/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2018, Joyent, Inc. */ #include #include #include #include #include #include "ipmi_impl.h" /* * This macros are used by ipmi_sdr_conv_reading. They were taken verbatim from * the source for ipmitool (v1.88) */ #define tos32(val, bits) ((val & ((1<<((bits)-1)))) ? (-((val) & \ (1<<((bits)-1))) | (val)) : (val)) #define __TO_TOL(mtol) (uint16_t)(BSWAP_16(mtol) & 0x3f) #define __TO_M(mtol) (int16_t)(tos32((((BSWAP_16(mtol) & 0xff00) >> 8) | \ ((BSWAP_16(mtol) & 0xc0) << 2)), 10)) #define __TO_B(bacc) (int32_t)(tos32((((BSWAP_32(bacc) & \ 0xff000000) >> 24) | \ ((BSWAP_32(bacc) & 0xc00000) >> 14)), 10)) #define __TO_ACC(bacc) (uint32_t)(((BSWAP_32(bacc) & 0x3f0000) >> 16) | \ ((BSWAP_32(bacc) & 0xf000) >> 6)) #define __TO_ACC_EXP(bacc) (uint32_t)((BSWAP_32(bacc) & 0xc00) >> 10) #define __TO_R_EXP(bacc) (int32_t)(tos32(((BSWAP_32(bacc) & 0xf0) >> 4),\ 4)) #define __TO_B_EXP(bacc) (int32_t)(tos32((BSWAP_32(bacc) & 0xf), 4)) #define SDR_SENSOR_L_LINEAR 0x00 #define SDR_SENSOR_L_LN 0x01 #define SDR_SENSOR_L_LOG10 0x02 #define SDR_SENSOR_L_LOG2 0x03 #define SDR_SENSOR_L_E 0x04 #define SDR_SENSOR_L_EXP10 0x05 #define SDR_SENSOR_L_EXP2 0x06 #define SDR_SENSOR_L_1_X 0x07 #define SDR_SENSOR_L_SQR 0x08 #define SDR_SENSOR_L_CUBE 0x09 #define SDR_SENSOR_L_SQRT 0x0a #define SDR_SENSOR_L_CUBERT 0x0b #define SDR_SENSOR_L_NONLINEAR 0x70 /* * Analog sensor reading data formats * * See Section 43.1 */ #define IPMI_DATA_FMT_UNSIGNED 0 #define IPMI_DATA_FMT_ONESCOMP 1 #define IPMI_DATA_FMT_TWOSCOMP 2 #define IPMI_SDR_HDR_SZ offsetof(ipmi_sdr_t, is_record) typedef struct ipmi_sdr_cache_ent { char *isc_name; uint8_t isc_entity_id; uint8_t isc_entity_inst; struct ipmi_sdr *isc_sdr; ipmi_hash_link_t isc_link; } ipmi_sdr_cache_ent_t; typedef struct ipmi_cmd_get_sdr { uint16_t ic_gs_resid; uint16_t ic_gs_recid; uint8_t ic_gs_offset; uint8_t ic_gs_len; } ipmi_cmd_get_sdr_t; typedef struct ipmi_rsp_get_sdr { uint16_t ir_gs_next; uint8_t ir_gs_record[1]; } ipmi_rsp_get_sdr_t; /* * "Get SDR Repostiory Info" command. */ ipmi_sdr_info_t * ipmi_sdr_get_info(ipmi_handle_t *ihp) { ipmi_cmd_t cmd, *rsp; ipmi_sdr_info_t *sip; uint16_t tmp16; uint32_t tmp32; cmd.ic_netfn = IPMI_NETFN_STORAGE; cmd.ic_lun = 0; cmd.ic_cmd = IPMI_CMD_GET_SDR_INFO; cmd.ic_dlen = 0; cmd.ic_data = NULL; if ((rsp = ipmi_send(ihp, &cmd)) == NULL) return (NULL); sip = rsp->ic_data; tmp16 = LE_IN16(&sip->isi_record_count); (void) memcpy(&sip->isi_record_count, &tmp16, sizeof (tmp16)); tmp16 = LE_IN16(&sip->isi_free_space); (void) memcpy(&sip->isi_free_space, &tmp16, sizeof (tmp16)); tmp32 = LE_IN32(&sip->isi_add_ts); (void) memcpy(&sip->isi_add_ts, &tmp32, sizeof (tmp32)); tmp32 = LE_IN32(&sip->isi_erase_ts); (void) memcpy(&sip->isi_erase_ts, &tmp32, sizeof (tmp32)); return (sip); } /* * Issue the "Reserve SDR Repository" command. */ static int ipmi_sdr_reserve_repository(ipmi_handle_t *ihp) { ipmi_cmd_t cmd, *rsp; cmd.ic_netfn = IPMI_NETFN_STORAGE; cmd.ic_lun = 0; cmd.ic_cmd = IPMI_CMD_RESERVE_SDR_REPOSITORY; cmd.ic_dlen = 0; cmd.ic_data = NULL; if ((rsp = ipmi_send(ihp, &cmd)) == NULL) return (-1); ihp->ih_reservation = *((uint16_t *)rsp->ic_data); return (0); } /* * Returns B_TRUE if the repository has changed since the cached copy was last * referenced. */ boolean_t ipmi_sdr_changed(ipmi_handle_t *ihp) { ipmi_sdr_info_t *sip; if ((sip = ipmi_sdr_get_info(ihp)) == NULL) return (B_TRUE); return (sip->isi_add_ts > ihp->ih_sdr_ts || sip->isi_erase_ts > ihp->ih_sdr_ts || ipmi_hash_first(ihp->ih_sdr_cache) == NULL); } /* * Refresh the cache of sensor data records. */ int ipmi_sdr_refresh(ipmi_handle_t *ihp) { uint16_t id; ipmi_sdr_t *sdr; ipmi_sdr_cache_ent_t *ent; size_t namelen; uint8_t type, e_id = 0, e_inst = 0; char *name; ipmi_sdr_info_t *sip; uint32_t isi_add_ts, isi_erase_ts; if ((sip = ipmi_sdr_get_info(ihp)) == NULL) return (-1); (void) memcpy(&isi_add_ts, &sip->isi_add_ts, sizeof (uint32_t)); (void) memcpy(&isi_erase_ts, &sip->isi_erase_ts, sizeof (uint32_t)); if (isi_add_ts <= ihp->ih_sdr_ts && isi_erase_ts <= ihp->ih_sdr_ts && ipmi_hash_first(ihp->ih_sdr_cache) != NULL) return (0); ipmi_sdr_clear(ihp); ipmi_entity_clear(ihp); ihp->ih_sdr_ts = MAX(isi_add_ts, isi_erase_ts); /* * Iterate over all existing SDRs and add them to the cache. */ id = IPMI_SDR_FIRST; while (id != IPMI_SDR_LAST) { if ((sdr = ipmi_sdr_get(ihp, id, &id)) == NULL) goto error; /* * Extract the name from the record-specific data. */ switch (sdr->is_type) { case IPMI_SDR_TYPE_GENERIC_LOCATOR: { ipmi_sdr_generic_locator_t *glp = (ipmi_sdr_generic_locator_t *) sdr->is_record; namelen = glp->is_gl_idlen; type = glp->is_gl_idtype; name = glp->is_gl_idstring; e_id = glp->is_gl_entity; e_inst = glp->is_gl_instance; break; } case IPMI_SDR_TYPE_FRU_LOCATOR: { ipmi_sdr_fru_locator_t *flp = (ipmi_sdr_fru_locator_t *) sdr->is_record; namelen = flp->is_fl_idlen; name = flp->is_fl_idstring; type = flp->is_fl_idtype; e_id = flp->is_fl_entity; e_inst = flp->is_fl_instance; break; } case IPMI_SDR_TYPE_COMPACT_SENSOR: { ipmi_sdr_compact_sensor_t *csp = (ipmi_sdr_compact_sensor_t *) sdr->is_record; uint16_t tmp; namelen = csp->is_cs_idlen; type = csp->is_cs_idtype; name = csp->is_cs_idstring; e_id = csp->is_cs_entity_id; e_inst = csp->is_cs_entity_instance; tmp = LE_IN16(&csp->is_cs_assert_mask); (void) memcpy(&csp->is_cs_assert_mask, &tmp, sizeof (tmp)); tmp = LE_IN16(&csp->is_cs_deassert_mask); (void) memcpy(&csp->is_cs_deassert_mask, &tmp, sizeof (tmp)); tmp = LE_IN16(&csp->is_cs_reading_mask); (void) memcpy(&csp->is_cs_reading_mask, &tmp, sizeof (tmp)); break; } case IPMI_SDR_TYPE_FULL_SENSOR: { ipmi_sdr_full_sensor_t *fsp = (ipmi_sdr_full_sensor_t *) sdr->is_record; uint16_t tmp; namelen = fsp->is_fs_idlen; type = fsp->is_fs_idtype; name = fsp->is_fs_idstring; e_id = fsp->is_fs_entity_id; e_inst = fsp->is_fs_entity_instance; tmp = LE_IN16(&fsp->is_fs_assert_mask); (void) memcpy(&fsp->is_fs_assert_mask, &tmp, sizeof (tmp)); tmp = LE_IN16(&fsp->is_fs_deassert_mask); (void) memcpy(&fsp->is_fs_deassert_mask, &tmp, sizeof (tmp)); tmp = LE_IN16(&fsp->is_fs_reading_mask); (void) memcpy(&fsp->is_fs_reading_mask, &tmp, sizeof (tmp)); break; } case IPMI_SDR_TYPE_EVENT_ONLY: { ipmi_sdr_event_only_t *esp = (ipmi_sdr_event_only_t *) sdr->is_record; namelen = esp->is_eo_idlen; type = esp->is_eo_idtype; name = esp->is_eo_idstring; e_id = esp->is_eo_entity_id; e_inst = esp->is_eo_entity_instance; break; } case IPMI_SDR_TYPE_MANAGEMENT_LOCATOR: { ipmi_sdr_management_locator_t *msp = (ipmi_sdr_management_locator_t *) sdr->is_record; namelen = msp->is_ml_idlen; type = msp->is_ml_idtype; name = msp->is_ml_idstring; e_id = msp->is_ml_entity_id; e_inst = msp->is_ml_entity_instance; break; } case IPMI_SDR_TYPE_MANAGEMENT_CONFIRMATION: { ipmi_sdr_management_confirmation_t *mcp = (ipmi_sdr_management_confirmation_t *) sdr->is_record; uint16_t tmp; name = NULL; tmp = LE_IN16(&mcp->is_mc_product); (void) memcpy(&mcp->is_mc_product, &tmp, sizeof (tmp)); break; } default: name = NULL; } if ((ent = ipmi_zalloc(ihp, sizeof (ipmi_sdr_cache_ent_t))) == NULL) { free(sdr); goto error; } ent->isc_sdr = sdr; ent->isc_entity_id = e_id; ent->isc_entity_inst = e_inst; if (name != NULL) { if ((ent->isc_name = ipmi_alloc(ihp, namelen + 1)) == NULL) { ipmi_free(ihp, ent->isc_sdr); ipmi_free(ihp, ent); goto error; } ipmi_decode_string(type, namelen, name, ent->isc_name); } /* * This should never happen. It means that the SP has returned * a SDR record twice, with the same name and ID. This has * been observed on service processors that don't correctly * return SDR_LAST during iteration, so assume we've looped in * the SDR and return gracefully. */ if (ipmi_hash_lookup(ihp->ih_sdr_cache, ent) != NULL) { ipmi_free(ihp, ent->isc_sdr); ipmi_free(ihp, ent->isc_name); ipmi_free(ihp, ent); break; } ipmi_hash_insert(ihp->ih_sdr_cache, ent); } return (0); error: ipmi_sdr_clear(ihp); ipmi_entity_clear(ihp); return (-1); } /* * Hash routines. We allow lookup by name, but since not all entries have * names, we fall back to the entry pointer, which is guaranteed to be unique. * The end result is that entities without names cannot be looked up, but will * show up during iteration. */ static const void * ipmi_sdr_hash_convert(const void *p) { return (p); } static ulong_t ipmi_sdr_hash_compute(const void *p) { const ipmi_sdr_cache_ent_t *ep = p; if (ep->isc_name) return (ipmi_hash_strhash(ep->isc_name)); else return (ipmi_hash_ptrhash(ep)); } static int ipmi_sdr_hash_compare(const void *a, const void *b) { const ipmi_sdr_cache_ent_t *ap = a; const ipmi_sdr_cache_ent_t *bp = b; if (ap->isc_name == NULL || bp->isc_name == NULL) return (-1); if (strcmp(ap->isc_name, bp->isc_name) != 0) return (-1); /* * When looking up only by name we return the first matching name. For * a more precise match, callers can optionally specify an IPMI entity * ID and instance that must also match. */ if (ap->isc_entity_id != IPMI_ET_UNSPECIFIED && bp->isc_entity_id != IPMI_ET_UNSPECIFIED) { if (ap->isc_entity_id != bp->isc_entity_id || ap->isc_entity_inst != bp->isc_entity_inst) return (-1); } return (0); } int ipmi_sdr_init(ipmi_handle_t *ihp) { if ((ihp->ih_sdr_cache = ipmi_hash_create(ihp, offsetof(ipmi_sdr_cache_ent_t, isc_link), ipmi_sdr_hash_convert, ipmi_sdr_hash_compute, ipmi_sdr_hash_compare)) == NULL) return (-1); return (0); } void ipmi_sdr_clear(ipmi_handle_t *ihp) { ipmi_sdr_cache_ent_t *ent; while ((ent = ipmi_hash_first(ihp->ih_sdr_cache)) != NULL) { ipmi_hash_remove(ihp->ih_sdr_cache, ent); ipmi_free(ihp, ent->isc_sdr); ipmi_free(ihp, ent->isc_name); ipmi_free(ihp, ent); } } void ipmi_sdr_fini(ipmi_handle_t *ihp) { if (ihp->ih_sdr_cache != NULL) { ipmi_sdr_clear(ihp); ipmi_hash_destroy(ihp->ih_sdr_cache); } } ipmi_sdr_t * ipmi_sdr_get(ipmi_handle_t *ihp, uint16_t id, uint16_t *next) { uint8_t offset = IPMI_SDR_HDR_SZ, count = 0, chunksz = 16, sdr_sz; ipmi_cmd_t cmd, *rsp; ipmi_cmd_get_sdr_t req; ipmi_sdr_t *sdr; int i = 0; char *buf; req.ic_gs_resid = ihp->ih_reservation; req.ic_gs_recid = id; cmd.ic_netfn = IPMI_NETFN_STORAGE; cmd.ic_lun = 0; cmd.ic_cmd = IPMI_CMD_GET_SDR; cmd.ic_dlen = sizeof (req); cmd.ic_data = &req; /* * The size of the SDR is contained in the 5th byte of the SDR header, * so we'll read the first 5 bytes to get the size, so we know how big * to make the buffer. */ req.ic_gs_offset = 0; req.ic_gs_len = IPMI_SDR_HDR_SZ; for (i = 0; i < ihp->ih_retries; i++) { if ((rsp = ipmi_send(ihp, &cmd)) != NULL) break; if (ipmi_errno(ihp) != EIPMI_INVALID_RESERVATION) return (NULL); if (ipmi_sdr_reserve_repository(ihp) != 0) return (NULL); req.ic_gs_resid = ihp->ih_reservation; } if (rsp == NULL) return (NULL); sdr = (ipmi_sdr_t *)((ipmi_rsp_get_sdr_t *)rsp->ic_data)->ir_gs_record; sdr_sz = sdr->is_length; if ((buf = ipmi_zalloc(ihp, sdr_sz + IPMI_SDR_HDR_SZ)) == NULL) { (void) ipmi_set_error(ihp, EIPMI_NOMEM, NULL); return (NULL); } (void) memcpy(buf, (void *)sdr, IPMI_SDR_HDR_SZ); /* * Some SDRs can be bigger than the buffer sizes for a given bmc * interface. Therefore we break up the process of reading in an entire * SDR into multiple smaller reads. */ while (count < sdr_sz) { req.ic_gs_offset = offset; if (chunksz > (sdr_sz - count)) chunksz = sdr_sz - count; req.ic_gs_len = chunksz; rsp = ipmi_send(ihp, &cmd); if (rsp != NULL) { count += chunksz; sdr = (ipmi_sdr_t *) ((ipmi_rsp_get_sdr_t *)rsp->ic_data)->ir_gs_record; (void) memcpy(buf+offset, (void *)sdr, chunksz); offset += chunksz; i = 0; } else if (ipmi_errno(ihp) == EIPMI_INVALID_RESERVATION) { if (i >= ihp->ih_retries || ipmi_sdr_reserve_repository(ihp) != 0) { free(buf); return (NULL); } req.ic_gs_resid = ihp->ih_reservation; i++; } else { free(buf); return (NULL); } } *next = ((ipmi_rsp_get_sdr_t *)rsp->ic_data)->ir_gs_next; return ((ipmi_sdr_t *)buf); } int ipmi_sdr_iter(ipmi_handle_t *ihp, int (*func)(ipmi_handle_t *, const char *, ipmi_sdr_t *, void *), void *data) { ipmi_sdr_cache_ent_t *ent; int ret; if (ipmi_hash_first(ihp->ih_sdr_cache) == NULL && ipmi_sdr_refresh(ihp) != 0) return (-1); for (ent = ipmi_hash_first(ihp->ih_sdr_cache); ent != NULL; ent = ipmi_hash_next(ihp->ih_sdr_cache, ent)) { if ((ret = func(ihp, ent->isc_name, ent->isc_sdr, data)) != 0) return (ret); } return (0); } ipmi_sdr_t * ipmi_sdr_lookup(ipmi_handle_t *ihp, const char *idstr) { return (ipmi_sdr_lookup_precise(ihp, idstr, IPMI_ET_UNSPECIFIED, 0)); } ipmi_sdr_t * ipmi_sdr_lookup_precise(ipmi_handle_t *ihp, const char *idstr, uint8_t e_id, uint8_t e_inst) { ipmi_sdr_cache_ent_t *ent, search; if (ipmi_hash_first(ihp->ih_sdr_cache) == NULL && ipmi_sdr_refresh(ihp) != 0) return (NULL); search.isc_name = (char *)idstr; search.isc_sdr = NULL; search.isc_entity_id = e_id; search.isc_entity_inst = e_inst; if ((ent = ipmi_hash_lookup(ihp->ih_sdr_cache, &search)) == NULL) { (void) ipmi_set_error(ihp, EIPMI_NOT_PRESENT, NULL); return (NULL); } return (ent->isc_sdr); } static void * ipmi_sdr_lookup_common(ipmi_handle_t *ihp, const char *idstr, uint8_t type) { ipmi_sdr_t *sdrp; if ((sdrp = ipmi_sdr_lookup(ihp, idstr)) == NULL) return (NULL); if (sdrp->is_type != type) { (void) ipmi_set_error(ihp, EIPMI_NOT_PRESENT, NULL); return (NULL); } return (sdrp->is_record); } ipmi_sdr_fru_locator_t * ipmi_sdr_lookup_fru(ipmi_handle_t *ihp, const char *idstr) { return (ipmi_sdr_lookup_common(ihp, idstr, IPMI_SDR_TYPE_FRU_LOCATOR)); } ipmi_sdr_generic_locator_t * ipmi_sdr_lookup_generic(ipmi_handle_t *ihp, const char *idstr) { return (ipmi_sdr_lookup_common(ihp, idstr, IPMI_SDR_TYPE_GENERIC_LOCATOR)); } ipmi_sdr_compact_sensor_t * ipmi_sdr_lookup_compact_sensor(ipmi_handle_t *ihp, const char *idstr) { return (ipmi_sdr_lookup_common(ihp, idstr, IPMI_SDR_TYPE_COMPACT_SENSOR)); } ipmi_sdr_full_sensor_t * ipmi_sdr_lookup_full_sensor(ipmi_handle_t *ihp, const char *idstr) { return (ipmi_sdr_lookup_common(ihp, idstr, IPMI_SDR_TYPE_FULL_SENSOR)); } /* * Mostly taken from ipmitool source v1.88 * * This function converts the raw sensor reading returned by * ipmi_get_sensor_reading to a unit-based value of type double. */ int ipmi_sdr_conv_reading(ipmi_sdr_full_sensor_t *sensor, uint8_t val, double *result) { int m, b, k1, k2; m = __TO_M(sensor->is_fs_mtol); b = __TO_B(sensor->is_fs_bacc); k1 = __TO_B_EXP(sensor->is_fs_bacc); k2 = __TO_R_EXP(sensor->is_fs_bacc); switch (sensor->is_fs_analog_fmt) { case IPMI_DATA_FMT_UNSIGNED: *result = (double)(((m * val) + (b * pow(10, k1))) * pow(10, k2)); break; case IPMI_DATA_FMT_ONESCOMP: if (val & 0x80) val++; /* FALLTHRU */ case IPMI_DATA_FMT_TWOSCOMP: *result = (double)(((m * (int8_t)val) + (b * pow(10, k1))) * pow(10, k2)); break; default: /* This sensor does not return a numeric reading */ return (-1); } switch (sensor->is_fs_sensor_linear_type) { case SDR_SENSOR_L_LN: *result = log(*result); break; case SDR_SENSOR_L_LOG10: *result = log10(*result); break; case SDR_SENSOR_L_LOG2: *result = (double)(log(*result) / log(2.0)); break; case SDR_SENSOR_L_E: *result = exp(*result); break; case SDR_SENSOR_L_EXP10: *result = pow(10.0, *result); break; case SDR_SENSOR_L_EXP2: *result = pow(2.0, *result); break; case SDR_SENSOR_L_1_X: *result = pow(*result, -1.0); /* 1/x w/o exception */ break; case SDR_SENSOR_L_SQR: *result = pow(*result, 2.0); break; case SDR_SENSOR_L_CUBE: *result = pow(*result, 3.0); break; case SDR_SENSOR_L_SQRT: *result = sqrt(*result); break; case SDR_SENSOR_L_CUBERT: *result = cbrt(*result); break; case SDR_SENSOR_L_LINEAR: default: break; } return (0); }