/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, Joyent, Inc. All rights reserved. */ #include "umem.h" #include #include #include "kgrep.h" #include "leaky.h" #include "misc.h" #include "proc_kludges.h" #include #include #include #include "umem_pagesize.h" typedef struct datafmt { char *hdr1; char *hdr2; char *dashes; char *fmt; } datafmt_t; static datafmt_t ptcfmt[] = { { " ", "tid", "---", "%3u " }, { " memory", " cached", "-------", "%7lH " }, { " %", "cap", "---", "%3u " }, { " %", NULL, "---", "%3u " }, { NULL, NULL, NULL, NULL } }; static datafmt_t umemfmt[] = { { "cache ", "name ", "-------------------------", "%-25s " }, { " buf", " size", "------", "%6u " }, { " buf", " in use", "-------", "%7u " }, { " buf", " in ptc", "-------", "%7s " }, { " buf", " total", "-------", "%7u " }, { " memory", " in use", "-------", "%7H " }, { " alloc", " succeed", "---------", "%9u " }, { "alloc", " fail", "-----", "%5llu" }, { NULL, NULL, NULL, NULL } }; static datafmt_t vmemfmt[] = { { "vmem ", "name ", "-------------------------", "%-*s " }, { " memory", " in use", "---------", "%9H " }, { " memory", " total", "----------", "%10H " }, { " memory", " import", "---------", "%9H " }, { " alloc", " succeed", "---------", "%9llu " }, { "alloc", " fail", "-----", "%5llu " }, { NULL, NULL, NULL, NULL } }; /*ARGSUSED*/ static int umastat_cpu_avail(uintptr_t addr, const umem_cpu_cache_t *ccp, int *avail) { if (ccp->cc_rounds > 0) *avail += ccp->cc_rounds; if (ccp->cc_prounds > 0) *avail += ccp->cc_prounds; return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_cpu_alloc(uintptr_t addr, const umem_cpu_cache_t *ccp, int *alloc) { *alloc += ccp->cc_alloc; return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_slab_avail(uintptr_t addr, const umem_slab_t *sp, int *avail) { *avail += sp->slab_chunks - sp->slab_refcnt; return (WALK_NEXT); } typedef struct umastat_vmem { uintptr_t kv_addr; struct umastat_vmem *kv_next; int kv_meminuse; int kv_alloc; int kv_fail; } umastat_vmem_t; /*ARGSUSED*/ static int umastat_cache_nptc(uintptr_t addr, const umem_cache_t *cp, int *nptc) { if (!(cp->cache_flags & UMF_PTC)) return (WALK_NEXT); (*nptc)++; return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_cache_hdr(uintptr_t addr, const umem_cache_t *cp, void *ignored) { if (!(cp->cache_flags & UMF_PTC)) return (WALK_NEXT); mdb_printf("%3d ", cp->cache_bufsize); return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_lwp_ptc(uintptr_t addr, void *buf, int *nbufs) { (*nbufs)++; return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_lwp_cache(uintptr_t addr, const umem_cache_t *cp, ulwp_t *ulwp) { char walk[60]; int nbufs = 0; if (!(cp->cache_flags & UMF_PTC)) return (WALK_NEXT); (void) mdb_snprintf(walk, sizeof (walk), "umem_ptc_%d", cp->cache_bufsize); if (mdb_pwalk(walk, (mdb_walk_cb_t)umastat_lwp_ptc, &nbufs, (uintptr_t)ulwp->ul_self) == -1) { mdb_warn("unable to walk '%s'", walk); return (WALK_ERR); } mdb_printf("%3d ", ulwp->ul_tmem.tm_size ? (nbufs * cp->cache_bufsize * 100) / ulwp->ul_tmem.tm_size : 0); return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_lwp(uintptr_t addr, const ulwp_t *ulwp, void *ignored) { size_t size; datafmt_t *dfp = ptcfmt; mdb_printf((dfp++)->fmt, ulwp->ul_lwpid); mdb_printf((dfp++)->fmt, ulwp->ul_tmem.tm_size); if (umem_readvar(&size, "umem_ptc_size") == -1) { mdb_warn("unable to read 'umem_ptc_size'"); return (WALK_ERR); } mdb_printf((dfp++)->fmt, (ulwp->ul_tmem.tm_size * 100) / size); if (mdb_walk("umem_cache", (mdb_walk_cb_t)umastat_lwp_cache, (void *)ulwp) == -1) { mdb_warn("can't walk 'umem_cache'"); return (WALK_ERR); } mdb_printf("\n"); return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_cache_ptc(uintptr_t addr, const void *ignored, int *nptc) { (*nptc)++; return (WALK_NEXT); } static int umastat_cache(uintptr_t addr, const umem_cache_t *cp, umastat_vmem_t **kvp) { umastat_vmem_t *kv; datafmt_t *dfp = umemfmt; char buf[10]; int magsize; int avail, alloc, total, nptc = 0; size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * cp->cache_slabsize; mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)umastat_cpu_avail; mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)umastat_cpu_alloc; mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)umastat_slab_avail; magsize = umem_get_magsize(cp); alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; avail = cp->cache_full.ml_total * magsize; total = cp->cache_buftotal; (void) mdb_pwalk("umem_cpu_cache", cpu_alloc, &alloc, addr); (void) mdb_pwalk("umem_cpu_cache", cpu_avail, &avail, addr); (void) mdb_pwalk("umem_slab_partial", slab_avail, &avail, addr); if (cp->cache_flags & UMF_PTC) { char walk[60]; (void) mdb_snprintf(walk, sizeof (walk), "umem_ptc_%d", cp->cache_bufsize); if (mdb_walk(walk, (mdb_walk_cb_t)umastat_cache_ptc, &nptc) == -1) { mdb_warn("unable to walk '%s'", walk); return (WALK_ERR); } (void) mdb_snprintf(buf, sizeof (buf), "%d", nptc); } for (kv = *kvp; kv != NULL; kv = kv->kv_next) { if (kv->kv_addr == (uintptr_t)cp->cache_arena) goto out; } kv = mdb_zalloc(sizeof (umastat_vmem_t), UM_SLEEP | UM_GC); kv->kv_next = *kvp; kv->kv_addr = (uintptr_t)cp->cache_arena; *kvp = kv; out: kv->kv_meminuse += meminuse; kv->kv_alloc += alloc; kv->kv_fail += cp->cache_alloc_fail; mdb_printf((dfp++)->fmt, cp->cache_name); mdb_printf((dfp++)->fmt, cp->cache_bufsize); mdb_printf((dfp++)->fmt, total - avail); mdb_printf((dfp++)->fmt, cp->cache_flags & UMF_PTC ? buf : "-"); mdb_printf((dfp++)->fmt, total); mdb_printf((dfp++)->fmt, meminuse); mdb_printf((dfp++)->fmt, alloc); mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); mdb_printf("\n"); return (WALK_NEXT); } static int umastat_vmem_totals(uintptr_t addr, const vmem_t *v, umastat_vmem_t *kv) { while (kv != NULL && kv->kv_addr != addr) kv = kv->kv_next; if (kv == NULL || kv->kv_alloc == 0) return (WALK_NEXT); mdb_printf("Total [%s]%*s %6s %7s %7s %7s %7H %9u %5u\n", v->vm_name, 17 - strlen(v->vm_name), "", "", "", "", "", kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); return (WALK_NEXT); } /*ARGSUSED*/ static int umastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) { datafmt_t *dfp = vmemfmt; uintptr_t paddr; vmem_t parent; int ident = 0; for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { mdb_warn("couldn't trace %p's ancestry", addr); ident = 0; break; } paddr = (uintptr_t)parent.vm_source; } mdb_printf("%*s", ident, ""); mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); mdb_printf((dfp++)->fmt, v->vm_kstat.vk_mem_inuse); mdb_printf((dfp++)->fmt, v->vm_kstat.vk_mem_total); mdb_printf((dfp++)->fmt, v->vm_kstat.vk_mem_import); mdb_printf((dfp++)->fmt, v->vm_kstat.vk_alloc); mdb_printf((dfp++)->fmt, v->vm_kstat.vk_fail); mdb_printf("\n"); return (WALK_NEXT); } /*ARGSUSED*/ int umastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { umastat_vmem_t *kv = NULL; datafmt_t *dfp; int nptc = 0, i; if (argc != 0) return (DCMD_USAGE); /* * We need to determine if we have any caches that have per-thread * caching enabled. */ if (mdb_walk("umem_cache", (mdb_walk_cb_t)umastat_cache_nptc, &nptc) == -1) { mdb_warn("can't walk 'umem_cache'"); return (DCMD_ERR); } if (nptc) { for (dfp = ptcfmt; dfp->hdr2 != NULL; dfp++) mdb_printf("%s ", dfp->hdr1); for (i = 0; i < nptc; i++) mdb_printf("%s ", dfp->hdr1); mdb_printf("\n"); for (dfp = ptcfmt; dfp->hdr2 != NULL; dfp++) mdb_printf("%s ", dfp->hdr2); if (mdb_walk("umem_cache", (mdb_walk_cb_t)umastat_cache_hdr, NULL) == -1) { mdb_warn("can't walk 'umem_cache'"); return (DCMD_ERR); } mdb_printf("\n"); for (dfp = ptcfmt; dfp->hdr2 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); for (i = 0; i < nptc; i++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("ulwp", (mdb_walk_cb_t)umastat_lwp, NULL) == -1) { mdb_warn("can't walk 'ulwp'"); return (DCMD_ERR); } mdb_printf("\n"); } for (dfp = umemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s%s", dfp == umemfmt ? "" : " ", dfp->hdr1); mdb_printf("\n"); for (dfp = umemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s%s", dfp == umemfmt ? "" : " ", dfp->hdr2); mdb_printf("\n"); for (dfp = umemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s%s", dfp == umemfmt ? "" : " ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("umem_cache", (mdb_walk_cb_t)umastat_cache, &kv) == -1) { mdb_warn("can't walk 'umem_cache'"); return (DCMD_ERR); } for (dfp = umemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s%s", dfp == umemfmt ? "" : " ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("vmem", (mdb_walk_cb_t)umastat_vmem_totals, kv) == -1) { mdb_warn("can't walk 'vmem'"); return (DCMD_ERR); } for (dfp = umemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); mdb_printf("\n"); for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->hdr1); mdb_printf("\n"); for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->hdr2); mdb_printf("\n"); for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); if (mdb_walk("vmem", (mdb_walk_cb_t)umastat_vmem, NULL) == -1) { mdb_warn("can't walk 'vmem'"); return (DCMD_ERR); } for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) mdb_printf("%s ", dfp->dashes); mdb_printf("\n"); return (DCMD_OK); } /* * kmdb doesn't use libproc, and thus doesn't have any prmap_t's to walk. * We have other ways to grep kmdb's address range. */ #ifndef _KMDB typedef struct ugrep_walk_data { kgrep_cb_func *ug_cb; void *ug_cbdata; } ugrep_walk_data_t; /*ARGSUSED*/ int ugrep_mapping_cb(uintptr_t addr, const void *prm_arg, void *data) { ugrep_walk_data_t *ug = data; const prmap_t *prm = prm_arg; return (ug->ug_cb(prm->pr_vaddr, prm->pr_vaddr + prm->pr_size, ug->ug_cbdata)); } int kgrep_subr(kgrep_cb_func *cb, void *cbdata) { ugrep_walk_data_t ug; prockludge_add_walkers(); ug.ug_cb = cb; ug.ug_cbdata = cbdata; if (mdb_walk(KLUDGE_MAPWALK_NAME, ugrep_mapping_cb, &ug) == -1) { mdb_warn("Unable to walk "KLUDGE_MAPWALK_NAME); return (DCMD_ERR); } prockludge_remove_walkers(); return (DCMD_OK); } size_t kgrep_subr_pagesize(void) { return (PAGESIZE); } #endif /* !_KMDB */ static const mdb_dcmd_t dcmds[] = { /* from libumem.c */ { "umastat", NULL, "umem allocator stats", umastat }, /* from misc.c */ { "umem_debug", NULL, "toggle umem dcmd/walk debugging", umem_debug}, /* from umem.c */ { "umem_status", NULL, "Print umem status and message buffer", umem_status }, { "allocdby", ":", "given a thread, print its allocated buffers", allocdby }, { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, { "bufctl_audit", ":", "print a bufctl_audit", bufctl_audit }, { "freedby", ":", "given a thread, print its freed buffers", freedby }, { "umalog", "[ fail | slab ]", "display umem transaction log and stack traces", umalog }, { "umausers", "[-ef] [cache ...]", "display current medium and large " "users of the umem allocator", umausers }, { "umem_cache", "?", "print a umem cache", umem_cache }, { "umem_log", "?", "dump umem transaction log", umem_log }, { "umem_malloc_dist", "[-dg] [-b maxbins] [-B minbinsize]", "report distribution of outstanding malloc()s", umem_malloc_dist, umem_malloc_dist_help }, { "umem_malloc_info", "?[-dg] [-b maxbins] [-B minbinsize]", "report information about malloc()s by cache", umem_malloc_info, umem_malloc_info_help }, { "umem_verify", "?", "check integrity of umem-managed memory", umem_verify }, { "vmem", "?", "print a vmem_t", vmem }, { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " "[-m minsize] [-M maxsize] [-t thread] [-T type]", "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, #ifndef _KMDB /* from ../genunix/kgrep.c + libumem.c */ { "ugrep", KGREP_USAGE, "search user address space for a pointer", kgrep, kgrep_help }, /* from ../genunix/leaky.c + leaky_subr.c */ { "findleaks", FINDLEAKS_USAGE, "search for potential memory leaks", findleaks, findleaks_help }, #endif { NULL } }; static const mdb_walker_t walkers[] = { /* from umem.c */ { "allocdby", "given a thread, walk its allocated bufctls", allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, { "bufctl", "walk a umem cache's bufctls", bufctl_walk_init, umem_walk_step, umem_walk_fini }, { "bufctl_history", "walk the available history of a bufctl", bufctl_history_walk_init, bufctl_history_walk_step, bufctl_history_walk_fini }, { "freectl", "walk a umem cache's free bufctls", freectl_walk_init, umem_walk_step, umem_walk_fini }, { "freedby", "given a thread, walk its freed bufctls", freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, { "freemem", "walk a umem cache's free memory", freemem_walk_init, umem_walk_step, umem_walk_fini }, { "umem", "walk a umem cache", umem_walk_init, umem_walk_step, umem_walk_fini }, { "umem_cpu", "walk the umem CPU structures", umem_cpu_walk_init, umem_cpu_walk_step, umem_cpu_walk_fini }, { "umem_cpu_cache", "given a umem cache, walk its per-CPU caches", umem_cpu_cache_walk_init, umem_cpu_cache_walk_step, NULL }, { "umem_hash", "given a umem cache, walk its allocated hash table", umem_hash_walk_init, umem_hash_walk_step, umem_hash_walk_fini }, { "umem_log", "walk the umem transaction log", umem_log_walk_init, umem_log_walk_step, umem_log_walk_fini }, { "umem_slab", "given a umem cache, walk its slabs", umem_slab_walk_init, umem_slab_walk_step, NULL }, { "umem_slab_partial", "given a umem cache, walk its partially allocated slabs (min 1)", umem_slab_walk_partial_init, umem_slab_walk_step, NULL }, { "vmem", "walk vmem structures in pre-fix, depth-first order", vmem_walk_init, vmem_walk_step, vmem_walk_fini }, { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, { "vmem_free", "given a vmem_t, walk its free vmem_segs", vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, #ifndef _KMDB /* from ../genunix/leaky.c + leaky_subr.c */ { "leak", "given a leak ctl, walk other leaks w/ that stacktrace", leaky_walk_init, leaky_walk_step, leaky_walk_fini }, { "leakbuf", "given a leak ctl, walk addr of leaks w/ that stacktrace", leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, #endif { NULL } }; static const mdb_modinfo_t modinfo = {MDB_API_VERSION, dcmds, walkers}; const mdb_modinfo_t * _mdb_init(void) { if (umem_init() != 0) return (NULL); return (&modinfo); } void _mdb_fini(void) { #ifndef _KMDB leaky_cleanup(1); #endif }