/* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Copyright (c) 1988, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)radix.c 8.5 (Berkeley) 5/19/95 * $FreeBSD: /repoman/r/ncvs/src/sys/net/radix.c,v 1.36.2.1 2005/01/31 23:26:23 * imp Exp $ */ /* * Routines to build and maintain radix trees for routing lookups. */ #include #ifndef _RADIX_H_ #include #ifdef _KERNEL #include #include #include #include #else #include #define ASSERT assert #include #include #include #include #endif /* _KERNEL */ #include #endif #ifndef _KERNEL void panic(const char *str) { fprintf(stderr, "Panic - %s\n", str); abort(); } #endif /* _KERNEL */ static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); static int rn_walktree_mt(struct radix_node_head *, walktree_f_t *, void *, lockf_t, lockf_t); static struct radix_node *rn_insert(void *, struct radix_node_head *, int *, struct radix_node [2]), *rn_newpair(void *, int, struct radix_node[2]), *rn_search(void *, struct radix_node *), *rn_search_m(void *, struct radix_node *, void *), *rn_lookup(void *, void *, struct radix_node_head *), *rn_match(void *, struct radix_node_head *), *rn_match_args(void *, struct radix_node_head *, match_leaf_t *, void *), *rn_addmask(void *, int, int), *rn_addroute(void *, void *, struct radix_node_head *, struct radix_node [2]), *rn_delete(void *, void *, struct radix_node_head *); static boolean_t rn_refines(void *, void *); /* * IPF also uses PATRICIA tree to manage ippools. IPF stores its own structure * addrfamily_t. sizeof (addrfamily_t) == 24. */ #define MAX_KEYLEN 24 static int max_keylen = MAX_KEYLEN; #ifdef _KERNEL static struct kmem_cache *radix_mask_cache; /* for rn_mkfreelist */ static struct kmem_cache *radix_node_cache; #else static char *radix_mask_cache, *radix_node_cache; /* dummy vars. never inited */ #endif /* _KERNEL */ static struct radix_mask *rn_mkfreelist; static struct radix_node_head *mask_rnhead; /* * Work area -- the following point to 2 buffers of size max_keylen, * allocated in this order in a block of memory malloc'ed by rn_init. * A third buffer of size MAX_KEYLEN is allocated from the stack. */ static char *rn_zeros, *rn_ones; #define MKGet(m) R_Malloc(m, radix_mask_cache, sizeof (struct radix_mask)) #define MKFree(m) Free(m, radix_mask_cache) #define rn_masktop (mask_rnhead->rnh_treetop) static boolean_t rn_lexobetter(void *m_arg, void *n_arg); static struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next); static boolean_t rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, match_leaf_t *rn_leaf_fn, void *rn_leaf_arg); #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg)) /* * The data structure for the keys is a radix tree with one way * branching removed. The index rn_bit at an internal node n represents a bit * position to be tested. The tree is arranged so that all descendants * of a node n have keys whose bits all agree up to position rn_bit - 1. * (We say the index of n is rn_bit.) * * There is at least one descendant which has a one bit at position rn_bit, * and at least one with a zero there. * * A route is determined by a pair of key and mask. We require that the * bit-wise logical and of the key and mask to be the key. * We define the index of a route associated with the mask to be * the first bit number in the mask where 0 occurs (with bit number 0 * representing the highest order bit). * * We say a mask is normal if every bit is 0, past the index of the mask. * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, * and m is a normal mask, then the route applies to every descendant of n. * If the index(m) < rn_bit, this implies the trailing last few bits of k * before bit b are all 0, (and hence consequently true of every descendant * of n), so the route applies to all descendants of the node as well. * * Similar logic shows that a non-normal mask m such that * index(m) <= index(n) could potentially apply to many children of n. * Thus, for each non-host route, we attach its mask to a list at an internal * node as high in the tree as we can go. * * The present version of the code makes use of normal routes in short- * circuiting an explict mask and compare operation when testing whether * a key satisfies a normal route, and also in remembering the unique leaf * that governs a subtree. */ /* * Most of the functions in this code assume that the key/mask arguments * are sockaddr-like structures, where the first byte is an uchar_t * indicating the size of the entire structure. * * To make the assumption more explicit, we use the LEN() macro to access * this field. It is safe to pass an expression with side effects * to LEN() as the argument is evaluated only once. */ #define LEN(x) (*(const uchar_t *)(x)) /* * Search a node in the tree matching the key. */ static struct radix_node * rn_search(v_arg, head) void *v_arg; struct radix_node *head; { struct radix_node *x; caddr_t v; for (x = head, v = v_arg; x->rn_bit >= 0; ) { if (x->rn_bmask & v[x->rn_offset]) x = x->rn_right; else x = x->rn_left; } return (x); } /* * Same as above, but with an additional mask. */ static struct radix_node * rn_search_m(v_arg, head, m_arg) struct radix_node *head; void *v_arg, *m_arg; { struct radix_node *x; caddr_t v = v_arg, m = m_arg; for (x = head; x->rn_bit >= 0; ) { if ((x->rn_bmask & m[x->rn_offset]) && (x->rn_bmask & v[x->rn_offset])) x = x->rn_right; else x = x->rn_left; } return (x); } /* * Returns true if there are no bits set in n_arg that are zero in * m_arg and the masks aren't equal. In other words, it returns true * when m_arg is a finer-granularity netmask -- it represents a subset * of the destinations implied by n_arg. */ static boolean_t rn_refines(m_arg, n_arg) void *m_arg, *n_arg; { caddr_t m = m_arg, n = n_arg; caddr_t lim = n + LEN(n), lim2 = lim; int longer = LEN(n++) - (int)LEN(m++); boolean_t masks_are_equal = B_TRUE; if (longer > 0) lim -= longer; while (n < lim) { if (*n & ~(*m)) return (0); if (*n++ != *m++) masks_are_equal = B_FALSE; } while (n < lim2) if (*n++) return (B_FALSE); if (masks_are_equal && (longer < 0)) for (lim2 = m - longer; m < lim2; ) if (*m++) return (B_TRUE); return (!masks_are_equal); } static struct radix_node * rn_lookup(v_arg, m_arg, head) void *v_arg, *m_arg; struct radix_node_head *head; { struct radix_node *x; caddr_t netmask = NULL; if (m_arg) { x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); if (x == NULL) return (NULL); netmask = x->rn_key; } x = rn_match(v_arg, head); if (x && netmask) { while (x && x->rn_mask != netmask) x = x->rn_dupedkey; } return (x); } /* * Returns true if address 'trial' has no bits differing from the * leaf's key when compared under the leaf's mask. In other words, * returns true when 'trial' matches leaf. * In addition, if a rn_leaf_fn is passed in, that is used to find * a match on conditions defined by the caller of rn_match. This is * used by the kernel ftable to match on IRE_MATCH_* conditions. */ static boolean_t rn_satisfies_leaf(trial, leaf, skip, rn_leaf_fn, rn_leaf_arg) caddr_t trial; struct radix_node *leaf; int skip; match_leaf_t *rn_leaf_fn; void *rn_leaf_arg; { char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; char *cplim; int length = min(LEN(cp), LEN(cp2)); if (cp3 == 0) cp3 = rn_ones; else length = min(length, LEN(cp3)); cplim = cp + length; cp3 += skip; cp2 += skip; for (cp += skip; cp < cplim; cp++, cp2++, cp3++) if ((*cp ^ *cp2) & *cp3) return (B_FALSE); return (RN_MATCHF(leaf, rn_leaf_fn, rn_leaf_arg)); } static struct radix_node * rn_match(v_arg, head) void *v_arg; struct radix_node_head *head; { return (rn_match_args(v_arg, head, NULL, NULL)); } static struct radix_node * rn_match_args(v_arg, head, rn_leaf_fn, rn_leaf_arg) void *v_arg; struct radix_node_head *head; match_leaf_t *rn_leaf_fn; void *rn_leaf_arg; { caddr_t v = v_arg; struct radix_node *t = head->rnh_treetop, *x; caddr_t cp = v, cp2; caddr_t cplim; struct radix_node *saved_t, *top = t; int off = t->rn_offset, vlen = LEN(cp), matched_off; int test, b, rn_bit; /* * Open code rn_search(v, top) to avoid overhead of extra * subroutine call. */ for (; t->rn_bit >= 0; ) { if (t->rn_bmask & cp[t->rn_offset]) t = t->rn_right; else t = t->rn_left; } /* * See if we match exactly as a host destination * or at least learn how many bits match, for normal mask finesse. * * It doesn't hurt us to limit how many bytes to check * to the length of the mask, since if it matches we had a genuine * match and the leaf we have is the most specific one anyway; * if it didn't match with a shorter length it would fail * with a long one. This wins big for class B&C netmasks which * are probably the most common case... */ if (t->rn_mask) vlen = LEN(t->rn_mask); cp += off; cp2 = t->rn_key + off; cplim = v + vlen; for (; cp < cplim; cp++, cp2++) if (*cp != *cp2) goto keydiff; /* * This extra grot is in case we are explicitly asked * to look up the default. Ugh! * * Never return the root node itself, it seems to cause a * lot of confusion. */ if (t->rn_flags & RNF_ROOT) t = t->rn_dupedkey; if (t == NULL || RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) { return (t); } else { /* * Although we found an exact match on the key, rn_leaf_fn * is looking for some other criteria as well. Continue * looking as if the exact match failed. */ if (t->rn_dupedkey == NULL && (t->rn_parent->rn_flags & RNF_ROOT)) { /* no more dupedkeys and hit the top. have to give up */ return (NULL); } b = 0; goto keeplooking; } keydiff: test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ for (b = 7; (test >>= 1) > 0; ) b--; keeplooking: matched_off = cp - v; b += matched_off << 3; rn_bit = -1 - b; /* * If there is a host route in a duped-key chain, it will be first. */ if ((saved_t = t)->rn_mask == 0) t = t->rn_dupedkey; for (; t != NULL; t = t->rn_dupedkey) { /* * Even if we don't match exactly as a host, * we may match if the leaf we wound up at is * a route to a net. */ if (t->rn_flags & RNF_NORMAL) { if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) { return (t); } } else if (rn_satisfies_leaf(v, t, matched_off, rn_leaf_fn, rn_leaf_arg)) { return (t); } } t = saved_t; /* start searching up the tree */ do { struct radix_mask *m; t = t->rn_parent; m = t->rn_mklist; /* * If non-contiguous masks ever become important * we can restore the masking and open coding of * the search and satisfaction test and put the * calculation of "off" back before the "do". */ while (m) { if (m->rm_flags & RNF_NORMAL) { if ((rn_bit <= m->rm_bit) && RN_MATCHF(m->rm_leaf, rn_leaf_fn, rn_leaf_arg)) { return (m->rm_leaf); } } else { off = min(t->rn_offset, matched_off); x = rn_search_m(v, t, m->rm_mask); while (x != NULL && x->rn_mask != m->rm_mask) x = x->rn_dupedkey; if (x && rn_satisfies_leaf(v, x, off, rn_leaf_fn, rn_leaf_arg)) { return (x); } } m = m->rm_mklist; } } while (t != top); return (0); } /* * Whenever we add a new leaf to the tree, we also add a parent node, * so we allocate them as an array of two elements: the first one must be * the leaf (see RNTORT() in route.c), the second one is the parent. * This routine initializes the relevant fields of the nodes, so that * the leaf is the left child of the parent node, and both nodes have * (almost) all all fields filled as appropriate. * The function returns a pointer to the parent node. */ static struct radix_node * rn_newpair(v, b, nodes) void *v; int b; struct radix_node nodes[2]; { struct radix_node *tt = nodes, *t = tt + 1; t->rn_bit = b; t->rn_bmask = 0x80 >> (b & 7); t->rn_left = tt; t->rn_offset = b >> 3; /* * t->rn_parent, r->rn_right, tt->rn_mask, tt->rn_dupedkey * and tt->rn_bmask must have been zeroed by caller. */ tt->rn_bit = -1; tt->rn_key = v; tt->rn_parent = t; tt->rn_flags = t->rn_flags = RNF_ACTIVE; tt->rn_mklist = t->rn_mklist = 0; return (t); } static struct radix_node * rn_insert(v_arg, head, dupentry, nodes) void *v_arg; struct radix_node_head *head; int *dupentry; struct radix_node nodes[2]; { caddr_t v = v_arg; struct radix_node *top = head->rnh_treetop; struct radix_node *p, *x; int head_off = top->rn_offset, vlen = (int)LEN(v); struct radix_node *t = rn_search(v_arg, top); caddr_t cp = v + head_off; int b; struct radix_node *tt; caddr_t cp2 = t->rn_key + head_off; int cmp_res; caddr_t cplim = v + vlen; /* * Find first bit at which v and t->rn_key differ */ while (cp < cplim) if (*cp2++ != *cp++) goto on1; *dupentry = 1; return (t); on1: *dupentry = 0; cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; /* * (cp - v) is the number of bytes where the match is relevant. * Multiply by 8 to get number of bits. Then reduce this number * by the trailing bits in the last byte where we have a match * by looking at (cmp_res >> 1) in each iteration below. * Note that v starts at the beginning of the key, so, when key * is a sockaddr structure, the preliminary len/family/port bytes * are accounted for. */ for (b = (cp - v) << 3; cmp_res; b--) cmp_res >>= 1; cp = v; x = top; do { p = x; if (cp[x->rn_offset] & x->rn_bmask) x = x->rn_right; else x = x->rn_left; } while (b > (unsigned)x->rn_bit); /* x->rn_bit < b && x->rn_bit >= 0 */ /* * now the rightmost bit where v and rn_key differ (b) is < * x->rn_bit. * * We will add a new branch at p. b cannot equal x->rn_bit * because we know we didn't find a duplicated key. * The tree will be re-adjusted so that t is inserted between p * and x. */ t = rn_newpair(v_arg, b, nodes); tt = t->rn_left; if ((cp[p->rn_offset] & p->rn_bmask) == 0) p->rn_left = t; else p->rn_right = t; x->rn_parent = t; t->rn_parent = p; if ((cp[t->rn_offset] & t->rn_bmask) == 0) { t->rn_right = x; } else { t->rn_right = tt; t->rn_left = x; } return (tt); } static struct radix_node * rn_addmask(n_arg, search, skip) int search, skip; void *n_arg; { caddr_t netmask = (caddr_t)n_arg; struct radix_node *x; caddr_t cp, cplim; int b = 0, mlen, j; int maskduplicated, m0, isnormal; struct radix_node *saved_x; int last_zeroed = 0; char addmask_key[MAX_KEYLEN]; if ((mlen = LEN(netmask)) > max_keylen) mlen = max_keylen; if (skip == 0) skip = 1; if (mlen <= skip) return (mask_rnhead->rnh_nodes); if (skip > 1) bcopy(rn_ones + 1, addmask_key + 1, skip - 1); if ((m0 = mlen) > skip) bcopy(netmask + skip, addmask_key + skip, mlen - skip); /* * Trim trailing zeroes. */ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; ) cp--; mlen = cp - addmask_key; if (mlen <= skip) { if (m0 >= last_zeroed) last_zeroed = mlen; return (mask_rnhead->rnh_nodes); } if (m0 < last_zeroed) bzero(addmask_key + m0, last_zeroed - m0); *addmask_key = last_zeroed = mlen; x = rn_search(addmask_key, rn_masktop); if (bcmp(addmask_key, x->rn_key, mlen) != 0) x = 0; if (x || search) return (x); R_Zalloc(x, radix_node_cache, max_keylen + 2 * sizeof (*x)); if ((saved_x = x) == 0) return (0); netmask = cp = (caddr_t)(x + 2); bcopy(addmask_key, cp, mlen); x = rn_insert(cp, mask_rnhead, &maskduplicated, x); if (maskduplicated) { #ifdef _KERNEL cmn_err(CE_WARN, "rn_addmask: mask impossibly already in tree"); #else syslog(LOG_ERR, "rn_addmask: mask impossibly already in tree"); #endif /* _KERNEL */ Free(saved_x, radix_node_cache); return (x); } /* * Calculate index of mask, and check for normalcy. * First find the first byte with a 0 bit, then if there are * more bits left (remember we already trimmed the trailing 0's), * the pattern must be one of those in normal_chars[], or we have * a non-contiguous mask. */ cplim = netmask + mlen; isnormal = 1; for (cp = netmask + skip; (cp < cplim) && *(uchar_t *)cp == 0xff; ) cp++; if (cp != cplim) { static uint8_t normal_chars[] = { 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; for (j = 0x80; (j & *cp) != 0; j >>= 1) b++; if (*cp != normal_chars[b] || cp != (cplim - 1)) isnormal = 0; } b += (cp - netmask) << 3; x->rn_bit = -1 - b; if (isnormal) x->rn_flags |= RNF_NORMAL; return (x); } /* arbitrary ordering for non-contiguous masks */ static boolean_t rn_lexobetter(m_arg, n_arg) void *m_arg, *n_arg; { uchar_t *mp = m_arg, *np = n_arg, *lim; if (LEN(mp) > LEN(np)) /* not really, but need to check longer one first */ return (B_TRUE); if (LEN(mp) == LEN(np)) for (lim = mp + LEN(mp); mp < lim; ) if (*mp++ > *np++) return (B_TRUE); return (B_FALSE); } static struct radix_mask * rn_new_radix_mask(tt, next) struct radix_node *tt; struct radix_mask *next; { struct radix_mask *m; MKGet(m); if (m == 0) { #ifndef _KERNEL syslog(LOG_ERR, "Mask for route not entered\n"); #endif /* _KERNEL */ return (0); } bzero(m, sizeof (*m)); m->rm_bit = tt->rn_bit; m->rm_flags = tt->rn_flags; if (tt->rn_flags & RNF_NORMAL) m->rm_leaf = tt; else m->rm_mask = tt->rn_mask; m->rm_mklist = next; tt->rn_mklist = m; return (m); } static struct radix_node * rn_addroute(v_arg, n_arg, head, treenodes) void *v_arg, *n_arg; struct radix_node_head *head; struct radix_node treenodes[2]; { caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; struct radix_node *t, *x = 0, *tt; struct radix_node *saved_tt, *top = head->rnh_treetop; short b = 0, b_leaf = 0; int keyduplicated; caddr_t mmask; struct radix_mask *m, **mp; /* * In dealing with non-contiguous masks, there may be * many different routes which have the same mask. * We will find it useful to have a unique pointer to * the mask to speed avoiding duplicate references at * nodes and possibly save time in calculating indices. */ if (netmask) { if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) return (0); b_leaf = x->rn_bit; b = -1 - x->rn_bit; netmask = x->rn_key; } /* * Deal with duplicated keys: attach node to previous instance */ saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); if (keyduplicated) { for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { if (tt->rn_mask == netmask) return (0); if (netmask == 0 || (tt->rn_mask && /* index (netmask) > node */ ((b_leaf < tt->rn_bit) || rn_refines(netmask, tt->rn_mask) || rn_lexobetter(netmask, tt->rn_mask)))) break; } /* * If the mask is not duplicated, we wouldn't * find it among possible duplicate key entries * anyway, so the above test doesn't hurt. * * Insert treenodes before tt. * * We sort the masks for a duplicated key the same way as * in a masklist -- most specific to least specific. * This may require the unfortunate nuisance of relocating * the head of the list. * * We also reverse, or doubly link the list through the * parent pointer. */ if (tt == saved_tt) { struct radix_node *xx = x; /* link in at head of list */ (tt = treenodes)->rn_dupedkey = t; tt->rn_flags = t->rn_flags; tt->rn_parent = x = t->rn_parent; t->rn_parent = tt; /* parent */ if (x->rn_left == t) x->rn_left = tt; else x->rn_right = tt; saved_tt = tt; x = xx; } else { (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; t->rn_dupedkey = tt; /* Set rn_parent value for tt and tt->rn_dupedkey */ tt->rn_parent = t; if (tt->rn_dupedkey) tt->rn_dupedkey->rn_parent = tt; } tt->rn_key = v; tt->rn_bit = -1; tt->rn_flags = RNF_ACTIVE; } /* * Put mask in tree. */ if (netmask) { tt->rn_mask = netmask; tt->rn_bit = x->rn_bit; tt->rn_flags |= x->rn_flags & RNF_NORMAL; } /* BEGIN CSTYLED */ /* * at this point the parent-child relationship for p, t, x, tt is * one of the following: * p p * : (left/right child) : * : : * t t * / \ / \ * x tt tt x * * tt == saved_tt returned by rn_insert(). */ /* END CSTYLED */ t = saved_tt->rn_parent; if (keyduplicated) goto key_exists; b_leaf = -1 - t->rn_bit; /* * b_leaf is now normalized to be in the leaf rn_bit format * (it is the rn_bit value of a leaf corresponding to netmask * of t->rn_bit). */ if (t->rn_right == saved_tt) x = t->rn_left; else x = t->rn_right; /* * Promote general routes from below. * Identify the less specific netmasks and add them to t->rm_mklist */ if (x->rn_bit < 0) { /* x is the sibling node. it is a leaf node. */ for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { /* * x is the first node in the dupedkey chain * without a mklist, and with a shorter mask * than b_leaf. Create a radix_mask * corresponding to x's mask and add it to * t's rn_mklist. The mask list gets created * in decreasing order of mask length. */ *mp = m = rn_new_radix_mask(x, 0); if (m) mp = &m->rm_mklist; } } else if (x->rn_mklist) { /* * Skip over masks whose index is > that of new node */ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) if (m->rm_bit >= b_leaf) break; t->rn_mklist = m; *mp = 0; } key_exists: /* Add new route to highest possible ancestor's list */ if ((netmask == 0) || (b > t->rn_bit)) return (tt); /* can't lift at all */ b_leaf = tt->rn_bit; /* b is the index of the netmask */ do { x = t; t = t->rn_parent; } while (b <= t->rn_bit && x != top); /* * Search through routes associated with node to * insert new route according to index. * Need same criteria as when sorting dupedkeys to avoid * double loop on deletion. */ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { if (m->rm_bit < b_leaf) continue; if (m->rm_bit > b_leaf) break; if (m->rm_flags & RNF_NORMAL) { mmask = m->rm_leaf->rn_mask; if (tt->rn_flags & RNF_NORMAL) { #ifdef _KERNEL cmn_err(CE_WARN, "Non-unique normal route, " "mask not entered\n"); #else syslog(LOG_ERR, "Non-unique normal route, " "mask not entered\n"); #endif /* _KERNEL */ return (tt); } } else mmask = m->rm_mask; if (mmask == netmask) { m->rm_refs++; tt->rn_mklist = m; return (tt); } if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) break; } *mp = rn_new_radix_mask(tt, *mp); return (tt); } static struct radix_node * rn_delete(v_arg, netmask_arg, head) void *v_arg, *netmask_arg; struct radix_node_head *head; { struct radix_node *t, *p, *x, *tt; struct radix_mask *m, *saved_m, **mp; struct radix_node *dupedkey, *saved_tt, *top; caddr_t v, netmask; int b, head_off, vlen; v = v_arg; netmask = netmask_arg; x = head->rnh_treetop; tt = rn_search(v, x); head_off = x->rn_offset; vlen = LEN(v); saved_tt = tt; top = x; if (tt == 0 || bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) return (0); /* * Delete our route from mask lists. */ if (netmask) { if ((x = rn_addmask(netmask, 1, head_off)) == 0) return (0); netmask = x->rn_key; while (tt->rn_mask != netmask) if ((tt = tt->rn_dupedkey) == 0) return (0); } if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) goto on1; if (tt->rn_flags & RNF_NORMAL) { if (m->rm_leaf != tt || m->rm_refs > 0) { #ifdef _KERNEL cmn_err(CE_WARN, "rn_delete: inconsistent annotation\n"); #else syslog(LOG_ERR, "rn_delete: inconsistent annotation\n"); #endif /* _KERNEL */ return (0); /* dangling ref could cause disaster */ } } else { if (m->rm_mask != tt->rn_mask) { #ifdef _KERNEL cmn_err(CE_WARN, "rn_delete: inconsistent annotation 2\n"); #else syslog(LOG_ERR, "rn_delete: inconsistent annotation 2\n"); #endif /* _KERNEL */ goto on1; } if (--m->rm_refs >= 0) goto on1; } b = -1 - tt->rn_bit; t = saved_tt->rn_parent; if (b > t->rn_bit) goto on1; /* Wasn't lifted at all */ do { x = t; t = t->rn_parent; } while (b <= t->rn_bit && x != top); for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) if (m == saved_m) { *mp = m->rm_mklist; MKFree(m); break; } if (m == 0) { #ifdef _KERNEL cmn_err(CE_WARN, "rn_delete: couldn't find our annotation\n"); #else syslog(LOG_ERR, "rn_delete: couldn't find our annotation\n"); #endif /* _KERNEL */ if (tt->rn_flags & RNF_NORMAL) return (0); /* Dangling ref to us */ } on1: /* * Eliminate us from tree */ if (tt->rn_flags & RNF_ROOT) return (0); t = tt->rn_parent; dupedkey = saved_tt->rn_dupedkey; if (dupedkey) { /* * Here, tt is the deletion target and * saved_tt is the head of the dupekey chain. */ if (tt == saved_tt) { /* remove from head of chain */ x = dupedkey; x->rn_parent = t; if (t->rn_left == tt) t->rn_left = x; else t->rn_right = x; } else { /* find node in front of tt on the chain */ for (x = p = saved_tt; p && p->rn_dupedkey != tt; ) p = p->rn_dupedkey; if (p) { p->rn_dupedkey = tt->rn_dupedkey; if (tt->rn_dupedkey) /* parent */ tt->rn_dupedkey->rn_parent = p; /* parent */ } else #ifdef _KERNEL cmn_err(CE_WARN, "rn_delete: couldn't find us\n"); #else syslog(LOG_ERR, "rn_delete: couldn't find us\n"); #endif /* _KERNEL */ } t = tt + 1; if (t->rn_flags & RNF_ACTIVE) { *++x = *t; p = t->rn_parent; if (p->rn_left == t) p->rn_left = x; else p->rn_right = x; x->rn_left->rn_parent = x; x->rn_right->rn_parent = x; } goto out; } if (t->rn_left == tt) x = t->rn_right; else x = t->rn_left; p = t->rn_parent; if (p->rn_right == t) p->rn_right = x; else p->rn_left = x; x->rn_parent = p; /* * Demote routes attached to us. */ if (t->rn_mklist) { if (x->rn_bit >= 0) { for (mp = &x->rn_mklist; (m = *mp) != NULL; ) mp = &m->rm_mklist; *mp = t->rn_mklist; } else { /* * If there are any key,mask pairs in a sibling * duped-key chain, some subset will appear sorted * in the same order attached to our mklist */ for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) if (m == x->rn_mklist) { struct radix_mask *mm = m->rm_mklist; x->rn_mklist = 0; if (--(m->rm_refs) < 0) MKFree(m); m = mm; } if (m) #ifdef _KERNEL cmn_err(CE_WARN, "rn_delete: Orphaned Mask %p at %p\n", (void *)m, (void *)x); #else syslog(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n", (void *)m, (void *)x); #endif /* _KERNEL */ } } /* * We may be holding an active internal node in the tree. */ x = tt + 1; if (t != x) { *t = *x; t->rn_left->rn_parent = t; t->rn_right->rn_parent = t; p = x->rn_parent; if (p->rn_left == x) p->rn_left = t; else p->rn_right = t; } out: tt->rn_flags &= ~RNF_ACTIVE; tt[1].rn_flags &= ~RNF_ACTIVE; return (tt); } /* * Walk the radix tree; For the kernel routing table, we hold additional * refs on the ire_bucket to ensure that the walk function f() does not * run into trashed memory. The kernel routing table is identified by * a rnh_treetop that has RNF_SUNW_FT set in the rn_flags. * Note that all refs takein in rn_walktree are released before it returns, * so that f() will need to take any additional references on memory * to be passed back to the caller of rn_walktree. */ static int rn_walktree(h, f, w) struct radix_node_head *h; walktree_f_t *f; void *w; { return (rn_walktree_mt(h, f, w, NULL, NULL)); } static int rn_walktree_mt(h, f, w, lockf, unlockf) struct radix_node_head *h; walktree_f_t *f; void *w; lockf_t lockf, unlockf; { int error; struct radix_node *base, *next; struct radix_node *rn = h->rnh_treetop; boolean_t is_mt = B_FALSE; if (lockf != NULL) { ASSERT(unlockf != NULL); is_mt = B_TRUE; } /* * This gets complicated because we may delete the node * while applying the function f to it, so we need to calculate * the successor node in advance. */ RADIX_NODE_HEAD_RLOCK(h); /* First time through node, go left */ while (rn->rn_bit >= 0) { rn = rn->rn_left; } if (is_mt) (*lockf)(rn); for (;;) { base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_parent->rn_right == rn && (rn->rn_flags & RNF_ROOT) == 0) { rn = rn->rn_parent; } /* Find the next *leaf* since next node might vanish, too */ for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0; ) { rn = rn->rn_left; } next = rn; if (is_mt && next != NULL) (*lockf)(next); /* Process leaves */ while ((rn = base) != NULL) { base = rn->rn_dupedkey; if (is_mt && base != NULL) (*lockf)(base); RADIX_NODE_HEAD_UNLOCK(h); if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) { if (is_mt) { (*unlockf)(rn); if (base != NULL) (*unlockf)(base); if (next != NULL) (*unlockf)(next); } return (error); } if (is_mt) (*unlockf)(rn); RADIX_NODE_HEAD_RLOCK(h); } rn = next; if (rn->rn_flags & RNF_ROOT) { RADIX_NODE_HEAD_UNLOCK(h); /* * no ref to release, since we never take a ref * on the root node- it can't be deleted. */ return (0); } } /* NOTREACHED */ } /* * Allocate and initialize an empty tree. This has 3 nodes, which are * part of the radix_node_head (in the order ) and are * marked RNF_ROOT so they cannot be freed. * The leaves have all-zero and all-one keys, with significant * bits starting at 'off'. * Return 1 on success, 0 on error. */ int rn_inithead(head, off) void **head; int off; { struct radix_node_head *rnh; struct radix_node *t, *tt, *ttt; if (*head) return (1); R_ZallocSleep(rnh, struct radix_node_head *, sizeof (*rnh)); if (rnh == 0) return (0); #ifdef _KERNEL RADIX_NODE_HEAD_LOCK_INIT(rnh); #endif *head = rnh; t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); ttt = rnh->rnh_nodes + 2; t->rn_right = ttt; t->rn_parent = t; tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */ tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; tt->rn_bit = -1 - off; *ttt = *tt; ttt->rn_key = rn_ones; rnh->rnh_addaddr = rn_addroute; rnh->rnh_deladdr = rn_delete; rnh->rnh_matchaddr = rn_match; rnh->rnh_matchaddr_args = rn_match_args; rnh->rnh_lookup = rn_lookup; rnh->rnh_walktree = rn_walktree; rnh->rnh_walktree_mt = rn_walktree_mt; rnh->rnh_walktree_from = NULL; /* not implemented */ rnh->rnh_treetop = t; return (1); } void rn_init() { char *cp, *cplim; #ifdef _KERNEL radix_mask_cache = kmem_cache_create("radix_mask", sizeof (struct radix_mask), 0, NULL, NULL, NULL, NULL, NULL, 0); radix_node_cache = kmem_cache_create("radix_node", max_keylen + 2 * sizeof (struct radix_node), 0, NULL, NULL, NULL, NULL, NULL, 0); #endif /* _KERNEL */ R_ZallocSleep(rn_zeros, char *, 2 * max_keylen); ASSERT(rn_zeros != NULL); bzero(rn_zeros, 2 * max_keylen); rn_ones = cp = rn_zeros + max_keylen; cplim = rn_ones + max_keylen; while (cp < cplim) *cp++ = -1; if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0) panic("rn_init: could not init mask_rnhead "); } int rn_freenode(n, p) struct radix_node *n; void *p; { struct radix_node_head *rnh = p; struct radix_node *d; d = rnh->rnh_deladdr(n->rn_key, NULL, rnh); if (d != NULL) { Free(d, radix_node_cache); } return (0); } void rn_freehead(rnh) struct radix_node_head *rnh; { (void) rn_walktree(rnh, rn_freenode, rnh); rnh->rnh_addaddr = NULL; rnh->rnh_deladdr = NULL; rnh->rnh_matchaddr = NULL; rnh->rnh_lookup = NULL; rnh->rnh_walktree = NULL; #ifdef _KERNEL RADIX_NODE_HEAD_DESTROY(rnh); FreeHead(rnh, sizeof (*rnh)); #else Free(rnh, NULL); #endif /* _KERNEL */ } void rn_fini() { struct radix_mask *m; if (rn_zeros != NULL) { #ifdef _KERNEL FreeHead(rn_zeros, 2 * max_keylen); #else Free(rn_zeros, NULL); #endif rn_zeros = NULL; } if (mask_rnhead != NULL) { rn_freehead(mask_rnhead); mask_rnhead = NULL; } while ((m = rn_mkfreelist) != NULL) { rn_mkfreelist = m->rm_mklist; Free(m, NULL); } }