/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #ifndef _SYS_FS_UFS_FS_H #define _SYS_FS_UFS_FS_H #include #include #include /* for kmutex_t */ #ifdef __cplusplus extern "C" { #endif /* * The following values are minor release values for UFS. * The fs_version field in the superblock will equal one of them. */ #define MTB_UFS_VERSION_MIN 1 #define MTB_UFS_VERSION_1 1 #define UFS_VERSION_MIN 0 #define UFS_EFISTYLE4NONEFI_VERSION_2 2 /* * Each disk drive contains some number of file systems. * A file system consists of a number of cylinder groups. * Each cylinder group has inodes and data. * * A file system is described by its super-block, which in turn * describes the cylinder groups. The super-block is critical * data and is replicated in the first 10 cylinder groups and the * the last 10 cylinder groups to protect against * catastrophic loss. This is done at mkfs time and the critical * super-block data does not change, so the copies need not be * referenced further unless disaster strikes. * * For file system fs, the offsets of the various blocks of interest * are given in the super block as: * [fs->fs_sblkno] Super-block * [fs->fs_cblkno] Cylinder group block * [fs->fs_iblkno] Inode blocks * [fs->fs_dblkno] Data blocks * The beginning of cylinder group cg in fs, is given by * the ``cgbase(fs, cg)'' macro. * * The first boot and super blocks are given in absolute disk addresses. * The byte-offset forms are preferred, as they don't imply a sector size. */ #define BBSIZE 8192 #define SBSIZE 8192 #define BBOFF ((off_t)(0)) #define SBOFF ((off_t)(BBOFF + BBSIZE)) #define BBLOCK ((daddr32_t)(0)) #define SBLOCK ((daddr32_t)(BBLOCK + BBSIZE / DEV_BSIZE)) /* * Addresses stored in inodes are capable of addressing fragments * of `blocks'. File system blocks of at most size MAXBSIZE can * be optionally broken into 2, 4, or 8 pieces, each of which is * addressible; these pieces may be DEV_BSIZE, or some multiple of * a DEV_BSIZE unit. * * Large files consist of exclusively large data blocks. To avoid * undue wasted disk space, the last data block of a small file may be * allocated as only as many fragments of a large block as are * necessary. The file system format retains only a single pointer * to such a fragment, which is a piece of a single large block that * has been divided. The size of such a fragment is determinable from * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. * * The file system records space availability at the fragment level; * to determine block availability, aligned fragments are examined. * * The root inode is the root of the file system. * Inode 0 can't be used for normal purposes and * historically bad blocks were linked to inode 1, * thus the root inode is 2. (inode 1 is no longer used for * this purpose, however numerous dump tapes make this * assumption, so we are stuck with it) * The lost+found directory is given the next available * inode when it is created by ``mkfs''. */ #define UFSROOTINO ((ino_t)2) /* i number of all roots */ #define LOSTFOUNDINO (UFSROOTINO + 1) #ifndef _LONGLONG_TYPE #define UFS_MAXOFFSET_T MAXOFF_T #define UFS_FILESIZE_BITS 32 #else #define UFS_MAXOFFSET_T ((1LL << NBBY * sizeof (daddr32_t) + DEV_BSHIFT - 1) \ - 1) #define UFS_FILESIZE_BITS 41 #endif /* _LONGLONG_TYPE */ /* * MINBSIZE is the smallest allowable block size. * In order to insure that it is possible to create files of size * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. * MINBSIZE must be big enough to hold a cylinder group block, * thus changes to (struct cg) must keep its size within MINBSIZE. * Note that super blocks are always of size SBSIZE, * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. */ #define MINBSIZE 4096 /* * The path name on which the file system is mounted is maintained * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in * the super block for this name. * The limit on the amount of summary information per file system * is defined by MAXCSBUFS. It is currently parameterized for a * maximum of two million cylinders. */ #define MAXMNTLEN 512 #define MAXCSBUFS 32 #define LABEL_TYPE_VTOC 1 #define LABEL_TYPE_EFI 2 #define LABEL_TYPE_OTHER 3 /* * The following constant is taken from the ANSI T13 ATA Specification * and defines the maximum size (in sectors) that an ATA disk can be * and still has to provide CHS translation. For a disk above this * size all sectors are to be accessed via their LBA address. This * makes a good cut off value to move from disk provided geometry * to the predefined defaults used in efi label disks. */ #define CHSLIMIT (63 * 256 * 1024) /* * Per cylinder group information; summarized in blocks allocated * from first cylinder group data blocks. These blocks have to be * read in from fs_csaddr (size fs_cssize) in addition to the * super block. * * N.B. sizeof (struct csum) must be a power of two in order for * the ``fs_cs'' macro to work (see below). */ struct csum { int32_t cs_ndir; /* number of directories */ int32_t cs_nbfree; /* number of free blocks */ int32_t cs_nifree; /* number of free inodes */ int32_t cs_nffree; /* number of free frags */ }; /* * In the 5.0 release, the file system state flag in the superblock (fs_clean) * is now used. The value of fs_clean can be: * FSACTIVE file system may have fsck inconsistencies * FSCLEAN file system has successfully unmounted (implies * everything is ok) * FSSTABLE No fsck inconsistencies, no guarantee on user data * FSBAD file system is mounted from a partition that is * neither FSCLEAN or FSSTABLE * FSSUSPEND Clean flag processing is temporarily disabled * FSLOG Logging file system * Under this scheme, fsck can safely skip file systems that * are FSCLEAN or FSSTABLE. To provide additional safeguard, * fs_clean information could be trusted only if * fs_state == FSOKAY - fs_time, where FSOKAY is a constant * * Note: mount(2) will now return ENOSPC if fs_clean is neither FSCLEAN nor * FSSTABLE, or fs_state is not valid. The exceptions are the root or * the read-only partitions */ /* * Super block for a file system. * * Most of the data in the super block is read-only data and needs * no explicit locking to protect it. Exceptions are: * fs_time * fs_optim * fs_cstotal * fs_fmod * fs_cgrotor * fs_flags (largefiles flag - set when a file grows large) * These fields require the use of fs->fs_lock. */ #define FS_MAGIC 0x011954 #define MTB_UFS_MAGIC 0xdecade #define FSOKAY (0x7c269d38) /* #define FSOKAY (0x7c269d38 + 3) */ /* * fs_clean values */ #define FSACTIVE ((char)0) #define FSCLEAN ((char)0x1) #define FSSTABLE ((char)0x2) #define FSBAD ((char)0xff) /* mounted !FSCLEAN and !FSSTABLE */ #define FSSUSPEND ((char)0xfe) /* temporarily suspended */ #define FSLOG ((char)0xfd) /* logging fs */ #define FSFIX ((char)0xfc) /* being repaired while mounted */ /* * fs_flags values */ #define FSLARGEFILES ((char)0x1) /* largefiles exist on filesystem */ struct fs { uint32_t fs_link; /* linked list of file systems */ uint32_t fs_rolled; /* logging only: fs fully rolled */ daddr32_t fs_sblkno; /* addr of super-block in filesys */ daddr32_t fs_cblkno; /* offset of cyl-block in filesys */ daddr32_t fs_iblkno; /* offset of inode-blocks in filesys */ daddr32_t fs_dblkno; /* offset of first data after cg */ int32_t fs_cgoffset; /* cylinder group offset in cylinder */ int32_t fs_cgmask; /* used to calc mod fs_ntrak */ time32_t fs_time; /* last time written */ int32_t fs_size; /* number of blocks in fs */ int32_t fs_dsize; /* number of data blocks in fs */ int32_t fs_ncg; /* number of cylinder groups */ int32_t fs_bsize; /* size of basic blocks in fs */ int32_t fs_fsize; /* size of frag blocks in fs */ int32_t fs_frag; /* number of frags in a block in fs */ /* these are configuration parameters */ int32_t fs_minfree; /* minimum percentage of free blocks */ int32_t fs_rotdelay; /* num of ms for optimal next block */ int32_t fs_rps; /* disk revolutions per second */ /* these fields can be computed from the others */ int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ int32_t fs_fshift; /* ``numfrags'' calc number of frags */ /* these are configuration parameters */ int32_t fs_maxcontig; /* max number of contiguous blks */ int32_t fs_maxbpg; /* max number of blks per cyl group */ /* these fields can be computed from the others */ int32_t fs_fragshift; /* block to frag shift */ int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ int32_t fs_sbsize; /* actual size of super block */ int32_t fs_csmask; /* csum block offset */ int32_t fs_csshift; /* csum block number */ int32_t fs_nindir; /* value of NINDIR */ int32_t fs_inopb; /* value of INOPB */ int32_t fs_nspf; /* value of NSPF */ /* yet another configuration parameter */ int32_t fs_optim; /* optimization preference, see below */ /* these fields are derived from the hardware */ /* USL SVR4 compatibility */ #ifdef _LITTLE_ENDIAN /* * USL SVR4 compatibility * * There was a significant divergence here between Solaris and * SVR4 for x86. By swapping these two members in the superblock, * we get read-only compatibility of SVR4 filesystems. Otherwise * there would be no compatibility. This change was introduced * during bootstrapping of Solaris on x86. By making this ifdef'ed * on byte order, we provide ongoing compatibility across all * platforms with the same byte order, the highest compatibility * that can be achieved. */ int32_t fs_state; /* file system state time stamp */ #else int32_t fs_npsect; /* # sectors/track including spares */ #endif int32_t fs_si; /* summary info state - lufs only */ int32_t fs_trackskew; /* sector 0 skew, per track */ /* a unique id for this filesystem (currently unused and unmaintained) */ /* In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek */ /* Neither of those fields is used in the Tahoe code right now but */ /* there could be problems if they are. */ int32_t fs_id[2]; /* file system id */ /* sizes determined by number of cylinder groups and their sizes */ daddr32_t fs_csaddr; /* blk addr of cyl grp summary area */ int32_t fs_cssize; /* size of cyl grp summary area */ int32_t fs_cgsize; /* cylinder group size */ /* these fields are derived from the hardware */ int32_t fs_ntrak; /* tracks per cylinder */ int32_t fs_nsect; /* sectors per track */ int32_t fs_spc; /* sectors per cylinder */ /* this comes from the disk driver partitioning */ int32_t fs_ncyl; /* cylinders in file system */ /* these fields can be computed from the others */ int32_t fs_cpg; /* cylinders per group */ int32_t fs_ipg; /* inodes per group */ int32_t fs_fpg; /* blocks per group * fs_frag */ /* this data must be re-computed after crashes */ struct csum fs_cstotal; /* cylinder summary information */ /* these fields are cleared at mount time */ char fs_fmod; /* super block modified flag */ char fs_clean; /* file system state flag */ char fs_ronly; /* mounted read-only flag */ char fs_flags; /* largefiles flag, etc. */ char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ /* these fields retain the current block allocation info */ int32_t fs_cgrotor; /* last cg searched */ /* * The following used to be fs_csp[MAXCSBUFS]. It was not * used anywhere except in old utilities. We removed this * in 5.6 and expect fs_u.fs_csp to be used instead. * We no longer limit fs_cssize based on MAXCSBUFS. */ union { /* fs_cs (csum) info */ uint32_t fs_csp_pad[MAXCSBUFS]; struct csum *fs_csp; } fs_u; int32_t fs_cpc; /* cyl per cycle in postbl */ short fs_opostbl[16][8]; /* old rotation block list head */ int32_t fs_sparecon[51]; /* reserved for future constants */ int32_t fs_version; /* minor version of ufs */ int32_t fs_logbno; /* block # of embedded log */ int32_t fs_reclaim; /* reclaim open, deleted files */ int32_t fs_sparecon2; /* reserved for future constant */ #ifdef _LITTLE_ENDIAN /* USL SVR4 compatibility */ int32_t fs_npsect; /* # sectors/track including spares */ #else int32_t fs_state; /* file system state time stamp */ #endif quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */ quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */ int32_t fs_postblformat; /* format of positional layout tables */ int32_t fs_nrpos; /* number of rotaional positions */ int32_t fs_postbloff; /* (short) rotation block list head */ int32_t fs_rotbloff; /* (uchar_t) blocks for each rotation */ int32_t fs_magic; /* magic number */ uchar_t fs_space[1]; /* list of blocks for each rotation */ /* actually longer */ }; /* * values for fs_reclaim */ #define FS_RECLAIM (0x00000001) /* run the reclaim-files thread */ #define FS_RECLAIMING (0x00000002) /* running the reclaim-files thread */ #define FS_CHECKCLEAN (0x00000004) /* checking for a clean file system */ #define FS_CHECKRECLAIM (0x00000008) /* checking for a reclaimable file */ /* * values for fs_rolled */ #define FS_PRE_FLAG 0 /* old system, prior to fs_rolled flag */ #define FS_ALL_ROLLED 1 #define FS_NEED_ROLL 2 /* * values for fs_si, logging only * si is the summary of the summary - a copy of the cylinder group summary * info held in an array for perf. On a mount if this is out of date * (FS_SI_BAD) it can be re-constructed by re-reading the cgs. */ #define FS_SI_OK 0 /* on-disk summary info ok */ #define FS_SI_BAD 1 /* out of date on-disk si */ /* * Preference for optimization. */ #define FS_OPTTIME 0 /* minimize allocation time */ #define FS_OPTSPACE 1 /* minimize disk fragmentation */ /* * Rotational layout table format types */ #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ /* * Macros for access to superblock array structures */ #ifdef _KERNEL #define fs_postbl(ufsvfsp, cylno) \ (((ufsvfsp)->vfs_fs->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ ? ((ufsvfsp)->vfs_fs->fs_opostbl[cylno]) \ : ((short *)((char *)(ufsvfsp)->vfs_fs + \ (ufsvfsp)->vfs_fs->fs_postbloff) \ + (cylno) * (ufsvfsp)->vfs_nrpos)) #else #define fs_postbl(fs, cylno) \ (((fs)->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ ? ((fs)->fs_opostbl[cylno]) \ : ((short *)((char *)(fs) + \ (fs)->fs_postbloff) \ + (cylno) * (fs)->fs_nrpos)) #endif #define fs_rotbl(fs) \ (((fs)->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ ? ((fs)->fs_space) \ : ((uchar_t *)((char *)(fs) + (fs)->fs_rotbloff))) /* * Convert cylinder group to base address of its global summary info. * * N.B. This macro assumes that sizeof (struct csum) is a power of two. * We just index off the first entry into one big array */ #define fs_cs(fs, indx) fs_u.fs_csp[(indx)] /* * Cylinder group block for a file system. * * Writable fields in the cylinder group are protected by the associated * super block lock fs->fs_lock. */ #define CG_MAGIC 0x090255 struct cg { uint32_t cg_link; /* NOT USED linked list of cyl groups */ int32_t cg_magic; /* magic number */ time32_t cg_time; /* time last written */ int32_t cg_cgx; /* we are the cgx'th cylinder group */ short cg_ncyl; /* number of cyl's this cg */ short cg_niblk; /* number of inode blocks this cg */ int32_t cg_ndblk; /* number of data blocks this cg */ struct csum cg_cs; /* cylinder summary information */ int32_t cg_rotor; /* position of last used block */ int32_t cg_frotor; /* position of last used frag */ int32_t cg_irotor; /* position of last used inode */ int32_t cg_frsum[MAXFRAG]; /* counts of available frags */ int32_t cg_btotoff; /* (int32_t)block totals per cylinder */ int32_t cg_boff; /* (short) free block positions */ int32_t cg_iusedoff; /* (char) used inode map */ int32_t cg_freeoff; /* (uchar_t) free block map */ int32_t cg_nextfreeoff; /* (uchar_t) next available space */ int32_t cg_sparecon[16]; /* reserved for future use */ uchar_t cg_space[1]; /* space for cylinder group maps */ /* actually longer */ }; /* * Macros for access to cylinder group array structures */ #define cg_blktot(cgp) \ (((cgp)->cg_magic != CG_MAGIC) \ ? (((struct ocg *)(cgp))->cg_btot) \ : ((int32_t *)((char *)(cgp) + (cgp)->cg_btotoff))) #ifdef _KERNEL #define cg_blks(ufsvfsp, cgp, cylno) \ (((cgp)->cg_magic != CG_MAGIC) \ ? (((struct ocg *)(cgp))->cg_b[cylno]) \ : ((short *)((char *)(cgp) + (cgp)->cg_boff) + \ (cylno) * (ufsvfsp)->vfs_nrpos)) #else #define cg_blks(fs, cgp, cylno) \ (((cgp)->cg_magic != CG_MAGIC) \ ? (((struct ocg *)(cgp))->cg_b[cylno]) \ : ((short *)((char *)(cgp) + (cgp)->cg_boff) + \ (cylno) * (fs)->fs_nrpos)) #endif #define cg_inosused(cgp) \ (((cgp)->cg_magic != CG_MAGIC) \ ? (((struct ocg *)(cgp))->cg_iused) \ : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff))) #define cg_blksfree(cgp) \ (((cgp)->cg_magic != CG_MAGIC) \ ? (((struct ocg *)(cgp))->cg_free) \ : ((uchar_t *)((char *)(cgp) + (cgp)->cg_freeoff))) #define cg_chkmagic(cgp) \ ((cgp)->cg_magic == CG_MAGIC || \ ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) /* * The following structure is defined * for compatibility with old file systems. */ struct ocg { uint32_t cg_link; /* NOT USED linked list of cyl groups */ uint32_t cg_rlink; /* NOT USED incore cyl groups */ time32_t cg_time; /* time last written */ int32_t cg_cgx; /* we are the cgx'th cylinder group */ short cg_ncyl; /* number of cyl's this cg */ short cg_niblk; /* number of inode blocks this cg */ int32_t cg_ndblk; /* number of data blocks this cg */ struct csum cg_cs; /* cylinder summary information */ int32_t cg_rotor; /* position of last used block */ int32_t cg_frotor; /* position of last used frag */ int32_t cg_irotor; /* position of last used inode */ int32_t cg_frsum[8]; /* counts of available frags */ int32_t cg_btot[32]; /* block totals per cylinder */ short cg_b[32][8]; /* positions of free blocks */ char cg_iused[256]; /* used inode map */ int32_t cg_magic; /* magic number */ uchar_t cg_free[1]; /* free block map */ /* actually longer */ }; /* * Turn frag offsets into disk block addresses. * This maps frags to device size blocks. * (In the names of these macros, "fsb" refers to "frags", not * file system blocks.) */ #ifdef KERNEL #define fsbtodb(fs, b) (((daddr_t)(b)) << (fs)->fs_fsbtodb) #else /* KERNEL */ #define fsbtodb(fs, b) (((diskaddr_t)(b)) << (fs)->fs_fsbtodb) #endif /* KERNEL */ #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) /* * Get the offset of the log, in either sectors, frags, or file system * blocks. The interpretation of the fs_logbno field depends on whether * this is UFS or MTB UFS. (UFS stores the value as sectors. MTBUFS * stores the value as frags.) */ #ifdef KERNEL #define logbtodb(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ (daddr_t)(b) : ((daddr_t)(b) << (fs)->fs_fsbtodb)) #else /* KERNEL */ #define logbtodb(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ (diskaddr_t)(b) : ((diskaddr_t)(b) << (fs)->fs_fsbtodb)) #endif /* KERNEL */ #define logbtofrag(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ (b) >> (fs)->fs_fsbtodb : (b)) #define logbtofsblk(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ (b) >> ((fs)->fs_fsbtodb + (fs)->fs_fragshift) : \ (b) >> (fs)->fs_fragshift) /* * Cylinder group macros to locate things in cylinder groups. * They calc file system addresses of cylinder group data structures. */ #define cgbase(fs, c) ((daddr32_t)((fs)->fs_fpg * (c))) #define cgstart(fs, c) \ (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ /* * Macros for handling inode numbers: * inode number to file system block offset. * inode number to cylinder group number. * inode number to file system block address. */ #define itoo(fs, x) ((x) % (uint32_t)INOPB(fs)) #define itog(fs, x) ((x) / (uint32_t)(fs)->fs_ipg) #define itod(fs, x) \ ((daddr32_t)(cgimin(fs, itog(fs, x)) + \ (blkstofrags((fs), (((x)%(ulong_t)(fs)->fs_ipg)/(ulong_t)INOPB(fs)))))) /* * Give cylinder group number for a file system block. * Give cylinder group block number for a file system block. */ #define dtog(fs, d) ((d) / (fs)->fs_fpg) #define dtogd(fs, d) ((d) % (fs)->fs_fpg) /* * Extract the bits for a block from a map. * Compute the cylinder and rotational position of a cyl block addr. */ #define blkmap(fs, map, loc) \ (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & \ (0xff >> (NBBY - (fs)->fs_frag))) #define cbtocylno(fs, bno) \ ((bno) * NSPF(fs) / (fs)->fs_spc) #ifdef _KERNEL #define cbtorpos(ufsvfsp, bno) \ ((((bno) * NSPF((ufsvfsp)->vfs_fs) % (ufsvfsp)->vfs_fs->fs_spc) % \ (ufsvfsp)->vfs_fs->fs_nsect) * \ (ufsvfsp)->vfs_nrpos) / (ufsvfsp)->vfs_fs->fs_nsect #else #define cbtorpos(fs, bno) \ ((((bno) * NSPF(fs) % (fs)->fs_spc) % \ (fs)->fs_nsect) * \ (fs)->fs_nrpos) / (fs)->fs_nsect #endif /* * The following macros optimize certain frequently calculated * quantities by using shifts and masks in place of divisions * modulos and multiplications. */ /* * This macro works for 40 bit offset support in ufs because * this calculates offset in the block and therefore no loss of * information while casting to int. */ #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ ((int)((loc) & ~(fs)->fs_bmask)) /* * This macro works for 40 bit offset support similar to blkoff */ #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ ((int)((loc) & ~(fs)->fs_fmask)) /* * The cast to int32_t does not result in any loss of information because * the number of logical blocks in the file system is limited to * what fits in an int32_t anyway. */ #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ ((int32_t)((loc) >> (fs)->fs_bshift)) /* * The same argument as above applies here. */ #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ ((int32_t)((loc) >> (fs)->fs_fshift)) /* * Size can be a 64-bit value and therefore we sign extend fs_bmask * to a 64-bit value too so that the higher 32 bits are masked * properly. Note that the type of fs_bmask has to be signed. Otherwise * compiler will set the higher 32 bits as zero and we don't want * this to happen. */ #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ (((size) + (fs)->fs_bsize - 1) & (offset_t)(fs)->fs_bmask) /* * Same argument as above. */ #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ (((size) + (fs)->fs_fsize - 1) & (offset_t)(fs)->fs_fmask) /* * frags cannot exceed 32-bit value since we only support 40bit sizes. */ #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ ((frags) >> (fs)->fs_fragshift) #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ ((blks) << (fs)->fs_fragshift) #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ ((fsb) & ((fs)->fs_frag - 1)) #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ ((fsb) &~ ((fs)->fs_frag - 1)) /* * Determine the number of available frags given a * percentage to hold in reserve */ #define freespace(fs, ufsvfsp) \ ((blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ (fs)->fs_cstotal.cs_nffree) - (ufsvfsp)->vfs_minfrags) /* * Determining the size of a file block in the file system. */ #define blksize(fs, ip, lbn) \ (((lbn) >= NDADDR || \ (ip)->i_size >= (offset_t)((lbn) + 1) << (fs)->fs_bshift) \ ? (fs)->fs_bsize \ : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) #define dblksize(fs, dip, lbn) \ (((lbn) >= NDADDR || \ (dip)->di_size >= (offset_t)((lbn) + 1) << (fs)->fs_bshift) \ ? (fs)->fs_bsize \ : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) /* * Number of disk sectors per block; assumes DEV_BSIZE byte sector size. */ #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) #define NSPF(fs) ((fs)->fs_nspf) /* * INOPB is the number of inodes in a secondary storage block. */ #define INOPB(fs) ((fs)->fs_inopb) #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) /* * NINDIR is the number of indirects in a file system block. */ #define NINDIR(fs) ((fs)->fs_nindir) /* * bit map related macros */ #define bitloc(a, i) ((a)[(i)/NBBY]) #define setbit(a, i) ((a)[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a, i) ((a)[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a, i) ((a)[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a, i) (((a)[(i)/NBBY] & (1<<((i)%NBBY))) == 0) #define getfs(vfsp) \ ((struct fs *)((struct ufsvfs *)vfsp->vfs_data)->vfs_bufp->b_un.b_addr) #define RETRY_LOCK_DELAY 1 /* * Macros to test and acquire i_rwlock: * some vnops hold the target directory's i_rwlock after calling * ufs_lockfs_begin but in many other operations (like ufs_readdir) * VOP_RWLOCK is explicitly called by the filesystem independent code before * calling the file system operation. In these cases the order is reversed * (i.e i_rwlock is taken first and then ufs_lockfs_begin is called). This * is fine as long as ufs_lockfs_begin acts as a VOP counter but with * ufs_quiesce setting the SLOCK bit this becomes a synchronizing * object which might lead to a deadlock. So we use rw_tryenter instead of * rw_enter. If we fail to get this lock and find that SLOCK bit is set, we * call ufs_lockfs_end and restart the operation. */ #define ufs_tryirwlock(lock, mode, label) \ {\ indeadlock = 0;\ label:\ if (!rw_tryenter(lock, mode))\ {\ if (ulp && ULOCKFS_IS_SLOCK(ulp)) {\ indeadlock = 1;\ } else {\ delay(RETRY_LOCK_DELAY);\ goto label;\ }\ }\ } /* * The macro ufs_tryirwlock_trans is used in functions which call * TRANS_BEGIN_CSYNC and ufs_lockfs_begin, hence the need to call * TRANS_END_CSYNC and ufs_lockfs_end. */ #define ufs_tryirwlock_trans(lock, mode, transmode, label) \ {\ indeadlock = 0;\ label:\ if (!rw_tryenter(lock, mode))\ {\ if (ulp && ULOCKFS_IS_SLOCK(ulp)) {\ TRANS_END_CSYNC(ufsvfsp, error, issync,\ transmode, trans_size);\ ufs_lockfs_end(ulp);\ indeadlock = 1;\ } else {\ delay(RETRY_LOCK_DELAY);\ goto label;\ }\ }\ } #ifdef __cplusplus } #endif #endif /* _SYS_FS_UFS_FS_H */