xref: /illumos-gate/usr/src/uts/sun4/io/su_driver.c (revision e476cc14)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
23 /*	  All Rights Reserved					*/
24 
25 /*
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  * Copyright (c) 2016 by Delphix. All rights reserved.
29  * Copyright (c) 2019 Peter Tribble.
30  */
31 
32 
33 /*
34  *	Serial I/O driver for 82510/8250/16450/16550AF/16C554D chips.
35  *	Modified as sparc keyboard/mouse driver.
36  */
37 #define	SU_REGISTER_FILE_NO 0
38 #define	SU_REGOFFSET 0
39 #define	SU_REGISTER_LEN 8
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/signal.h>
44 #include <sys/stream.h>
45 #include <sys/termio.h>
46 #include <sys/errno.h>
47 #include <sys/file.h>
48 #include <sys/cmn_err.h>
49 #include <sys/stropts.h>
50 #include <sys/strsubr.h>
51 #include <sys/strsun.h>
52 #include <sys/strtty.h>
53 #include <sys/debug.h>
54 #include <sys/kbio.h>
55 #include <sys/cred.h>
56 #include <sys/modctl.h>
57 #include <sys/stat.h>
58 #include <sys/consdev.h>
59 #include <sys/mkdev.h>
60 #include <sys/kmem.h>
61 #include <sys/cred.h>
62 #ifdef DEBUG
63 #include <sys/promif.h>
64 #endif
65 #include <sys/ddi.h>
66 #include <sys/sunddi.h>
67 #include <sys/sudev.h>
68 #include <sys/note.h>
69 #include <sys/timex.h>
70 #include <sys/policy.h>
71 
72 #define	async_stopc	async_ttycommon.t_stopc
73 #define	async_startc	async_ttycommon.t_startc
74 
75 #define	ASY_INIT	1
76 #define	ASY_NOINIT	0
77 
78 #ifdef DEBUG
79 #define	ASY_DEBUG_INIT	0x001
80 #define	ASY_DEBUG_INPUT	0x002
81 #define	ASY_DEBUG_EOT	0x004
82 #define	ASY_DEBUG_CLOSE	0x008
83 #define	ASY_DEBUG_HFLOW	0x010
84 #define	ASY_DEBUG_PROCS	0x020
85 #define	ASY_DEBUG_STATE	0x040
86 #define	ASY_DEBUG_INTR	0x080
87 static	int asydebug = 0;
88 #endif
89 static	int su_log = 0;
90 
91 int su_drain_check = 15000000;		/* tunable: exit drain check time */
92 
93 static	struct ppsclockev asy_ppsev;
94 
95 static	int max_asy_instance = -1;
96 static	void	*su_asycom;	/* soft state asycom pointer */
97 static	void	*su_asyncline;	/* soft state asyncline pointer */
98 static	boolean_t abort_charseq_recognize(uchar_t ch);
99 
100 static	uint_t	asysoftintr(caddr_t intarg);
101 static	uint_t	asyintr(caddr_t argasy);
102 
103 /* The async interrupt entry points */
104 static void	async_txint(struct asycom *asy, uchar_t lsr);
105 static void	async_rxint(struct asycom *asy, uchar_t lsr);
106 static void	async_msint(struct asycom *asy);
107 static int	async_softint(struct asycom *asy);
108 
109 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp,
110     boolean_t iswput);
111 static void	async_reioctl(void *);
112 static void	async_iocdata(queue_t *q, mblk_t *mp);
113 static void	async_restart(void *);
114 static void	async_start(struct asyncline *async);
115 static void	async_nstart(struct asyncline *async, int mode);
116 static void	async_resume(struct asyncline *async);
117 static int	asy_program(struct asycom *asy, int mode);
118 
119 /* Polled mode functions */
120 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
121 static int	asygetchar(cons_polledio_arg_t);
122 static boolean_t	asyischar(cons_polledio_arg_t);
123 static void	asy_polled_enter(cons_polledio_arg_t);
124 static void	asy_polled_exit(cons_polledio_arg_t);
125 
126 static int	asymctl(struct asycom *, int, int);
127 static int	asytodm(int, int);
128 static int	dmtoasy(int);
129 static void	asycheckflowcontrol_hw(struct asycom *asy);
130 static boolean_t asycheckflowcontrol_sw(struct asycom *asy);
131 static void	asy_ppsevent(struct asycom *asy, int msr);
132 
133 extern kcondvar_t lbolt_cv;
134 extern int ddi_create_internal_pathname(dev_info_t *dip, char *name,
135 		int spec_type, minor_t minor_num);
136 
137 
138 /*
139  * Baud rate table. Indexed by #defines found in sys/termios.h
140  */
141 ushort_t asyspdtab[] = {
142 	0,	/* 0 baud rate */
143 	0x900,	/* 50 baud rate */
144 	0x600,	/* 75 baud rate */
145 	0x417,	/* 110 baud rate (%0.026) */
146 	0x359,	/* 134 baud rate (%0.058) */
147 	0x300,	/* 150 baud rate */
148 	0x240,	/* 200 baud rate */
149 	0x180,	/* 300 baud rate */
150 	0x0c0,	/* 600 baud rate */
151 	0x060,	/* 1200 baud rate */
152 	0x040,	/* 1800 baud rate */
153 	0x030,	/* 2400 baud rate */
154 	0x018,	/* 4800 baud rate */
155 	0x00c,	/* 9600 baud rate */
156 	0x006,	/* 19200 baud rate */
157 	0x003,	/* 38400 baud rate */
158 	0x002,	/* 57600 baud rate */
159 	0,	/* 76800 baud rate - not supported */
160 	0x001,	/* 115200 baud rate */
161 	0,	/* 153600 baud rate - not supported */
162 	0x8002,	/* 230400 baud rate - supported on specific platforms */
163 	0,	/* 307200 baud rate - not supported */
164 	0x8001	/* 460800 baud rate - supported on specific platforms */
165 };
166 
167 /*
168  * Number of speeds supported is the number of entries in
169  * the above table.
170  */
171 #define	N_SU_SPEEDS	(sizeof (asyspdtab)/sizeof (ushort_t))
172 
173 /*
174  * Human-readable baud rate table.
175  * Indexed by #defines found in sys/termios.h
176  */
177 int baudtable[] = {
178 	0,	/* 0 baud rate */
179 	50,	/* 50 baud rate */
180 	75,	/* 75 baud rate */
181 	110,	/* 110 baud rate */
182 	134,	/* 134 baud rate */
183 	150,	/* 150 baud rate */
184 	200,	/* 200 baud rate */
185 	300,	/* 300 baud rate */
186 	600,	/* 600 baud rate */
187 	1200,	/* 1200 baud rate */
188 	1800,	/* 1800 baud rate */
189 	2400,	/* 2400 baud rate */
190 	4800,	/* 4800 baud rate */
191 	9600,	/* 9600 baud rate */
192 	19200,	/* 19200 baud rate */
193 	38400,	/* 38400 baud rate */
194 	57600,	/* 57600 baud rate */
195 	76800,	/* 76800 baud rate */
196 	115200,	/* 115200 baud rate */
197 	153600,	/* 153600 baud rate */
198 	230400,	/* 230400 baud rate */
199 	307200,	/* 307200 baud rate */
200 	460800	/* 460800 baud rate */
201 };
202 
203 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
204 static int asyclose(queue_t *q, int flag, cred_t *cr);
205 static int asywput(queue_t *q, mblk_t *mp);
206 static int asyrsrv(queue_t *q);
207 
208 struct module_info asy_info = {
209 	0,
210 	"su",
211 	0,
212 	INFPSZ,
213 	32*4096,
214 	4096
215 };
216 
217 static struct qinit asy_rint = {
218 	putq,
219 	asyrsrv,
220 	asyopen,
221 	asyclose,
222 	NULL,
223 	&asy_info,
224 	NULL
225 };
226 
227 static struct qinit asy_wint = {
228 	asywput,
229 	NULL,
230 	NULL,
231 	NULL,
232 	NULL,
233 	&asy_info,
234 	NULL
235 };
236 
237 struct streamtab asy_str_info = {
238 	&asy_rint,
239 	&asy_wint,
240 	NULL,
241 	NULL
242 };
243 
244 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
245 		void **result);
246 static int asyprobe(dev_info_t *);
247 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
248 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
249 
250 static struct cb_ops cb_asy_ops = {
251 	nodev,			/* cb_open */
252 	nodev,			/* cb_close */
253 	nodev,			/* cb_strategy */
254 	nodev,			/* cb_print */
255 	nodev,			/* cb_dump */
256 	nodev,			/* cb_read */
257 	nodev,			/* cb_write */
258 	nodev,			/* cb_ioctl */
259 	nodev,			/* cb_devmap */
260 	nodev,			/* cb_mmap */
261 	nodev,			/* cb_segmap */
262 	nochpoll,		/* cb_chpoll */
263 	ddi_prop_op,		/* cb_prop_op */
264 	&asy_str_info,		/* cb_stream */
265 	D_MP			/* cb_flag */
266 };
267 
268 struct dev_ops asy_ops = {
269 	DEVO_REV,		/* devo_rev */
270 	0,			/* devo_refcnt */
271 	asyinfo,		/* devo_getinfo */
272 	nulldev,		/* devo_identify */
273 	asyprobe,		/* devo_probe */
274 	asyattach,		/* devo_attach */
275 	asydetach,		/* devo_detach */
276 	nodev,			/* devo_reset */
277 	&cb_asy_ops,		/* devo_cb_ops */
278 	NULL,			/* devo_bus_ops */
279 	NULL,			/* devo_power */
280 	ddi_quiesce_not_supported,	/* devo_quiesce */
281 };
282 
283 /*
284  * Module linkage information for the kernel.
285  */
286 
287 static struct modldrv modldrv = {
288 	&mod_driverops, /* Type of module.  This one is a driver */
289 	"su driver",
290 	&asy_ops,	/* driver ops */
291 };
292 
293 static struct modlinkage modlinkage = {
294 	MODREV_1,
295 	&modldrv,
296 	NULL
297 };
298 
299 int
_init(void)300 _init(void)
301 {
302 	int status;
303 
304 	status = ddi_soft_state_init(&su_asycom, sizeof (struct asycom),
305 	    SU_INITIAL_SOFT_ITEMS);
306 	if (status != 0)
307 		return (status);
308 	status = ddi_soft_state_init(&su_asyncline, sizeof (struct asyncline),
309 	    SU_INITIAL_SOFT_ITEMS);
310 	if (status != 0) {
311 		ddi_soft_state_fini(&su_asycom);
312 		return (status);
313 	}
314 
315 	if ((status = mod_install(&modlinkage)) != 0) {
316 		ddi_soft_state_fini(&su_asycom);
317 		ddi_soft_state_fini(&su_asyncline);
318 	}
319 
320 	return (status);
321 }
322 
323 int
_fini(void)324 _fini(void)
325 {
326 	int i;
327 
328 	i = mod_remove(&modlinkage);
329 	if (i == 0) {
330 		ddi_soft_state_fini(&su_asycom);
331 		ddi_soft_state_fini(&su_asyncline);
332 	}
333 
334 	return (i);
335 }
336 
337 int
_info(struct modinfo * modinfop)338 _info(struct modinfo *modinfop)
339 {
340 	return (mod_info(&modlinkage, modinfop));
341 }
342 
343 static int
asyprobe(dev_info_t * devi)344 asyprobe(dev_info_t *devi)
345 {
346 	int		instance;
347 	ddi_acc_handle_t handle;
348 	uchar_t *addr;
349 	ddi_device_acc_attr_t attr;
350 
351 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
352 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
353 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
354 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, (caddr_t *)&addr,
355 	    SU_REGOFFSET, SU_REGISTER_LEN, &attr, &handle) != DDI_SUCCESS) {
356 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
357 		return (DDI_PROBE_FAILURE);
358 	}
359 #ifdef DEBUG
360 	if (asydebug)
361 		printf("Probe address mapped %p\n", (void *)addr);
362 #endif
363 
364 	/*
365 	 * Probe for the device:
366 	 *	Ser. int. uses bits 0,1,2; FIFO uses 3,6,7; 4,5 wired low.
367 	 *	If bit 4 or 5 appears on inb() ISR, board is not there.
368 	 */
369 	if (ddi_get8(handle, addr+ISR) & 0x30) {
370 		ddi_regs_map_free(&handle);
371 		return (DDI_PROBE_FAILURE);
372 	}
373 
374 	instance = ddi_get_instance(devi);
375 	if (max_asy_instance < instance)
376 		max_asy_instance = instance;
377 	ddi_regs_map_free(&handle);
378 
379 	return (DDI_PROBE_SUCCESS); /* hw is present */
380 }
381 
382 static int
asydetach(dev_info_t * devi,ddi_detach_cmd_t cmd)383 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
384 {
385 	int	instance;
386 	struct asycom	*asy;
387 	struct asyncline *async;
388 	char		name[16];
389 
390 	instance = ddi_get_instance(devi);	/* find out which unit */
391 
392 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
393 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
394 
395 	switch (cmd) {
396 		case DDI_DETACH:
397 			break;
398 		case DDI_SUSPEND:
399 			/* grab both mutex locks */
400 			mutex_enter(asy->asy_excl);
401 			mutex_enter(asy->asy_excl_hi);
402 			if (asy->suspended) {
403 				mutex_exit(asy->asy_excl_hi);
404 				mutex_exit(asy->asy_excl);
405 				return (DDI_SUCCESS);
406 			}
407 			asy->suspended = B_TRUE;
408 
409 			/*
410 			 * The quad UART ST16C554D, version D2 (made by EXAR)
411 			 * has an anomaly of generating spurious interrupts
412 			 * when the ICR is loaded with zero. The workaround
413 			 * would be to read/write any register with DATA1 bit
414 			 * set to 0 before such write.
415 			 */
416 			if (asy->asy_hwtype == ASY16C554D)
417 				OUTB(SPR, 0);
418 
419 			/* Disable further interrupts */
420 			OUTB(ICR, 0);
421 			mutex_exit(asy->asy_excl_hi);
422 			mutex_exit(asy->asy_excl);
423 			return (DDI_SUCCESS);
424 
425 		default:
426 			return (DDI_FAILURE);
427 	}
428 
429 #ifdef DEBUG
430 	if (asydebug & ASY_DEBUG_INIT)
431 		cmn_err(CE_NOTE, "su%d: ASY%s shutdown.", instance,
432 		    asy->asy_hwtype == ASY82510 ? "82510" :
433 		    asy->asy_hwtype == ASY16550AF ? "16550AF" :
434 		    asy->asy_hwtype == ASY16C554D ? "16C554D" :
435 		    "8250");
436 #endif
437 	/*
438 	 * Before removing interrupts it is always better to disable
439 	 * interrupts if the chip gives a provision to disable the
440 	 * serial port interrupts.
441 	 */
442 	mutex_enter(asy->asy_excl);
443 	mutex_enter(asy->asy_excl_hi);
444 	/* disable interrupts, see EXAR bug */
445 	if (asy->asy_hwtype == ASY16C554D)
446 		OUTB(SPR, 0);
447 	OUTB(ICR, 0);
448 	mutex_exit(asy->asy_excl_hi);
449 	mutex_exit(asy->asy_excl);
450 
451 	/* remove minor device node(s) for this device */
452 	(void) sprintf(name, "%c", (instance+'a'));	/* serial-port */
453 	ddi_remove_minor_node(devi, name);
454 	(void) sprintf(name, "%c,cu", (instance+'a')); /* serial-port:dailout */
455 	ddi_remove_minor_node(devi, name);
456 
457 	mutex_destroy(asy->asy_excl);
458 	mutex_destroy(asy->asy_excl_hi);
459 	kmem_free(asy->asy_excl, sizeof (kmutex_t));
460 	kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
461 	cv_destroy(&async->async_flags_cv);
462 	kstat_delete(asy->sukstat);
463 	ddi_remove_intr(devi, 0, asy->asy_iblock);
464 	ddi_regs_map_free(&asy->asy_handle);
465 	ddi_remove_softintr(asy->asy_softintr_id);
466 	mutex_destroy(asy->asy_soft_lock);
467 	kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
468 	ddi_soft_state_free(su_asycom, instance);
469 	ddi_soft_state_free(su_asyncline, instance);
470 	return (DDI_SUCCESS);
471 }
472 
473 static int
asyattach(dev_info_t * devi,ddi_attach_cmd_t cmd)474 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
475 {
476 	int	instance;
477 	struct asycom	*asy;
478 	struct asyncline *async;
479 	char		name[40];
480 	ddi_device_acc_attr_t attr;
481 	enum states { EMPTY, SOFTSTATE, REGSMAP, MUTEXES, ADDINTR,
482 	    SOFTINTR, ASYINIT, KSTAT, MINORNODE };
483 	enum states state = EMPTY;
484 	char *hwtype;
485 
486 	instance = ddi_get_instance(devi);	/* find out which unit */
487 
488 	/* cannot attach a device that has not been probed first */
489 	if (instance > max_asy_instance)
490 		return (DDI_FAILURE);
491 
492 	if (cmd != DDI_RESUME) {
493 		/* Allocate soft state space */
494 		if (ddi_soft_state_zalloc(su_asycom, instance) != DDI_SUCCESS) {
495 			cmn_err(CE_WARN, "su%d: cannot allocate soft state",
496 			    instance);
497 			goto error;
498 		}
499 	}
500 	state = SOFTSTATE;
501 
502 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
503 
504 	if (asy == NULL) {
505 		cmn_err(CE_WARN, "su%d: cannot get soft state", instance);
506 		goto error;
507 	}
508 
509 	switch (cmd) {
510 		case DDI_ATTACH:
511 			break;
512 		case DDI_RESUME: {
513 			struct asyncline *async;
514 
515 			/* grab both mutex locks */
516 			mutex_enter(asy->asy_excl);
517 			mutex_enter(asy->asy_excl_hi);
518 			if (!asy->suspended) {
519 				mutex_exit(asy->asy_excl_hi);
520 				mutex_exit(asy->asy_excl);
521 				return (DDI_SUCCESS);
522 			}
523 			/*
524 			 * re-setup all the registers and enable interrupts if
525 			 * needed
526 			 */
527 			async = (struct asyncline *)asy->asy_priv;
528 			if ((async) && (async->async_flags & ASYNC_ISOPEN))
529 				(void) asy_program(asy, ASY_INIT);
530 			asy->suspended = B_FALSE;
531 			mutex_exit(asy->asy_excl_hi);
532 			mutex_exit(asy->asy_excl);
533 			return (DDI_SUCCESS);
534 		}
535 		default:
536 			goto error;
537 	}
538 
539 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
540 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
541 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
542 
543 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO,
544 	    (caddr_t *)&asy->asy_ioaddr, SU_REGOFFSET, SU_REGISTER_LEN,
545 	    &attr, &asy->asy_handle) != DDI_SUCCESS) {
546 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
547 		goto error;
548 	}
549 	state = REGSMAP;
550 
551 #ifdef DEBUG
552 	if (asydebug)
553 		printf("su attach mapped %p\n", (void *)asy->asy_ioaddr);
554 #endif
555 
556 	/*
557 	 * Initialize the port with default settings.
558 	 */
559 	asy->asy_fifo_buf = 1;
560 	asy->asy_use_fifo = FIFO_OFF;
561 
562 	/*
563 	 * Check for baudrate generator's "baud-divisor-factor" property setup
564 	 * by OBP, since different UART chips might have different baudrate
565 	 * generator divisor. e.g., in case of NSPG's Sputnik platform, the
566 	 * baud-divisor-factor is 13, it uses dedicated 16552 "DUART" chip
567 	 * instead of SuperIO. Since the baud-divisor-factor must be a positive
568 	 * integer, the divisors will always be at least as large as the values
569 	 * in asyspdtab[].  Make the default factor 1.
570 	 */
571 	asy->asy_baud_divisor_factor = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
572 	    DDI_PROP_DONTPASS, "baud-divisor-factor", 1);
573 
574 	/* set speed cap */
575 	asy->asy_speed_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
576 	    DDI_PROP_DONTPASS, "serial-speed-cap", 115200);
577 
578 	/* check for ASY82510 chip */
579 	OUTB(ISR, 0x20);
580 	if (INB(ISR) & 0x20) { /* 82510 chip is present */
581 		/*
582 		 * Since most of the general operation of the 82510 chip
583 		 * can be done from BANK 0 (8250A/16450 compatable mode)
584 		 * we will default to BANK 0.
585 		 */
586 		asy->asy_hwtype = ASY82510;
587 		OUTB(DAT+7, 0x04); /* clear status */
588 		OUTB(ISR, 0x40); /* set to bank 2 */
589 		OUTB(MCR, 0x08); /* IMD */
590 		OUTB(DAT, 0x21); /* FMD */
591 		OUTB(ISR, 0x00); /* set to bank 0 */
592 		asy->asy_trig_level = 0;
593 	} else { /* Set the UART in FIFO mode if it has FIFO buffers */
594 		asy->asy_hwtype = ASY16550AF;
595 		OUTB(FIFOR, 0x00); /* clear fifo register */
596 		asy->asy_trig_level = 0x00; /* sets the fifo Threshold to 1 */
597 
598 		/* set/Enable FIFO */
599 		OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | FIFORXFLSH |
600 		    (asy->asy_trig_level & 0xff));
601 
602 		if ((INB(ISR) & 0xc0) == 0xc0)
603 			asy->asy_use_fifo = FIFO_ON;
604 		else {
605 			asy->asy_hwtype = ASY8250;
606 			OUTB(FIFOR, 0x00); /* NO FIFOs */
607 			asy->asy_trig_level = 0;
608 		}
609 	}
610 
611 	/* check for ST16C554D chip */
612 	if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_NOTPROM |
613 	    DDI_PROP_DONTPASS, "hwtype", &hwtype)) == DDI_PROP_SUCCESS) {
614 		if (strcmp(hwtype, "ST16C554D") == 0)
615 			asy->asy_hwtype = ASY16C554D;
616 		ddi_prop_free(hwtype);
617 	}
618 
619 	/* disable interrupts, see EXAR bug */
620 	if (asy->asy_hwtype == ASY16C554D)
621 		OUTB(SPR, 0);
622 	OUTB(ICR, 0);
623 	OUTB(LCR, DLAB); /* select baud rate generator */
624 	/* Set the baud rate to 9600 */
625 	OUTB(DAT+DLL, (ASY9600*asy->asy_baud_divisor_factor) & 0xff);
626 	OUTB(DAT+DLH, ((ASY9600*asy->asy_baud_divisor_factor) >> 8) & 0xff);
627 	OUTB(LCR, STOP1|BITS8);
628 	OUTB(MCR, (DTR | RTS| OUT2));
629 
630 	/*
631 	 * Set up the other components of the asycom structure for this port.
632 	 */
633 	asy->asy_excl = (kmutex_t *)
634 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
635 	asy->asy_excl_hi = (kmutex_t *)
636 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
637 	asy->asy_soft_lock = (kmutex_t *)
638 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
639 	asy->asy_unit = instance;
640 	asy->asy_dip = devi;
641 
642 	if (ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) {
643 		cmn_err(CE_NOTE,
644 		    "Get iblock_cookie failed-Device interrupt%x\n", instance);
645 		goto error;
646 	}
647 
648 	if (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_HIGH,
649 	    &asy->asy_soft_iblock) != DDI_SUCCESS) {
650 		cmn_err(CE_NOTE, "Get iblock_cookie failed -soft interrupt%x\n",
651 		    instance);
652 		goto error;
653 	}
654 
655 	mutex_init(asy->asy_soft_lock, NULL, MUTEX_DRIVER,
656 	    (void *)asy->asy_soft_iblock);
657 	mutex_init(asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
658 	mutex_init(asy->asy_excl_hi, NULL, MUTEX_DRIVER,
659 	    (void *)asy->asy_iblock);
660 	state = MUTEXES;
661 
662 	/*
663 	 * Install interrupt handlers for this device.
664 	 */
665 	if (ddi_add_intr(devi, 0, &(asy->asy_iblock), 0, asyintr,
666 	    (caddr_t)asy) != DDI_SUCCESS) {
667 		cmn_err(CE_CONT,
668 		    "Cannot set device interrupt for su driver\n");
669 		goto error;
670 	}
671 	state = ADDINTR;
672 
673 	if (ddi_add_softintr(devi, DDI_SOFTINT_HIGH, &(asy->asy_softintr_id),
674 	    &asy->asy_soft_iblock, 0, asysoftintr, (caddr_t)asy)
675 	    != DDI_SUCCESS) {
676 		cmn_err(CE_CONT, "Cannot set soft interrupt for su driver\n");
677 		goto error;
678 	}
679 	state = SOFTINTR;
680 
681 	/* initialize the asyncline structure */
682 	if (ddi_soft_state_zalloc(su_asyncline, instance) != DDI_SUCCESS) {
683 		cmn_err(CE_CONT, "su%d: cannot allocate soft state", instance);
684 		goto error;
685 	}
686 	state = ASYINIT;
687 
688 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
689 
690 	mutex_enter(asy->asy_excl);
691 	async->async_common = asy;
692 	cv_init(&async->async_flags_cv, NULL, CV_DEFAULT, NULL);
693 	mutex_exit(asy->asy_excl);
694 
695 	if ((asy->sukstat = kstat_create("su", instance, "serialstat",
696 	    "misc", KSTAT_TYPE_NAMED, 2, KSTAT_FLAG_VIRTUAL)) != NULL) {
697 		asy->sukstat->ks_data = &asy->kstats;
698 		kstat_named_init(&asy->kstats.ringover, "ring buffer overflow",
699 		    KSTAT_DATA_UINT64);
700 		kstat_named_init(&asy->kstats.siloover, "silo overflow",
701 		    KSTAT_DATA_UINT64);
702 		kstat_install(asy->sukstat);
703 	}
704 	state = KSTAT;
705 
706 	if (strcmp(ddi_node_name(devi), "rsc-console") == 0) {
707 		/*
708 		 * If the device is configured as the 'rsc-console'
709 		 * create the minor device for this node.
710 		 */
711 		if (ddi_create_minor_node(devi, "ssp", S_IFCHR,
712 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, 0) == DDI_FAILURE) {
713 			cmn_err(CE_WARN,
714 			    "%s%d: Failed to create node rsc-console",
715 			    ddi_get_name(devi), ddi_get_instance(devi));
716 			goto error;
717 		}
718 
719 		asy->asy_lom_console = 0;
720 		asy->asy_rsc_console = 1;
721 		asy->asy_rsc_control = 0;
722 		asy->asy_device_type = ASY_SERIAL;
723 		asy->asy_flags |= ASY_IGNORE_CD;
724 
725 	} else if (strcmp(ddi_node_name(devi), "lom-console") == 0) {
726 		/*
727 		 * If the device is configured as the 'lom-console'
728 		 * create the minor device for this node.
729 		 * Do not create a dialout device.
730 		 * Use the same minor numbers as would be used for standard
731 		 * serial instances.
732 		 */
733 		if (ddi_create_minor_node(devi, "lom-console", S_IFCHR,
734 		    instance, DDI_NT_SERIAL_LOMCON, 0) == DDI_FAILURE) {
735 			cmn_err(CE_WARN,
736 			    "%s%d: Failed to create node lom-console",
737 			    ddi_get_name(devi), ddi_get_instance(devi));
738 			goto error;
739 		}
740 		asy->asy_lom_console = 1;
741 		asy->asy_rsc_console = 0;
742 		asy->asy_rsc_control = 0;
743 		asy->asy_device_type = ASY_SERIAL;
744 		asy->asy_flags |= ASY_IGNORE_CD;
745 
746 	} else if (strcmp(ddi_node_name(devi), "rsc-control") == 0) {
747 		/*
748 		 * If the device is configured as the 'rsc-control'
749 		 * create the minor device for this node.
750 		 */
751 		if (ddi_create_minor_node(devi, "sspctl", S_IFCHR,
752 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, 0) == DDI_FAILURE) {
753 			cmn_err(CE_WARN, "%s%d: Failed to create rsc-control",
754 			    ddi_get_name(devi), ddi_get_instance(devi));
755 			goto error;
756 		}
757 
758 		asy->asy_lom_console = 0;
759 		asy->asy_rsc_console = 0;
760 		asy->asy_rsc_control = 1;
761 		asy->asy_device_type = ASY_SERIAL;
762 		asy->asy_flags |= ASY_IGNORE_CD;
763 
764 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
765 	    "keyboard", 0)) {
766 		/*
767 		 * If the device is a keyboard, then create an internal
768 		 * pathname so that the dacf code will link the node into
769 		 * the keyboard console stream.  See dacf.conf.
770 		 */
771 		if (ddi_create_internal_pathname(devi, "keyboard",
772 		    S_IFCHR, instance) == DDI_FAILURE) {
773 			goto error;
774 		}
775 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
776 		asy->asy_device_type = ASY_KEYBOARD;	/* Device type */
777 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
778 	    "mouse", 0)) {
779 		/*
780 		 * If the device is a mouse, then create an internal
781 		 * pathname so that the dacf code will link the node into
782 		 * the mouse stream.  See dacf.conf.
783 		 */
784 		if (ddi_create_internal_pathname(devi, "mouse", S_IFCHR,
785 		    instance) == DDI_FAILURE) {
786 			goto error;
787 		}
788 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
789 		asy->asy_device_type = ASY_MOUSE;
790 	} else {
791 		/*
792 		 * If not used for keyboard/mouse, create minor devices nodes
793 		 * for this device
794 		 */
795 		/* serial-port */
796 		(void) sprintf(name, "%c", (instance+'a'));
797 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance,
798 		    DDI_NT_SERIAL_MB, 0) == DDI_FAILURE) {
799 			goto error;
800 		}
801 		state = MINORNODE;
802 		/* serial-port:dailout */
803 		(void) sprintf(name, "%c,cu", (instance+'a'));
804 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance|OUTLINE,
805 		    DDI_NT_SERIAL_MB_DO, 0) == DDI_FAILURE) {
806 			goto error;
807 		}
808 		/* Property for ignoring DCD */
809 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
810 		    "ignore-cd", 0)) {
811 			asy->asy_flags |= ASY_IGNORE_CD;  /* ignore cd */
812 		} else {
813 			asy->asy_flags &= ~ASY_IGNORE_CD;
814 			/*
815 			 * if ignore-cd is not available it could be
816 			 * some old legacy platform, try to see
817 			 * whether the old legacy property exists
818 			 */
819 			(void) sprintf(name,
820 			    "port-%c-ignore-cd", (instance+ 'a'));
821 			if (ddi_getprop(DDI_DEV_T_ANY, devi,
822 			    DDI_PROP_DONTPASS, name, 0))
823 				asy->asy_flags |= ASY_IGNORE_CD;
824 		}
825 		asy->asy_device_type = ASY_SERIAL;
826 	}
827 
828 	/*
829 	 * Fill in the polled I/O structure
830 	 */
831 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
832 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
833 	asy->polledio.cons_polledio_putchar =  asyputchar;
834 	asy->polledio.cons_polledio_getchar = asygetchar;
835 	asy->polledio.cons_polledio_ischar = asyischar;
836 	asy->polledio.cons_polledio_enter = asy_polled_enter;
837 	asy->polledio.cons_polledio_exit = asy_polled_exit;
838 
839 	/* Initialize saved ICR and polled_enter */
840 	asy->polled_icr = 0;
841 	asy->polled_enter = B_FALSE;
842 
843 	ddi_report_dev(devi);
844 	return (DDI_SUCCESS);
845 
846 error:
847 	if (state == MINORNODE) {
848 		(void) sprintf(name, "%c", (instance+'a'));
849 		ddi_remove_minor_node(devi, name);
850 	}
851 	if (state >= KSTAT)
852 		kstat_delete(asy->sukstat);
853 	if (state >= ASYINIT) {
854 		cv_destroy(&async->async_flags_cv);
855 		ddi_soft_state_free(su_asyncline, instance);
856 	}
857 	if (state >= SOFTINTR)
858 		ddi_remove_softintr(asy->asy_softintr_id);
859 	if (state >= ADDINTR)
860 		ddi_remove_intr(devi, 0, asy->asy_iblock);
861 	if (state >= MUTEXES) {
862 		mutex_destroy(asy->asy_excl_hi);
863 		mutex_destroy(asy->asy_excl);
864 		mutex_destroy(asy->asy_soft_lock);
865 		kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
866 		kmem_free(asy->asy_excl, sizeof (kmutex_t));
867 		kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
868 	}
869 	if (state >= REGSMAP)
870 		ddi_regs_map_free(&asy->asy_handle);
871 	if (state >= SOFTSTATE)
872 		ddi_soft_state_free(su_asycom, instance);
873 	/* no action for EMPTY state */
874 	return (DDI_FAILURE);
875 }
876 
877 static int
asyinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)878 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
879     void **result)
880 {
881 	_NOTE(ARGUNUSED(dip))
882 	dev_t dev = (dev_t)arg;
883 	int instance, error;
884 	struct asycom *asy;
885 
886 	if ((instance = UNIT(dev)) > max_asy_instance)
887 		return (DDI_FAILURE);
888 
889 	switch (infocmd) {
890 		case DDI_INFO_DEVT2DEVINFO:
891 			asy = (struct asycom *)ddi_get_soft_state(su_asycom,
892 			    instance);
893 			if (asy->asy_dip == NULL)
894 				error = DDI_FAILURE;
895 			else {
896 				*result = (void *) asy->asy_dip;
897 				error = DDI_SUCCESS;
898 			}
899 			break;
900 		case DDI_INFO_DEVT2INSTANCE:
901 			*result = (void *)(uintptr_t)instance;
902 			error = DDI_SUCCESS;
903 			break;
904 		default:
905 			error = DDI_FAILURE;
906 	}
907 	return (error);
908 }
909 
910 static int
asyopen(queue_t * rq,dev_t * dev,int flag,int sflag,cred_t * cr)911 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
912 {
913 	_NOTE(ARGUNUSED(sflag))
914 	struct asycom	*asy;
915 	struct asyncline *async;
916 	int		mcr;
917 	int		unit;
918 	int		len;
919 	struct termios	*termiosp;
920 
921 #ifdef DEBUG
922 	if (asydebug & ASY_DEBUG_CLOSE)
923 		printf("open\n");
924 #endif
925 	unit = UNIT(*dev);
926 	if (unit > max_asy_instance)
927 		return (ENXIO);		/* unit not configured */
928 
929 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, unit);
930 	if (async == NULL)
931 		return (ENXIO);
932 
933 	asy = async->async_common;
934 	if (asy == NULL)
935 		return (ENXIO);		/* device not found by autoconfig */
936 
937 	mutex_enter(asy->asy_excl);
938 	asy->asy_priv = (caddr_t)async;
939 
940 again:
941 	mutex_enter(asy->asy_excl_hi);
942 	/*
943 	 * Block waiting for carrier to come up, unless this is a no-delay open.
944 	 */
945 	if (!(async->async_flags & ASYNC_ISOPEN)) {
946 		/*
947 		 * If this port is for a RSC console or control
948 		 * use the following termio info
949 		 */
950 		if (asy->asy_rsc_console || asy->asy_rsc_control) {
951 			async->async_ttycommon.t_cflag = CIBAUDEXT | CBAUDEXT |
952 			    (B115200 & CBAUD);
953 			async->async_ttycommon.t_cflag |= ((B115200 << IBSHIFT)
954 			    & CIBAUD);
955 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
956 		} else if (asy->asy_lom_console) {
957 			async->async_ttycommon.t_cflag = B9600 & CBAUD;
958 			async->async_ttycommon.t_cflag |= ((B9600 << IBSHIFT)
959 			    & CIBAUD);
960 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
961 		} else {
962 
963 			/*
964 			 * Set the default termios settings (cflag).
965 			 * Others are set in ldterm.  Release the spin
966 			 * mutex as we can block here, reaquire before
967 			 * calling asy_program.
968 			 */
969 			mutex_exit(asy->asy_excl_hi);
970 			if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
971 			    0, "ttymodes", (caddr_t)&termiosp, &len)
972 			    == DDI_PROP_SUCCESS &&
973 			    len == sizeof (struct termios)) {
974 				async->async_ttycommon.t_cflag =
975 				    termiosp->c_cflag;
976 				kmem_free(termiosp, len);
977 			} else {
978 				cmn_err(CE_WARN,
979 					"su: couldn't get ttymodes property!");
980 			}
981 			mutex_enter(asy->asy_excl_hi);
982 		}
983 		async->async_ttycommon.t_iflag = 0;
984 		async->async_ttycommon.t_iocpending = NULL;
985 		async->async_ttycommon.t_size.ws_row = 0;
986 		async->async_ttycommon.t_size.ws_col = 0;
987 		async->async_ttycommon.t_size.ws_xpixel = 0;
988 		async->async_ttycommon.t_size.ws_ypixel = 0;
989 		async->async_dev = *dev;
990 		async->async_wbufcid = 0;
991 
992 		async->async_startc = CSTART;
993 		async->async_stopc = CSTOP;
994 		(void) asy_program(asy, ASY_INIT);
995 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
996 	    secpolicy_excl_open(cr) != 0) {
997 		mutex_exit(asy->asy_excl_hi);
998 		mutex_exit(asy->asy_excl);
999 		return (EBUSY);
1000 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1001 		mutex_exit(asy->asy_excl_hi);
1002 		mutex_exit(asy->asy_excl);
1003 		return (EBUSY);
1004 	}
1005 
1006 	if (*dev & OUTLINE)
1007 		async->async_flags |= ASYNC_OUT;
1008 
1009 	/* Raise DTR on every open */
1010 	mcr = INB(MCR);
1011 	OUTB(MCR, mcr|DTR);
1012 
1013 	/*
1014 	 * Check carrier.
1015 	 */
1016 	if (asy->asy_flags & ASY_IGNORE_CD)
1017 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
1018 	if ((async->async_ttycommon.t_flags & TS_SOFTCAR) ||
1019 	    (INB(MSR) & DCD))
1020 		async->async_flags |= ASYNC_CARR_ON;
1021 	else
1022 		async->async_flags &= ~ASYNC_CARR_ON;
1023 	mutex_exit(asy->asy_excl_hi);
1024 
1025 	/*
1026 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1027 	 * Quit on interrupt.
1028 	 */
1029 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1030 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
1031 		if (!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) ||
1032 		    ((async->async_flags & ASYNC_OUT) &&
1033 		    !(*dev & OUTLINE))) {
1034 				async->async_flags |= ASYNC_WOPEN;
1035 				if (cv_wait_sig(&async->async_flags_cv,
1036 				    asy->asy_excl) == 0) {
1037 					async->async_flags &= ~ASYNC_WOPEN;
1038 					mutex_exit(asy->asy_excl);
1039 					return (EINTR);
1040 				}
1041 				async->async_flags &= ~ASYNC_WOPEN;
1042 				goto again;
1043 		}
1044 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1045 		mutex_exit(asy->asy_excl);
1046 		return (EBUSY);
1047 	}
1048 
1049 	if (asy->suspended) {
1050 		mutex_exit(asy->asy_excl);
1051 		(void) ddi_dev_is_needed(asy->asy_dip, 0, 1);
1052 		mutex_enter(asy->asy_excl);
1053 	}
1054 
1055 	async->async_ttycommon.t_readq = rq;
1056 	async->async_ttycommon.t_writeq = WR(rq);
1057 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1058 	mutex_exit(asy->asy_excl);
1059 	qprocson(rq);
1060 	async->async_flags |= ASYNC_ISOPEN;
1061 	async->async_polltid = 0;
1062 	return (0);
1063 }
1064 
1065 static void
async_progress_check(void * arg)1066 async_progress_check(void *arg)
1067 {
1068 	struct asyncline *async = arg;
1069 	struct asycom	 *asy = async->async_common;
1070 	mblk_t *bp;
1071 
1072 	/*
1073 	 * We define "progress" as either waiting on a timed break or delay, or
1074 	 * having had at least one transmitter interrupt.  If none of these are
1075 	 * true, then just terminate the output and wake up that close thread.
1076 	 */
1077 	mutex_enter(asy->asy_excl);
1078 	mutex_enter(asy->asy_excl_hi);
1079 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1080 		async->async_ocnt = 0;
1081 		async->async_flags &= ~ASYNC_BUSY;
1082 		async->async_timer = 0;
1083 		bp = async->async_xmitblk;
1084 		async->async_xmitblk = NULL;
1085 		mutex_exit(asy->asy_excl_hi);
1086 		if (bp != NULL)
1087 			freeb(bp);
1088 		/*
1089 		 * Since this timer is running, we know that we're in exit(2).
1090 		 * That means that the user can't possibly be waiting on any
1091 		 * valid ioctl(2) completion anymore, and we should just flush
1092 		 * everything.
1093 		 */
1094 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1095 		cv_broadcast(&async->async_flags_cv);
1096 	} else {
1097 		async->async_flags &= ~ASYNC_PROGRESS;
1098 		async->async_timer = timeout(async_progress_check, async,
1099 		    drv_usectohz(su_drain_check));
1100 		mutex_exit(asy->asy_excl_hi);
1101 	}
1102 	mutex_exit(asy->asy_excl);
1103 }
1104 
1105 /*
1106  * Close routine.
1107  */
1108 static int
asyclose(queue_t * q,int flag,cred_t * cr __unused)1109 asyclose(queue_t *q, int flag, cred_t *cr __unused)
1110 {
1111 	struct asyncline *async;
1112 	struct asycom	 *asy;
1113 	int icr, lcr;
1114 	int		nohupcl;
1115 
1116 
1117 #ifdef DEBUG
1118 	if (asydebug & ASY_DEBUG_CLOSE)
1119 		printf("close\n");
1120 #endif
1121 	async = q->q_ptr;
1122 	ASSERT(async != NULL);
1123 	asy = async->async_common;
1124 
1125 	/* get the nohupcl OBP property of this device */
1126 	nohupcl = ddi_getprop(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1127 	    "nohupcl", 0);
1128 
1129 	mutex_enter(asy->asy_excl);
1130 	async->async_flags |= ASYNC_CLOSING;
1131 
1132 	/*
1133 	 * Turn off PPS handling early to avoid events occuring during
1134 	 * close.  Also reset the DCD edge monitoring bit.
1135 	 */
1136 	mutex_enter(asy->asy_excl_hi);
1137 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1138 	mutex_exit(asy->asy_excl_hi);
1139 
1140 	/*
1141 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1142 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1143 	 * write queue and there's a timer running, so we don't have to worry
1144 	 * about them.  For the untimed case, though, the user obviously made a
1145 	 * mistake, because these are handled immediately.  We'll terminate the
1146 	 * break now and honor their implicit request by discarding the rest of
1147 	 * the data.
1148 	 */
1149 	if (!(async->async_flags & ASYNC_BREAK)) {
1150 		mutex_enter(asy->asy_excl_hi);
1151 		lcr = INB(LCR);
1152 		if (lcr & SETBREAK) {
1153 			OUTB(LCR, (lcr & ~SETBREAK));
1154 		}
1155 		mutex_exit(asy->asy_excl_hi);
1156 		if (lcr & SETBREAK)
1157 			goto nodrain;
1158 	}
1159 
1160 	/*
1161 	 * If the user told us not to delay the close ("non-blocking"), then
1162 	 * don't bother trying to drain.
1163 	 *
1164 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1165 	 * getting an M_START (since these messages aren't enqueued), and the
1166 	 * only other way to clear the stop condition is by loss of DCD, which
1167 	 * would discard the queue data.  Thus, we drop the output data if
1168 	 * ASYNC_STOPPED is set.
1169 	 */
1170 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1171 	    (async->async_flags & ASYNC_STOPPED)) {
1172 		goto nodrain;
1173 	}
1174 
1175 	/*
1176 	 * If there's any pending output, then we have to try to drain it.
1177 	 * There are two main cases to be handled:
1178 	 *	- called by close(2): need to drain until done or until
1179 	 *	  a signal is received.  No timeout.
1180 	 *	- called by exit(2): need to drain while making progress
1181 	 *	  or until a timeout occurs.  No signals.
1182 	 *
1183 	 * If we can't rely on receiving a signal to get us out of a hung
1184 	 * session, then we have to use a timer.  In this case, we set a timer
1185 	 * to check for progress in sending the output data -- all that we ask
1186 	 * (at each interval) is that there's been some progress made.  Since
1187 	 * the interrupt routine grabs buffers from the write queue, we can't
1188 	 * trust async_ocnt.  Instead, we use a flag.
1189 	 *
1190 	 * Note that loss of carrier will cause the output queue to be flushed,
1191 	 * and we'll wake up again and finish normally.
1192 	 */
1193 	if (!ddi_can_receive_sig() && su_drain_check != 0) {
1194 		async->async_flags &= ~ASYNC_PROGRESS;
1195 		async->async_timer = timeout(async_progress_check, async,
1196 		    drv_usectohz(su_drain_check));
1197 	}
1198 
1199 	while (async->async_ocnt > 0 ||
1200 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1201 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1202 		if (cv_wait_sig(&async->async_flags_cv, asy->asy_excl) == 0)
1203 			break;
1204 	}
1205 	if (async->async_timer != 0) {
1206 		(void) untimeout(async->async_timer);
1207 		async->async_timer = 0;
1208 	}
1209 
1210 nodrain:
1211 	mutex_enter(asy->asy_excl_hi);
1212 
1213 	/* turn off the loopback mode */
1214 	if ((async->async_dev != rconsdev) &&
1215 	    (async->async_dev != kbddev) &&
1216 	    (async->async_dev != stdindev)) {
1217 		OUTB(MCR, INB(MCR) & ~ ASY_LOOP);
1218 	}
1219 
1220 	async->async_ocnt = 0;
1221 	if (async->async_xmitblk != NULL)
1222 		freeb(async->async_xmitblk);
1223 	async->async_xmitblk = NULL;
1224 
1225 	/*
1226 	 * If the "nohupcl" OBP property is set for this device, do
1227 	 * not turn off DTR and RTS no matter what.  Otherwise, if the
1228 	 * line has HUPCL set or is incompletely opened, turn off DTR
1229 	 * and RTS to fix the modem line.
1230 	 */
1231 	if (!nohupcl && ((async->async_ttycommon.t_cflag & HUPCL) ||
1232 	    (async->async_flags & ASYNC_WOPEN))) {
1233 		/* turn off DTR, RTS but NOT interrupt to 386 */
1234 		OUTB(MCR, OUT2);
1235 		mutex_exit(asy->asy_excl_hi);
1236 		/*
1237 		 * Don't let an interrupt in the middle of close
1238 		 * bounce us back to the top; just continue closing
1239 		 * as if nothing had happened.
1240 		 */
1241 		if (cv_wait_sig(&lbolt_cv, asy->asy_excl) == 0)
1242 			goto out;
1243 		mutex_enter(asy->asy_excl_hi);
1244 	}
1245 
1246 	/*
1247 	 * If nobody's using it now, turn off receiver interrupts.
1248 	 */
1249 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1250 		icr = INB(ICR);
1251 		OUTB(ICR, (icr & ~RIEN));
1252 	}
1253 	mutex_exit(asy->asy_excl_hi);
1254 out:
1255 	/*
1256 	 * Clear out device state.
1257 	 */
1258 	async->async_flags = 0;
1259 	ttycommon_close(&async->async_ttycommon);
1260 	cv_broadcast(&async->async_flags_cv);
1261 
1262 	/*
1263 	 * Clear ASY_DOINGSOFT and ASY_NEEDSOFT in case we were in
1264 	 * async_softint or an interrupt was pending when the process
1265 	 * using the port exited.
1266 	 */
1267 	asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
1268 
1269 	/*
1270 	 * Cancel outstanding "bufcall" request.
1271 	 */
1272 	if (async->async_wbufcid) {
1273 		unbufcall(async->async_wbufcid);
1274 		async->async_wbufcid = 0;
1275 	}
1276 
1277 	/*
1278 	 * If inperim is true, it means the port is closing while there's
1279 	 * a pending software interrupt.  async_flags has been zeroed out,
1280 	 * so this instance of leaveq() needs to be called before we call
1281 	 * qprocsoff() to disable services on the q.  If inperim is false,
1282 	 * leaveq() has already been called or we're not in a perimeter.
1283 	 */
1284 	if (asy->inperim == B_TRUE) {
1285 		asy->inperim = B_FALSE;
1286 		mutex_exit(asy->asy_excl);
1287 		leaveq(q);
1288 	} else {
1289 		mutex_exit(asy->asy_excl);
1290 	}
1291 
1292 	/* Note that qprocsoff can't be done until after interrupts are off */
1293 	qprocsoff(q);
1294 	q->q_ptr = WR(q)->q_ptr = NULL;
1295 	async->async_ttycommon.t_readq = NULL;
1296 	async->async_ttycommon.t_writeq = NULL;
1297 
1298 	return (0);
1299 }
1300 
1301 /*
1302  * Checks to see if the serial port is still transmitting
1303  * characters.  It returns true when there are characters
1304  * queued to transmit,  when the holding register contains
1305  * a byte, or when the shifting register still contains
1306  * data to send.
1307  *
1308  */
1309 static boolean_t
asy_isbusy(struct asycom * asy)1310 asy_isbusy(struct asycom *asy)
1311 {
1312 	struct asyncline *async;
1313 
1314 #ifdef DEBUG
1315 	if (asydebug & ASY_DEBUG_EOT)
1316 		printf("isbusy\n");
1317 #endif
1318 	async = (struct asyncline *)asy->asy_priv;
1319 	ASSERT(mutex_owned(asy->asy_excl));
1320 	ASSERT(mutex_owned(asy->asy_excl_hi));
1321 	return ((async->async_ocnt > 0) ||
1322 	    ((INB(LSR) & XSRE) == 0));
1323 }
1324 
1325 /*
1326  * Program the ASY port. Most of the async operation is based on the values
1327  * of 'c_iflag' and 'c_cflag'.
1328  */
1329 static int
asy_program(struct asycom * asy,int mode)1330 asy_program(struct asycom *asy, int mode)
1331 {
1332 	struct asyncline *async;
1333 	int baudrate, c_flag;
1334 	int icr, lcr;
1335 	int ocflags;
1336 	int error = 0;
1337 
1338 	ASSERT(mutex_owned(asy->asy_excl));
1339 	ASSERT(mutex_owned(asy->asy_excl_hi));
1340 
1341 #ifdef DEBUG
1342 	if (asydebug & ASY_DEBUG_PROCS)
1343 		printf("program\n");
1344 #endif
1345 	async = (struct asyncline *)asy->asy_priv;
1346 
1347 	baudrate = async->async_ttycommon.t_cflag & CBAUD;
1348 	if (async->async_ttycommon.t_cflag & CBAUDEXT)
1349 		baudrate += 16;
1350 
1351 	/* Limit baudrate so it can't index out of baudtable */
1352 	if (baudrate >= N_SU_SPEEDS) baudrate = B9600;
1353 
1354 	/*
1355 	 * If baud rate requested is greater than the speed cap
1356 	 * or is an unsupported baud rate then reset t_cflag baud
1357 	 * to the last valid baud rate.  If this is the initial
1358 	 * pass through asy_program then set it to 9600.
1359 	 */
1360 	if (((baudrate > 0) && (asyspdtab[baudrate] == 0)) ||
1361 	    (baudtable[baudrate] > asy->asy_speed_cap)) {
1362 		async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1363 		    ~CIBAUD & ~CIBAUDEXT;
1364 		if (mode == ASY_INIT) {
1365 			async->async_ttycommon.t_cflag |= B9600;
1366 			async->async_ttycommon.t_cflag |= B9600 << IBSHIFT;
1367 			baudrate = B9600;
1368 		} else {
1369 			async->async_ttycommon.t_cflag |=
1370 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1371 			    CIBAUD | CIBAUDEXT));
1372 			error = EINVAL;
1373 			goto end;
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * If CIBAUD and CIBAUDEXT are zero then we should set them to
1379 	 * the equivelant output baud bits.  Else, if CIBAUD and CIBAUDEXT
1380 	 * don't match CBAUD and CBAUDEXT respectively then we should
1381 	 * notify the requestor that we do not support split speeds.
1382 	 */
1383 	if ((async->async_ttycommon.t_cflag  & (CIBAUD|CIBAUDEXT)) == 0) {
1384 		async->async_ttycommon.t_cflag |=
1385 		    (async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT;
1386 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
1387 			async->async_ttycommon.t_cflag |= CIBAUDEXT;
1388 	} else {
1389 		if ((((async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT) !=
1390 		    (async->async_ttycommon.t_cflag & CIBAUD)) ||
1391 		    !(((async->async_ttycommon.t_cflag & (CBAUDEXT |
1392 		    CIBAUDEXT)) == (CBAUDEXT | CIBAUDEXT)) ||
1393 		    ((async->async_ttycommon.t_cflag & (CBAUDEXT |
1394 		    CIBAUDEXT)) == 0))) {
1395 			async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1396 			    ~CIBAUD & ~CIBAUDEXT;
1397 			async->async_ttycommon.t_cflag |=
1398 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1399 			    CIBAUD | CIBAUDEXT));
1400 			error = EINVAL;
1401 			goto end;
1402 		}
1403 	}
1404 
1405 	c_flag = async->async_ttycommon.t_cflag &
1406 	    (CLOCAL | CREAD | CSTOPB | CSIZE | PARENB | PARODD | CBAUD |
1407 	    CBAUDEXT | CIBAUD | CIBAUDEXT);
1408 
1409 	/* disable interrupts, see EXAR bug */
1410 	if (asy->asy_hwtype == ASY16C554D)
1411 		OUTB(SPR, 0);
1412 	OUTB(ICR, 0);
1413 
1414 	ocflags = asy->asy_ocflags;
1415 
1416 	/* flush/reset the status registers */
1417 	if (mode == ASY_INIT) {
1418 		(void) INB(DAT);
1419 		(void) INB(ISR);
1420 		(void) INB(LSR);
1421 		(void) INB(MSR);
1422 	}
1423 
1424 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
1425 		/* Set line control */
1426 		lcr = INB(LCR);
1427 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
1428 
1429 		if (c_flag & CSTOPB)
1430 			lcr |= STB;	/* 2 stop bits */
1431 
1432 		if (c_flag & PARENB)
1433 			lcr |= PEN;
1434 
1435 		if ((c_flag & PARODD) == 0)
1436 			lcr |= EPS;
1437 
1438 		switch (c_flag & CSIZE) {
1439 		case CS5:
1440 			lcr |= BITS5;
1441 			break;
1442 		case CS6:
1443 			lcr |= BITS6;
1444 			break;
1445 		case CS7:
1446 			lcr |= BITS7;
1447 			break;
1448 		case CS8:
1449 			lcr |= BITS8;
1450 			break;
1451 		}
1452 
1453 		/* set the baud rate when the rate is NOT B0 */
1454 		if (baudrate != 0) {
1455 			OUTB(LCR, DLAB);
1456 			OUTB(DAT, (asyspdtab[baudrate] *
1457 			    asy->asy_baud_divisor_factor) & 0xff);
1458 			OUTB(ICR, ((asyspdtab[baudrate] *
1459 			    asy->asy_baud_divisor_factor) >> 8) & 0xff);
1460 		}
1461 		/* set the line control modes */
1462 		OUTB(LCR, lcr);
1463 
1464 		/*
1465 		 * if transitioning from CREAD off to CREAD on,
1466 		 * flush the FIFO buffer if we have one.
1467 		 */
1468 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD)) {
1469 			if (asy->asy_use_fifo == FIFO_ON) {
1470 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
1471 				    (asy->asy_trig_level & 0xff));
1472 			}
1473 		}
1474 
1475 		/* remember the new cflags */
1476 		asy->asy_ocflags = c_flag & ~CLOCAL;
1477 	}
1478 
1479 	/* whether or not CLOCAL is set, modify the modem control lines */
1480 	if (baudrate == 0)
1481 		/* B0 has been issued, lower DTR */
1482 		OUTB(MCR, RTS|OUT2);
1483 	else
1484 		/* raise DTR */
1485 		OUTB(MCR, DTR|RTS|OUT2);
1486 
1487 	/*
1488 	 * Call the modem status interrupt handler to check for the carrier
1489 	 * in case CLOCAL was turned off after the carrier came on.
1490 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
1491 	 */
1492 	async_msint(asy);
1493 
1494 	/* Set interrupt control */
1495 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
1496 		/*
1497 		 * direct-wired line ignores DCD, so we don't enable modem
1498 		 * status interrupts.
1499 		 */
1500 		icr = (TIEN | SIEN);
1501 	else
1502 		icr = (TIEN | SIEN | MIEN);
1503 
1504 	if (c_flag & CREAD)
1505 		icr |= RIEN;
1506 
1507 	OUTB(ICR, icr);
1508 end:
1509 	return (error);
1510 }
1511 
1512 /*
1513  * Polled mode support -- all functions called with interrupts
1514  * disabled.
1515  */
1516 
1517 static void
asyputchar(cons_polledio_arg_t arg,uchar_t c)1518 asyputchar(cons_polledio_arg_t arg, uchar_t c)
1519 {
1520 	struct asycom *asy = (struct asycom *)arg;
1521 
1522 	/*
1523 	 * If we see a line feed make sure to also
1524 	 * put out a carriage return.
1525 	 */
1526 	if (c == '\n')
1527 		asyputchar(arg, '\r');
1528 
1529 	while ((INB(LSR) & XHRE) == 0) {
1530 		/* wait for the transmission to complete */
1531 		drv_usecwait(10);
1532 	}
1533 
1534 	/* ouput the character */
1535 	OUTB(DAT, c);
1536 }
1537 
1538 /*
1539  * Determines if there is a character avaialable for
1540  * reading.
1541  */
1542 static boolean_t
asyischar(cons_polledio_arg_t arg)1543 asyischar(cons_polledio_arg_t arg)
1544 {
1545 	struct asycom *asy = (struct asycom *)arg;
1546 	return ((INB(LSR) & RCA) != 0);
1547 }
1548 
1549 static int
asygetchar(cons_polledio_arg_t arg)1550 asygetchar(cons_polledio_arg_t arg)
1551 {
1552 	struct asycom *asy = (struct asycom *)arg;
1553 
1554 	/*
1555 	 * Spin waiting for a character to be
1556 	 * available to read.
1557 	 */
1558 	while (!asyischar(arg))
1559 		drv_usecwait(10);
1560 
1561 	return (INB(DAT));
1562 }
1563 
1564 /*
1565  * Called when machine is transitioning to polled mode
1566  */
1567 static void
asy_polled_enter(cons_polledio_arg_t arg)1568 asy_polled_enter(cons_polledio_arg_t arg)
1569 {
1570 	struct asycom *asy = (struct asycom *)arg;
1571 
1572 	mutex_enter(asy->asy_excl);
1573 	mutex_enter(asy->asy_excl_hi);
1574 
1575 	/*
1576 	 * If this is the first time that asy_polled_enter()
1577 	 * has been called, during this transition request,
1578 	 * save the ICR. Clear the software interrupt
1579 	 * flags since we won't be able to handle these when
1580 	 * we are in polled mode.
1581 	 */
1582 	if (!asy->polled_enter) {
1583 		asy->polled_enter = B_TRUE;
1584 		asy->polled_icr = INB(ICR);
1585 
1586 		/* Disable HW interrupts */
1587 		if (asy->asy_hwtype == ASY16C554D)
1588 			OUTB(SPR, 0);
1589 		OUTB(ICR, 0);
1590 
1591 		asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
1592 	}
1593 	mutex_exit(asy->asy_excl_hi);
1594 	mutex_exit(asy->asy_excl);
1595 }
1596 
1597 /*
1598  * Called when machine is transitioning from polled mode.
1599  */
1600 static void
asy_polled_exit(cons_polledio_arg_t arg)1601 asy_polled_exit(cons_polledio_arg_t arg)
1602 {
1603 	struct asycom *asy = (struct asycom *)arg;
1604 
1605 	mutex_enter(asy->asy_excl);
1606 	mutex_enter(asy->asy_excl_hi);
1607 
1608 	/* Restore the ICR */
1609 	OUTB(ICR, asy->polled_icr);
1610 
1611 	/*
1612 	 * We have finished this polled IO transition.
1613 	 * Set polled_enter to B_FALSE to note this.
1614 	 */
1615 	asy->polled_enter = B_FALSE;
1616 	mutex_exit(asy->asy_excl_hi);
1617 	mutex_exit(asy->asy_excl);
1618 }
1619 
1620 /*
1621  * asyintr() is the High Level Interrupt Handler.
1622  *
1623  * There are four different interrupt types indexed by ISR register values:
1624  *		0: modem
1625  *		1: Tx holding register is empty, ready for next char
1626  *		2: Rx register now holds a char to be picked up
1627  *		3: error or break on line
1628  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
1629  * the interrupt is from this port.
1630  */
1631 uint_t
asyintr(caddr_t argasy)1632 asyintr(caddr_t argasy)
1633 {
1634 	struct asycom		*asy = (struct asycom *)argasy;
1635 	struct asyncline	*async;
1636 	int			ret_status = DDI_INTR_UNCLAIMED;
1637 	uchar_t			interrupt_id, lsr;
1638 
1639 	interrupt_id = INB(ISR) & 0x0F;
1640 	async = (struct asyncline *)asy->asy_priv;
1641 	if ((async == NULL) ||
1642 	    !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
1643 		if (interrupt_id & NOINTERRUPT)  {
1644 			return (DDI_INTR_UNCLAIMED);
1645 		} else {
1646 			lsr = INB(LSR);
1647 			if ((lsr & BRKDET) &&
1648 			    ((abort_enable == KIOCABORTENABLE) &&
1649 			    (async->async_dev == rconsdev)))
1650 				abort_sequence_enter((char *)NULL);
1651 			else {
1652 				/* reset line status */
1653 				(void) INB(LSR);
1654 				/* discard any data */
1655 				(void) INB(DAT);
1656 				/* reset modem status */
1657 				(void) INB(MSR);
1658 				return (DDI_INTR_CLAIMED);
1659 			}
1660 		}
1661 	}
1662 	/*
1663 	 * Spurious interrupts happen in this driver
1664 	 * because of the transmission on serial port not handled
1665 	 * properly.
1666 	 *
1667 	 * The reasons for Spurious interrupts are:
1668 	 *    1. There is a path in async_nstart which transmits
1669 	 *	 characters without going through interrupt services routine
1670 	 *	 which causes spurious interrupts to happen.
1671 	 *    2. In the async_txint more than one character is sent
1672 	 *	 in one interrupt service.
1673 	 *    3. In async_rxint more than one characters are received in
1674 	 *	 in one interrupt service.
1675 	 *
1676 	 * Hence we have flags to indicate that such scenerio has happened.
1677 	 * and claim only such interrupts and others we donot claim it
1678 	 * as it could be a indicator of some hardware problem.
1679 	 *
1680 	 */
1681 	if (interrupt_id & NOINTERRUPT) {
1682 		mutex_enter(asy->asy_excl_hi);
1683 		if ((asy->asy_xmit_count > 1) ||
1684 		    (asy->asy_out_of_band_xmit > 0) ||
1685 		    (asy->asy_rx_count > 1)) {
1686 			asy->asy_xmit_count = 0;
1687 			asy->asy_out_of_band_xmit = 0;
1688 			asy->asy_rx_count = 0;
1689 			mutex_exit(asy->asy_excl_hi);
1690 			return (DDI_INTR_CLAIMED);
1691 		} else {
1692 			mutex_exit(asy->asy_excl_hi);
1693 			return (DDI_INTR_UNCLAIMED);
1694 		}
1695 	}
1696 	ret_status = DDI_INTR_CLAIMED;
1697 	mutex_enter(asy->asy_excl_hi);
1698 	if (asy->asy_hwtype == ASY82510)
1699 		OUTB(ISR, 0x00); /* set bank 0 */
1700 
1701 #ifdef DEBUG
1702 	if (asydebug & ASY_DEBUG_INTR)
1703 		prom_printf("l");
1704 #endif
1705 	lsr = INB(LSR);
1706 	switch (interrupt_id) {
1707 	case RxRDY:
1708 	case RSTATUS:
1709 	case FFTMOUT:
1710 		/* receiver interrupt or receiver errors */
1711 		async_rxint(asy, lsr);
1712 		break;
1713 	case TxRDY:
1714 		/* transmit interrupt */
1715 		async_txint(asy, lsr);
1716 		break;
1717 	case MSTATUS:
1718 		/* modem status interrupt */
1719 		async_msint(asy);
1720 		break;
1721 	}
1722 	mutex_exit(asy->asy_excl_hi);
1723 	return (ret_status);
1724 }
1725 
1726 /*
1727  * Transmitter interrupt service routine.
1728  * If there is more data to transmit in the current pseudo-DMA block,
1729  * send the next character if output is not stopped or draining.
1730  * Otherwise, queue up a soft interrupt.
1731  *
1732  * XXX -  Needs review for HW FIFOs.
1733  */
1734 static void
async_txint(struct asycom * asy,uchar_t lsr)1735 async_txint(struct asycom *asy, uchar_t lsr)
1736 {
1737 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1738 	int		fifo_len;
1739 	int		xmit_progress;
1740 
1741 	asycheckflowcontrol_hw(asy);
1742 
1743 	/*
1744 	 * If ASYNC_BREAK has been set, return to asyintr()'s context to
1745 	 * claim the interrupt without performing any action.
1746 	 */
1747 	if (async->async_flags & ASYNC_BREAK)
1748 		return;
1749 
1750 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
1751 
1752 	/*
1753 	 * Check for flow control and do the needed action.
1754 	 */
1755 	if (asycheckflowcontrol_sw(asy)) {
1756 		return;
1757 	}
1758 
1759 	if (async->async_ocnt > 0 &&
1760 	    !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED))) {
1761 		xmit_progress = 0;
1762 		while (fifo_len > 0 && async->async_ocnt > 0) {
1763 			if (lsr & XHRE) {
1764 				OUTB(DAT, *async->async_optr++);
1765 				fifo_len--;
1766 				async->async_ocnt--;
1767 				xmit_progress++;
1768 			}
1769 			/*
1770 			 * Reading the lsr, (moved reading at the end of
1771 			 * while loop) as already we have read once at
1772 			 * the beginning of interrupt service
1773 			 */
1774 			lsr = INB(LSR);
1775 		}
1776 		asy->asy_xmit_count = xmit_progress;
1777 		if (xmit_progress > 0)
1778 			async->async_flags |= ASYNC_PROGRESS;
1779 	}
1780 
1781 	if (fifo_len == 0) {
1782 		return;
1783 	}
1784 
1785 
1786 	ASYSETSOFT(asy);
1787 }
1788 
1789 /*
1790  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
1791  * error interrupt.
1792  * Try to put the character into the circular buffer for this line; if it
1793  * overflows, indicate a circular buffer overrun. If this port is always
1794  * to be serviced immediately, or the character is a STOP character, or
1795  * more than 15 characters have arrived, queue up a soft interrupt to
1796  * drain the circular buffer.
1797  * XXX - needs review for hw FIFOs support.
1798  */
1799 
1800 static void
async_rxint(struct asycom * asy,uchar_t lsr)1801 async_rxint(struct asycom *asy, uchar_t lsr)
1802 {
1803 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1804 	uchar_t c = 0;
1805 	uint_t s = 0, needsoft = 0;
1806 	register tty_common_t *tp;
1807 
1808 	tp = &async->async_ttycommon;
1809 	if (!(tp->t_cflag & CREAD)) {
1810 		if (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1811 			(void) (INB(DAT) & 0xff);
1812 		}
1813 		return; /* line is not open for read? */
1814 	}
1815 	asy->asy_rx_count = 0;
1816 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1817 		c = 0;
1818 		s = 0;
1819 		asy->asy_rx_count++;
1820 		if (lsr & RCA) {
1821 			c = INB(DAT) & 0xff;
1822 			/*
1823 			 * Even a single character is received
1824 			 * we need Soft interrupt to pass it to
1825 			 * higher layers.
1826 			 */
1827 			needsoft = 1;
1828 		}
1829 
1830 		/* Check for character break sequence */
1831 		if ((abort_enable == KIOCABORTALTERNATE) &&
1832 		    (async->async_dev == rconsdev)) {
1833 			if (abort_charseq_recognize(c))
1834 				abort_sequence_enter((char *)NULL);
1835 			}
1836 
1837 		/* Handle framing errors */
1838 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
1839 			if (lsr & PARERR) {
1840 				if (tp->t_iflag & INPCK) /* parity enabled */
1841 					s |= PERROR;
1842 			}
1843 			if (lsr & (FRMERR|BRKDET))
1844 				s |= FRERROR;
1845 			if (lsr & OVRRUN) {
1846 				async->async_hw_overrun = 1;
1847 				s |= OVERRUN;
1848 			}
1849 		}
1850 
1851 		if (s == 0)
1852 			if ((tp->t_iflag & PARMRK) &&
1853 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
1854 			    (c == 0377))
1855 				if (RING_POK(async, 2)) {
1856 					RING_PUT(async, 0377);
1857 					RING_PUT(async, c);
1858 				} else
1859 					async->async_sw_overrun = 1;
1860 			else
1861 				if (RING_POK(async, 1))
1862 					RING_PUT(async, c);
1863 				else
1864 					async->async_sw_overrun = 1;
1865 		else
1866 			if (s & FRERROR) { /* Handle framing errors */
1867 				if (c == 0)  {
1868 		/* Look for break on kbd, stdin, or rconsdev */
1869 					if ((async->async_dev == kbddev) ||
1870 					    ((async->async_dev == rconsdev) ||
1871 					    (async->async_dev == stdindev)) &&
1872 					    (abort_enable !=
1873 					    KIOCABORTALTERNATE))
1874 						abort_sequence_enter((char *)0);
1875 					else
1876 						async->async_break++;
1877 				} else {
1878 					if (RING_POK(async, 1))
1879 						RING_MARK(async, c, s);
1880 					else
1881 						async->async_sw_overrun = 1;
1882 				}
1883 			} else  { /* Parity errors  handled by ldterm */
1884 				if (RING_POK(async, 1))
1885 					RING_MARK(async, c, s);
1886 				else
1887 					async->async_sw_overrun = 1;
1888 			}
1889 		lsr = INB(LSR);
1890 		if (asy->asy_rx_count > 16) break;
1891 	}
1892 	/* Check whether there is a request for hw/sw inbound/input flow ctrl */
1893 	if ((async->async_ttycommon.t_cflag & CRTSXOFF) ||
1894 	    (async->async_ttycommon.t_iflag & IXOFF))
1895 		if ((int)(RING_CNT(async)) > (RINGSIZE * 3)/4) {
1896 #ifdef DEBUG
1897 			if (asydebug & ASY_DEBUG_HFLOW)
1898 				printf("asy%d: hardware flow stop input.\n",
1899 				    UNIT(async->async_dev));
1900 #endif
1901 			async->async_flags |= ASYNC_HW_IN_FLOW;
1902 			async->async_flowc = async->async_stopc;
1903 			async->async_ringbuf_overflow = 1;
1904 		}
1905 
1906 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
1907 	    (RING_FRAC(async)) || (async->async_polltid == 0))
1908 		ASYSETSOFT(asy);	/* need a soft interrupt */
1909 }
1910 
1911 /*
1912  * Interrupt on port: handle PPS event.  This function is only called
1913  * for a port on which PPS event handling has been enabled.
1914  */
1915 static void
asy_ppsevent(struct asycom * asy,int msr)1916 asy_ppsevent(struct asycom *asy, int msr)
1917 {
1918 	if (asy->asy_flags & ASY_PPS_EDGE) {
1919 		/* Have seen leading edge, now look for and record drop */
1920 		if ((msr & DCD) == 0)
1921 			asy->asy_flags &= ~ASY_PPS_EDGE;
1922 		/*
1923 		 * Waiting for leading edge, look for rise; stamp event and
1924 		 * calibrate kernel clock.
1925 		 */
1926 	} else if (msr & DCD) {
1927 		/*
1928 		 * This code captures a timestamp at the designated
1929 		 * transition of the PPS signal (DCD asserted).  The
1930 		 * code provides a pointer to the timestamp, as well
1931 		 * as the hardware counter value at the capture.
1932 		 *
1933 		 * Note: the kernel has nano based time values while
1934 		 * NTP requires micro based, an in-line fast algorithm
1935 		 * to convert nsec to usec is used here -- see hrt2ts()
1936 		 * in common/os/timers.c for a full description.
1937 		 */
1938 		struct timeval *tvp = &asy_ppsev.tv;
1939 		timestruc_t ts;
1940 		long nsec, usec;
1941 
1942 		asy->asy_flags |= ASY_PPS_EDGE;
1943 		gethrestime(&ts);
1944 		nsec = ts.tv_nsec;
1945 		usec = nsec + (nsec >> 2);
1946 		usec = nsec + (usec >> 1);
1947 		usec = nsec + (usec >> 2);
1948 		usec = nsec + (usec >> 4);
1949 		usec = nsec - (usec >> 3);
1950 		usec = nsec + (usec >> 2);
1951 		usec = nsec + (usec >> 3);
1952 		usec = nsec + (usec >> 4);
1953 		usec = nsec + (usec >> 1);
1954 		usec = nsec + (usec >> 6);
1955 		tvp->tv_usec = usec >> 10;
1956 		tvp->tv_sec = ts.tv_sec;
1957 
1958 		++asy_ppsev.serial;
1959 
1960 		/*
1961 		 * Because the kernel keeps a high-resolution time,
1962 		 * pass the current highres timestamp in tvp and zero
1963 		 * in usec.
1964 		 */
1965 		ddi_hardpps(tvp, 0);
1966 	}
1967 }
1968 
1969 /*
1970  * Modem status interrupt.
1971  *
1972  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
1973  */
1974 
1975 static void
async_msint(struct asycom * asy)1976 async_msint(struct asycom *asy)
1977 {
1978 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1979 	int msr;
1980 
1981 	msr = INB(MSR);	/* this resets the interrupt */
1982 	asy->asy_cached_msr = msr;
1983 #ifdef DEBUG
1984 	if (asydebug & ASY_DEBUG_STATE) {
1985 		printf("   transition: %3s %3s %3s %3s\n"
1986 		    "current state: %3s %3s %3s %3s\n",
1987 		    (msr & DCTS) ? "CTS" : "   ",
1988 		    (msr & DDSR) ? "DSR" : "   ",
1989 		    (msr & DRI) ?  "RI " : "   ",
1990 		    (msr & DDCD) ? "DCD" : "   ",
1991 		    (msr & CTS) ?  "CTS" : "   ",
1992 		    (msr & DSR) ?  "DSR" : "   ",
1993 		    (msr & RI) ?   "RI " : "   ",
1994 		    (msr & DCD) ?  "DCD" : "   ");
1995 	}
1996 #endif
1997 	if (async->async_ttycommon.t_cflag & CRTSCTS && !(msr & CTS)) {
1998 #ifdef DEBUG
1999 		if (asydebug & ASY_DEBUG_HFLOW)
2000 			printf("asy%d: hflow start\n",
2001 			    UNIT(async->async_dev));
2002 #endif
2003 		async->async_flags |= ASYNC_HW_OUT_FLW;
2004 	}
2005 	if (asy->asy_hwtype == ASY82510)
2006 		OUTB(MSR, (msr & 0xF0));
2007 
2008 	/* Handle PPS event */
2009 	if (asy->asy_flags & ASY_PPS)
2010 		asy_ppsevent(asy, msr);
2011 
2012 	async->async_ext++;
2013 	ASYSETSOFT(asy);
2014 }
2015 
2016 /*
2017  * Handle a second-stage interrupt.
2018  */
2019 uint_t
asysoftintr(caddr_t intarg)2020 asysoftintr(caddr_t intarg)
2021 {
2022 	struct asycom *asy = (struct asycom *)intarg;
2023 	struct asyncline *async;
2024 	int rv;
2025 	int cc;
2026 	/*
2027 	 * Test and clear soft interrupt.
2028 	 */
2029 	mutex_enter(asy->asy_soft_lock);
2030 #ifdef DEBUG
2031 	if (asydebug & ASY_DEBUG_PROCS)
2032 		printf("softintr\n");
2033 #endif
2034 	rv = asy->asysoftpend;
2035 	if (rv != 0)
2036 		asy->asysoftpend = 0;
2037 	mutex_exit(asy->asy_soft_lock);
2038 
2039 	if (rv) {
2040 		if (asy->asy_priv == NULL)
2041 			return (rv);
2042 		async = (struct asyncline *)asy->asy_priv;
2043 		mutex_enter(asy->asy_excl_hi);
2044 		if (asy->asy_flags & ASY_NEEDSOFT) {
2045 			asy->asy_flags &= ~ASY_NEEDSOFT;
2046 			mutex_exit(asy->asy_excl_hi);
2047 			(void) async_softint(asy);
2048 			mutex_enter(asy->asy_excl_hi);
2049 		}
2050 		/*
2051 		 * There are some instances where the softintr is not
2052 		 * scheduled and hence not called. It so happened that makes
2053 		 * the last few characters to be stuck in ringbuffer.
2054 		 * Hence, call once again the  handler so that the last few
2055 		 * characters are cleared.
2056 		 */
2057 		cc = RING_CNT(async);
2058 		mutex_exit(asy->asy_excl_hi);
2059 		if (cc > 0) {
2060 			(void) async_softint(asy);
2061 		}
2062 	}
2063 	return (rv);
2064 }
2065 
2066 /*
2067  * Handle a software interrupt.
2068  */
2069 static int
async_softint(struct asycom * asy)2070 async_softint(struct asycom *asy)
2071 {
2072 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
2073 	uint_t	cc;
2074 	mblk_t	*bp;
2075 	queue_t	*q;
2076 	uchar_t	val;
2077 	uchar_t	c;
2078 	tty_common_t	*tp;
2079 
2080 #ifdef DEBUG
2081 	if (asydebug & ASY_DEBUG_PROCS)
2082 		printf("process\n");
2083 #endif
2084 	mutex_enter(asy->asy_excl);
2085 	if (asy->asy_flags & ASY_DOINGSOFT) {
2086 		mutex_exit(asy->asy_excl);
2087 		return (0);
2088 	}
2089 	tp = &async->async_ttycommon;
2090 	q = tp->t_readq;
2091 	if (q != NULL) {
2092 		mutex_exit(asy->asy_excl);
2093 		enterq(q);
2094 		mutex_enter(asy->asy_excl);
2095 	}
2096 	mutex_enter(asy->asy_excl_hi);
2097 	asy->asy_flags |= ASY_DOINGSOFT;
2098 
2099 	if (INB(ICR) & MIEN)
2100 		val = asy->asy_cached_msr & 0xFF;
2101 	else
2102 		val = INB(MSR) & 0xFF;
2103 
2104 	if (async->async_ttycommon.t_cflag & CRTSCTS) {
2105 		if ((val & CTS) && (async->async_flags & ASYNC_HW_OUT_FLW)) {
2106 #ifdef DEBUG
2107 			if (asydebug & ASY_DEBUG_HFLOW)
2108 				printf("asy%d: hflow start\n",
2109 				    UNIT(async->async_dev));
2110 #endif
2111 			async->async_flags &= ~ASYNC_HW_OUT_FLW;
2112 			mutex_exit(asy->asy_excl_hi);
2113 			if (async->async_ocnt > 0) {
2114 				mutex_enter(asy->asy_excl_hi);
2115 				async_resume(async);
2116 				mutex_exit(asy->asy_excl_hi);
2117 			} else {
2118 				async_start(async);
2119 			}
2120 			mutex_enter(asy->asy_excl_hi);
2121 		}
2122 	}
2123 	if (async->async_ext) {
2124 		async->async_ext = 0;
2125 		/* check for carrier up */
2126 		if ((val & DCD) || (tp->t_flags & TS_SOFTCAR)) {
2127 			/* carrier present */
2128 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2129 				async->async_flags |= ASYNC_CARR_ON;
2130 				mutex_exit(asy->asy_excl_hi);
2131 				mutex_exit(asy->asy_excl);
2132 				if (async->async_flags & ASYNC_ISOPEN)
2133 					(void) putctl(q, M_UNHANGUP);
2134 				cv_broadcast(&async->async_flags_cv);
2135 				mutex_enter(asy->asy_excl);
2136 				mutex_enter(asy->asy_excl_hi);
2137 			}
2138 		} else {
2139 			if ((async->async_flags & ASYNC_CARR_ON) &&
2140 			    !(tp->t_cflag & CLOCAL)) {
2141 				int flushflag;
2142 
2143 				/*
2144 				 * Carrier went away.
2145 				 * Drop DTR, abort any output in
2146 				 * progress, indicate that output is
2147 				 * not stopped, and send a hangup
2148 				 * notification upstream.
2149 				 *
2150 				 * If we're in the midst of close, then flush
2151 				 * everything.  Don't leave stale ioctls lying
2152 				 * about.
2153 				 */
2154 				val = INB(MCR);
2155 				OUTB(MCR, (val & ~DTR));
2156 				flushflag = (async->async_flags &
2157 				    ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
2158 				if (tp->t_writeq != NULL) {
2159 					flushq(tp->t_writeq, flushflag);
2160 				}
2161 				if (async->async_xmitblk != NULL) {
2162 					freeb(async->async_xmitblk);
2163 					async->async_xmitblk = NULL;
2164 				}
2165 				if (async->async_flags & ASYNC_BUSY) {
2166 					async->async_ocnt = 0;
2167 					async->async_flags &= ~ASYNC_BUSY;
2168 				}
2169 				async->async_flags &= ~ASYNC_STOPPED;
2170 				if (async->async_flags & ASYNC_ISOPEN) {
2171 					mutex_exit(asy->asy_excl_hi);
2172 					mutex_exit(asy->asy_excl);
2173 					(void) putctl(q, M_HANGUP);
2174 					mutex_enter(asy->asy_excl);
2175 					mutex_enter(asy->asy_excl_hi);
2176 				}
2177 				async->async_flags &= ~ASYNC_CARR_ON;
2178 				mutex_exit(asy->asy_excl_hi);
2179 				cv_broadcast(&async->async_flags_cv);
2180 				mutex_enter(asy->asy_excl_hi);
2181 			}
2182 		}
2183 	}
2184 
2185 	/*
2186 	 * If data has been added to the circular buffer, remove
2187 	 * it from the buffer, and send it up the stream if there's
2188 	 * somebody listening. Try to do it 16 bytes at a time. If we
2189 	 * have more than 16 bytes to move, move 16 byte chunks and
2190 	 * leave the rest for next time around (maybe it will grow).
2191 	 */
2192 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2193 		RING_INIT(async);
2194 		goto rv;
2195 	}
2196 	if ((cc = RING_CNT(async)) == 0) {
2197 		goto rv;
2198 	}
2199 	mutex_exit(asy->asy_excl_hi);
2200 
2201 	if (!canput(q)) {
2202 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2203 #ifdef DEBUG
2204 			if (!(asydebug & ASY_DEBUG_HFLOW)) {
2205 				printf("asy%d: hflow stop input.\n",
2206 				    UNIT(async->async_dev));
2207 				if (canputnext(q))
2208 					printf("asy%d: next queue is "
2209 					    "ready\n",
2210 					    UNIT(async->async_dev));
2211 			}
2212 #endif
2213 			mutex_enter(asy->asy_excl_hi);
2214 			async->async_flags |= ASYNC_HW_IN_FLOW;
2215 			async->async_flowc = async->async_stopc;
2216 		} else mutex_enter(asy->asy_excl_hi);
2217 		goto rv;
2218 	}
2219 
2220 	if (async->async_ringbuf_overflow) {
2221 		if ((async->async_flags & ASYNC_HW_IN_FLOW) &&
2222 		    ((int)(RING_CNT(async)) < (RINGSIZE/4))) {
2223 #ifdef DEBUG
2224 			if (asydebug & ASY_DEBUG_HFLOW)
2225 				printf("asy%d: hflow start input.\n",
2226 				    UNIT(async->async_dev));
2227 #endif
2228 			mutex_enter(asy->asy_excl_hi);
2229 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2230 			async->async_flowc = async->async_startc;
2231 			async->async_ringbuf_overflow = 0;
2232 			goto rv;
2233 		}
2234 	}
2235 #ifdef DEBUG
2236 	if (asydebug & ASY_DEBUG_INPUT)
2237 		printf("asy%d: %d char(s) in queue.\n",
2238 		    UNIT(async->async_dev), cc);
2239 #endif
2240 	/*
2241 	 * Before you pull the characters from the RING BUF
2242 	 * Check whether you can put into the queue again
2243 	 */
2244 	if ((!canputnext(q)) || (!canput(q))) {
2245 		mutex_enter(asy->asy_excl_hi);
2246 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2247 			async->async_flags |= ASYNC_HW_IN_FLOW;
2248 			async->async_flowc = async->async_stopc;
2249 			async->async_queue_full = 1;
2250 		}
2251 		goto rv;
2252 	}
2253 	mutex_enter(asy->asy_excl_hi);
2254 	if (async->async_queue_full) {
2255 		/*
2256 		 * Last time the Stream queue didnot allow
2257 		 * now it allows so, relax, the flow control
2258 		 */
2259 		if (async->async_flags & ASYNC_HW_IN_FLOW) {
2260 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2261 			async->async_queue_full = 0;
2262 			async->async_flowc = async->async_startc;
2263 			goto rv;
2264 		} else
2265 			async->async_queue_full = 0;
2266 	}
2267 	mutex_exit(asy->asy_excl_hi);
2268 	if (!(bp = allocb(cc, BPRI_MED))) {
2269 		ttycommon_qfull(&async->async_ttycommon, q);
2270 		mutex_enter(asy->asy_excl_hi);
2271 		goto rv;
2272 	}
2273 	mutex_enter(asy->asy_excl_hi);
2274 	do {
2275 		if (RING_ERR(async, S_ERRORS)) {
2276 			RING_UNMARK(async);
2277 			c = RING_GET(async);
2278 			break;
2279 		} else {
2280 			*bp->b_wptr++ = RING_GET(async);
2281 		}
2282 	} while (--cc);
2283 
2284 	mutex_exit(asy->asy_excl_hi);
2285 	mutex_exit(asy->asy_excl);
2286 	if (bp->b_wptr > bp->b_rptr) {
2287 		if (!canputnext(q)) {
2288 			if (!canput(q)) {
2289 				/*
2290 				 * Even after taking all precautions that
2291 				 * Still we are unable to queue, then we
2292 				 * cannot do anything, just drop the block
2293 				 */
2294 				cmn_err(CE_NOTE,
2295 				    "su%d: local queue full\n",
2296 				    UNIT(async->async_dev));
2297 				freemsg(bp);
2298 				mutex_enter(asy->asy_excl_hi);
2299 				if ((async->async_flags &
2300 				    ASYNC_HW_IN_FLOW) == 0) {
2301 					async->async_flags |=
2302 					    ASYNC_HW_IN_FLOW;
2303 					async->async_flowc =
2304 					    async->async_stopc;
2305 					async->async_queue_full = 1;
2306 				}
2307 				mutex_exit(asy->asy_excl_hi);
2308 			} else {
2309 				(void) putq(q, bp);
2310 			}
2311 		} else {
2312 			putnext(q, bp);
2313 		}
2314 	} else {
2315 		freemsg(bp);
2316 	}
2317 	/*
2318 	 * If we have a parity error, then send
2319 	 * up an M_BREAK with the "bad"
2320 	 * character as an argument. Let ldterm
2321 	 * figure out what to do with the error.
2322 	 */
2323 	if (cc)
2324 		(void) putctl1(q, M_BREAK, c);
2325 	mutex_enter(asy->asy_excl);
2326 	mutex_enter(asy->asy_excl_hi);
2327 rv:
2328 	/*
2329 	 * If a transmission has finished, indicate that it's finished,
2330 	 * and start that line up again.
2331 	 */
2332 	if (async->async_break) {
2333 		async->async_break = 0;
2334 		if (async->async_flags & ASYNC_ISOPEN) {
2335 			mutex_exit(asy->asy_excl_hi);
2336 			mutex_exit(asy->asy_excl);
2337 			(void) putctl(q, M_BREAK);
2338 			mutex_enter(asy->asy_excl);
2339 			mutex_enter(asy->asy_excl_hi);
2340 		}
2341 	}
2342 	if ((async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) ||
2343 	    (async->async_flowc != '\0')) {
2344 		async->async_flags &= ~ASYNC_BUSY;
2345 		mutex_exit(asy->asy_excl_hi);
2346 		if (async->async_xmitblk)
2347 			freeb(async->async_xmitblk);
2348 		async->async_xmitblk = NULL;
2349 		if (async->async_flags & ASYNC_ISOPEN) {
2350 			asy->inperim = B_TRUE;
2351 			mutex_exit(asy->asy_excl);
2352 			enterq(async->async_ttycommon.t_writeq);
2353 			mutex_enter(asy->asy_excl);
2354 		}
2355 		async_start(async);
2356 		/*
2357 		 * We need to check for inperim and ISOPEN due to
2358 		 * multi-threading implications; it's possible to close the
2359 		 * port and nullify async_flags while completing the software
2360 		 * interrupt.  If the port is closed, leaveq() will have already
2361 		 * been called.  We don't want to call it twice.
2362 		 */
2363 		if ((asy->inperim) && (async->async_flags & ASYNC_ISOPEN)) {
2364 			mutex_exit(asy->asy_excl);
2365 			leaveq(async->async_ttycommon.t_writeq);
2366 			mutex_enter(asy->asy_excl);
2367 			asy->inperim = B_FALSE;
2368 		}
2369 		if (!(async->async_flags & ASYNC_BUSY))
2370 			cv_broadcast(&async->async_flags_cv);
2371 		mutex_enter(asy->asy_excl_hi);
2372 	}
2373 	/*
2374 	 * A note about these overrun bits: all they do is *tell* someone
2375 	 * about an error- They do not track multiple errors. In fact,
2376 	 * you could consider them latched register bits if you like.
2377 	 * We are only interested in printing the error message once for
2378 	 * any cluster of overrun errors.
2379 	 */
2380 	if (async->async_hw_overrun) {
2381 		if (async->async_flags & ASYNC_ISOPEN) {
2382 			if (su_log > 0) {
2383 				mutex_exit(asy->asy_excl_hi);
2384 				mutex_exit(asy->asy_excl);
2385 				cmn_err(CE_NOTE, "su%d: silo overflow\n",
2386 				    UNIT(async->async_dev));
2387 				mutex_enter(asy->asy_excl);
2388 				mutex_enter(asy->asy_excl_hi);
2389 			}
2390 			INC64_KSTAT(asy, siloover);
2391 		}
2392 		async->async_hw_overrun = 0;
2393 	}
2394 	if (async->async_sw_overrun) {
2395 		if (async->async_flags & ASYNC_ISOPEN) {
2396 			if (su_log > 0) {
2397 				mutex_exit(asy->asy_excl_hi);
2398 				mutex_exit(asy->asy_excl);
2399 				cmn_err(CE_NOTE, "su%d: ring buffer overflow\n",
2400 				    UNIT(async->async_dev));
2401 				mutex_enter(asy->asy_excl);
2402 				mutex_enter(asy->asy_excl_hi);
2403 			}
2404 			INC64_KSTAT(asy, ringover);
2405 		}
2406 		async->async_sw_overrun = 0;
2407 	}
2408 	asy->asy_flags &= ~ASY_DOINGSOFT;
2409 	mutex_exit(asy->asy_excl_hi);
2410 	mutex_exit(asy->asy_excl);
2411 	if (q != NULL)
2412 		leaveq(q);
2413 	return (0);
2414 }
2415 
2416 /*
2417  * Restart output on a line after a delay or break timer expired.
2418  */
2419 static void
async_restart(void * arg)2420 async_restart(void *arg)
2421 {
2422 	struct asyncline *async = arg;
2423 	struct asycom *asy = async->async_common;
2424 	queue_t *q;
2425 	uchar_t lcr;
2426 
2427 	/*
2428 	 * If break timer expired, turn off the break bit.
2429 	 */
2430 #ifdef DEBUG
2431 	if (asydebug & ASY_DEBUG_PROCS)
2432 		printf("restart\n");
2433 #endif
2434 	mutex_enter(asy->asy_excl);
2435 	if (async->async_flags & ASYNC_BREAK) {
2436 		unsigned int rate;
2437 
2438 		mutex_enter(asy->asy_excl_hi);
2439 		lcr = INB(LCR);
2440 		OUTB(LCR, (lcr & ~SETBREAK));
2441 
2442 		/*
2443 		 * Go to sleep for the time it takes for at least one
2444 		 * stop bit to be received by the device at the other
2445 		 * end of the line as stated in the RS-232 specification.
2446 		 * The wait period is equal to:
2447 		 * 2 clock cycles * (1 MICROSEC / baud rate)
2448 		 */
2449 		rate = async->async_ttycommon.t_cflag & CBAUD;
2450 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
2451 			rate += 16;
2452 		if (rate >= N_SU_SPEEDS || rate == B0) {
2453 			rate = B9600;
2454 		}
2455 
2456 		mutex_exit(asy->asy_excl_hi);
2457 		mutex_exit(asy->asy_excl);
2458 		drv_usecwait(2 * MICROSEC / baudtable[rate]);
2459 		mutex_enter(asy->asy_excl);
2460 	}
2461 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK|ASYNC_DRAINING);
2462 	if ((q = async->async_ttycommon.t_writeq) != NULL) {
2463 		mutex_exit(asy->asy_excl);
2464 		enterq(q);
2465 		mutex_enter(asy->asy_excl);
2466 	}
2467 	async_start(async);
2468 	mutex_exit(asy->asy_excl);
2469 	if (q != NULL)
2470 		leaveq(q);
2471 
2472 	/* cleared break or delay flag; may have made some output progress */
2473 	cv_broadcast(&async->async_flags_cv);
2474 }
2475 
2476 static void
async_start(struct asyncline * async)2477 async_start(struct asyncline *async)
2478 {
2479 	async_nstart(async, 0);
2480 }
2481 
2482 /*
2483  * Start output on a line, unless it's busy, frozen, or otherwise.
2484  */
2485 static void
async_nstart(struct asyncline * async,int mode)2486 async_nstart(struct asyncline *async, int mode)
2487 {
2488 	register struct asycom *asy = async->async_common;
2489 	register int cc;
2490 	register queue_t *q;
2491 	mblk_t *bp, *nbp;
2492 	uchar_t *xmit_addr;
2493 	uchar_t	val;
2494 	int	fifo_len = 1;
2495 	int	xmit_progress;
2496 
2497 #ifdef DEBUG
2498 	if (asydebug & ASY_DEBUG_PROCS)
2499 		printf("start\n");
2500 #endif
2501 	if (asy->asy_use_fifo == FIFO_ON)
2502 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2503 
2504 	ASSERT(mutex_owned(asy->asy_excl));
2505 	mutex_enter(asy->asy_excl_hi);
2506 	asycheckflowcontrol_hw(asy);
2507 
2508 	/*
2509 	 * If the chip is busy (i.e., we're waiting for a break timeout
2510 	 * to expire, or for the current transmission to finish, or for
2511 	 * output to finish draining from chip), don't grab anything new.
2512 	 */
2513 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY|ASYNC_DRAINING)) {
2514 		mutex_exit(asy->asy_excl_hi);
2515 #ifdef DEBUG
2516 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2517 			printf("asy%d: start %s.\n",
2518 			    UNIT(async->async_dev),
2519 			    async->async_flags & ASYNC_BREAK
2520 			    ? "break" : "busy");
2521 #endif
2522 		return;
2523 	}
2524 
2525 	/*
2526 	 * If we have a flow-control character to transmit, do it now.
2527 	 */
2528 	if (asycheckflowcontrol_sw(asy)) {
2529 		mutex_exit(asy->asy_excl_hi);
2530 		return;
2531 	}
2532 	mutex_exit(asy->asy_excl_hi);
2533 	/*
2534 	 * If we're waiting for a delay timeout to expire, don't grab
2535 	 * anything new.
2536 	 */
2537 	if (async->async_flags & ASYNC_DELAY) {
2538 #ifdef DEBUG
2539 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2540 			printf("asy%d: start ASYNC_DELAY.\n",
2541 			    UNIT(async->async_dev));
2542 #endif
2543 		return;
2544 	}
2545 
2546 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
2547 #ifdef DEBUG
2548 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2549 			printf("asy%d: start writeq is null.\n",
2550 			    UNIT(async->async_dev));
2551 #endif
2552 		return;	/* not attached to a stream */
2553 	}
2554 
2555 	for (;;) {
2556 		if ((bp = getq(q)) == NULL)
2557 			return;	/* no data to transmit */
2558 
2559 		/*
2560 		 * We have a message block to work on.
2561 		 * Check whether it's a break, a delay, or an ioctl (the latter
2562 		 * occurs if the ioctl in question was waiting for the output
2563 		 * to drain).  If it's one of those, process it immediately.
2564 		 */
2565 		switch (bp->b_datap->db_type) {
2566 
2567 		case M_BREAK:
2568 			/*
2569 			 * Set the break bit, and arrange for "async_restart"
2570 			 * to be called in 1/4 second; it will turn the
2571 			 * break bit off, and call "async_start" to grab
2572 			 * the next message.
2573 			 */
2574 			mutex_enter(asy->asy_excl_hi);
2575 			val = INB(LCR);
2576 			OUTB(LCR, (val | SETBREAK));
2577 			mutex_exit(asy->asy_excl_hi);
2578 			async->async_flags |= ASYNC_BREAK;
2579 			(void) timeout(async_restart, async, hz / 4);
2580 			freemsg(bp);
2581 			return;	/* wait for this to finish */
2582 
2583 		case M_DELAY:
2584 			/*
2585 			 * Arrange for "async_restart" to be called when the
2586 			 * delay expires; it will turn ASYNC_DELAY off,
2587 			 * and call "async_start" to grab the next message.
2588 			 */
2589 			(void) timeout(async_restart, async,
2590 			    (clock_t)(*(unsigned char *)bp->b_rptr + 6));
2591 			async->async_flags |= ASYNC_DELAY;
2592 			freemsg(bp);
2593 			return;	/* wait for this to finish */
2594 
2595 		case M_IOCTL:
2596 			/*
2597 			 * This ioctl needs to wait for the output ahead of
2598 			 * it to drain.  Try to do it, and then either
2599 			 * redo the ioctl at a later time or grab the next
2600 			 * message after it.
2601 			 */
2602 
2603 			mutex_enter(asy->asy_excl_hi);
2604 			if (asy_isbusy(asy)) {
2605 				/*
2606 				 * Get the divisor by calculating the rate
2607 				 */
2608 				unsigned int rate;
2609 
2610 				mutex_exit(asy->asy_excl_hi);
2611 				rate = async->async_ttycommon.t_cflag & CBAUD;
2612 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
2613 					rate += 16;
2614 				if (rate >= N_SU_SPEEDS || rate == B0) {
2615 					rate = B9600;
2616 				}
2617 
2618 				/*
2619 				 * We need to do a callback as the port will
2620 				 * be set to drain
2621 				 */
2622 				async->async_flags |= ASYNC_DRAINING;
2623 
2624 				/*
2625 				 * Put the message we just processed back onto
2626 				 * the end of the queue
2627 				 */
2628 				if (putq(q, bp) == 0)
2629 					freemsg(bp);
2630 
2631 				/*
2632 				 * We need to delay until the TSR and THR
2633 				 * have been exhausted.  We base the delay on
2634 				 * the amount of time it takes to transmit
2635 				 * 2 chars at the current baud rate in
2636 				 * microseconds.
2637 				 *
2638 				 * Therefore, the wait period is:
2639 				 *
2640 				 * (#TSR bits + #THR bits) *
2641 				 *	1 MICROSEC / baud rate
2642 				 */
2643 				(void) timeout(async_restart, async,
2644 				    drv_usectohz(16 * MICROSEC /
2645 				    baudtable[rate]));
2646 				return;
2647 			}
2648 			mutex_exit(asy->asy_excl_hi);
2649 			mutex_exit(asy->asy_excl);
2650 			async_ioctl(async, q, bp, B_FALSE);
2651 			mutex_enter(asy->asy_excl);
2652 			continue;
2653 		}
2654 
2655 		while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) {
2656 			nbp = bp->b_cont;
2657 			freeb(bp);
2658 			bp = nbp;
2659 		}
2660 		if (bp != NULL)
2661 			break;
2662 	}
2663 
2664 	/*
2665 	 * We have data to transmit.  If output is stopped, put
2666 	 * it back and try again later.
2667 	 */
2668 	if (async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED)) {
2669 #ifdef DEBUG
2670 		if (asydebug & ASY_DEBUG_HFLOW &&
2671 		    async->async_flags & ASYNC_HW_OUT_FLW)
2672 			printf("asy%d: output hflow in effect.\n",
2673 			    UNIT(async->async_dev));
2674 #endif
2675 		mutex_exit(asy->asy_excl);
2676 		(void) putbq(q, bp);
2677 		/*
2678 		 * We entered the routine owning the lock, we need to
2679 		 * exit the routine owning the lock.
2680 		 */
2681 		mutex_enter(asy->asy_excl);
2682 		return;
2683 	}
2684 
2685 	async->async_xmitblk = bp;
2686 	xmit_addr = bp->b_rptr;
2687 	bp = bp->b_cont;
2688 	if (bp != NULL) {
2689 		mutex_exit(asy->asy_excl);
2690 		(void) putbq(q, bp);	/* not done with this message yet */
2691 		mutex_enter(asy->asy_excl);
2692 	}
2693 
2694 	/*
2695 	 * In 5-bit mode, the high order bits are used
2696 	 * to indicate character sizes less than five,
2697 	 * so we need to explicitly mask before transmitting
2698 	 */
2699 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
2700 		register unsigned char *p = xmit_addr;
2701 		register int cnt = cc;
2702 
2703 		while (cnt--)
2704 			*p++ &= (unsigned char) 0x1f;
2705 	}
2706 
2707 	/*
2708 	 * Set up this block for pseudo-DMA.
2709 	 */
2710 	mutex_enter(asy->asy_excl_hi);
2711 	async->async_optr = xmit_addr;
2712 	async->async_ocnt = cc;
2713 	/*
2714 	 * If the transmitter is ready, shove some
2715 	 * characters out.
2716 	 */
2717 	xmit_progress = 0;
2718 	while (fifo_len-- && async->async_ocnt) {
2719 		if (INB(LSR) & XHRE) {
2720 			OUTB(DAT, *async->async_optr++);
2721 			async->async_ocnt--;
2722 			xmit_progress++;
2723 		}
2724 	}
2725 	asy->asy_out_of_band_xmit = xmit_progress;
2726 	if (xmit_progress > 0)
2727 		async->async_flags |= ASYNC_PROGRESS;
2728 	async->async_flags |= ASYNC_BUSY;
2729 	mutex_exit(asy->asy_excl_hi);
2730 }
2731 
2732 /*
2733  * Resume output by poking the transmitter.
2734  */
2735 static void
async_resume(struct asyncline * async)2736 async_resume(struct asyncline *async)
2737 {
2738 	register struct asycom *asy = async->async_common;
2739 
2740 	ASSERT(mutex_owned(asy->asy_excl_hi));
2741 #ifdef DEBUG
2742 	if (asydebug & ASY_DEBUG_PROCS)
2743 		printf("resume\n");
2744 #endif
2745 
2746 	asycheckflowcontrol_hw(asy);
2747 
2748 	if (INB(LSR) & XHRE) {
2749 		if (asycheckflowcontrol_sw(asy)) {
2750 			return;
2751 		} else if (async->async_ocnt > 0) {
2752 			OUTB(DAT, *async->async_optr++);
2753 			async->async_ocnt--;
2754 			async->async_flags |= ASYNC_PROGRESS;
2755 		}
2756 	}
2757 }
2758 
2759 /*
2760  * Process an "ioctl" message sent down to us.
2761  * Note that we don't need to get any locks until we are ready to access
2762  * the hardware.  Nothing we access until then is going to be altered
2763  * outside of the STREAMS framework, so we should be safe.
2764  */
2765 static void
async_ioctl(struct asyncline * async,queue_t * wq,mblk_t * mp,boolean_t iswput)2766 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp, boolean_t iswput)
2767 {
2768 	register struct asycom *asy = async->async_common;
2769 	register tty_common_t  *tp = &async->async_ttycommon;
2770 	register struct iocblk *iocp;
2771 	register unsigned datasize;
2772 	size_t ioc_count;
2773 	mblk_t *datamp;
2774 	int error = 0;
2775 	uchar_t val, icr;
2776 #ifdef DEBUG
2777 	if (asydebug & ASY_DEBUG_PROCS)
2778 		printf("ioctl\n");
2779 #endif
2780 
2781 	if (tp->t_iocpending != NULL) {
2782 		/*
2783 		 * We were holding an "ioctl" response pending the
2784 		 * availability of an "mblk" to hold data to be passed up;
2785 		 * another "ioctl" came through, which means that "ioctl"
2786 		 * must have timed out or been aborted.
2787 		 */
2788 		freemsg(async->async_ttycommon.t_iocpending);
2789 		async->async_ttycommon.t_iocpending = NULL;
2790 	}
2791 
2792 	iocp = (struct iocblk *)mp->b_rptr;
2793 
2794 	/*
2795 	 * Save off the ioc count in case we need to restore it
2796 	 * because we are queuing a message block.
2797 	 */
2798 	ioc_count = iocp->ioc_count;
2799 
2800 	/*
2801 	 * For TIOCMGET, TIOCMBIC, TIOCMBIS, TIOCMSET, and PPS, do NOT call
2802 	 * ttycommon_ioctl() because this function frees up the message block
2803 	 * (mp->b_cont) that contains the address of the user variable where
2804 	 * we need to pass back the bit array.
2805 	 *
2806 	 * Similarly, ttycommon_ioctl() does not know about CONSOPENPOLLEDIO
2807 	 * and CONSCLOSEPOLLEDIO, so don't let ttycommon_ioctl() touch them.
2808 	 */
2809 	if (iocp->ioc_cmd == TIOCMGET ||
2810 	    iocp->ioc_cmd == TIOCMBIC ||
2811 	    iocp->ioc_cmd == TIOCMBIS ||
2812 	    iocp->ioc_cmd == TIOCMSET ||
2813 	    iocp->ioc_cmd == TIOCGPPS ||
2814 	    iocp->ioc_cmd == TIOCSPPS ||
2815 	    iocp->ioc_cmd == TIOCGPPSEV ||
2816 	    iocp->ioc_cmd == CONSOPENPOLLEDIO ||
2817 	    iocp->ioc_cmd == CONSCLOSEPOLLEDIO)
2818 		error = -1; /* Do Nothing */
2819 	else
2820 
2821 	/*
2822 	 * The only way in which "ttycommon_ioctl" can fail is if the "ioctl"
2823 	 * requires a response containing data to be returned to the user,
2824 	 * and no mblk could be allocated for the data.
2825 	 * No such "ioctl" alters our state.  Thus, we always go ahead and
2826 	 * do any state-changes the "ioctl" calls for.  If we couldn't allocate
2827 	 * the data, "ttycommon_ioctl" has stashed the "ioctl" away safely, so
2828 	 * we just call "bufcall" to request that we be called back when we
2829 	 * stand a better chance of allocating the data.
2830 	 */
2831 	if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
2832 		if (async->async_wbufcid)
2833 			unbufcall(async->async_wbufcid);
2834 		async->async_wbufcid = bufcall(datasize, BPRI_HI, async_reioctl,
2835 		    async);
2836 		return;
2837 	}
2838 
2839 	mutex_enter(asy->asy_excl);
2840 
2841 	if (error == 0) {
2842 		/*
2843 		 * "ttycommon_ioctl" did most of the work; we just use the
2844 		 * data it set up.
2845 		 */
2846 		switch (iocp->ioc_cmd) {
2847 
2848 		case TCSETS:
2849 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2850 			    asy->asy_lom_console)) {
2851 				mutex_enter(asy->asy_excl_hi);
2852 				error = asy_program(asy, ASY_NOINIT);
2853 				mutex_exit(asy->asy_excl_hi);
2854 			}
2855 			break;
2856 		case TCSETSF:
2857 		case TCSETSW:
2858 		case TCSETA:
2859 		case TCSETAW:
2860 		case TCSETAF:
2861 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2862 			    asy->asy_lom_console)) {
2863 				mutex_enter(asy->asy_excl_hi);
2864 				if (iswput && asy_isbusy(asy)) {
2865 					/*
2866 					 * ttycommon_ioctl sets the db_type to
2867 					 * M_IOCACK and ioc_count to zero
2868 					 * we need to undo this when we
2869 					 * queue a control message. This will
2870 					 * allow the control messages to be
2871 					 * processed again when the chip
2872 					 * becomes available.
2873 					 */
2874 					mp->b_datap->db_type = M_IOCTL;
2875 					iocp->ioc_count = ioc_count;
2876 
2877 					if (putq(wq, mp) == 0)
2878 						freemsg(mp);
2879 					mutex_exit(asy->asy_excl_hi);
2880 					mutex_exit(asy->asy_excl);
2881 					return;
2882 				}
2883 
2884 				/*
2885 				 * TCSETA, TCSETAW, and TCSETAF make use of
2886 				 * the termio structure and therefore have
2887 				 * no concept of any speed except what can
2888 				 * be represented by CBAUD. This is because
2889 				 * of legacy SVR4 code. Therefore, if we see
2890 				 * one of the aforementioned IOCTL commands
2891 				 * we should zero out CBAUDEXT, CIBAUD, and
2892 				 * CIBAUDEXT as to not break legacy
2893 				 * functionality. This is because CBAUDEXT,
2894 				 * CIBAUD, and CIBAUDEXT can't be stored in
2895 				 * an unsigned short. By zeroing out CBAUDEXT,
2896 				 * CIBAUD, and CIBAUDEXT in the t_cflag of the
2897 				 * termios structure asy_program() will set the
2898 				 * input baud rate to the output baud rate.
2899 				 */
2900 				if (iocp->ioc_cmd == TCSETA ||
2901 				    iocp->ioc_cmd == TCSETAW ||
2902 				    iocp->ioc_cmd == TCSETAF)
2903 					tp->t_cflag &= ~(CIBAUD |
2904 					    CIBAUDEXT | CBAUDEXT);
2905 
2906 				error = asy_program(asy, ASY_NOINIT);
2907 				mutex_exit(asy->asy_excl_hi);
2908 			}
2909 			break;
2910 		case TIOCSSOFTCAR:
2911 			/* Set the driver state appropriately */
2912 			mutex_enter(asy->asy_excl_hi);
2913 			if (tp->t_flags & TS_SOFTCAR)
2914 				asy->asy_flags |= ASY_IGNORE_CD;
2915 			else
2916 				asy->asy_flags &= ~ASY_IGNORE_CD;
2917 			mutex_exit(asy->asy_excl_hi);
2918 			break;
2919 		}
2920 	} else if (error < 0) {
2921 		/*
2922 		 * "ttycommon_ioctl" didn't do anything; we process it here.
2923 		 */
2924 		error = 0;
2925 		switch (iocp->ioc_cmd) {
2926 
2927 		case TIOCGPPS:
2928 			/*
2929 			 * Get PPS on/off.
2930 			 */
2931 			if (mp->b_cont != NULL)
2932 				freemsg(mp->b_cont);
2933 
2934 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
2935 			if (mp->b_cont == NULL) {
2936 				error = ENOMEM;
2937 				break;
2938 			}
2939 			if (asy->asy_flags & ASY_PPS)
2940 				*(int *)mp->b_cont->b_wptr = 1;
2941 			else
2942 				*(int *)mp->b_cont->b_wptr = 0;
2943 			mp->b_cont->b_wptr += sizeof (int);
2944 			mp->b_datap->db_type = M_IOCACK;
2945 			iocp->ioc_count = sizeof (int);
2946 			break;
2947 
2948 		case TIOCSPPS:
2949 			/*
2950 			 * Set PPS on/off.
2951 			 */
2952 			error = miocpullup(mp, sizeof (int));
2953 			if (error != 0)
2954 				break;
2955 
2956 			mutex_enter(asy->asy_excl_hi);
2957 			if (*(int *)mp->b_cont->b_rptr)
2958 				asy->asy_flags |= ASY_PPS;
2959 			else
2960 				asy->asy_flags &= ~ASY_PPS;
2961 			/* Reset edge sense */
2962 			asy->asy_flags &= ~ASY_PPS_EDGE;
2963 			mutex_exit(asy->asy_excl_hi);
2964 			mp->b_datap->db_type = M_IOCACK;
2965 			break;
2966 
2967 		case TIOCGPPSEV: {
2968 			/*
2969 			 * Get PPS event data.
2970 			 */
2971 			mblk_t *bp;
2972 			void *buf;
2973 #ifdef _SYSCALL32_IMPL
2974 			struct ppsclockev32 p32;
2975 #endif
2976 			struct ppsclockev ppsclockev;
2977 
2978 			if (mp->b_cont != NULL) {
2979 				freemsg(mp->b_cont);
2980 				mp->b_cont = NULL;
2981 			}
2982 
2983 			if ((asy->asy_flags & ASY_PPS) == 0) {
2984 				error = ENXIO;
2985 				break;
2986 			}
2987 
2988 			/* Protect from incomplete asy_ppsev */
2989 			mutex_enter(asy->asy_excl_hi);
2990 			ppsclockev = asy_ppsev;
2991 			mutex_exit(asy->asy_excl_hi);
2992 
2993 #ifdef _SYSCALL32_IMPL
2994 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
2995 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
2996 				p32.serial = ppsclockev.serial;
2997 				buf = &p32;
2998 				iocp->ioc_count = sizeof (struct ppsclockev32);
2999 			} else
3000 #endif
3001 			{
3002 				buf = &ppsclockev;
3003 				iocp->ioc_count = sizeof (struct ppsclockev);
3004 			}
3005 
3006 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3007 				error = ENOMEM;
3008 				break;
3009 			}
3010 			mp->b_cont = bp;
3011 
3012 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
3013 			bp->b_wptr += iocp->ioc_count;
3014 			mp->b_datap->db_type = M_IOCACK;
3015 			break;
3016 		}
3017 
3018 		case TCSBRK:
3019 			error = miocpullup(mp, sizeof (int));
3020 			if (error != 0)
3021 				break;
3022 
3023 			mutex_enter(asy->asy_excl_hi);
3024 			if (*(int *)mp->b_cont->b_rptr == 0) {
3025 				/*
3026 				 * Get the divisor by calculating the rate
3027 				 */
3028 				unsigned int rate, divisor;
3029 				rate = async->async_ttycommon.t_cflag & CBAUD;
3030 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
3031 					rate += 16;
3032 				if (rate >= N_SU_SPEEDS) rate = B9600;
3033 				divisor = asyspdtab[rate] & 0xfff;
3034 
3035 				/*
3036 				 * To ensure that erroneous characters are
3037 				 * not sent out when the break is set, SB
3038 				 * recommends three steps:
3039 				 *
3040 				 * 1) pad the TSR with 0 bits
3041 				 * 2) When the TSR is full, set break
3042 				 * 3) When the TSR has been flushed, unset
3043 				 *    the break when transmission must be
3044 				 *    restored.
3045 				 *
3046 				 * We loop until the TSR is empty and then
3047 				 * set the break.  ASYNC_BREAK has been set
3048 				 * to ensure that no characters are
3049 				 * transmitted while the TSR is being
3050 				 * flushed and SOUT is being used for the
3051 				 * break signal.
3052 				 *
3053 				 * The wait period is equal to
3054 				 * clock / (baud * 16) * 16 * 2.
3055 				 */
3056 				async->async_flags |= ASYNC_BREAK;
3057 				while ((INB(LSR) & XSRE) == 0) {
3058 					mutex_exit(asy->asy_excl_hi);
3059 					mutex_exit(asy->asy_excl);
3060 					drv_usecwait(32*divisor);
3061 					mutex_enter(asy->asy_excl);
3062 					mutex_enter(asy->asy_excl_hi);
3063 				}
3064 
3065 				/*
3066 				 * Set the break bit, and arrange for
3067 				 * "async_restart" to be called in 1/4 second;
3068 				 * it will turn the break bit off, and call
3069 				 * "async_start" to grab the next message.
3070 				 */
3071 				val = INB(LCR);
3072 				OUTB(LCR, (val | SETBREAK));
3073 				mutex_exit(asy->asy_excl_hi);
3074 				(void) timeout(async_restart, async, hz / 4);
3075 			} else {
3076 #ifdef DEBUG
3077 				if (asydebug & ASY_DEBUG_CLOSE)
3078 					printf("asy%d: wait for flush.\n",
3079 					    UNIT(async->async_dev));
3080 #endif
3081 				if (iswput && asy_isbusy(asy)) {
3082 					if (putq(wq, mp) == 0)
3083 						freemsg(mp);
3084 					mutex_exit(asy->asy_excl_hi);
3085 					mutex_exit(asy->asy_excl);
3086 					return;
3087 				}
3088 				mutex_exit(asy->asy_excl_hi);
3089 #ifdef DEBUG
3090 				if (asydebug & ASY_DEBUG_CLOSE)
3091 					printf("asy%d: ldterm satisfied.\n",
3092 					    UNIT(async->async_dev));
3093 #endif
3094 			}
3095 			break;
3096 
3097 		case TIOCSBRK:
3098 			mutex_enter(asy->asy_excl_hi);
3099 			val = INB(LCR);
3100 			OUTB(LCR, (val | SETBREAK));
3101 			mutex_exit(asy->asy_excl_hi);
3102 			mutex_exit(asy->asy_excl);
3103 			miocack(wq, mp, 0, 0);
3104 			return;
3105 
3106 		case TIOCCBRK:
3107 			mutex_enter(asy->asy_excl_hi);
3108 			val = INB(LCR);
3109 			OUTB(LCR, (val & ~SETBREAK));
3110 			mutex_exit(asy->asy_excl_hi);
3111 			mutex_exit(asy->asy_excl);
3112 			miocack(wq, mp, 0, 0);
3113 			return;
3114 
3115 		case TIOCMSET:
3116 		case TIOCMBIS:
3117 		case TIOCMBIC:
3118 			if (iocp->ioc_count == TRANSPARENT)
3119 				mcopyin(mp, NULL, sizeof (int), NULL);
3120 			else {
3121 				error = miocpullup(mp, sizeof (int));
3122 				if (error != 0)
3123 					break;
3124 
3125 				mutex_enter(asy->asy_excl_hi);
3126 
3127 				(void) asymctl(asy,
3128 				    dmtoasy(*(int *)mp->b_cont->b_rptr),
3129 				    iocp->ioc_cmd);
3130 
3131 				mutex_exit(asy->asy_excl_hi);
3132 				iocp->ioc_error = 0;
3133 				mp->b_datap->db_type = M_IOCACK;
3134 			}
3135 			break;
3136 
3137 		case TIOCSILOOP:
3138 			mutex_enter(asy->asy_excl_hi);
3139 			/*
3140 			 * If somebody misues this Ioctl when used for
3141 			 * driving keyboard and mouse indicate not supported
3142 			 */
3143 			if ((asy->asy_device_type == ASY_KEYBOARD) ||
3144 			    (asy->asy_device_type == ASY_MOUSE)) {
3145 				mutex_exit(asy->asy_excl_hi);
3146 				error = ENOTTY;
3147 				break;
3148 			}
3149 
3150 			/* should not use when we're the console */
3151 			if ((async->async_dev == kbddev) ||
3152 			    (async->async_dev == rconsdev) ||
3153 			    (async->async_dev == stdindev)) {
3154 				mutex_exit(asy->asy_excl_hi);
3155 				error = EINVAL;
3156 				break;
3157 			}
3158 
3159 			val = INB(MCR);
3160 			icr = INB(ICR);
3161 			/*
3162 			 * Disable the Modem Status Interrupt
3163 			 * The reason for disabling is  the status of
3164 			 * modem signal are in the higher 4 bits instead of
3165 			 * lower four bits when in loopback mode,
3166 			 * so, donot worry about Modem interrupt when
3167 			 * you are planning to set
3168 			 * this in loopback mode until it is cleared by
3169 			 * another ioctl to get out of the loopback mode
3170 			 */
3171 			OUTB(ICR, icr & ~ MIEN);
3172 			OUTB(MCR, val | ASY_LOOP);
3173 			mutex_exit(asy->asy_excl_hi);
3174 			iocp->ioc_error = 0;
3175 			mp->b_datap->db_type = M_IOCACK;
3176 			break;
3177 
3178 		case TIOCMGET:
3179 			datamp = allocb(sizeof (int), BPRI_MED);
3180 			if (datamp == NULL) {
3181 				error = EAGAIN;
3182 				break;
3183 			}
3184 
3185 			mutex_enter(asy->asy_excl_hi);
3186 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3187 			mutex_exit(asy->asy_excl_hi);
3188 
3189 			if (iocp->ioc_count == TRANSPARENT) {
3190 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3191 			} else {
3192 				if (mp->b_cont != NULL)
3193 					freemsg(mp->b_cont);
3194 				mp->b_cont = datamp;
3195 				mp->b_cont->b_wptr += sizeof (int);
3196 				mp->b_datap->db_type = M_IOCACK;
3197 				iocp->ioc_count = sizeof (int);
3198 			}
3199 			break;
3200 
3201 		case CONSOPENPOLLEDIO:
3202 			/*
3203 			 * If we are driving a keyboard there is nothing
3204 			 * upstream to translate the scan codes. Therefore,
3205 			 * set the error code to ENOTSUP and NAK the request
3206 			 */
3207 			if (asy->asy_device_type == ASY_KEYBOARD) {
3208 				error = ENOTSUP;
3209 				break;
3210 			}
3211 
3212 			error = miocpullup(mp, sizeof (struct cons_polledio *));
3213 			if (error != 0)
3214 				break;
3215 
3216 			/*
3217 			 * send up a message block containing the
3218 			 * cons_polledio structure. This provides
3219 			 * handles to the putchar, getchar, ischar,
3220 			 * polledio_enter and polledio_exit functions.
3221 			 */
3222 			*(struct cons_polledio **)mp->b_cont->b_rptr =
3223 			    &asy->polledio;
3224 
3225 			mp->b_datap->db_type = M_IOCACK;
3226 			break;
3227 
3228 		case CONSCLOSEPOLLEDIO:
3229 			/*
3230 			 * If we are driving a keyboard we never successfully
3231 			 * called CONSOPENPOLLEDIO so set the error to
3232 			 * ENOTSUP and NAK the request.
3233 			 */
3234 			if (asy->asy_device_type == ASY_KEYBOARD) {
3235 				error = ENOTSUP;
3236 				break;
3237 			}
3238 
3239 			mp->b_datap->db_type = M_IOCACK;
3240 			iocp->ioc_error = 0;
3241 			iocp->ioc_rval = 0;
3242 			break;
3243 
3244 		default: /* unexpected ioctl type */
3245 			/*
3246 			 * If we don't understand it, it's an error.  NAK it.
3247 			 */
3248 			error = EINVAL;
3249 			break;
3250 		}
3251 	}
3252 	if (error != 0) {
3253 		iocp->ioc_error = error;
3254 		mp->b_datap->db_type = M_IOCNAK;
3255 	}
3256 	mutex_exit(asy->asy_excl);
3257 	qreply(wq, mp);
3258 }
3259 
3260 static int
asyrsrv(queue_t * q)3261 asyrsrv(queue_t *q)
3262 {
3263 	mblk_t *bp;
3264 	struct asyncline *async;
3265 
3266 	async = (struct asyncline *)q->q_ptr;
3267 
3268 	while (canputnext(q) && (bp = getq(q)))
3269 		putnext(q, bp);
3270 	ASYSETSOFT(async->async_common);
3271 	async->async_polltid = 0;
3272 	return (0);
3273 }
3274 
3275 /*
3276  * Put procedure for write queue.
3277  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3278  * set the flow control character for M_STOPI and M_STARTI messages;
3279  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3280  * by the start routine, and then call the start routine; discard
3281  * everything else.  Note that this driver does not incorporate any
3282  * mechanism to negotiate to handle the canonicalization process.
3283  * It expects that these functions are handled in upper module(s),
3284  * as we do in ldterm.
3285  */
3286 static int
asywput(queue_t * q,mblk_t * mp)3287 asywput(queue_t *q, mblk_t *mp)
3288 {
3289 	register struct asyncline *async;
3290 	register struct asycom *asy;
3291 	int error;
3292 
3293 	async = (struct asyncline *)q->q_ptr;
3294 	asy = async->async_common;
3295 
3296 	switch (mp->b_datap->db_type) {
3297 
3298 	case M_STOP:
3299 		/*
3300 		 * Since we don't do real DMA, we can just let the
3301 		 * chip coast to a stop after applying the brakes.
3302 		 */
3303 		mutex_enter(asy->asy_excl);
3304 		async->async_flags |= ASYNC_STOPPED;
3305 		mutex_exit(asy->asy_excl);
3306 		freemsg(mp);
3307 		break;
3308 
3309 	case M_START:
3310 		mutex_enter(asy->asy_excl);
3311 		if (async->async_flags & ASYNC_STOPPED) {
3312 			async->async_flags &= ~ASYNC_STOPPED;
3313 			/*
3314 			 * If an output operation is in progress,
3315 			 * resume it.  Otherwise, prod the start
3316 			 * routine.
3317 			 */
3318 			if (async->async_ocnt > 0) {
3319 				mutex_enter(asy->asy_excl_hi);
3320 				async_resume(async);
3321 				mutex_exit(asy->asy_excl_hi);
3322 			} else {
3323 				async_start(async);
3324 			}
3325 		}
3326 		mutex_exit(asy->asy_excl);
3327 		freemsg(mp);
3328 		break;
3329 
3330 	case M_IOCTL:
3331 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3332 
3333 		case TCSBRK:
3334 			error = miocpullup(mp, sizeof (int));
3335 			if (error != 0) {
3336 				miocnak(q, mp, 0, error);
3337 				return (0);
3338 			}
3339 
3340 			if (*(int *)mp->b_cont->b_rptr != 0) {
3341 #ifdef DEBUG
3342 				if (asydebug & ASY_DEBUG_CLOSE)
3343 					printf("asy%d: flush request.\n",
3344 					    UNIT(async->async_dev));
3345 #endif
3346 				(void) putq(q, mp);
3347 				mutex_enter(asy->asy_excl);
3348 				async_nstart(async, 1);
3349 				mutex_exit(asy->asy_excl);
3350 				break;
3351 			}
3352 			/*FALLTHROUGH*/
3353 		case TCSETSW:
3354 		case TCSETSF:
3355 		case TCSETAW:
3356 		case TCSETAF:
3357 			/*
3358 			 * The changes do not take effect until all
3359 			 * output queued before them is drained.
3360 			 * Put this message on the queue, so that
3361 			 * "async_start" will see it when it's done
3362 			 * with the output before it.  Poke the
3363 			 * start routine, just in case.
3364 			 */
3365 			(void) putq(q, mp);
3366 			mutex_enter(asy->asy_excl);
3367 			async_start(async);
3368 			mutex_exit(asy->asy_excl);
3369 			break;
3370 
3371 		default:
3372 			/*
3373 			 * Do it now.
3374 			 */
3375 			async_ioctl(async, q, mp, B_TRUE);
3376 			break;
3377 		}
3378 		break;
3379 
3380 	case M_FLUSH:
3381 		if (*mp->b_rptr & FLUSHW) {
3382 			mutex_enter(asy->asy_excl);
3383 
3384 			/*
3385 			 * Abort any output in progress.
3386 			 */
3387 			mutex_enter(asy->asy_excl_hi);
3388 			if (async->async_flags & ASYNC_BUSY) {
3389 				async->async_ocnt = 0;
3390 				async->async_flags &= ~ASYNC_BUSY;
3391 			}
3392 			mutex_exit(asy->asy_excl_hi);
3393 
3394 			/* Flush FIFO buffers */
3395 			if (asy->asy_use_fifo == FIFO_ON) {
3396 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH |
3397 				    (asy->asy_trig_level & 0xff));
3398 			}
3399 
3400 			/*
3401 			 * Flush our write queue.
3402 			 */
3403 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3404 			if (async->async_xmitblk != NULL) {
3405 				freeb(async->async_xmitblk);
3406 				async->async_xmitblk = NULL;
3407 			}
3408 
3409 			mutex_exit(asy->asy_excl);
3410 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3411 		}
3412 		if (*mp->b_rptr & FLUSHR) {
3413 			/* Flush FIFO buffers */
3414 			if (asy->asy_use_fifo == FIFO_ON) {
3415 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
3416 				    (asy->asy_trig_level & 0xff));
3417 			}
3418 			flushq(RD(q), FLUSHDATA);
3419 			qreply(q, mp);	/* give the read queues a crack at it */
3420 		} else {
3421 			freemsg(mp);
3422 		}
3423 
3424 		/*
3425 		 * We must make sure we process messages that survive the
3426 		 * write-side flush.  Without this call, the close protocol
3427 		 * with ldterm can hang forever.  (ldterm will have sent us a
3428 		 * TCSBRK ioctl that it expects a response to.)
3429 		 */
3430 		mutex_enter(asy->asy_excl);
3431 		async_start(async);
3432 		mutex_exit(asy->asy_excl);
3433 		break;
3434 	case M_BREAK:
3435 	case M_DELAY:
3436 	case M_DATA:
3437 		/*
3438 		 * Queue the message up to be transmitted,
3439 		 * and poke the start routine.
3440 		 */
3441 		(void) putq(q, mp);
3442 		mutex_enter(asy->asy_excl);
3443 		async_start(async);
3444 		mutex_exit(asy->asy_excl);
3445 		break;
3446 
3447 	case M_STOPI:
3448 		mutex_enter(asy->asy_excl);
3449 		async->async_flowc = async->async_stopc;
3450 		async_start(async);		/* poke the start routine */
3451 		mutex_exit(asy->asy_excl);
3452 		freemsg(mp);
3453 		break;
3454 
3455 	case M_STARTI:
3456 		mutex_enter(asy->asy_excl);
3457 		async->async_flowc = async->async_startc;
3458 		async_start(async);		/* poke the start routine */
3459 		mutex_exit(asy->asy_excl);
3460 		freemsg(mp);
3461 		break;
3462 
3463 	case M_CTL:
3464 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
3465 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
3466 			((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX;
3467 			qreply(q, mp);
3468 		} else {
3469 			/*
3470 			 * These MC_SERVICE type messages are used by upper
3471 			 * modules to tell this driver to send input up
3472 			 * immediately, or that it can wait for normal
3473 			 * processing that may or may not be done.  Sun
3474 			 * requires these for the mouse module.
3475 			 * (XXX - for x86?)
3476 			 */
3477 			mutex_enter(asy->asy_excl);
3478 			switch (*mp->b_rptr) {
3479 
3480 			case MC_SERVICEIMM:
3481 				async->async_flags |= ASYNC_SERVICEIMM;
3482 				break;
3483 
3484 			case MC_SERVICEDEF:
3485 				async->async_flags &= ~ASYNC_SERVICEIMM;
3486 				break;
3487 			}
3488 			mutex_exit(asy->asy_excl);
3489 			freemsg(mp);
3490 		}
3491 		break;
3492 
3493 	case M_IOCDATA:
3494 		async_iocdata(q, mp);
3495 		break;
3496 
3497 	default:
3498 		freemsg(mp);
3499 		break;
3500 	}
3501 	return (0);
3502 }
3503 
3504 /*
3505  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
3506  * the buffer we need.
3507  */
3508 static void
async_reioctl(void * arg)3509 async_reioctl(void *arg)
3510 {
3511 	struct asyncline *async = arg;
3512 	struct asycom *asy = async->async_common;
3513 	queue_t	*q;
3514 	mblk_t		*mp;
3515 
3516 	/*
3517 	 * The bufcall is no longer pending.
3518 	 */
3519 	mutex_enter(asy->asy_excl);
3520 	async->async_wbufcid = 0;
3521 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3522 		mutex_exit(asy->asy_excl);
3523 		return;
3524 	}
3525 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
3526 		/* not pending any more */
3527 		async->async_ttycommon.t_iocpending = NULL;
3528 		mutex_exit(asy->asy_excl);
3529 		/* not in STREAMS queue; we no longer know if we're in wput */
3530 		async_ioctl(async, q, mp, B_TRUE);
3531 	} else
3532 		mutex_exit(asy->asy_excl);
3533 }
3534 
3535 static void
async_iocdata(queue_t * q,mblk_t * mp)3536 async_iocdata(queue_t *q, mblk_t *mp)
3537 {
3538 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
3539 	struct asycom		*asy;
3540 	struct copyresp *csp;
3541 
3542 	asy = async->async_common;
3543 	csp = (struct copyresp *)mp->b_rptr;
3544 
3545 	if (csp->cp_rval != 0) {
3546 		freemsg(mp);
3547 		return;
3548 	}
3549 
3550 	mutex_enter(asy->asy_excl);
3551 
3552 	switch (csp->cp_cmd) {
3553 	case TIOCMSET:
3554 	case TIOCMBIS:
3555 	case TIOCMBIC:
3556 		if (mp->b_cont == NULL) {
3557 			mutex_exit(asy->asy_excl);
3558 			miocnak(q, mp, 0, EINVAL);
3559 			break;
3560 		}
3561 
3562 		mutex_enter(asy->asy_excl_hi);
3563 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
3564 		    csp->cp_cmd);
3565 		mutex_exit(asy->asy_excl_hi);
3566 
3567 		freemsg(mp->b_cont);
3568 		mp->b_cont = NULL;
3569 		mutex_exit(asy->asy_excl);
3570 		miocack(q, mp, 0, 0);
3571 		break;
3572 
3573 	case TIOCMGET:
3574 		if (mp->b_cont != NULL) {
3575 			freemsg(mp->b_cont);
3576 			mp->b_cont = NULL;
3577 		}
3578 		mutex_exit(asy->asy_excl);
3579 		miocack(q, mp, 0, 0);
3580 		break;
3581 
3582 	default:
3583 		mutex_exit(asy->asy_excl);
3584 		miocnak(q, mp, 0, EINVAL);
3585 		break;
3586 	}
3587 }
3588 
3589 
3590 /*
3591  * Set or get the modem control status.
3592  */
3593 static int
asymctl(struct asycom * asy,int bits,int how)3594 asymctl(struct asycom *asy, int bits, int how)
3595 {
3596 	register int mcr_r, msr_r;
3597 
3598 	ASSERT(mutex_owned(asy->asy_excl_hi));
3599 	ASSERT(mutex_owned(asy->asy_excl));
3600 
3601 	/* Read Modem Control Registers */
3602 	mcr_r = INB(MCR);
3603 
3604 	switch (how) {
3605 
3606 	case TIOCMSET:
3607 		mcr_r = bits;
3608 		break;
3609 
3610 	case TIOCMBIS:
3611 		mcr_r |= bits;			/* Set bits from input	*/
3612 		break;
3613 
3614 	case TIOCMBIC:
3615 		mcr_r &= ~bits;			/* Set ~bits from input	*/
3616 		break;
3617 
3618 	case TIOCMGET:
3619 		/* Read Modem Status Registers */
3620 		if (INB(ICR) & MIEN)
3621 			msr_r = asy->asy_cached_msr;
3622 		else
3623 			msr_r = INB(MSR);
3624 		return (asytodm(mcr_r, msr_r));
3625 	}
3626 
3627 	OUTB(MCR, mcr_r);
3628 
3629 	return (mcr_r);
3630 }
3631 
3632 static int
asytodm(int mcr_r,int msr_r)3633 asytodm(int mcr_r, int msr_r)
3634 {
3635 	register int b = 0;
3636 
3637 
3638 	/* MCR registers */
3639 	if (mcr_r & RTS)
3640 		b |= TIOCM_RTS;
3641 
3642 	if (mcr_r & DTR)
3643 		b |= TIOCM_DTR;
3644 
3645 	/* MSR registers */
3646 	if (msr_r & DCD)
3647 		b |= TIOCM_CAR;
3648 
3649 	if (msr_r & CTS)
3650 		b |= TIOCM_CTS;
3651 
3652 	if (msr_r & DSR)
3653 		b |= TIOCM_DSR;
3654 
3655 	if (msr_r & RI)
3656 		b |= TIOCM_RNG;
3657 
3658 	return (b);
3659 }
3660 
3661 static int
dmtoasy(int bits)3662 dmtoasy(int bits)
3663 {
3664 	register int b = 0;
3665 
3666 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
3667 	if (bits & TIOCM_CAR)
3668 		b |= DCD;
3669 	if (bits & TIOCM_CTS)
3670 		b |= CTS;
3671 	if (bits & TIOCM_DSR)
3672 		b |= DSR;
3673 	if (bits & TIOCM_RNG)
3674 		b |= RI;
3675 #endif
3676 
3677 	if (bits & TIOCM_RTS)
3678 		b |= RTS;
3679 	if (bits & TIOCM_DTR)
3680 		b |= DTR;
3681 
3682 	return (b);
3683 }
3684 
3685 static void
asycheckflowcontrol_hw(struct asycom * asy)3686 asycheckflowcontrol_hw(struct asycom *asy)
3687 {
3688 	struct asyncline *async;
3689 	uchar_t	mcr, flag;
3690 
3691 	ASSERT(mutex_owned(asy->asy_excl_hi));
3692 
3693 	async = (struct asyncline *)asy->asy_priv;
3694 	ASSERT(async != NULL);
3695 
3696 	if (async->async_ttycommon.t_cflag & CRTSXOFF) {
3697 		mcr = INB(MCR);
3698 		flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
3699 		if (((mcr ^ flag) & RTS) != 0) {
3700 			OUTB(MCR, (mcr ^ RTS));
3701 		}
3702 	}
3703 }
3704 
3705 static boolean_t
asycheckflowcontrol_sw(struct asycom * asy)3706 asycheckflowcontrol_sw(struct asycom *asy)
3707 {
3708 	uchar_t		ss;
3709 	struct asyncline *async;
3710 	int rval = B_FALSE;
3711 
3712 	ASSERT(mutex_owned(asy->asy_excl_hi));
3713 
3714 	async = (struct asyncline *)asy->asy_priv;
3715 	ASSERT(async != NULL);
3716 
3717 	if ((ss = async->async_flowc) != '\0' && (INB(LSR) & XHRE)) {
3718 		/*
3719 		 * If we get this far, then we know that flowc is non-zero and
3720 		 * that there's transmit room available.  We've "handled" the
3721 		 * request now, so clear it.  If the user didn't ask for IXOFF,
3722 		 * then don't actually send anything, but wait for the next
3723 		 * opportunity.
3724 		 */
3725 		async->async_flowc = '\0';
3726 		if (async->async_ttycommon.t_iflag & IXOFF) {
3727 			async->async_flags |= ASYNC_BUSY;
3728 			OUTB(DAT, ss);
3729 			rval = B_TRUE;
3730 		}
3731 	}
3732 
3733 	return (rval);
3734 }
3735 
3736 /*
3737  * Check for abort character sequence
3738  */
3739 static boolean_t
abort_charseq_recognize(uchar_t ch)3740 abort_charseq_recognize(uchar_t ch)
3741 {
3742 	static int state = 0;
3743 #define	CNTRL(c) ((c)&037)
3744 	static char sequence[] = { '\r', '~', CNTRL('b') };
3745 
3746 	if (ch == sequence[state]) {
3747 		if (++state >= sizeof (sequence)) {
3748 			state = 0;
3749 			return (B_TRUE);
3750 		}
3751 	} else {
3752 		state = (ch == sequence[0]) ? 1 : 0;
3753 	}
3754 	return (B_FALSE);
3755 }
3756