/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include int max_mem_nodes = 1; struct mem_node_conf mem_node_config[MAX_MEM_NODES]; int mem_node_pfn_shift; /* * num_memnodes should be updated atomically and always >= * the number of bits in memnodes_mask or the algorithm may fail. */ uint16_t num_memnodes; mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */ /* * If set, mem_node_physalign should be a power of two, and * should reflect the minimum address alignment of each node. */ uint64_t mem_node_physalign; /* * Platform hooks we will need. */ #pragma weak plat_build_mem_nodes #pragma weak plat_slice_add #pragma weak plat_slice_del /* * Adjust the memnode config after a DR operation. * * It is rather tricky to do these updates since we can't * protect the memnode structures with locks, so we must * be mindful of the order in which updates and reads to * these values can occur. */ void mem_node_add_slice(pfn_t start, pfn_t end) { int mnode; mnodeset_t newmask, oldmask; /* * DR will pass us the first pfn that is allocatable. * We need to round down to get the real start of * the slice. */ if (mem_node_physalign) { start &= ~(btop(mem_node_physalign) - 1); end = roundup(end, btop(mem_node_physalign)) - 1; } mnode = PFN_2_MEM_NODE(start); ASSERT(mnode >= 0 && mnode < max_mem_nodes); if (atomic_cas_32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) { /* * Add slice to existing node. */ if (start < mem_node_config[mnode].physbase) mem_node_config[mnode].physbase = start; if (end > mem_node_config[mnode].physmax) mem_node_config[mnode].physmax = end; } else { mem_node_config[mnode].physbase = start; mem_node_config[mnode].physmax = end; atomic_inc_16(&num_memnodes); do { oldmask = memnodes_mask; newmask = memnodes_mask | (1ull << mnode); } while (atomic_cas_64(&memnodes_mask, oldmask, newmask) != oldmask); } /* * Inform the common lgrp framework about the new memory */ lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode)); } /* * Remove a PFN range from a memnode. On some platforms, * the memnode will be created with physbase at the first * allocatable PFN, but later deleted with the MC slice * base address converted to a PFN, in which case we need * to assume physbase and up. */ void mem_node_del_slice(pfn_t start, pfn_t end) { int mnode; pgcnt_t delta_pgcnt, node_size; mnodeset_t omask, nmask; if (mem_node_physalign) { start &= ~(btop(mem_node_physalign) - 1); end = roundup(end, btop(mem_node_physalign)) - 1; } mnode = PFN_2_MEM_NODE(start); ASSERT(mnode >= 0 && mnode < max_mem_nodes); ASSERT(mem_node_config[mnode].exists == 1); delta_pgcnt = end - start; node_size = mem_node_config[mnode].physmax - mem_node_config[mnode].physbase; if (node_size > delta_pgcnt) { /* * Subtract the slice from the memnode. */ if (start <= mem_node_config[mnode].physbase) mem_node_config[mnode].physbase = end + 1; ASSERT(end <= mem_node_config[mnode].physmax); if (end == mem_node_config[mnode].physmax) mem_node_config[mnode].physmax = start - 1; } else { /* * Let the common lgrp framework know this mnode is * leaving */ lgrp_config(LGRP_CONFIG_MEM_DEL, mnode, MEM_NODE_2_LGRPHAND(mnode)); /* * Delete the whole node. */ ASSERT(MNODE_PGCNT(mnode) == 0); do { omask = memnodes_mask; nmask = omask & ~(1ull << mnode); } while (atomic_cas_64(&memnodes_mask, omask, nmask) != omask); atomic_dec_16(&num_memnodes); mem_node_config[mnode].exists = 0; } } void mem_node_add_range(pfn_t start, pfn_t end) { if (&plat_slice_add) plat_slice_add(start, end); else mem_node_add_slice(start, end); } void mem_node_del_range(pfn_t start, pfn_t end) { if (&plat_slice_del) plat_slice_del(start, end); else mem_node_del_slice(start, end); } void startup_build_mem_nodes(struct memlist *list) { pfn_t start, end; /* LINTED: ASSERT will always true or false */ ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes); if (&plat_build_mem_nodes) { plat_build_mem_nodes(list); } else { /* * Boot install lists are arranged , ... */ while (list) { start = list->ml_address >> PAGESHIFT; if (start > physmax) continue; end = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; if (end > physmax) end = physmax; mem_node_add_range(start, end); list = list->ml_next; } mem_node_physalign = 0; mem_node_pfn_shift = 0; } } /* * Allocate an unassigned memnode. */ int mem_node_alloc() { int mnode; mnodeset_t newmask, oldmask; /* * Find an unused memnode. Update it atomically to prevent * a first time memnode creation race. */ for (mnode = 0; mnode < max_mem_nodes; mnode++) if (atomic_cas_32((uint32_t *)&mem_node_config[mnode].exists, 0, 1) == 0) break; if (mnode >= max_mem_nodes) panic("Out of free memnodes\n"); mem_node_config[mnode].physbase = (pfn_t)-1l; mem_node_config[mnode].physmax = 0; atomic_inc_16(&num_memnodes); do { oldmask = memnodes_mask; newmask = memnodes_mask | (1ull << mnode); } while (atomic_cas_64(&memnodes_mask, oldmask, newmask) != oldmask); return (mnode); } /* * Find the intersection between a memnode and a memlist * and returns the number of pages that overlap. * * Assumes the list is protected from DR operations by * the memlist lock. */ pgcnt_t mem_node_memlist_pages(int mnode, struct memlist *mlist) { pfn_t base, end; pfn_t cur_base, cur_end; pgcnt_t npgs; struct memlist *pmem; base = mem_node_config[mnode].physbase; end = mem_node_config[mnode].physmax; npgs = 0; memlist_read_lock(); for (pmem = mlist; pmem; pmem = pmem->ml_next) { cur_base = btop(pmem->ml_address); cur_end = cur_base + btop(pmem->ml_size) - 1; if (end < cur_base || base > cur_end) continue; npgs = npgs + (MIN(cur_end, end) - MAX(cur_base, base)) + 1; } memlist_read_unlock(); return (npgs); }