/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2019 Joyent, Inc. * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. * Copyright (c) 2013, 2017 by Delphix. All rights reserved. */ #ifndef _INET_TCP_IMPL_H #define _INET_TCP_IMPL_H /* * TCP implementation private declarations. These interfaces are * used to build the IP module and are not meant to be accessed * by any modules except IP itself. They are undocumented and are * subject to change without notice. */ #ifdef __cplusplus extern "C" { #endif #ifdef _KERNEL #include #include /* For LBOLT_FASTPATH{,64} */ #include #include #include #define TCP_MOD_ID 5105 extern struct qinit tcp_sock_winit; extern struct qinit tcp_winit; extern sock_downcalls_t sock_tcp_downcalls; /* * Note that by default, the _snd_lowat_fraction tunable controls the value of * the transmit low water mark. TCP_XMIT_LOWATER (and thus the _xmit_lowat * property) is only used if the administrator has disabled _snd_lowat_fraction * by setting it to 0. */ #define TCP_XMIT_LOWATER 4096 #define TCP_XMIT_HIWATER 49152 #define TCP_RECV_LOWATER 2048 #define TCP_RECV_HIWATER 128000 /* * Bind hash list size and has function. It has to be a power of 2 for * hashing. */ #define TCP_BIND_FANOUT_SIZE 1024 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) /* * This implementation follows the 4.3BSD interpretation of the urgent * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause * incompatible changes in protocols like telnet and rlogin. */ #define TCP_OLD_URP_INTERPRETATION 1 /* TCP option length */ #define TCPOPT_NOP_LEN 1 #define TCPOPT_MAXSEG_LEN 4 #define TCPOPT_WS_LEN 3 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) #define TCPOPT_TSTAMP_LEN 10 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) #define TCPOPT_SACK_OK_LEN 2 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) #define TCPOPT_REAL_SACK_LEN 4 #define TCPOPT_MAX_SACK_LEN 36 #define TCPOPT_HEADER_LEN 2 /* Round up the value to the nearest mss. */ #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) /* * Was this tcp created via socket() interface? */ #define TCP_IS_SOCKET(tcp) ((tcp)->tcp_issocket) /* * Is this tcp not attached to any upper client? */ #define TCP_IS_DETACHED(tcp) ((tcp)->tcp_detached) /* TCP timers related data structures. Refer to tcp_timers.c. */ typedef struct tcp_timer_s { conn_t *connp; void (*tcpt_proc)(void *); callout_id_t tcpt_tid; } tcp_timer_t; extern kmem_cache_t *tcp_timercache; /* * Macro for starting various timers. Retransmission timer has its own macro, * TCP_TIMER_RESTART(). tim is in millisec. */ #define TCP_TIMER(tcp, f, tim) \ tcp_timeout(tcp->tcp_connp, f, tim) #define TCP_TIMER_CANCEL(tcp, id) \ tcp_timeout_cancel(tcp->tcp_connp, id) /* * To restart the TCP retransmission timer. intvl is in millisec. */ #define TCP_TIMER_RESTART(tcp, intvl) { \ if ((tcp)->tcp_timer_tid != 0) \ (void) TCP_TIMER_CANCEL((tcp), (tcp)->tcp_timer_tid); \ (tcp)->tcp_timer_tid = TCP_TIMER((tcp), tcp_timer, (intvl)); \ } /* * Maximum TIME_WAIT timeout. It is defined here (instead of tcp_tunables.c) * so that other parameters can be derived from it. */ #define TCP_TIME_WAIT_MAX (10 * MINUTES) /* * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. * Running it every 5 seconds seems to yield a reasonable balance between * cleanup liveliness and system load. */ #define TCP_TIME_WAIT_DELAY (5 * SECONDS) #define TCP_TIME_WAIT_BUCKETS ((TCP_TIME_WAIT_MAX / TCP_TIME_WAIT_DELAY) + 1) /* * For scalability, we must not run a timer for every TCP connection * in TIME_WAIT state. To see why, consider (for time wait interval of * 1 minutes): * 10,000 connections/sec * 60 seconds/time wait = 600,000 active conn's * * Since TIME_WAIT expiration occurs on a per-squeue basis, handling * connections from all netstacks on the system, a simple queue is inadequate * for pending entries. This is because tcp_time_wait_interval may differ * between connections, causing tail insertion to violate expiration order. * * Instead of performing expensive sorting or unnecessary list traversal to * counteract interval variance between netstacks, a timing wheel structure is * used. The duration covered by each bucket in the wheel is determined by the * TCP_TIME_WAIT_DELAY (5 seconds). The number of buckets in the wheel is * determined by dividing the maximum TIME_WAIT interval (10 minutes) by * TCP_TIME_WAIT_DELAY, with one added bucket for rollover protection. * (Yielding 121 buckets with the current parameters) When items are inserted * into the set of buckets, they are indexed by using their expiration time * divided by the bucket size, modulo the number of buckets. This means that * when each bucket is processed, all items within should have expired within * the last TCP_TIME_WAIT_DELAY interval. * * Since bucket timer schedules are rounded to the nearest TCP_TIME_WAIT_DELAY * interval to ensure all connections in the pending bucket will be expired, a * per-squeue offset is used when doing TIME_WAIT scheduling. This offset is * between 0 and the TCP_TIME_WAIT_DELAY and is designed to avoid scheduling * all of the tcp_time_wait_collector threads to run in lock-step. The offset * is fixed while there are any connections present in the buckets. * * When a tcp_t enters TIME_WAIT state, a timer is started (timeout is * tcps_time_wait_interval). When the tcp_t is detached (upper layer closes * the end point), it is scheduled to be cleaned up by the squeue-driving * tcp_time_wait_collector (also using tcps_time_wait_interval). This means * that the TIME_WAIT state can be extended (up to doubled) if the tcp_t * doesn't become detached for a long time. * * The list manipulations (including tcp_time_wait_next/prev) * are protected by the tcp_time_wait_lock. The content of the * detached TIME_WAIT connections is protected by the normal perimeters. * * These connection lists are per squeue and squeues are shared across the * tcp_stack_t instances. Things in a tcp_time_wait_bucket remain associated * with the tcp_stack_t and conn_netstack. Any tcp_t connections stored in the * tcp_free_list are disassociated and have NULL tcp_tcps and conn_netstack * pointers. */ typedef struct tcp_squeue_priv_s { kmutex_t tcp_time_wait_lock; boolean_t tcp_time_wait_collector_active; callout_id_t tcp_time_wait_tid; uint64_t tcp_time_wait_cnt; int64_t tcp_time_wait_schedule; int64_t tcp_time_wait_offset; tcp_t *tcp_time_wait_bucket[TCP_TIME_WAIT_BUCKETS]; tcp_t *tcp_free_list; uint_t tcp_free_list_cnt; } tcp_squeue_priv_t; /* * Parameters for TCP Initial Send Sequence number (ISS) generation. When * tcp_strong_iss is set to 1, which is the default, the ISS is calculated * by adding three components: a time component which grows by 1 every 4096 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); * a per-connection component which grows by 125000 for every new connection; * and an "extra" component that grows by a random amount centered * approximately on 64000. This causes the ISS generator to cycle every * 4.89 hours if no TCP connections are made, and faster if connections are * made. * * When tcp_strong_iss is set to 0, ISS is calculated by adding two * components: a time component which grows by 250000 every second; and * a per-connection component which grows by 125000 for every new connections. * * A third method, when tcp_strong_iss is set to 2, for generating ISS is * prescribed by Steve Bellovin. This involves adding time, the 125000 per * connection, and a one-way hash (MD5) of the connection ID , a "truly" random (per RFC 1750) number, and a console-entered * password. */ #define ISS_INCR 250000 #define ISS_NSEC_SHT 12 /* Macros for timestamp comparisons */ #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) /* * Initialize cwnd according to RFC 3390. def_max_init_cwnd is * either tcp_slow_start_initial or tcp_slow_start_after idle * depending on the caller. If the upper layer has not used the * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. * If the upper layer has changed set the tcp_init_cwnd, just use * it to calculate the tcp_cwnd. * * "An Argument for Increasing TCP's Initial Congestion Window" * ACM SIGCOMM Computer Communications Review, vol. 40 (2010), pp. 27-33 * -- Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, * Hsiao-keng Jerry Chu, Tom Herbert, Amit Agarwal, * Arvind Jain, Natalia Sutin * * "Based on the results from our experiments, we believe the * initial congestion window should be at least ten segments * and the same be investigated for standardization by the IETF." * * As such, the def_max_init_cwnd argument with which this macro is * invoked is either the tcps_slow_start_initial or * tcps_slow_start_after_idle which both default to 0 and will respect * RFC 3390 exactly. If the tunables are explicitly set by the operator, * then the initial congestion window should be set as the operator * demands, within reason. We shall arbitrarily define reason as a * maximum of 16 (same as used by the TCP_INIT_CWND setsockopt). */ /* Maximum TCP initial cwin (start/restart). */ #define TCP_MAX_INIT_CWND 16 #define TCP_SET_INIT_CWND(tcp, mss, def_max_init_cwnd) \ { \ if ((tcp)->tcp_init_cwnd == 0) { \ if (def_max_init_cwnd == 0) { \ (tcp)->tcp_cwnd = MIN(4 * (mss), \ MAX(2 * (mss), 4380 / (mss) * (mss))); \ } else { \ (tcp)->tcp_cwnd = MIN(TCP_MAX_INIT_CWND * (mss),\ def_max_init_cwnd * (mss)); \ } \ } else { \ (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ } \ tcp->tcp_cwnd_cnt = 0; \ } /* * Set ECN capable transport (ECT) code point in IP header. * * Note that there are 2 ECT code points '01' and '10', which are called * ECT(1) and ECT(0) respectively. Here we follow the original ECT code * point ECT(0) for TCP as described in RFC 2481. */ #define TCP_SET_ECT(tcp, iph) \ if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ /* We need to clear the code point first. */ \ ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ } else { \ ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ } /* * TCP options struct returned from tcp_parse_options. */ typedef struct tcp_opt_s { uint32_t tcp_opt_mss; uint32_t tcp_opt_wscale; uint32_t tcp_opt_ts_val; uint32_t tcp_opt_ts_ecr; tcp_t *tcp; } tcp_opt_t; /* * Flags returned from tcp_parse_options. */ #define TCP_OPT_MSS_PRESENT 1 #define TCP_OPT_WSCALE_PRESENT 2 #define TCP_OPT_TSTAMP_PRESENT 4 #define TCP_OPT_SACK_OK_PRESENT 8 #define TCP_OPT_SACK_PRESENT 16 /* * Write-side flow-control is implemented via the per instance STREAMS * write-side Q by explicitly setting QFULL to stop the flow of mblk_t(s) * and clearing QFULL and calling qbackenable() to restart the flow based * on the number of TCP unsent bytes (i.e. those not on the wire waiting * for a remote ACK). * * This is different than a standard STREAMS kmod which when using the * STREAMS Q the framework would automatictly flow-control based on the * defined hiwat/lowat values as mblk_t's are enqueued/dequeued. * * As of FireEngine TCP write-side flow-control needs to take into account * both the unsent tcp_xmit list bytes but also any squeue_t enqueued bytes * (i.e. from tcp_wput() -> tcp_output()). * * This is accomplished by adding a new tcp_t fields, tcp_squeue_bytes, to * count the number of bytes enqueued by tcp_wput() and the number of bytes * dequeued and processed by tcp_output(). * * So, the total number of bytes unsent is (squeue_bytes + unsent) with all * flow-control uses of unsent replaced with the macro TCP_UNSENT_BYTES. */ extern void tcp_clrqfull(tcp_t *); extern void tcp_setqfull(tcp_t *); #define TCP_UNSENT_BYTES(tcp) \ ((tcp)->tcp_squeue_bytes + (tcp)->tcp_unsent) /* * Linked list struct to store listener connection limit configuration per * IP stack. The list is stored at tcps_listener_conf in tcp_stack_t. * * tl_port: the listener port of this limit configuration * tl_ratio: the maximum amount of memory consumed by all concurrent TCP * connections created by a listener does not exceed 1/tl_ratio * of the total system memory. Note that this is only an * approximation. * tl_link: linked list struct */ typedef struct tcp_listener_s { in_port_t tl_port; uint32_t tl_ratio; list_node_t tl_link; } tcp_listener_t; /* * If there is a limit set on the number of connections allowed per each * listener, the following struct is used to store that counter. It keeps * the number of TCP connection created by a listener. Note that this needs * to be separated from the listener since the listener can go away before * all the connections are gone. * * When the struct is allocated, tlc_cnt is set to 1. When a new connection * is created by the listener, tlc_cnt is incremented by 1. When a connection * created by the listener goes away, tlc_count is decremented by 1. When the * listener itself goes away, tlc_cnt is decremented by one. The last * connection (or the listener) which decrements tlc_cnt to zero frees the * struct. * * tlc_max is the maximum number of concurrent TCP connections created from a * listner. It is calculated when the tcp_listen_cnt_t is allocated. * * tlc_report_time stores the time when cmn_err() is called to report that the * max has been exceeeded. Report is done at most once every * TCP_TLC_REPORT_INTERVAL mins for a listener. * * tlc_drop stores the number of connection attempt dropped because the * limit has reached. */ typedef struct tcp_listen_cnt_s { uint32_t tlc_max; uint32_t tlc_cnt; int64_t tlc_report_time; uint32_t tlc_drop; } tcp_listen_cnt_t; #define TCP_TLC_REPORT_INTERVAL (30 * MINUTES) #define TCP_DECR_LISTEN_CNT(tcp) \ { \ ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ if (atomic_dec_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt) == 0) \ kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ (tcp)->tcp_listen_cnt = NULL; \ } /* Increment and decrement the number of connections in tcp_stack_t. */ #define TCPS_CONN_INC(tcps) \ atomic_inc_64( \ (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt) #define TCPS_CONN_DEC(tcps) \ atomic_dec_64( \ (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt) /* * When the system is under memory pressure, stack variable tcps_reclaim is * true, we shorten the connection timeout abort interval to tcp_early_abort * seconds. Defined in tcp.c. */ extern uint32_t tcp_early_abort; /* * To reach to an eager in Q0 which can be dropped due to an incoming * new SYN request when Q0 is full, a new doubly linked list is * introduced. This list allows to select an eager from Q0 in O(1) time. * This is needed to avoid spending too much time walking through the * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of * this new list has to be a member of Q0. * This list is headed by listener's tcp_t. When the list is empty, * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, * of listener's tcp_t point to listener's tcp_t itself. * * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. * These macros do not affect the eager's membership to Q0. */ #define MAKE_DROPPABLE(listener, eager) \ if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ = (eager); \ (eager)->tcp_eager_prev_drop_q0 = (listener); \ (eager)->tcp_eager_next_drop_q0 = \ (listener)->tcp_eager_next_drop_q0; \ (listener)->tcp_eager_next_drop_q0 = (eager); \ } #define MAKE_UNDROPPABLE(eager) \ if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ = (eager)->tcp_eager_prev_drop_q0; \ (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ = (eager)->tcp_eager_next_drop_q0; \ (eager)->tcp_eager_prev_drop_q0 = NULL; \ (eager)->tcp_eager_next_drop_q0 = NULL; \ } /* * The format argument to pass to tcp_display(). * DISP_PORT_ONLY means that the returned string has only port info. * DISP_ADDR_AND_PORT means that the returned string also contains the * remote and local IP address. */ #define DISP_PORT_ONLY 1 #define DISP_ADDR_AND_PORT 2 #define IP_ADDR_CACHE_SIZE 2048 #define IP_ADDR_CACHE_HASH(faddr) \ (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) /* * TCP reassembly macros. We hide starting and ending sequence numbers in * b_next and b_prev of messages on the reassembly queue. The messages are * chained using b_cont. These macros are used in tcp_reass() so we don't * have to see the ugly casts and assignments. */ #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ (mblk_t *)(uintptr_t)(u)) #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ (mblk_t *)(uintptr_t)(u)) #define tcps_time_wait_interval tcps_propinfo_tbl[0].prop_cur_uval #define tcps_conn_req_max_q tcps_propinfo_tbl[1].prop_cur_uval #define tcps_conn_req_max_q0 tcps_propinfo_tbl[2].prop_cur_uval #define tcps_conn_req_min tcps_propinfo_tbl[3].prop_cur_uval #define tcps_conn_grace_period tcps_propinfo_tbl[4].prop_cur_uval #define tcps_cwnd_max_ tcps_propinfo_tbl[5].prop_cur_uval #define tcps_dbg tcps_propinfo_tbl[6].prop_cur_uval #define tcps_smallest_nonpriv_port tcps_propinfo_tbl[7].prop_cur_uval #define tcps_ip_abort_cinterval tcps_propinfo_tbl[8].prop_cur_uval #define tcps_ip_abort_linterval tcps_propinfo_tbl[9].prop_cur_uval #define tcps_ip_abort_interval tcps_propinfo_tbl[10].prop_cur_uval #define tcps_ip_notify_cinterval tcps_propinfo_tbl[11].prop_cur_uval #define tcps_ip_notify_interval tcps_propinfo_tbl[12].prop_cur_uval #define tcps_ipv4_ttl tcps_propinfo_tbl[13].prop_cur_uval #define tcps_keepalive_interval_high tcps_propinfo_tbl[14].prop_max_uval #define tcps_keepalive_interval tcps_propinfo_tbl[14].prop_cur_uval #define tcps_keepalive_interval_low tcps_propinfo_tbl[14].prop_min_uval #define tcps_maxpsz_multiplier tcps_propinfo_tbl[15].prop_cur_uval #define tcps_mss_def_ipv4 tcps_propinfo_tbl[16].prop_cur_uval #define tcps_mss_max_ipv4 tcps_propinfo_tbl[17].prop_cur_uval #define tcps_mss_min tcps_propinfo_tbl[18].prop_cur_uval #define tcps_naglim_def tcps_propinfo_tbl[19].prop_cur_uval #define tcps_rexmit_interval_initial_high \ tcps_propinfo_tbl[20].prop_max_uval #define tcps_rexmit_interval_initial tcps_propinfo_tbl[20].prop_cur_uval #define tcps_rexmit_interval_initial_low \ tcps_propinfo_tbl[20].prop_min_uval #define tcps_rexmit_interval_max_high tcps_propinfo_tbl[21].prop_max_uval #define tcps_rexmit_interval_max tcps_propinfo_tbl[21].prop_cur_uval #define tcps_rexmit_interval_max_low tcps_propinfo_tbl[21].prop_min_uval #define tcps_rexmit_interval_min_high tcps_propinfo_tbl[22].prop_max_uval #define tcps_rexmit_interval_min tcps_propinfo_tbl[22].prop_cur_uval #define tcps_rexmit_interval_min_low tcps_propinfo_tbl[22].prop_min_uval #define tcps_deferred_ack_interval tcps_propinfo_tbl[23].prop_cur_uval #define tcps_snd_lowat_fraction tcps_propinfo_tbl[24].prop_cur_uval #define tcps_dupack_fast_retransmit tcps_propinfo_tbl[25].prop_cur_uval #define tcps_ignore_path_mtu tcps_propinfo_tbl[26].prop_cur_bval #define tcps_smallest_anon_port tcps_propinfo_tbl[27].prop_cur_uval #define tcps_largest_anon_port tcps_propinfo_tbl[28].prop_cur_uval #define tcps_xmit_hiwat tcps_propinfo_tbl[29].prop_cur_uval #define tcps_xmit_lowat tcps_propinfo_tbl[30].prop_cur_uval #define tcps_recv_hiwat tcps_propinfo_tbl[31].prop_cur_uval #define tcps_recv_hiwat_minmss tcps_propinfo_tbl[32].prop_cur_uval #define tcps_fin_wait_2_flush_interval_high \ tcps_propinfo_tbl[33].prop_max_uval #define tcps_fin_wait_2_flush_interval tcps_propinfo_tbl[33].prop_cur_uval #define tcps_fin_wait_2_flush_interval_low \ tcps_propinfo_tbl[33].prop_min_uval #define tcps_max_buf tcps_propinfo_tbl[34].prop_cur_uval #define tcps_strong_iss tcps_propinfo_tbl[35].prop_cur_uval #define tcps_rtt_updates tcps_propinfo_tbl[36].prop_cur_uval #define tcps_wscale_always tcps_propinfo_tbl[37].prop_cur_bval #define tcps_tstamp_always tcps_propinfo_tbl[38].prop_cur_bval #define tcps_tstamp_if_wscale tcps_propinfo_tbl[39].prop_cur_bval #define tcps_rexmit_interval_extra tcps_propinfo_tbl[40].prop_cur_uval #define tcps_deferred_acks_max tcps_propinfo_tbl[41].prop_cur_uval #define tcps_slow_start_after_idle tcps_propinfo_tbl[42].prop_cur_uval #define tcps_slow_start_initial tcps_propinfo_tbl[43].prop_cur_uval #define tcps_sack_permitted tcps_propinfo_tbl[44].prop_cur_uval #define tcps_ipv6_hoplimit tcps_propinfo_tbl[45].prop_cur_uval #define tcps_mss_def_ipv6 tcps_propinfo_tbl[46].prop_cur_uval #define tcps_mss_max_ipv6 tcps_propinfo_tbl[47].prop_cur_uval #define tcps_rev_src_routes tcps_propinfo_tbl[48].prop_cur_bval #define tcps_local_dack_interval tcps_propinfo_tbl[49].prop_cur_uval #define tcps_local_dacks_max tcps_propinfo_tbl[50].prop_cur_uval #define tcps_ecn_permitted tcps_propinfo_tbl[51].prop_cur_uval #define tcps_rst_sent_rate_enabled tcps_propinfo_tbl[52].prop_cur_bval #define tcps_rst_sent_rate tcps_propinfo_tbl[53].prop_cur_uval #define tcps_push_timer_interval tcps_propinfo_tbl[54].prop_cur_uval #define tcps_use_smss_as_mss_opt tcps_propinfo_tbl[55].prop_cur_bval #define tcps_keepalive_abort_interval_high \ tcps_propinfo_tbl[56].prop_max_uval #define tcps_keepalive_abort_interval \ tcps_propinfo_tbl[56].prop_cur_uval #define tcps_keepalive_abort_interval_low \ tcps_propinfo_tbl[56].prop_min_uval #define tcps_wroff_xtra tcps_propinfo_tbl[57].prop_cur_uval #define tcps_dev_flow_ctl tcps_propinfo_tbl[58].prop_cur_bval #define tcps_reass_timeout tcps_propinfo_tbl[59].prop_cur_uval #define tcps_iss_incr tcps_propinfo_tbl[65].prop_cur_uval #define tcps_abc tcps_propinfo_tbl[67].prop_cur_bval #define tcps_abc_l_var tcps_propinfo_tbl[68].prop_cur_uval /* * As defined in RFC 6298, the RTO is the average estimates (SRTT) plus a * multiple of the deviation estimates (K * RTTVAR): * * RTO = SRTT + max(G, K * RTTVAR) * * K is defined in the RFC as 4, and G is the clock granularity. We constrain * the minimum mean deviation to TCP_SD_MIN when processing new RTTs, so this * becomes: * * RTO = SRTT + 4 * RTTVAR * * In practice, however, we make several additions to it. As we use a finer * grained clock than BSD and update RTO for every ACK, we add in another 1/4 of * RTT to the deviation of RTO to accommodate burstiness of 1/4 of window size: * * RTO = SRTT + (SRTT / 4) + 4 * RTTVAR * * Since tcp_rtt_sa is 8 times the SRTT, and tcp_rtt_sd is 4 times the RTTVAR, * this becomes: * * RTO = (tcp_rtt_sa / 8) + ((tcp_rtt_sa / 8) / 4) + tcp_rtt_sd * RTO = (tcp_rtt_sa / 2^3) + (tcp_rtt_sa / 2^5) + tcp_rtt_sd * RTO = (tcp_rtt_sa >> 3) + (tcp_rtt_sa >> 5) + tcp_rtt_sd * * The "tcp_rexmit_interval_extra" and "tcp_conn_grace_period" tunables are * used to help account for extreme environments where the algorithm fails to * work; by default they should be 0. (The latter tunable is only used for * calculating the intial RTO, and so is optionally passed in as "extra".) We * add them here: * * RTO = (tcp_rtt_sa >> 3) + (tcp_rtt_sa >> 5) + tcp_rtt_sd + * tcps_rexmit_interval_extra + tcps_conn_grace_period * * We then pin the RTO within our configured boundaries (sections 2.4 and 2.5 * of RFC 6298). */ static __GNU_INLINE clock_t tcp_calculate_rto(tcp_t *tcp, tcp_stack_t *tcps, uint32_t extra) { clock_t rto; rto = NSEC2MSEC((tcp->tcp_rtt_sa >> 3) + (tcp->tcp_rtt_sa >> 5) + tcp->tcp_rtt_sd) + tcps->tcps_rexmit_interval_extra + extra; if (rto < tcp->tcp_rto_min) { rto = tcp->tcp_rto_min; } else if (rto > tcp->tcp_rto_max) { rto = tcp->tcp_rto_max; } return (rto); } extern struct qinit tcp_rinitv4, tcp_rinitv6; extern boolean_t do_tcp_fusion; /* * Object to represent database of options to search passed to * {sock,tpi}optcom_req() interface routine to take care of option * management and associated methods. */ extern optdb_obj_t tcp_opt_obj; extern uint_t tcp_max_optsize; extern int tcp_squeue_flag; extern uint_t tcp_free_list_max_cnt; /* * Functions in tcp.c. */ extern void tcp_acceptor_hash_insert(t_uscalar_t, tcp_t *); extern tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t, tcp_stack_t *); extern void tcp_acceptor_hash_remove(tcp_t *); extern mblk_t *tcp_ack_mp(tcp_t *); extern int tcp_build_hdrs(tcp_t *); extern void tcp_cleanup(tcp_t *); extern int tcp_clean_death(tcp_t *, int); extern void tcp_clean_death_wrapper(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_close_common(conn_t *, int); extern void tcp_close_detached(tcp_t *); extern void tcp_close_mpp(mblk_t **); extern void tcp_closei_local(tcp_t *); extern sock_lower_handle_t tcp_create(int, int, int, sock_downcalls_t **, uint_t *, int *, int, cred_t *); extern conn_t *tcp_create_common(cred_t *, boolean_t, boolean_t, int *); extern void tcp_disconnect(tcp_t *, mblk_t *); extern char *tcp_display(tcp_t *, char *, char); extern int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, boolean_t); extern int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, cred_t *, pid_t); extern int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, boolean_t); extern int tcp_do_unbind(conn_t *); extern boolean_t tcp_eager_blowoff(tcp_t *, t_scalar_t); extern void tcp_eager_cleanup(tcp_t *, boolean_t); extern void tcp_eager_kill(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_eager_unlink(tcp_t *); extern void tcp_init_values(tcp_t *, tcp_t *); extern void tcp_ipsec_cleanup(tcp_t *); extern int tcp_maxpsz_set(tcp_t *, boolean_t); extern void tcp_mss_set(tcp_t *, uint32_t); extern void tcp_reinput(conn_t *, mblk_t *, ip_recv_attr_t *, ip_stack_t *); extern int tcp_rsrv(queue_t *); extern uint_t tcp_rwnd_reopen(tcp_t *); extern int tcp_rwnd_set(tcp_t *, uint32_t); extern int tcp_set_destination(tcp_t *); extern void tcp_set_ws_value(tcp_t *); extern void tcp_stop_lingering(tcp_t *); extern void tcp_update_pmtu(tcp_t *, boolean_t); extern mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); extern boolean_t tcp_zcopy_check(tcp_t *); extern void tcp_zcopy_notify(tcp_t *); extern void tcp_get_proto_props(tcp_t *, struct sock_proto_props *); /* * Bind related functions in tcp_bind.c */ extern int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, boolean_t); extern void tcp_bind_hash_insert(tf_t *, tcp_t *, int); extern void tcp_bind_hash_remove(tcp_t *); extern in_port_t tcp_bindi(tcp_t *, in_port_t, const in6_addr_t *, int, boolean_t, boolean_t, boolean_t); extern in_port_t tcp_update_next_port(in_port_t, const tcp_t *, boolean_t); /* * Fusion related functions in tcp_fusion.c. */ extern void tcp_fuse(tcp_t *, uchar_t *, tcpha_t *); extern void tcp_unfuse(tcp_t *); extern boolean_t tcp_fuse_output(tcp_t *, mblk_t *, uint32_t); extern void tcp_fuse_output_urg(tcp_t *, mblk_t *); extern boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **); extern size_t tcp_fuse_set_rcv_hiwat(tcp_t *, size_t); extern int tcp_fuse_maxpsz(tcp_t *); extern void tcp_fuse_backenable(tcp_t *); extern void tcp_iss_key_init(uint8_t *, int, tcp_stack_t *); /* * Output related functions in tcp_output.c. */ extern void tcp_close_output(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_output(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_output_urgent(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_rexmit_after_error(tcp_t *); extern void tcp_sack_rexmit(tcp_t *, uint_t *); extern void tcp_send_data(tcp_t *, mblk_t *); extern void tcp_send_synack(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_shutdown_output(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_ss_rexmit(tcp_t *); extern void tcp_update_xmit_tail(tcp_t *, uint32_t); extern int tcp_wput(queue_t *, mblk_t *); extern void tcp_wput_data(tcp_t *, mblk_t *, boolean_t); extern int tcp_wput_sock(queue_t *, mblk_t *); extern int tcp_wput_fallback(queue_t *, mblk_t *); extern void tcp_xmit_ctl(char *, tcp_t *, uint32_t, uint32_t, int); extern void tcp_xmit_listeners_reset(mblk_t *, ip_recv_attr_t *, ip_stack_t *i, conn_t *); extern mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *, mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t); /* * Input related functions in tcp_input.c. */ extern void cc_cong_signal(tcp_t *, uint32_t, uint32_t); extern void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_input_data(void *, mblk_t *, void *, ip_recv_attr_t *); extern void tcp_input_listener_unbound(void *, mblk_t *, void *, ip_recv_attr_t *); extern boolean_t tcp_paws_check(tcp_t *, const tcp_opt_t *); extern int tcp_parse_options(tcpha_t *, tcp_opt_t *); extern uint_t tcp_rcv_drain(tcp_t *); extern void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t, cred_t *); extern boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, ip_recv_attr_t *); /* * Kernel socket related functions in tcp_socket.c. */ extern int tcp_fallback(sock_lower_handle_t, queue_t *, boolean_t, so_proto_quiesced_cb_t, sock_quiesce_arg_t *); extern boolean_t tcp_newconn_notify(tcp_t *, ip_recv_attr_t *); /* * Timer related functions in tcp_timers.c. */ extern void tcp_ack_timer(void *); extern void tcp_close_linger_timeout(void *); extern void tcp_keepalive_timer(void *); extern void tcp_push_timer(void *); extern void tcp_reass_timer(void *); extern mblk_t *tcp_timermp_alloc(int); extern void tcp_timermp_free(tcp_t *); extern timeout_id_t tcp_timeout(conn_t *, void (*)(void *), hrtime_t); extern clock_t tcp_timeout_cancel(conn_t *, timeout_id_t); extern void tcp_timer(void *arg); extern void tcp_timers_stop(tcp_t *); /* * TCP TPI related functions in tcp_tpi.c. */ extern void tcp_addr_req(tcp_t *, mblk_t *); extern void tcp_capability_req(tcp_t *, mblk_t *); extern boolean_t tcp_conn_con(tcp_t *, uchar_t *, mblk_t *, mblk_t **, ip_recv_attr_t *); extern void tcp_err_ack(tcp_t *, mblk_t *, int, int); extern void tcp_err_ack_prim(tcp_t *, mblk_t *, int, int, int); extern void tcp_info_req(tcp_t *, mblk_t *); extern void tcp_send_conn_ind(void *, mblk_t *, void *); extern void tcp_send_pending(void *, mblk_t *, void *, ip_recv_attr_t *); extern int tcp_tpi_accept(queue_t *, mblk_t *); extern void tcp_tpi_bind(tcp_t *, mblk_t *); extern int tcp_tpi_close(queue_t *, int, cred_t *); extern int tcp_tpi_close_accept(queue_t *, int, cred_t *); extern void tcp_tpi_connect(tcp_t *, mblk_t *); extern int tcp_tpi_opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *); extern int tcp_tpi_opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t *, uint_t *, uchar_t *, void *, cred_t *); extern void tcp_tpi_unbind(tcp_t *, mblk_t *); extern void tcp_tli_accept(tcp_t *, mblk_t *); extern void tcp_use_pure_tpi(tcp_t *); extern void tcp_do_capability_ack(tcp_t *, struct T_capability_ack *, t_uscalar_t); /* * TCP option processing related functions in tcp_opt_data.c */ extern int tcp_opt_get(conn_t *, int, int, uchar_t *); extern int tcp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *, uint_t *, uchar_t *, void *, cred_t *); /* * TCP time wait processing related functions in tcp_time_wait.c. */ extern void tcp_time_wait_append(tcp_t *); extern void tcp_time_wait_collector(void *); extern boolean_t tcp_time_wait_remove(tcp_t *, tcp_squeue_priv_t *); extern void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t, uint32_t, int, tcpha_t *, ip_recv_attr_t *); /* * Misc functions in tcp_misc.c. */ extern uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); extern void tcp_ioctl_abort_conn(queue_t *, mblk_t *); extern void tcp_listener_conf_cleanup(tcp_stack_t *); extern void tcp_stack_cpu_add(tcp_stack_t *, processorid_t); #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _INET_TCP_IMPL_H */