/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #define _SYSCALL32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ramdata.h" #include "systable.h" #include "print.h" #include "proto.h" #include "htbl.h" /* * Functions supporting library function call tracing. */ typedef struct { prmap_t *pmap; int nmap; } ph_map_t; /* * static functions in this file. */ void function_entry(private_t *, struct bkpt *, struct callstack *); void function_return(private_t *, struct callstack *); int object_iter(void *, const prmap_t *, const char *); int symbol_iter(void *, const GElf_Sym *, const char *); uintptr_t get_return_address(uintptr_t *); int get_arguments(long *argp); uintptr_t previous_fp(uintptr_t, uintptr_t *); int lwp_stack_traps(void *cd, const lwpstatus_t *Lsp); int thr_stack_traps(const td_thrhandle_t *Thp, void *cd); struct bkpt *create_bkpt(uintptr_t, int, int); void set_deferred_breakpoints(void); #define DEF_MAXCALL 16 /* initial value of Stk->maxcall */ #define FAULT_ADDR ((uintptr_t)(0-8)) #define HASHSZ 2048 #define bpt_hash(addr) ((((addr) >> 13) ^ ((addr) >> 2)) & 0x7ff) static void setup_thread_agent(void) { struct bkpt *Bp; td_notify_t notify; td_thr_events_t events; if (Thr_agent != NULL) /* only once */ return; if (td_init() != TD_OK || td_ta_new(Proc, &Thr_agent) != TD_OK) Thr_agent = NULL; else { td_event_emptyset(&events); td_event_addset(&events, TD_CREATE); if (td_ta_event_addr(Thr_agent, TD_CREATE, ¬ify) == TD_OK && notify.type == NOTIFY_BPT && td_ta_set_event(Thr_agent, &events) == TD_OK && (Bp = create_bkpt(notify.u.bptaddr, 0, 1)) != NULL) Bp->flags |= BPT_TD_CREATE; } } /* * Establishment of breakpoints on traced library functions. */ void establish_breakpoints(void) { if (Dynpat == NULL) return; /* allocate the breakpoint hash table */ if (bpt_hashtable == NULL) { bpt_hashtable = my_malloc(HASHSZ * sizeof (struct bkpt *), NULL); (void) memset(bpt_hashtable, 0, HASHSZ * sizeof (struct bkpt *)); } /* * Set special rtld_db event breakpoints, first time only. */ if (Rdb_agent == NULL && (Rdb_agent = Prd_agent(Proc)) != NULL) { rd_notify_t notify; struct bkpt *Bp; (void) rd_event_enable(Rdb_agent, 1); if (rd_event_addr(Rdb_agent, RD_PREINIT, ¬ify) == RD_OK && (Bp = create_bkpt(notify.u.bptaddr, 0, 1)) != NULL) Bp->flags |= BPT_PREINIT; if (rd_event_addr(Rdb_agent, RD_POSTINIT, ¬ify) == RD_OK && (Bp = create_bkpt(notify.u.bptaddr, 0, 1)) != NULL) Bp->flags |= BPT_POSTINIT; if (rd_event_addr(Rdb_agent, RD_DLACTIVITY, ¬ify) == RD_OK && (Bp = create_bkpt(notify.u.bptaddr, 0, 1)) != NULL) Bp->flags |= BPT_DLACTIVITY; } /* * Set special thread event breakpoint, first time libc is seen. */ if (Thr_agent == NULL) setup_thread_agent(); /* * Tell libproc to update its mappings. */ Pupdate_maps(Proc); /* * Iterate over the shared objects, creating breakpoints. */ (void) Pobject_iter(Proc, object_iter, NULL); /* * Now actually set all the breakpoints we just created. */ set_deferred_breakpoints(); } /* * Initial establishment of stacks in a newly-grabbed process. * establish_breakpoints() has already been called. */ void establish_stacks(void) { const pstatus_t *Psp = Pstatus(Proc); char mapfile[64]; int mapfd; struct stat statb; prmap_t *Pmap = NULL; int nmap = 0; ph_map_t ph_map; (void) sprintf(mapfile, "/proc/%d/rmap", (int)Psp->pr_pid); if ((mapfd = open(mapfile, O_RDONLY)) < 0 || fstat(mapfd, &statb) != 0 || statb.st_size < sizeof (prmap_t) || (Pmap = my_malloc(statb.st_size, NULL)) == NULL || (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || (nmap /= sizeof (prmap_t)) == 0) { if (Pmap != NULL) free(Pmap); Pmap = NULL; nmap = 0; } if (mapfd >= 0) (void) close(mapfd); /* * Iterate over lwps, establishing stacks. */ ph_map.pmap = Pmap; ph_map.nmap = nmap; (void) Plwp_iter(Proc, lwp_stack_traps, &ph_map); if (Pmap != NULL) free(Pmap); if (Thr_agent == NULL) return; /* * Iterate over unbound threads, establishing stacks. */ (void) td_ta_thr_iter(Thr_agent, thr_stack_traps, NULL, TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY, TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS); } void do_symbol_iter(const char *object_name, struct dynpat *Dyp) { if (*Dyp->Dp->prt_name == '\0') object_name = PR_OBJ_EXEC; /* * Always search the dynamic symbol table. */ (void) Psymbol_iter(Proc, object_name, PR_DYNSYM, BIND_WEAK|BIND_GLOBAL|TYPE_FUNC, symbol_iter, Dyp); /* * Search the static symbol table if this is the * executable file or if we are being asked to * report internal calls within the library. */ if (object_name == PR_OBJ_EXEC || Dyp->internal) (void) Psymbol_iter(Proc, object_name, PR_SYMTAB, BIND_ANY|TYPE_FUNC, symbol_iter, Dyp); } /* ARGSUSED */ int object_iter(void *cd, const prmap_t *pmp, const char *object_name) { char name[100]; struct dynpat *Dyp; struct dynlib *Dp; const char *str; char *s; int i; if ((pmp->pr_mflags & MA_WRITE) || !(pmp->pr_mflags & MA_EXEC)) return (0); /* * Set special thread event breakpoint, first time libc is seen. */ if (Thr_agent == NULL && strstr(object_name, "/libc.so.") != NULL) setup_thread_agent(); for (Dp = Dyn; Dp != NULL; Dp = Dp->next) if (strcmp(object_name, Dp->lib_name) == 0 || (strcmp(Dp->lib_name, "a.out") == 0 && strcmp(pmp->pr_mapname, "a.out") == 0)) break; if (Dp == NULL) { Dp = my_malloc(sizeof (struct dynlib), NULL); (void) memset(Dp, 0, sizeof (struct dynlib)); if (strcmp(pmp->pr_mapname, "a.out") == 0) { Dp->lib_name = strdup(pmp->pr_mapname); Dp->match_name = strdup(pmp->pr_mapname); Dp->prt_name = strdup(""); } else { Dp->lib_name = strdup(object_name); if ((str = strrchr(object_name, '/')) != NULL) str++; else str = object_name; (void) strncpy(name, str, sizeof (name) - 2); name[sizeof (name) - 2] = '\0'; if ((s = strstr(name, ".so")) != NULL) *s = '\0'; Dp->match_name = strdup(name); (void) strcat(name, ":"); Dp->prt_name = strdup(name); } Dp->next = Dyn; Dyn = Dp; } if (Dp->built || (not_consist && strcmp(Dp->prt_name, "ld:") != 0)) /* kludge */ return (0); if (hflag && not_consist) (void) fprintf(stderr, "not_consist is TRUE, building %s\n", Dp->lib_name); Dp->base = pmp->pr_vaddr; Dp->size = pmp->pr_size; /* * For every dynlib pattern that matches this library's name, * iterate through all of the library's symbols looking for * matching symbol name patterns. */ for (Dyp = Dynpat; Dyp != NULL; Dyp = Dyp->next) { if (interrupt|sigusr1) break; for (i = 0; i < Dyp->nlibpat; i++) { if (interrupt|sigusr1) break; if (fnmatch(Dyp->libpat[i], Dp->match_name, 0) != 0) continue; /* no match */ /* * Require an exact match for the executable (a.out) * and for the dynamic linker (ld.so.1). */ if ((strcmp(Dp->match_name, "a.out") == 0 || strcmp(Dp->match_name, "ld") == 0) && strcmp(Dyp->libpat[i], Dp->match_name) != 0) continue; /* * Set Dyp->Dp to Dp so symbol_iter() can use it. */ Dyp->Dp = Dp; do_symbol_iter(object_name, Dyp); Dyp->Dp = NULL; } } Dp->built = TRUE; return (interrupt | sigusr1); } /* * Search for an existing breakpoint at the 'pc' location. */ struct bkpt * get_bkpt(uintptr_t pc) { struct bkpt *Bp; for (Bp = bpt_hashtable[bpt_hash(pc)]; Bp != NULL; Bp = Bp->next) if (pc == Bp->addr) break; return (Bp); } /* * Create a breakpoint at 'pc', if one is not there already. * 'ret' is true when creating a function return breakpoint, in which case * fail and return NULL if the breakpoint would be created in writeable data. * If 'set' it true, set the breakpoint in the process now. */ struct bkpt * create_bkpt(uintptr_t pc, int ret, int set) { uint_t hix = bpt_hash(pc); struct bkpt *Bp; const prmap_t *pmp; for (Bp = bpt_hashtable[hix]; Bp != NULL; Bp = Bp->next) if (pc == Bp->addr) return (Bp); /* * Don't set return breakpoints on writeable data * or on any space other than executable text. * Don't set breakpoints in the child of a vfork() * because that would modify the parent's address space. */ if (is_vfork_child || (ret && ((pmp = Paddr_to_text_map(Proc, pc)) == NULL || !(pmp->pr_mflags & MA_EXEC) || (pmp->pr_mflags & MA_WRITE)))) return (NULL); /* create a new unnamed breakpoint */ Bp = my_malloc(sizeof (struct bkpt), NULL); Bp->sym_name = NULL; Bp->dyn = NULL; Bp->addr = pc; Bp->instr = 0; Bp->flags = 0; if (set && Psetbkpt(Proc, Bp->addr, &Bp->instr) == 0) Bp->flags |= BPT_ACTIVE; Bp->next = bpt_hashtable[hix]; bpt_hashtable[hix] = Bp; return (Bp); } /* * Set all breakpoints that haven't been set yet. * Deactivate all breakpoints from modules that are not present any more. */ void set_deferred_breakpoints(void) { struct bkpt *Bp; int i; if (is_vfork_child) return; for (i = 0; i < HASHSZ; i++) { for (Bp = bpt_hashtable[i]; Bp != NULL; Bp = Bp->next) { if (!(Bp->flags & BPT_ACTIVE)) { if (!(Bp->flags & BPT_EXCLUDE) && Psetbkpt(Proc, Bp->addr, &Bp->instr) == 0) Bp->flags |= BPT_ACTIVE; } else if (Paddr_to_text_map(Proc, Bp->addr) == NULL) { Bp->flags &= ~BPT_ACTIVE; } } } } int symbol_iter(void *cd, const GElf_Sym *sym, const char *sym_name) { struct dynpat *Dyp = cd; struct dynlib *Dp = Dyp->Dp; uintptr_t pc = sym->st_value; struct bkpt *Bp; int i; /* ignore any undefined symbols */ if (sym->st_shndx == SHN_UNDEF) return (0); /* * Arbitrarily omit "_start" from the executable. * (Avoid indentation before main().) */ if (*Dp->prt_name == '\0' && strcmp(sym_name, "_start") == 0) return (0); /* * Arbitrarily omit "_rt_boot" from the dynamic linker. * (Avoid indentation before main().) */ if (strcmp(Dp->match_name, "ld") == 0 && strcmp(sym_name, "_rt_boot") == 0) return (0); /* * Arbitrarily omit any symbols whose name starts with '.'. * Apparantly putting a breakpoint on .umul causes a * fatal error in libthread (%y is not restored correctly * when a single step is taken). Looks like a /proc bug. */ if (*sym_name == '.') return (0); /* * For each pattern in the array of symbol patterns, * if the pattern matches the symbol name, then * create a breakpoint at the function in question. */ for (i = 0; i < Dyp->nsympat; i++) { if (interrupt|sigusr1) break; if (fnmatch(Dyp->sympat[i], sym_name, 0) != 0) continue; if ((Bp = create_bkpt(pc, 0, 0)) == NULL) /* can't fail */ return (0); /* * New breakpoints receive a name now. * For existing breakpoints, prefer the subset name if possible, * else prefer the shorter name. */ if (Bp->sym_name == NULL) { Bp->sym_name = strdup(sym_name); } else if (strstr(Bp->sym_name, sym_name) != NULL || strlen(Bp->sym_name) > strlen(sym_name)) { free(Bp->sym_name); Bp->sym_name = strdup(sym_name); } Bp->dyn = Dp; Bp->flags |= Dyp->flag; if (Dyp->exclude) Bp->flags |= BPT_EXCLUDE; else if (Dyp->internal || *Dp->prt_name == '\0') Bp->flags |= BPT_INTERNAL; return (0); } return (interrupt | sigusr1); } /* For debugging only ---- */ void report_htable_stats(void) { const pstatus_t *Psp = Pstatus(Proc); struct callstack *Stk; struct bkpt *Bp; uint_t Min = 1000000; uint_t Max = 0; uint_t Avg = 0; uint_t Total = 0; uint_t i, j; uint_t bucket[HASHSZ]; if (Dynpat == NULL || !hflag) return; hflag = FALSE; (void) memset(bucket, 0, sizeof (bucket)); for (i = 0; i < HASHSZ; i++) { j = 0; for (Bp = bpt_hashtable[i]; Bp != NULL; Bp = Bp->next) j++; if (j < Min) Min = j; if (j > Max) Max = j; if (j < HASHSZ) bucket[j]++; Total += j; } Avg = (Total + HASHSZ / 2) / HASHSZ; (void) fprintf(stderr, "truss hash table statistics --------\n"); (void) fprintf(stderr, " Total = %u\n", Total); (void) fprintf(stderr, " Min = %u\n", Min); (void) fprintf(stderr, " Max = %u\n", Max); (void) fprintf(stderr, " Avg = %u\n", Avg); for (i = 0; i < HASHSZ; i++) if (bucket[i]) (void) fprintf(stderr, " %3u buckets of size %d\n", bucket[i], i); (void) fprintf(stderr, "truss-detected stacks --------\n"); for (Stk = callstack; Stk != NULL; Stk = Stk->next) { (void) fprintf(stderr, " base = 0x%.8lx end = 0x%.8lx size = %ld\n", (ulong_t)Stk->stkbase, (ulong_t)Stk->stkend, (ulong_t)(Stk->stkend - Stk->stkbase)); } (void) fprintf(stderr, "primary unix stack --------\n"); (void) fprintf(stderr, " base = 0x%.8lx end = 0x%.8lx size = %ld\n", (ulong_t)Psp->pr_stkbase, (ulong_t)(Psp->pr_stkbase + Psp->pr_stksize), (ulong_t)Psp->pr_stksize); (void) fprintf(stderr, "nthr_create = %u\n", nthr_create); } void make_lwp_stack(const lwpstatus_t *Lsp, prmap_t *Pmap, int nmap) { const pstatus_t *Psp = Pstatus(Proc); uintptr_t sp = Lsp->pr_reg[R_SP]; id_t lwpid = Lsp->pr_lwpid; struct callstack *Stk; td_thrhandle_t th; td_thrinfo_t thrinfo; if (data_model != PR_MODEL_LP64) sp = (uint32_t)sp; /* check to see if we already have this stack */ if (sp == 0) return; for (Stk = callstack; Stk != NULL; Stk = Stk->next) if (sp >= Stk->stkbase && sp < Stk->stkend) return; Stk = my_malloc(sizeof (struct callstack), NULL); Stk->next = callstack; callstack = Stk; nstack++; Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; Stk->ncall = 0; Stk->maxcall = DEF_MAXCALL; Stk->stack = my_malloc(DEF_MAXCALL * sizeof (*Stk->stack), NULL); /* primary stack */ if (sp >= Psp->pr_stkbase && sp < Psp->pr_stkbase + Psp->pr_stksize) { Stk->stkbase = Psp->pr_stkbase; Stk->stkend = Stk->stkbase + Psp->pr_stksize; return; } /* alternate stack */ if ((Lsp->pr_altstack.ss_flags & SS_ONSTACK) && sp >= (uintptr_t)Lsp->pr_altstack.ss_sp && sp < (uintptr_t)Lsp->pr_altstack.ss_sp + Lsp->pr_altstack.ss_size) { Stk->stkbase = (uintptr_t)Lsp->pr_altstack.ss_sp; Stk->stkend = Stk->stkbase + Lsp->pr_altstack.ss_size; return; } /* thread stacks? */ if (Thr_agent != NULL && td_ta_map_lwp2thr(Thr_agent, lwpid, &th) == TD_OK && td_thr_get_info(&th, &thrinfo) == TD_OK && sp >= (uintptr_t)thrinfo.ti_stkbase - thrinfo.ti_stksize && sp < (uintptr_t)thrinfo.ti_stkbase) { /* The bloody fools got this backwards! */ Stk->stkend = (uintptr_t)thrinfo.ti_stkbase; Stk->stkbase = Stk->stkend - thrinfo.ti_stksize; return; } /* last chance -- try the raw memory map */ for (; nmap; nmap--, Pmap++) { if (sp >= Pmap->pr_vaddr && sp < Pmap->pr_vaddr + Pmap->pr_size) { Stk->stkbase = Pmap->pr_vaddr; Stk->stkend = Pmap->pr_vaddr + Pmap->pr_size; return; } } callstack = Stk->next; nstack--; free(Stk->stack); free(Stk); } void make_thr_stack(const td_thrhandle_t *Thp, prgregset_t reg) { const pstatus_t *Psp = Pstatus(Proc); td_thrinfo_t thrinfo; uintptr_t sp = reg[R_SP]; struct callstack *Stk; if (data_model != PR_MODEL_LP64) sp = (uint32_t)sp; /* check to see if we already have this stack */ if (sp == 0) return; for (Stk = callstack; Stk != NULL; Stk = Stk->next) if (sp >= Stk->stkbase && sp < Stk->stkend) return; Stk = my_malloc(sizeof (struct callstack), NULL); Stk->next = callstack; callstack = Stk; nstack++; Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; Stk->ncall = 0; Stk->maxcall = DEF_MAXCALL; Stk->stack = my_malloc(DEF_MAXCALL * sizeof (*Stk->stack), NULL); /* primary stack */ if (sp >= Psp->pr_stkbase && sp < Psp->pr_stkbase + Psp->pr_stksize) { Stk->stkbase = Psp->pr_stkbase; Stk->stkend = Stk->stkbase + Psp->pr_stksize; return; } if (td_thr_get_info(Thp, &thrinfo) == TD_OK && sp >= (uintptr_t)thrinfo.ti_stkbase - thrinfo.ti_stksize && sp < (uintptr_t)thrinfo.ti_stkbase) { /* The bloody fools got this backwards! */ Stk->stkend = (uintptr_t)thrinfo.ti_stkbase; Stk->stkbase = Stk->stkend - thrinfo.ti_stksize; return; } callstack = Stk->next; nstack--; free(Stk->stack); free(Stk); } struct callstack * find_lwp_stack(uintptr_t sp) { const pstatus_t *Psp = Pstatus(Proc); char mapfile[64]; int mapfd; struct stat statb; prmap_t *Pmap = NULL; prmap_t *pmap = NULL; int nmap = 0; struct callstack *Stk = NULL; /* * Get the address space map. */ (void) sprintf(mapfile, "/proc/%d/rmap", (int)Psp->pr_pid); if ((mapfd = open(mapfile, O_RDONLY)) < 0 || fstat(mapfd, &statb) != 0 || statb.st_size < sizeof (prmap_t) || (Pmap = my_malloc(statb.st_size, NULL)) == NULL || (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || (nmap /= sizeof (prmap_t)) == 0) { if (Pmap != NULL) free(Pmap); if (mapfd >= 0) (void) close(mapfd); return (NULL); } (void) close(mapfd); for (pmap = Pmap; nmap--; pmap++) { if (sp >= pmap->pr_vaddr && sp < pmap->pr_vaddr + pmap->pr_size) { Stk = my_malloc(sizeof (struct callstack), NULL); Stk->next = callstack; callstack = Stk; nstack++; Stk->stkbase = pmap->pr_vaddr; Stk->stkend = pmap->pr_vaddr + pmap->pr_size; Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; Stk->ncall = 0; Stk->maxcall = DEF_MAXCALL; Stk->stack = my_malloc( DEF_MAXCALL * sizeof (*Stk->stack), NULL); break; } } free(Pmap); return (Stk); } struct callstack * find_stack(uintptr_t sp) { const pstatus_t *Psp = Pstatus(Proc); private_t *pri = get_private(); const lwpstatus_t *Lsp = pri->lwpstat; id_t lwpid = Lsp->pr_lwpid; #if defined(__sparc) prgreg_t tref = Lsp->pr_reg[R_G7]; #elif defined(__amd64) prgreg_t tref = Lsp->pr_reg[REG_FS]; #elif defined(__i386) prgreg_t tref = Lsp->pr_reg[GS]; #endif struct callstack *Stk = NULL; td_thrhandle_t th; td_thrinfo_t thrinfo; td_err_e error; /* primary stack */ if (sp >= Psp->pr_stkbase && sp < Psp->pr_stkbase + Psp->pr_stksize) { Stk = my_malloc(sizeof (struct callstack), NULL); Stk->next = callstack; callstack = Stk; nstack++; Stk->stkbase = Psp->pr_stkbase; Stk->stkend = Stk->stkbase + Psp->pr_stksize; Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; Stk->ncall = 0; Stk->maxcall = DEF_MAXCALL; Stk->stack = my_malloc(DEF_MAXCALL * sizeof (*Stk->stack), NULL); return (Stk); } /* alternate stack */ if ((Lsp->pr_altstack.ss_flags & SS_ONSTACK) && sp >= (uintptr_t)Lsp->pr_altstack.ss_sp && sp < (uintptr_t)Lsp->pr_altstack.ss_sp + Lsp->pr_altstack.ss_size) { Stk = my_malloc(sizeof (struct callstack), NULL); Stk->next = callstack; callstack = Stk; nstack++; Stk->stkbase = (uintptr_t)Lsp->pr_altstack.ss_sp; Stk->stkend = Stk->stkbase + Lsp->pr_altstack.ss_size; Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; Stk->ncall = 0; Stk->maxcall = DEF_MAXCALL; Stk->stack = my_malloc(DEF_MAXCALL * sizeof (*Stk->stack), NULL); return (Stk); } if (Thr_agent == NULL) return (find_lwp_stack(sp)); /* thread stacks? */ if ((error = td_ta_map_lwp2thr(Thr_agent, lwpid, &th)) != TD_OK) { if (hflag) (void) fprintf(stderr, "cannot get thread handle for " "lwp#%d, error=%d, tref=0x%.8lx\n", (int)lwpid, error, (long)tref); return (NULL); } if ((error = td_thr_get_info(&th, &thrinfo)) != TD_OK) { if (hflag) (void) fprintf(stderr, "cannot get thread info for " "lwp#%d, error=%d, tref=0x%.8lx\n", (int)lwpid, error, (long)tref); return (NULL); } if (sp >= (uintptr_t)thrinfo.ti_stkbase - thrinfo.ti_stksize && sp < (uintptr_t)thrinfo.ti_stkbase) { Stk = my_malloc(sizeof (struct callstack), NULL); Stk->next = callstack; callstack = Stk; nstack++; /* The bloody fools got this backwards! */ Stk->stkend = (uintptr_t)thrinfo.ti_stkbase; Stk->stkbase = Stk->stkend - thrinfo.ti_stksize; Stk->tref = tref; Stk->tid = thrinfo.ti_tid; Stk->nthr_create = nthr_create; Stk->ncall = 0; Stk->maxcall = DEF_MAXCALL; Stk->stack = my_malloc(DEF_MAXCALL * sizeof (*Stk->stack), NULL); return (Stk); } /* stack bounds failure -- complain bitterly */ if (hflag) { (void) fprintf(stderr, "sp not within thread stack: " "sp=0x%.8lx stkbase=0x%.8lx stkend=0x%.8lx\n", (ulong_t)sp, /* The bloody fools got this backwards! */ (ulong_t)thrinfo.ti_stkbase - thrinfo.ti_stksize, (ulong_t)thrinfo.ti_stkbase); } return (NULL); } void get_tid(struct callstack *Stk) { private_t *pri = get_private(); const lwpstatus_t *Lsp = pri->lwpstat; id_t lwpid = Lsp->pr_lwpid; #if defined(__sparc) prgreg_t tref = Lsp->pr_reg[R_G7]; #elif defined(__amd64) prgreg_t tref = (data_model == PR_MODEL_LP64) ? Lsp->pr_reg[REG_FS] : Lsp->pr_reg[REG_GS]; #elif defined(__i386) prgreg_t tref = Lsp->pr_reg[GS]; #endif td_thrhandle_t th; td_thrinfo_t thrinfo; td_err_e error; if (Thr_agent == NULL) { Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; return; } /* * Shortcut here -- * If we have a matching tref and no new threads have * been created since the last time we encountered this * stack, then we don't have to go through the overhead * of calling td_ta_map_lwp2thr() to get the thread-id. */ if (tref == Stk->tref && Stk->nthr_create == nthr_create) return; if ((error = td_ta_map_lwp2thr(Thr_agent, lwpid, &th)) != TD_OK) { if (hflag) (void) fprintf(stderr, "cannot get thread handle for " "lwp#%d, error=%d, tref=0x%.8lx\n", (int)lwpid, error, (long)tref); Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; } else if ((error = td_thr_get_info(&th, &thrinfo)) != TD_OK) { if (hflag) (void) fprintf(stderr, "cannot get thread info for " "lwp#%d, error=%d, tref=0x%.8lx\n", (int)lwpid, error, (long)tref); Stk->tref = 0; Stk->tid = 0; Stk->nthr_create = 0; } else { Stk->tref = tref; Stk->tid = thrinfo.ti_tid; Stk->nthr_create = nthr_create; } } struct callstack * callstack_info(uintptr_t sp, uintptr_t fp, int makeid) { struct callstack *Stk; uintptr_t trash; if (sp == 0 || Pread(Proc, &trash, sizeof (trash), sp) != sizeof (trash)) return (NULL); for (Stk = callstack; Stk != NULL; Stk = Stk->next) if (sp >= Stk->stkbase && sp < Stk->stkend) break; /* * If we didn't find the stack, do it the hard way. */ if (Stk == NULL) { uintptr_t stkbase = sp; uintptr_t stkend; uint_t minsize; #if defined(i386) || defined(__amd64) #ifdef _LP64 if (data_model == PR_MODEL_LP64) minsize = 2 * sizeof (uintptr_t); /* fp + pc */ else #endif minsize = 2 * sizeof (uint32_t); #else #ifdef _LP64 if (data_model != PR_MODEL_LP64) minsize = SA32(MINFRAME32); else minsize = SA64(MINFRAME64); #else minsize = SA(MINFRAME); #endif #endif /* i386 */ stkend = sp + minsize; while (Stk == NULL && fp != 0 && fp >= sp) { stkend = fp + minsize; for (Stk = callstack; Stk != NULL; Stk = Stk->next) if ((fp >= Stk->stkbase && fp < Stk->stkend) || (stkend > Stk->stkbase && stkend <= Stk->stkend)) break; if (Stk == NULL) fp = previous_fp(fp, NULL); } if (Stk != NULL) /* the stack grew */ Stk->stkbase = stkbase; } if (Stk == NULL && makeid) /* new stack */ Stk = find_stack(sp); if (Stk == NULL) return (NULL); /* * Ensure that there is room for at least one more entry. */ if (Stk->ncall == Stk->maxcall) { Stk->maxcall *= 2; Stk->stack = my_realloc(Stk->stack, Stk->maxcall * sizeof (*Stk->stack), NULL); } if (makeid) get_tid(Stk); return (Stk); } /* * Reset the breakpoint information (called on successful exec()). */ void reset_breakpoints(void) { struct dynlib *Dp; struct bkpt *Bp; struct callstack *Stk; int i; if (Dynpat == NULL) return; /* destroy all previous dynamic library information */ while ((Dp = Dyn) != NULL) { Dyn = Dp->next; free(Dp->lib_name); free(Dp->match_name); free(Dp->prt_name); free(Dp); } /* destroy all previous breakpoint trap information */ if (bpt_hashtable != NULL) { for (i = 0; i < HASHSZ; i++) { while ((Bp = bpt_hashtable[i]) != NULL) { bpt_hashtable[i] = Bp->next; if (Bp->sym_name) free(Bp->sym_name); free(Bp); } } } /* destroy all the callstack information */ while ((Stk = callstack) != NULL) { callstack = Stk->next; free(Stk->stack); free(Stk); } /* we are not a multi-threaded process anymore */ if (Thr_agent != NULL) (void) td_ta_delete(Thr_agent); Thr_agent = NULL; /* tell libproc to clear out its mapping information */ Preset_maps(Proc); Rdb_agent = NULL; /* Reestablish the symbols from the executable */ (void) establish_breakpoints(); } /* * Clear breakpoints from the process (called before Prelease()). * Don't actually destroy the breakpoint table; * threads currently fielding breakpoints will need it. */ void clear_breakpoints(void) { struct bkpt *Bp; int i; if (Dynpat == NULL) return; /* * Change all breakpoint traps back to normal instructions. * We attempt to remove a breakpoint from every address which * may have ever contained a breakpoint to protect our victims. */ report_htable_stats(); /* report stats first */ for (i = 0; i < HASHSZ; i++) { for (Bp = bpt_hashtable[i]; Bp != NULL; Bp = Bp->next) { if (Bp->flags & BPT_ACTIVE) (void) Pdelbkpt(Proc, Bp->addr, Bp->instr); Bp->flags &= ~BPT_ACTIVE; } } if (Thr_agent != NULL) { td_thr_events_t events; td_event_emptyset(&events); (void) td_ta_set_event(Thr_agent, &events); (void) td_ta_delete(Thr_agent); } Thr_agent = NULL; } /* * Reestablish the breakpoint traps in the process. * Called after resuming from a vfork() in the parent. */ void reestablish_traps(void) { struct bkpt *Bp; ulong_t instr; int i; if (Dynpat == NULL || is_vfork_child) return; for (i = 0; i < HASHSZ; i++) { for (Bp = bpt_hashtable[i]; Bp != NULL; Bp = Bp->next) { if ((Bp->flags & BPT_ACTIVE) && Psetbkpt(Proc, Bp->addr, &instr) != 0) Bp->flags &= ~BPT_ACTIVE; } } } void show_function_call(private_t *pri, struct callstack *Stk, struct dynlib *Dp, struct bkpt *Bp) { long arg[8]; int narg; int i; narg = get_arguments(arg); make_pname(pri, (Stk != NULL)? Stk->tid : 0); putpname(pri); timestamp(pri); if (Stk != NULL) { for (i = 1; i < Stk->ncall; i++) { (void) fputc(' ', stdout); (void) fputc(' ', stdout); } } (void) printf("-> %s%s(", Dp->prt_name, Bp->sym_name); for (i = 0; i < narg; i++) { (void) printf("0x%lx", arg[i]); if (i < narg-1) { (void) fputc(',', stdout); (void) fputc(' ', stdout); } } (void) printf(")\n"); Flush(); } /* ARGSUSED */ void show_function_return(private_t *pri, long rval, int stret, struct callstack *Stk, struct dynlib *Dp, struct bkpt *Bp) { int i; make_pname(pri, Stk->tid); putpname(pri); timestamp(pri); for (i = 0; i < Stk->ncall; i++) { (void) fputc(' ', stdout); (void) fputc(' ', stdout); } (void) printf("<- %s%s() = ", Dp->prt_name, Bp->sym_name); if (stret) { (void) printf("struct return\n"); } else if (data_model == PR_MODEL_LP64) { if (rval >= (64 * 1024) || -rval >= (64 * 1024)) (void) printf("0x%lx\n", rval); else (void) printf("%ld\n", rval); } else { int rval32 = (int)rval; if (rval32 >= (64 * 1024) || -rval32 >= (64 * 1024)) (void) printf("0x%x\n", rval32); else (void) printf("%d\n", rval32); } Flush(); } /* * Called to deal with function-call tracing. * Return 0 on normal success, 1 to indicate a BPT_HANG success, * and -1 on failure (not tracing functions or unknown breakpoint). */ int function_trace(private_t *pri, int first, int clear, int dotrace) { struct ps_lwphandle *Lwp = pri->Lwp; const lwpstatus_t *Lsp = pri->lwpstat; uintptr_t pc = Lsp->pr_reg[R_PC]; uintptr_t sp = Lsp->pr_reg[R_SP]; uintptr_t fp = Lsp->pr_reg[R_FP]; struct bkpt *Bp; struct dynlib *Dp; struct callstack *Stk; ulong_t instr; int active; int rval = 0; if (Dynpat == NULL) return (-1); if (data_model != PR_MODEL_LP64) { pc = (uint32_t)pc; sp = (uint32_t)sp; fp = (uint32_t)fp; } if ((Bp = get_bkpt(pc)) == NULL) { if (hflag) (void) fprintf(stderr, "function_trace(): " "cannot find breakpoint for pc: 0x%.8lx\n", (ulong_t)pc); return (-1); } if ((Bp->flags & (BPT_PREINIT|BPT_POSTINIT|BPT_DLACTIVITY)) && !clear) { rd_event_msg_t event_msg; if (hflag) { if (Bp->flags & BPT_PREINIT) (void) fprintf(stderr, "function_trace(): " "RD_PREINIT breakpoint\n"); if (Bp->flags & BPT_POSTINIT) (void) fprintf(stderr, "function_trace(): " "RD_POSTINIT breakpoint\n"); if (Bp->flags & BPT_DLACTIVITY) (void) fprintf(stderr, "function_trace(): " "RD_DLACTIVITY breakpoint\n"); } if (rd_event_getmsg(Rdb_agent, &event_msg) == RD_OK) { if (event_msg.type == RD_DLACTIVITY) { if (event_msg.u.state == RD_CONSISTENT) establish_breakpoints(); if (event_msg.u.state == RD_ADD) { if (hflag) (void) fprintf(stderr, "RD_DLACTIVITY/RD_ADD " "state reached\n"); not_consist = TRUE; /* kludge */ establish_breakpoints(); not_consist = FALSE; } } if (hflag) { const char *et; char buf[32]; switch (event_msg.type) { case RD_NONE: et = "RD_NONE"; break; case RD_PREINIT: et = "RD_PREINIT"; break; case RD_POSTINIT: et = "RD_POSTINIT"; break; case RD_DLACTIVITY: et = "RD_DLACTIVITY"; break; default: (void) sprintf(buf, "0x%x", event_msg.type); et = buf; break; } (void) fprintf(stderr, "event_msg.type = %s ", et); switch (event_msg.u.state) { case RD_NOSTATE: et = "RD_NOSTATE"; break; case RD_CONSISTENT: et = "RD_CONSISTENT"; break; case RD_ADD: et = "RD_ADD"; break; case RD_DELETE: et = "RD_DELETE"; break; default: (void) sprintf(buf, "0x%x", event_msg.u.state); et = buf; break; } (void) fprintf(stderr, "event_msg.u.state = %s\n", et); } } } if ((Bp->flags & BPT_TD_CREATE) && !clear) { nthr_create++; if (hflag) (void) fprintf(stderr, "function_trace(): " "BPT_TD_CREATE breakpoint\n"); /* we don't care about the event message */ } Dp = Bp->dyn; if (dotrace) { if ((Stk = callstack_info(sp, fp, 1)) == NULL) { if (Dp != NULL && !clear) { if (cflag) { add_fcall(fcall_tbl, Dp->prt_name, Bp->sym_name, (unsigned long)1); } else show_function_call(pri, NULL, Dp, Bp); if ((Bp->flags & BPT_HANG) && !first) rval = 1; } } else if (!clear) { if (Dp != NULL) { function_entry(pri, Bp, Stk); if ((Bp->flags & BPT_HANG) && !first) rval = 1; } else { function_return(pri, Stk); } } } /* * Single-step the traced instruction. Since it's possible that * another thread has deactivated this breakpoint, we indicate * that we have reactivated it by virtue of executing it. * * To avoid a deadlock with some other thread in the process * performing a fork() or a thr_suspend() operation, we must * drop and later reacquire truss_lock. Some fancy dancing here. */ active = (Bp->flags & BPT_ACTIVE); Bp->flags |= BPT_ACTIVE; instr = Bp->instr; (void) mutex_unlock(&truss_lock); (void) Lxecbkpt(Lwp, instr); (void) mutex_lock(&truss_lock); if (rval || clear) { /* leave process stopped and abandoned */ #if defined(__i386) /* * Leave it stopped in a state that a stack trace is reasonable. */ /* XX64 needs to be updated for amd64 & gcc */ if (rval && instr == 0x55) { /* pushl %ebp */ /* step it over the movl %esp,%ebp */ (void) mutex_unlock(&truss_lock); (void) Lsetrun(Lwp, 0, PRCFAULT|PRSTEP); /* we're wrapping up; wait one second at most */ (void) Lwait(Lwp, MILLISEC); (void) mutex_lock(&truss_lock); } #endif if (get_bkpt(pc) != Bp) abend("function_trace: lost breakpoint", NULL); (void) Pdelbkpt(Proc, Bp->addr, Bp->instr); Bp->flags &= ~BPT_ACTIVE; (void) mutex_unlock(&truss_lock); (void) Lsetrun(Lwp, 0, PRCFAULT|PRSTOP); /* we're wrapping up; wait one second at most */ (void) Lwait(Lwp, MILLISEC); (void) mutex_lock(&truss_lock); } else { if (get_bkpt(pc) != Bp) abend("function_trace: lost breakpoint", NULL); if (!active || !(Bp->flags & BPT_ACTIVE)) { (void) Pdelbkpt(Proc, Bp->addr, Bp->instr); Bp->flags &= ~BPT_ACTIVE; } } return (rval); } void function_entry(private_t *pri, struct bkpt *Bp, struct callstack *Stk) { const lwpstatus_t *Lsp = pri->lwpstat; uintptr_t sp = Lsp->pr_reg[R_SP]; uintptr_t rpc = get_return_address(&sp); struct dynlib *Dp = Bp->dyn; int oldframe = FALSE; int i; #ifdef _LP64 if (data_model != PR_MODEL_LP64) { sp = (uint32_t)sp; rpc = (uint32_t)rpc; } #endif /* * If the sp is not within the stack bounds, forget it. * If the symbol's 'internal' flag is false, * don't report internal calls within the library. */ if (!(sp >= Stk->stkbase && sp < Stk->stkend) || (!(Bp->flags & BPT_INTERNAL) && rpc >= Dp->base && rpc < Dp->base + Dp->size)) return; for (i = 0; i < Stk->ncall; i++) { if (sp >= Stk->stack[i].sp) { Stk->ncall = i; if (sp == Stk->stack[i].sp) oldframe = TRUE; break; } } /* * Breakpoints for function returns are set here * If we're counting function calls, there is no need to set * a breakpoint upon return */ if (!oldframe && !cflag) { (void) create_bkpt(rpc, 1, 1); /* may or may not be set */ Stk->stack[Stk->ncall].sp = sp; /* record it anyeay */ Stk->stack[Stk->ncall].pc = rpc; Stk->stack[Stk->ncall].fcn = Bp; } Stk->ncall++; if (cflag) { add_fcall(fcall_tbl, Dp->prt_name, Bp->sym_name, (unsigned long)1); } else { show_function_call(pri, Stk, Dp, Bp); } } /* * We are here because we hit an unnamed breakpoint. * Attempt to match this up with a return pc on the stack * and report the function return. */ void function_return(private_t *pri, struct callstack *Stk) { const lwpstatus_t *Lsp = pri->lwpstat; uintptr_t sp = Lsp->pr_reg[R_SP]; uintptr_t fp = Lsp->pr_reg[R_FP]; int i; #ifdef _LP64 if (data_model != PR_MODEL_LP64) { sp = (uint32_t)sp; fp = (uint32_t)fp; } #endif if (fp < sp + 8) fp = sp + 8; for (i = Stk->ncall - 1; i >= 0; i--) { if (sp <= Stk->stack[i].sp && fp > Stk->stack[i].sp) { Stk->ncall = i; break; } } #if defined(i386) || defined(__amd64) if (i < 0) { /* probably __mul64() or friends -- try harder */ int j; for (j = 0; i < 0 && j < 8; j++) { /* up to 8 args */ sp -= 4; for (i = Stk->ncall - 1; i >= 0; i--) { if (sp <= Stk->stack[i].sp && fp > Stk->stack[i].sp) { Stk->ncall = i; break; } } } } #endif if ((i >= 0) && (!cflag)) { show_function_return(pri, Lsp->pr_reg[R_R0], 0, Stk, Stk->stack[i].fcn->dyn, Stk->stack[i].fcn); } } #if defined(__sparc) #define FPADJUST 0 #elif defined(__amd64) #define FPADJUST 8 #elif defined(__i386) #define FPADJUST 4 #endif void trap_one_stack(prgregset_t reg) { struct dynlib *Dp; struct bkpt *Bp; struct callstack *Stk; GElf_Sym sym; char sym_name[32]; uintptr_t sp = reg[R_SP]; uintptr_t pc = reg[R_PC]; uintptr_t fp; uintptr_t rpc; uint_t nframe = 0; uint_t maxframe = 8; struct { uintptr_t sp; /* %sp within called function */ uintptr_t pc; /* %pc within called function */ uintptr_t rsp; /* the return sp */ uintptr_t rpc; /* the return pc */ } *frame = my_malloc(maxframe * sizeof (*frame), NULL); /* * Gather stack frames bottom to top. */ while (sp != 0) { fp = sp; /* remember higest non-null sp */ frame[nframe].sp = sp; frame[nframe].pc = pc; sp = previous_fp(sp, &pc); frame[nframe].rsp = sp; frame[nframe].rpc = pc; if (++nframe == maxframe) { maxframe *= 2; frame = my_realloc(frame, maxframe * sizeof (*frame), NULL); } } /* * Scan for function return breakpoints top to bottom. */ while (nframe--) { /* lookup the called function in the symbol tables */ if (Plookup_by_addr(Proc, frame[nframe].pc, sym_name, sizeof (sym_name), &sym) != 0) continue; pc = sym.st_value; /* entry point of the function */ rpc = frame[nframe].rpc; /* caller's return pc */ /* lookup the function in the breakpoint table */ if ((Bp = get_bkpt(pc)) == NULL || (Dp = Bp->dyn) == NULL) continue; if (!(Bp->flags & BPT_INTERNAL) && rpc >= Dp->base && rpc < Dp->base + Dp->size) continue; sp = frame[nframe].rsp + FPADJUST; /* %sp at time of call */ if ((Stk = callstack_info(sp, fp, 0)) == NULL) continue; /* can't happen? */ if (create_bkpt(rpc, 1, 1) != NULL) { Stk->stack[Stk->ncall].sp = sp; Stk->stack[Stk->ncall].pc = rpc; Stk->stack[Stk->ncall].fcn = Bp; Stk->ncall++; } } free(frame); } int lwp_stack_traps(void *cd, const lwpstatus_t *Lsp) { ph_map_t *ph_map = (ph_map_t *)cd; prgregset_t reg; (void) memcpy(reg, Lsp->pr_reg, sizeof (prgregset_t)); make_lwp_stack(Lsp, ph_map->pmap, ph_map->nmap); trap_one_stack(reg); return (interrupt | sigusr1); } /* ARGSUSED */ int thr_stack_traps(const td_thrhandle_t *Thp, void *cd) { prgregset_t reg; /* * We have already dealt with all the lwps. * We only care about unbound threads here (TD_PARTIALREG). */ if (td_thr_getgregs(Thp, reg) != TD_PARTIALREG) return (0); make_thr_stack(Thp, reg); trap_one_stack(reg); return (interrupt | sigusr1); } #if defined(__sparc) uintptr_t previous_fp(uintptr_t sp, uintptr_t *rpc) { uintptr_t fp = 0; uintptr_t pc = 0; #ifdef _LP64 if (data_model == PR_MODEL_LP64) { struct rwindow64 rwin; if (Pread(Proc, &rwin, sizeof (rwin), sp + STACK_BIAS) == sizeof (rwin)) { fp = (uintptr_t)rwin.rw_fp; pc = (uintptr_t)rwin.rw_rtn; } if (fp != 0 && Pread(Proc, &rwin, sizeof (rwin), fp + STACK_BIAS) != sizeof (rwin)) fp = pc = 0; } else { struct rwindow32 rwin; #else /* _LP64 */ struct rwindow rwin; #endif /* _LP64 */ if (Pread(Proc, &rwin, sizeof (rwin), sp) == sizeof (rwin)) { fp = (uint32_t)rwin.rw_fp; pc = (uint32_t)rwin.rw_rtn; } if (fp != 0 && Pread(Proc, &rwin, sizeof (rwin), fp) != sizeof (rwin)) fp = pc = 0; #ifdef _LP64 } #endif if (rpc) *rpc = pc; return (fp); } /* ARGSUSED */ uintptr_t get_return_address(uintptr_t *psp) { instr_t inst; private_t *pri = get_private(); const lwpstatus_t *Lsp = pri->lwpstat; uintptr_t rpc; rpc = (uintptr_t)Lsp->pr_reg[R_O7] + 8; if (data_model != PR_MODEL_LP64) rpc = (uint32_t)rpc; /* check for structure return (bletch!) */ if (Pread(Proc, &inst, sizeof (inst), rpc) == sizeof (inst) && inst < 0x1000) rpc += sizeof (instr_t); return (rpc); } int get_arguments(long *argp) { private_t *pri = get_private(); const lwpstatus_t *Lsp = pri->lwpstat; int i; if (data_model != PR_MODEL_LP64) for (i = 0; i < 4; i++) argp[i] = (uint_t)Lsp->pr_reg[R_O0+i]; else for (i = 0; i < 4; i++) argp[i] = (long)Lsp->pr_reg[R_O0+i]; return (4); } #endif /* __sparc */ #if defined(__i386) || defined(__amd64) uintptr_t previous_fp(uintptr_t fp, uintptr_t *rpc) { uintptr_t frame[2]; uintptr_t trash[2]; if (Pread(Proc, frame, sizeof (frame), fp) != sizeof (frame) || (frame[0] != 0 && Pread(Proc, trash, sizeof (trash), frame[0]) != sizeof (trash))) frame[0] = frame[1] = 0; if (rpc) *rpc = frame[1]; return (frame[0]); } #endif #if defined(__amd64) || defined(__i386) /* * Examine the instruction at the return location of a function call * and return the byte count by which the stack is adjusted on return. * It the instruction at the return location is an addl, as expected, * then adjust the return pc by the size of that instruction so that * we will place the return breakpoint on the following instruction. * This allows programs that interrogate their own stacks and record * function calls and arguments to work correctly even while we interfere. * Return the count on success, -1 on failure. */ int return_count32(uint32_t *ppc) { uintptr_t pc = *ppc; struct bkpt *Bp; int count; uchar_t instr[6]; /* instruction at pc */ if ((count = Pread(Proc, instr, sizeof (instr), pc)) < 0) return (-1); /* find the replaced instruction at pc (if any) */ if ((Bp = get_bkpt(pc)) != NULL && (Bp->flags & BPT_ACTIVE)) instr[0] = (uchar_t)Bp->instr; if (count != sizeof (instr) && (count < 3 || instr[0] != 0x83)) return (-1); /* * A bit of disassembly of the instruction is required here. */ if (instr[1] != 0xc4) { /* not an addl mumble,%esp inctruction */ count = 0; } else if (instr[0] == 0x81) { /* count is a longword */ count = instr[2]+(instr[3]<<8)+(instr[4]<<16)+(instr[5]<<24); *ppc += 6; } else if (instr[0] == 0x83) { /* count is a byte */ count = instr[2]; *ppc += 3; } else { /* not an addl inctruction */ count = 0; } return (count); } uintptr_t get_return_address32(uintptr_t *psp) { uint32_t sp = *psp; uint32_t rpc; int count; *psp += 4; /* account for popping the stack on return */ if (Pread(Proc, &rpc, sizeof (rpc), sp) != sizeof (rpc)) return (0); if ((count = return_count32(&rpc)) < 0) count = 0; *psp += count; /* expected sp on return */ return (rpc); } uintptr_t get_return_address(uintptr_t *psp) { #ifdef _LP64 uintptr_t rpc; uintptr_t sp = *psp; if (data_model == PR_MODEL_LP64) { if (Pread(Proc, &rpc, sizeof (rpc), sp) != sizeof (rpc)) return (0); /* * Ignore arguments pushed on the stack. See comments in * get_arguments(). */ return (rpc); } else #endif return (get_return_address32(psp)); } int get_arguments32(long *argp) { private_t *pri = get_private(); const lwpstatus_t *Lsp = pri->lwpstat; uint32_t frame[5]; /* return pc + 4 args */ int narg; int count; int i; narg = Pread(Proc, frame, sizeof (frame), (uintptr_t)Lsp->pr_reg[R_SP]); narg -= sizeof (greg32_t); if (narg <= 0) return (0); narg /= sizeof (greg32_t); /* no more than 4 */ /* * Given the return PC, determine the number of arguments. */ if ((count = return_count32(&frame[0])) < 0) narg = 0; else { count /= sizeof (greg32_t); if (narg > count) narg = count; } for (i = 0; i < narg; i++) argp[i] = (long)frame[i+1]; return (narg); } int get_arguments(long *argp) { #ifdef _LP64 private_t *pri = get_private(); const lwpstatus_t *Lsp = pri->lwpstat; if (data_model == PR_MODEL_LP64) { /* * On amd64, we do not know how many arguments are passed to * each function. While it may be possible to detect if we * have more than 6 arguments, it is of marginal value. * Instead, assume that we always have 6 arguments, which are * passed via registers. */ argp[0] = Lsp->pr_reg[REG_RDI]; argp[1] = Lsp->pr_reg[REG_RSI]; argp[2] = Lsp->pr_reg[REG_RDX]; argp[3] = Lsp->pr_reg[REG_RCX]; argp[4] = Lsp->pr_reg[REG_R8]; argp[5] = Lsp->pr_reg[REG_R9]; return (6); } else #endif return (get_arguments32(argp)); } #endif /* __amd64 || __i386 */