1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2024 Oxide Computer Company
27  */
28 
29 /*
30  * Libkvm Kernel Target Intel 64-bit component
31  *
32  * This file provides the ISA-dependent portion of the libkvm kernel target.
33  * For more details on the implementation refer to mdb_kvm.c.
34  */
35 
36 #include <sys/types.h>
37 #include <sys/reg.h>
38 #include <sys/frame.h>
39 #include <sys/stack.h>
40 #include <sys/sysmacros.h>
41 #include <sys/panic.h>
42 #include <sys/privregs.h>
43 #include <strings.h>
44 
45 #include <mdb/mdb_target_impl.h>
46 #include <mdb/mdb_disasm.h>
47 #include <mdb/mdb_modapi.h>
48 #include <mdb/mdb_conf.h>
49 #include <mdb/mdb_kreg_impl.h>
50 #include <mdb/mdb_isautil.h>
51 #include <mdb/mdb_amd64util.h>
52 #include <mdb/kvm_isadep.h>
53 #include <mdb/mdb_kvm.h>
54 #include <mdb/mdb_err.h>
55 #include <mdb/mdb_debug.h>
56 #include <mdb/mdb.h>
57 
58 /*ARGSUSED*/
59 int
kt_regs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)60 kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
61 {
62 	mdb_amd64_printregs((const mdb_tgt_gregset_t *)addr);
63 	return (DCMD_OK);
64 }
65 
66 static int
kt_stack_common(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv,mdb_tgt_stack_f * func)67 kt_stack_common(uintptr_t addr, uint_t flags, int argc,
68     const mdb_arg_t *argv, mdb_tgt_stack_f *func)
69 {
70 	kt_data_t *kt = mdb.m_target->t_data;
71 	void *arg = (void *)(uintptr_t)mdb.m_nargs;
72 	mdb_tgt_gregset_t gregs, *grp;
73 
74 	if (flags & DCMD_ADDRSPEC) {
75 		bzero(&gregs, sizeof (gregs));
76 		gregs.kregs[KREG_RBP] = addr;
77 		grp = &gregs;
78 	} else
79 		grp = kt->k_regs;
80 
81 	if (argc != 0) {
82 		if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
83 			return (DCMD_USAGE);
84 
85 		if (argv->a_type == MDB_TYPE_STRING)
86 			arg = (void *)mdb_strtoull(argv->a_un.a_str);
87 		else
88 			arg = (void *)argv->a_un.a_val;
89 	}
90 
91 	(void) mdb_amd64_kvm_stack_iter(mdb.m_target, grp, func, arg);
92 	return (DCMD_OK);
93 }
94 
95 int
kt_stack(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)96 kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
97 {
98 	return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_frame));
99 }
100 
101 int
kt_stackv(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)102 kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
103 {
104 	return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_framev));
105 }
106 
107 const mdb_tgt_ops_t kt_amd64_ops = {
108 	.t_setflags = kt_setflags,
109 	.t_setcontext = kt_setcontext,
110 	.t_activate = kt_activate,
111 	.t_deactivate = kt_deactivate,
112 	.t_periodic = (void (*)())(uintptr_t)mdb_tgt_nop,
113 	.t_destroy = kt_destroy,
114 	.t_name = kt_name,
115 	.t_isa = (const char *(*)())mdb_conf_isa,
116 	.t_platform = kt_platform,
117 	.t_uname = kt_uname,
118 	.t_dmodel = kt_dmodel,
119 	.t_aread = kt_aread,
120 	.t_awrite = kt_awrite,
121 	.t_vread = kt_vread,
122 	.t_vwrite = kt_vwrite,
123 	.t_pread = kt_pread,
124 	.t_pwrite = kt_pwrite,
125 	.t_fread = kt_fread,
126 	.t_fwrite = kt_fwrite,
127 	.t_ioread = (ssize_t (*)())mdb_tgt_notsup,
128 	.t_iowrite = (ssize_t (*)())mdb_tgt_notsup,
129 	.t_vtop = kt_vtop,
130 	.t_lookup_by_name = kt_lookup_by_name,
131 	.t_lookup_by_addr = kt_lookup_by_addr,
132 	.t_symbol_iter = kt_symbol_iter,
133 	.t_mapping_iter = kt_mapping_iter,
134 	.t_object_iter = kt_object_iter,
135 	.t_addr_to_map = kt_addr_to_map,
136 	.t_name_to_map = kt_name_to_map,
137 	.t_addr_to_ctf = kt_addr_to_ctf,
138 	.t_name_to_ctf = kt_name_to_ctf,
139 	.t_status = kt_status,
140 	.t_run = (int (*)())(uintptr_t)mdb_tgt_notsup,
141 	.t_step = (int (*)())(uintptr_t)mdb_tgt_notsup,
142 	.t_step_out = (int (*)())(uintptr_t)mdb_tgt_notsup,
143 	.t_next = (int (*)())(uintptr_t)mdb_tgt_notsup,
144 	.t_cont = (int (*)())(uintptr_t)mdb_tgt_notsup,
145 	.t_signal = (int (*)())(uintptr_t)mdb_tgt_notsup,
146 	.t_add_vbrkpt = (int (*)())(uintptr_t)mdb_tgt_null,
147 	.t_add_sbrkpt = (int (*)())(uintptr_t)mdb_tgt_null,
148 	.t_add_pwapt = (int (*)())(uintptr_t)mdb_tgt_null,
149 	.t_add_vwapt = (int (*)())(uintptr_t)mdb_tgt_null,
150 	.t_add_iowapt = (int (*)())(uintptr_t)mdb_tgt_null,
151 	.t_add_sysenter = (int (*)())(uintptr_t)mdb_tgt_null,
152 	.t_add_sysexit = (int (*)())(uintptr_t)mdb_tgt_null,
153 	.t_add_signal = (int (*)())(uintptr_t)mdb_tgt_null,
154 	.t_add_fault = (int (*)())(uintptr_t)mdb_tgt_null,
155 	.t_getareg = kt_getareg,
156 	.t_putareg = kt_putareg,
157 	.t_stack_iter = mdb_amd64_kvm_stack_iter,
158 	.t_auxv = (int (*)())(uintptr_t)mdb_tgt_notsup,
159 	.t_thread_name = (int (*)())(uintptr_t)mdb_tgt_notsup,
160 };
161 
162 void
kt_regs_to_kregs(struct regs * regs,mdb_tgt_gregset_t * gregs)163 kt_regs_to_kregs(struct regs *regs, mdb_tgt_gregset_t *gregs)
164 {
165 	gregs->kregs[KREG_SAVFP] = regs->r_savfp;
166 	gregs->kregs[KREG_SAVPC] = regs->r_savpc;
167 	gregs->kregs[KREG_RDI] = regs->r_rdi;
168 	gregs->kregs[KREG_RSI] = regs->r_rsi;
169 	gregs->kregs[KREG_RDX] = regs->r_rdx;
170 	gregs->kregs[KREG_RCX] = regs->r_rcx;
171 	gregs->kregs[KREG_R8] = regs->r_r8;
172 	gregs->kregs[KREG_R9] = regs->r_r9;
173 	gregs->kregs[KREG_RAX] = regs->r_rax;
174 	gregs->kregs[KREG_RBX] = regs->r_rbx;
175 	gregs->kregs[KREG_RBP] = regs->r_rbp;
176 	gregs->kregs[KREG_R10] = regs->r_r10;
177 	gregs->kregs[KREG_R11] = regs->r_r11;
178 	gregs->kregs[KREG_R12] = regs->r_r12;
179 	gregs->kregs[KREG_R13] = regs->r_r13;
180 	gregs->kregs[KREG_R14] = regs->r_r14;
181 	gregs->kregs[KREG_R15] = regs->r_r15;
182 	gregs->kregs[KREG_DS] = regs->r_ds;
183 	gregs->kregs[KREG_ES] = regs->r_es;
184 	gregs->kregs[KREG_FS] = regs->r_fs;
185 	gregs->kregs[KREG_GS] = regs->r_gs;
186 	gregs->kregs[KREG_TRAPNO] = regs->r_trapno;
187 	gregs->kregs[KREG_ERR] = regs->r_err;
188 	gregs->kregs[KREG_RIP] = regs->r_rip;
189 	gregs->kregs[KREG_CS] = regs->r_cs;
190 	gregs->kregs[KREG_RFLAGS] = regs->r_rfl;
191 	gregs->kregs[KREG_RSP] = regs->r_rsp;
192 	gregs->kregs[KREG_SS] = regs->r_ss;
193 }
194 
195 void
kt_amd64_init(mdb_tgt_t * t)196 kt_amd64_init(mdb_tgt_t *t)
197 {
198 	kt_data_t *kt = t->t_data;
199 	panic_data_t pd;
200 	struct regs regs;
201 	uintptr_t addr;
202 
203 	/*
204 	 * Initialize the machine-dependent parts of the kernel target
205 	 * structure.  Once this is complete and we fill in the ops
206 	 * vector, the target is now fully constructed and we can use
207 	 * the target API itself to perform the rest of our initialization.
208 	 */
209 	kt->k_rds = mdb_amd64_kregs;
210 	kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
211 	kt->k_regsize = sizeof (mdb_tgt_gregset_t);
212 	kt->k_dcmd_regs = kt_regs;
213 	kt->k_dcmd_stack = kt_stack;
214 	kt->k_dcmd_stackv = kt_stackv;
215 	kt->k_dcmd_stackr = kt_stackv;
216 	kt->k_dcmd_cpustack = kt_cpustack;
217 	kt->k_dcmd_cpuregs = kt_cpuregs;
218 
219 	t->t_ops = &kt_amd64_ops;
220 
221 	(void) mdb_dis_select("amd64");
222 
223 	/*
224 	 * Lookup the symbols corresponding to subroutines in locore.s where
225 	 * we expect a saved regs structure to be pushed on the stack.  When
226 	 * performing stack tracebacks we will attempt to detect interrupt
227 	 * frames by comparing the %eip value to these symbols.
228 	 */
229 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
230 	    "cmnint", &kt->k_intr_sym, NULL);
231 
232 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
233 	    "cmntrap", &kt->k_trap_sym, NULL);
234 
235 	/*
236 	 * Don't attempt to load any thread or register information if
237 	 * we're examining the live operating system.
238 	 */
239 	if (kt->k_symfile != NULL && strcmp(kt->k_symfile, "/dev/ksyms") == 0)
240 		return;
241 
242 	/*
243 	 * If the panicbuf symbol is present and we can consume a panicbuf
244 	 * header of the appropriate version from this address, then we can
245 	 * initialize our current register set based on its contents.
246 	 * Prior to the re-structuring of panicbuf, our only register data
247 	 * was the panic_regs label_t, into which a setjmp() was performed,
248 	 * or the panic_reg register pointer, which was only non-zero if
249 	 * the system panicked as a result of a trap calling die().
250 	 */
251 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
252 	    MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
253 	    pd.pd_version == PANICBUFVERS) {
254 
255 		size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
256 		panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
257 		uint_t i, n;
258 
259 		(void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
260 		    MDB_TGT_OBJ_EXEC, "panicbuf");
261 
262 		n = (pd_size - (sizeof (panic_data_t) -
263 		    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
264 
265 		for (i = 0; i < n; i++) {
266 			(void) kt_putareg(t, kt->k_tid,
267 			    pdp->pd_nvdata[i].pnv_name,
268 			    pdp->pd_nvdata[i].pnv_value);
269 		}
270 
271 		mdb_free(pdp, pd_size);
272 
273 		return;
274 	};
275 
276 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
277 	    MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != 0 &&
278 	    mdb_tgt_vread(t, &regs, sizeof (regs), addr) == sizeof (regs)) {
279 		kt_regs_to_kregs(&regs, kt->k_regs);
280 		return;
281 	}
282 
283 	/*
284 	 * If we can't read any panic regs, then our final try is for any CPU
285 	 * context that may have been stored (for example, in Xen core dumps).
286 	 */
287 	if (kt_kvmregs(t, 0, kt->k_regs) == 0)
288 		return;
289 
290 	warn("failed to read panicbuf and panic_reg -- "
291 	    "current register set will be unavailable\n");
292 }
293