/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *); int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp); int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp); int (*opl_get_mem_addr)(char *unum, char *sid, uint64_t offset, uint64_t *paddr); /* Memory for fcode claims. 16k times # maximum possible IO units */ #define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000) int efcode_size = EFCODE_SIZE; #define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */ /* Set the maximum number of boards for DR */ int opl_boards = OPL_MAX_BOARDS; void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t); extern int tsb_lgrp_affinity; int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) * (OPL_MAX_TSBS_PER_PCICH); pgcnt_t opl_startup_cage_size = 0; /* * The length of the delay in seconds in communication with XSCF after * which the warning message will be logged. */ uint_t xscf_connect_delay = 60 * 15; static opl_model_info_t opl_models[] = { { "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE }, { "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE }, { "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE }, { "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE }, { "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE }, { "IKKAKU", OPL_MAX_BOARDS_IKKAKU, IKKAKU, STD_DISPATCH_TABLE }, }; static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t); /* * opl_cur_model */ static opl_model_info_t *opl_cur_model = NULL; static struct memlist *opl_memlist_per_board(struct memlist *ml); static void post_xscf_msg(char *, int); static void pass2xscf_thread(); /* * Note FF/DC out-of-order instruction engine takes only a * single cycle to execute each spin loop * for comparison, Panther takes 6 cycles for same loop * OPL_BOFF_SPIN = base spin loop, roughly one memory reference time * OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C) * OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep * OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus * Listed values tuned for 2.15GHz to 2.64GHz systems * Value may change for future systems */ #define OPL_BOFF_SPIN 7 #define OPL_BOFF_SLEEP 4 #define OPL_BOFF_TM 1600 #define OPL_BOFF_MAX_SCALE 8 #define OPL_CLOCK_TICK_THRESHOLD 128 #define OPL_CLOCK_TICK_NCPUS 64 extern int clock_tick_threshold; extern int clock_tick_ncpus; int set_platform_max_ncpus(void) { return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS); } int set_platform_tsb_spares(void) { return (MIN(opl_tsb_spares, MAX_UPA)); } static void set_model_info() { extern int ts_dispatch_extended; char name[MAXSYSNAME]; int i; /* * Get model name from the root node. * * We are using the prom device tree since, at this point, * the Solaris device tree is not yet setup. */ (void) prom_getprop(prom_rootnode(), "model", (caddr_t)name); for (i = 0; i < opl_num_models; i++) { if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) { opl_cur_model = &opl_models[i]; break; } } /* * If model not matched, it's an unknown model. * Just return. It will default to standard dispatch tables. */ if (i == opl_num_models) return; if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) && (ts_dispatch_extended == -1)) { /* * Based on a platform model, select a dispatch table. * Only DC2 and DC3 systems uses the alternate/extended * TS dispatch table. * IKKAKU, FF1, FF2 and DC1 systems use standard dispatch * tables. */ ts_dispatch_extended = 1; } } static void set_max_mmu_ctxdoms() { extern uint_t max_mmu_ctxdoms; int max_boards; /* * From the model, get the maximum number of boards * supported and set the value accordingly. If the model * could not be determined or recognized, we assume the max value. */ if (opl_cur_model == NULL) max_boards = OPL_MAX_BOARDS; else max_boards = opl_cur_model->model_max_boards; /* * On OPL, cores and MMUs are one-to-one. */ max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards; } #pragma weak mmu_init_large_pages void set_platform_defaults(void) { extern char *tod_module_name; extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int); extern void mmu_init_large_pages(size_t); /* Set the CPU signature function pointer */ cpu_sgn_func = cpu_sgn_update; /* Set appropriate tod module for OPL platform */ ASSERT(tod_module_name == NULL); tod_module_name = "todopl"; if ((mmu_page_sizes == max_mmu_page_sizes) && (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { if (&mmu_init_large_pages) mmu_init_large_pages(mmu_ism_pagesize); } tsb_lgrp_affinity = 1; set_max_mmu_ctxdoms(); /* set OPL threshold for compressed dumps */ dump_plat_mincpu_default = DUMP_PLAT_SUN4U_OPL_MINCPU; } /* * Convert logical a board number to a physical one. */ #define LSBPROP "board#" #define PSBPROP "physical-board#" int opl_get_physical_board(int id) { dev_info_t *root_dip, *dip = NULL; char *dname = NULL; int circ; pnode_t pnode; char pname[MAXSYSNAME] = {0}; int lsb_id; /* Logical System Board ID */ int psb_id; /* Physical System Board ID */ /* * This function is called on early stage of bootup when the * kernel device tree is not initialized yet, and also * later on when the device tree is up. We want to try * the fast track first. */ root_dip = ddi_root_node(); if (root_dip) { /* Get from devinfo node */ ndi_devi_enter(root_dip, &circ); for (dip = ddi_get_child(root_dip); dip; dip = ddi_get_next_sibling(dip)) { dname = ddi_node_name(dip); if (strncmp(dname, "pseudo-mc", 9) != 0) continue; if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, LSBPROP, -1)) == -1) continue; if (id == lsb_id) { if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, PSBPROP, -1)) == -1) { ndi_devi_exit(root_dip, circ); return (-1); } else { ndi_devi_exit(root_dip, circ); return (psb_id); } } } ndi_devi_exit(root_dip, circ); } /* * We do not have the kernel device tree, or we did not * find the node for some reason (let's say the kernel * device tree was modified), let's try the OBP tree. */ pnode = prom_rootnode(); for (pnode = prom_childnode(pnode); pnode; pnode = prom_nextnode(pnode)) { if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) || (strncmp(pname, "pseudo-mc", 9) != 0)) continue; if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1) continue; if (id == lsb_id) { if (prom_getprop(pnode, PSBPROP, (caddr_t)&psb_id) == -1) { return (-1); } else { return (psb_id); } } } return (-1); } /* * For OPL it's possible that memory from two or more successive boards * will be contiguous across the boards, and therefore represented as a * single chunk. * This function splits such chunks down the board boundaries. */ static struct memlist * opl_memlist_per_board(struct memlist *ml) { uint64_t ssize, low, high, boundary; struct memlist *head, *tail, *new; ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); head = tail = NULL; for (; ml; ml = ml->ml_next) { low = (uint64_t)ml->ml_address; high = low+(uint64_t)(ml->ml_size); while (low < high) { boundary = roundup(low+1, ssize); boundary = MIN(high, boundary); new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP); new->ml_address = low; new->ml_size = boundary - low; if (head == NULL) head = new; if (tail) { tail->ml_next = new; new->ml_prev = tail; } tail = new; low = boundary; } } return (head); } void set_platform_cage_params(void) { extern pgcnt_t total_pages; extern struct memlist *phys_avail; struct memlist *ml, *tml; if (kernel_cage_enable) { pgcnt_t preferred_cage_size; preferred_cage_size = MAX(opl_startup_cage_size, total_pages / 256); ml = opl_memlist_per_board(phys_avail); /* * Note: we are assuming that post has load the * whole show in to the high end of memory. Having * taken this leap, we copy the whole of phys_avail * the glist and arrange for the cage to grow * downward (descending pfns). */ kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size); /* free the memlist */ do { tml = ml->ml_next; kmem_free(ml, sizeof (struct memlist)); ml = tml; } while (ml != NULL); } if (kcage_on) cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED"); else cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED"); } /*ARGSUSED*/ int plat_cpu_poweron(struct cpu *cp) { int (*opl_cpu_poweron)(struct cpu *) = NULL; opl_cpu_poweron = (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0); if (opl_cpu_poweron == NULL) return (ENOTSUP); else return ((opl_cpu_poweron)(cp)); } /*ARGSUSED*/ int plat_cpu_poweroff(struct cpu *cp) { int (*opl_cpu_poweroff)(struct cpu *) = NULL; opl_cpu_poweroff = (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0); if (opl_cpu_poweroff == NULL) return (ENOTSUP); else return ((opl_cpu_poweroff)(cp)); } int plat_max_boards(void) { /* * If the model cannot be determined, default to the max value. * Otherwise, Ikkaku model only supports 1 system board. */ if ((opl_cur_model != NULL) && (opl_cur_model->model_type == IKKAKU)) return (OPL_MAX_BOARDS_IKKAKU); else return (OPL_MAX_BOARDS); } int plat_max_cpu_units_per_board(void) { return (OPL_MAX_CPU_PER_BOARD); } int plat_max_mem_units_per_board(void) { return (OPL_MAX_MEM_UNITS_PER_BOARD); } int plat_max_io_units_per_board(void) { return (OPL_MAX_IO_UNITS_PER_BOARD); } int plat_max_cmp_units_per_board(void) { return (OPL_MAX_CMP_UNITS_PER_BOARD); } int plat_max_core_units_per_board(void) { return (OPL_MAX_CORE_UNITS_PER_BOARD); } int plat_pfn_to_mem_node(pfn_t pfn) { return (pfn >> mem_node_pfn_shift); } /* ARGSUSED */ void plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) { size_t elem; pfn_t basepfn; pgcnt_t npgs; uint64_t boundary, ssize; uint64_t low, high; /* * OPL mem slices are always aligned on a 256GB boundary. */ mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT; mem_node_physalign = 0; /* * Boot install lists are arranged , , ... */ ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); for (elem = 0; elem < nelems; list++, elem++) { low = list->addr; high = low + list->size; while (low < high) { boundary = roundup(low+1, ssize); boundary = MIN(high, boundary); basepfn = btop(low); npgs = btop(boundary - low); mem_node_add_slice(basepfn, basepfn + npgs - 1); low = boundary; } } } /* * Find the CPU associated with a slice at boot-time. */ void plat_fill_mc(pnode_t nodeid) { int board; int memnode; struct { uint64_t addr; uint64_t size; } mem_range; if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) { panic("Can not find board# property in mc node %x", nodeid); } if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) { panic("Can not find sb-mem-ranges property in mc node %x", nodeid); } memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT; plat_assign_lgrphand_to_mem_node(board, memnode); } /* * Return the platform handle for the lgroup containing the given CPU * * For OPL, lgroup platform handle == board #. */ extern int mpo_disabled; extern lgrp_handle_t lgrp_default_handle; lgrp_handle_t plat_lgrp_cpu_to_hand(processorid_t id) { lgrp_handle_t plathand; /* * Return the real platform handle for the CPU until * such time as we know that MPO should be disabled. * At that point, we set the "mpo_disabled" flag to true, * and from that point on, return the default handle. * * By the time we know that MPO should be disabled, the * first CPU will have already been added to a leaf * lgroup, but that's ok. The common lgroup code will * double check that the boot CPU is in the correct place, * and in the case where mpo should be disabled, will move * it to the root if necessary. */ if (mpo_disabled) { /* If MPO is disabled, return the default (UMA) handle */ plathand = lgrp_default_handle; } else plathand = (lgrp_handle_t)LSB_ID(id); return (plathand); } /* * Platform specific lgroup initialization */ void plat_lgrp_init(void) { extern uint32_t lgrp_expand_proc_thresh; extern uint32_t lgrp_expand_proc_diff; const uint_t m = LGRP_LOADAVG_THREAD_MAX; /* * Set tuneables for the OPL architecture * * lgrp_expand_proc_thresh is the threshold load on the set of * lgroups a process is currently using on before considering * adding another lgroup to the set. For Oly-C and Jupiter * systems, there are four sockets per lgroup. Setting * lgrp_expand_proc_thresh to add lgroups when the load reaches * four threads will spread the load when it exceeds one thread * per socket, optimizing memory bandwidth and L2 cache space. * * lgrp_expand_proc_diff determines how much less another lgroup * must be loaded before shifting the start location of a thread * to it. * * lgrp_loadavg_tolerance is the threshold where two lgroups are * considered to have different loads. It is set to be less than * 1% so that even a small residual load will be considered different * from no residual load. * * We note loadavg values are not precise. * Every 1/10 of a second loadavg values are reduced by 5%. * This adjustment can come in the middle of the lgroup selection * process, and for larger parallel apps with many threads can * frequently occur between the start of the second thread * placement and the finish of the last thread placement. * We also must be careful to not use too small of a threshold * since the cumulative decay for 1 second idle time is 40%. * That is, the residual load from completed threads will still * be 60% one second after the proc goes idle or 8% after 5 seconds. * * To allow for lag time in loadavg calculations * remote thresh = 3.75 * LGRP_LOADAVG_THREAD_MAX * local thresh = 0.75 * LGRP_LOADAVG_THREAD_MAX * tolerance = 0.0078 * LGRP_LOADAVG_THREAD_MAX * * The load placement algorithms consider LGRP_LOADAVG_THREAD_MAX * as the equivalent of a load of 1. To make the code more compact, * we set m = LGRP_LOADAVG_THREAD_MAX. */ lgrp_expand_proc_thresh = (m * 3) + (m >> 1) + (m >> 2); lgrp_expand_proc_diff = (m >> 1) + (m >> 2); lgrp_loadavg_tolerance = (m >> 7); } /* * Platform notification of lgroup (re)configuration changes */ /*ARGSUSED*/ void plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg) { update_membounds_t *umb; lgrp_config_mem_rename_t lmr; int sbd, tbd; lgrp_handle_t hand, shand, thand; int mnode, snode, tnode; pfn_t start, end; if (mpo_disabled) return; switch (evt) { case LGRP_CONFIG_MEM_ADD: /* * Establish the lgroup handle to memnode translation. */ umb = (update_membounds_t *)arg; hand = umb->u_board; mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT); plat_assign_lgrphand_to_mem_node(hand, mnode); break; case LGRP_CONFIG_MEM_DEL: /* * Special handling for possible memory holes. */ umb = (update_membounds_t *)arg; hand = umb->u_board; if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) { if (mem_node_config[mnode].exists) { start = mem_node_config[mnode].physbase; end = mem_node_config[mnode].physmax; mem_node_del_slice(start, end); } } break; case LGRP_CONFIG_MEM_RENAME: /* * During a DR copy-rename operation, all of the memory * on one board is moved to another board -- but the * addresses/pfns and memnodes don't change. This means * the memory has changed locations without changing identity. * * Source is where we are copying from and target is where we * are copying to. After source memnode is copied to target * memnode, the physical addresses of the target memnode are * renamed to match what the source memnode had. Then target * memnode can be removed and source memnode can take its * place. * * To do this, swap the lgroup handle to memnode mappings for * the boards, so target lgroup will have source memnode and * source lgroup will have empty target memnode which is where * its memory will go (if any is added to it later). * * Then source memnode needs to be removed from its lgroup * and added to the target lgroup where the memory was living * but under a different name/memnode. The memory was in the * target memnode and now lives in the source memnode with * different physical addresses even though it is the same * memory. */ sbd = arg & 0xffff; tbd = (arg & 0xffff0000) >> 16; shand = sbd; thand = tbd; snode = plat_lgrphand_to_mem_node(shand); tnode = plat_lgrphand_to_mem_node(thand); /* * Special handling for possible memory holes. */ if (tnode != -1 && mem_node_config[tnode].exists) { start = mem_node_config[tnode].physbase; end = mem_node_config[tnode].physmax; mem_node_del_slice(start, end); } plat_assign_lgrphand_to_mem_node(thand, snode); plat_assign_lgrphand_to_mem_node(shand, tnode); lmr.lmem_rename_from = shand; lmr.lmem_rename_to = thand; /* * Remove source memnode of copy rename from its lgroup * and add it to its new target lgroup */ lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode, (uintptr_t)&lmr); break; default: break; } } /* * Return latency between "from" and "to" lgroups * * This latency number can only be used for relative comparison * between lgroups on the running system, cannot be used across platforms, * and may not reflect the actual latency. It is platform and implementation * specific, so platform gets to decide its value. It would be nice if the * number was at least proportional to make comparisons more meaningful though. * NOTE: The numbers below are supposed to be load latencies for uncached * memory divided by 10. * */ int plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) { /* * Return min remote latency when there are more than two lgroups * (root and child) and getting latency between two different lgroups * or root is involved */ if (lgrp_optimizations() && (from != to || from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) return (42); else return (35); } /* * Return platform handle for root lgroup */ lgrp_handle_t plat_lgrp_root_hand(void) { if (mpo_disabled) return (lgrp_default_handle); return (LGRP_DEFAULT_HANDLE); } /*ARGSUSED*/ void plat_freelist_process(int mnode) { } void load_platform_drivers(void) { (void) i_ddi_attach_pseudo_node("dr"); } /* * No platform drivers on this platform */ char *platform_module_list[] = { (char *)0 }; /*ARGSUSED*/ void plat_tod_fault(enum tod_fault_type tod_bad) { } /*ARGSUSED*/ void cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid) { static void (*scf_panic_callback)(int); static void (*scf_shutdown_callback)(int); /* * This is for notifing system panic/shutdown to SCF. * In case of shutdown and panic, SCF call back * function should be called. * * scf_panic_callb() : panicsys()->panic_quiesce_hw() * scf_shutdown_callb(): halt() or power_down() or reboot_machine() * cpuid should be -1 and state should be SIGST_EXIT. */ if (state == SIGST_EXIT && cpuid == -1) { /* * find the symbol for the SCF panic callback routine in driver */ if (scf_panic_callback == NULL) scf_panic_callback = (void (*)(int)) modgetsymvalue("scf_panic_callb", 0); if (scf_shutdown_callback == NULL) scf_shutdown_callback = (void (*)(int)) modgetsymvalue("scf_shutdown_callb", 0); switch (sub_state) { case SIGSUBST_PANIC: if (scf_panic_callback == NULL) { cmn_err(CE_NOTE, "!cpu_sgn_update: " "scf_panic_callb not found\n"); return; } scf_panic_callback(SIGSUBST_PANIC); break; case SIGSUBST_HALT: if (scf_shutdown_callback == NULL) { cmn_err(CE_NOTE, "!cpu_sgn_update: " "scf_shutdown_callb not found\n"); return; } scf_shutdown_callback(SIGSUBST_HALT); break; case SIGSUBST_ENVIRON: if (scf_shutdown_callback == NULL) { cmn_err(CE_NOTE, "!cpu_sgn_update: " "scf_shutdown_callb not found\n"); return; } scf_shutdown_callback(SIGSUBST_ENVIRON); break; case SIGSUBST_REBOOT: if (scf_shutdown_callback == NULL) { cmn_err(CE_NOTE, "!cpu_sgn_update: " "scf_shutdown_callb not found\n"); return; } scf_shutdown_callback(SIGSUBST_REBOOT); break; } } } /*ARGSUSED*/ int plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) { /* * check if it's a Memory error. */ if (flt_in_memory) { if (opl_get_mem_unum != NULL) { return (opl_get_mem_unum(synd_code, flt_addr, buf, buflen, lenp)); } else { return (ENOTSUP); } } else { return (ENOTSUP); } } /*ARGSUSED*/ int plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) { int ret = 0; int sb; int plen; sb = opl_get_physical_board(LSB_ID(cpuid)); if (sb == -1) { return (ENXIO); } /* * opl_cur_model is assigned here */ if (opl_cur_model == NULL) { set_model_info(); /* * if not matched, return */ if (opl_cur_model == NULL) return (ENODEV); } ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type)); switch (opl_cur_model->model_type) { case FF1: plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A", CHIP_ID(cpuid) / 2); break; case FF2: plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B", (CHIP_ID(cpuid) / 2) + (sb * 2)); break; case DC1: case DC2: case DC3: plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb, CHIP_ID(cpuid)); break; case IKKAKU: plen = snprintf(buf, buflen, "/%s", "MBU_A"); break; default: /* This should never happen */ return (ENODEV); } if (plen >= buflen) { ret = ENOSPC; } else { if (lenp) *lenp = strlen(buf); } return (ret); } void plat_nodename_set(void) { post_xscf_msg((char *)&utsname, sizeof (struct utsname)); } caddr_t efcode_vaddr = NULL; /* * Preallocate enough memory for fcode claims. */ caddr_t efcode_alloc(caddr_t alloc_base) { caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE); caddr_t vaddr; /* * allocate the physical memory for the Oberon fcode. */ if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base, efcode_size, MMU_PAGESIZE)) == NULL) cmn_err(CE_PANIC, "Cannot allocate Efcode Memory"); efcode_vaddr = vaddr; return (efcode_alloc_base + efcode_size); } caddr_t plat_startup_memlist(caddr_t alloc_base) { caddr_t tmp_alloc_base; tmp_alloc_base = efcode_alloc(alloc_base); tmp_alloc_base = (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize); return (tmp_alloc_base); } /* need to forward declare these */ static void plat_lock_delay(uint_t); void startup_platform(void) { if (clock_tick_threshold == 0) clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD; if (clock_tick_ncpus == 0) clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS; mutex_lock_delay = plat_lock_delay; mutex_cap_factor = OPL_BOFF_MAX_SCALE; } static uint_t get_mmu_id(processorid_t cpuid) { int pb = opl_get_physical_board(LSB_ID(cpuid)); if (pb == -1) { cmn_err(CE_PANIC, "opl_get_physical_board failed (cpu %d LSB %u)", cpuid, LSB_ID(cpuid)); } return (pb * OPL_MAX_COREID_PER_BOARD) + (CHIP_ID(cpuid) * OPL_MAX_COREID_PER_CMP) + CORE_ID(cpuid); } void plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info) { int impl; impl = cpunodes[cpuid].implementation; if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) { info->mmu_idx = get_mmu_id(cpuid); info->mmu_nctxs = 8192; } else { cmn_err(CE_PANIC, "Unknown processor %d", impl); } } int plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) { if (opl_get_mem_sid == NULL) { return (ENOTSUP); } return (opl_get_mem_sid(unum, buf, buflen, lenp)); } int plat_get_mem_offset(uint64_t paddr, uint64_t *offp) { if (opl_get_mem_offset == NULL) { return (ENOTSUP); } return (opl_get_mem_offset(paddr, offp)); } int plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) { if (opl_get_mem_addr == NULL) { return (ENOTSUP); } return (opl_get_mem_addr(unum, sid, offset, addrp)); } void plat_lock_delay(uint_t backoff) { int i; uint_t cnt, remcnt; int ctr; hrtime_t delay_start, rem_delay; /* * Platform specific lock delay code for OPL * * Using staged linear increases in the delay. * The sleep instruction is the preferred method of delay, * but is too large of granularity for the initial backoff. */ if (backoff < 100) { /* * If desired backoff is long enough, * use sleep for most of it */ for (cnt = backoff; cnt >= OPL_BOFF_SLEEP; cnt -= OPL_BOFF_SLEEP) { cpu_smt_pause(); } /* * spin for small remainder of backoff */ for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) { mutex_delay_default(); } } else { /* backoff is large. Fill it by sleeping */ delay_start = gethrtime_waitfree(); cnt = backoff / OPL_BOFF_SLEEP; /* * use sleep instructions for delay */ for (i = 0; i < cnt; i++) { cpu_smt_pause(); } /* * Note: if the other strand executes a sleep instruction, * then the sleep ends immediately with a minimum time of * 42 clocks. We check gethrtime to insure we have * waited long enough. And we include both a short * spin loop and a sleep for repeated delay times. */ rem_delay = gethrtime_waitfree() - delay_start; while (rem_delay < cnt * OPL_BOFF_TM) { remcnt = cnt - (rem_delay / OPL_BOFF_TM); for (i = 0; i < remcnt; i++) { cpu_smt_pause(); for (ctr = OPL_BOFF_SPIN; ctr; ctr--) { mutex_delay_default(); } } rem_delay = gethrtime_waitfree() - delay_start; } } } /* * The following code implements asynchronous call to XSCF to setup the * domain node name. */ #define FREE_MSG(m) kmem_free((m), NM_LEN((m)->len)) /* * The following three macros define the all operations on the request * list we are using here, and hide the details of the list * implementation from the code. */ #define PUSH(m) \ { \ (m)->next = ctl_msg.head; \ (m)->prev = NULL; \ if ((m)->next != NULL) \ (m)->next->prev = (m); \ ctl_msg.head = (m); \ } #define REMOVE(m) \ { \ if ((m)->prev != NULL) \ (m)->prev->next = (m)->next; \ else \ ctl_msg.head = (m)->next; \ if ((m)->next != NULL) \ (m)->next->prev = (m)->prev; \ } #define FREE_THE_TAIL(head) \ { \ nm_msg_t *n_msg, *m; \ m = (head)->next; \ (head)->next = NULL; \ while (m != NULL) { \ n_msg = m->next; \ FREE_MSG(m); \ m = n_msg; \ } \ } #define SCF_PUTINFO(f, s, p) \ f(KEY_ESCF, 0x01, 0, s, p) #define PASS2XSCF(m, r) ((r = SCF_PUTINFO(ctl_msg.scf_service_function, \ (m)->len, (m)->data)) == 0) /* * The value of the following macro loosely depends on the * value of the "device busy" timeout used in the SCF driver. * (See pass2xscf_thread()). */ #define SCF_DEVBUSY_DELAY 10 /* * The default number of attempts to contact the scf driver * if we cannot fetch any information about the timeout value * it uses. */ #define REPEATS 4 typedef struct nm_msg { struct nm_msg *next; struct nm_msg *prev; int len; char data[1]; } nm_msg_t; #define NM_LEN(len) (sizeof (nm_msg_t) + (len) - 1) static struct ctlmsg { nm_msg_t *head; nm_msg_t *now_serving; kmutex_t nm_lock; kthread_t *nmt; int cnt; int (*scf_service_function)(uint32_t, uint8_t, uint32_t, uint32_t, void *); } ctl_msg; static void post_xscf_msg(char *dp, int len) { nm_msg_t *msg; msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP); bcopy(dp, msg->data, len); msg->len = len; mutex_enter(&ctl_msg.nm_lock); if (ctl_msg.nmt == NULL) { ctl_msg.nmt = thread_create(NULL, 0, pass2xscf_thread, NULL, 0, &p0, TS_RUN, minclsyspri); } PUSH(msg); ctl_msg.cnt++; mutex_exit(&ctl_msg.nm_lock); } static void pass2xscf_thread() { nm_msg_t *msg; int ret; uint_t i, msg_sent, xscf_driver_delay; static uint_t repeat_cnt; uint_t *scf_wait_cnt; mutex_enter(&ctl_msg.nm_lock); /* * Find the address of the SCF put routine if it's not done yet. */ if (ctl_msg.scf_service_function == NULL) { if ((ctl_msg.scf_service_function = (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *)) modgetsymvalue("scf_service_putinfo", 0)) == NULL) { cmn_err(CE_NOTE, "pass2xscf_thread: " "scf_service_putinfo not found\n"); ctl_msg.nmt = NULL; mutex_exit(&ctl_msg.nm_lock); return; } } /* * Calculate the number of attempts to connect XSCF based on the * scf driver delay (which is * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value * of xscf_connect_delay (the total number of seconds to wait * till xscf get ready.) */ if (repeat_cnt == 0) { if ((scf_wait_cnt = (uint_t *) modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) { repeat_cnt = REPEATS; } else { xscf_driver_delay = *scf_wait_cnt * SCF_DEVBUSY_DELAY; repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1; } } while (ctl_msg.cnt != 0) { /* * Take the very last request from the queue, */ ctl_msg.now_serving = ctl_msg.head; ASSERT(ctl_msg.now_serving != NULL); /* * and discard all the others if any. */ FREE_THE_TAIL(ctl_msg.now_serving); ctl_msg.cnt = 1; mutex_exit(&ctl_msg.nm_lock); /* * Pass the name to XSCF. Note please, we do not hold the * mutex while we are doing this. */ msg_sent = 0; for (i = 0; i < repeat_cnt; i++) { if (PASS2XSCF(ctl_msg.now_serving, ret)) { msg_sent = 1; break; } else { if (ret != EBUSY) { cmn_err(CE_NOTE, "pass2xscf_thread:" " unexpected return code" " from scf_service_putinfo():" " %d\n", ret); } } } if (msg_sent) { /* * Remove the request from the list */ mutex_enter(&ctl_msg.nm_lock); msg = ctl_msg.now_serving; ctl_msg.now_serving = NULL; REMOVE(msg); ctl_msg.cnt--; mutex_exit(&ctl_msg.nm_lock); FREE_MSG(msg); } else { /* * If while we have tried to communicate with * XSCF there were any other requests we are * going to drop this one and take the latest * one. Otherwise we will try to pass this one * again. */ cmn_err(CE_NOTE, "pass2xscf_thread: " "scf_service_putinfo " "not responding\n"); } mutex_enter(&ctl_msg.nm_lock); } /* * The request queue is empty, exit. */ ctl_msg.nmt = NULL; mutex_exit(&ctl_msg.nm_lock); }