/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * Copyright (c) 1988 AT&T * All Rights Reserved * * * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Print the list of shared objects required by a dynamic executable or shared * object. * * usage is: ldd [-d | -r] [-c] [-D] [-e envar] [-i] [-f] [-L] [-l] [-p] [-s] * [-U | -u] [-v] [-w] file(s) * * ldd opens the file and verifies the information in the elf header. * If the file is a dynamic executable, we set up some environment variables * and exec(2) the file. If the file is a shared object, we preload the * file with a dynamic executable stub. The runtime linker (ld.so.1) actually * provides the diagnostic output, according to the environment variables set. * * If neither -d nor -r is specified, we set only LD_TRACE_LOADED_OBJECTS_E. * The runtime linker will print the pathnames of all dynamic objects it * loads, and then exit. * * If -d or -r is specified, we also set LD_WARN=1; the runtime linker will * perform its normal relocations and issue warning messages for unresolved * references. It will then exit. * If -r is specified, we set LD_BIND_NOW=1, so that the runtime linker * will perform all relocations, otherwise (under -d) the runtime linker * will not perform PLT (function) type relocations. * * If -c is specified we also set LD_NOCONFIG=1, thus disabling any * configuration file use. * * If -D is specified we skip deferred dependency processing. By default, * ldd loads all deferred dependencies. However, during normal process * execution, deferred dependencies are only loaded when an explicit binding * to an individual deferred reference is made. As no user code is executed * under ldd, explicit references to deferred symbols can't be triggered. * * If -e is specified the associated environment variable is set for the * child process that will produce ldd's diagnostics. * * If -i is specified, we set LD_INIT=1. The order of inititialization * sections to be executed is printed. We also set LD_WARN=1. * * If -f is specified, we will run ldd as root on executables that have * an unsercure runtime linker that does not live under the "/usr/lib" * directory. By default we will not let this happen. * * If -l is specified it generates a warning for any auxiliary filter not found. * Prior to 2.8 this forced any filters to load (all) their filtees. This is * now the default, however missing auxiliary filters don't generate any error * diagniostic. See also -L. * * If -L is specified we revert to lazy loading, thus any filtee or lazy * dependency loading is deferred until relocations cause loading. Without * this option we set LD_LOADFLTR=1, thus forcing any filters to load (all) * their filtees, and LD_NOLAZYLOAD=1 thus forcing immediate processing of * any lazy loaded dependencies. * * If -s is specified we also set LD_TRACE_SEARCH_PATH=1, thus enabling * the runtime linker to indicate the search algorithm used. * * If -v is specified we also set LD_VERBOSE=1, thus enabling the runtime * linker to indicate all object dependencies (not just the first object * loaded) together with any versioning requirements. * * If -U or -u is specified unused dependencies are detected. -u causes * LD_UNUSED=1 to be set, which causes dependencies that are unused within the * process to be detected. -U causes LD_UNREF=1 to be set, which causes * unreferenced objects, and unreferenced cyclic dependencies to be detected. * These options assert that at least -d is set as relocation references are * what determine an objects use. * * If -w is specified, no unresolved weak references are allowed. -w causes * LD_NOUNRESWEAK=1 to be set. By default, an unresolved weak reference is * allowed, and a "0" is written to the relocation offset. The -w option * disables this default. Any weak references that can not be resolved result * in relocation error messages. This option has no use without -r or -d. * * If the -p option is specified, no unresolved PARENT or EXTERN references are * allowed. -p causes LD_NOPAREXT=1 to be set. By default, PARENT and EXTERN * references, which have been explicitly assigned via a mapfile when a shared * object was built, imply that a caller will provide the symbols, and hence * these are not reported as relocation errors. Note, the -p option is asserted * by default when either the -r or -d options are used to inspect a dynamic * executable. This option has no use with a shared object without -r or -d. */ #include #include #include #include <_libelf.h> #include #include #include #include #include #include #include "machdep.h" #include "sgs.h" #include "conv.h" #include "a.out.h" #include "msg.h" static int elf_check(int, char *, char *, Elf *, int); static int run(int, char *, char *, const char *, int); /* * Define all environment variable strings. The character following the "=" * will be written to, to disable or enable the associated feature. */ static char bind[] = "LD_BIND_NOW= ", load_elf[] = "LD_TRACE_LOADED_OBJECTS_E= ", path[] = "LD_TRACE_SEARCH_PATHS= ", verb[] = "LD_VERBOSE= ", warn[] = "LD_WARN= ", conf[] = "LD_NOCONFIG= ", fltr[] = "LD_LOADFLTR= ", lazy[] = "LD_NOLAZYLOAD=1", init[] = "LD_INIT= ", uref[] = "LD_UNREF= ", used[] = "LD_UNUSED= ", weak[] = "LD_NOUNRESWEAK= ", nope[] = "LD_NOPAREXT= ", defr[] = "LD_DEFERRED= "; static char *load; static const char *prefile_32, *prefile_64, *prefile; static APlist *eopts = NULL; int main(int argc, char **argv, char **envp) { char *str, *cname = argv[0]; Elf *elf; int cflag = 0, dflag = 0, fflag = 0, iflag = 0, Lflag = 0; int lflag = 0, rflag = 0, sflag = 0, Uflag = 0, uflag = 0; int Dflag = 0, pflag = 0, vflag = 0, wflag = 0; int nfile, var, error = 0; Aliste idx; /* * If we're on a 64-bit kernel, try to exec a full 64-bit version of * the binary. If successful, conv_check_native() won't return. * * This is done to ensure that ldd can handle objects >2GB. * ldd uses libelf, which is not large file capable. The * 64-bit ldd can handle any sized object. */ (void) conv_check_native(argv, envp); /* * Establish locale. */ (void) setlocale(LC_MESSAGES, MSG_ORIG(MSG_STR_EMPTY)); (void) textdomain(MSG_ORIG(MSG_SUNW_OST_SGS)); /* * verify command line syntax and process arguments */ opterr = 0; /* disable getopt error mesg */ while ((var = getopt(argc, argv, MSG_ORIG(MSG_STR_GETOPT))) != EOF) { switch (var) { case 'c' : /* enable config search */ cflag = 1; break; case 'D' : /* skip deferred dependencies */ Dflag = 1; break; case 'd' : /* perform data relocations */ dflag = 1; if (rflag) error++; break; case 'e' : if (aplist_append(&eopts, optarg, 10) == NULL) { (void) fprintf(stderr, MSG_INTL(MSG_SYS_MALLOC), cname); exit(1); } break; case 'f' : fflag = 1; break; case 'L' : Lflag = 1; break; case 'l' : lflag = 1; break; case 'i' : /* print the order of .init */ iflag = 1; break; case 'p' : pflag = 1; /* expose unreferenced */ break; /* parent or externals */ case 'r' : /* perform all relocations */ rflag = 1; if (dflag) error++; break; case 's' : /* enable search path output */ sflag = 1; break; case 'U' : /* list unreferenced */ Uflag = 1; /* dependencies */ if (uflag) error++; break; case 'u' : /* list unused dependencies */ uflag = 1; if (Uflag) error++; break; case 'v' : /* enable verbose output */ vflag = 1; break; case 'w' : /* expose unresolved weak */ wflag = 1; /* references */ break; default : error++; break; } if (error) break; } if (error) { (void) fprintf(stderr, MSG_INTL(MSG_ARG_USAGE), cname); exit(1); } /* * Determine if any of the LD_PRELOAD family is already set in the * environment, if so we'll continue to analyze each object with the * appropriate setting. */ if (((prefile_32 = getenv(MSG_ORIG(MSG_LD_PRELOAD_32))) == NULL) || (*prefile_32 == '\0')) { prefile_32 = MSG_ORIG(MSG_STR_EMPTY); } if (((prefile_64 = getenv(MSG_ORIG(MSG_LD_PRELOAD_64))) == NULL) || (*prefile_64 == '\0')) { prefile_64 = MSG_ORIG(MSG_STR_EMPTY); } if (((prefile = getenv(MSG_ORIG(MSG_LD_PRELOAD))) == NULL) || (*prefile == '\0')) { prefile = MSG_ORIG(MSG_STR_EMPTY); } /* * Determine if any environment requests are for the LD_PRELOAD family, * and if so override any environment settings we've established above. */ for (APLIST_TRAVERSE(eopts, idx, str)) { if ((strncmp(str, MSG_ORIG(MSG_LD_PRELOAD_32), MSG_LD_PRELOAD_32_SIZE)) == 0) { str += MSG_LD_PRELOAD_32_SIZE; if ((*str++ == '=') && (*str != '\0')) prefile_32 = str; continue; } if ((strncmp(str, MSG_ORIG(MSG_LD_PRELOAD_64), MSG_LD_PRELOAD_64_SIZE)) == 0) { str += MSG_LD_PRELOAD_64_SIZE; if ((*str++ == '=') && (*str != '\0')) prefile_64 = str; continue; } if ((strncmp(str, MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE)) == 0) { str += MSG_LD_PRELOAD_SIZE; if ((*str++ == '=') && (*str != '\0')) prefile = str; continue; } } /* * Set the appropriate relocation environment variables (Note unsetting * the environment variables is done just in case the user already * has these in their environment ... sort of thing the test folks * would do :-) */ warn[sizeof (warn) - 2] = (dflag || rflag || Uflag || uflag) ? '1' : '\0'; bind[sizeof (bind) - 2] = (rflag) ? '1' : '\0'; path[sizeof (path) - 2] = (sflag) ? '1' : '\0'; verb[sizeof (verb) - 2] = (vflag) ? '1' : '\0'; fltr[sizeof (fltr) - 2] = (Lflag) ? '\0' : (lflag) ? '2' : '1'; init[sizeof (init) - 2] = (iflag) ? '1' : '\0'; conf[sizeof (conf) - 2] = (cflag) ? '1' : '\0'; lazy[sizeof (lazy) - 2] = (Lflag) ? '\0' : '1'; uref[sizeof (uref) - 2] = (Uflag) ? '1' : '\0'; used[sizeof (used) - 2] = (uflag) ? '1' : '\0'; weak[sizeof (weak) - 2] = (wflag) ? '1' : '\0'; nope[sizeof (nope) - 2] = (pflag) ? '1' : '\0'; defr[sizeof (defr) - 2] = (Dflag) ? '\0' : '1'; /* * coordinate libelf's version information */ if (elf_version(EV_CURRENT) == EV_NONE) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_LIBELF), cname, EV_CURRENT); exit(1); } /* * Loop through remaining arguments. Note that from here on there * are no exit conditions so that we can process a list of files, * any error condition is retained for a final exit status. */ nfile = argc - optind; for (; optind < argc; optind++) { char *fname = argv[optind]; /* * Open file (do this before checking access so that we can * provide the user with better diagnostics). */ if ((var = open(fname, O_RDONLY)) == -1) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN), cname, fname, strerror(err)); error = 1; continue; } /* * Get the files elf descriptor and process it as an elf file. */ elf = elf_begin(var, ELF_C_READ, (Elf *)0); switch (elf_kind(elf)) { case ELF_K_AR : (void) fprintf(stderr, MSG_INTL(MSG_USP_NODYNORSO), cname, fname); error = 1; break; case ELF_K_ELF: if (elf_check(nfile, fname, cname, elf, fflag) != 0) error = 1; break; case ELF_K_COFF: default: (void) fprintf(stderr, MSG_INTL(MSG_USP_UNKNOWN), cname, fname); error = 1; break; } (void) elf_end(elf); (void) close(var); } return (error); } static int elf_check(int nfile, char *fname, char *cname, Elf *elf, int fflag) { Conv_inv_buf_t inv_buf; GElf_Ehdr ehdr; GElf_Phdr phdr; int dynamic = 0, interp = 0, cnt, class; /* * verify information in file header */ if (gelf_getehdr(elf, &ehdr) == NULL) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_GETEHDR), cname, fname, elf_errmsg(-1)); return (1); } /* * Compatible machine */ if ((ehdr.e_machine != M_MACH_32) && (ehdr.e_machine != M_MACH_64) && (ehdr.e_machine != M_MACHPLUS)) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_MACHTYPE), cname, fname, conv_ehdr_mach(ehdr.e_machine, 0, &inv_buf)); return (1); } /* * Compatible encoding (byte order) */ if (ehdr.e_ident[EI_DATA] != M_DATA) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_DATA), cname, fname, conv_ehdr_data(ehdr.e_ident[EI_DATA], 0, &inv_buf)); return (1); } /* * Compatible class */ switch (class = ehdr.e_ident[EI_CLASS]) { case ELFCLASS32: /* * If M_MACH is not the same thing as M_MACHPLUS and this * is an M_MACHPLUS object, then the corresponding header * flag must be set. */ if ((ehdr.e_machine != M_MACH) && ((ehdr.e_flags & M_FLAGSPLUS) == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_MACHFLAGS), cname, fname); return (1); } break; case ELFCLASS64: /* Requires 64-bit kernel */ if (conv_sys_eclass() == ELFCLASS32) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_KCLASS32), cname, fname, conv_ehdr_class(class, 0, &inv_buf)); return (1); } break; default: (void) fprintf(stderr, MSG_INTL(MSG_ELF_CLASS), cname, fname, conv_ehdr_class(class, 0, &inv_buf)); return (1); } /* * Object type */ if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN) && (ehdr.e_type != ET_REL)) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_BADMAGIC), cname, fname); return (1); } /* * Check that the file is executable. Dynamic executables must be * executable to be exec'ed for ldd(1) to function. */ if ((access(fname, X_OK) != 0) && (ehdr.e_type == ET_EXEC)) { (void) fprintf(stderr, MSG_INTL(MSG_USP_NOTEXEC), cname, fname); return (1); } /* * Determine whether we have a dynamic section or interpretor. */ for (cnt = 0; cnt < (int)ehdr.e_phnum; cnt++) { if (dynamic && interp) break; if (gelf_getphdr(elf, cnt, &phdr) == NULL) { (void) fprintf(stderr, MSG_INTL(MSG_ELF_GETPHDR), cname, fname, elf_errmsg(-1)); return (1); } if (phdr.p_type == PT_DYNAMIC) { dynamic = 1; continue; } if (phdr.p_type != PT_INTERP) continue; interp = 1; /* * If fflag is not set, and euid == root, and the interpreter * does not live under /lib, /usr/lib or /etc/lib then don't * allow ldd to execute the image. This prevents someone * creating a `trojan horse' by substituting their own * interpreter that could preform privileged operations * when ldd is against it. */ if ((fflag == 0) && (geteuid() == 0) && (strcmp(fname, conv_lddstub(class)) != 0)) { char *interpreter; /* * Does the interpreter live under a trusted directory. */ interpreter = elf_getident(elf, 0) + phdr.p_offset; if ((strncmp(interpreter, MSG_ORIG(MSG_PTH_USRLIB), MSG_PTH_USRLIB_SIZE) != 0) && (strncmp(interpreter, MSG_ORIG(MSG_PTH_LIB), MSG_PTH_LIB_SIZE) != 0) && (strncmp(interpreter, MSG_ORIG(MSG_PTH_ETCLIB), MSG_PTH_ETCLIB_SIZE) != 0)) { (void) fprintf(stderr, MSG_INTL(MSG_USP_ELFINS), cname, fname, interpreter); return (1); } } } /* * Catch the case of a static executable (ie, an ET_EXEC that has a set * of program headers but no PT_DYNAMIC). */ if (ehdr.e_phnum && !dynamic) { (void) fprintf(stderr, MSG_INTL(MSG_USP_NODYNORSO), cname, fname); return (1); } /* * If there is a dynamic section, then check for the DF_1_NOHDR * flag, and bail if it is present. Such objects are created using * a mapfile option (?N in the version 1 syntax, or HDR_NOALLOC * otherwise). The ELF header and program headers are * not mapped as part of the first segment, and virtual addresses * are computed without them. If ldd tries to interpret such * a file, it will become confused and generate bad output or * crash. Such objects are always special purpose files (like an OS * kernel) --- files for which the ldd operation doesn't make sense. */ if (dynamic && (_gelf_getdyndtflags_1(elf) & DF_1_NOHDR)) { (void) fprintf(stderr, MSG_INTL(MSG_USP_NOHDR), cname, fname); return (1); } load = load_elf; /* * Run the required program (shared and relocatable objects require the * use of lddstub). */ if ((ehdr.e_type == ET_EXEC) && interp) return (run(nfile, cname, fname, (const char *)fname, class)); else return (run(nfile, cname, fname, conv_lddstub(class), class)); } /* * Run the required program, setting the preload and trace environment * variables accordingly. */ static int run(int nfile, char *cname, char *fname, const char *ename, int class) { const char *preload = 0; int pid, status; if ((pid = fork()) == -1) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_SYS_FORK), cname, strerror(err)); return (1); } if (pid) { /* parent */ while (wait(&status) != pid) ; if (WIFSIGNALED(status) && ((WSIGMASK & status) != SIGPIPE)) { (void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC), cname, fname); (void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC_SIG), (WSIGMASK & status), ((status & WCOREFLG) ? MSG_INTL(MSG_SYS_EXEC_CORE) : MSG_ORIG(MSG_STR_EMPTY))); status = 1; } else if (WHIBYTE(status)) { (void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC), cname, fname); (void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC_STAT), WHIBYTE(status)); status = 1; } } else { /* child */ Aliste idx; char *str; size_t size; /* * When using ldd(1) to analyze a shared object we preload the * shared object with lddstub. Any additional preload * requirements are added after the object being analyzed, this * allows us to skip the first object but produce diagnostics * for each other preloaded object. */ if (fname != ename) { char *str; const char *files = prefile; const char *format = MSG_ORIG(MSG_STR_FMT1); for (str = fname; *str; str++) if (*str == '/') { format = MSG_ORIG(MSG_STR_FMT2); break; } preload = MSG_ORIG(MSG_LD_PRELOAD); /* * Determine which preload files and preload environment * variable to use. */ if (class == ELFCLASS64) { if (prefile_64 != MSG_ORIG(MSG_STR_EMPTY)) { files = prefile_64; preload = MSG_ORIG(MSG_LD_PRELOAD_64); } } else { if (prefile_32 != MSG_ORIG(MSG_STR_EMPTY)) { files = prefile_32; preload = MSG_ORIG(MSG_LD_PRELOAD_32); } } if ((str = (char *)malloc(strlen(preload) + strlen(fname) + strlen(files) + 5)) == 0) { (void) fprintf(stderr, MSG_INTL(MSG_SYS_MALLOC), cname); exit(1); } (void) sprintf(str, format, preload, fname, files); if (putenv(str) != 0) { (void) fprintf(stderr, MSG_INTL(MSG_ENV_FAILED), cname); exit(1); } /* * The pointer "load" has be assigned to load_elf[]. * Use the size of load_elf[]. */ load[sizeof (load_elf) - 2] = '2'; } else load[sizeof (load_elf) - 2] = '1'; /* * Establish new environment variables to affect the child * process. */ if ((putenv(warn) != 0) || (putenv(bind) != 0) || (putenv(path) != 0) || (putenv(verb) != 0) || (putenv(fltr) != 0) || (putenv(conf) != 0) || (putenv(init) != 0) || (putenv(lazy) != 0) || (putenv(uref) != 0) || (putenv(used) != 0) || (putenv(weak) != 0) || (putenv(load) != 0) || (putenv(nope) != 0) || (putenv(defr) != 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ENV_FAILED), cname); exit(1); } /* * Establish explicit environment requires (but don't override * any preload request established to process a shared object). */ size = 0; for (APLIST_TRAVERSE(eopts, idx, str)) { if (preload) { if (size == 0) size = strlen(preload); if ((strncmp(preload, str, size) == 0) && (str[size] == '=')) { continue; } } if (putenv(str) != 0) { (void) fprintf(stderr, MSG_INTL(MSG_ENV_FAILED), cname); exit(1); } } /* * Execute the object and let ld.so.1 do the rest. */ if (nfile > 1) (void) printf(MSG_ORIG(MSG_STR_FMT3), fname); (void) fflush(stdout); if ((execl(ename, ename, (char *)0)) == -1) { (void) fprintf(stderr, MSG_INTL(MSG_SYS_EXEC), cname, fname); perror(ename); _exit(0); /* NOTREACHED */ } } return (status); } const char * _ldd_msg(Msg mid) { return (gettext(MSG_ORIG(mid))); }