/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. */ #ifndef _BSM_AUDIT_KERNEL_H #define _BSM_AUDIT_KERNEL_H /* * This file contains the basic auditing control structure definitions. */ #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * This table contains the mapping from the system call ID to a corresponding * audit event. * * au_init() is a function called at the beginning of the system call that * performs any necessary setup/processing. It maps the call into the * appropriate event, depending on the system call arguments. It is called * by audit_start() from trap.c . * * au_event is the audit event associated with the system call. Most of the * time it will map directly from the system call i.e. There is one system * call associated with the event. In some cases, such as shmsys, or open, * the au_start() function will map the system call to more than one event, * depending on the system call arguments. * * au_start() is a function that provides per system call processing at the * beginning of a system call. It is mainly concerned with preseving the * audit record components that may be altered so that we can determine * what the original paramater was before as well as after the system call. * It is possible that au_start() may be taken away. It might be cleaner to * define flags in au_ctrl to save a designated argument. For the moment we * support both mechanisms, however the use of au_start() will be reviewed * for 4.1.1 and CMW and ZEUS to see if such a general method is justified. * * au_finish() is a function that provides per system call processing at the * completion of a system call. In certain circumstances, the type of audit * event depends on intermidiate results during the processing of the system * call. It is called in audit_finish() from trap.c . * * au_ctrl is a control vector that indicates what processing might have to * be performed, even if there is no auditing for this system call. At * present this is mostly for path processing for chmod, chroot. We need to * process the path information in vfs_lookup, even when we are not auditing * the system call in the case of chdir and chroot. */ /* * Defines for au_ctrl */ #define S2E_SP TAD_SAVPATH /* save path for later use */ #define S2E_MLD TAD_MLD /* only one lookup per system call */ #define S2E_NPT TAD_NOPATH /* force no path in audit record */ #define S2E_PUB TAD_PUBLIC_EV /* syscall is defined as a public op */ /* * At present, we are using the audit classes imbedded with in the kernel. Each * event has a bit mask determining which classes the event is associated. * The table audit_e2s maps the audit event ID to the audit state. * * Note that this may change radically. If we use a bit vector for the audit * class, we can allow granularity at the event ID for each user. In this * case, the vector would be determined at user level and passed to the kernel * via the setaudit system call. */ /* * The audit_pad structure holds paths for the current root and directory * for the process, as well as for open files and directly manipulated objects. * The reference count minimizes data copies since the process's current * directory changes very seldom. */ struct audit_path { uint_t audp_ref; /* reference count */ uint_t audp_size; /* allocated size of this structure */ uint_t audp_cnt; /* number of path sections */ char *audp_sect[1]; /* path section pointers */ /* audp_sect[0] is the path name */ /* audp_sect[1+] are attribute paths */ }; /* * The structure of the terminal ID within the kernel is different from the * terminal ID in user space. It is a combination of port and IP address. */ struct au_termid { dev_t at_port; uint_t at_type; uint_t at_addr[4]; }; typedef struct au_termid au_termid_t; /* * Attributes for deferring the queuing of an event. */ typedef struct au_defer_info { struct au_defer_info *audi_next; /* next on linked list */ void *audi_ad; /* audit record */ au_event_t audi_e_type; /* audit event id */ au_emod_t audi_e_mod; /* audit event modifier */ int audi_flag; /* au_close*() flags */ timestruc_t audi_atime; /* audit event timestamp */ } au_defer_info_t; /* * The structure p_audit_data hangs off of the process structure. It contains * all of the audit information necessary to manage the audit record generation * for each process. * * The pad_lock is constructed in the kmem_cache; the rest is combined * in a sub structure so it can be copied/zeroed in one statement. * * The members have been reordered for maximum packing on 64 bit Solaris. */ struct p_audit_data { kmutex_t pad_lock; /* lock pad data during changes */ struct _pad_data { struct audit_path *pad_root; /* process root path */ struct audit_path *pad_cwd; /* process cwd path */ au_mask_t pad_newmask; /* pending new mask */ int pad_flags; } pad_data; }; typedef struct p_audit_data p_audit_data_t; #define pad_root pad_data.pad_root #define pad_cwd pad_data.pad_cwd #define pad_newmask pad_data.pad_newmask #define pad_flags pad_data.pad_flags /* * Defines for process audit flags (pad_flags) */ #define PAD_SETMASK 0x00000001 /* need to complete pending setmask */ extern kmem_cache_t *au_pad_cache; /* * Defines for thread audit control/status flags (tad_ctrl) */ #define TAD_ABSPATH 0x00000001 /* path from lookup is absolute */ #define TAD_ATCALL 0x00000002 /* *at() syscall, like openat() */ #define TAD_ATTPATH 0x00000004 /* attribute file lookup */ #define TAD_CORE 0x00000008 /* save attribute during core dump */ #define TAD_ERRJMP 0x00000010 /* abort record generation on error */ #define TAD_MLD 0x00000020 /* system call involves MLD */ #define TAD_NOATTRB 0x00000040 /* do not automatically add attribute */ #define TAD_NOAUDIT 0x00000080 /* discard audit record */ #define TAD_NOPATH 0x00000100 /* force no paths in audit record */ #define TAD_PATHFND 0x00000200 /* found path, don't retry lookup */ #define TAD_PUBLIC_EV 0x00000400 /* syscall is defined as a public op */ #define TAD_SAVPATH 0x00000800 /* save path for further processing */ #define TAD_TRUE_CREATE 0x00001000 /* true create, file not found */ /* * The structure t_audit_data hangs off of the thread structure. It contains * all of the audit information necessary to manage the audit record generation * for each thread. * */ struct t_audit_data { kthread_id_t tad_thread; /* DEBUG pointer to parent thread */ unsigned int tad_scid; /* system call ID for finish */ au_event_t tad_event; /* event for audit record */ au_emod_t tad_evmod; /* event modifier for audit record */ int tad_ctrl; /* audit control/status flags */ void *tad_errjmp; /* error longjmp (audit record aborted) */ int tad_flag; /* to audit or not to audit */ uint32_t tad_audit; /* auditing enabled/disabled */ struct audit_path *tad_aupath; /* captured at vfs_lookup */ struct audit_path *tad_atpath; /* openat prefix, path of fd */ caddr_t tad_ad; /* base of accumulated audit data */ au_defer_info_t *tad_defer_head; /* queue of records to defer */ /* until syscall end: */ au_defer_info_t *tad_defer_tail; /* tail of defer queue */ priv_set_t tad_sprivs; /* saved (success) used privs */ priv_set_t tad_fprivs; /* saved (failed) used privs */ }; typedef struct t_audit_data t_audit_data_t; /* * The f_audit_data structure hangs off of the file structure. It contains * three fields of data. The audit ID, the audit state, and a path name. */ struct f_audit_data { kthread_id_t fad_thread; /* DEBUG creating thread */ int fad_flags; /* audit control flags */ struct audit_path *fad_aupath; /* path from vfs_lookup */ }; typedef struct f_audit_data f_audit_data_t; #define FAD_READ 0x0001 /* read system call seen */ #define FAD_WRITE 0x0002 /* write system call seen */ #define P2A(p) (p->p_audit_data) #define T2A(t) (t->t_audit_data) #define U2A(u) (curthread->t_audit_data) #define F2A(f) (f->f_audit_data) #define u_ad ((U2A(u))->tad_ad) #define ad_ctrl ((U2A(u))->tad_ctrl) #define ad_flag ((U2A(u))->tad_flag) #define AU_BUFSIZE 128 /* buffer size for the buffer pool */ struct au_buff { char buf[AU_BUFSIZE]; struct au_buff *next_buf; struct au_buff *next_rec; ushort_t rec_len; uchar_t len; uchar_t flag; }; typedef struct au_buff au_buff_t; /* * Kernel audit queue structure. */ struct audit_queue { au_buff_t *head; /* head of queue */ au_buff_t *tail; /* tail of queue */ ssize_t cnt; /* number elements on queue */ size_t hiwater; /* high water mark to block */ size_t lowater; /* low water mark to restart */ size_t bufsz; /* audit trail write buffer size */ size_t buflen; /* audit trail buffer length in use */ clock_t delay; /* delay before flushing queue */ int wt_block; /* writer is blocked (1) */ int rd_block; /* reader is blocked (1) */ kmutex_t lock; /* mutex lock for queue modification */ kcondvar_t write_cv; /* sleep structure for write block */ kcondvar_t read_cv; /* sleep structure for read block */ }; union rval; struct audit_s2e { au_event_t (*au_init)(au_event_t); /* convert au_event to real audit event ID */ int au_event; /* default audit event for this system call */ void (*au_start)(struct t_audit_data *); /* pre-system call audit processing */ void (*au_finish)(struct t_audit_data *, int, union rval *); /* post-system call audit processing */ int au_ctrl; /* control flags for auditing actions */ }; extern struct audit_s2e audit_s2e[]; #define AUK_VALID 0x5A5A5A5A #define AUK_INVALID 0 /* * per zone audit context */ struct au_kcontext { uint32_t auk_valid; zoneid_t auk_zid; boolean_t auk_hostaddr_valid; int auk_sequence; int auk_auditstate; int auk_output_active; struct vnode *auk_current_vp; uint32_t auk_policy; struct audit_queue auk_queue; au_dbuf_t *auk_dbuffer; /* auditdoor output */ au_stat_t auk_statistics; k_auditinfo_addr_t auk_info; kmutex_t auk_eagain_mutex; /* door call retry */ kcondvar_t auk_eagain_cv; taskq_t *auk_taskq; /* output thread */ /* Only one audit svc per zone at a time */ /* With the elimination of auditsvc, can this also go? see 6648414 */ kmutex_t auk_svc_lock; au_state_t auk_ets[MAX_KEVENTS + 1]; }; #ifndef AUK_CONTEXT_T #define AUK_CONTEXT_T typedef struct au_kcontext au_kcontext_t; #endif extern zone_key_t au_zone_key; /* * Kernel auditing external variables */ extern uint32_t audit_policy; extern int audit_active; extern struct audit_queue au_queue; extern struct p_audit_data *pad0; extern struct t_audit_data *tad0; /* * audit_path support routines */ void au_pathhold(struct audit_path *); void au_pathrele(struct audit_path *); struct audit_path *au_pathdup(const struct audit_path *, int, int); void au_pad_init(void); int auditctl(int cmd, caddr_t data, int length); int auditdoor(int fd); int getauid(caddr_t); int setauid(caddr_t); int getaudit(caddr_t); int getaudit_addr(caddr_t, int); int setaudit(caddr_t); int setaudit_addr(caddr_t, int); /* * Macros to hide asynchronous, non-blocking audit record start and finish * processing. * * NOTE: must be used in (void) funcction () { ... } */ #define AUDIT_ASYNC_START(rp, audit_event, sorf) \ { \ label_t jb; \ if (setjmp(&jb)) { \ /* cleanup any residual audit data */ \ audit_async_drop((caddr_t *)&(rp), 0); \ return; \ } \ /* auditing enabled and we're preselected for this event? */ \ if (audit_async_start(&jb, audit_event, sorf)) { \ return; \ } \ } #define AUDIT_ASYNC_FINISH(rp, audit_event, event_modifier, event_time) \ audit_async_finish((caddr_t *)&(rp), audit_event, event_modifier, \ event_time); #ifdef _KERNEL au_buff_t *au_get_buff(void), *au_free_buff(au_buff_t *); #endif /* * Macro for uniform "subject" token(s) generation */ #define AUDIT_SETSUBJ_GENERIC(u, c, a, k, p) \ (au_write((u), au_to_subject(crgetuid(c), \ crgetgid(c), crgetruid(c), crgetrgid(c), \ p, (a)->ai_auid, (a)->ai_asid, \ &((a)->ai_termid)))); \ ((is_system_labeled()) ? au_write((u), \ au_to_label(CR_SL((c)))) : (void) 0); \ (((k)->auk_policy & AUDIT_GROUP) ? au_write((u),\ au_to_groups(crgetgroups(c), \ crgetngroups(c))) : (void) 0) #define AUDIT_SETSUBJ(u, c, a, k) \ AUDIT_SETSUBJ_GENERIC(u, c, a, k, curproc->p_pid) #define AUDIT_SETPROC_GENERIC(u, c, a, p) \ (au_write((u), au_to_process(crgetuid(c), \ crgetgid(c), crgetruid(c), crgetrgid(c), \ p, (a)->ai_auid, (a)->ai_asid, \ &((a)->ai_termid)))); #define AUDIT_SETPROC(u, c, a) \ AUDIT_SETPROC_GENERIC(u, c, a, curproc->p_pid) /* * Macros for type conversion */ /* au_membuf head, to typed data */ #define memtod(x, t) ((t)x->buf) /* au_membuf types */ #define MT_FREE 0 /* should be on free list */ #define MT_DATA 1 /* dynamic (data) allocation */ /* flags to au_memget */ #define DONTWAIT 0 #define WAIT 1 #define AU_PACK 1 /* pack data in au_append_rec() */ #define AU_LINK 0 /* link data in au_append_rec() */ /* flags to async routines */ #define AU_BACKEND 1 /* called from softcall backend */ #ifdef __cplusplus } #endif #endif /* _BSM_AUDIT_KERNEL_H */