struct sockaddr * name,socklen_t namelen,int fflag,int flags)3082 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3083     int fflag, int flags)
3084 {
3085 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3086 }
3087 
3088 int
sorecvmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)3089 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3090 {
3091 	return (socket_recvmsg(so, msg, uiop, CRED()));
3092 }
3093 
3094 int
sosendmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)3095 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3096 {
3097 	return (socket_sendmsg(so, msg, uiop, CRED()));
3098 }
3099 
3100 int
soshutdown(struct sonode * so,int how)3101 soshutdown(struct sonode *so, int how)
3102 {
3103 	return (socket_shutdown(so, how, CRED()));
3104 }
3105 
3106 int
sogetsockopt(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)3107 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3108     socklen_t *optlenp, int flags)
3109 {
3110 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
3111 	    flags, CRED()));
3112 }
3113 
3114 int
sosetsockopt(struct sonode * so,int level,int option_name,const void * optval,t_uscalar_t optlen)3115 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3116     t_uscalar_t optlen)
3117 {
3118 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3119 	    CRED()));
3120 }
3121 
3122 /*
3123  * Because this is backward compatibility interface it only needs to be
3124  * able to handle the creation of TPI sockfs sockets.
3125  */
3126 struct sonode *
socreate(struct sockparams * sp,int family,int type,int protocol,int version,int * errorp)3127 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3128     int *errorp)
3129 {
3130 	struct sonode *so;
3131 
3132 	ASSERT(sp != NULL);
3133 
3134 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3135 	    version, SOCKET_SLEEP, errorp, CRED());
3136 	if (so == NULL) {
3137 		SOCKPARAMS_DEC_REF(sp);
3138 	} else {
3139 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3140 			/* Cannot fail, only bumps so_count */
3141 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3142 		} else {
3143 			socket_destroy(so);
3144 			so = NULL;
3145 		}
3146 	}
3147 	return (so);
3148 }
3149