/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. * Copyright 2016 RackTop Systems. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; static char *dmu_recv_tag = "dmu_recv_tag"; const char *recv_clone_name = "%recv"; static void byteswap_record(dmu_replay_record_t *drr); typedef struct dmu_recv_begin_arg { const char *drba_origin; dmu_recv_cookie_t *drba_cookie; cred_t *drba_cred; dsl_crypto_params_t *drba_dcp; } dmu_recv_begin_arg_t; static int recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, uint64_t fromguid, uint64_t featureflags) { uint64_t val; int error; dsl_pool_t *dp = ds->ds_dir->dd_pool; boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; /* temporary clone name must not exist */ error = zap_lookup(dp->dp_meta_objset, dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 8, 1, &val); if (error != ENOENT) return (error == 0 ? EBUSY : error); /* new snapshot name must not exist */ error = zap_lookup(dp->dp_meta_objset, dsl_dataset_phys(ds)->ds_snapnames_zapobj, drba->drba_cookie->drc_tosnap, 8, 1, &val); if (error != ENOENT) return (error == 0 ? EEXIST : error); /* * Check snapshot limit before receiving. We'll recheck again at the * end, but might as well abort before receiving if we're already over * the limit. * * Note that we do not check the file system limit with * dsl_dir_fscount_check because the temporary %clones don't count * against that limit. */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); if (error != 0) return (error); if (fromguid != 0) { dsl_dataset_t *snap; uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; /* Can't raw receive on top of an unencrypted dataset */ if (!encrypted && raw) return (SET_ERROR(EINVAL)); /* Encryption is incompatible with embedded data */ if (encrypted && embed) return (SET_ERROR(EINVAL)); /* Find snapshot in this dir that matches fromguid. */ while (obj != 0) { error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (SET_ERROR(ENODEV)); if (snap->ds_dir != ds->ds_dir) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ENODEV)); } if (dsl_dataset_phys(snap)->ds_guid == fromguid) break; obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); } if (obj == 0) return (SET_ERROR(ENODEV)); if (drba->drba_cookie->drc_force) { drba->drba_cookie->drc_fromsnapobj = obj; } else { /* * If we are not forcing, there must be no * changes since fromsnap. */ if (dsl_dataset_modified_since_snap(ds, snap)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ETXTBSY)); } drba->drba_cookie->drc_fromsnapobj = ds->ds_prev->ds_object; } dsl_dataset_rele(snap, FTAG); } else { /* if full, then must be forced */ if (!drba->drba_cookie->drc_force) return (SET_ERROR(EEXIST)); /* * We don't support using zfs recv -F to blow away * encrypted filesystems. This would require the * dsl dir to point to the old encryption key and * the new one at the same time during the receive. */ if ((!encrypted && raw) || encrypted) return (SET_ERROR(EINVAL)); /* * Perform the same encryption checks we would if * we were creating a new dataset from scratch. */ if (!raw) { boolean_t will_encrypt; error = dmu_objset_create_crypt_check( ds->ds_dir->dd_parent, drba->drba_dcp, &will_encrypt); if (error != 0) return (error); if (will_encrypt && embed) return (SET_ERROR(EINVAL)); } drba->drba_cookie->drc_fromsnapobj = 0; } return (0); } static int dmu_recv_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; uint64_t fromguid = drrb->drr_fromguid; int flags = drrb->drr_flags; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; int error; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES || ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) return (SET_ERROR(EINVAL)); /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(dp->dp_spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); if (drba->drba_cookie->drc_resumable && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate a WRITE_EMBEDDED * record to a plain WRITE record, so the pool must have the * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED * records. Same with WRITE_EMBEDDED records that use LZ4 compression. */ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate large blocks * to smaller ones, so the pool must have the LARGE_BLOCKS * feature enabled if the stream has LARGE_BLOCKS. Same with * large dnodes. */ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) return (SET_ERROR(ENOTSUP)); if (featureflags & DMU_BACKUP_FEATURE_RAW) { /* raw receives require the encryption feature */ if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) return (SET_ERROR(ENOTSUP)); /* embedded data is incompatible with encryption and raw recv */ if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) return (SET_ERROR(EINVAL)); /* raw receives require spill block allocation flag */ if (!(flags & DRR_FLAG_SPILL_BLOCK)) return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error == 0) { /* target fs already exists; recv into temp clone */ /* Can't recv a clone into an existing fs */ if (flags & DRR_FLAG_CLONE || drba->drba_origin) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } error = recv_begin_check_existing_impl(drba, ds, fromguid, featureflags); dsl_dataset_rele_flags(ds, dsflags, FTAG); } else if (error == ENOENT) { /* target fs does not exist; must be a full backup or clone */ char buf[ZFS_MAX_DATASET_NAME_LEN]; /* * If it's a non-clone incremental, we are missing the * target fs, so fail the recv. */ if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || drba->drba_origin)) return (SET_ERROR(ENOENT)); /* * If we're receiving a full send as a clone, and it doesn't * contain all the necessary free records and freeobject * records, reject it. */ if (fromguid == 0 && drba->drba_origin && !(flags & DRR_FLAG_FREERECORDS)) return (SET_ERROR(EINVAL)); /* Open the parent of tofs */ ASSERT3U(strlen(tofs), <, sizeof (buf)); (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); error = dsl_dataset_hold(dp, buf, FTAG, &ds); if (error != 0) return (error); if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && drba->drba_origin == NULL) { boolean_t will_encrypt; /* * Check that we aren't breaking any encryption rules * and that we have all the parameters we need to * create an encrypted dataset if necessary. If we are * making an encrypted dataset the stream can't have * embedded data. */ error = dmu_objset_create_crypt_check(ds->ds_dir, drba->drba_dcp, &will_encrypt); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (will_encrypt && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } } /* * Check filesystem and snapshot limits before receiving. We'll * recheck snapshot limits again at the end (we create the * filesystems and increment those counts during begin_sync). */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (drba->drba_origin != NULL) { dsl_dataset_t *origin; error = dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (!origin->ds_is_snapshot) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } if (dsl_dataset_phys(origin)->ds_guid != fromguid && fromguid != 0) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENODEV)); } if (origin->ds_dir->dd_crypto_obj != 0 && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } dsl_dataset_rele(origin, FTAG); } dsl_dataset_rele(ds, FTAG); error = 0; } return (error); } static void dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); objset_t *mos = dp->dp_meta_objset; struct drr_begin *drrb = drba->drba_cookie->drc_drrb; const char *tofs = drba->drba_cookie->drc_tofs; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds, *newds; objset_t *os; uint64_t dsobj; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; int error; uint64_t crflags = 0; dsl_crypto_params_t dummy_dcp = { 0 }; dsl_crypto_params_t *dcp = drba->drba_dcp; if (drrb->drr_flags & DRR_FLAG_CI_DATA) crflags |= DS_FLAG_CI_DATASET; if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) dsflags |= DS_HOLD_FLAG_DECRYPT; /* * Raw, non-incremental recvs always use a dummy dcp with * the raw cmd set. Raw incremental recvs do not use a dcp * since the encryption parameters are already set in stone. */ if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 && drba->drba_origin == NULL) { ASSERT3P(dcp, ==, NULL); dcp = &dummy_dcp; if (featureflags & DMU_BACKUP_FEATURE_RAW) dcp->cp_cmd = DCP_CMD_RAW_RECV; } error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error == 0) { /* create temporary clone */ dsl_dataset_t *snap = NULL; if (drba->drba_cookie->drc_fromsnapobj != 0) { VERIFY0(dsl_dataset_hold_obj(dp, drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); ASSERT3P(dcp, ==, NULL); } dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, snap, crflags, drba->drba_cred, dcp, tx); if (drba->drba_cookie->drc_fromsnapobj != 0) dsl_dataset_rele(snap, FTAG); dsl_dataset_rele_flags(ds, dsflags, FTAG); } else { dsl_dir_t *dd; const char *tail; dsl_dataset_t *origin = NULL; VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); if (drba->drba_origin != NULL) { VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin)); ASSERT3P(dcp, ==, NULL); } /* Create new dataset. */ dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, origin, crflags, drba->drba_cred, dcp, tx); if (origin != NULL) dsl_dataset_rele(origin, FTAG); dsl_dir_rele(dd, FTAG); drba->drba_cookie->drc_newfs = B_TRUE; } VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds)); VERIFY0(dmu_objset_from_ds(newds, &os)); if (drba->drba_cookie->drc_resumable) { dsl_dataset_zapify(newds, tx); if (drrb->drr_fromguid != 0) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 8, 1, &drrb->drr_fromguid, tx)); } VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 8, 1, &drrb->drr_toguid, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); uint64_t one = 1; uint64_t zero = 0; VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 8, 1, &one, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 8, 1, &zero, tx)); VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 8, 1, &zero, tx)); if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 8, 1, &one, tx)); } if (featureflags & DMU_BACKUP_FEATURE_RAW) { VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 8, 1, &one, tx)); } } /* * Usually the os->os_encrypted value is tied to the presence of a * DSL Crypto Key object in the dd. However, that will not be received * until dmu_recv_stream(), so we set the value manually for now. */ if (featureflags & DMU_BACKUP_FEATURE_RAW) { os->os_encrypted = B_TRUE; drba->drba_cookie->drc_raw = B_TRUE; } dmu_buf_will_dirty(newds->ds_dbuf, tx); dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; /* * If we actually created a non-clone, we need to create the objset * in our new dataset. If this is a raw send we postpone this until * dmu_recv_stream() so that we can allocate the metadnode with the * properties from the DRR_BEGIN payload. */ rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { (void) dmu_objset_create_impl(dp->dp_spa, newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); } rrw_exit(&newds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = newds; spa_history_log_internal_ds(newds, "receive", tx, ""); } static int dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; int error; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES) return (SET_ERROR(EINVAL)); /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(dp->dp_spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate a WRITE_EMBEDDED * record to a plain WRITE record, so the pool must have the * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED * records. Same with WRITE_EMBEDDED records that use LZ4 compression. */ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate large blocks * to smaller ones, so the pool must have the LARGE_BLOCKS * feature enabled if the stream has LARGE_BLOCKS. Same with * large dnodes. */ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) return (SET_ERROR(ENOTSUP)); (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (featureflags & DMU_BACKUP_FEATURE_RAW) { /* raw receives require spill block allocation flag */ if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { /* %recv does not exist; continue in tofs */ error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); if (error != 0) return (error); } /* check that ds is marked inconsistent */ if (!DS_IS_INCONSISTENT(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* check that there is resuming data, and that the toguid matches */ if (!dsl_dataset_is_zapified(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } uint64_t val; error = zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); if (error != 0 || drrb->drr_toguid != val) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* * Check if the receive is still running. If so, it will be owned. * Note that nothing else can own the dataset (e.g. after the receive * fails) because it will be marked inconsistent. */ if (dsl_dataset_has_owner(ds)) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EBUSY)); } /* There should not be any snapshots of this fs yet. */ if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } /* * Note: resume point will be checked when we process the first WRITE * record. */ /* check that the origin matches */ val = 0; (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); if (drrb->drr_fromguid != val) { dsl_dataset_rele_flags(ds, dsflags, FTAG); return (SET_ERROR(EINVAL)); } dsl_dataset_rele_flags(ds, dsflags, FTAG); return (0); } static void dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); const char *tofs = drba->drba_cookie->drc_tofs; struct drr_begin *drrb = drba->drba_cookie->drc_drrb; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds; objset_t *os; ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; uint64_t dsobj; /* 6 extra bytes for /%recv */ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, recv_clone_name); if (featureflags & DMU_BACKUP_FEATURE_RAW) { drba->drba_cookie->drc_raw = B_TRUE; } else { dsflags |= DS_HOLD_FLAG_DECRYPT; } if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { /* %recv does not exist; continue in tofs */ VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds)); drba->drba_cookie->drc_newfs = B_TRUE; } /* clear the inconsistent flag so that we can own it */ ASSERT(DS_IS_INCONSISTENT(ds)); dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; dsobj = ds->ds_object; dsl_dataset_rele_flags(ds, dsflags, FTAG); VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds)); VERIFY0(dmu_objset_from_ds(ds, &os)); dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || drba->drba_cookie->drc_raw); rrw_exit(&ds->ds_bp_rwlock, FTAG); drba->drba_cookie->drc_ds = ds; spa_history_log_internal_ds(ds, "resume receive", tx, ""); } /* * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() * succeeds; otherwise we will leak the holds on the datasets. */ int dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, boolean_t force, boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc) { dmu_recv_begin_arg_t drba = { 0 }; bzero(drc, sizeof (dmu_recv_cookie_t)); drc->drc_drr_begin = drr_begin; drc->drc_drrb = &drr_begin->drr_u.drr_begin; drc->drc_tosnap = tosnap; drc->drc_tofs = tofs; drc->drc_force = force; drc->drc_resumable = resumable; drc->drc_cred = CRED(); drc->drc_clone = (origin != NULL); if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { drc->drc_byteswap = B_TRUE; (void) fletcher_4_incremental_byteswap(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); byteswap_record(drr_begin); } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { (void) fletcher_4_incremental_native(drr_begin, sizeof (dmu_replay_record_t), &drc->drc_cksum); } else { return (SET_ERROR(EINVAL)); } if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) drc->drc_spill = B_TRUE; drba.drba_origin = origin; drba.drba_cookie = drc; drba.drba_cred = CRED(); if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RESUMING) { return (dsl_sync_task(tofs, dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL)); } else { int err; /* * For non-raw, non-incremental, non-resuming receives the * user can specify encryption parameters on the command line * with "zfs recv -o". For these receives we create a dcp and * pass it to the sync task. Creating the dcp will implicitly * remove the encryption params from the localprops nvlist, * which avoids errors when trying to set these normally * read-only properties. Any other kind of receive that * attempts to set these properties will fail as a result. */ if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RAW) == 0 && origin == NULL && drc->drc_drrb->drr_fromguid == 0) { err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, localprops, hidden_args, &drba.drba_dcp); if (err != 0) return (err); } err = dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL); dsl_crypto_params_free(drba.drba_dcp, !!err); return (err); } } struct receive_record_arg { dmu_replay_record_t header; void *payload; /* Pointer to a buffer containing the payload */ /* * If the record is a write, pointer to the arc_buf_t containing the * payload. */ arc_buf_t *arc_buf; int payload_size; uint64_t bytes_read; /* bytes read from stream when record created */ boolean_t eos_marker; /* Marks the end of the stream */ bqueue_node_t node; }; struct receive_writer_arg { objset_t *os; boolean_t byteswap; bqueue_t q; /* * These three args are used to signal to the main thread that we're * done. */ kmutex_t mutex; kcondvar_t cv; boolean_t done; int err; /* A map from guid to dataset to help handle dedup'd streams. */ avl_tree_t *guid_to_ds_map; boolean_t resumable; boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ uint64_t last_object; uint64_t last_offset; uint64_t max_object; /* highest object ID referenced in stream */ uint64_t bytes_read; /* bytes read when current record created */ /* Encryption parameters for the last received DRR_OBJECT_RANGE */ boolean_t or_crypt_params_present; uint64_t or_firstobj; uint64_t or_numslots; uint8_t or_salt[ZIO_DATA_SALT_LEN]; uint8_t or_iv[ZIO_DATA_IV_LEN]; uint8_t or_mac[ZIO_DATA_MAC_LEN]; boolean_t or_byteorder; }; struct objlist { list_t list; /* List of struct receive_objnode. */ /* * Last object looked up. Used to assert that objects are being looked * up in ascending order. */ uint64_t last_lookup; }; struct receive_objnode { list_node_t node; uint64_t object; }; struct receive_arg { objset_t *os; vnode_t *vp; /* The vnode to read the stream from */ uint64_t voff; /* The current offset in the stream */ uint64_t bytes_read; /* * A record that has had its payload read in, but hasn't yet been handed * off to the worker thread. */ struct receive_record_arg *rrd; /* A record that has had its header read in, but not its payload. */ struct receive_record_arg *next_rrd; zio_cksum_t cksum; zio_cksum_t prev_cksum; int err; boolean_t byteswap; boolean_t raw; uint64_t featureflags; /* Sorted list of objects not to issue prefetches for. */ struct objlist ignore_objlist; }; typedef struct guid_map_entry { uint64_t guid; boolean_t raw; dsl_dataset_t *gme_ds; avl_node_t avlnode; } guid_map_entry_t; static int guid_compare(const void *arg1, const void *arg2) { const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1; const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2; return (TREE_CMP(gmep1->guid, gmep2->guid)); } static void free_guid_map_onexit(void *arg) { avl_tree_t *ca = arg; void *cookie = NULL; guid_map_entry_t *gmep; while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT; if (gmep->raw) { gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE; dsflags &= ~DS_HOLD_FLAG_DECRYPT; } dsl_dataset_disown(gmep->gme_ds, dsflags, gmep); kmem_free(gmep, sizeof (guid_map_entry_t)); } avl_destroy(ca); kmem_free(ca, sizeof (avl_tree_t)); } static int receive_read(struct receive_arg *ra, int len, void *buf) { int done = 0; /* * The code doesn't rely on this (lengths being multiples of 8). See * comment in dump_bytes. */ ASSERT(len % 8 == 0 || (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0); while (done < len) { ssize_t resid; ra->err = vn_rdwr(UIO_READ, ra->vp, (char *)buf + done, len - done, ra->voff, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); if (resid == len - done) { /* * Note: ECKSUM indicates that the receive * was interrupted and can potentially be resumed. */ ra->err = SET_ERROR(ECKSUM); } ra->voff += len - done - resid; done = len - resid; if (ra->err != 0) return (ra->err); } ra->bytes_read += len; ASSERT3U(done, ==, len); return (0); } static void byteswap_record(dmu_replay_record_t *drr) { #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); switch (drr->drr_type) { case DRR_BEGIN: DO64(drr_begin.drr_magic); DO64(drr_begin.drr_versioninfo); DO64(drr_begin.drr_creation_time); DO32(drr_begin.drr_type); DO32(drr_begin.drr_flags); DO64(drr_begin.drr_toguid); DO64(drr_begin.drr_fromguid); break; case DRR_OBJECT: DO64(drr_object.drr_object); DO32(drr_object.drr_type); DO32(drr_object.drr_bonustype); DO32(drr_object.drr_blksz); DO32(drr_object.drr_bonuslen); DO32(drr_object.drr_raw_bonuslen); DO64(drr_object.drr_toguid); DO64(drr_object.drr_maxblkid); break; case DRR_FREEOBJECTS: DO64(drr_freeobjects.drr_firstobj); DO64(drr_freeobjects.drr_numobjs); DO64(drr_freeobjects.drr_toguid); break; case DRR_WRITE: DO64(drr_write.drr_object); DO32(drr_write.drr_type); DO64(drr_write.drr_offset); DO64(drr_write.drr_logical_size); DO64(drr_write.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); DO64(drr_write.drr_key.ddk_prop); DO64(drr_write.drr_compressed_size); break; case DRR_WRITE_BYREF: DO64(drr_write_byref.drr_object); DO64(drr_write_byref.drr_offset); DO64(drr_write_byref.drr_length); DO64(drr_write_byref.drr_toguid); DO64(drr_write_byref.drr_refguid); DO64(drr_write_byref.drr_refobject); DO64(drr_write_byref.drr_refoffset); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. drr_key.ddk_cksum); DO64(drr_write_byref.drr_key.ddk_prop); break; case DRR_WRITE_EMBEDDED: DO64(drr_write_embedded.drr_object); DO64(drr_write_embedded.drr_offset); DO64(drr_write_embedded.drr_length); DO64(drr_write_embedded.drr_toguid); DO32(drr_write_embedded.drr_lsize); DO32(drr_write_embedded.drr_psize); break; case DRR_FREE: DO64(drr_free.drr_object); DO64(drr_free.drr_offset); DO64(drr_free.drr_length); DO64(drr_free.drr_toguid); break; case DRR_SPILL: DO64(drr_spill.drr_object); DO64(drr_spill.drr_length); DO64(drr_spill.drr_toguid); DO64(drr_spill.drr_compressed_size); DO32(drr_spill.drr_type); break; case DRR_OBJECT_RANGE: DO64(drr_object_range.drr_firstobj); DO64(drr_object_range.drr_numslots); DO64(drr_object_range.drr_toguid); break; case DRR_END: DO64(drr_end.drr_toguid); ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); break; } if (drr->drr_type != DRR_BEGIN) { ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); } #undef DO64 #undef DO32 } static inline uint8_t deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) { if (bonus_type == DMU_OT_SA) { return (1); } else { return (1 + ((DN_OLD_MAX_BONUSLEN - MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); } } static void save_resume_state(struct receive_writer_arg *rwa, uint64_t object, uint64_t offset, dmu_tx_t *tx) { int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; if (!rwa->resumable) return; /* * We use ds_resume_bytes[] != 0 to indicate that we need to * update this on disk, so it must not be 0. */ ASSERT(rwa->bytes_read != 0); /* * We only resume from write records, which have a valid * (non-meta-dnode) object number. */ ASSERT(object != 0); /* * For resuming to work correctly, we must receive records in order, * sorted by object,offset. This is checked by the callers, but * assert it here for good measure. */ ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); ASSERT3U(rwa->bytes_read, >=, rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; } int receive_object_delay_frac = 0; static int receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, void *data) { dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object; int err; uint8_t dn_slots = drro->drr_dn_slots != 0 ? drro->drr_dn_slots : DNODE_MIN_SLOTS; if (receive_object_delay_frac != 0 && spa_get_random(receive_object_delay_frac) == 0) delay(1); if (drro->drr_type == DMU_OT_NONE || !DMU_OT_IS_VALID(drro->drr_type) || !DMU_OT_IS_VALID(drro->drr_bonustype) || drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || drro->drr_blksz < SPA_MINBLOCKSIZE || drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || drro->drr_bonuslen > DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || dn_slots > (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { return (SET_ERROR(EINVAL)); } if (rwa->raw) { /* * We should have received a DRR_OBJECT_RANGE record * containing this block and stored it in rwa. */ if (drro->drr_object < rwa->or_firstobj || drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || drro->drr_raw_bonuslen < drro->drr_bonuslen || drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || drro->drr_nlevels > DN_MAX_LEVELS || drro->drr_nblkptr > DN_MAX_NBLKPTR || DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) < drro->drr_raw_bonuslen) return (SET_ERROR(EINVAL)); } else { /* * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN * record indicates this by setting DRR_FLAG_SPILL_BLOCK. */ if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { return (SET_ERROR(EINVAL)); } if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { return (SET_ERROR(EINVAL)); } } err = dmu_object_info(rwa->os, drro->drr_object, &doi); if (err != 0 && err != ENOENT && err != EEXIST) return (SET_ERROR(EINVAL)); if (drro->drr_object > rwa->max_object) rwa->max_object = drro->drr_object; /* * If we are losing blkptrs or changing the block size this must * be a new file instance. We must clear out the previous file * contents before we can change this type of metadata in the dnode. * Raw receives will also check that the indirect structure of the * dnode hasn't changed. */ if (err == 0) { uint32_t indblksz = drro->drr_indblkshift ? 1ULL << drro->drr_indblkshift : 0; int nblkptr = deduce_nblkptr(drro->drr_bonustype, drro->drr_bonuslen); boolean_t did_free = B_FALSE; object = drro->drr_object; /* nblkptr should be bounded by the bonus size and type */ if (rwa->raw && nblkptr != drro->drr_nblkptr) return (SET_ERROR(EINVAL)); /* * Check for indicators that the object was freed and * reallocated. For all sends, these indicators are: * - A changed block size * - A smaller nblkptr * - A changed dnode size * For raw sends we also check a few other fields to * ensure we are preserving the objset structure exactly * as it was on the receive side: * - A changed indirect block size * - A smaller nlevels */ if (drro->drr_blksz != doi.doi_data_block_size || nblkptr < doi.doi_nblkptr || dn_slots != doi.doi_dnodesize >> DNODE_SHIFT || (rwa->raw && (indblksz != doi.doi_metadata_block_size || drro->drr_nlevels < doi.doi_indirection))) { err = dmu_free_long_range(rwa->os, drro->drr_object, 0, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); else did_free = B_TRUE; } /* * The dmu does not currently support decreasing nlevels * or changing the number of dnode slots on an object. For * non-raw sends, this does not matter and the new object * can just use the previous one's nlevels. For raw sends, * however, the structure of the received dnode (including * nlevels and dnode slots) must match that of the send * side. Therefore, instead of using dmu_object_reclaim(), * we must free the object completely and call * dmu_object_claim_dnsize() instead. */ if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) || dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { err = dmu_free_long_object(rwa->os, drro->drr_object); if (err != 0) return (SET_ERROR(EINVAL)); txg_wait_synced(dmu_objset_pool(rwa->os), 0); object = DMU_NEW_OBJECT; } /* * For raw receives, free everything beyond the new incoming * maxblkid. Normally this would be done with a DRR_FREE * record that would come after this DRR_OBJECT record is * processed. However, for raw receives we manually set the * maxblkid from the drr_maxblkid and so we must first free * everything above that blkid to ensure the DMU is always * consistent with itself. We will never free the first block * of the object here because a maxblkid of 0 could indicate * an object with a single block or one with no blocks. This * free may be skipped when dmu_free_long_range() was called * above since it covers the entire object's contents. */ if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) { err = dmu_free_long_range(rwa->os, drro->drr_object, (drro->drr_maxblkid + 1) * doi.doi_data_block_size, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } } else if (err == EEXIST) { /* * The object requested is currently an interior slot of a * multi-slot dnode. This will be resolved when the next txg * is synced out, since the send stream will have told us * to free this slot when we freed the associated dnode * earlier in the stream. */ txg_wait_synced(dmu_objset_pool(rwa->os), 0); if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) return (SET_ERROR(EINVAL)); /* object was freed and we are about to allocate a new one */ object = DMU_NEW_OBJECT; } else { /* object is free and we are about to allocate a new one */ object = DMU_NEW_OBJECT; } /* * If this is a multi-slot dnode there is a chance that this * object will expand into a slot that is already used by * another object from the previous snapshot. We must free * these objects before we attempt to allocate the new dnode. */ if (dn_slots > 1) { boolean_t need_sync = B_FALSE; for (uint64_t slot = drro->drr_object + 1; slot < drro->drr_object + dn_slots; slot++) { dmu_object_info_t slot_doi; err = dmu_object_info(rwa->os, slot, &slot_doi); if (err == ENOENT || err == EEXIST) continue; else if (err != 0) return (err); err = dmu_free_long_object(rwa->os, slot); if (err != 0) return (err); need_sync = B_TRUE; } if (need_sync) txg_wait_synced(dmu_objset_pool(rwa->os), 0); } tx = dmu_tx_create(rwa->os); dmu_tx_hold_bonus(tx, object); dmu_tx_hold_write(tx, object, 0, 0); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (object == DMU_NEW_OBJECT) { /* Currently free, wants to be allocated */ err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, dn_slots << DNODE_SHIFT, tx); } else if (drro->drr_type != doi.doi_type || drro->drr_blksz != doi.doi_data_block_size || drro->drr_bonustype != doi.doi_bonus_type || drro->drr_bonuslen != doi.doi_bonus_size) { /* Currently allocated, but with different properties */ err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, dn_slots << DNODE_SHIFT, rwa->spill ? DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { /* * Currently allocated, the existing version of this object * may reference a spill block that is no longer allocated * at the source and needs to be freed. */ err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); } if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } if (rwa->or_crypt_params_present) { /* * Set the crypt params for the buffer associated with this * range of dnodes. This causes the blkptr_t to have the * same crypt params (byteorder, salt, iv, mac) as on the * sending side. * * Since we are committing this tx now, it is possible for * the dnode block to end up on-disk with the incorrect MAC, * if subsequent objects in this block are received in a * different txg. However, since the dataset is marked as * inconsistent, no code paths will do a non-raw read (or * decrypt the block / verify the MAC). The receive code and * scrub code can safely do raw reads and verify the * checksum. They don't need to verify the MAC. */ dmu_buf_t *db = NULL; uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } dmu_buf_set_crypt_params(db, rwa->or_byteorder, rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); dmu_buf_rele(db, FTAG); rwa->or_crypt_params_present = B_FALSE; } dmu_object_set_checksum(rwa->os, drro->drr_object, drro->drr_checksumtype, tx); dmu_object_set_compress(rwa->os, drro->drr_object, drro->drr_compress, tx); /* handle more restrictive dnode structuring for raw recvs */ if (rwa->raw) { /* * Set the indirect block size, block shift, nlevels. * This will not fail because we ensured all of the * blocks were freed earlier if this is a new object. * For non-new objects block size and indirect block * shift cannot change and nlevels can only increase. */ VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, drro->drr_blksz, drro->drr_indblkshift, tx)); VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, drro->drr_nlevels, tx)); /* * Set the maxblkid. This will always succeed because * we freed all blocks beyond the new maxblkid above. */ VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, drro->drr_maxblkid, tx)); } if (data != NULL) { dmu_buf_t *db; dnode_t *dn; uint32_t flags = DMU_READ_NO_PREFETCH; if (rwa->raw) flags |= DMU_READ_NO_DECRYPT; VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, drro->drr_bonuslen); bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); /* * Raw bonus buffers have their byteorder determined by the * DRR_OBJECT_RANGE record. */ if (rwa->byteswap && !rwa->raw) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drro->drr_bonustype); dmu_ot_byteswap[byteswap].ob_func(db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); } dmu_buf_rele(db, FTAG); dnode_rele(dn, FTAG); } dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int receive_freeobjects(struct receive_writer_arg *rwa, struct drr_freeobjects *drrfo) { uint64_t obj; int next_err = 0; if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) return (SET_ERROR(EINVAL)); for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { dmu_object_info_t doi; int err; err = dmu_object_info(rwa->os, obj, &doi); if (err == ENOENT) continue; else if (err != 0) return (err); err = dmu_free_long_object(rwa->os, obj); if (err != 0) return (err); if (obj > rwa->max_object) rwa->max_object = obj; } if (next_err != ESRCH) return (next_err); return (0); } static int receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, arc_buf_t *abuf) { int err; dmu_tx_t *tx; dnode_t *dn; if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || !DMU_OT_IS_VALID(drrw->drr_type)) return (SET_ERROR(EINVAL)); /* * For resuming to work, records must be in increasing order * by (object, offset). */ if (drrw->drr_object < rwa->last_object || (drrw->drr_object == rwa->last_object && drrw->drr_offset < rwa->last_offset)) { return (SET_ERROR(EINVAL)); } rwa->last_object = drrw->drr_object; rwa->last_offset = drrw->drr_offset; if (rwa->last_object > rwa->max_object) rwa->max_object = rwa->last_object; if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrw->drr_object, drrw->drr_offset, drrw->drr_logical_size); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (rwa->byteswap && !arc_is_encrypted(abuf) && arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrw->drr_type); dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, DRR_WRITE_PAYLOAD_SIZE(drrw)); } VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn)); err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx); if (err != 0) { dnode_rele(dn, FTAG); dmu_tx_commit(tx); return (err); } dnode_rele(dn, FTAG); /* * Note: If the receive fails, we want the resume stream to start * with the same record that we last successfully received (as opposed * to the next record), so that we can verify that we are * resuming from the correct location. */ save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); dmu_tx_commit(tx); return (0); } /* * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed * streams to refer to a copy of the data that is already on the * system because it came in earlier in the stream. This function * finds the earlier copy of the data, and uses that copy instead of * data from the stream to fulfill this write. */ static int receive_write_byref(struct receive_writer_arg *rwa, struct drr_write_byref *drrwbr) { dmu_tx_t *tx; int err; guid_map_entry_t gmesrch; guid_map_entry_t *gmep; avl_index_t where; objset_t *ref_os = NULL; int flags = DMU_READ_PREFETCH; dmu_buf_t *dbp; if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) return (SET_ERROR(EINVAL)); /* * If the GUID of the referenced dataset is different from the * GUID of the target dataset, find the referenced dataset. */ if (drrwbr->drr_toguid != drrwbr->drr_refguid) { gmesrch.guid = drrwbr->drr_refguid; if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, &where)) == NULL) { return (SET_ERROR(EINVAL)); } if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) return (SET_ERROR(EINVAL)); } else { ref_os = rwa->os; } if (drrwbr->drr_object > rwa->max_object) rwa->max_object = drrwbr->drr_object; if (rwa->raw) flags |= DMU_READ_NO_DECRYPT; /* may return either a regular db or an encrypted one */ err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, drrwbr->drr_refoffset, FTAG, &dbp, flags); if (err != 0) return (err); tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrwbr->drr_object, drrwbr->drr_offset, drrwbr->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (rwa->raw) { dmu_copy_from_buf(rwa->os, drrwbr->drr_object, drrwbr->drr_offset, dbp, tx); } else { dmu_write(rwa->os, drrwbr->drr_object, drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); } dmu_buf_rele(dbp, FTAG); /* See comment in restore_write. */ save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); dmu_tx_commit(tx); return (0); } static int receive_write_embedded(struct receive_writer_arg *rwa, struct drr_write_embedded *drrwe, void *data) { dmu_tx_t *tx; int err; if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) return (EINVAL); if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) return (EINVAL); if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) return (EINVAL); if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) return (EINVAL); if (rwa->raw) return (SET_ERROR(EINVAL)); if (drrwe->drr_object > rwa->max_object) rwa->max_object = drrwe->drr_object; tx = dmu_tx_create(rwa->os); dmu_tx_hold_write(tx, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write_embedded(rwa->os, drrwe->drr_object, drrwe->drr_offset, data, drrwe->drr_etype, drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); /* See comment in restore_write. */ save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); dmu_tx_commit(tx); return (0); } static int receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, arc_buf_t *abuf) { dmu_tx_t *tx; dmu_buf_t *db, *db_spill; int err; uint32_t flags = 0; if (drrs->drr_length < SPA_MINBLOCKSIZE || drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) return (SET_ERROR(EINVAL)); /* * This is an unmodified spill block which was added to the stream * to resolve an issue with incorrectly removing spill blocks. It * should be ignored by current versions of the code which support * the DRR_FLAG_SPILL_BLOCK flag. */ if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { dmu_return_arcbuf(abuf); return (0); } if (rwa->raw) { if (!DMU_OT_IS_VALID(drrs->drr_type) || drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || drrs->drr_compressed_size == 0) return (SET_ERROR(EINVAL)); flags |= DMU_READ_NO_DECRYPT; } if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrs->drr_object > rwa->max_object) rwa->max_object = drrs->drr_object; VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, &db_spill)) != 0) { dmu_buf_rele(db, FTAG); return (err); } tx = dmu_tx_create(rwa->os); dmu_tx_hold_spill(tx, db->db_object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_abort(tx); return (err); } /* * Spill blocks may both grow and shrink. When a change in size * occurs any existing dbuf must be updated to match the logical * size of the provided arc_buf_t. */ if (db_spill->db_size != drrs->drr_length) { dmu_buf_will_fill(db_spill, tx); VERIFY(0 == dbuf_spill_set_blksz(db_spill, drrs->drr_length, tx)); } if (rwa->byteswap && !arc_is_encrypted(abuf) && arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrs->drr_type); dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs)); } dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) { int err; if (drrf->drr_length != DMU_OBJECT_END && drrf->drr_offset + drrf->drr_length < drrf->drr_offset) return (SET_ERROR(EINVAL)); if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); if (drrf->drr_object > rwa->max_object) rwa->max_object = drrf->drr_object; err = dmu_free_long_range(rwa->os, drrf->drr_object, drrf->drr_offset, drrf->drr_length); return (err); } static int receive_object_range(struct receive_writer_arg *rwa, struct drr_object_range *drror) { /* * By default, we assume this block is in our native format * (ZFS_HOST_BYTEORDER). We then take into account whether * the send stream is byteswapped (rwa->byteswap). Finally, * we need to byteswap again if this particular block was * in non-native format on the send side. */ boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); /* * Since dnode block sizes are constant, we should not need to worry * about making sure that the dnode block size is the same on the * sending and receiving sides for the time being. For non-raw sends, * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE * record at all). Raw sends require this record type because the * encryption parameters are used to protect an entire block of bonus * buffers. If the size of dnode blocks ever becomes variable, * handling will need to be added to ensure that dnode block sizes * match on the sending and receiving side. */ if (drror->drr_numslots != DNODES_PER_BLOCK || P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || !rwa->raw) return (SET_ERROR(EINVAL)); if (drror->drr_firstobj > rwa->max_object) rwa->max_object = drror->drr_firstobj; /* * The DRR_OBJECT_RANGE handling must be deferred to receive_object() * so that the block of dnodes is not written out when it's empty, * and converted to a HOLE BP. */ rwa->or_crypt_params_present = B_TRUE; rwa->or_firstobj = drror->drr_firstobj; rwa->or_numslots = drror->drr_numslots; bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); rwa->or_byteorder = byteorder; return (0); } /* used to destroy the drc_ds on error */ static void dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) { dsl_dataset_t *ds = drc->drc_ds; ds_hold_flags_t dsflags; dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; /* * Wait for the txg sync before cleaning up the receive. For * resumable receives, this ensures that our resume state has * been written out to disk. For raw receives, this ensures * that the user accounting code will not attempt to do anything * after we stopped receiving the dataset. */ txg_wait_synced(ds->ds_dir->dd_pool, 0); ds->ds_objset->os_raw_receive = B_FALSE; rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { rrw_exit(&ds->ds_bp_rwlock, FTAG); dsl_dataset_disown(ds, dsflags, dmu_recv_tag); } else { char name[ZFS_MAX_DATASET_NAME_LEN]; rrw_exit(&ds->ds_bp_rwlock, FTAG); dsl_dataset_name(ds, name); dsl_dataset_disown(ds, dsflags, dmu_recv_tag); (void) dsl_destroy_head(name); } } static void receive_cksum(struct receive_arg *ra, int len, void *buf) { if (ra->byteswap) { (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); } else { (void) fletcher_4_incremental_native(buf, len, &ra->cksum); } } /* * Read the payload into a buffer of size len, and update the current record's * payload field. * Allocate ra->next_rrd and read the next record's header into * ra->next_rrd->header. * Verify checksum of payload and next record. */ static int receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) { int err; if (len != 0) { ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); err = receive_read(ra, len, buf); if (err != 0) return (err); receive_cksum(ra, len, buf); /* note: rrd is NULL when reading the begin record's payload */ if (ra->rrd != NULL) { ra->rrd->payload = buf; ra->rrd->payload_size = len; ra->rrd->bytes_read = ra->bytes_read; } } ra->prev_cksum = ra->cksum; ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); err = receive_read(ra, sizeof (ra->next_rrd->header), &ra->next_rrd->header); ra->next_rrd->bytes_read = ra->bytes_read; if (err != 0) { kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); ra->next_rrd = NULL; return (err); } if (ra->next_rrd->header.drr_type == DRR_BEGIN) { kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); ra->next_rrd = NULL; return (SET_ERROR(EINVAL)); } /* * Note: checksum is of everything up to but not including the * checksum itself. */ ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); receive_cksum(ra, offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), &ra->next_rrd->header); zio_cksum_t cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; zio_cksum_t *cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; if (ra->byteswap) byteswap_record(&ra->next_rrd->header); if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); ra->next_rrd = NULL; return (SET_ERROR(ECKSUM)); } receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); return (0); } static void objlist_create(struct objlist *list) { list_create(&list->list, sizeof (struct receive_objnode), offsetof(struct receive_objnode, node)); list->last_lookup = 0; } static void objlist_destroy(struct objlist *list) { for (struct receive_objnode *n = list_remove_head(&list->list); n != NULL; n = list_remove_head(&list->list)) { kmem_free(n, sizeof (*n)); } list_destroy(&list->list); } /* * This function looks through the objlist to see if the specified object number * is contained in the objlist. In the process, it will remove all object * numbers in the list that are smaller than the specified object number. Thus, * any lookup of an object number smaller than a previously looked up object * number will always return false; therefore, all lookups should be done in * ascending order. */ static boolean_t objlist_exists(struct objlist *list, uint64_t object) { struct receive_objnode *node = list_head(&list->list); ASSERT3U(object, >=, list->last_lookup); list->last_lookup = object; while (node != NULL && node->object < object) { VERIFY3P(node, ==, list_remove_head(&list->list)); kmem_free(node, sizeof (*node)); node = list_head(&list->list); } return (node != NULL && node->object == object); } /* * The objlist is a list of object numbers stored in ascending order. However, * the insertion of new object numbers does not seek out the correct location to * store a new object number; instead, it appends it to the list for simplicity. * Thus, any users must take care to only insert new object numbers in ascending * order. */ static void objlist_insert(struct objlist *list, uint64_t object) { struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); node->object = object; #ifdef ZFS_DEBUG struct receive_objnode *last_object = list_tail(&list->list); uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); ASSERT3U(node->object, >, last_objnum); #endif list_insert_tail(&list->list, node); } /* * Issue the prefetch reads for any necessary indirect blocks. * * We use the object ignore list to tell us whether or not to issue prefetches * for a given object. We do this for both correctness (in case the blocksize * of an object has changed) and performance (if the object doesn't exist, don't * needlessly try to issue prefetches). We also trim the list as we go through * the stream to prevent it from growing to an unbounded size. * * The object numbers within will always be in sorted order, and any write * records we see will also be in sorted order, but they're not sorted with * respect to each other (i.e. we can get several object records before * receiving each object's write records). As a result, once we've reached a * given object number, we can safely remove any reference to lower object * numbers in the ignore list. In practice, we receive up to 32 object records * before receiving write records, so the list can have up to 32 nodes in it. */ /* ARGSUSED */ static void receive_read_prefetch(struct receive_arg *ra, uint64_t object, uint64_t offset, uint64_t length) { if (!objlist_exists(&ra->ignore_objlist, object)) { dmu_prefetch(ra->os, object, 1, offset, length, ZIO_PRIORITY_SYNC_READ); } } /* * Read records off the stream, issuing any necessary prefetches. */ static int receive_read_record(struct receive_arg *ra) { int err; switch (ra->rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); void *buf = NULL; dmu_object_info_t doi; if (size != 0) buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(ra, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } err = dmu_object_info(ra->os, drro->drr_object, &doi); /* * See receive_read_prefetch for an explanation why we're * storing this object in the ignore_obj_list. */ if (err == ENOENT || err == EEXIST || (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { objlist_insert(&ra->ignore_objlist, drro->drr_object); err = 0; } return (err); } case DRR_FREEOBJECTS: { err = receive_read_payload_and_next_header(ra, 0, NULL); return (err); } case DRR_WRITE: { struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; arc_buf_t *abuf; boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); if (ra->raw) { boolean_t byteorder = ZFS_HOST_BYTEORDER ^ !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ ra->byteswap; abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), drrw->drr_object, byteorder, drrw->drr_salt, drrw->drr_iv, drrw->drr_mac, drrw->drr_type, drrw->drr_compressed_size, drrw->drr_logical_size, drrw->drr_compressiontype); } else if (DRR_WRITE_COMPRESSED(drrw)) { ASSERT3U(drrw->drr_compressed_size, >, 0); ASSERT3U(drrw->drr_logical_size, >=, drrw->drr_compressed_size); ASSERT(!is_meta); abuf = arc_loan_compressed_buf( dmu_objset_spa(ra->os), drrw->drr_compressed_size, drrw->drr_logical_size, drrw->drr_compressiontype); } else { abuf = arc_loan_buf(dmu_objset_spa(ra->os), is_meta, drrw->drr_logical_size); } err = receive_read_payload_and_next_header(ra, DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); if (err != 0) { dmu_return_arcbuf(abuf); return (err); } ra->rrd->arc_buf = abuf; receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, drrw->drr_logical_size); return (err); } case DRR_WRITE_BYREF: { struct drr_write_byref *drrwb = &ra->rrd->header.drr_u.drr_write_byref; err = receive_read_payload_and_next_header(ra, 0, NULL); receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, drrwb->drr_length); return (err); } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &ra->rrd->header.drr_u.drr_write_embedded; uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); void *buf = kmem_zalloc(size, KM_SLEEP); err = receive_read_payload_and_next_header(ra, size, buf); if (err != 0) { kmem_free(buf, size); return (err); } receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length); return (err); } case DRR_FREE: { /* * It might be beneficial to prefetch indirect blocks here, but * we don't really have the data to decide for sure. */ err = receive_read_payload_and_next_header(ra, 0, NULL); return (err); } case DRR_END: { struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) return (SET_ERROR(ECKSUM)); return (0); } case DRR_SPILL: { struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; arc_buf_t *abuf; int len = DRR_SPILL_PAYLOAD_SIZE(drrs); /* DRR_SPILL records are either raw or uncompressed */ if (ra->raw) { boolean_t byteorder = ZFS_HOST_BYTEORDER ^ !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ ra->byteswap; abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), dmu_objset_id(ra->os), byteorder, drrs->drr_salt, drrs->drr_iv, drrs->drr_mac, drrs->drr_type, drrs->drr_compressed_size, drrs->drr_length, drrs->drr_compressiontype); } else { abuf = arc_loan_buf(dmu_objset_spa(ra->os), DMU_OT_IS_METADATA(drrs->drr_type), drrs->drr_length); } err = receive_read_payload_and_next_header(ra, len, abuf->b_data); if (err != 0) { dmu_return_arcbuf(abuf); return (err); } ra->rrd->arc_buf = abuf; return (err); } case DRR_OBJECT_RANGE: { err = receive_read_payload_and_next_header(ra, 0, NULL); return (err); } default: return (SET_ERROR(EINVAL)); } } /* * Commit the records to the pool. */ static int receive_process_record(struct receive_writer_arg *rwa, struct receive_record_arg *rrd) { int err; /* Processing in order, therefore bytes_read should be increasing. */ ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); rwa->bytes_read = rrd->bytes_read; switch (rrd->header.drr_type) { case DRR_OBJECT: { struct drr_object *drro = &rrd->header.drr_u.drr_object; err = receive_object(rwa, drro, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; return (err); } case DRR_FREEOBJECTS: { struct drr_freeobjects *drrfo = &rrd->header.drr_u.drr_freeobjects; return (receive_freeobjects(rwa, drrfo)); } case DRR_WRITE: { struct drr_write *drrw = &rrd->header.drr_u.drr_write; err = receive_write(rwa, drrw, rrd->arc_buf); /* if receive_write() is successful, it consumes the arc_buf */ if (err != 0) dmu_return_arcbuf(rrd->arc_buf); rrd->arc_buf = NULL; rrd->payload = NULL; return (err); } case DRR_WRITE_BYREF: { struct drr_write_byref *drrwbr = &rrd->header.drr_u.drr_write_byref; return (receive_write_byref(rwa, drrwbr)); } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &rrd->header.drr_u.drr_write_embedded; err = receive_write_embedded(rwa, drrwe, rrd->payload); kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; return (err); } case DRR_FREE: { struct drr_free *drrf = &rrd->header.drr_u.drr_free; return (receive_free(rwa, drrf)); } case DRR_SPILL: { struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; err = receive_spill(rwa, drrs, rrd->arc_buf); /* if receive_spill() is successful, it consumes the arc_buf */ if (err != 0) dmu_return_arcbuf(rrd->arc_buf); rrd->arc_buf = NULL; rrd->payload = NULL; return (err); } case DRR_OBJECT_RANGE: { struct drr_object_range *drror = &rrd->header.drr_u.drr_object_range; return (receive_object_range(rwa, drror)); } default: return (SET_ERROR(EINVAL)); } } /* * dmu_recv_stream's worker thread; pull records off the queue, and then call * receive_process_record When we're done, signal the main thread and exit. */ static void receive_writer_thread(void *arg) { struct receive_writer_arg *rwa = arg; struct receive_record_arg *rrd; for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; rrd = bqueue_dequeue(&rwa->q)) { /* * If there's an error, the main thread will stop putting things * on the queue, but we need to clear everything in it before we * can exit. */ if (rwa->err == 0) { rwa->err = receive_process_record(rwa, rrd); } else if (rrd->arc_buf != NULL) { dmu_return_arcbuf(rrd->arc_buf); rrd->arc_buf = NULL; rrd->payload = NULL; } else if (rrd->payload != NULL) { kmem_free(rrd->payload, rrd->payload_size); rrd->payload = NULL; } kmem_free(rrd, sizeof (*rrd)); } kmem_free(rrd, sizeof (*rrd)); mutex_enter(&rwa->mutex); rwa->done = B_TRUE; cv_signal(&rwa->cv); mutex_exit(&rwa->mutex); thread_exit(); } static int resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) { uint64_t val; objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; uint64_t dsobj = dmu_objset_id(ra->os); uint64_t resume_obj, resume_off; if (nvlist_lookup_uint64(begin_nvl, "resume_object", &resume_obj) != 0 || nvlist_lookup_uint64(begin_nvl, "resume_offset", &resume_off) != 0) { return (SET_ERROR(EINVAL)); } VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); if (resume_obj != val) return (SET_ERROR(EINVAL)); VERIFY0(zap_lookup(mos, dsobj, DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); if (resume_off != val) return (SET_ERROR(EINVAL)); return (0); } /* * Read in the stream's records, one by one, and apply them to the pool. There * are two threads involved; the thread that calls this function will spin up a * worker thread, read the records off the stream one by one, and issue * prefetches for any necessary indirect blocks. It will then push the records * onto an internal blocking queue. The worker thread will pull the records off * the queue, and actually write the data into the DMU. This way, the worker * thread doesn't have to wait for reads to complete, since everything it needs * (the indirect blocks) will be prefetched. * * NB: callers *must* call dmu_recv_end() if this succeeds. */ int dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, int cleanup_fd, uint64_t *action_handlep) { int err = 0; struct receive_arg ra = { 0 }; struct receive_writer_arg rwa = { 0 }; int featureflags; nvlist_t *begin_nvl = NULL; ra.byteswap = drc->drc_byteswap; ra.raw = drc->drc_raw; ra.cksum = drc->drc_cksum; ra.vp = vp; ra.voff = *voffp; if (dsl_dataset_is_zapified(drc->drc_ds)) { (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, sizeof (ra.bytes_read), 1, &ra.bytes_read); } objlist_create(&ra.ignore_objlist); /* these were verified in dmu_recv_begin */ ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, DMU_SUBSTREAM); ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); /* * Open the objset we are modifying. */ VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); ra.featureflags = featureflags; ASSERT0(ra.os->os_encrypted && (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); /* if this stream is dedup'ed, set up the avl tree for guid mapping */ if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { minor_t minor; if (cleanup_fd == -1) { err = SET_ERROR(EBADF); goto out; } err = zfs_onexit_fd_hold(cleanup_fd, &minor); if (err != 0) { cleanup_fd = -1; goto out; } if (*action_handlep == 0) { rwa.guid_to_ds_map = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); avl_create(rwa.guid_to_ds_map, guid_compare, sizeof (guid_map_entry_t), offsetof(guid_map_entry_t, avlnode)); err = zfs_onexit_add_cb(minor, free_guid_map_onexit, rwa.guid_to_ds_map, action_handlep); if (err != 0) goto out; } else { err = zfs_onexit_cb_data(minor, *action_handlep, (void **)&rwa.guid_to_ds_map); if (err != 0) goto out; } drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; } uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; void *payload = NULL; if (payloadlen != 0) payload = kmem_alloc(payloadlen, KM_SLEEP); err = receive_read_payload_and_next_header(&ra, payloadlen, payload); if (err != 0) { if (payloadlen != 0) kmem_free(payload, payloadlen); goto out; } if (payloadlen != 0) { err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); kmem_free(payload, payloadlen); if (err != 0) goto out; } /* handle DSL encryption key payload */ if (featureflags & DMU_BACKUP_FEATURE_RAW) { nvlist_t *keynvl = NULL; ASSERT(ra.os->os_encrypted); ASSERT(drc->drc_raw); err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl); if (err != 0) goto out; /* * If this is a new dataset we set the key immediately. * Otherwise we don't want to change the key until we * are sure the rest of the receive succeeded so we stash * the keynvl away until then. */ err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa), drc->drc_ds->ds_object, drc->drc_fromsnapobj, drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); if (err != 0) goto out; /* see comment in dmu_recv_end_sync() */ drc->drc_ivset_guid = 0; (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", &drc->drc_ivset_guid); if (!drc->drc_newfs) drc->drc_keynvl = fnvlist_dup(keynvl); } if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { err = resume_check(&ra, begin_nvl); if (err != 0) goto out; } (void) bqueue_init(&rwa.q, MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), offsetof(struct receive_record_arg, node)); cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); rwa.os = ra.os; rwa.byteswap = drc->drc_byteswap; rwa.resumable = drc->drc_resumable; rwa.raw = drc->drc_raw; rwa.spill = drc->drc_spill; rwa.os->os_raw_receive = drc->drc_raw; (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, TS_RUN, minclsyspri); /* * We're reading rwa.err without locks, which is safe since we are the * only reader, and the worker thread is the only writer. It's ok if we * miss a write for an iteration or two of the loop, since the writer * thread will keep freeing records we send it until we send it an eos * marker. * * We can leave this loop in 3 ways: First, if rwa.err is * non-zero. In that case, the writer thread will free the rrd we just * pushed. Second, if we're interrupted; in that case, either it's the * first loop and ra.rrd was never allocated, or it's later, and ra.rrd * has been handed off to the writer thread who will free it. Finally, * if receive_read_record fails or we're at the end of the stream, then * we free ra.rrd and exit. */ while (rwa.err == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { err = SET_ERROR(EINTR); break; } ASSERT3P(ra.rrd, ==, NULL); ra.rrd = ra.next_rrd; ra.next_rrd = NULL; /* Allocates and loads header into ra.next_rrd */ err = receive_read_record(&ra); if (ra.rrd->header.drr_type == DRR_END || err != 0) { kmem_free(ra.rrd, sizeof (*ra.rrd)); ra.rrd = NULL; break; } bqueue_enqueue(&rwa.q, ra.rrd, sizeof (struct receive_record_arg) + ra.rrd->payload_size); ra.rrd = NULL; } ASSERT3P(ra.rrd, ==, NULL); ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP); ra.rrd->eos_marker = B_TRUE; bqueue_enqueue(&rwa.q, ra.rrd, 1); mutex_enter(&rwa.mutex); while (!rwa.done) { cv_wait(&rwa.cv, &rwa.mutex); } mutex_exit(&rwa.mutex); /* * If we are receiving a full stream as a clone, all object IDs which * are greater than the maximum ID referenced in the stream are * by definition unused and must be freed. Note that it's possible that * we've resumed this send and the first record we received was the END * record. In that case, max_object would be 0, but we shouldn't start * freeing all objects from there; instead we should start from the * resumeobj. */ if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { uint64_t obj; if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) obj = 0; if (rwa.max_object > obj) obj = rwa.max_object; obj++; int free_err = 0; int next_err = 0; while (next_err == 0) { free_err = dmu_free_long_object(rwa.os, obj); if (free_err != 0 && free_err != ENOENT) break; next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); } if (err == 0) { if (free_err != 0 && free_err != ENOENT) err = free_err; else if (next_err != ESRCH) err = next_err; } } cv_destroy(&rwa.cv); mutex_destroy(&rwa.mutex); bqueue_destroy(&rwa.q); if (err == 0) err = rwa.err; out: /* * If we hit an error before we started the receive_writer_thread * we need to clean up the next_rrd we create by processing the * DRR_BEGIN record. */ if (ra.next_rrd != NULL) kmem_free(ra.next_rrd, sizeof (*ra.next_rrd)); nvlist_free(begin_nvl); if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) zfs_onexit_fd_rele(cleanup_fd); if (err != 0) { /* * Clean up references. If receive is not resumable, * destroy what we created, so we don't leave it in * the inconsistent state. */ dmu_recv_cleanup_ds(drc); nvlist_free(drc->drc_keynvl); } *voffp = ra.voff; objlist_destroy(&ra.ignore_objlist); return (err); } static int dmu_recv_end_check(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); int error; ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); if (!drc->drc_newfs) { dsl_dataset_t *origin_head; error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); if (error != 0) return (error); if (drc->drc_force) { /* * We will destroy any snapshots in tofs (i.e. before * origin_head) that are after the origin (which is * the snap before drc_ds, because drc_ds can not * have any snaps of its own). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) break; if (snap->ds_dir != origin_head->ds_dir) error = SET_ERROR(EINVAL); if (error == 0) { error = dsl_destroy_snapshot_check_impl( snap, B_FALSE); } obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); if (error != 0) break; } if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } if (drc->drc_keynvl != NULL) { error = dsl_crypto_recv_raw_key_check(drc->drc_ds, drc->drc_keynvl, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } } error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, origin_head, drc->drc_force, drc->drc_owner, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } error = dsl_dataset_snapshot_check_impl(origin_head, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); dsl_dataset_rele(origin_head, FTAG); if (error != 0) return (error); error = dsl_destroy_head_check_impl(drc->drc_ds, 1); } else { error = dsl_dataset_snapshot_check_impl(drc->drc_ds, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); } return (error); } static void dmu_recv_end_sync(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; spa_history_log_internal_ds(drc->drc_ds, "finish receiving", tx, "snap=%s", drc->drc_tosnap); drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; if (!drc->drc_newfs) { dsl_dataset_t *origin_head; VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head)); if (drc->drc_force) { /* * Destroy any snapshots of drc_tofs (origin_head) * after the origin (the snap before drc_ds). */ uint64_t obj; obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; while (obj != dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { dsl_dataset_t *snap; VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &snap)); ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; dsl_destroy_snapshot_sync_impl(snap, B_FALSE, tx); dsl_dataset_rele(snap, FTAG); } } if (drc->drc_keynvl != NULL) { dsl_crypto_recv_raw_key_sync(drc->drc_ds, drc->drc_keynvl, tx); nvlist_free(drc->drc_keynvl); drc->drc_keynvl = NULL; } VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); dsl_dataset_clone_swap_sync_impl(drc->drc_ds, origin_head, tx); dsl_dataset_snapshot_sync_impl(origin_head, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(origin_head->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(origin_head->ds_dbuf, tx); dsl_dataset_phys(origin_head)->ds_flags &= ~DS_FLAG_INCONSISTENT; drc->drc_newsnapobj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; dsl_dataset_rele(origin_head, FTAG); dsl_destroy_head_sync_impl(drc->drc_ds, tx); if (drc->drc_owner != NULL) VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); } else { dsl_dataset_t *ds = drc->drc_ds; dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); dsl_dataset_phys(ds->ds_prev)->ds_creation_time = drc->drc_drrb->drr_creation_time; dsl_dataset_phys(ds->ds_prev)->ds_guid = drc->drc_drrb->drr_toguid; dsl_dataset_phys(ds->ds_prev)->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(ds->ds_dbuf, tx); dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; if (dsl_dataset_has_resume_receive_state(ds)) { (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_FROMGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OBJECT, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_OFFSET, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_BYTES, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TOGUID, tx); (void) zap_remove(dp->dp_meta_objset, ds->ds_object, DS_FIELD_RESUME_TONAME, tx); } drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; } /* * If this is a raw receive, the crypt_keydata nvlist will include * a to_ivset_guid for us to set on the new snapshot. This value * will override the value generated by the snapshot code. However, * this value may not be present, because older implementations of * the raw send code did not include this value, and we are still * allowed to receive them if the zfs_disable_ivset_guid_check * tunable is set, in which case we will leave the newly-generated * value. */ if (drc->drc_raw && drc->drc_ivset_guid != 0) { dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj, DMU_OT_DSL_DATASET, tx); VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj, DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, &drc->drc_ivset_guid, tx)); } /* * Release the hold from dmu_recv_begin. This must be done before * we return to open context, so that when we free the dataset's dnode * we can evict its bonus buffer. Since the dataset may be destroyed * at this point (and therefore won't have a valid pointer to the spa) * we release the key mapping manually here while we do have a valid * pointer, if it exists. */ if (!drc->drc_raw && encrypted) { (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, drc->drc_ds->ds_object, drc->drc_ds); } dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); drc->drc_ds = NULL; } static int add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj, boolean_t raw) { dsl_pool_t *dp; dsl_dataset_t *snapds; guid_map_entry_t *gmep; objset_t *os; ds_hold_flags_t dsflags; int err; ASSERT(guid_map != NULL); dsflags = (raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; err = dsl_pool_hold(name, FTAG, &dp); if (err != 0) return (err); gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds); if (err == 0) { /* * If this is a deduplicated raw send stream, we need * to make sure that we can still read raw blocks from * earlier datasets in the stream, so we set the * os_raw_receive flag now. */ if (raw) { err = dmu_objset_from_ds(snapds, &os); if (err != 0) { dsl_dataset_disown(snapds, dsflags, FTAG); dsl_pool_rele(dp, FTAG); kmem_free(gmep, sizeof (*gmep)); return (err); } os->os_raw_receive = B_TRUE; } gmep->raw = raw; gmep->guid = dsl_dataset_phys(snapds)->ds_guid; gmep->gme_ds = snapds; avl_add(guid_map, gmep); } else { kmem_free(gmep, sizeof (*gmep)); } dsl_pool_rele(dp, FTAG); return (err); } static int dmu_recv_end_modified_blocks = 3; static int dmu_recv_existing_end(dmu_recv_cookie_t *drc) { #ifdef _KERNEL /* * We will be destroying the ds; make sure its origin is unmounted if * necessary. */ char name[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(drc->drc_ds, name); zfs_destroy_unmount_origin(name); #endif return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } static int dmu_recv_new_end(dmu_recv_cookie_t *drc) { return (dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); } int dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) { int error; drc->drc_owner = owner; if (drc->drc_newfs) error = dmu_recv_new_end(drc); else error = dmu_recv_existing_end(drc); if (error != 0) { dmu_recv_cleanup_ds(drc); nvlist_free(drc->drc_keynvl); } else if (drc->drc_guid_to_ds_map != NULL) { (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, drc->drc_newsnapobj, drc->drc_raw); } return (error); } /* * Return TRUE if this objset is currently being received into. */ boolean_t dmu_objset_is_receiving(objset_t *os) { return (os->os_dsl_dataset != NULL && os->os_dsl_dataset->ds_owner == dmu_recv_tag); }