xref: /illumos-gate/usr/src/cmd/bhyve/mem.c (revision 32640292)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*
29  * This file and its contents are supplied under the terms of the
30  * Common Development and Distribution License ("CDDL"), version 1.0.
31  * You may only use this file in accordance with the terms of version
32  * 1.0 of the CDDL.
33  *
34  * A full copy of the text of the CDDL should have accompanied this
35  * source.  A copy of the CDDL is also available via the Internet at
36  * http://www.illumos.org/license/CDDL.
37  *
38  * Copyright 2020 Oxide Computer Company
39  */
40 
41 /*
42  * Memory ranges are represented with an RB tree. On insertion, the range
43  * is checked for overlaps. On lookup, the key has the same base and limit
44  * so it can be searched within the range.
45  */
46 
47 #include <sys/cdefs.h>
48 
49 #include <sys/types.h>
50 #include <sys/errno.h>
51 #include <sys/tree.h>
52 #include <machine/vmm.h>
53 
54 #include <assert.h>
55 #include <err.h>
56 #include <pthread.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <vmmapi.h>
60 
61 #include "mem.h"
62 
63 struct mmio_rb_range {
64 	RB_ENTRY(mmio_rb_range)	mr_link;	/* RB tree links */
65 	struct mem_range	mr_param;
66 	uint64_t                mr_base;
67 	uint64_t                mr_end;
68 };
69 
70 struct mmio_rb_tree;
71 RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
72 
73 static RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rb_root, mmio_rb_fallback;
74 
75 /*
76  * Per-vCPU cache. Since most accesses from a vCPU will be to
77  * consecutive addresses in a range, it makes sense to cache the
78  * result of a lookup.
79  */
80 static struct mmio_rb_range	**mmio_hint;
81 static int mmio_ncpu;
82 
83 static pthread_rwlock_t mmio_rwlock;
84 
85 static int
mmio_rb_range_compare(struct mmio_rb_range * a,struct mmio_rb_range * b)86 mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b)
87 {
88 	if (a->mr_end < b->mr_base)
89 		return (-1);
90 	else if (a->mr_base > b->mr_end)
91 		return (1);
92 	return (0);
93 }
94 
95 static int
mmio_rb_lookup(struct mmio_rb_tree * rbt,uint64_t addr,struct mmio_rb_range ** entry)96 mmio_rb_lookup(struct mmio_rb_tree *rbt, uint64_t addr,
97     struct mmio_rb_range **entry)
98 {
99 	struct mmio_rb_range find, *res;
100 
101 	find.mr_base = find.mr_end = addr;
102 
103 	res = RB_FIND(mmio_rb_tree, rbt, &find);
104 
105 	if (res != NULL) {
106 		*entry = res;
107 		return (0);
108 	}
109 
110 	return (ENOENT);
111 }
112 
113 static int
mmio_rb_add(struct mmio_rb_tree * rbt,struct mmio_rb_range * new)114 mmio_rb_add(struct mmio_rb_tree *rbt, struct mmio_rb_range *new)
115 {
116 	struct mmio_rb_range *overlap;
117 
118 	overlap = RB_INSERT(mmio_rb_tree, rbt, new);
119 
120 	if (overlap != NULL) {
121 #ifdef RB_DEBUG
122 		printf("overlap detected: new %lx:%lx, tree %lx:%lx, '%s' "
123 		       "claims region already claimed for '%s'\n",
124 		       new->mr_base, new->mr_end,
125 		       overlap->mr_base, overlap->mr_end,
126 		       new->mr_param.name, overlap->mr_param.name);
127 #endif
128 
129 		return (EEXIST);
130 	}
131 
132 	return (0);
133 }
134 
135 #if 0
136 static void
137 mmio_rb_dump(struct mmio_rb_tree *rbt)
138 {
139 	int perror;
140 	struct mmio_rb_range *np;
141 
142 	pthread_rwlock_rdlock(&mmio_rwlock);
143 	RB_FOREACH(np, mmio_rb_tree, rbt) {
144 		printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end,
145 		       np->mr_param.name);
146 	}
147 	perror = pthread_rwlock_unlock(&mmio_rwlock);
148 	assert(perror == 0);
149 }
150 #endif
151 
152 RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
153 
154 typedef int (mem_cb_t)(struct vcpu *vcpu, uint64_t gpa, struct mem_range *mr,
155     void *arg);
156 
157 static int
mem_read(struct vcpu * vcpu,uint64_t gpa,uint64_t * rval,int size,void * arg)158 mem_read(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg)
159 {
160 	int error;
161 	struct mem_range *mr = arg;
162 
163 	error = (*mr->handler)(vcpu, MEM_F_READ, gpa, size, rval, mr->arg1,
164 	    mr->arg2);
165 	return (error);
166 }
167 
168 static int
mem_write(struct vcpu * vcpu,uint64_t gpa,uint64_t wval,int size,void * arg)169 mem_write(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, int size, void *arg)
170 {
171 	int error;
172 	struct mem_range *mr = arg;
173 
174 	error = (*mr->handler)(vcpu, MEM_F_WRITE, gpa, size, &wval, mr->arg1,
175 	    mr->arg2);
176 	return (error);
177 }
178 
179 static int
access_memory(struct vcpu * vcpu,uint64_t paddr,mem_cb_t * cb,void * arg)180 access_memory(struct vcpu *vcpu, uint64_t paddr, mem_cb_t *cb, void *arg)
181 {
182 	struct mmio_rb_range *entry;
183 	int err, perror, immutable, vcpuid;
184 
185 	vcpuid = vcpu_id(vcpu);
186 	pthread_rwlock_rdlock(&mmio_rwlock);
187 	/*
188 	 * First check the per-vCPU cache
189 	 */
190 	if (mmio_hint[vcpuid] &&
191 	    paddr >= mmio_hint[vcpuid]->mr_base &&
192 	    paddr <= mmio_hint[vcpuid]->mr_end) {
193 		entry = mmio_hint[vcpuid];
194 	} else
195 		entry = NULL;
196 
197 	if (entry == NULL) {
198 		if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) {
199 			/* Update the per-vCPU cache */
200 			mmio_hint[vcpuid] = entry;
201 		} else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) {
202 			perror = pthread_rwlock_unlock(&mmio_rwlock);
203 			assert(perror == 0);
204 			return (ESRCH);
205 		}
206 	}
207 
208 	assert(entry != NULL);
209 
210 	/*
211 	 * An 'immutable' memory range is guaranteed to be never removed
212 	 * so there is no need to hold 'mmio_rwlock' while calling the
213 	 * handler.
214 	 *
215 	 * XXX writes to the PCIR_COMMAND register can cause register_mem()
216 	 * to be called. If the guest is using PCI extended config space
217 	 * to modify the PCIR_COMMAND register then register_mem() can
218 	 * deadlock on 'mmio_rwlock'. However by registering the extended
219 	 * config space window as 'immutable' the deadlock can be avoided.
220 	 */
221 	immutable = (entry->mr_param.flags & MEM_F_IMMUTABLE);
222 	if (immutable) {
223 		perror = pthread_rwlock_unlock(&mmio_rwlock);
224 		assert(perror == 0);
225 	}
226 
227 	err = cb(vcpu, paddr, &entry->mr_param, arg);
228 
229 	if (!immutable) {
230 		perror = pthread_rwlock_unlock(&mmio_rwlock);
231 		assert(perror == 0);
232 	}
233 
234 	return (err);
235 }
236 
237 static int
emulate_mem_cb(struct vcpu * vcpu,uint64_t paddr,struct mem_range * mr,void * arg)238 emulate_mem_cb(struct vcpu *vcpu, uint64_t paddr, struct mem_range *mr,
239     void *arg)
240 {
241 	struct vm_mmio *mmio;
242 	int err = 0;
243 
244 	mmio = arg;
245 
246 	if (mmio->read != 0) {
247 		err = mem_read(vcpu, paddr, &mmio->data, mmio->bytes, mr);
248 	} else {
249 		err = mem_write(vcpu, paddr, mmio->data, mmio->bytes, mr);
250 	}
251 
252 	return (err);
253 }
254 
255 int
emulate_mem(struct vcpu * vcpu,struct vm_mmio * mmio)256 emulate_mem(struct vcpu *vcpu, struct vm_mmio *mmio)
257 {
258 	return (access_memory(vcpu, mmio->gpa, emulate_mem_cb, mmio));
259 }
260 
261 struct rw_mem_args {
262 	uint64_t *val;
263 	int size;
264 	int operation;
265 };
266 
267 static int
rw_mem_cb(struct vcpu * vcpu,uint64_t paddr,struct mem_range * mr,void * arg)268 rw_mem_cb(struct vcpu *vcpu, uint64_t paddr, struct mem_range *mr,
269     void *arg)
270 {
271 	struct rw_mem_args *rma;
272 
273 	rma = arg;
274 	return (mr->handler(vcpu, rma->operation, paddr, rma->size,
275 	    rma->val, mr->arg1, mr->arg2));
276 }
277 
278 int
read_mem(struct vcpu * vcpu,uint64_t gpa,uint64_t * rval,int size)279 read_mem(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, int size)
280 {
281 	struct rw_mem_args rma;
282 
283 	rma.val = rval;
284 	rma.size = size;
285 	rma.operation = MEM_F_READ;
286 	return (access_memory(vcpu, gpa, rw_mem_cb, &rma));
287 }
288 
289 int
write_mem(struct vcpu * vcpu,uint64_t gpa,uint64_t wval,int size)290 write_mem(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, int size)
291 {
292 	struct rw_mem_args rma;
293 
294 	rma.val = &wval;
295 	rma.size = size;
296 	rma.operation = MEM_F_WRITE;
297 	return (access_memory(vcpu, gpa, rw_mem_cb, &rma));
298 }
299 
300 static int
register_mem_int(struct mmio_rb_tree * rbt,struct mem_range * memp)301 register_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp)
302 {
303 	struct mmio_rb_range *entry, *mrp;
304 	int err, perror;
305 
306 	err = 0;
307 
308 	mrp = malloc(sizeof(struct mmio_rb_range));
309 	if (mrp == NULL) {
310 		warn("%s: couldn't allocate memory for mrp\n",
311 		     __func__);
312 		err = ENOMEM;
313 	} else {
314 		mrp->mr_param = *memp;
315 		mrp->mr_base = memp->base;
316 		mrp->mr_end = memp->base + memp->size - 1;
317 		pthread_rwlock_wrlock(&mmio_rwlock);
318 		if (mmio_rb_lookup(rbt, memp->base, &entry) != 0)
319 			err = mmio_rb_add(rbt, mrp);
320 #ifndef	__FreeBSD__
321 		else /* smatch warn: possible memory leak of 'mrp' */
322 			free(mrp);
323 #endif
324 		perror = pthread_rwlock_unlock(&mmio_rwlock);
325 		assert(perror == 0);
326 		if (err)
327 			free(mrp);
328 	}
329 
330 	return (err);
331 }
332 
333 int
register_mem(struct mem_range * memp)334 register_mem(struct mem_range *memp)
335 {
336 
337 	return (register_mem_int(&mmio_rb_root, memp));
338 }
339 
340 int
register_mem_fallback(struct mem_range * memp)341 register_mem_fallback(struct mem_range *memp)
342 {
343 
344 	return (register_mem_int(&mmio_rb_fallback, memp));
345 }
346 
347 int
unregister_mem(struct mem_range * memp)348 unregister_mem(struct mem_range *memp)
349 {
350 	struct mem_range *mr;
351 	struct mmio_rb_range *entry = NULL;
352 	int err, perror, i;
353 
354 	pthread_rwlock_wrlock(&mmio_rwlock);
355 	err = mmio_rb_lookup(&mmio_rb_root, memp->base, &entry);
356 	if (err == 0) {
357 		mr = &entry->mr_param;
358 		assert(mr->name == memp->name);
359 		assert(mr->base == memp->base && mr->size == memp->size);
360 		assert((mr->flags & MEM_F_IMMUTABLE) == 0);
361 		RB_REMOVE(mmio_rb_tree, &mmio_rb_root, entry);
362 
363 		/* flush Per-vCPU cache */
364 		for (i = 0; i < mmio_ncpu; i++) {
365 			if (mmio_hint[i] == entry)
366 				mmio_hint[i] = NULL;
367 		}
368 	}
369 	perror = pthread_rwlock_unlock(&mmio_rwlock);
370 	assert(perror == 0);
371 
372 	if (entry)
373 		free(entry);
374 
375 	return (err);
376 }
377 
378 void
init_mem(int ncpu)379 init_mem(int ncpu)
380 {
381 
382 	mmio_ncpu = ncpu;
383 	mmio_hint = calloc(ncpu, sizeof(*mmio_hint));
384 	RB_INIT(&mmio_rb_root);
385 	RB_INIT(&mmio_rb_fallback);
386 	pthread_rwlock_init(&mmio_rwlock, NULL);
387 }
388