1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright 2016 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
8  */
9 
10 /*
11  * Copyright (c) 2001 Atsushi Onoe
12  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
13  * All rights reserved.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. The name of the author may not be used to endorse or promote products
24  *    derived from this software without specific prior written permission.
25  *
26  * Alternatively, this software may be distributed under the terms of the
27  * GNU General Public License ("GPL") version 2 as published by the Free
28  * Software Foundation.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
39  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * IEEE 802.11 protocol support
44  */
45 
46 #include "net80211_impl.h"
47 
48 /* tunables */
49 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
50 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
51 
52 #define	IEEE80211_RATE2MBS(r)	(((r) & IEEE80211_RATE_VAL) / 2)
53 
54 const char *ieee80211_mgt_subtype_name[] = {
55 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
56 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
57 	"beacon",	"atim",		"disassoc",	"auth",
58 	"deauth",	"reserved#13",	"reserved#14",	"reserved#15"
59 };
60 const char *ieee80211_ctl_subtype_name[] = {
61 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
62 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
63 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
64 	"cts",		"ack",		"cf_end",	"cf_end_ack"
65 };
66 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
67 	"INIT",		/* IEEE80211_S_INIT */
68 	"SCAN",		/* IEEE80211_S_SCAN */
69 	"AUTH",		/* IEEE80211_S_AUTH */
70 	"ASSOC",	/* IEEE80211_S_ASSOC */
71 	"RUN"		/* IEEE80211_S_RUN */
72 };
73 const char *ieee80211_wme_acnames[] = {
74 	"WME_AC_BE",
75 	"WME_AC_BK",
76 	"WME_AC_VI",
77 	"WME_AC_VO",
78 	"WME_UPSD",
79 };
80 
81 static int ieee80211_newstate(ieee80211com_t *, enum ieee80211_state, int);
82 
83 /*
84  * Initialize the interface softc, ic, with protocol management
85  * related data structures and functions.
86  */
87 void
ieee80211_proto_attach(ieee80211com_t * ic)88 ieee80211_proto_attach(ieee80211com_t *ic)
89 {
90 	struct ieee80211_impl *im = ic->ic_private;
91 
92 	ic->ic_rtsthreshold = IEEE80211_RTS_DEFAULT;
93 	ic->ic_fragthreshold = IEEE80211_FRAG_DEFAULT;
94 	ic->ic_fixed_rate = IEEE80211_FIXED_RATE_NONE;
95 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
96 	im->im_bmiss_max = IEEE80211_BMISS_MAX;
97 
98 	ic->ic_wme.wme_hipri_switch_hysteresis =
99 	    AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
100 
101 	/* protocol state change handler */
102 	ic->ic_newstate = ieee80211_newstate;
103 
104 	/* initialize management frame handlers */
105 	ic->ic_recv_mgmt = ieee80211_recv_mgmt;
106 	ic->ic_send_mgmt = ieee80211_send_mgmt;
107 }
108 
109 /*
110  * Print a 802.11 frame header
111  */
112 void
ieee80211_dump_pkt(const uint8_t * buf,int32_t len,int32_t rate,int32_t rssi)113 ieee80211_dump_pkt(const uint8_t *buf, int32_t len, int32_t rate, int32_t rssi)
114 {
115 	struct ieee80211_frame *wh;
116 	int8_t buf1[100];
117 	int8_t buf2[25];
118 	int i;
119 
120 	bzero(buf1, sizeof (buf1));
121 	bzero(buf2, sizeof (buf2));
122 	wh = (struct ieee80211_frame *)buf;
123 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
124 	case IEEE80211_FC1_DIR_NODS:
125 		(void) snprintf(buf2, sizeof (buf2), "NODS %s",
126 		    ieee80211_macaddr_sprintf(wh->i_addr2));
127 		(void) strncat(buf1, buf2, sizeof (buf2));
128 		(void) snprintf(buf2, sizeof (buf2), "->%s",
129 		    ieee80211_macaddr_sprintf(wh->i_addr1));
130 		(void) strncat(buf1, buf2, sizeof (buf2));
131 		(void) snprintf(buf2, sizeof (buf2), "(%s)",
132 		    ieee80211_macaddr_sprintf(wh->i_addr3));
133 		(void) strncat(buf1, buf2, sizeof (buf2));
134 		break;
135 	case IEEE80211_FC1_DIR_TODS:
136 		(void) snprintf(buf2, sizeof (buf2), "TODS %s",
137 		    ieee80211_macaddr_sprintf(wh->i_addr2));
138 		(void) strncat(buf1, buf2, sizeof (buf2));
139 		(void) snprintf(buf2, sizeof (buf2), "->%s",
140 		    ieee80211_macaddr_sprintf(wh->i_addr3));
141 		(void) strncat(buf1, buf2, sizeof (buf2));
142 		(void) snprintf(buf2, sizeof (buf2), "(%s)",
143 		    ieee80211_macaddr_sprintf(wh->i_addr1));
144 		(void) strncat(buf1, buf2, sizeof (buf2));
145 		break;
146 	case IEEE80211_FC1_DIR_FROMDS:
147 		(void) snprintf(buf2, sizeof (buf2), "FRDS %s",
148 		    ieee80211_macaddr_sprintf(wh->i_addr3));
149 		(void) strncat(buf1, buf2, sizeof (buf2));
150 		(void) snprintf(buf2, sizeof (buf2), "->%s",
151 		    ieee80211_macaddr_sprintf(wh->i_addr1));
152 		(void) strncat(buf1, buf2, sizeof (buf2));
153 		(void) snprintf(buf2, sizeof (buf2), "(%s)",
154 		    ieee80211_macaddr_sprintf(wh->i_addr2));
155 		(void) strncat(buf1, buf2, sizeof (buf2));
156 		break;
157 	case IEEE80211_FC1_DIR_DSTODS:
158 		(void) snprintf(buf2, sizeof (buf2), "DSDS %s",
159 		    ieee80211_macaddr_sprintf((uint8_t *)&wh[1]));
160 		(void) strncat(buf1, buf2, sizeof (buf2));
161 		(void) snprintf(buf2, sizeof (buf2), "->%s  ",
162 		    ieee80211_macaddr_sprintf(wh->i_addr3));
163 		(void) strncat(buf1, buf2, sizeof (buf2));
164 		(void) snprintf(buf2, sizeof (buf2), "%s",
165 		    ieee80211_macaddr_sprintf(wh->i_addr2));
166 		(void) strncat(buf1, buf2, sizeof (buf2));
167 		(void) snprintf(buf2, sizeof (buf2), "->%s",
168 		    ieee80211_macaddr_sprintf(wh->i_addr1));
169 		(void) strncat(buf1, buf2, sizeof (buf2));
170 		break;
171 	}
172 	ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_dump_pkt(): %s", buf1);
173 	bzero(buf1, sizeof (buf1));
174 
175 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
176 	case IEEE80211_FC0_TYPE_DATA:
177 		(void) sprintf(buf2, "data");
178 		break;
179 	case IEEE80211_FC0_TYPE_MGT:
180 		(void) snprintf(buf2, sizeof (buf2), "%s",
181 		    ieee80211_mgt_subtype_name[
182 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
183 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
184 		break;
185 	default:
186 		(void) snprintf(buf2, sizeof (buf2), "type#%d",
187 		    wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
188 		break;
189 	}
190 	(void) strncat(buf1, buf2, sizeof (buf2));
191 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
192 		(void) sprintf(buf2, " WEP");
193 		(void) strcat(buf1, buf2);
194 	}
195 	if (rate >= 0) {
196 		(void) snprintf(buf2,  sizeof (buf2), " %dM", rate / 2);
197 		(void) strncat(buf1, buf2, sizeof (buf2));
198 	}
199 	if (rssi >= 0) {
200 		(void) snprintf(buf2,  sizeof (buf2), " +%d", rssi);
201 		(void) strncat(buf1, buf2, sizeof (buf2));
202 	}
203 	ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_dump_pkt(): %s", buf1);
204 	bzero(buf1, sizeof (buf1));
205 
206 	if (len > 0) {
207 		for (i = 0; i < (len > 40 ? 40 : len); i++) {
208 			if ((i & 0x03) == 0)
209 				(void) strcat(buf1, " ");
210 			(void) snprintf(buf2, 3, "%02x", buf[i]);
211 			(void) strncat(buf1, buf2, 3);
212 		}
213 		ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_dump_pkt(): %s",
214 		    buf1);
215 	}
216 }
217 
218 /*
219  * Adjust/Fix the specified node's rate table
220  *
221  * in   node
222  * flag IEEE80211_F_DOSORT : sort the node's rate table
223  *      IEEE80211_F_DONEGO : mark a rate as basic rate if it is
224  *                           a device's basic rate
225  *      IEEE80211_F_DODEL  : delete rates not supported by the device
226  *      IEEE80211_F_DOFRATE: check if the fixed rate is supported by
227  *                           the device
228  *
229  * The highest bit of returned rate value is set to 1 on failure.
230  */
231 int
ieee80211_fix_rate(ieee80211_node_t * in,struct ieee80211_rateset * nrs,int flags)232 ieee80211_fix_rate(ieee80211_node_t *in,
233     struct ieee80211_rateset *nrs, int flags)
234 {
235 	ieee80211com_t *ic = in->in_ic;
236 	struct ieee80211_rateset *srs;
237 	boolean_t ignore;
238 	int i;
239 	int okrate;
240 	int badrate;
241 	int fixedrate;
242 	uint8_t r;
243 
244 	/*
245 	 * If the fixed rate check was requested but no
246 	 * fixed has been defined then just remove it.
247 	 */
248 	if ((flags & IEEE80211_F_DOFRATE) &&
249 	    (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)) {
250 		flags &= ~IEEE80211_F_DOFRATE;
251 	}
252 	if (in->in_chan == IEEE80211_CHAN_ANYC) {
253 		return (IEEE80211_RATE_BASIC);
254 	}
255 	okrate = badrate = fixedrate = 0;
256 	srs = &ic->ic_sup_rates[ieee80211_chan2mode(ic, in->in_chan)];
257 	for (i = 0; i < nrs->ir_nrates; ) {
258 		int j;
259 
260 		ignore = B_FALSE;
261 		if (flags & IEEE80211_F_DOSORT) {
262 			/*
263 			 * Sort rates.
264 			 */
265 			for (j = i + 1; j < nrs->ir_nrates; j++) {
266 				if (IEEE80211_RV(nrs->ir_rates[i]) >
267 				    IEEE80211_RV(nrs->ir_rates[j])) {
268 					r = nrs->ir_rates[i];
269 					nrs->ir_rates[i] = nrs->ir_rates[j];
270 					nrs->ir_rates[j] = r;
271 				}
272 			}
273 		}
274 		r = IEEE80211_RV(nrs->ir_rates[i]);
275 		badrate = r;
276 
277 		/*
278 		 * Check against supported rates.
279 		 */
280 		for (j = 0; j < srs->ir_nrates; j++) {
281 			if (r == IEEE80211_RV(srs->ir_rates[j])) {
282 				/*
283 				 * Overwrite with the supported rate
284 				 * value so any basic rate bit is set.
285 				 * This insures that response we send
286 				 * to stations have the necessary basic
287 				 * rate bit set.
288 				 */
289 				if (flags & IEEE80211_F_DONEGO)
290 					nrs->ir_rates[i] = srs->ir_rates[j];
291 				break;
292 			}
293 		}
294 		if (j == srs->ir_nrates) {
295 			/*
296 			 * A rate in the node's rate set is not
297 			 * supported. We just discard/ignore the rate.
298 			 * Note that this is important for 11b stations
299 			 * when they want to associate with an 11g AP.
300 			 */
301 			ignore = B_TRUE;
302 		}
303 
304 		if (flags & IEEE80211_F_DODEL) {
305 			/*
306 			 * Delete unacceptable rates.
307 			 */
308 			if (ignore) {
309 				nrs->ir_nrates--;
310 				for (j = i; j < nrs->ir_nrates; j++)
311 					nrs->ir_rates[j] = nrs->ir_rates[j + 1];
312 				nrs->ir_rates[j] = 0;
313 				continue;
314 			}
315 		}
316 		if (flags & IEEE80211_F_DOFRATE) {
317 			/*
318 			 * Check any fixed rate is included.
319 			 */
320 			if (r == ic->ic_fixed_rate)
321 				fixedrate = r;
322 		}
323 		if (!ignore)
324 			okrate = nrs->ir_rates[i];
325 		i++;
326 	}
327 	if (okrate == 0 || ((flags & IEEE80211_F_DOFRATE) && fixedrate == 0))
328 		return (badrate | IEEE80211_RATE_BASIC);
329 	else
330 		return (IEEE80211_RV(okrate));
331 }
332 
333 /*
334  * Reset 11g-related state.
335  */
336 void
ieee80211_reset_erp(ieee80211com_t * ic)337 ieee80211_reset_erp(ieee80211com_t *ic)
338 {
339 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
340 	/*
341 	 * Short slot time is enabled only when operating in 11g
342 	 * and not in an IBSS.  We must also honor whether or not
343 	 * the driver is capable of doing it.
344 	 */
345 	ieee80211_set_shortslottime(ic,
346 	    ic->ic_curmode == IEEE80211_MODE_11A);
347 	/*
348 	 * Set short preamble and ERP barker-preamble flags.
349 	 */
350 	if (ic->ic_curmode == IEEE80211_MODE_11A ||
351 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
352 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
353 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
354 	} else {
355 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
356 		ic->ic_flags |= IEEE80211_F_USEBARKER;
357 	}
358 }
359 
360 /*
361  * Change current channel to be the next available channel
362  */
363 void
ieee80211_reset_chan(ieee80211com_t * ic)364 ieee80211_reset_chan(ieee80211com_t *ic)
365 {
366 	struct ieee80211_channel *ch = ic->ic_curchan;
367 
368 	IEEE80211_LOCK(ic);
369 	do {
370 		if (++ch > &ic->ic_sup_channels[IEEE80211_CHAN_MAX])
371 			ch = &ic->ic_sup_channels[0];
372 		if (ieee80211_isset(ic->ic_chan_active,
373 		    ieee80211_chan2ieee(ic, ch))) {
374 			break;
375 		}
376 	} while (ch != ic->ic_curchan);
377 	ic->ic_curchan = ch;
378 	IEEE80211_UNLOCK(ic);
379 }
380 
381 /*
382  * Set the short slot time state and notify the driver.
383  */
384 void
ieee80211_set_shortslottime(ieee80211com_t * ic,boolean_t on)385 ieee80211_set_shortslottime(ieee80211com_t *ic, boolean_t on)
386 {
387 	if (on)
388 		ic->ic_flags |= IEEE80211_F_SHSLOT;
389 	else
390 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
391 	/* notify driver */
392 	if (ic->ic_set_shortslot != NULL)
393 		ic->ic_set_shortslot(ic, on);
394 }
395 
396 /*
397  * Mark the basic rates for the 11g rate table based on the
398  * operating mode.  For real 11g we mark all the 11b rates
399  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
400  * 11b rates.  There's also a pseudo 11a-mode used to mark only
401  * the basic OFDM rates.
402  */
403 void
ieee80211_setbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode)404 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
405     enum ieee80211_phymode mode)
406 {
407 	static const struct ieee80211_rateset basic[] = {
408 		{ 0 },			/* IEEE80211_MODE_AUTO */
409 		{ 3, { 12, 24, 48 } },	/* IEEE80211_MODE_11A */
410 		{ 2, { 2, 4} },		/* IEEE80211_MODE_11B */
411 		{ 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G mixed b/g */
412 		{ 0 },			/* IEEE80211_MODE_FH */
413 		{ 3, { 12, 24, 48 } },	/* IEEE80211_MODE_TURBO_A */
414 		{ 4, { 2, 4, 11, 22 } },
415 					/* IEEE80211_MODE_TURBO_G (mixed b/g) */
416 		{ 0 },			/* IEEE80211_MODE_STURBO_A */
417 		{ 3, { 12, 24, 48 } },	/* IEEE80211_MODE_11NA */
418 					/* IEEE80211_MODE_11NG (mixed b/g) */
419 		{ 7, { 2, 4, 11, 22, 12, 24, 48 } }
420 	};
421 	int i, j;
422 
423 	ASSERT(mode < IEEE80211_MODE_MAX);
424 	for (i = 0; i < rs->ir_nrates; i++) {
425 		rs->ir_rates[i] &= IEEE80211_RATE_VAL;
426 		for (j = 0; j < basic[mode].ir_nrates; j++) {
427 			if (basic[mode].ir_rates[j] == rs->ir_rates[i]) {
428 				rs->ir_rates[i] |= IEEE80211_RATE_BASIC;
429 				break;
430 			}
431 		}
432 	}
433 }
434 
435 /*
436  * WME protocol support.  The following parameters come from the spec.
437  */
438 typedef struct phyParamType {
439 	uint8_t aifsn;
440 	uint8_t logcwmin;
441 	uint8_t logcwmax;
442 	uint16_t txopLimit;
443 	uint8_t acm;
444 } paramType;
445 
446 static const paramType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
447 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_AUTO */
448 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11A */
449 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11B */
450 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11G */
451 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_FH */
452 	{ 2, 3,  5,  0, 0 },	/* IEEE80211_MODE_TURBO_A */
453 	{ 2, 3,  5,  0, 0 },	/* IEEE80211_MODE_TURBO_G */
454 	{ 2, 3,  5,  0, 0 },	/* IEEE80211_MODE_STURBO_A */
455 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11NA */
456 	{ 3, 4,  6,  0, 0 }	/* IEEE80211_MODE_11NG */
457 };
458 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
459 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_AUTO */
460 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11A */
461 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11B */
462 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11G */
463 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_FH */
464 	{ 7, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_A */
465 	{ 7, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_G */
466 	{ 7, 3, 10,  0, 0 },	/* IEEE80211_MODE_STURBO_A */
467 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NA */
468 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NG */
469 };
470 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
471 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_AUTO */
472 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11A */
473 	{ 1, 3, 4, 188, 0 },	/* IEEE80211_MODE_11B */
474 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11G */
475 	{ 1, 3, 4, 188, 0 },	/* IEEE80211_MODE_FH */
476 	{ 1, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_A */
477 	{ 1, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_G */
478 	{ 1, 2, 3,  94, 0 },	/* IEEE80211_MODE_STURBO_A */
479 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NA */
480 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NG */
481 };
482 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
483 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_AUTO */
484 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11A */
485 	{ 1, 2, 3, 102, 0 },	/* IEEE80211_MODE_11B */
486 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11G */
487 	{ 1, 2, 3, 102, 0 },	/* IEEE80211_MODE_FH */
488 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_A */
489 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_G */
490 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_STURBO_A */
491 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NA */
492 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NG */
493 };
494 
495 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
496 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_AUTO */
497 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11A */
498 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11B */
499 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11G */
500 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_FH */
501 	{ 2, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_A */
502 	{ 2, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_G */
503 	{ 2, 3, 10,  0, 0 },	/* IEEE80211_MODE_STURBO_A */
504 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NA */
505 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NG */
506 };
507 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
508 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_AUTO */
509 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11A */
510 	{ 2, 3, 4, 188, 0 },	/* IEEE80211_MODE_11B */
511 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11G */
512 	{ 2, 3, 4, 188, 0 },	/* IEEE80211_MODE_FH */
513 	{ 2, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_A */
514 	{ 2, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_G */
515 	{ 2, 2, 3,  94, 0 },	/* IEEE80211_MODE_STURBO_A */
516 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NA */
517 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NG */
518 };
519 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
520 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_AUTO */
521 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11A */
522 	{ 2, 2, 3, 102, 0 },	/* IEEE80211_MODE_11B */
523 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11G */
524 	{ 2, 2, 3, 102, 0 },	/* IEEE80211_MODE_FH */
525 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_A */
526 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_G */
527 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_STURBO_A */
528 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NA */
529 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NG */
530 };
531 
532 void
ieee80211_wme_initparams(struct ieee80211com * ic)533 ieee80211_wme_initparams(struct ieee80211com *ic)
534 {
535 	struct ieee80211_wme_state *wme = &ic->ic_wme;
536 	const paramType *pPhyParam, *pBssPhyParam;
537 	struct wmeParams *wmep;
538 	enum ieee80211_phymode mode;
539 	int i;
540 
541 	if ((ic->ic_caps & IEEE80211_C_WME) == 0)
542 		return;
543 
544 	/*
545 	 * Select mode; we can be called early in which case we
546 	 * always use auto mode.  We know we'll be called when
547 	 * entering the RUN state with bsschan setup properly
548 	 * so state will eventually get set correctly
549 	 */
550 	if (ic->ic_curchan != IEEE80211_CHAN_ANYC)
551 		mode = ieee80211_chan2mode(ic, ic->ic_curchan);
552 	else
553 		mode = IEEE80211_MODE_AUTO;
554 	for (i = 0; i < WME_NUM_AC; i++) {
555 		switch (i) {
556 		case WME_AC_BK:
557 			pPhyParam = &phyParamForAC_BK[mode];
558 			pBssPhyParam = &phyParamForAC_BK[mode];
559 			break;
560 		case WME_AC_VI:
561 			pPhyParam = &phyParamForAC_VI[mode];
562 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
563 			break;
564 		case WME_AC_VO:
565 			pPhyParam = &phyParamForAC_VO[mode];
566 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
567 			break;
568 		case WME_AC_BE:
569 		default:
570 			pPhyParam = &phyParamForAC_BE[mode];
571 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
572 			break;
573 		}
574 
575 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
576 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
577 			wmep->wmep_acm = pPhyParam->acm;
578 			wmep->wmep_aifsn = pPhyParam->aifsn;
579 			wmep->wmep_logcwmin = pPhyParam->logcwmin;
580 			wmep->wmep_logcwmax = pPhyParam->logcwmax;
581 			wmep->wmep_txopLimit = pPhyParam->txopLimit;
582 		} else {
583 			wmep->wmep_acm = pBssPhyParam->acm;
584 			wmep->wmep_aifsn = pBssPhyParam->aifsn;
585 			wmep->wmep_logcwmin = pBssPhyParam->logcwmin;
586 			wmep->wmep_logcwmax = pBssPhyParam->logcwmax;
587 			wmep->wmep_txopLimit = pBssPhyParam->txopLimit;
588 
589 		}
590 		ieee80211_dbg(IEEE80211_MSG_WME, "ieee80211_wme_initparams: "
591 		    "%s chan [acm %u aifsn %u log2(cwmin) %u "
592 		    "log2(cwmax) %u txpoLimit %u]\n",
593 		    ieee80211_wme_acnames[i],
594 		    wmep->wmep_acm,
595 		    wmep->wmep_aifsn,
596 		    wmep->wmep_logcwmin,
597 		    wmep->wmep_logcwmax,
598 		    wmep->wmep_txopLimit);
599 
600 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
601 		wmep->wmep_acm = pBssPhyParam->acm;
602 		wmep->wmep_aifsn = pBssPhyParam->aifsn;
603 		wmep->wmep_logcwmin = pBssPhyParam->logcwmin;
604 		wmep->wmep_logcwmax = pBssPhyParam->logcwmax;
605 		wmep->wmep_txopLimit = pBssPhyParam->txopLimit;
606 		ieee80211_dbg(IEEE80211_MSG_WME, "ieee80211_wme_initparams: "
607 		    "%s  bss [acm %u aifsn %u log2(cwmin) %u "
608 		    "log2(cwmax) %u txpoLimit %u]\n",
609 		    ieee80211_wme_acnames[i],
610 		    wmep->wmep_acm,
611 		    wmep->wmep_aifsn,
612 		    wmep->wmep_logcwmin,
613 		    wmep->wmep_logcwmax,
614 		    wmep->wmep_txopLimit);
615 	}
616 	/* NB: check ic_bss to avoid NULL deref on initial attach */
617 	if (ic->ic_bss != NULL) {
618 		/*
619 		 * Calculate agressive mode switching threshold based
620 		 * on beacon interval.  This doesn't need locking since
621 		 * we're only called before entering the RUN state at
622 		 * which point we start sending beacon frames.
623 		 */
624 		wme->wme_hipri_switch_thresh =
625 		    (HIGH_PRI_SWITCH_THRESH * ic->ic_bss->in_intval) / 100;
626 		ieee80211_wme_updateparams(ic);
627 	}
628 }
629 
630 /*
631  * Update WME parameters for ourself and the BSS.
632  */
633 void
ieee80211_wme_updateparams(struct ieee80211com * ic)634 ieee80211_wme_updateparams(struct ieee80211com *ic)
635 {
636 	static const paramType phyParam[IEEE80211_MODE_MAX] = {
637 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_AUTO */
638 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11A */
639 		{ 2, 5, 10, 64, 0 },	/* IEEE80211_MODE_11B */
640 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11G */
641 		{ 2, 5, 10, 64, 0 },	/* IEEE80211_MODE_FH */
642 		{ 1, 3, 10, 64, 0 },	/* IEEE80211_MODE_TURBO_A */
643 		{ 1, 3, 10, 64, 0 },	/* IEEE80211_MODE_TURBO_G */
644 		{ 1, 3, 10, 64, 0 },	/* IEEE80211_MODE_STURBO_A */
645 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11NA */
646 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11NG */
647 	};
648 	struct ieee80211_wme_state *wme = &ic->ic_wme;
649 	const struct wmeParams *wmep;
650 	struct wmeParams *chanp, *bssp;
651 	enum ieee80211_phymode mode;
652 	int i;
653 
654 	if ((ic->ic_caps & IEEE80211_C_WME) == 0)
655 		return;
656 
657 	/* set up the channel access parameters for the physical device */
658 	for (i = 0; i < WME_NUM_AC; i++) {
659 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
660 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
661 		chanp->wmep_aifsn = wmep->wmep_aifsn;
662 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
663 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
664 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
665 
666 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
667 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
668 		chanp->wmep_aifsn = wmep->wmep_aifsn;
669 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
670 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
671 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
672 	}
673 
674 	/*
675 	 * Select mode; we can be called early in which case we
676 	 * always use auto mode.  We know we'll be called when
677 	 * entering the RUN state with bsschan setup properly
678 	 * so state will eventually get set correctly
679 	 */
680 	if (ic->ic_curchan != IEEE80211_CHAN_ANYC)
681 		mode = ieee80211_chan2mode(ic, ic->ic_curchan);
682 	else
683 		mode = IEEE80211_MODE_AUTO;
684 
685 	/*
686 	 * This implements agressive mode as found in certain
687 	 * vendors' AP's.  When there is significant high
688 	 * priority (VI/VO) traffic in the BSS throttle back BE
689 	 * traffic by using conservative parameters.  Otherwise
690 	 * BE uses agressive params to optimize performance of
691 	 * legacy/non-QoS traffic.
692 	 */
693 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP &&
694 	    (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
695 	    (ic->ic_opmode == IEEE80211_M_STA &&
696 	    (ic->ic_bss->in_flags & IEEE80211_NODE_QOS) == 0) ||
697 	    (ic->ic_flags & IEEE80211_F_WME) == 0) {
698 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
699 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
700 
701 		chanp->wmep_aifsn = bssp->wmep_aifsn = phyParam[mode].aifsn;
702 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
703 		    phyParam[mode].logcwmin;
704 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
705 		    phyParam[mode].logcwmax;
706 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
707 		    (ic->ic_flags & IEEE80211_F_BURST) ?
708 		    phyParam[mode].txopLimit : 0;
709 		ieee80211_dbg(IEEE80211_MSG_WME,
710 		    "ieee80211_wme_updateparams_locked: "
711 		    "%s [acm %u aifsn %u log2(cwmin) %u "
712 		    "log2(cwmax) %u txpoLimit %u]\n",
713 		    ieee80211_wme_acnames[WME_AC_BE],
714 		    chanp->wmep_acm,
715 		    chanp->wmep_aifsn,
716 		    chanp->wmep_logcwmin,
717 		    chanp->wmep_logcwmax,
718 		    chanp->wmep_txopLimit);
719 	}
720 
721 	wme->wme_update(ic);
722 
723 	ieee80211_dbg(IEEE80211_MSG_WME, "ieee80211_wme_updateparams(): "
724 	    "WME params updated, cap_info 0x%x\n",
725 	    ic->ic_opmode == IEEE80211_M_STA ?
726 	    wme->wme_wmeChanParams.cap_info :
727 	    wme->wme_bssChanParams.cap_info);
728 }
729 
730 /*
731  * Process STA mode beacon miss events. Send a direct probe request
732  * frame to the current ap bmiss_max times (w/o answer) before
733  * scanning for a new ap.
734  */
735 void
ieee80211_beacon_miss(ieee80211com_t * ic)736 ieee80211_beacon_miss(ieee80211com_t *ic)
737 {
738 	ieee80211_impl_t *im = ic->ic_private;
739 
740 	if (ic->ic_flags & IEEE80211_F_SCAN)
741 		return;
742 	ieee80211_dbg(IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
743 	    "%s\n", "beacon miss");
744 
745 	/*
746 	 * Our handling is only meaningful for stations that are
747 	 * associated; any other conditions else will be handled
748 	 * through different means (e.g. the tx timeout on mgt frames).
749 	 */
750 	if (ic->ic_opmode != IEEE80211_M_STA ||
751 	    ic->ic_state != IEEE80211_S_RUN) {
752 		return;
753 	}
754 
755 	IEEE80211_LOCK(ic);
756 	if (++im->im_bmiss_count < im->im_bmiss_max) {
757 		/*
758 		 * Send a directed probe req before falling back to a scan;
759 		 * if we receive a response ic_bmiss_count will be reset.
760 		 * Some cards mistakenly report beacon miss so this avoids
761 		 * the expensive scan if the ap is still there.
762 		 */
763 		IEEE80211_UNLOCK(ic);
764 		(void) ieee80211_send_probereq(ic->ic_bss, ic->ic_macaddr,
765 		    ic->ic_bss->in_bssid, ic->ic_bss->in_bssid,
766 		    ic->ic_bss->in_essid, ic->ic_bss->in_esslen,
767 		    ic->ic_opt_ie, ic->ic_opt_ie_len);
768 		return;
769 	}
770 	im->im_bmiss_count = 0;
771 	IEEE80211_UNLOCK(ic);
772 	ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
773 }
774 
775 /*
776  * Manage state transition between INIT | AUTH | ASSOC | RUN.
777  */
778 static int
ieee80211_newstate(ieee80211com_t * ic,enum ieee80211_state nstate,int arg)779 ieee80211_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
780 {
781 	struct ieee80211_impl *im = ic->ic_private;
782 	ieee80211_node_t *in;
783 	enum ieee80211_state ostate;
784 	wifi_data_t wd = { 0 };
785 
786 	IEEE80211_LOCK(ic);
787 	ostate = ic->ic_state;
788 	ieee80211_dbg(IEEE80211_MSG_STATE, "ieee80211_newstate(): "
789 	    "%s -> %s\n",
790 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
791 	ic->ic_state = nstate;
792 	in = ic->ic_bss;
793 	im->im_swbmiss_period = 0;	/* Reset software beacon miss period */
794 
795 	switch (nstate) {
796 	case IEEE80211_S_INIT:
797 		IEEE80211_UNLOCK(ic);
798 		switch (ostate) {
799 		case IEEE80211_S_INIT:
800 			return (0);
801 		case IEEE80211_S_SCAN:
802 			ieee80211_cancel_scan(ic);
803 			break;
804 		case IEEE80211_S_AUTH:
805 			break;
806 		case IEEE80211_S_ASSOC:
807 			if (ic->ic_opmode == IEEE80211_M_STA) {
808 				IEEE80211_SEND_MGMT(ic, in,
809 				    IEEE80211_FC0_SUBTYPE_DEAUTH,
810 				    IEEE80211_REASON_AUTH_LEAVE);
811 			}
812 			break;
813 		case IEEE80211_S_RUN:
814 			switch (ic->ic_opmode) {
815 			case IEEE80211_M_STA:
816 				IEEE80211_SEND_MGMT(ic, in,
817 				    IEEE80211_FC0_SUBTYPE_DEAUTH,
818 				    IEEE80211_REASON_AUTH_LEAVE);
819 				ieee80211_sta_leave(ic, in);
820 				break;
821 			case IEEE80211_M_IBSS:
822 				ieee80211_notify_node_leave(ic, in);
823 				break;
824 			default:
825 				break;
826 			}
827 			break;
828 		}
829 		IEEE80211_LOCK(ic);
830 		im->im_mgt_timer = 0;
831 		ieee80211_reset_bss(ic);
832 		break;
833 	case IEEE80211_S_SCAN:
834 		switch (ostate) {
835 		case IEEE80211_S_INIT:
836 			IEEE80211_UNLOCK(ic);
837 			ieee80211_begin_scan(ic, (arg == 0) ? B_FALSE : B_TRUE);
838 			return (0);
839 		case IEEE80211_S_SCAN:
840 			/*
841 			 * Scan next. If doing an active scan and the
842 			 * channel is not marked passive-only then send
843 			 * a probe request.  Otherwise just listen for
844 			 * beacons on the channel.
845 			 */
846 			if ((ic->ic_flags & IEEE80211_F_ASCAN) &&
847 			    !IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) {
848 				IEEE80211_UNLOCK(ic);
849 				(void) ieee80211_send_probereq(in,
850 				    ic->ic_macaddr, wifi_bcastaddr,
851 				    wifi_bcastaddr,
852 				    ic->ic_des_essid, ic->ic_des_esslen,
853 				    ic->ic_opt_ie, ic->ic_opt_ie_len);
854 				return (0);
855 			}
856 			break;
857 		case IEEE80211_S_RUN:
858 			/* beacon miss */
859 			ieee80211_dbg(IEEE80211_MSG_STATE,
860 			    "no recent beacons from %s, rescanning\n",
861 			    ieee80211_macaddr_sprintf(in->in_macaddr));
862 			IEEE80211_UNLOCK(ic);
863 			ieee80211_sta_leave(ic, in);
864 			IEEE80211_LOCK(ic);
865 			ic->ic_flags &= ~IEEE80211_F_SIBSS;
866 			/* FALLTHRU */
867 		case IEEE80211_S_AUTH:
868 		case IEEE80211_S_ASSOC:
869 			/* timeout restart scan */
870 			in = ieee80211_find_node(&ic->ic_scan,
871 			    ic->ic_bss->in_macaddr);
872 			if (in != NULL) {
873 				in->in_fails++;
874 				ieee80211_unref_node(&in);
875 			}
876 			break;
877 		}
878 		break;
879 	case IEEE80211_S_AUTH:
880 		ASSERT(ic->ic_opmode == IEEE80211_M_STA);
881 		switch (ostate) {
882 		case IEEE80211_S_INIT:
883 		case IEEE80211_S_SCAN:
884 			IEEE80211_UNLOCK(ic);
885 			IEEE80211_SEND_MGMT(ic, in, IEEE80211_FC0_SUBTYPE_AUTH,
886 			    1);
887 			return (0);
888 		case IEEE80211_S_AUTH:
889 		case IEEE80211_S_ASSOC:
890 			switch (arg) {
891 			case IEEE80211_FC0_SUBTYPE_AUTH:
892 				IEEE80211_UNLOCK(ic);
893 				IEEE80211_SEND_MGMT(ic, in,
894 				    IEEE80211_FC0_SUBTYPE_AUTH, 2);
895 				return (0);
896 			case IEEE80211_FC0_SUBTYPE_DEAUTH:
897 				/* ignore and retry scan on timeout */
898 				break;
899 			}
900 			break;
901 		case IEEE80211_S_RUN:
902 			switch (arg) {
903 			case IEEE80211_FC0_SUBTYPE_AUTH:
904 				ic->ic_state = ostate;	/* stay RUN */
905 				IEEE80211_UNLOCK(ic);
906 				IEEE80211_SEND_MGMT(ic, in,
907 				    IEEE80211_FC0_SUBTYPE_AUTH, 2);
908 				return (0);
909 			case IEEE80211_FC0_SUBTYPE_DEAUTH:
910 				IEEE80211_UNLOCK(ic);
911 				ieee80211_sta_leave(ic, in);
912 				/* try to re-auth */
913 				IEEE80211_SEND_MGMT(ic, in,
914 				    IEEE80211_FC0_SUBTYPE_AUTH, 1);
915 				return (0);
916 			}
917 			break;
918 		}
919 		break;
920 	case IEEE80211_S_ASSOC:
921 		ASSERT(ic->ic_opmode == IEEE80211_M_STA ||
922 		    ic->ic_opmode == IEEE80211_M_IBSS);
923 		switch (ostate) {
924 		case IEEE80211_S_INIT:
925 		case IEEE80211_S_SCAN:
926 		case IEEE80211_S_ASSOC:
927 			ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_newstate: "
928 			    "invalid transition\n");
929 			break;
930 		case IEEE80211_S_AUTH:
931 			IEEE80211_UNLOCK(ic);
932 			IEEE80211_SEND_MGMT(ic, in,
933 			    IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0);
934 			return (0);
935 		case IEEE80211_S_RUN:
936 			IEEE80211_UNLOCK(ic);
937 			ieee80211_sta_leave(ic, in);
938 			IEEE80211_SEND_MGMT(ic, in,
939 			    IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 1);
940 			return (0);
941 		}
942 		break;
943 	case IEEE80211_S_RUN:
944 		switch (ostate) {
945 		case IEEE80211_S_INIT:
946 			ieee80211_err("ieee80211_newstate: "
947 			    "invalid transition\n");
948 			break;
949 		case IEEE80211_S_AUTH:
950 			ieee80211_err("ieee80211_newstate: "
951 			    "invalid transition\n");
952 			break;
953 		case IEEE80211_S_SCAN:		/* adhoc/hostap mode */
954 		case IEEE80211_S_ASSOC:		/* infra mode */
955 			ASSERT(in->in_txrate < in->in_rates.ir_nrates);
956 			im->im_mgt_timer = 0;
957 			ieee80211_notify_node_join(ic, in);
958 
959 			/*
960 			 * We can send data now; update the fastpath with our
961 			 * current associated BSSID and other relevant settings.
962 			 */
963 			wd.wd_secalloc = ieee80211_crypto_getciphertype(ic);
964 			wd.wd_opmode = ic->ic_opmode;
965 			IEEE80211_ADDR_COPY(wd.wd_bssid, in->in_bssid);
966 			wd.wd_qospad = 0;
967 			if (in->in_flags &
968 			    (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) {
969 				wd.wd_qospad = 2;
970 				if (ic->ic_flags & IEEE80211_F_DATAPAD) {
971 					wd.wd_qospad = roundup(wd.wd_qospad,
972 					    sizeof (uint32_t));
973 				}
974 			}
975 			(void) mac_pdata_update(ic->ic_mach, &wd, sizeof (wd));
976 			break;
977 		}
978 
979 		/*
980 		 * When 802.1x is not in use mark the port authorized
981 		 * at this point so traffic can flow.
982 		 */
983 		if (in->in_authmode != IEEE80211_AUTH_8021X)
984 			ieee80211_node_authorize(in);
985 		/*
986 		 * Enable inactivity processing.
987 		 */
988 		ic->ic_scan.nt_inact_timer = IEEE80211_INACT_WAIT;
989 		ic->ic_sta.nt_inact_timer = IEEE80211_INACT_WAIT;
990 		break;	/* IEEE80211_S_RUN */
991 	} /* switch nstate */
992 	IEEE80211_UNLOCK(ic);
993 
994 	return (0);
995 }
996