xref: /illumos-gate/usr/src/uts/sun4v/io/vdc.c (revision d7400d00)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/atomic.h>
61 #include <sys/conf.h>
62 #include <sys/disp.h>
63 #include <sys/ddi.h>
64 #include <sys/dkio.h>
65 #include <sys/efi_partition.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/kstat.h>
69 #include <sys/mach_descrip.h>
70 #include <sys/modctl.h>
71 #include <sys/mdeg.h>
72 #include <sys/note.h>
73 #include <sys/open.h>
74 #include <sys/sdt.h>
75 #include <sys/stat.h>
76 #include <sys/sunddi.h>
77 #include <sys/types.h>
78 #include <sys/promif.h>
79 #include <sys/var.h>
80 #include <sys/vtoc.h>
81 #include <sys/archsystm.h>
82 #include <sys/sysmacros.h>
83 
84 #include <sys/cdio.h>
85 #include <sys/dktp/fdisk.h>
86 #include <sys/dktp/dadkio.h>
87 #include <sys/mhd.h>
88 #include <sys/scsi/generic/sense.h>
89 #include <sys/scsi/impl/uscsi.h>
90 #include <sys/scsi/impl/services.h>
91 #include <sys/scsi/targets/sddef.h>
92 
93 #include <sys/ldoms.h>
94 #include <sys/ldc.h>
95 #include <sys/vio_common.h>
96 #include <sys/vio_mailbox.h>
97 #include <sys/vio_util.h>
98 #include <sys/vdsk_common.h>
99 #include <sys/vdsk_mailbox.h>
100 #include <sys/vdc.h>
101 
102 /*
103  * function prototypes
104  */
105 
106 /* standard driver functions */
107 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
108 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
109 static int	vdc_strategy(struct buf *buf);
110 static int	vdc_print(dev_t dev, char *str);
111 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
112 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
113 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
114 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
115 			cred_t *credp, int *rvalp);
116 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
117 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
118 
119 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
120 			void *arg, void **resultp);
121 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
122 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
123 static int	vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
124 		    int mod_flags, char *name, caddr_t valuep, int *lengthp);
125 
126 /* setup */
127 static void	vdc_min(struct buf *bufp);
128 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
129 static int	vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr);
130 static int	vdc_start_ldc_connection(vdc_t *vdc);
131 static int	vdc_create_device_nodes(vdc_t *vdc);
132 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
133 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
134 static void	vdc_create_io_kstats(vdc_t *vdc);
135 static void	vdc_create_err_kstats(vdc_t *vdc);
136 static void	vdc_set_err_kstats(vdc_t *vdc);
137 static int	vdc_get_md_node(dev_info_t *dip, md_t **mdpp,
138 		    mde_cookie_t *vd_nodep);
139 static int	vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep);
140 static void	vdc_fini_ports(vdc_t *vdc);
141 static void	vdc_switch_server(vdc_t *vdcp);
142 static int	vdc_do_ldc_up(vdc_t *vdc);
143 static void	vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr);
144 static int	vdc_init_descriptor_ring(vdc_t *vdc);
145 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
146 static int	vdc_setup_devid(vdc_t *vdc);
147 static void	vdc_store_label_efi(vdc_t *, efi_gpt_t *, efi_gpe_t *);
148 static void	vdc_store_label_vtoc(vdc_t *, struct dk_geom *, struct vtoc *);
149 static void	vdc_store_label_unk(vdc_t *vdc);
150 static boolean_t vdc_is_opened(vdc_t *vdc);
151 
152 /* handshake with vds */
153 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
154 static int		vdc_ver_negotiation(vdc_t *vdcp);
155 static int		vdc_init_attr_negotiation(vdc_t *vdc);
156 static int		vdc_attr_negotiation(vdc_t *vdcp);
157 static int		vdc_init_dring_negotiate(vdc_t *vdc);
158 static int		vdc_dring_negotiation(vdc_t *vdcp);
159 static int		vdc_send_rdx(vdc_t *vdcp);
160 static int		vdc_rdx_exchange(vdc_t *vdcp);
161 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
162 
163 /* processing incoming messages from vDisk server */
164 static void	vdc_process_msg_thread(vdc_t *vdc);
165 static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
166 
167 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
168 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
169 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
170 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
171 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
172 static int 	vdc_send_request(vdc_t *vdcp, int operation,
173 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
174 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
175 static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
176 static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
177 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
178 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
179 static int 	vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr,
180 		    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
181 		    void *cb_arg, vio_desc_direction_t dir, boolean_t);
182 
183 static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
184 static int	vdc_drain_response(vdc_t *vdcp);
185 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
186 static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
187 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
188 
189 /* dkio */
190 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode,
191 		    int *rvalp);
192 static int	vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg);
193 static void	vdc_create_fake_geometry(vdc_t *vdc);
194 static int	vdc_validate_geometry(vdc_t *vdc);
195 static void	vdc_validate(vdc_t *vdc);
196 static void	vdc_validate_task(void *arg);
197 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
198 		    int mode, int dir);
199 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
200 		    int mode, int dir);
201 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
202 		    int mode, int dir);
203 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
204 		    int mode, int dir);
205 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
206 		    int mode, int dir);
207 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
208 		    int mode, int dir);
209 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
210 		    int mode, int dir);
211 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
212 		    int mode, int dir);
213 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
214 		    int mode, int dir);
215 
216 static void 	vdc_ownership_update(vdc_t *vdc, int ownership_flags);
217 static int	vdc_access_set(vdc_t *vdc, uint64_t flags, int mode);
218 static vdc_io_t	*vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf);
219 static int	vdc_failfast_check_resv(vdc_t *vdc);
220 
221 /*
222  * Module variables
223  */
224 
225 /*
226  * Tunable variables to control how long vdc waits before timing out on
227  * various operations
228  */
229 static int	vdc_hshake_retries = 3;
230 
231 static int	vdc_timeout = 0; /* units: seconds */
232 static int 	vdc_ldcup_timeout = 1; /* units: seconds */
233 
234 static uint64_t vdc_hz_min_ldc_delay;
235 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
236 static uint64_t vdc_hz_max_ldc_delay;
237 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
238 
239 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
240 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
241 
242 /* values for dumping - need to run in a tighter loop */
243 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
244 static int	vdc_dump_retries = 100;
245 
246 static uint16_t	vdc_scsi_timeout = 60;	/* 60s units: seconds  */
247 
248 static uint64_t vdc_ownership_delay = 6 * MICROSEC; /* 6s units: usec */
249 
250 /* Count of the number of vdc instances attached */
251 static volatile uint32_t	vdc_instance_count = 0;
252 
253 /* Tunable to log all SCSI errors */
254 static boolean_t vdc_scsi_log_error = B_FALSE;
255 
256 /* Soft state pointer */
257 static void	*vdc_state;
258 
259 /*
260  * Controlling the verbosity of the error/debug messages
261  *
262  * vdc_msglevel - controls level of messages
263  * vdc_matchinst - 64-bit variable where each bit corresponds
264  *                 to the vdc instance the vdc_msglevel applies.
265  */
266 int		vdc_msglevel = 0x0;
267 uint64_t	vdc_matchinst = 0ull;
268 
269 /*
270  * Supported vDisk protocol version pairs.
271  *
272  * The first array entry is the latest and preferred version.
273  */
274 static const vio_ver_t	vdc_version[] = {{1, 1}};
275 
276 static struct cb_ops vdc_cb_ops = {
277 	vdc_open,	/* cb_open */
278 	vdc_close,	/* cb_close */
279 	vdc_strategy,	/* cb_strategy */
280 	vdc_print,	/* cb_print */
281 	vdc_dump,	/* cb_dump */
282 	vdc_read,	/* cb_read */
283 	vdc_write,	/* cb_write */
284 	vdc_ioctl,	/* cb_ioctl */
285 	nodev,		/* cb_devmap */
286 	nodev,		/* cb_mmap */
287 	nodev,		/* cb_segmap */
288 	nochpoll,	/* cb_chpoll */
289 	vdc_prop_op,	/* cb_prop_op */
290 	NULL,		/* cb_str */
291 	D_MP | D_64BIT,	/* cb_flag */
292 	CB_REV,		/* cb_rev */
293 	vdc_aread,	/* cb_aread */
294 	vdc_awrite	/* cb_awrite */
295 };
296 
297 static struct dev_ops vdc_ops = {
298 	DEVO_REV,	/* devo_rev */
299 	0,		/* devo_refcnt */
300 	vdc_getinfo,	/* devo_getinfo */
301 	nulldev,	/* devo_identify */
302 	nulldev,	/* devo_probe */
303 	vdc_attach,	/* devo_attach */
304 	vdc_detach,	/* devo_detach */
305 	nodev,		/* devo_reset */
306 	&vdc_cb_ops,	/* devo_cb_ops */
307 	NULL,		/* devo_bus_ops */
308 	nulldev		/* devo_power */
309 };
310 
311 static struct modldrv modldrv = {
312 	&mod_driverops,
313 	"virtual disk client",
314 	&vdc_ops,
315 };
316 
317 static struct modlinkage modlinkage = {
318 	MODREV_1,
319 	&modldrv,
320 	NULL
321 };
322 
323 /* -------------------------------------------------------------------------- */
324 
325 /*
326  * Device Driver housekeeping and setup
327  */
328 
329 int
330 _init(void)
331 {
332 	int	status;
333 
334 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
335 		return (status);
336 	if ((status = mod_install(&modlinkage)) != 0)
337 		ddi_soft_state_fini(&vdc_state);
338 	return (status);
339 }
340 
341 int
342 _info(struct modinfo *modinfop)
343 {
344 	return (mod_info(&modlinkage, modinfop));
345 }
346 
347 int
348 _fini(void)
349 {
350 	int	status;
351 
352 	if ((status = mod_remove(&modlinkage)) != 0)
353 		return (status);
354 	ddi_soft_state_fini(&vdc_state);
355 	return (0);
356 }
357 
358 static int
359 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
360 {
361 	_NOTE(ARGUNUSED(dip))
362 
363 	int	instance = VDCUNIT((dev_t)arg);
364 	vdc_t	*vdc = NULL;
365 
366 	switch (cmd) {
367 	case DDI_INFO_DEVT2DEVINFO:
368 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
369 			*resultp = NULL;
370 			return (DDI_FAILURE);
371 		}
372 		*resultp = vdc->dip;
373 		return (DDI_SUCCESS);
374 	case DDI_INFO_DEVT2INSTANCE:
375 		*resultp = (void *)(uintptr_t)instance;
376 		return (DDI_SUCCESS);
377 	default:
378 		*resultp = NULL;
379 		return (DDI_FAILURE);
380 	}
381 }
382 
383 static int
384 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
385 {
386 	kt_did_t failfast_tid, ownership_tid;
387 	int	instance;
388 	int	rv;
389 	vdc_server_t *srvr;
390 	vdc_t	*vdc = NULL;
391 
392 	switch (cmd) {
393 	case DDI_DETACH:
394 		/* the real work happens below */
395 		break;
396 	case DDI_SUSPEND:
397 		/* nothing to do for this non-device */
398 		return (DDI_SUCCESS);
399 	default:
400 		return (DDI_FAILURE);
401 	}
402 
403 	ASSERT(cmd == DDI_DETACH);
404 	instance = ddi_get_instance(dip);
405 	DMSGX(1, "[%d] Entered\n", instance);
406 
407 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
408 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
409 		return (DDI_FAILURE);
410 	}
411 
412 	/*
413 	 * This function is called when vdc is detached or if it has failed to
414 	 * attach. In that case, the attach may have fail before the vdisk type
415 	 * has been set so we can't call vdc_is_opened(). However as the attach
416 	 * has failed, we know that the vdisk is not opened and we can safely
417 	 * detach.
418 	 */
419 	if (vdc->vdisk_type != VD_DISK_TYPE_UNK && vdc_is_opened(vdc)) {
420 		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
421 		return (DDI_FAILURE);
422 	}
423 
424 	if (vdc->dkio_flush_pending) {
425 		DMSG(vdc, 0,
426 		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
427 		    instance, vdc->dkio_flush_pending);
428 		return (DDI_FAILURE);
429 	}
430 
431 	if (vdc->validate_pending) {
432 		DMSG(vdc, 0,
433 		    "[%d] Cannot detach: %d outstanding validate request\n",
434 		    instance, vdc->validate_pending);
435 		return (DDI_FAILURE);
436 	}
437 
438 	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
439 
440 	/* If we took ownership, release ownership */
441 	mutex_enter(&vdc->ownership_lock);
442 	if (vdc->ownership & VDC_OWNERSHIP_GRANTED) {
443 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, FKIOCTL);
444 		if (rv == 0) {
445 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
446 		}
447 	}
448 	mutex_exit(&vdc->ownership_lock);
449 
450 	/* mark instance as detaching */
451 	vdc->lifecycle	= VDC_LC_DETACHING;
452 
453 	/*
454 	 * Try and disable callbacks to prevent another handshake. We have to
455 	 * disable callbacks for all servers.
456 	 */
457 	for (srvr = vdc->server_list; srvr != NULL; srvr = srvr->next) {
458 		rv = ldc_set_cb_mode(srvr->ldc_handle, LDC_CB_DISABLE);
459 		DMSG(vdc, 0, "callback disabled (ldc=%lu, rv=%d)\n",
460 		    srvr->ldc_id, rv);
461 	}
462 
463 	if (vdc->initialized & VDC_THREAD) {
464 		mutex_enter(&vdc->read_lock);
465 		if ((vdc->read_state == VDC_READ_WAITING) ||
466 		    (vdc->read_state == VDC_READ_RESET)) {
467 			vdc->read_state = VDC_READ_RESET;
468 			cv_signal(&vdc->read_cv);
469 		}
470 
471 		mutex_exit(&vdc->read_lock);
472 
473 		/* wake up any thread waiting for connection to come online */
474 		mutex_enter(&vdc->lock);
475 		if (vdc->state == VDC_STATE_INIT_WAITING) {
476 			DMSG(vdc, 0,
477 			    "[%d] write reset - move to resetting state...\n",
478 			    instance);
479 			vdc->state = VDC_STATE_RESETTING;
480 			cv_signal(&vdc->initwait_cv);
481 		}
482 		mutex_exit(&vdc->lock);
483 
484 		/* now wait until state transitions to VDC_STATE_DETACH */
485 		thread_join(vdc->msg_proc_thr->t_did);
486 		ASSERT(vdc->state == VDC_STATE_DETACH);
487 		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
488 		    vdc->instance);
489 	}
490 
491 	mutex_enter(&vdc->lock);
492 
493 	if (vdc->initialized & VDC_DRING)
494 		vdc_destroy_descriptor_ring(vdc);
495 
496 	vdc_fini_ports(vdc);
497 
498 	if (vdc->failfast_thread) {
499 		failfast_tid = vdc->failfast_thread->t_did;
500 		vdc->failfast_interval = 0;
501 		cv_signal(&vdc->failfast_cv);
502 	} else {
503 		failfast_tid = 0;
504 	}
505 
506 	if (vdc->ownership & VDC_OWNERSHIP_WANTED) {
507 		ownership_tid = vdc->ownership_thread->t_did;
508 		vdc->ownership = VDC_OWNERSHIP_NONE;
509 		cv_signal(&vdc->ownership_cv);
510 	} else {
511 		ownership_tid = 0;
512 	}
513 
514 	mutex_exit(&vdc->lock);
515 
516 	if (failfast_tid != 0)
517 		thread_join(failfast_tid);
518 
519 	if (ownership_tid != 0)
520 		thread_join(ownership_tid);
521 
522 	if (vdc->initialized & VDC_MINOR)
523 		ddi_remove_minor_node(dip, NULL);
524 
525 	if (vdc->io_stats) {
526 		kstat_delete(vdc->io_stats);
527 		vdc->io_stats = NULL;
528 	}
529 
530 	if (vdc->err_stats) {
531 		kstat_delete(vdc->err_stats);
532 		vdc->err_stats = NULL;
533 	}
534 
535 	if (vdc->initialized & VDC_LOCKS) {
536 		mutex_destroy(&vdc->lock);
537 		mutex_destroy(&vdc->read_lock);
538 		mutex_destroy(&vdc->ownership_lock);
539 		cv_destroy(&vdc->initwait_cv);
540 		cv_destroy(&vdc->dring_free_cv);
541 		cv_destroy(&vdc->membind_cv);
542 		cv_destroy(&vdc->sync_pending_cv);
543 		cv_destroy(&vdc->sync_blocked_cv);
544 		cv_destroy(&vdc->read_cv);
545 		cv_destroy(&vdc->running_cv);
546 		cv_destroy(&vdc->ownership_cv);
547 		cv_destroy(&vdc->failfast_cv);
548 		cv_destroy(&vdc->failfast_io_cv);
549 	}
550 
551 	if (vdc->minfo)
552 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
553 
554 	if (vdc->cinfo)
555 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
556 
557 	if (vdc->vtoc)
558 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
559 
560 	if (vdc->geom)
561 		kmem_free(vdc->geom, sizeof (struct dk_geom));
562 
563 	if (vdc->devid) {
564 		ddi_devid_unregister(dip);
565 		ddi_devid_free(vdc->devid);
566 	}
567 
568 	if (vdc->initialized & VDC_SOFT_STATE)
569 		ddi_soft_state_free(vdc_state, instance);
570 
571 	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
572 
573 	return (DDI_SUCCESS);
574 }
575 
576 
577 static int
578 vdc_do_attach(dev_info_t *dip)
579 {
580 	int		instance;
581 	vdc_t		*vdc = NULL;
582 	int		status;
583 	md_t		*mdp;
584 	mde_cookie_t	vd_node;
585 
586 	ASSERT(dip != NULL);
587 
588 	instance = ddi_get_instance(dip);
589 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
590 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
591 		    instance);
592 		return (DDI_FAILURE);
593 	}
594 
595 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
596 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
597 		return (DDI_FAILURE);
598 	}
599 
600 	/*
601 	 * We assign the value to initialized in this case to zero out the
602 	 * variable and then set bits in it to indicate what has been done
603 	 */
604 	vdc->initialized = VDC_SOFT_STATE;
605 
606 	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
607 	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
608 
609 	vdc->dip	= dip;
610 	vdc->instance	= instance;
611 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
612 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
613 	vdc->state	= VDC_STATE_INIT;
614 	vdc->lifecycle	= VDC_LC_ATTACHING;
615 	vdc->session_id = 0;
616 	vdc->block_size = DEV_BSIZE;
617 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
618 
619 	/*
620 	 * We assume, for now, that the vDisk server will export 'read'
621 	 * operations to us at a minimum (this is needed because of checks
622 	 * in vdc for supported operations early in the handshake process).
623 	 * The vDisk server will return ENOTSUP if this is not the case.
624 	 * The value will be overwritten during the attribute exchange with
625 	 * the bitmask of operations exported by server.
626 	 */
627 	vdc->operations = VD_OP_MASK_READ;
628 
629 	vdc->vtoc = NULL;
630 	vdc->geom = NULL;
631 	vdc->cinfo = NULL;
632 	vdc->minfo = NULL;
633 
634 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
635 	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
636 	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
637 	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
638 	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
639 
640 	vdc->threads_pending = 0;
641 	vdc->sync_op_pending = B_FALSE;
642 	vdc->sync_op_blocked = B_FALSE;
643 	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
644 	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
645 
646 	mutex_init(&vdc->ownership_lock, NULL, MUTEX_DRIVER, NULL);
647 	cv_init(&vdc->ownership_cv, NULL, CV_DRIVER, NULL);
648 	cv_init(&vdc->failfast_cv, NULL, CV_DRIVER, NULL);
649 	cv_init(&vdc->failfast_io_cv, NULL, CV_DRIVER, NULL);
650 
651 	/* init blocking msg read functionality */
652 	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
653 	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
654 	vdc->read_state = VDC_READ_IDLE;
655 
656 	vdc->initialized |= VDC_LOCKS;
657 
658 	/* get device and port MD node for this disk instance */
659 	if (vdc_get_md_node(dip, &mdp, &vd_node) != 0) {
660 		cmn_err(CE_NOTE, "[%d] Could not get machine description node",
661 		    instance);
662 		return (DDI_FAILURE);
663 	}
664 
665 	if (vdc_init_ports(vdc, mdp, vd_node) != 0) {
666 		cmn_err(CE_NOTE, "[%d] Error initialising ports", instance);
667 		return (DDI_FAILURE);
668 	}
669 
670 	(void) md_fini_handle(mdp);
671 
672 	/* initialize the thread responsible for managing state with server */
673 	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
674 	    vdc, 0, &p0, TS_RUN, minclsyspri);
675 	if (vdc->msg_proc_thr == NULL) {
676 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
677 		    instance);
678 		return (DDI_FAILURE);
679 	}
680 
681 	vdc->initialized |= VDC_THREAD;
682 
683 	/* Create the kstats for saving the I/O statistics used by iostat(1M) */
684 	vdc_create_io_kstats(vdc);
685 	vdc_create_err_kstats(vdc);
686 
687 	atomic_inc_32(&vdc_instance_count);
688 
689 	/*
690 	 * Check the disk label. This will send requests and do the handshake.
691 	 * We don't really care about the disk label now. What we really need is
692 	 * the handshake do be done so that we know the type of the disk (slice
693 	 * or full disk) and the appropriate device nodes can be created.
694 	 */
695 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
696 	vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
697 	vdc->geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
698 	vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
699 
700 	mutex_enter(&vdc->lock);
701 	(void) vdc_validate_geometry(vdc);
702 	mutex_exit(&vdc->lock);
703 
704 	/*
705 	 * Now that we have the device info we can create the device nodes
706 	 */
707 	status = vdc_create_device_nodes(vdc);
708 	if (status) {
709 		DMSG(vdc, 0, "[%d] Failed to create device nodes",
710 		    instance);
711 		goto return_status;
712 	}
713 
714 	/*
715 	 * Setup devid
716 	 */
717 	if (vdc_setup_devid(vdc)) {
718 		DMSG(vdc, 0, "[%d] No device id available\n", instance);
719 	}
720 
721 	/*
722 	 * Fill in the fields of the error statistics kstat that were not
723 	 * available when creating the kstat
724 	 */
725 	vdc_set_err_kstats(vdc);
726 
727 	ddi_report_dev(dip);
728 	vdc->lifecycle	= VDC_LC_ONLINE;
729 	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
730 
731 return_status:
732 	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
733 	return (status);
734 }
735 
736 static int
737 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
738 {
739 	int	status;
740 
741 	switch (cmd) {
742 	case DDI_ATTACH:
743 		if ((status = vdc_do_attach(dip)) != 0)
744 			(void) vdc_detach(dip, DDI_DETACH);
745 		return (status);
746 	case DDI_RESUME:
747 		/* nothing to do for this non-device */
748 		return (DDI_SUCCESS);
749 	default:
750 		return (DDI_FAILURE);
751 	}
752 }
753 
754 static int
755 vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr)
756 {
757 	int			status = 0;
758 	ldc_status_t		ldc_state;
759 	ldc_attr_t		ldc_attr;
760 
761 	ASSERT(vdc != NULL);
762 	ASSERT(srvr != NULL);
763 
764 	ldc_attr.devclass = LDC_DEV_BLK;
765 	ldc_attr.instance = vdc->instance;
766 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
767 	ldc_attr.mtu = VD_LDC_MTU;
768 
769 	if ((srvr->state & VDC_LDC_INIT) == 0) {
770 		status = ldc_init(srvr->ldc_id, &ldc_attr,
771 		    &srvr->ldc_handle);
772 		if (status != 0) {
773 			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
774 			    vdc->instance, srvr->ldc_id, status);
775 			return (status);
776 		}
777 		srvr->state |= VDC_LDC_INIT;
778 	}
779 	status = ldc_status(srvr->ldc_handle, &ldc_state);
780 	if (status != 0) {
781 		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
782 		    vdc->instance, status);
783 		goto init_exit;
784 	}
785 	srvr->ldc_state = ldc_state;
786 
787 	if ((srvr->state & VDC_LDC_CB) == 0) {
788 		status = ldc_reg_callback(srvr->ldc_handle, vdc_handle_cb,
789 		    (caddr_t)srvr);
790 		if (status != 0) {
791 			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
792 			    vdc->instance, status);
793 			goto init_exit;
794 		}
795 		srvr->state |= VDC_LDC_CB;
796 	}
797 
798 	/*
799 	 * At this stage we have initialised LDC, we will now try and open
800 	 * the connection.
801 	 */
802 	if (srvr->ldc_state == LDC_INIT) {
803 		status = ldc_open(srvr->ldc_handle);
804 		if (status != 0) {
805 			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
806 			    vdc->instance, srvr->ldc_id, status);
807 			goto init_exit;
808 		}
809 		srvr->state |= VDC_LDC_OPEN;
810 	}
811 
812 init_exit:
813 	if (status) {
814 		vdc_terminate_ldc(vdc, srvr);
815 	}
816 
817 	return (status);
818 }
819 
820 static int
821 vdc_start_ldc_connection(vdc_t *vdc)
822 {
823 	int		status = 0;
824 
825 	ASSERT(vdc != NULL);
826 
827 	ASSERT(MUTEX_HELD(&vdc->lock));
828 
829 	status = vdc_do_ldc_up(vdc);
830 
831 	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
832 
833 	return (status);
834 }
835 
836 static int
837 vdc_stop_ldc_connection(vdc_t *vdcp)
838 {
839 	int	status;
840 
841 	ASSERT(vdcp != NULL);
842 
843 	ASSERT(MUTEX_HELD(&vdcp->lock));
844 
845 	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
846 	    vdcp->state);
847 
848 	status = ldc_down(vdcp->curr_server->ldc_handle);
849 	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
850 
851 	vdcp->initialized &= ~VDC_HANDSHAKE;
852 	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
853 
854 	return (status);
855 }
856 
857 static void
858 vdc_create_io_kstats(vdc_t *vdc)
859 {
860 	if (vdc->io_stats != NULL) {
861 		DMSG(vdc, 0, "[%d] I/O kstat already exists\n", vdc->instance);
862 		return;
863 	}
864 
865 	vdc->io_stats = kstat_create(VDC_DRIVER_NAME, vdc->instance, NULL,
866 	    "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
867 	if (vdc->io_stats != NULL) {
868 		vdc->io_stats->ks_lock = &vdc->lock;
869 		kstat_install(vdc->io_stats);
870 	} else {
871 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: I/O statistics"
872 		    " will not be gathered", vdc->instance);
873 	}
874 }
875 
876 static void
877 vdc_create_err_kstats(vdc_t *vdc)
878 {
879 	vd_err_stats_t	*stp;
880 	char	kstatmodule_err[KSTAT_STRLEN];
881 	char	kstatname[KSTAT_STRLEN];
882 	int	ndata = (sizeof (vd_err_stats_t) / sizeof (kstat_named_t));
883 	int	instance = vdc->instance;
884 
885 	if (vdc->err_stats != NULL) {
886 		DMSG(vdc, 0, "[%d] ERR kstat already exists\n", vdc->instance);
887 		return;
888 	}
889 
890 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
891 	    "%serr", VDC_DRIVER_NAME);
892 	(void) snprintf(kstatname, sizeof (kstatname),
893 	    "%s%d,err", VDC_DRIVER_NAME, instance);
894 
895 	vdc->err_stats = kstat_create(kstatmodule_err, instance, kstatname,
896 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
897 
898 	if (vdc->err_stats == NULL) {
899 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: Error statistics"
900 		    " will not be gathered", instance);
901 		return;
902 	}
903 
904 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
905 	kstat_named_init(&stp->vd_softerrs,	"Soft Errors",
906 	    KSTAT_DATA_UINT32);
907 	kstat_named_init(&stp->vd_transerrs,	"Transport Errors",
908 	    KSTAT_DATA_UINT32);
909 	kstat_named_init(&stp->vd_protoerrs,	"Protocol Errors",
910 	    KSTAT_DATA_UINT32);
911 	kstat_named_init(&stp->vd_vid,		"Vendor",
912 	    KSTAT_DATA_CHAR);
913 	kstat_named_init(&stp->vd_pid,		"Product",
914 	    KSTAT_DATA_CHAR);
915 	kstat_named_init(&stp->vd_capacity,	"Size",
916 	    KSTAT_DATA_ULONGLONG);
917 
918 	vdc->err_stats->ks_update  = nulldev;
919 
920 	kstat_install(vdc->err_stats);
921 }
922 
923 static void
924 vdc_set_err_kstats(vdc_t *vdc)
925 {
926 	vd_err_stats_t  *stp;
927 
928 	if (vdc->err_stats == NULL)
929 		return;
930 
931 	mutex_enter(&vdc->lock);
932 
933 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
934 	ASSERT(stp != NULL);
935 
936 	stp->vd_capacity.value.ui64 = vdc->vdisk_size * vdc->block_size;
937 	(void) strcpy(stp->vd_vid.value.c, "SUN");
938 	(void) strcpy(stp->vd_pid.value.c, "VDSK");
939 
940 	mutex_exit(&vdc->lock);
941 }
942 
943 static int
944 vdc_create_device_nodes_efi(vdc_t *vdc)
945 {
946 	ddi_remove_minor_node(vdc->dip, "h");
947 	ddi_remove_minor_node(vdc->dip, "h,raw");
948 
949 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
950 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
951 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
952 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
953 		    vdc->instance);
954 		return (EIO);
955 	}
956 
957 	/* if any device node is created we set this flag */
958 	vdc->initialized |= VDC_MINOR;
959 
960 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
961 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
962 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
963 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
964 		    vdc->instance);
965 		return (EIO);
966 	}
967 
968 	return (0);
969 }
970 
971 static int
972 vdc_create_device_nodes_vtoc(vdc_t *vdc)
973 {
974 	ddi_remove_minor_node(vdc->dip, "wd");
975 	ddi_remove_minor_node(vdc->dip, "wd,raw");
976 
977 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
978 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
979 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
980 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
981 		    vdc->instance);
982 		return (EIO);
983 	}
984 
985 	/* if any device node is created we set this flag */
986 	vdc->initialized |= VDC_MINOR;
987 
988 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
989 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
990 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
991 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
992 		    vdc->instance);
993 		return (EIO);
994 	}
995 
996 	return (0);
997 }
998 
999 /*
1000  * Function:
1001  *	vdc_create_device_nodes
1002  *
1003  * Description:
1004  *	This function creates the block and character device nodes under
1005  *	/devices. It is called as part of the attach(9E) of the instance
1006  *	during the handshake with vds after vds has sent the attributes
1007  *	to vdc.
1008  *
1009  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
1010  *	of 2 is used in keeping with the Solaris convention that slice 2
1011  *	refers to a whole disk. Slices start at 'a'
1012  *
1013  * Parameters:
1014  *	vdc 		- soft state pointer
1015  *
1016  * Return Values
1017  *	0		- Success
1018  *	EIO		- Failed to create node
1019  *	EINVAL		- Unknown type of disk exported
1020  */
1021 static int
1022 vdc_create_device_nodes(vdc_t *vdc)
1023 {
1024 	char		name[sizeof ("s,raw")];
1025 	dev_info_t	*dip = NULL;
1026 	int		instance, status;
1027 	int		num_slices = 1;
1028 	int		i;
1029 
1030 	ASSERT(vdc != NULL);
1031 
1032 	instance = vdc->instance;
1033 	dip = vdc->dip;
1034 
1035 	switch (vdc->vdisk_type) {
1036 	case VD_DISK_TYPE_DISK:
1037 		num_slices = V_NUMPAR;
1038 		break;
1039 	case VD_DISK_TYPE_SLICE:
1040 		num_slices = 1;
1041 		break;
1042 	case VD_DISK_TYPE_UNK:
1043 	default:
1044 		return (EINVAL);
1045 	}
1046 
1047 	/*
1048 	 * Minor nodes are different for EFI disks: EFI disks do not have
1049 	 * a minor node 'g' for the minor number corresponding to slice
1050 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
1051 	 * representing the whole disk.
1052 	 */
1053 	for (i = 0; i < num_slices; i++) {
1054 
1055 		if (i == VD_EFI_WD_SLICE) {
1056 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
1057 				status = vdc_create_device_nodes_efi(vdc);
1058 			else
1059 				status = vdc_create_device_nodes_vtoc(vdc);
1060 			if (status != 0)
1061 				return (status);
1062 			continue;
1063 		}
1064 
1065 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
1066 		if (ddi_create_minor_node(dip, name, S_IFBLK,
1067 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1068 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
1069 			    instance, name);
1070 			return (EIO);
1071 		}
1072 
1073 		/* if any device node is created we set this flag */
1074 		vdc->initialized |= VDC_MINOR;
1075 
1076 		(void) snprintf(name, sizeof (name), "%c%s", 'a' + i, ",raw");
1077 
1078 		if (ddi_create_minor_node(dip, name, S_IFCHR,
1079 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1080 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
1081 			    instance, name);
1082 			return (EIO);
1083 		}
1084 	}
1085 
1086 	return (0);
1087 }
1088 
1089 /*
1090  * Driver prop_op(9e) entry point function. Return the number of blocks for
1091  * the partition in question or forward the request to the property facilities.
1092  */
1093 static int
1094 vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1095     char *name, caddr_t valuep, int *lengthp)
1096 {
1097 	int instance = ddi_get_instance(dip);
1098 	vdc_t *vdc;
1099 	uint64_t nblocks;
1100 	uint_t blksize;
1101 
1102 	vdc = ddi_get_soft_state(vdc_state, instance);
1103 
1104 	if (dev == DDI_DEV_T_ANY || vdc == NULL) {
1105 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1106 		    name, valuep, lengthp));
1107 	}
1108 
1109 	mutex_enter(&vdc->lock);
1110 	(void) vdc_validate_geometry(vdc);
1111 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK) {
1112 		mutex_exit(&vdc->lock);
1113 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1114 		    name, valuep, lengthp));
1115 	}
1116 	nblocks = vdc->slice[VDCPART(dev)].nblocks;
1117 	blksize = vdc->block_size;
1118 	mutex_exit(&vdc->lock);
1119 
1120 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
1121 	    name, valuep, lengthp, nblocks, blksize));
1122 }
1123 
1124 /*
1125  * Function:
1126  *	vdc_is_opened
1127  *
1128  * Description:
1129  *	This function checks if any slice of a given virtual disk is
1130  *	currently opened.
1131  *
1132  * Parameters:
1133  *	vdc 		- soft state pointer
1134  *
1135  * Return Values
1136  *	B_TRUE		- at least one slice is opened.
1137  *	B_FALSE		- no slice is opened.
1138  */
1139 static boolean_t
1140 vdc_is_opened(vdc_t *vdc)
1141 {
1142 	int i, nslices;
1143 
1144 	switch (vdc->vdisk_type) {
1145 	case VD_DISK_TYPE_DISK:
1146 		nslices = V_NUMPAR;
1147 		break;
1148 	case VD_DISK_TYPE_SLICE:
1149 		nslices = 1;
1150 		break;
1151 	case VD_DISK_TYPE_UNK:
1152 	default:
1153 		ASSERT(0);
1154 	}
1155 
1156 	/* check if there's any layered open */
1157 	for (i = 0; i < nslices; i++) {
1158 		if (vdc->open_lyr[i] > 0)
1159 			return (B_TRUE);
1160 	}
1161 
1162 	/* check if there is any other kind of open */
1163 	for (i = 0; i < OTYPCNT; i++) {
1164 		if (vdc->open[i] != 0)
1165 			return (B_TRUE);
1166 	}
1167 
1168 	return (B_FALSE);
1169 }
1170 
1171 static int
1172 vdc_mark_opened(vdc_t *vdc, int slice, int flag, int otyp)
1173 {
1174 	uint8_t slicemask;
1175 	int i;
1176 
1177 	ASSERT(otyp < OTYPCNT);
1178 	ASSERT(slice < V_NUMPAR);
1179 	ASSERT(MUTEX_HELD(&vdc->lock));
1180 
1181 	slicemask = 1 << slice;
1182 
1183 	/* check if slice is already exclusively opened */
1184 	if (vdc->open_excl & slicemask)
1185 		return (EBUSY);
1186 
1187 	/* if open exclusive, check if slice is already opened */
1188 	if (flag & FEXCL) {
1189 		if (vdc->open_lyr[slice] > 0)
1190 			return (EBUSY);
1191 		for (i = 0; i < OTYPCNT; i++) {
1192 			if (vdc->open[i] & slicemask)
1193 				return (EBUSY);
1194 		}
1195 		vdc->open_excl |= slicemask;
1196 	}
1197 
1198 	/* mark slice as opened */
1199 	if (otyp == OTYP_LYR) {
1200 		vdc->open_lyr[slice]++;
1201 	} else {
1202 		vdc->open[otyp] |= slicemask;
1203 	}
1204 
1205 	return (0);
1206 }
1207 
1208 static void
1209 vdc_mark_closed(vdc_t *vdc, int slice, int flag, int otyp)
1210 {
1211 	uint8_t slicemask;
1212 
1213 	ASSERT(otyp < OTYPCNT);
1214 	ASSERT(slice < V_NUMPAR);
1215 	ASSERT(MUTEX_HELD(&vdc->lock));
1216 
1217 	slicemask = 1 << slice;
1218 
1219 	if (otyp == OTYP_LYR) {
1220 		ASSERT(vdc->open_lyr[slice] > 0);
1221 		vdc->open_lyr[slice]--;
1222 	} else {
1223 		vdc->open[otyp] &= ~slicemask;
1224 	}
1225 
1226 	if (flag & FEXCL)
1227 		vdc->open_excl &= ~slicemask;
1228 }
1229 
1230 static int
1231 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
1232 {
1233 	_NOTE(ARGUNUSED(cred))
1234 
1235 	int	instance, nodelay;
1236 	int	slice, status = 0;
1237 	vdc_t	*vdc;
1238 
1239 	ASSERT(dev != NULL);
1240 	instance = VDCUNIT(*dev);
1241 
1242 	if (otyp >= OTYPCNT)
1243 		return (EINVAL);
1244 
1245 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1246 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1247 		return (ENXIO);
1248 	}
1249 
1250 	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
1251 	    getminor(*dev), flag, otyp);
1252 
1253 	slice = VDCPART(*dev);
1254 
1255 	nodelay = flag & (FNDELAY | FNONBLOCK);
1256 
1257 	if ((flag & FWRITE) && (!nodelay) &&
1258 	    !(VD_OP_SUPPORTED(vdc->operations, VD_OP_BWRITE))) {
1259 		return (EROFS);
1260 	}
1261 
1262 	mutex_enter(&vdc->lock);
1263 
1264 	status = vdc_mark_opened(vdc, slice, flag, otyp);
1265 
1266 	if (status != 0) {
1267 		mutex_exit(&vdc->lock);
1268 		return (status);
1269 	}
1270 
1271 	if (nodelay) {
1272 
1273 		/* don't resubmit a validate request if there's already one */
1274 		if (vdc->validate_pending > 0) {
1275 			mutex_exit(&vdc->lock);
1276 			return (0);
1277 		}
1278 
1279 		/* call vdc_validate() asynchronously to avoid blocking */
1280 		if (taskq_dispatch(system_taskq, vdc_validate_task,
1281 		    (void *)vdc, TQ_NOSLEEP) == NULL) {
1282 			vdc_mark_closed(vdc, slice, flag, otyp);
1283 			mutex_exit(&vdc->lock);
1284 			return (ENXIO);
1285 		}
1286 
1287 		vdc->validate_pending++;
1288 		mutex_exit(&vdc->lock);
1289 		return (0);
1290 	}
1291 
1292 	mutex_exit(&vdc->lock);
1293 
1294 	vdc_validate(vdc);
1295 
1296 	mutex_enter(&vdc->lock);
1297 
1298 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK ||
1299 	    vdc->slice[slice].nblocks == 0) {
1300 		vdc_mark_closed(vdc, slice, flag, otyp);
1301 		status = EIO;
1302 	}
1303 
1304 	mutex_exit(&vdc->lock);
1305 
1306 	return (status);
1307 }
1308 
1309 static int
1310 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
1311 {
1312 	_NOTE(ARGUNUSED(cred))
1313 
1314 	int	instance;
1315 	int	slice;
1316 	int	rv, rval;
1317 	vdc_t	*vdc;
1318 
1319 	instance = VDCUNIT(dev);
1320 
1321 	if (otyp >= OTYPCNT)
1322 		return (EINVAL);
1323 
1324 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1325 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1326 		return (ENXIO);
1327 	}
1328 
1329 	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1330 
1331 	slice = VDCPART(dev);
1332 
1333 	/*
1334 	 * Attempt to flush the W$ on a close operation. If this is
1335 	 * not a supported IOCTL command or the backing device is read-only
1336 	 * do not fail the close operation.
1337 	 */
1338 	rv = vd_process_ioctl(dev, DKIOCFLUSHWRITECACHE, NULL, FKIOCTL, &rval);
1339 
1340 	if (rv != 0 && rv != ENOTSUP && rv != ENOTTY && rv != EROFS) {
1341 		DMSG(vdc, 0, "[%d] flush failed with error %d on close\n",
1342 		    instance, rv);
1343 		return (EIO);
1344 	}
1345 
1346 	mutex_enter(&vdc->lock);
1347 	vdc_mark_closed(vdc, slice, flag, otyp);
1348 	mutex_exit(&vdc->lock);
1349 
1350 	return (0);
1351 }
1352 
1353 static int
1354 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1355 {
1356 	_NOTE(ARGUNUSED(credp))
1357 
1358 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode, rvalp));
1359 }
1360 
1361 static int
1362 vdc_print(dev_t dev, char *str)
1363 {
1364 	cmn_err(CE_NOTE, "vdc%d:  %s", VDCUNIT(dev), str);
1365 	return (0);
1366 }
1367 
1368 static int
1369 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1370 {
1371 	int	rv;
1372 	size_t	nbytes = nblk * DEV_BSIZE;
1373 	int	instance = VDCUNIT(dev);
1374 	vdc_t	*vdc = NULL;
1375 
1376 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1377 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1378 		return (ENXIO);
1379 	}
1380 
1381 	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1382 	    instance, nbytes, blkno, (void *)addr);
1383 	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1384 	    VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1385 	if (rv) {
1386 		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1387 		return (rv);
1388 	}
1389 
1390 	if (ddi_in_panic())
1391 		(void) vdc_drain_response(vdc);
1392 
1393 	DMSG(vdc, 0, "[%d] End\n", instance);
1394 
1395 	return (0);
1396 }
1397 
1398 /* -------------------------------------------------------------------------- */
1399 
1400 /*
1401  * Disk access routines
1402  *
1403  */
1404 
1405 /*
1406  * vdc_strategy()
1407  *
1408  * Return Value:
1409  *	0:	As per strategy(9E), the strategy() function must return 0
1410  *		[ bioerror(9f) sets b_flags to the proper error code ]
1411  */
1412 static int
1413 vdc_strategy(struct buf *buf)
1414 {
1415 	int	rv = -1;
1416 	vdc_t	*vdc = NULL;
1417 	int	instance = VDCUNIT(buf->b_edev);
1418 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1419 	int	slice;
1420 
1421 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1422 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1423 		bioerror(buf, ENXIO);
1424 		biodone(buf);
1425 		return (0);
1426 	}
1427 
1428 	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1429 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1430 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1431 
1432 	bp_mapin(buf);
1433 
1434 	if ((long)buf->b_private == VD_SLICE_NONE) {
1435 		/* I/O using an absolute disk offset */
1436 		slice = VD_SLICE_NONE;
1437 	} else {
1438 		slice = VDCPART(buf->b_edev);
1439 	}
1440 
1441 	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1442 	    buf->b_bcount, slice, buf->b_lblkno,
1443 	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1444 	    VIO_write_dir);
1445 
1446 	/*
1447 	 * If the request was successfully sent, the strategy call returns and
1448 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1449 	 * done otherwise we handle the error here.
1450 	 */
1451 	if (rv) {
1452 		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1453 		bioerror(buf, rv);
1454 		biodone(buf);
1455 	}
1456 
1457 	return (0);
1458 }
1459 
1460 /*
1461  * Function:
1462  *	vdc_min
1463  *
1464  * Description:
1465  *	Routine to limit the size of a data transfer. Used in
1466  *	conjunction with physio(9F).
1467  *
1468  * Arguments:
1469  *	bp - pointer to the indicated buf(9S) struct.
1470  *
1471  */
1472 static void
1473 vdc_min(struct buf *bufp)
1474 {
1475 	vdc_t	*vdc = NULL;
1476 	int	instance = VDCUNIT(bufp->b_edev);
1477 
1478 	vdc = ddi_get_soft_state(vdc_state, instance);
1479 	VERIFY(vdc != NULL);
1480 
1481 	if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) {
1482 		bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size;
1483 	}
1484 }
1485 
1486 static int
1487 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1488 {
1489 	_NOTE(ARGUNUSED(cred))
1490 
1491 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1492 	return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio));
1493 }
1494 
1495 static int
1496 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1497 {
1498 	_NOTE(ARGUNUSED(cred))
1499 
1500 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1501 	return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio));
1502 }
1503 
1504 static int
1505 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1506 {
1507 	_NOTE(ARGUNUSED(cred))
1508 
1509 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1510 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio));
1511 }
1512 
1513 static int
1514 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1515 {
1516 	_NOTE(ARGUNUSED(cred))
1517 
1518 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1519 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio));
1520 }
1521 
1522 
1523 /* -------------------------------------------------------------------------- */
1524 
1525 /*
1526  * Handshake support
1527  */
1528 
1529 
1530 /*
1531  * Function:
1532  *	vdc_init_ver_negotiation()
1533  *
1534  * Description:
1535  *
1536  * Arguments:
1537  *	vdc	- soft state pointer for this instance of the device driver.
1538  *
1539  * Return Code:
1540  *	0	- Success
1541  */
1542 static int
1543 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1544 {
1545 	vio_ver_msg_t	pkt;
1546 	size_t		msglen = sizeof (pkt);
1547 	int		status = -1;
1548 
1549 	ASSERT(vdc != NULL);
1550 	ASSERT(mutex_owned(&vdc->lock));
1551 
1552 	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1553 
1554 	/*
1555 	 * set the Session ID to a unique value
1556 	 * (the lower 32 bits of the clock tick)
1557 	 */
1558 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1559 	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1560 
1561 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1562 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1563 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1564 	pkt.tag.vio_sid = vdc->session_id;
1565 	pkt.dev_class = VDEV_DISK;
1566 	pkt.ver_major = ver.major;
1567 	pkt.ver_minor = ver.minor;
1568 
1569 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1570 	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1571 	    vdc->instance, status);
1572 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1573 		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1574 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1575 		    vdc->curr_server->ldc_handle, status, msglen);
1576 		if (msglen != sizeof (vio_ver_msg_t))
1577 			status = ENOMSG;
1578 	}
1579 
1580 	return (status);
1581 }
1582 
1583 /*
1584  * Function:
1585  *	vdc_ver_negotiation()
1586  *
1587  * Description:
1588  *
1589  * Arguments:
1590  *	vdcp	- soft state pointer for this instance of the device driver.
1591  *
1592  * Return Code:
1593  *	0	- Success
1594  */
1595 static int
1596 vdc_ver_negotiation(vdc_t *vdcp)
1597 {
1598 	vio_msg_t vio_msg;
1599 	int status;
1600 
1601 	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1602 		return (status);
1603 
1604 	/* release lock and wait for response */
1605 	mutex_exit(&vdcp->lock);
1606 	status = vdc_wait_for_response(vdcp, &vio_msg);
1607 	mutex_enter(&vdcp->lock);
1608 	if (status) {
1609 		DMSG(vdcp, 0,
1610 		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1611 		    vdcp->instance, status);
1612 		return (status);
1613 	}
1614 
1615 	/* check type and sub_type ... */
1616 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1617 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1618 		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1619 		    vdcp->instance);
1620 		return (EPROTO);
1621 	}
1622 
1623 	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1624 }
1625 
1626 /*
1627  * Function:
1628  *	vdc_init_attr_negotiation()
1629  *
1630  * Description:
1631  *
1632  * Arguments:
1633  *	vdc	- soft state pointer for this instance of the device driver.
1634  *
1635  * Return Code:
1636  *	0	- Success
1637  */
1638 static int
1639 vdc_init_attr_negotiation(vdc_t *vdc)
1640 {
1641 	vd_attr_msg_t	pkt;
1642 	size_t		msglen = sizeof (pkt);
1643 	int		status;
1644 
1645 	ASSERT(vdc != NULL);
1646 	ASSERT(mutex_owned(&vdc->lock));
1647 
1648 	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1649 
1650 	/* fill in tag */
1651 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1652 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1653 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1654 	pkt.tag.vio_sid = vdc->session_id;
1655 	/* fill in payload */
1656 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1657 	pkt.vdisk_block_size = vdc->block_size;
1658 	pkt.xfer_mode = VIO_DRING_MODE_V1_0;
1659 	pkt.operations = 0;	/* server will set bits of valid operations */
1660 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1661 	pkt.vdisk_media = 0;	/* server will set to valid media type */
1662 	pkt.vdisk_size = 0;	/* server will set to valid size */
1663 
1664 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1665 	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1666 
1667 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1668 		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1669 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1670 		    vdc->curr_server->ldc_handle, status, msglen);
1671 		if (msglen != sizeof (vio_ver_msg_t))
1672 			status = ENOMSG;
1673 	}
1674 
1675 	return (status);
1676 }
1677 
1678 /*
1679  * Function:
1680  *	vdc_attr_negotiation()
1681  *
1682  * Description:
1683  *
1684  * Arguments:
1685  *	vdc	- soft state pointer for this instance of the device driver.
1686  *
1687  * Return Code:
1688  *	0	- Success
1689  */
1690 static int
1691 vdc_attr_negotiation(vdc_t *vdcp)
1692 {
1693 	int status;
1694 	vio_msg_t vio_msg;
1695 
1696 	if (status = vdc_init_attr_negotiation(vdcp))
1697 		return (status);
1698 
1699 	/* release lock and wait for response */
1700 	mutex_exit(&vdcp->lock);
1701 	status = vdc_wait_for_response(vdcp, &vio_msg);
1702 	mutex_enter(&vdcp->lock);
1703 	if (status) {
1704 		DMSG(vdcp, 0,
1705 		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1706 		    vdcp->instance, status);
1707 		return (status);
1708 	}
1709 
1710 	/* check type and sub_type ... */
1711 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1712 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1713 		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1714 		    vdcp->instance);
1715 		return (EPROTO);
1716 	}
1717 
1718 	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1719 }
1720 
1721 
1722 /*
1723  * Function:
1724  *	vdc_init_dring_negotiate()
1725  *
1726  * Description:
1727  *
1728  * Arguments:
1729  *	vdc	- soft state pointer for this instance of the device driver.
1730  *
1731  * Return Code:
1732  *	0	- Success
1733  */
1734 static int
1735 vdc_init_dring_negotiate(vdc_t *vdc)
1736 {
1737 	vio_dring_reg_msg_t	pkt;
1738 	size_t			msglen = sizeof (pkt);
1739 	int			status = -1;
1740 	int			retry;
1741 	int			nretries = 10;
1742 
1743 	ASSERT(vdc != NULL);
1744 	ASSERT(mutex_owned(&vdc->lock));
1745 
1746 	for (retry = 0; retry < nretries; retry++) {
1747 		status = vdc_init_descriptor_ring(vdc);
1748 		if (status != EAGAIN)
1749 			break;
1750 		drv_usecwait(vdc_min_timeout_ldc);
1751 	}
1752 
1753 	if (status != 0) {
1754 		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1755 		    vdc->instance, status);
1756 		return (status);
1757 	}
1758 
1759 	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1760 	    vdc->instance, status);
1761 
1762 	/* fill in tag */
1763 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1764 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1765 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1766 	pkt.tag.vio_sid = vdc->session_id;
1767 	/* fill in payload */
1768 	pkt.dring_ident = 0;
1769 	pkt.num_descriptors = vdc->dring_len;
1770 	pkt.descriptor_size = vdc->dring_entry_size;
1771 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1772 	pkt.ncookies = vdc->dring_cookie_count;
1773 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1774 
1775 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1776 	if (status != 0) {
1777 		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1778 		    vdc->instance, status);
1779 	}
1780 
1781 	return (status);
1782 }
1783 
1784 
1785 /*
1786  * Function:
1787  *	vdc_dring_negotiation()
1788  *
1789  * Description:
1790  *
1791  * Arguments:
1792  *	vdc	- soft state pointer for this instance of the device driver.
1793  *
1794  * Return Code:
1795  *	0	- Success
1796  */
1797 static int
1798 vdc_dring_negotiation(vdc_t *vdcp)
1799 {
1800 	int status;
1801 	vio_msg_t vio_msg;
1802 
1803 	if (status = vdc_init_dring_negotiate(vdcp))
1804 		return (status);
1805 
1806 	/* release lock and wait for response */
1807 	mutex_exit(&vdcp->lock);
1808 	status = vdc_wait_for_response(vdcp, &vio_msg);
1809 	mutex_enter(&vdcp->lock);
1810 	if (status) {
1811 		DMSG(vdcp, 0,
1812 		    "[%d] Failed waiting for Dring negotiation response,"
1813 		    " rv(%d)", vdcp->instance, status);
1814 		return (status);
1815 	}
1816 
1817 	/* check type and sub_type ... */
1818 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1819 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1820 		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1821 		    vdcp->instance);
1822 		return (EPROTO);
1823 	}
1824 
1825 	return (vdc_handle_dring_reg_msg(vdcp,
1826 	    (vio_dring_reg_msg_t *)&vio_msg));
1827 }
1828 
1829 
1830 /*
1831  * Function:
1832  *	vdc_send_rdx()
1833  *
1834  * Description:
1835  *
1836  * Arguments:
1837  *	vdc	- soft state pointer for this instance of the device driver.
1838  *
1839  * Return Code:
1840  *	0	- Success
1841  */
1842 static int
1843 vdc_send_rdx(vdc_t *vdcp)
1844 {
1845 	vio_msg_t	msg;
1846 	size_t		msglen = sizeof (vio_msg_t);
1847 	int		status;
1848 
1849 	/*
1850 	 * Send an RDX message to vds to indicate we are ready
1851 	 * to send data
1852 	 */
1853 	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1854 	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1855 	msg.tag.vio_subtype_env = VIO_RDX;
1856 	msg.tag.vio_sid = vdcp->session_id;
1857 	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1858 	if (status != 0) {
1859 		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1860 		    vdcp->instance, status);
1861 	}
1862 
1863 	return (status);
1864 }
1865 
1866 /*
1867  * Function:
1868  *	vdc_handle_rdx()
1869  *
1870  * Description:
1871  *
1872  * Arguments:
1873  *	vdc	- soft state pointer for this instance of the device driver.
1874  *	msgp	- received msg
1875  *
1876  * Return Code:
1877  *	0	- Success
1878  */
1879 static int
1880 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1881 {
1882 	_NOTE(ARGUNUSED(vdcp))
1883 	_NOTE(ARGUNUSED(msgp))
1884 
1885 	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1886 	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1887 	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1888 
1889 	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1890 
1891 	return (0);
1892 }
1893 
1894 /*
1895  * Function:
1896  *	vdc_rdx_exchange()
1897  *
1898  * Description:
1899  *
1900  * Arguments:
1901  *	vdc	- soft state pointer for this instance of the device driver.
1902  *
1903  * Return Code:
1904  *	0	- Success
1905  */
1906 static int
1907 vdc_rdx_exchange(vdc_t *vdcp)
1908 {
1909 	int status;
1910 	vio_msg_t vio_msg;
1911 
1912 	if (status = vdc_send_rdx(vdcp))
1913 		return (status);
1914 
1915 	/* release lock and wait for response */
1916 	mutex_exit(&vdcp->lock);
1917 	status = vdc_wait_for_response(vdcp, &vio_msg);
1918 	mutex_enter(&vdcp->lock);
1919 	if (status) {
1920 		DMSG(vdcp, 0, "[%d] Failed waiting for RDX response, rv(%d)",
1921 		    vdcp->instance, status);
1922 		return (status);
1923 	}
1924 
1925 	/* check type and sub_type ... */
1926 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1927 	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1928 		DMSG(vdcp, 0, "[%d] Invalid RDX response\n", vdcp->instance);
1929 		return (EPROTO);
1930 	}
1931 
1932 	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1933 }
1934 
1935 
1936 /* -------------------------------------------------------------------------- */
1937 
1938 /*
1939  * LDC helper routines
1940  */
1941 
1942 static int
1943 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1944 {
1945 	int		status;
1946 	boolean_t	q_has_pkts = B_FALSE;
1947 	uint64_t	delay_time;
1948 	size_t		len;
1949 
1950 	mutex_enter(&vdc->read_lock);
1951 
1952 	if (vdc->read_state == VDC_READ_IDLE)
1953 		vdc->read_state = VDC_READ_WAITING;
1954 
1955 	while (vdc->read_state != VDC_READ_PENDING) {
1956 
1957 		/* detect if the connection has been reset */
1958 		if (vdc->read_state == VDC_READ_RESET) {
1959 			status = ECONNRESET;
1960 			goto done;
1961 		}
1962 
1963 		cv_wait(&vdc->read_cv, &vdc->read_lock);
1964 	}
1965 
1966 	/*
1967 	 * Until we get a blocking ldc read we have to retry
1968 	 * until the entire LDC message has arrived before
1969 	 * ldc_read() will succeed. Note we also bail out if
1970 	 * the channel is reset or goes away.
1971 	 */
1972 	delay_time = vdc_ldc_read_init_delay;
1973 loop:
1974 	len = *nbytesp;
1975 	status = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)msgp, &len);
1976 	switch (status) {
1977 	case EAGAIN:
1978 		delay_time *= 2;
1979 		if (delay_time >= vdc_ldc_read_max_delay)
1980 			delay_time = vdc_ldc_read_max_delay;
1981 		delay(delay_time);
1982 		goto loop;
1983 
1984 	case 0:
1985 		if (len == 0) {
1986 			DMSG(vdc, 1, "[%d] ldc_read returned 0 bytes with "
1987 			    "no error!\n", vdc->instance);
1988 			goto loop;
1989 		}
1990 
1991 		*nbytesp = len;
1992 
1993 		/*
1994 		 * If there are pending messages, leave the
1995 		 * read state as pending. Otherwise, set the state
1996 		 * back to idle.
1997 		 */
1998 		status = ldc_chkq(vdc->curr_server->ldc_handle, &q_has_pkts);
1999 		if (status == 0 && !q_has_pkts)
2000 			vdc->read_state = VDC_READ_IDLE;
2001 
2002 		break;
2003 	default:
2004 		DMSG(vdc, 0, "ldc_read returned %d\n", status);
2005 		break;
2006 	}
2007 
2008 done:
2009 	mutex_exit(&vdc->read_lock);
2010 
2011 	return (status);
2012 }
2013 
2014 
2015 
2016 #ifdef DEBUG
2017 void
2018 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
2019 {
2020 	char *ms, *ss, *ses;
2021 	switch (msg->tag.vio_msgtype) {
2022 #define	Q(_s)	case _s : ms = #_s; break;
2023 	Q(VIO_TYPE_CTRL)
2024 	Q(VIO_TYPE_DATA)
2025 	Q(VIO_TYPE_ERR)
2026 #undef Q
2027 	default: ms = "unknown"; break;
2028 	}
2029 
2030 	switch (msg->tag.vio_subtype) {
2031 #define	Q(_s)	case _s : ss = #_s; break;
2032 	Q(VIO_SUBTYPE_INFO)
2033 	Q(VIO_SUBTYPE_ACK)
2034 	Q(VIO_SUBTYPE_NACK)
2035 #undef Q
2036 	default: ss = "unknown"; break;
2037 	}
2038 
2039 	switch (msg->tag.vio_subtype_env) {
2040 #define	Q(_s)	case _s : ses = #_s; break;
2041 	Q(VIO_VER_INFO)
2042 	Q(VIO_ATTR_INFO)
2043 	Q(VIO_DRING_REG)
2044 	Q(VIO_DRING_UNREG)
2045 	Q(VIO_RDX)
2046 	Q(VIO_PKT_DATA)
2047 	Q(VIO_DESC_DATA)
2048 	Q(VIO_DRING_DATA)
2049 #undef Q
2050 	default: ses = "unknown"; break;
2051 	}
2052 
2053 	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
2054 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
2055 	    msg->tag.vio_subtype_env, ms, ss, ses);
2056 }
2057 #endif
2058 
2059 /*
2060  * Function:
2061  *	vdc_send()
2062  *
2063  * Description:
2064  *	The function encapsulates the call to write a message using LDC.
2065  *	If LDC indicates that the call failed due to the queue being full,
2066  *	we retry the ldc_write(), otherwise we return the error returned by LDC.
2067  *
2068  * Arguments:
2069  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
2070  *	pkt		- address of LDC message to be sent
2071  *	msglen		- the size of the message being sent. When the function
2072  *			  returns, this contains the number of bytes written.
2073  *
2074  * Return Code:
2075  *	0		- Success.
2076  *	EINVAL		- pkt or msglen were NULL
2077  *	ECONNRESET	- The connection was not up.
2078  *	EWOULDBLOCK	- LDC queue is full
2079  *	xxx		- other error codes returned by ldc_write
2080  */
2081 static int
2082 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
2083 {
2084 	size_t	size = 0;
2085 	int	status = 0;
2086 	clock_t delay_ticks;
2087 
2088 	ASSERT(vdc != NULL);
2089 	ASSERT(mutex_owned(&vdc->lock));
2090 	ASSERT(msglen != NULL);
2091 	ASSERT(*msglen != 0);
2092 
2093 #ifdef DEBUG
2094 	vdc_decode_tag(vdc, (vio_msg_t *)(uintptr_t)pkt);
2095 #endif
2096 	/*
2097 	 * Wait indefinitely to send if channel
2098 	 * is busy, but bail out if we succeed or
2099 	 * if the channel closes or is reset.
2100 	 */
2101 	delay_ticks = vdc_hz_min_ldc_delay;
2102 	do {
2103 		size = *msglen;
2104 		status = ldc_write(vdc->curr_server->ldc_handle, pkt, &size);
2105 		if (status == EWOULDBLOCK) {
2106 			delay(delay_ticks);
2107 			/* geometric backoff */
2108 			delay_ticks *= 2;
2109 			if (delay_ticks > vdc_hz_max_ldc_delay)
2110 				delay_ticks = vdc_hz_max_ldc_delay;
2111 		}
2112 	} while (status == EWOULDBLOCK);
2113 
2114 	/* if LDC had serious issues --- reset vdc state */
2115 	if (status == EIO || status == ECONNRESET) {
2116 		/* LDC had serious issues --- reset vdc state */
2117 		mutex_enter(&vdc->read_lock);
2118 		if ((vdc->read_state == VDC_READ_WAITING) ||
2119 		    (vdc->read_state == VDC_READ_RESET))
2120 			cv_signal(&vdc->read_cv);
2121 		vdc->read_state = VDC_READ_RESET;
2122 		mutex_exit(&vdc->read_lock);
2123 
2124 		/* wake up any waiters in the reset thread */
2125 		if (vdc->state == VDC_STATE_INIT_WAITING) {
2126 			DMSG(vdc, 0, "[%d] write reset - "
2127 			    "vdc is resetting ..\n", vdc->instance);
2128 			vdc->state = VDC_STATE_RESETTING;
2129 			cv_signal(&vdc->initwait_cv);
2130 		}
2131 
2132 		return (ECONNRESET);
2133 	}
2134 
2135 	/* return the last size written */
2136 	*msglen = size;
2137 
2138 	return (status);
2139 }
2140 
2141 /*
2142  * Function:
2143  *	vdc_get_md_node
2144  *
2145  * Description:
2146  *	Get the MD, the device node for the given disk instance. The
2147  *	caller is responsible for cleaning up the reference to the
2148  *	returned MD (mdpp) by calling md_fini_handle().
2149  *
2150  * Arguments:
2151  *	dip	- dev info pointer for this instance of the device driver.
2152  *	mdpp	- the returned MD.
2153  *	vd_nodep - the returned device node.
2154  *
2155  * Return Code:
2156  *	0	- Success.
2157  *	ENOENT	- Expected node or property did not exist.
2158  *	ENXIO	- Unexpected error communicating with MD framework
2159  */
2160 static int
2161 vdc_get_md_node(dev_info_t *dip, md_t **mdpp, mde_cookie_t *vd_nodep)
2162 {
2163 	int		status = ENOENT;
2164 	char		*node_name = NULL;
2165 	md_t		*mdp = NULL;
2166 	int		num_nodes;
2167 	int		num_vdevs;
2168 	mde_cookie_t	rootnode;
2169 	mde_cookie_t	*listp = NULL;
2170 	boolean_t	found_inst = B_FALSE;
2171 	int		listsz;
2172 	int		idx;
2173 	uint64_t	md_inst;
2174 	int		obp_inst;
2175 	int		instance = ddi_get_instance(dip);
2176 
2177 	/*
2178 	 * Get the OBP instance number for comparison with the MD instance
2179 	 *
2180 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
2181 	 * notion of "instance", or unique identifier, for that node; OBP
2182 	 * stores the value of the "cfg-handle" MD property as the value of
2183 	 * the "reg" property on the node in the device tree it builds from
2184 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2185 	 * "reg" property value to uniquely identify this device instance.
2186 	 * If the "reg" property cannot be found, the device tree state is
2187 	 * presumably so broken that there is no point in continuing.
2188 	 */
2189 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
2190 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
2191 		return (ENOENT);
2192 	}
2193 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2194 	    OBP_REG, -1);
2195 	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
2196 
2197 	/*
2198 	 * We now walk the MD nodes to find the node for this vdisk.
2199 	 */
2200 	if ((mdp = md_get_handle()) == NULL) {
2201 		cmn_err(CE_WARN, "unable to init machine description");
2202 		return (ENXIO);
2203 	}
2204 
2205 	num_nodes = md_node_count(mdp);
2206 	ASSERT(num_nodes > 0);
2207 
2208 	listsz = num_nodes * sizeof (mde_cookie_t);
2209 
2210 	/* allocate memory for nodes */
2211 	listp = kmem_zalloc(listsz, KM_SLEEP);
2212 
2213 	rootnode = md_root_node(mdp);
2214 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
2215 
2216 	/*
2217 	 * Search for all the virtual devices, we will then check to see which
2218 	 * ones are disk nodes.
2219 	 */
2220 	num_vdevs = md_scan_dag(mdp, rootnode,
2221 	    md_find_name(mdp, VDC_MD_VDEV_NAME),
2222 	    md_find_name(mdp, "fwd"), listp);
2223 
2224 	if (num_vdevs <= 0) {
2225 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
2226 		status = ENOENT;
2227 		goto done;
2228 	}
2229 
2230 	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
2231 	for (idx = 0; idx < num_vdevs; idx++) {
2232 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
2233 		if ((status != 0) || (node_name == NULL)) {
2234 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
2235 			    ": err %d", VDC_MD_VDEV_NAME, status);
2236 			continue;
2237 		}
2238 
2239 		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
2240 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
2241 			status = md_get_prop_val(mdp, listp[idx],
2242 			    VDC_MD_CFG_HDL, &md_inst);
2243 			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
2244 			    instance, md_inst);
2245 			if ((status == 0) && (md_inst == obp_inst)) {
2246 				found_inst = B_TRUE;
2247 				break;
2248 			}
2249 		}
2250 	}
2251 
2252 	if (!found_inst) {
2253 		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
2254 		status = ENOENT;
2255 		goto done;
2256 	}
2257 	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
2258 
2259 	*vd_nodep = listp[idx];
2260 	*mdpp = mdp;
2261 done:
2262 	kmem_free(listp, listsz);
2263 	return (status);
2264 }
2265 
2266 /*
2267  * Function:
2268  *	vdc_init_ports
2269  *
2270  * Description:
2271  *	Initialize all the ports for this vdisk instance.
2272  *
2273  * Arguments:
2274  *	vdc	- soft state pointer for this instance of the device driver.
2275  *	mdp	- md pointer
2276  *	vd_nodep - device md node.
2277  *
2278  * Return Code:
2279  *	0	- Success.
2280  *	ENOENT	- Expected node or property did not exist.
2281  */
2282 static int
2283 vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep)
2284 {
2285 	int		status = 0;
2286 	int		idx;
2287 	int		num_nodes;
2288 	int		num_vports;
2289 	int		num_chans;
2290 	int		listsz;
2291 	mde_cookie_t	vd_port;
2292 	mde_cookie_t	*chanp = NULL;
2293 	mde_cookie_t	*portp = NULL;
2294 	vdc_server_t	*srvr;
2295 	vdc_server_t	*prev_srvr = NULL;
2296 
2297 	/*
2298 	 * We now walk the MD nodes to find the port nodes for this vdisk.
2299 	 */
2300 	num_nodes = md_node_count(mdp);
2301 	ASSERT(num_nodes > 0);
2302 
2303 	listsz = num_nodes * sizeof (mde_cookie_t);
2304 
2305 	/* allocate memory for nodes */
2306 	portp = kmem_zalloc(listsz, KM_SLEEP);
2307 	chanp = kmem_zalloc(listsz, KM_SLEEP);
2308 
2309 	num_vports = md_scan_dag(mdp, vd_nodep,
2310 	    md_find_name(mdp, VDC_MD_PORT_NAME),
2311 	    md_find_name(mdp, "fwd"), portp);
2312 	if (num_vports == 0) {
2313 		DMSGX(0, "Found no '%s' node for '%s' port\n",
2314 		    VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2315 		status = ENOENT;
2316 		goto done;
2317 	}
2318 
2319 	DMSGX(1, "Found %d '%s' node(s) for '%s' port\n",
2320 	    num_vports, VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2321 
2322 	vdc->num_servers = 0;
2323 	for (idx = 0; idx < num_vports; idx++) {
2324 
2325 		/* initialize this port */
2326 		vd_port = portp[idx];
2327 		srvr = kmem_zalloc(sizeof (vdc_server_t), KM_SLEEP);
2328 		srvr->vdcp = vdc;
2329 
2330 		/* get port id */
2331 		if (md_get_prop_val(mdp, vd_port, VDC_MD_ID, &srvr->id) != 0) {
2332 			cmn_err(CE_NOTE, "vDisk port '%s' property not found",
2333 			    VDC_MD_ID);
2334 			kmem_free(srvr, sizeof (vdc_server_t));
2335 			continue;
2336 		}
2337 
2338 		/* set the connection timeout */
2339 		if (md_get_prop_val(mdp, vd_port, VDC_MD_TIMEOUT,
2340 		    &srvr->ctimeout) != 0) {
2341 			srvr->ctimeout = 0;
2342 		}
2343 
2344 		/* get the ldc id */
2345 		num_chans = md_scan_dag(mdp, vd_port,
2346 		    md_find_name(mdp, VDC_MD_CHAN_NAME),
2347 		    md_find_name(mdp, "fwd"), chanp);
2348 
2349 		/* expecting at least one channel */
2350 		if (num_chans <= 0) {
2351 			cmn_err(CE_NOTE, "No '%s' node for '%s' port",
2352 			    VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
2353 			kmem_free(srvr, sizeof (vdc_server_t));
2354 			continue;
2355 		} else if (num_chans != 1) {
2356 			DMSGX(0, "Expected 1 '%s' node for '%s' port, "
2357 			    "found %d\n", VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
2358 			    num_chans);
2359 		}
2360 
2361 		/*
2362 		 * We use the first channel found (index 0), irrespective of how
2363 		 * many are there in total.
2364 		 */
2365 		if (md_get_prop_val(mdp, chanp[0], VDC_MD_ID,
2366 		    &srvr->ldc_id) != 0) {
2367 			cmn_err(CE_NOTE, "Channel '%s' property not found",
2368 			    VDC_MD_ID);
2369 			kmem_free(srvr, sizeof (vdc_server_t));
2370 			continue;
2371 		}
2372 
2373 		/*
2374 		 * now initialise LDC channel which will be used to
2375 		 * communicate with this server
2376 		 */
2377 		if (vdc_do_ldc_init(vdc, srvr) != 0) {
2378 			kmem_free(srvr, sizeof (vdc_server_t));
2379 			continue;
2380 		}
2381 
2382 		/* add server to list */
2383 		if (prev_srvr)
2384 			prev_srvr->next = srvr;
2385 		else
2386 			vdc->server_list = srvr;
2387 
2388 		prev_srvr = srvr;
2389 
2390 		/* inc numbers of servers */
2391 		vdc->num_servers++;
2392 	}
2393 
2394 	/*
2395 	 * Adjust the max number of handshake retries to match
2396 	 * the number of vdisk servers.
2397 	 */
2398 	if (vdc_hshake_retries < vdc->num_servers)
2399 		vdc_hshake_retries = vdc->num_servers;
2400 
2401 	/* pick first server as current server */
2402 	if (vdc->server_list != NULL) {
2403 		vdc->curr_server = vdc->server_list;
2404 		status = 0;
2405 	} else {
2406 		status = ENOENT;
2407 	}
2408 
2409 done:
2410 	kmem_free(chanp, listsz);
2411 	kmem_free(portp, listsz);
2412 	return (status);
2413 }
2414 
2415 
2416 /*
2417  * Function:
2418  *	vdc_do_ldc_up
2419  *
2420  * Description:
2421  *	Bring the channel for the current server up.
2422  *
2423  * Arguments:
2424  *	vdc	- soft state pointer for this instance of the device driver.
2425  *
2426  * Return Code:
2427  *	0		- Success.
2428  *	EINVAL		- Driver is detaching / LDC error
2429  *	ECONNREFUSED	- Other end is not listening
2430  */
2431 static int
2432 vdc_do_ldc_up(vdc_t *vdc)
2433 {
2434 	int		status;
2435 	ldc_status_t	ldc_state;
2436 
2437 	ASSERT(MUTEX_HELD(&vdc->lock));
2438 
2439 	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
2440 	    vdc->instance, vdc->curr_server->ldc_id);
2441 
2442 	if (vdc->lifecycle == VDC_LC_DETACHING)
2443 		return (EINVAL);
2444 
2445 	if ((status = ldc_up(vdc->curr_server->ldc_handle)) != 0) {
2446 		switch (status) {
2447 		case ECONNREFUSED:	/* listener not ready at other end */
2448 			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
2449 			    vdc->instance, vdc->curr_server->ldc_id, status);
2450 			status = 0;
2451 			break;
2452 		default:
2453 			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
2454 			    "channel=%ld, err=%d", vdc->instance,
2455 			    vdc->curr_server->ldc_id, status);
2456 			break;
2457 		}
2458 	}
2459 
2460 	if (ldc_status(vdc->curr_server->ldc_handle, &ldc_state) == 0) {
2461 		vdc->curr_server->ldc_state = ldc_state;
2462 		if (ldc_state == LDC_UP) {
2463 			DMSG(vdc, 0, "[%d] LDC channel already up\n",
2464 			    vdc->instance);
2465 			vdc->seq_num = 1;
2466 			vdc->seq_num_reply = 0;
2467 		}
2468 	}
2469 
2470 	return (status);
2471 }
2472 
2473 /*
2474  * Function:
2475  *	vdc_terminate_ldc()
2476  *
2477  * Description:
2478  *
2479  * Arguments:
2480  *	vdc	- soft state pointer for this instance of the device driver.
2481  *	srvr	- vdc per-server info structure
2482  *
2483  * Return Code:
2484  *	None
2485  */
2486 static void
2487 vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr)
2488 {
2489 	int	instance = ddi_get_instance(vdc->dip);
2490 
2491 	if (srvr->state & VDC_LDC_OPEN) {
2492 		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2493 		(void) ldc_close(srvr->ldc_handle);
2494 	}
2495 	if (srvr->state & VDC_LDC_CB) {
2496 		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2497 		(void) ldc_unreg_callback(srvr->ldc_handle);
2498 	}
2499 	if (srvr->state & VDC_LDC_INIT) {
2500 		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2501 		(void) ldc_fini(srvr->ldc_handle);
2502 		srvr->ldc_handle = NULL;
2503 	}
2504 
2505 	srvr->state &= ~(VDC_LDC_INIT | VDC_LDC_CB | VDC_LDC_OPEN);
2506 }
2507 
2508 /*
2509  * Function:
2510  *	vdc_fini_ports()
2511  *
2512  * Description:
2513  *	Finalize all ports by closing the channel associated with each
2514  *	port and also freeing the server structure.
2515  *
2516  * Arguments:
2517  *	vdc	- soft state pointer for this instance of the device driver.
2518  *
2519  * Return Code:
2520  *	None
2521  */
2522 static void
2523 vdc_fini_ports(vdc_t *vdc)
2524 {
2525 	int		instance = ddi_get_instance(vdc->dip);
2526 	vdc_server_t	*srvr, *prev_srvr;
2527 
2528 	ASSERT(vdc != NULL);
2529 	ASSERT(mutex_owned(&vdc->lock));
2530 
2531 	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2532 
2533 	srvr = vdc->server_list;
2534 
2535 	while (srvr) {
2536 
2537 		vdc_terminate_ldc(vdc, srvr);
2538 
2539 		/* next server */
2540 		prev_srvr = srvr;
2541 		srvr = srvr->next;
2542 
2543 		/* free server */
2544 		kmem_free(prev_srvr, sizeof (vdc_server_t));
2545 	}
2546 
2547 	vdc->server_list = NULL;
2548 }
2549 
2550 /* -------------------------------------------------------------------------- */
2551 
2552 /*
2553  * Descriptor Ring helper routines
2554  */
2555 
2556 /*
2557  * Function:
2558  *	vdc_init_descriptor_ring()
2559  *
2560  * Description:
2561  *
2562  * Arguments:
2563  *	vdc	- soft state pointer for this instance of the device driver.
2564  *
2565  * Return Code:
2566  *	0	- Success
2567  */
2568 static int
2569 vdc_init_descriptor_ring(vdc_t *vdc)
2570 {
2571 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2572 	int	status = 0;
2573 	int	i;
2574 
2575 	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2576 
2577 	ASSERT(vdc != NULL);
2578 	ASSERT(mutex_owned(&vdc->lock));
2579 
2580 	/* ensure we have enough room to store max sized block */
2581 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2582 
2583 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2584 		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2585 		/*
2586 		 * Calculate the maximum block size we can transmit using one
2587 		 * Descriptor Ring entry from the attributes returned by the
2588 		 * vDisk server. This is subject to a minimum of 'maxphys'
2589 		 * as we do not have the capability to split requests over
2590 		 * multiple DRing entries.
2591 		 */
2592 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2593 			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2594 			    vdc->instance);
2595 			vdc->dring_max_cookies = maxphys / PAGESIZE;
2596 		} else {
2597 			vdc->dring_max_cookies =
2598 			    (vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2599 		}
2600 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2601 		    (sizeof (ldc_mem_cookie_t) *
2602 		    (vdc->dring_max_cookies - 1)));
2603 		vdc->dring_len = VD_DRING_LEN;
2604 
2605 		status = ldc_mem_dring_create(vdc->dring_len,
2606 		    vdc->dring_entry_size, &vdc->dring_hdl);
2607 		if ((vdc->dring_hdl == NULL) || (status != 0)) {
2608 			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2609 			    vdc->instance);
2610 			return (status);
2611 		}
2612 		vdc->initialized |= VDC_DRING_INIT;
2613 	}
2614 
2615 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2616 		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2617 		vdc->dring_cookie =
2618 		    kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2619 
2620 		status = ldc_mem_dring_bind(vdc->curr_server->ldc_handle,
2621 		    vdc->dring_hdl,
2622 		    LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2623 		    &vdc->dring_cookie[0],
2624 		    &vdc->dring_cookie_count);
2625 		if (status != 0) {
2626 			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2627 			    "(%lx) to channel (%lx) status=%d\n",
2628 			    vdc->instance, vdc->dring_hdl,
2629 			    vdc->curr_server->ldc_handle, status);
2630 			return (status);
2631 		}
2632 		ASSERT(vdc->dring_cookie_count == 1);
2633 		vdc->initialized |= VDC_DRING_BOUND;
2634 	}
2635 
2636 	status = ldc_mem_dring_info(vdc->dring_hdl, &vdc->dring_mem_info);
2637 	if (status != 0) {
2638 		DMSG(vdc, 0,
2639 		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2640 		    vdc->instance, vdc->dring_hdl);
2641 		return (status);
2642 	}
2643 
2644 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2645 		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2646 
2647 		/* Allocate the local copy of this dring */
2648 		vdc->local_dring =
2649 		    kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2650 		    KM_SLEEP);
2651 		vdc->initialized |= VDC_DRING_LOCAL;
2652 	}
2653 
2654 	/*
2655 	 * Mark all DRing entries as free and initialize the private
2656 	 * descriptor's memory handles. If any entry is initialized,
2657 	 * we need to free it later so we set the bit in 'initialized'
2658 	 * at the start.
2659 	 */
2660 	vdc->initialized |= VDC_DRING_ENTRY;
2661 	for (i = 0; i < vdc->dring_len; i++) {
2662 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2663 		dep->hdr.dstate = VIO_DESC_FREE;
2664 
2665 		status = ldc_mem_alloc_handle(vdc->curr_server->ldc_handle,
2666 		    &vdc->local_dring[i].desc_mhdl);
2667 		if (status != 0) {
2668 			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2669 			    " descriptor %d", vdc->instance, i);
2670 			return (status);
2671 		}
2672 		vdc->local_dring[i].is_free = B_TRUE;
2673 		vdc->local_dring[i].dep = dep;
2674 	}
2675 
2676 	/* Initialize the starting index */
2677 	vdc->dring_curr_idx = 0;
2678 
2679 	return (status);
2680 }
2681 
2682 /*
2683  * Function:
2684  *	vdc_destroy_descriptor_ring()
2685  *
2686  * Description:
2687  *
2688  * Arguments:
2689  *	vdc	- soft state pointer for this instance of the device driver.
2690  *
2691  * Return Code:
2692  *	None
2693  */
2694 static void
2695 vdc_destroy_descriptor_ring(vdc_t *vdc)
2696 {
2697 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2698 	ldc_mem_handle_t	mhdl = NULL;
2699 	ldc_mem_info_t		minfo;
2700 	int			status = -1;
2701 	int			i;	/* loop */
2702 
2703 	ASSERT(vdc != NULL);
2704 	ASSERT(mutex_owned(&vdc->lock));
2705 
2706 	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2707 
2708 	if (vdc->initialized & VDC_DRING_ENTRY) {
2709 		DMSG(vdc, 0,
2710 		    "[%d] Removing Local DRing entries\n", vdc->instance);
2711 		for (i = 0; i < vdc->dring_len; i++) {
2712 			ldep = &vdc->local_dring[i];
2713 			mhdl = ldep->desc_mhdl;
2714 
2715 			if (mhdl == NULL)
2716 				continue;
2717 
2718 			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2719 				DMSG(vdc, 0,
2720 				    "ldc_mem_info returned an error: %d\n",
2721 				    status);
2722 
2723 				/*
2724 				 * This must mean that the mem handle
2725 				 * is not valid. Clear it out so that
2726 				 * no one tries to use it.
2727 				 */
2728 				ldep->desc_mhdl = NULL;
2729 				continue;
2730 			}
2731 
2732 			if (minfo.status == LDC_BOUND) {
2733 				(void) ldc_mem_unbind_handle(mhdl);
2734 			}
2735 
2736 			(void) ldc_mem_free_handle(mhdl);
2737 
2738 			ldep->desc_mhdl = NULL;
2739 		}
2740 		vdc->initialized &= ~VDC_DRING_ENTRY;
2741 	}
2742 
2743 	if (vdc->initialized & VDC_DRING_LOCAL) {
2744 		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2745 		kmem_free(vdc->local_dring,
2746 		    vdc->dring_len * sizeof (vdc_local_desc_t));
2747 		vdc->initialized &= ~VDC_DRING_LOCAL;
2748 	}
2749 
2750 	if (vdc->initialized & VDC_DRING_BOUND) {
2751 		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2752 		status = ldc_mem_dring_unbind(vdc->dring_hdl);
2753 		if (status == 0) {
2754 			vdc->initialized &= ~VDC_DRING_BOUND;
2755 		} else {
2756 			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2757 			    vdc->instance, status, vdc->dring_hdl);
2758 		}
2759 		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2760 	}
2761 
2762 	if (vdc->initialized & VDC_DRING_INIT) {
2763 		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2764 		status = ldc_mem_dring_destroy(vdc->dring_hdl);
2765 		if (status == 0) {
2766 			vdc->dring_hdl = NULL;
2767 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2768 			vdc->initialized &= ~VDC_DRING_INIT;
2769 		} else {
2770 			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2771 			    vdc->instance, status, vdc->dring_hdl);
2772 		}
2773 	}
2774 }
2775 
2776 /*
2777  * Function:
2778  *	vdc_map_to_shared_dring()
2779  *
2780  * Description:
2781  *	Copy contents of the local descriptor to the shared
2782  *	memory descriptor.
2783  *
2784  * Arguments:
2785  *	vdcp	- soft state pointer for this instance of the device driver.
2786  *	idx	- descriptor ring index
2787  *
2788  * Return Code:
2789  *	None
2790  */
2791 static int
2792 vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2793 {
2794 	vdc_local_desc_t	*ldep;
2795 	vd_dring_entry_t	*dep;
2796 	int			rv;
2797 
2798 	ldep = &(vdcp->local_dring[idx]);
2799 
2800 	/* for now leave in the old pop_mem_hdl stuff */
2801 	if (ldep->nbytes > 0) {
2802 		rv = vdc_populate_mem_hdl(vdcp, ldep);
2803 		if (rv) {
2804 			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2805 			    vdcp->instance);
2806 			return (rv);
2807 		}
2808 	}
2809 
2810 	/*
2811 	 * fill in the data details into the DRing
2812 	 */
2813 	dep = ldep->dep;
2814 	ASSERT(dep != NULL);
2815 
2816 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2817 	dep->payload.operation = ldep->operation;
2818 	dep->payload.addr = ldep->offset;
2819 	dep->payload.nbytes = ldep->nbytes;
2820 	dep->payload.status = (uint32_t)-1;	/* vds will set valid value */
2821 	dep->payload.slice = ldep->slice;
2822 	dep->hdr.dstate = VIO_DESC_READY;
2823 	dep->hdr.ack = 1;		/* request an ACK for every message */
2824 
2825 	return (0);
2826 }
2827 
2828 /*
2829  * Function:
2830  *	vdc_send_request
2831  *
2832  * Description:
2833  *	This routine writes the data to be transmitted to vds into the
2834  *	descriptor, notifies vds that the ring has been updated and
2835  *	then waits for the request to be processed.
2836  *
2837  * Arguments:
2838  *	vdcp	  - the soft state pointer
2839  *	operation - operation we want vds to perform (VD_OP_XXX)
2840  *	addr	  - address of data buf to be read/written.
2841  *	nbytes	  - number of bytes to read/write
2842  *	slice	  - the disk slice this request is for
2843  *	offset	  - relative disk offset
2844  *	cb_type   - type of call - STRATEGY or SYNC
2845  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2846  *			. mode for ioctl(9e)
2847  *			. LP64 diskaddr_t (block I/O)
2848  *	dir	  - direction of operation (READ/WRITE/BOTH)
2849  *
2850  * Return Codes:
2851  *	0
2852  *	ENXIO
2853  */
2854 static int
2855 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2856     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2857     void *cb_arg, vio_desc_direction_t dir)
2858 {
2859 	int	rv = 0;
2860 
2861 	ASSERT(vdcp != NULL);
2862 	ASSERT(slice == VD_SLICE_NONE || slice < V_NUMPAR);
2863 
2864 	mutex_enter(&vdcp->lock);
2865 
2866 	/*
2867 	 * If this is a block read/write operation we update the I/O statistics
2868 	 * to indicate that the request is being put on the waitq to be
2869 	 * serviced.
2870 	 *
2871 	 * We do it here (a common routine for both synchronous and strategy
2872 	 * calls) for performance reasons - we are already holding vdc->lock
2873 	 * so there is no extra locking overhead. We would have to explicitly
2874 	 * grab the 'lock' mutex to update the stats if we were to do this
2875 	 * higher up the stack in vdc_strategy() et. al.
2876 	 */
2877 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2878 		DTRACE_IO1(start, buf_t *, cb_arg);
2879 		VD_KSTAT_WAITQ_ENTER(vdcp);
2880 	}
2881 
2882 	do {
2883 		while (vdcp->state != VDC_STATE_RUNNING) {
2884 
2885 			/* return error if detaching */
2886 			if (vdcp->state == VDC_STATE_DETACH) {
2887 				rv = ENXIO;
2888 				goto done;
2889 			}
2890 
2891 			/* fail request if connection timeout is reached */
2892 			if (vdcp->ctimeout_reached) {
2893 				rv = EIO;
2894 				goto done;
2895 			}
2896 
2897 			/*
2898 			 * If we are panicking and the disk is not ready then
2899 			 * we can't send any request because we can't complete
2900 			 * the handshake now.
2901 			 */
2902 			if (ddi_in_panic()) {
2903 				rv = EIO;
2904 				goto done;
2905 			}
2906 
2907 			cv_wait(&vdcp->running_cv, &vdcp->lock);
2908 		}
2909 
2910 	} while (vdc_populate_descriptor(vdcp, operation, addr,
2911 	    nbytes, slice, offset, cb_type, cb_arg, dir));
2912 
2913 done:
2914 	/*
2915 	 * If this is a block read/write we update the I/O statistics kstat
2916 	 * to indicate that this request has been placed on the queue for
2917 	 * processing (i.e sent to the vDisk server) - iostat(1M) will
2918 	 * report the time waiting for the vDisk server under the %b column
2919 	 * In the case of an error we simply take it off the wait queue.
2920 	 */
2921 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2922 		if (rv == 0) {
2923 			VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
2924 			DTRACE_PROBE1(send, buf_t *, cb_arg);
2925 		} else {
2926 			VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
2927 			VD_KSTAT_WAITQ_EXIT(vdcp);
2928 			DTRACE_IO1(done, buf_t *, cb_arg);
2929 		}
2930 	}
2931 
2932 	mutex_exit(&vdcp->lock);
2933 
2934 	return (rv);
2935 }
2936 
2937 
2938 /*
2939  * Function:
2940  *	vdc_populate_descriptor
2941  *
2942  * Description:
2943  *	This routine writes the data to be transmitted to vds into the
2944  *	descriptor, notifies vds that the ring has been updated and
2945  *	then waits for the request to be processed.
2946  *
2947  * Arguments:
2948  *	vdcp	  - the soft state pointer
2949  *	operation - operation we want vds to perform (VD_OP_XXX)
2950  *	addr	  - address of data buf to be read/written.
2951  *	nbytes	  - number of bytes to read/write
2952  *	slice	  - the disk slice this request is for
2953  *	offset	  - relative disk offset
2954  *	cb_type   - type of call - STRATEGY or SYNC
2955  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2956  *			. mode for ioctl(9e)
2957  *			. LP64 diskaddr_t (block I/O)
2958  *	dir	  - direction of operation (READ/WRITE/BOTH)
2959  *
2960  * Return Codes:
2961  *	0
2962  *	EAGAIN
2963  *	ECONNRESET
2964  *	ENXIO
2965  */
2966 static int
2967 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2968     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2969     void *cb_arg, vio_desc_direction_t dir)
2970 {
2971 	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2972 	int			idx;		/* Index of DRing entry used */
2973 	int			next_idx;
2974 	vio_dring_msg_t		dmsg;
2975 	size_t			msglen;
2976 	int			rv;
2977 
2978 	ASSERT(MUTEX_HELD(&vdcp->lock));
2979 	vdcp->threads_pending++;
2980 loop:
2981 	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2982 
2983 	/* Get next available D-Ring entry */
2984 	idx = vdcp->dring_curr_idx;
2985 	local_dep = &(vdcp->local_dring[idx]);
2986 
2987 	if (!local_dep->is_free) {
2988 		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
2989 		    vdcp->instance);
2990 		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
2991 		if (vdcp->state == VDC_STATE_RUNNING ||
2992 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2993 			goto loop;
2994 		}
2995 		vdcp->threads_pending--;
2996 		return (ECONNRESET);
2997 	}
2998 
2999 	next_idx = idx + 1;
3000 	if (next_idx >= vdcp->dring_len)
3001 		next_idx = 0;
3002 	vdcp->dring_curr_idx = next_idx;
3003 
3004 	ASSERT(local_dep->is_free);
3005 
3006 	local_dep->operation = operation;
3007 	local_dep->addr = addr;
3008 	local_dep->nbytes = nbytes;
3009 	local_dep->slice = slice;
3010 	local_dep->offset = offset;
3011 	local_dep->cb_type = cb_type;
3012 	local_dep->cb_arg = cb_arg;
3013 	local_dep->dir = dir;
3014 
3015 	local_dep->is_free = B_FALSE;
3016 
3017 	rv = vdc_map_to_shared_dring(vdcp, idx);
3018 	if (rv) {
3019 		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
3020 		    vdcp->instance);
3021 		/* free the descriptor */
3022 		local_dep->is_free = B_TRUE;
3023 		vdcp->dring_curr_idx = idx;
3024 		cv_wait(&vdcp->membind_cv, &vdcp->lock);
3025 		if (vdcp->state == VDC_STATE_RUNNING ||
3026 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3027 			goto loop;
3028 		}
3029 		vdcp->threads_pending--;
3030 		return (ECONNRESET);
3031 	}
3032 
3033 	/*
3034 	 * Send a msg with the DRing details to vds
3035 	 */
3036 	VIO_INIT_DRING_DATA_TAG(dmsg);
3037 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
3038 	dmsg.dring_ident = vdcp->dring_ident;
3039 	dmsg.start_idx = idx;
3040 	dmsg.end_idx = idx;
3041 	vdcp->seq_num++;
3042 
3043 	DTRACE_PROBE2(populate, int, vdcp->instance,
3044 	    vdc_local_desc_t *, local_dep);
3045 	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
3046 	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
3047 
3048 	/*
3049 	 * note we're still holding the lock here to
3050 	 * make sure the message goes out in order !!!...
3051 	 */
3052 	msglen = sizeof (dmsg);
3053 	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
3054 	switch (rv) {
3055 	case ECONNRESET:
3056 		/*
3057 		 * vdc_send initiates the reset on failure.
3058 		 * Since the transaction has already been put
3059 		 * on the local dring, it will automatically get
3060 		 * retried when the channel is reset. Given that,
3061 		 * it is ok to just return success even though the
3062 		 * send failed.
3063 		 */
3064 		rv = 0;
3065 		break;
3066 
3067 	case 0: /* EOK */
3068 		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
3069 		break;
3070 
3071 	default:
3072 		goto cleanup_and_exit;
3073 	}
3074 
3075 	vdcp->threads_pending--;
3076 	return (rv);
3077 
3078 cleanup_and_exit:
3079 	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
3080 	return (ENXIO);
3081 }
3082 
3083 /*
3084  * Function:
3085  *	vdc_do_sync_op
3086  *
3087  * Description:
3088  * 	Wrapper around vdc_populate_descriptor that blocks until the
3089  * 	response to the message is available.
3090  *
3091  * Arguments:
3092  *	vdcp	  - the soft state pointer
3093  *	operation - operation we want vds to perform (VD_OP_XXX)
3094  *	addr	  - address of data buf to be read/written.
3095  *	nbytes	  - number of bytes to read/write
3096  *	slice	  - the disk slice this request is for
3097  *	offset	  - relative disk offset
3098  *	cb_type   - type of call - STRATEGY or SYNC
3099  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
3100  *			. mode for ioctl(9e)
3101  *			. LP64 diskaddr_t (block I/O)
3102  *	dir	  - direction of operation (READ/WRITE/BOTH)
3103  *	rconflict - check for reservation conflict in case of failure
3104  *
3105  * rconflict should be set to B_TRUE by most callers. Callers invoking the
3106  * VD_OP_SCSICMD operation can set rconflict to B_FALSE if they check the
3107  * result of a successful operation with vd_scsi_status().
3108  *
3109  * Return Codes:
3110  *	0
3111  *	EAGAIN
3112  *	EFAULT
3113  *	ENXIO
3114  *	EIO
3115  */
3116 static int
3117 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
3118     int slice, diskaddr_t offset, int cb_type, void *cb_arg,
3119     vio_desc_direction_t dir, boolean_t rconflict)
3120 {
3121 	int status;
3122 	vdc_io_t *vio;
3123 	boolean_t check_resv_conflict = B_FALSE;
3124 
3125 	ASSERT(cb_type == CB_SYNC);
3126 
3127 	/*
3128 	 * Grab the lock, if blocked wait until the server
3129 	 * response causes us to wake up again.
3130 	 */
3131 	mutex_enter(&vdcp->lock);
3132 	vdcp->sync_op_cnt++;
3133 	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
3134 		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
3135 
3136 	if (vdcp->state == VDC_STATE_DETACH) {
3137 		cv_broadcast(&vdcp->sync_blocked_cv);
3138 		vdcp->sync_op_cnt--;
3139 		mutex_exit(&vdcp->lock);
3140 		return (ENXIO);
3141 	}
3142 
3143 	/* now block anyone other thread entering after us */
3144 	vdcp->sync_op_blocked = B_TRUE;
3145 	vdcp->sync_op_pending = B_TRUE;
3146 	mutex_exit(&vdcp->lock);
3147 
3148 	status = vdc_send_request(vdcp, operation, addr,
3149 	    nbytes, slice, offset, cb_type, cb_arg, dir);
3150 
3151 	mutex_enter(&vdcp->lock);
3152 
3153 	if (status != 0) {
3154 		vdcp->sync_op_pending = B_FALSE;
3155 	} else {
3156 		/*
3157 		 * block until our transaction completes.
3158 		 * Also anyone else waiting also gets to go next.
3159 		 */
3160 		while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
3161 			cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
3162 
3163 		DMSG(vdcp, 2, ": operation returned %d\n",
3164 		    vdcp->sync_op_status);
3165 		if (vdcp->state == VDC_STATE_DETACH) {
3166 			vdcp->sync_op_pending = B_FALSE;
3167 			status = ENXIO;
3168 		} else {
3169 			status = vdcp->sync_op_status;
3170 			if (status != 0 && vdcp->failfast_interval != 0) {
3171 				/*
3172 				 * Operation has failed and failfast is enabled.
3173 				 * We need to check if the failure is due to a
3174 				 * reservation conflict if this was requested.
3175 				 */
3176 				check_resv_conflict = rconflict;
3177 			}
3178 
3179 		}
3180 	}
3181 
3182 	vdcp->sync_op_status = 0;
3183 	vdcp->sync_op_blocked = B_FALSE;
3184 	vdcp->sync_op_cnt--;
3185 
3186 	/* signal the next waiting thread */
3187 	cv_signal(&vdcp->sync_blocked_cv);
3188 
3189 	/*
3190 	 * We have to check for reservation conflict after unblocking sync
3191 	 * operations because some sync operations will be used to do this
3192 	 * check.
3193 	 */
3194 	if (check_resv_conflict) {
3195 		vio = vdc_failfast_io_queue(vdcp, NULL);
3196 		while (vio->vio_qtime != 0)
3197 			cv_wait(&vdcp->failfast_io_cv, &vdcp->lock);
3198 		kmem_free(vio, sizeof (vdc_io_t));
3199 	}
3200 
3201 	mutex_exit(&vdcp->lock);
3202 
3203 	return (status);
3204 }
3205 
3206 
3207 /*
3208  * Function:
3209  *	vdc_drain_response()
3210  *
3211  * Description:
3212  * 	When a guest is panicking, the completion of requests needs to be
3213  * 	handled differently because interrupts are disabled and vdc
3214  * 	will not get messages. We have to poll for the messages instead.
3215  *
3216  *	Note: since we don't have a buf_t available we cannot implement
3217  *	the io:::done DTrace probe in this specific case.
3218  *
3219  * Arguments:
3220  *	vdc	- soft state pointer for this instance of the device driver.
3221  *
3222  * Return Code:
3223  *	0	- Success
3224  */
3225 static int
3226 vdc_drain_response(vdc_t *vdc)
3227 {
3228 	int 			rv, idx, retries;
3229 	size_t			msglen;
3230 	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
3231 	vio_dring_msg_t		dmsg;
3232 
3233 	mutex_enter(&vdc->lock);
3234 
3235 	retries = 0;
3236 	for (;;) {
3237 		msglen = sizeof (dmsg);
3238 		rv = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)&dmsg,
3239 		    &msglen);
3240 		if (rv) {
3241 			rv = EINVAL;
3242 			break;
3243 		}
3244 
3245 		/*
3246 		 * if there are no packets wait and check again
3247 		 */
3248 		if ((rv == 0) && (msglen == 0)) {
3249 			if (retries++ > vdc_dump_retries) {
3250 				rv = EAGAIN;
3251 				break;
3252 			}
3253 
3254 			drv_usecwait(vdc_usec_timeout_dump);
3255 			continue;
3256 		}
3257 
3258 		/*
3259 		 * Ignore all messages that are not ACKs/NACKs to
3260 		 * DRing requests.
3261 		 */
3262 		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
3263 		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
3264 			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
3265 			    dmsg.tag.vio_msgtype,
3266 			    dmsg.tag.vio_subtype,
3267 			    dmsg.tag.vio_subtype_env);
3268 			continue;
3269 		}
3270 
3271 		/*
3272 		 * set the appropriate return value for the current request.
3273 		 */
3274 		switch (dmsg.tag.vio_subtype) {
3275 		case VIO_SUBTYPE_ACK:
3276 			rv = 0;
3277 			break;
3278 		case VIO_SUBTYPE_NACK:
3279 			rv = EAGAIN;
3280 			break;
3281 		default:
3282 			continue;
3283 		}
3284 
3285 		idx = dmsg.start_idx;
3286 		if (idx >= vdc->dring_len) {
3287 			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
3288 			    vdc->instance, idx);
3289 			continue;
3290 		}
3291 		ldep = &vdc->local_dring[idx];
3292 		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
3293 			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
3294 			    vdc->instance, idx, ldep->dep->hdr.dstate);
3295 			continue;
3296 		}
3297 
3298 		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
3299 		    vdc->instance, idx, ldep->dep->hdr.dstate);
3300 
3301 		rv = vdc_depopulate_descriptor(vdc, idx);
3302 		if (rv) {
3303 			DMSG(vdc, 0,
3304 			    "[%d] Entry @ %d - depopulate failed ..\n",
3305 			    vdc->instance, idx);
3306 		}
3307 
3308 		/* if this is the last descriptor - break out of loop */
3309 		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx)
3310 			break;
3311 	}
3312 
3313 	mutex_exit(&vdc->lock);
3314 	DMSG(vdc, 0, "End idx=%d\n", idx);
3315 
3316 	return (rv);
3317 }
3318 
3319 
3320 /*
3321  * Function:
3322  *	vdc_depopulate_descriptor()
3323  *
3324  * Description:
3325  *
3326  * Arguments:
3327  *	vdc	- soft state pointer for this instance of the device driver.
3328  *	idx	- Index of the Descriptor Ring entry being modified
3329  *
3330  * Return Code:
3331  *	0	- Success
3332  */
3333 static int
3334 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
3335 {
3336 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
3337 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
3338 	int		status = ENXIO;
3339 	int		rv = 0;
3340 
3341 	ASSERT(vdc != NULL);
3342 	ASSERT(idx < vdc->dring_len);
3343 	ldep = &vdc->local_dring[idx];
3344 	ASSERT(ldep != NULL);
3345 	ASSERT(MUTEX_HELD(&vdc->lock));
3346 
3347 	DTRACE_PROBE2(depopulate, int, vdc->instance, vdc_local_desc_t *, ldep);
3348 	DMSG(vdc, 2, ": idx = %d\n", idx);
3349 
3350 	dep = ldep->dep;
3351 	ASSERT(dep != NULL);
3352 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
3353 	    (dep->payload.status == ECANCELED));
3354 
3355 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
3356 
3357 	ldep->is_free = B_TRUE;
3358 	status = dep->payload.status;
3359 	DMSG(vdc, 2, ": is_free = %d : status = %d\n", ldep->is_free, status);
3360 
3361 	/*
3362 	 * If no buffers were used to transfer information to the server when
3363 	 * populating the descriptor then no memory handles need to be unbound
3364 	 * and we can return now.
3365 	 */
3366 	if (ldep->nbytes == 0) {
3367 		cv_signal(&vdc->dring_free_cv);
3368 		return (status);
3369 	}
3370 
3371 	/*
3372 	 * If the upper layer passed in a misaligned address we copied the
3373 	 * data into an aligned buffer before sending it to LDC - we now
3374 	 * copy it back to the original buffer.
3375 	 */
3376 	if (ldep->align_addr) {
3377 		ASSERT(ldep->addr != NULL);
3378 
3379 		if (dep->payload.nbytes > 0)
3380 			bcopy(ldep->align_addr, ldep->addr,
3381 			    dep->payload.nbytes);
3382 		kmem_free(ldep->align_addr,
3383 		    sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8));
3384 		ldep->align_addr = NULL;
3385 	}
3386 
3387 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
3388 	if (rv != 0) {
3389 		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
3390 		    vdc->instance, ldep->desc_mhdl, idx, rv);
3391 		/*
3392 		 * The error returned by the vDisk server is more informative
3393 		 * and thus has a higher priority but if it isn't set we ensure
3394 		 * that this function returns an error.
3395 		 */
3396 		if (status == 0)
3397 			status = EINVAL;
3398 	}
3399 
3400 	cv_signal(&vdc->membind_cv);
3401 	cv_signal(&vdc->dring_free_cv);
3402 
3403 	return (status);
3404 }
3405 
3406 /*
3407  * Function:
3408  *	vdc_populate_mem_hdl()
3409  *
3410  * Description:
3411  *
3412  * Arguments:
3413  *	vdc	- soft state pointer for this instance of the device driver.
3414  *	idx	- Index of the Descriptor Ring entry being modified
3415  *	addr	- virtual address being mapped in
3416  *	nybtes	- number of bytes in 'addr'
3417  *	operation - the vDisk operation being performed (VD_OP_xxx)
3418  *
3419  * Return Code:
3420  *	0	- Success
3421  */
3422 static int
3423 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
3424 {
3425 	vd_dring_entry_t	*dep = NULL;
3426 	ldc_mem_handle_t	mhdl;
3427 	caddr_t			vaddr;
3428 	size_t			nbytes;
3429 	uint8_t			perm = LDC_MEM_RW;
3430 	uint8_t			maptype;
3431 	int			rv = 0;
3432 	int			i;
3433 
3434 	ASSERT(vdcp != NULL);
3435 
3436 	dep = ldep->dep;
3437 	mhdl = ldep->desc_mhdl;
3438 
3439 	switch (ldep->dir) {
3440 	case VIO_read_dir:
3441 		perm = LDC_MEM_W;
3442 		break;
3443 
3444 	case VIO_write_dir:
3445 		perm = LDC_MEM_R;
3446 		break;
3447 
3448 	case VIO_both_dir:
3449 		perm = LDC_MEM_RW;
3450 		break;
3451 
3452 	default:
3453 		ASSERT(0);	/* catch bad programming in vdc */
3454 	}
3455 
3456 	/*
3457 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
3458 	 * to copy the contents of any misaligned buffers to a newly allocated
3459 	 * buffer and bind it instead (and copy the the contents back to the
3460 	 * original buffer passed in when depopulating the descriptor)
3461 	 */
3462 	vaddr = ldep->addr;
3463 	nbytes = ldep->nbytes;
3464 	if (((uint64_t)vaddr & 0x7) != 0) {
3465 		ASSERT(ldep->align_addr == NULL);
3466 		ldep->align_addr =
3467 		    kmem_alloc(sizeof (caddr_t) *
3468 		    P2ROUNDUP(nbytes, 8), KM_SLEEP);
3469 		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
3470 		    "(buf=%p nb=%ld op=%d)\n",
3471 		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
3472 		    nbytes, ldep->operation);
3473 		if (perm != LDC_MEM_W)
3474 			bcopy(vaddr, ldep->align_addr, nbytes);
3475 		vaddr = ldep->align_addr;
3476 	}
3477 
3478 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
3479 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
3480 	    maptype, perm, &dep->payload.cookie[0], &dep->payload.ncookies);
3481 	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
3482 	    vdcp->instance, dep->payload.ncookies);
3483 	if (rv != 0) {
3484 		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
3485 		    "(mhdl=%p, buf=%p, err=%d)\n",
3486 		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
3487 		if (ldep->align_addr) {
3488 			kmem_free(ldep->align_addr,
3489 			    sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
3490 			ldep->align_addr = NULL;
3491 		}
3492 		return (EAGAIN);
3493 	}
3494 
3495 	/*
3496 	 * Get the other cookies (if any).
3497 	 */
3498 	for (i = 1; i < dep->payload.ncookies; i++) {
3499 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
3500 		if (rv != 0) {
3501 			(void) ldc_mem_unbind_handle(mhdl);
3502 			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
3503 			    "(mhdl=%lx cnum=%d), err=%d",
3504 			    vdcp->instance, mhdl, i, rv);
3505 			if (ldep->align_addr) {
3506 				kmem_free(ldep->align_addr,
3507 				    sizeof (caddr_t) * ldep->nbytes);
3508 				ldep->align_addr = NULL;
3509 			}
3510 			return (EAGAIN);
3511 		}
3512 	}
3513 
3514 	return (rv);
3515 }
3516 
3517 /*
3518  * Interrupt handlers for messages from LDC
3519  */
3520 
3521 /*
3522  * Function:
3523  *	vdc_handle_cb()
3524  *
3525  * Description:
3526  *
3527  * Arguments:
3528  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
3529  *	arg	- soft state pointer for this instance of the device driver.
3530  *
3531  * Return Code:
3532  *	0	- Success
3533  */
3534 static uint_t
3535 vdc_handle_cb(uint64_t event, caddr_t arg)
3536 {
3537 	ldc_status_t	ldc_state;
3538 	int		rv = 0;
3539 	vdc_server_t	*srvr = (vdc_server_t *)(void *)arg;
3540 	vdc_t		*vdc = srvr->vdcp;
3541 
3542 	ASSERT(vdc != NULL);
3543 
3544 	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
3545 
3546 	/* If callback is not for the current server, ignore it */
3547 	mutex_enter(&vdc->lock);
3548 
3549 	if (vdc->curr_server != srvr) {
3550 		DMSG(vdc, 0, "[%d] Ignoring event 0x%lx for port@%ld\n",
3551 		    vdc->instance, event, srvr->id);
3552 		mutex_exit(&vdc->lock);
3553 		return (LDC_SUCCESS);
3554 	}
3555 
3556 	/*
3557 	 * Depending on the type of event that triggered this callback,
3558 	 * we modify the handshake state or read the data.
3559 	 *
3560 	 * NOTE: not done as a switch() as event could be triggered by
3561 	 * a state change and a read request. Also the ordering	of the
3562 	 * check for the event types is deliberate.
3563 	 */
3564 	if (event & LDC_EVT_UP) {
3565 		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
3566 
3567 		/* get LDC state */
3568 		rv = ldc_status(srvr->ldc_handle, &ldc_state);
3569 		if (rv != 0) {
3570 			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
3571 			    vdc->instance, rv);
3572 			mutex_exit(&vdc->lock);
3573 			return (LDC_SUCCESS);
3574 		}
3575 		if (srvr->ldc_state != LDC_UP &&
3576 		    ldc_state == LDC_UP) {
3577 			/*
3578 			 * Reset the transaction sequence numbers when
3579 			 * LDC comes up. We then kick off the handshake
3580 			 * negotiation with the vDisk server.
3581 			 */
3582 			vdc->seq_num = 1;
3583 			vdc->seq_num_reply = 0;
3584 			srvr->ldc_state = ldc_state;
3585 			cv_signal(&vdc->initwait_cv);
3586 		}
3587 	}
3588 
3589 	if (event & LDC_EVT_READ) {
3590 		DMSG(vdc, 1, "[%d] Received LDC_EVT_READ\n", vdc->instance);
3591 		mutex_enter(&vdc->read_lock);
3592 		cv_signal(&vdc->read_cv);
3593 		vdc->read_state = VDC_READ_PENDING;
3594 		mutex_exit(&vdc->read_lock);
3595 		mutex_exit(&vdc->lock);
3596 
3597 		/* that's all we have to do - no need to handle DOWN/RESET */
3598 		return (LDC_SUCCESS);
3599 	}
3600 
3601 	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
3602 
3603 		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
3604 
3605 		/*
3606 		 * Need to wake up any readers so they will
3607 		 * detect that a reset has occurred.
3608 		 */
3609 		mutex_enter(&vdc->read_lock);
3610 		if ((vdc->read_state == VDC_READ_WAITING) ||
3611 		    (vdc->read_state == VDC_READ_RESET))
3612 			cv_signal(&vdc->read_cv);
3613 		vdc->read_state = VDC_READ_RESET;
3614 		mutex_exit(&vdc->read_lock);
3615 
3616 		/* wake up any threads waiting for connection to come up */
3617 		if (vdc->state == VDC_STATE_INIT_WAITING) {
3618 			vdc->state = VDC_STATE_RESETTING;
3619 			cv_signal(&vdc->initwait_cv);
3620 		}
3621 
3622 	}
3623 
3624 	mutex_exit(&vdc->lock);
3625 
3626 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
3627 		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3628 		    vdc->instance, event);
3629 
3630 	return (LDC_SUCCESS);
3631 }
3632 
3633 /*
3634  * Function:
3635  *	vdc_wait_for_response()
3636  *
3637  * Description:
3638  *	Block waiting for a response from the server. If there is
3639  *	no data the thread block on the read_cv that is signalled
3640  *	by the callback when an EVT_READ occurs.
3641  *
3642  * Arguments:
3643  *	vdcp	- soft state pointer for this instance of the device driver.
3644  *
3645  * Return Code:
3646  *	0	- Success
3647  */
3648 static int
3649 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3650 {
3651 	size_t		nbytes = sizeof (*msgp);
3652 	int		status;
3653 
3654 	ASSERT(vdcp != NULL);
3655 
3656 	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3657 
3658 	status = vdc_recv(vdcp, msgp, &nbytes);
3659 	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3660 	    status, (int)nbytes);
3661 	if (status) {
3662 		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3663 		    vdcp->instance, status);
3664 		return (status);
3665 	}
3666 
3667 	if (nbytes < sizeof (vio_msg_tag_t)) {
3668 		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3669 		    vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3670 		return (ENOMSG);
3671 	}
3672 
3673 	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3674 	    msgp->tag.vio_msgtype,
3675 	    msgp->tag.vio_subtype,
3676 	    msgp->tag.vio_subtype_env);
3677 
3678 	/*
3679 	 * Verify the Session ID of the message
3680 	 *
3681 	 * Every message after the Version has been negotiated should
3682 	 * have the correct session ID set.
3683 	 */
3684 	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3685 	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3686 		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3687 		    "expected 0x%lx [seq num %lx @ %d]",
3688 		    vdcp->instance, msgp->tag.vio_sid,
3689 		    vdcp->session_id,
3690 		    ((vio_dring_msg_t *)msgp)->seq_num,
3691 		    ((vio_dring_msg_t *)msgp)->start_idx);
3692 		return (ENOMSG);
3693 	}
3694 	return (0);
3695 }
3696 
3697 
3698 /*
3699  * Function:
3700  *	vdc_resubmit_backup_dring()
3701  *
3702  * Description:
3703  *	Resubmit each descriptor in the backed up dring to
3704  * 	vDisk server. The Dring was backed up during connection
3705  *	reset.
3706  *
3707  * Arguments:
3708  *	vdcp	- soft state pointer for this instance of the device driver.
3709  *
3710  * Return Code:
3711  *	0	- Success
3712  */
3713 static int
3714 vdc_resubmit_backup_dring(vdc_t *vdcp)
3715 {
3716 	int		processed = 0;
3717 	int		count;
3718 	int		b_idx;
3719 	int		rv = 0;
3720 	int		dring_size;
3721 	int		op;
3722 	vio_msg_t	vio_msg;
3723 	vdc_local_desc_t	*curr_ldep;
3724 
3725 	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3726 	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3727 
3728 	if (vdcp->local_dring_backup == NULL) {
3729 		/* the pending requests have already been processed */
3730 		return (0);
3731 	}
3732 
3733 	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3734 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3735 
3736 	/*
3737 	 * Walk the backup copy of the local descriptor ring and
3738 	 * resubmit all the outstanding transactions.
3739 	 */
3740 	b_idx = vdcp->local_dring_backup_tail;
3741 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3742 
3743 		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3744 
3745 		/* only resubmit outstanding transactions */
3746 		if (!curr_ldep->is_free) {
3747 			/*
3748 			 * If we are retrying a block read/write operation we
3749 			 * need to update the I/O statistics to indicate that
3750 			 * the request is being put back on the waitq to be
3751 			 * serviced (it will have been taken off after the
3752 			 * error was reported).
3753 			 */
3754 			mutex_enter(&vdcp->lock);
3755 			op = curr_ldep->operation;
3756 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3757 				DTRACE_IO1(start, buf_t *, curr_ldep->cb_arg);
3758 				VD_KSTAT_WAITQ_ENTER(vdcp);
3759 			}
3760 
3761 			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3762 			rv = vdc_populate_descriptor(vdcp, op,
3763 			    curr_ldep->addr, curr_ldep->nbytes,
3764 			    curr_ldep->slice, curr_ldep->offset,
3765 			    curr_ldep->cb_type, curr_ldep->cb_arg,
3766 			    curr_ldep->dir);
3767 
3768 			if (rv) {
3769 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3770 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3771 					VD_KSTAT_WAITQ_EXIT(vdcp);
3772 					DTRACE_IO1(done, buf_t *,
3773 					    curr_ldep->cb_arg);
3774 				}
3775 				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3776 				    vdcp->instance, b_idx);
3777 				mutex_exit(&vdcp->lock);
3778 				goto done;
3779 			}
3780 
3781 			/*
3782 			 * If this is a block read/write we update the I/O
3783 			 * statistics kstat to indicate that the request
3784 			 * has been sent back to the vDisk server and should
3785 			 * now be put on the run queue.
3786 			 */
3787 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3788 				DTRACE_PROBE1(send, buf_t *, curr_ldep->cb_arg);
3789 				VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
3790 			}
3791 			mutex_exit(&vdcp->lock);
3792 
3793 			/* Wait for the response message. */
3794 			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3795 			    b_idx);
3796 			rv = vdc_wait_for_response(vdcp, &vio_msg);
3797 			if (rv) {
3798 				/*
3799 				 * If this is a block read/write we update
3800 				 * the I/O statistics kstat to take it
3801 				 * off the run queue.
3802 				 */
3803 				mutex_enter(&vdcp->lock);
3804 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3805 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3806 					VD_KSTAT_RUNQ_EXIT(vdcp);
3807 					DTRACE_IO1(done, buf_t *,
3808 					    curr_ldep->cb_arg);
3809 				}
3810 				DMSG(vdcp, 1, "[%d] wait_for_response "
3811 				    "returned err=%d\n", vdcp->instance,
3812 				    rv);
3813 				mutex_exit(&vdcp->lock);
3814 				goto done;
3815 			}
3816 
3817 			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3818 			rv = vdc_process_data_msg(vdcp, &vio_msg);
3819 			if (rv) {
3820 				DMSG(vdcp, 1, "[%d] process_data_msg "
3821 				    "returned err=%d\n", vdcp->instance,
3822 				    rv);
3823 				goto done;
3824 			}
3825 			/*
3826 			 * Mark this entry as free so that we will not resubmit
3827 			 * this "done" request again, if we were to use the same
3828 			 * backup_dring again in future. This could happen when
3829 			 * a reset happens while processing the backup_dring.
3830 			 */
3831 			curr_ldep->is_free = B_TRUE;
3832 			processed++;
3833 		}
3834 
3835 		/* get the next element to submit */
3836 		if (++b_idx >= vdcp->local_dring_backup_len)
3837 			b_idx = 0;
3838 	}
3839 
3840 	/* all done - now clear up pending dring copy */
3841 	dring_size = vdcp->local_dring_backup_len *
3842 	    sizeof (vdcp->local_dring_backup[0]);
3843 
3844 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3845 
3846 	vdcp->local_dring_backup = NULL;
3847 
3848 done:
3849 	DTRACE_PROBE2(processed, int, processed, vdc_t *, vdcp);
3850 
3851 	return (rv);
3852 }
3853 
3854 /*
3855  * Function:
3856  *	vdc_cancel_backup_dring
3857  *
3858  * Description:
3859  *	Cancel each descriptor in the backed up dring to vDisk server.
3860  *	The Dring was backed up during connection reset.
3861  *
3862  * Arguments:
3863  *	vdcp	- soft state pointer for this instance of the device driver.
3864  *
3865  * Return Code:
3866  *	None
3867  */
3868 void
3869 vdc_cancel_backup_dring(vdc_t *vdcp)
3870 {
3871 	vdc_local_desc_t *ldep;
3872 	struct buf 	*bufp;
3873 	int		count;
3874 	int		b_idx;
3875 	int		dring_size;
3876 	int		cancelled = 0;
3877 
3878 	ASSERT(MUTEX_HELD(&vdcp->lock));
3879 	ASSERT(vdcp->state == VDC_STATE_INIT ||
3880 	    vdcp->state == VDC_STATE_INIT_WAITING ||
3881 	    vdcp->state == VDC_STATE_NEGOTIATE ||
3882 	    vdcp->state == VDC_STATE_RESETTING);
3883 
3884 	if (vdcp->local_dring_backup == NULL) {
3885 		/* the pending requests have already been processed */
3886 		return;
3887 	}
3888 
3889 	DMSG(vdcp, 1, "cancelling pending dring entries (len=%d, tail=%d)\n",
3890 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3891 
3892 	/*
3893 	 * Walk the backup copy of the local descriptor ring and
3894 	 * cancel all the outstanding transactions.
3895 	 */
3896 	b_idx = vdcp->local_dring_backup_tail;
3897 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3898 
3899 		ldep = &(vdcp->local_dring_backup[b_idx]);
3900 
3901 		/* only cancel outstanding transactions */
3902 		if (!ldep->is_free) {
3903 
3904 			DMSG(vdcp, 1, "cancelling entry idx=%x\n", b_idx);
3905 			cancelled++;
3906 
3907 			/*
3908 			 * All requests have already been cleared from the
3909 			 * local descriptor ring and the LDC channel has been
3910 			 * reset so we will never get any reply for these
3911 			 * requests. Now we just have to notify threads waiting
3912 			 * for replies that the request has failed.
3913 			 */
3914 			switch (ldep->cb_type) {
3915 			case CB_SYNC:
3916 				ASSERT(vdcp->sync_op_pending);
3917 				vdcp->sync_op_status = EIO;
3918 				vdcp->sync_op_pending = B_FALSE;
3919 				cv_signal(&vdcp->sync_pending_cv);
3920 				break;
3921 
3922 			case CB_STRATEGY:
3923 				bufp = ldep->cb_arg;
3924 				ASSERT(bufp != NULL);
3925 				bufp->b_resid = bufp->b_bcount;
3926 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
3927 				VD_KSTAT_RUNQ_EXIT(vdcp);
3928 				DTRACE_IO1(done, buf_t *, bufp);
3929 				bioerror(bufp, EIO);
3930 				biodone(bufp);
3931 				break;
3932 
3933 			default:
3934 				ASSERT(0);
3935 			}
3936 
3937 		}
3938 
3939 		/* get the next element to cancel */
3940 		if (++b_idx >= vdcp->local_dring_backup_len)
3941 			b_idx = 0;
3942 	}
3943 
3944 	/* all done - now clear up pending dring copy */
3945 	dring_size = vdcp->local_dring_backup_len *
3946 	    sizeof (vdcp->local_dring_backup[0]);
3947 
3948 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3949 
3950 	vdcp->local_dring_backup = NULL;
3951 
3952 	DTRACE_PROBE2(cancelled, int, cancelled, vdc_t *, vdcp);
3953 }
3954 
3955 /*
3956  * Function:
3957  *	vdc_connection_timeout
3958  *
3959  * Description:
3960  *	This function is invoked if the timeout set to establish the connection
3961  *	with vds expires. This will happen if we spend too much time in the
3962  *	VDC_STATE_INIT_WAITING or VDC_STATE_NEGOTIATE states. Then we will
3963  *	cancel any pending request and mark them as failed.
3964  *
3965  *	If the timeout does not expire, it will be cancelled when we reach the
3966  *	VDC_STATE_HANDLE_PENDING or VDC_STATE_RESETTING state. This function can
3967  *	be invoked while we are in the VDC_STATE_HANDLE_PENDING or
3968  *	VDC_STATE_RESETTING state in which case we do nothing because the
3969  *	timeout is being cancelled.
3970  *
3971  * Arguments:
3972  *	arg	- argument of the timeout function actually a soft state
3973  *		  pointer for the instance of the device driver.
3974  *
3975  * Return Code:
3976  *	None
3977  */
3978 void
3979 vdc_connection_timeout(void *arg)
3980 {
3981 	vdc_t 		*vdcp = (vdc_t *)arg;
3982 
3983 	mutex_enter(&vdcp->lock);
3984 
3985 	if (vdcp->state == VDC_STATE_HANDLE_PENDING ||
3986 	    vdcp->state == VDC_STATE_DETACH) {
3987 		/*
3988 		 * The connection has just been re-established or
3989 		 * we are detaching.
3990 		 */
3991 		vdcp->ctimeout_reached = B_FALSE;
3992 		mutex_exit(&vdcp->lock);
3993 		return;
3994 	}
3995 
3996 	vdcp->ctimeout_reached = B_TRUE;
3997 
3998 	/* notify requests waiting for sending */
3999 	cv_broadcast(&vdcp->running_cv);
4000 
4001 	/* cancel requests waiting for a result */
4002 	vdc_cancel_backup_dring(vdcp);
4003 
4004 	mutex_exit(&vdcp->lock);
4005 
4006 	cmn_err(CE_NOTE, "[%d] connection to service domain timeout",
4007 	    vdcp->instance);
4008 }
4009 
4010 /*
4011  * Function:
4012  *	vdc_backup_local_dring()
4013  *
4014  * Description:
4015  *	Backup the current dring in the event of a reset. The Dring
4016  *	transactions will be resubmitted to the server when the
4017  *	connection is restored.
4018  *
4019  * Arguments:
4020  *	vdcp	- soft state pointer for this instance of the device driver.
4021  *
4022  * Return Code:
4023  *	NONE
4024  */
4025 static void
4026 vdc_backup_local_dring(vdc_t *vdcp)
4027 {
4028 	int dring_size;
4029 
4030 	ASSERT(MUTEX_HELD(&vdcp->lock));
4031 	ASSERT(vdcp->state == VDC_STATE_RESETTING);
4032 
4033 	/*
4034 	 * If the backup dring is stil around, it means
4035 	 * that the last restore did not complete. However,
4036 	 * since we never got back into the running state,
4037 	 * the backup copy we have is still valid.
4038 	 */
4039 	if (vdcp->local_dring_backup != NULL) {
4040 		DMSG(vdcp, 1, "reusing local descriptor ring backup "
4041 		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
4042 		    vdcp->local_dring_backup_tail);
4043 		return;
4044 	}
4045 
4046 	/*
4047 	 * The backup dring can be NULL and the local dring may not be
4048 	 * initialized. This can happen if we had a reset while establishing
4049 	 * a new connection but after the connection has timed out. In that
4050 	 * case the backup dring is NULL because the requests have been
4051 	 * cancelled and the request occured before the local dring is
4052 	 * initialized.
4053 	 */
4054 	if (!(vdcp->initialized & VDC_DRING_LOCAL))
4055 		return;
4056 
4057 	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
4058 	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
4059 
4060 	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
4061 
4062 	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
4063 	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
4064 
4065 	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
4066 	vdcp->local_dring_backup_len = vdcp->dring_len;
4067 }
4068 
4069 static void
4070 vdc_switch_server(vdc_t *vdcp)
4071 {
4072 	int		rv;
4073 	vdc_server_t 	*curr_server, *new_server;
4074 
4075 	ASSERT(MUTEX_HELD(&vdcp->lock));
4076 
4077 	/* if there is only one server return back */
4078 	if (vdcp->num_servers == 1) {
4079 		return;
4080 	}
4081 
4082 	/* Get current and next server */
4083 	curr_server = vdcp->curr_server;
4084 	new_server =
4085 	    (curr_server->next) ? curr_server->next : vdcp->server_list;
4086 	ASSERT(curr_server != new_server);
4087 
4088 	/* bring current server's channel down */
4089 	rv = ldc_down(curr_server->ldc_handle);
4090 	if (rv) {
4091 		DMSG(vdcp, 0, "[%d] Cannot bring channel down, port %ld\n",
4092 		    vdcp->instance, curr_server->id);
4093 		return;
4094 	}
4095 
4096 	/* switch the server */
4097 	vdcp->curr_server = new_server;
4098 
4099 	DMSG(vdcp, 0, "[%d] Switched to next vdisk server, port@%ld, ldc@%ld\n",
4100 	    vdcp->instance, vdcp->curr_server->id, vdcp->curr_server->ldc_id);
4101 }
4102 
4103 /* -------------------------------------------------------------------------- */
4104 
4105 /*
4106  * The following functions process the incoming messages from vds
4107  */
4108 
4109 /*
4110  * Function:
4111  *      vdc_process_msg_thread()
4112  *
4113  * Description:
4114  *
4115  *	Main VDC message processing thread. Each vDisk instance
4116  * 	consists of a copy of this thread. This thread triggers
4117  * 	all the handshakes and data exchange with the server. It
4118  * 	also handles all channel resets
4119  *
4120  * Arguments:
4121  *      vdc     - soft state pointer for this instance of the device driver.
4122  *
4123  * Return Code:
4124  *      None
4125  */
4126 static void
4127 vdc_process_msg_thread(vdc_t *vdcp)
4128 {
4129 	int		status;
4130 	int		ctimeout;
4131 	timeout_id_t	tmid = 0;
4132 	clock_t		ldcup_timeout = 0;
4133 
4134 	mutex_enter(&vdcp->lock);
4135 
4136 	for (;;) {
4137 
4138 #define	Q(_s)	(vdcp->state == _s) ? #_s :
4139 		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
4140 		    Q(VDC_STATE_INIT)
4141 		    Q(VDC_STATE_INIT_WAITING)
4142 		    Q(VDC_STATE_NEGOTIATE)
4143 		    Q(VDC_STATE_HANDLE_PENDING)
4144 		    Q(VDC_STATE_RUNNING)
4145 		    Q(VDC_STATE_RESETTING)
4146 		    Q(VDC_STATE_DETACH)
4147 		    "UNKNOWN");
4148 
4149 		switch (vdcp->state) {
4150 		case VDC_STATE_INIT:
4151 
4152 			/*
4153 			 * If requested, start a timeout to check if the
4154 			 * connection with vds is established in the
4155 			 * specified delay. If the timeout expires, we
4156 			 * will cancel any pending request.
4157 			 *
4158 			 * If some reset have occurred while establishing
4159 			 * the connection, we already have a timeout armed
4160 			 * and in that case we don't need to arm a new one.
4161 			 *
4162 			 * The same rule applies when there are multiple vds'.
4163 			 * If either a connection cannot be established or
4164 			 * the handshake times out, the connection thread will
4165 			 * try another server. The 'ctimeout' will report
4166 			 * back an error after it expires irrespective of
4167 			 * whether the vdisk is trying to connect to just
4168 			 * one or multiple servers.
4169 			 */
4170 			ctimeout = (vdc_timeout != 0)?
4171 			    vdc_timeout : vdcp->curr_server->ctimeout;
4172 
4173 			if (ctimeout != 0 && tmid == 0) {
4174 				tmid = timeout(vdc_connection_timeout, vdcp,
4175 				    ctimeout * drv_usectohz(MICROSEC));
4176 			}
4177 
4178 			/* Check if we are re-initializing repeatedly */
4179 			if (vdcp->hshake_cnt > vdc_hshake_retries &&
4180 			    vdcp->lifecycle != VDC_LC_ONLINE) {
4181 
4182 				DMSG(vdcp, 0, "[%d] too many handshakes,cnt=%d",
4183 				    vdcp->instance, vdcp->hshake_cnt);
4184 				cmn_err(CE_NOTE, "[%d] disk access failed.\n",
4185 				    vdcp->instance);
4186 				vdcp->state = VDC_STATE_DETACH;
4187 				break;
4188 			}
4189 
4190 			/* Switch to STATE_DETACH if drv is detaching */
4191 			if (vdcp->lifecycle == VDC_LC_DETACHING) {
4192 				vdcp->state = VDC_STATE_DETACH;
4193 				break;
4194 			}
4195 
4196 			/* Switch server */
4197 			if (vdcp->hshake_cnt > 0)
4198 				vdc_switch_server(vdcp);
4199 			vdcp->hshake_cnt++;
4200 
4201 			/* Bring up connection with vds via LDC */
4202 			status = vdc_start_ldc_connection(vdcp);
4203 			if (status != EINVAL) {
4204 				vdcp->state = VDC_STATE_INIT_WAITING;
4205 			}
4206 			break;
4207 
4208 		case VDC_STATE_INIT_WAITING:
4209 
4210 			/* if channel is UP, start negotiation */
4211 			if (vdcp->curr_server->ldc_state == LDC_UP) {
4212 				vdcp->state = VDC_STATE_NEGOTIATE;
4213 				break;
4214 			}
4215 
4216 			/* check if only one server exists */
4217 			if (vdcp->num_servers == 1) {
4218 				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
4219 			} else {
4220 				/*
4221 				 * wait for LDC_UP, if it times out, switch
4222 				 * to another server.
4223 				 */
4224 				ldcup_timeout = ddi_get_lbolt() +
4225 				    (vdc_ldcup_timeout *
4226 				    drv_usectohz(MICROSEC));
4227 				status = cv_timedwait(&vdcp->initwait_cv,
4228 				    &vdcp->lock, ldcup_timeout);
4229 				if (status == -1 &&
4230 				    vdcp->state == VDC_STATE_INIT_WAITING &&
4231 				    vdcp->curr_server->ldc_state != LDC_UP) {
4232 					/* timed out & still waiting */
4233 					vdcp->state = VDC_STATE_INIT;
4234 					break;
4235 				}
4236 			}
4237 
4238 			if (vdcp->state != VDC_STATE_INIT_WAITING) {
4239 				DMSG(vdcp, 0,
4240 				    "state moved to %d out from under us...\n",
4241 				    vdcp->state);
4242 			}
4243 			break;
4244 
4245 		case VDC_STATE_NEGOTIATE:
4246 			switch (status = vdc_ver_negotiation(vdcp)) {
4247 			case 0:
4248 				break;
4249 			default:
4250 				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
4251 				    status);
4252 				goto reset;
4253 			}
4254 
4255 			switch (status = vdc_attr_negotiation(vdcp)) {
4256 			case 0:
4257 				break;
4258 			default:
4259 				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
4260 				    status);
4261 				goto reset;
4262 			}
4263 
4264 			switch (status = vdc_dring_negotiation(vdcp)) {
4265 			case 0:
4266 				break;
4267 			default:
4268 				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
4269 				    status);
4270 				goto reset;
4271 			}
4272 
4273 			switch (status = vdc_rdx_exchange(vdcp)) {
4274 			case 0:
4275 				vdcp->state = VDC_STATE_HANDLE_PENDING;
4276 				goto done;
4277 			default:
4278 				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
4279 				    status);
4280 				goto reset;
4281 			}
4282 reset:
4283 			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
4284 			    status);
4285 			vdcp->state = VDC_STATE_RESETTING;
4286 			vdcp->self_reset = B_TRUE;
4287 done:
4288 			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
4289 			    vdcp->state);
4290 			break;
4291 
4292 		case VDC_STATE_HANDLE_PENDING:
4293 
4294 			if (vdcp->ctimeout_reached) {
4295 				/*
4296 				 * The connection timeout had been reached so
4297 				 * pending requests have been cancelled. Now
4298 				 * that the connection is back we can reset
4299 				 * the timeout.
4300 				 */
4301 				ASSERT(vdcp->local_dring_backup == NULL);
4302 				ASSERT(tmid != 0);
4303 				tmid = 0;
4304 				vdcp->ctimeout_reached = B_FALSE;
4305 				vdcp->state = VDC_STATE_RUNNING;
4306 				DMSG(vdcp, 0, "[%d] connection to service "
4307 				    "domain is up", vdcp->instance);
4308 				break;
4309 			}
4310 
4311 			mutex_exit(&vdcp->lock);
4312 			if (tmid != 0) {
4313 				(void) untimeout(tmid);
4314 				tmid = 0;
4315 			}
4316 			status = vdc_resubmit_backup_dring(vdcp);
4317 			mutex_enter(&vdcp->lock);
4318 
4319 			if (status)
4320 				vdcp->state = VDC_STATE_RESETTING;
4321 			else
4322 				vdcp->state = VDC_STATE_RUNNING;
4323 
4324 			break;
4325 
4326 		/* enter running state */
4327 		case VDC_STATE_RUNNING:
4328 			/*
4329 			 * Signal anyone waiting for the connection
4330 			 * to come on line.
4331 			 */
4332 			vdcp->hshake_cnt = 0;
4333 			cv_broadcast(&vdcp->running_cv);
4334 
4335 			/* failfast has to been checked after reset */
4336 			cv_signal(&vdcp->failfast_cv);
4337 
4338 			/* ownership is lost during reset */
4339 			if (vdcp->ownership & VDC_OWNERSHIP_WANTED)
4340 				vdcp->ownership |= VDC_OWNERSHIP_RESET;
4341 			cv_signal(&vdcp->ownership_cv);
4342 
4343 			cmn_err(CE_CONT, "?vdisk@%d is online using "
4344 			    "ldc@%ld,%ld\n", vdcp->instance,
4345 			    vdcp->curr_server->ldc_id, vdcp->curr_server->id);
4346 
4347 			mutex_exit(&vdcp->lock);
4348 
4349 			for (;;) {
4350 				vio_msg_t msg;
4351 				status = vdc_wait_for_response(vdcp, &msg);
4352 				if (status) break;
4353 
4354 				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
4355 				    vdcp->instance);
4356 				status = vdc_process_data_msg(vdcp, &msg);
4357 				if (status) {
4358 					DMSG(vdcp, 1, "[%d] process_data_msg "
4359 					    "returned err=%d\n", vdcp->instance,
4360 					    status);
4361 					break;
4362 				}
4363 
4364 			}
4365 
4366 			mutex_enter(&vdcp->lock);
4367 
4368 			cmn_err(CE_CONT, "?vdisk@%d is offline\n",
4369 			    vdcp->instance);
4370 
4371 			vdcp->state = VDC_STATE_RESETTING;
4372 			vdcp->self_reset = B_TRUE;
4373 			break;
4374 
4375 		case VDC_STATE_RESETTING:
4376 			/*
4377 			 * When we reach this state, we either come from the
4378 			 * VDC_STATE_RUNNING state and we can have pending
4379 			 * request but no timeout is armed; or we come from
4380 			 * the VDC_STATE_INIT_WAITING, VDC_NEGOTIATE or
4381 			 * VDC_HANDLE_PENDING state and there is no pending
4382 			 * request or pending requests have already been copied
4383 			 * into the backup dring. So we can safely keep the
4384 			 * connection timeout armed while we are in this state.
4385 			 */
4386 
4387 			DMSG(vdcp, 0, "Initiating channel reset "
4388 			    "(pending = %d)\n", (int)vdcp->threads_pending);
4389 
4390 			if (vdcp->self_reset) {
4391 				DMSG(vdcp, 0,
4392 				    "[%d] calling stop_ldc_connection.\n",
4393 				    vdcp->instance);
4394 				status = vdc_stop_ldc_connection(vdcp);
4395 				vdcp->self_reset = B_FALSE;
4396 			}
4397 
4398 			/*
4399 			 * Wait for all threads currently waiting
4400 			 * for a free dring entry to use.
4401 			 */
4402 			while (vdcp->threads_pending) {
4403 				cv_broadcast(&vdcp->membind_cv);
4404 				cv_broadcast(&vdcp->dring_free_cv);
4405 				mutex_exit(&vdcp->lock);
4406 				/* give the waiters enough time to wake up */
4407 				delay(vdc_hz_min_ldc_delay);
4408 				mutex_enter(&vdcp->lock);
4409 			}
4410 
4411 			ASSERT(vdcp->threads_pending == 0);
4412 
4413 			/* Sanity check that no thread is receiving */
4414 			ASSERT(vdcp->read_state != VDC_READ_WAITING);
4415 
4416 			vdcp->read_state = VDC_READ_IDLE;
4417 
4418 			vdc_backup_local_dring(vdcp);
4419 
4420 			/* cleanup the old d-ring */
4421 			vdc_destroy_descriptor_ring(vdcp);
4422 
4423 			/* go and start again */
4424 			vdcp->state = VDC_STATE_INIT;
4425 
4426 			break;
4427 
4428 		case VDC_STATE_DETACH:
4429 			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
4430 			    vdcp->instance);
4431 
4432 			/* cancel any pending timeout */
4433 			mutex_exit(&vdcp->lock);
4434 			if (tmid != 0) {
4435 				(void) untimeout(tmid);
4436 				tmid = 0;
4437 			}
4438 			mutex_enter(&vdcp->lock);
4439 
4440 			/*
4441 			 * Signal anyone waiting for connection
4442 			 * to come online
4443 			 */
4444 			cv_broadcast(&vdcp->running_cv);
4445 
4446 			while (vdcp->sync_op_pending) {
4447 				cv_signal(&vdcp->sync_pending_cv);
4448 				cv_signal(&vdcp->sync_blocked_cv);
4449 				mutex_exit(&vdcp->lock);
4450 				/* give the waiters enough time to wake up */
4451 				delay(vdc_hz_min_ldc_delay);
4452 				mutex_enter(&vdcp->lock);
4453 			}
4454 
4455 			mutex_exit(&vdcp->lock);
4456 
4457 			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
4458 			    vdcp->instance);
4459 			thread_exit();
4460 			break;
4461 		}
4462 	}
4463 }
4464 
4465 
4466 /*
4467  * Function:
4468  *	vdc_process_data_msg()
4469  *
4470  * Description:
4471  *	This function is called by the message processing thread each time
4472  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
4473  *	be an ACK or NACK from vds[1] which vdc handles as follows.
4474  *		ACK	- wake up the waiting thread
4475  *		NACK	- resend any messages necessary
4476  *
4477  *	[1] Although the message format allows it, vds should not send a
4478  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
4479  *	    some bizarre reason it does, vdc will reset the connection.
4480  *
4481  * Arguments:
4482  *	vdc	- soft state pointer for this instance of the device driver.
4483  *	msg	- the LDC message sent by vds
4484  *
4485  * Return Code:
4486  *	0	- Success.
4487  *	> 0	- error value returned by LDC
4488  */
4489 static int
4490 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
4491 {
4492 	int			status = 0;
4493 	vio_dring_msg_t		*dring_msg;
4494 	vdc_local_desc_t	*ldep = NULL;
4495 	int			start, end;
4496 	int			idx;
4497 	int			op;
4498 
4499 	dring_msg = (vio_dring_msg_t *)msg;
4500 
4501 	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
4502 	ASSERT(vdcp != NULL);
4503 
4504 	mutex_enter(&vdcp->lock);
4505 
4506 	/*
4507 	 * Check to see if the message has bogus data
4508 	 */
4509 	idx = start = dring_msg->start_idx;
4510 	end = dring_msg->end_idx;
4511 	if ((start >= vdcp->dring_len) ||
4512 	    (end >= vdcp->dring_len) || (end < -1)) {
4513 		/*
4514 		 * Update the I/O statistics to indicate that an error ocurred.
4515 		 * No need to update the wait/run queues as no specific read or
4516 		 * write request is being completed in response to this 'msg'.
4517 		 */
4518 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4519 		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
4520 		    vdcp->instance, start, end);
4521 		mutex_exit(&vdcp->lock);
4522 		return (EINVAL);
4523 	}
4524 
4525 	/*
4526 	 * Verify that the sequence number is what vdc expects.
4527 	 */
4528 	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
4529 	case VDC_SEQ_NUM_TODO:
4530 		break;	/* keep processing this message */
4531 	case VDC_SEQ_NUM_SKIP:
4532 		mutex_exit(&vdcp->lock);
4533 		return (0);
4534 	case VDC_SEQ_NUM_INVALID:
4535 		/*
4536 		 * Update the I/O statistics to indicate that an error ocurred.
4537 		 * No need to update the wait/run queues as no specific read or
4538 		 * write request is being completed in response to this 'msg'.
4539 		 */
4540 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4541 		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
4542 		mutex_exit(&vdcp->lock);
4543 		return (ENXIO);
4544 	}
4545 
4546 	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
4547 		/*
4548 		 * Update the I/O statistics to indicate that an error ocurred.
4549 		 *
4550 		 * We need to update the run queue if a read or write request
4551 		 * is being NACKed - otherwise there will appear to be an
4552 		 * indefinite outstanding request and statistics reported by
4553 		 * iostat(1M) will be incorrect. The transaction will be
4554 		 * resubmitted from the backup DRing following the reset
4555 		 * and the wait/run queues will be entered again.
4556 		 */
4557 		ldep = &vdcp->local_dring[idx];
4558 		op = ldep->operation;
4559 		if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
4560 			DTRACE_IO1(done, buf_t *, ldep->cb_arg);
4561 			VD_KSTAT_RUNQ_EXIT(vdcp);
4562 		}
4563 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4564 		VDC_DUMP_DRING_MSG(dring_msg);
4565 		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
4566 		mutex_exit(&vdcp->lock);
4567 		return (EIO);
4568 
4569 	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
4570 		/*
4571 		 * Update the I/O statistics to indicate that an error occurred.
4572 		 * No need to update the wait/run queues as no specific read or
4573 		 * write request is being completed in response to this 'msg'.
4574 		 */
4575 		VD_UPDATE_ERR_STATS(vdcp, vd_protoerrs);
4576 		mutex_exit(&vdcp->lock);
4577 		return (EPROTO);
4578 	}
4579 
4580 	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
4581 	ASSERT(start == end);
4582 
4583 	ldep = &vdcp->local_dring[idx];
4584 
4585 	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
4586 	    ldep->dep->hdr.dstate, ldep->cb_type);
4587 
4588 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
4589 		struct buf *bufp;
4590 
4591 		switch (ldep->cb_type) {
4592 		case CB_SYNC:
4593 			ASSERT(vdcp->sync_op_pending);
4594 
4595 			status = vdc_depopulate_descriptor(vdcp, idx);
4596 			vdcp->sync_op_status = status;
4597 			vdcp->sync_op_pending = B_FALSE;
4598 			cv_signal(&vdcp->sync_pending_cv);
4599 			break;
4600 
4601 		case CB_STRATEGY:
4602 			bufp = ldep->cb_arg;
4603 			ASSERT(bufp != NULL);
4604 			bufp->b_resid =
4605 			    bufp->b_bcount - ldep->dep->payload.nbytes;
4606 			status = ldep->dep->payload.status; /* Future:ntoh */
4607 			if (status != 0) {
4608 				DMSG(vdcp, 1, "strategy status=%d\n", status);
4609 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4610 				bioerror(bufp, status);
4611 			}
4612 
4613 			(void) vdc_depopulate_descriptor(vdcp, idx);
4614 
4615 			DMSG(vdcp, 1,
4616 			    "strategy complete req=%ld bytes resp=%ld bytes\n",
4617 			    bufp->b_bcount, ldep->dep->payload.nbytes);
4618 
4619 			if (status != 0 && vdcp->failfast_interval != 0) {
4620 				/*
4621 				 * The I/O has failed and failfast is enabled.
4622 				 * We need the failfast thread to check if the
4623 				 * failure is due to a reservation conflict.
4624 				 */
4625 				(void) vdc_failfast_io_queue(vdcp, bufp);
4626 			} else {
4627 				if (status == 0) {
4628 					op = (bufp->b_flags & B_READ) ?
4629 					    VD_OP_BREAD : VD_OP_BWRITE;
4630 					VD_UPDATE_IO_STATS(vdcp, op,
4631 					    ldep->dep->payload.nbytes);
4632 				}
4633 				VD_KSTAT_RUNQ_EXIT(vdcp);
4634 				DTRACE_IO1(done, buf_t *, bufp);
4635 				biodone(bufp);
4636 			}
4637 			break;
4638 
4639 		default:
4640 			ASSERT(0);
4641 		}
4642 	}
4643 
4644 	/* let the arrival signal propogate */
4645 	mutex_exit(&vdcp->lock);
4646 
4647 	/* probe gives the count of how many entries were processed */
4648 	DTRACE_PROBE2(processed, int, 1, vdc_t *, vdcp);
4649 
4650 	return (0);
4651 }
4652 
4653 
4654 /*
4655  * Function:
4656  *	vdc_handle_ver_msg()
4657  *
4658  * Description:
4659  *
4660  * Arguments:
4661  *	vdc	- soft state pointer for this instance of the device driver.
4662  *	ver_msg	- LDC message sent by vDisk server
4663  *
4664  * Return Code:
4665  *	0	- Success
4666  */
4667 static int
4668 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
4669 {
4670 	int status = 0;
4671 
4672 	ASSERT(vdc != NULL);
4673 	ASSERT(mutex_owned(&vdc->lock));
4674 
4675 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
4676 		return (EPROTO);
4677 	}
4678 
4679 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
4680 		return (EINVAL);
4681 	}
4682 
4683 	switch (ver_msg->tag.vio_subtype) {
4684 	case VIO_SUBTYPE_ACK:
4685 		/*
4686 		 * We check to see if the version returned is indeed supported
4687 		 * (The server may have also adjusted the minor number downwards
4688 		 * and if so 'ver_msg' will contain the actual version agreed)
4689 		 */
4690 		if (vdc_is_supported_version(ver_msg)) {
4691 			vdc->ver.major = ver_msg->ver_major;
4692 			vdc->ver.minor = ver_msg->ver_minor;
4693 			ASSERT(vdc->ver.major > 0);
4694 		} else {
4695 			status = EPROTO;
4696 		}
4697 		break;
4698 
4699 	case VIO_SUBTYPE_NACK:
4700 		/*
4701 		 * call vdc_is_supported_version() which will return the next
4702 		 * supported version (if any) in 'ver_msg'
4703 		 */
4704 		(void) vdc_is_supported_version(ver_msg);
4705 		if (ver_msg->ver_major > 0) {
4706 			size_t len = sizeof (*ver_msg);
4707 
4708 			ASSERT(vdc->ver.major > 0);
4709 
4710 			/* reset the necessary fields and resend */
4711 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
4712 			ver_msg->dev_class = VDEV_DISK;
4713 
4714 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
4715 			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
4716 			    vdc->instance, status);
4717 			if (len != sizeof (*ver_msg))
4718 				status = EBADMSG;
4719 		} else {
4720 			DMSG(vdc, 0, "[%d] No common version with vDisk server",
4721 			    vdc->instance);
4722 			status = ENOTSUP;
4723 		}
4724 
4725 		break;
4726 	case VIO_SUBTYPE_INFO:
4727 		/*
4728 		 * Handle the case where vds starts handshake
4729 		 * (for now only vdc is the instigator)
4730 		 */
4731 		status = ENOTSUP;
4732 		break;
4733 
4734 	default:
4735 		status = EINVAL;
4736 		break;
4737 	}
4738 
4739 	return (status);
4740 }
4741 
4742 /*
4743  * Function:
4744  *	vdc_handle_attr_msg()
4745  *
4746  * Description:
4747  *
4748  * Arguments:
4749  *	vdc	- soft state pointer for this instance of the device driver.
4750  *	attr_msg	- LDC message sent by vDisk server
4751  *
4752  * Return Code:
4753  *	0	- Success
4754  */
4755 static int
4756 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
4757 {
4758 	int status = 0;
4759 
4760 	ASSERT(vdc != NULL);
4761 	ASSERT(mutex_owned(&vdc->lock));
4762 
4763 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
4764 		return (EPROTO);
4765 	}
4766 
4767 	switch (attr_msg->tag.vio_subtype) {
4768 	case VIO_SUBTYPE_ACK:
4769 		/*
4770 		 * We now verify the attributes sent by vds.
4771 		 */
4772 		if (attr_msg->vdisk_size == 0) {
4773 			DMSG(vdc, 0, "[%d] Invalid disk size from vds",
4774 			    vdc->instance);
4775 			status = EINVAL;
4776 			break;
4777 		}
4778 
4779 		if (attr_msg->max_xfer_sz == 0) {
4780 			DMSG(vdc, 0, "[%d] Invalid transfer size from vds",
4781 			    vdc->instance);
4782 			status = EINVAL;
4783 			break;
4784 		}
4785 
4786 		if (attr_msg->vdisk_size == VD_SIZE_UNKNOWN) {
4787 			DMSG(vdc, 0, "[%d] Unknown disk size from vds",
4788 			    vdc->instance);
4789 			attr_msg->vdisk_size = 0;
4790 		}
4791 
4792 		/*
4793 		 * If the disk size is already set check that it hasn't changed.
4794 		 */
4795 		if ((vdc->vdisk_size != 0) && (attr_msg->vdisk_size != 0) &&
4796 		    (vdc->vdisk_size != attr_msg->vdisk_size)) {
4797 			DMSG(vdc, 0, "[%d] Different disk size from vds "
4798 			    "(old=0x%lx - new=0x%lx", vdc->instance,
4799 			    vdc->vdisk_size, attr_msg->vdisk_size)
4800 			status = EINVAL;
4801 			break;
4802 		}
4803 
4804 		vdc->vdisk_size = attr_msg->vdisk_size;
4805 		vdc->vdisk_type = attr_msg->vdisk_type;
4806 		vdc->operations = attr_msg->operations;
4807 		if (vio_ver_is_supported(vdc->ver, 1, 1))
4808 			vdc->vdisk_media = attr_msg->vdisk_media;
4809 		else
4810 			vdc->vdisk_media = 0;
4811 
4812 		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
4813 		    vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
4814 		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
4815 		    vdc->instance, vdc->block_size,
4816 		    attr_msg->vdisk_block_size);
4817 
4818 		/*
4819 		 * We don't know at compile time what the vDisk server will
4820 		 * think are good values but we apply a large (arbitrary)
4821 		 * upper bound to prevent memory exhaustion in vdc if it was
4822 		 * allocating a DRing based of huge values sent by the server.
4823 		 * We probably will never exceed this except if the message
4824 		 * was garbage.
4825 		 */
4826 		if ((attr_msg->max_xfer_sz * attr_msg->vdisk_block_size) <=
4827 		    (PAGESIZE * DEV_BSIZE)) {
4828 			vdc->max_xfer_sz = attr_msg->max_xfer_sz;
4829 			vdc->block_size = attr_msg->vdisk_block_size;
4830 		} else {
4831 			DMSG(vdc, 0, "[%d] vds block transfer size too big;"
4832 			    " using max supported by vdc", vdc->instance);
4833 		}
4834 
4835 		if ((attr_msg->xfer_mode != VIO_DRING_MODE_V1_0) ||
4836 		    (attr_msg->vdisk_size > INT64_MAX) ||
4837 		    (attr_msg->operations == 0) ||
4838 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
4839 			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
4840 			    vdc->instance);
4841 			status = EINVAL;
4842 			break;
4843 		}
4844 
4845 		/*
4846 		 * Now that we have received all attributes we can create a
4847 		 * fake geometry for the disk.
4848 		 */
4849 		vdc_create_fake_geometry(vdc);
4850 		break;
4851 
4852 	case VIO_SUBTYPE_NACK:
4853 		/*
4854 		 * vds could not handle the attributes we sent so we
4855 		 * stop negotiating.
4856 		 */
4857 		status = EPROTO;
4858 		break;
4859 
4860 	case VIO_SUBTYPE_INFO:
4861 		/*
4862 		 * Handle the case where vds starts the handshake
4863 		 * (for now; vdc is the only supported instigatior)
4864 		 */
4865 		status = ENOTSUP;
4866 		break;
4867 
4868 	default:
4869 		status = ENOTSUP;
4870 		break;
4871 	}
4872 
4873 	return (status);
4874 }
4875 
4876 /*
4877  * Function:
4878  *	vdc_handle_dring_reg_msg()
4879  *
4880  * Description:
4881  *
4882  * Arguments:
4883  *	vdc		- soft state pointer for this instance of the driver.
4884  *	dring_msg	- LDC message sent by vDisk server
4885  *
4886  * Return Code:
4887  *	0	- Success
4888  */
4889 static int
4890 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
4891 {
4892 	int		status = 0;
4893 
4894 	ASSERT(vdc != NULL);
4895 	ASSERT(mutex_owned(&vdc->lock));
4896 
4897 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
4898 		return (EPROTO);
4899 	}
4900 
4901 	switch (dring_msg->tag.vio_subtype) {
4902 	case VIO_SUBTYPE_ACK:
4903 		/* save the received dring_ident */
4904 		vdc->dring_ident = dring_msg->dring_ident;
4905 		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
4906 		    vdc->instance, vdc->dring_ident);
4907 		break;
4908 
4909 	case VIO_SUBTYPE_NACK:
4910 		/*
4911 		 * vds could not handle the DRing info we sent so we
4912 		 * stop negotiating.
4913 		 */
4914 		DMSG(vdc, 0, "[%d] server could not register DRing\n",
4915 		    vdc->instance);
4916 		status = EPROTO;
4917 		break;
4918 
4919 	case VIO_SUBTYPE_INFO:
4920 		/*
4921 		 * Handle the case where vds starts handshake
4922 		 * (for now only vdc is the instigatior)
4923 		 */
4924 		status = ENOTSUP;
4925 		break;
4926 	default:
4927 		status = ENOTSUP;
4928 	}
4929 
4930 	return (status);
4931 }
4932 
4933 /*
4934  * Function:
4935  *	vdc_verify_seq_num()
4936  *
4937  * Description:
4938  *	This functions verifies that the sequence number sent back by the vDisk
4939  *	server with the latest message is what is expected (i.e. it is greater
4940  *	than the last seq num sent by the vDisk server and less than or equal
4941  *	to the last seq num generated by vdc).
4942  *
4943  *	It then checks the request ID to see if any requests need processing
4944  *	in the DRing.
4945  *
4946  * Arguments:
4947  *	vdc		- soft state pointer for this instance of the driver.
4948  *	dring_msg	- pointer to the LDC message sent by vds
4949  *
4950  * Return Code:
4951  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
4952  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
4953  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
4954  *				  vdc cannot deal with them
4955  */
4956 static int
4957 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
4958 {
4959 	ASSERT(vdc != NULL);
4960 	ASSERT(dring_msg != NULL);
4961 	ASSERT(mutex_owned(&vdc->lock));
4962 
4963 	/*
4964 	 * Check to see if the messages were responded to in the correct
4965 	 * order by vds.
4966 	 */
4967 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
4968 	    (dring_msg->seq_num > vdc->seq_num)) {
4969 		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
4970 		    "%lu > expected <= %lu (last proc req %lu sent %lu)\n",
4971 		    vdc->instance, dring_msg->seq_num,
4972 		    vdc->seq_num_reply, vdc->seq_num,
4973 		    vdc->req_id_proc, vdc->req_id);
4974 		return (VDC_SEQ_NUM_INVALID);
4975 	}
4976 	vdc->seq_num_reply = dring_msg->seq_num;
4977 
4978 	if (vdc->req_id_proc < vdc->req_id)
4979 		return (VDC_SEQ_NUM_TODO);
4980 	else
4981 		return (VDC_SEQ_NUM_SKIP);
4982 }
4983 
4984 
4985 /*
4986  * Function:
4987  *	vdc_is_supported_version()
4988  *
4989  * Description:
4990  *	This routine checks if the major/minor version numbers specified in
4991  *	'ver_msg' are supported. If not it finds the next version that is
4992  *	in the supported version list 'vdc_version[]' and sets the fields in
4993  *	'ver_msg' to those values
4994  *
4995  * Arguments:
4996  *	ver_msg	- LDC message sent by vDisk server
4997  *
4998  * Return Code:
4999  *	B_TRUE	- Success
5000  *	B_FALSE	- Version not supported
5001  */
5002 static boolean_t
5003 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
5004 {
5005 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
5006 
5007 	for (int i = 0; i < vdc_num_versions; i++) {
5008 		ASSERT(vdc_version[i].major > 0);
5009 		ASSERT((i == 0) ||
5010 		    (vdc_version[i].major < vdc_version[i-1].major));
5011 
5012 		/*
5013 		 * If the major versions match, adjust the minor version, if
5014 		 * necessary, down to the highest value supported by this
5015 		 * client. The server should support all minor versions lower
5016 		 * than the value it sent
5017 		 */
5018 		if (ver_msg->ver_major == vdc_version[i].major) {
5019 			if (ver_msg->ver_minor > vdc_version[i].minor) {
5020 				DMSGX(0,
5021 				    "Adjusting minor version from %u to %u",
5022 				    ver_msg->ver_minor, vdc_version[i].minor);
5023 				ver_msg->ver_minor = vdc_version[i].minor;
5024 			}
5025 			return (B_TRUE);
5026 		}
5027 
5028 		/*
5029 		 * If the message contains a higher major version number, set
5030 		 * the message's major/minor versions to the current values
5031 		 * and return false, so this message will get resent with
5032 		 * these values, and the server will potentially try again
5033 		 * with the same or a lower version
5034 		 */
5035 		if (ver_msg->ver_major > vdc_version[i].major) {
5036 			ver_msg->ver_major = vdc_version[i].major;
5037 			ver_msg->ver_minor = vdc_version[i].minor;
5038 			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
5039 			    ver_msg->ver_major, ver_msg->ver_minor);
5040 
5041 			return (B_FALSE);
5042 		}
5043 
5044 		/*
5045 		 * Otherwise, the message's major version is less than the
5046 		 * current major version, so continue the loop to the next
5047 		 * (lower) supported version
5048 		 */
5049 	}
5050 
5051 	/*
5052 	 * No common version was found; "ground" the version pair in the
5053 	 * message to terminate negotiation
5054 	 */
5055 	ver_msg->ver_major = 0;
5056 	ver_msg->ver_minor = 0;
5057 
5058 	return (B_FALSE);
5059 }
5060 /* -------------------------------------------------------------------------- */
5061 
5062 /*
5063  * DKIO(7) support
5064  */
5065 
5066 typedef struct vdc_dk_arg {
5067 	struct dk_callback	dkc;
5068 	int			mode;
5069 	dev_t			dev;
5070 	vdc_t			*vdc;
5071 } vdc_dk_arg_t;
5072 
5073 /*
5074  * Function:
5075  * 	vdc_dkio_flush_cb()
5076  *
5077  * Description:
5078  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
5079  *	by kernel code.
5080  *
5081  * Arguments:
5082  *	arg	- a pointer to a vdc_dk_arg_t structure.
5083  */
5084 void
5085 vdc_dkio_flush_cb(void *arg)
5086 {
5087 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
5088 	struct dk_callback	*dkc = NULL;
5089 	vdc_t			*vdc = NULL;
5090 	int			rv;
5091 
5092 	if (dk_arg == NULL) {
5093 		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
5094 		return;
5095 	}
5096 	dkc = &dk_arg->dkc;
5097 	vdc = dk_arg->vdc;
5098 	ASSERT(vdc != NULL);
5099 
5100 	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
5101 	    VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
5102 	if (rv != 0) {
5103 		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
5104 		    vdc->instance, rv,
5105 		    ddi_model_convert_from(dk_arg->mode & FMODELS));
5106 	}
5107 
5108 	/*
5109 	 * Trigger the call back to notify the caller the the ioctl call has
5110 	 * been completed.
5111 	 */
5112 	if ((dk_arg->mode & FKIOCTL) &&
5113 	    (dkc != NULL) &&
5114 	    (dkc->dkc_callback != NULL)) {
5115 		ASSERT(dkc->dkc_cookie != NULL);
5116 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
5117 	}
5118 
5119 	/* Indicate that one less DKIO write flush is outstanding */
5120 	mutex_enter(&vdc->lock);
5121 	vdc->dkio_flush_pending--;
5122 	ASSERT(vdc->dkio_flush_pending >= 0);
5123 	mutex_exit(&vdc->lock);
5124 
5125 	/* free the mem that was allocated when the callback was dispatched */
5126 	kmem_free(arg, sizeof (vdc_dk_arg_t));
5127 }
5128 
5129 /*
5130  * Function:
5131  * 	vdc_dkio_gapart()
5132  *
5133  * Description:
5134  *	This function implements the DKIOCGAPART ioctl.
5135  *
5136  * Arguments:
5137  *	vdc	- soft state pointer
5138  *	arg	- a pointer to a dk_map[NDKMAP] or dk_map32[NDKMAP] structure
5139  *	flag	- ioctl flags
5140  */
5141 static int
5142 vdc_dkio_gapart(vdc_t *vdc, caddr_t arg, int flag)
5143 {
5144 	struct dk_geom *geom;
5145 	struct vtoc *vtoc;
5146 	union {
5147 		struct dk_map map[NDKMAP];
5148 		struct dk_map32 map32[NDKMAP];
5149 	} data;
5150 	int i, rv, size;
5151 
5152 	mutex_enter(&vdc->lock);
5153 
5154 	if ((rv = vdc_validate_geometry(vdc)) != 0) {
5155 		mutex_exit(&vdc->lock);
5156 		return (rv);
5157 	}
5158 
5159 	vtoc = vdc->vtoc;
5160 	geom = vdc->geom;
5161 
5162 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5163 
5164 		for (i = 0; i < vtoc->v_nparts; i++) {
5165 			data.map32[i].dkl_cylno = vtoc->v_part[i].p_start /
5166 			    (geom->dkg_nhead * geom->dkg_nsect);
5167 			data.map32[i].dkl_nblk = vtoc->v_part[i].p_size;
5168 		}
5169 		size = NDKMAP * sizeof (struct dk_map32);
5170 
5171 	} else {
5172 
5173 		for (i = 0; i < vtoc->v_nparts; i++) {
5174 			data.map[i].dkl_cylno = vtoc->v_part[i].p_start /
5175 			    (geom->dkg_nhead * geom->dkg_nsect);
5176 			data.map[i].dkl_nblk = vtoc->v_part[i].p_size;
5177 		}
5178 		size = NDKMAP * sizeof (struct dk_map);
5179 
5180 	}
5181 
5182 	mutex_exit(&vdc->lock);
5183 
5184 	if (ddi_copyout(&data, arg, size, flag) != 0)
5185 		return (EFAULT);
5186 
5187 	return (0);
5188 }
5189 
5190 /*
5191  * Function:
5192  * 	vdc_dkio_partition()
5193  *
5194  * Description:
5195  *	This function implements the DKIOCPARTITION ioctl.
5196  *
5197  * Arguments:
5198  *	vdc	- soft state pointer
5199  *	arg	- a pointer to a struct partition64 structure
5200  *	flag	- ioctl flags
5201  */
5202 static int
5203 vdc_dkio_partition(vdc_t *vdc, caddr_t arg, int flag)
5204 {
5205 	struct partition64 p64;
5206 	efi_gpt_t *gpt;
5207 	efi_gpe_t *gpe;
5208 	vd_efi_dev_t edev;
5209 	uint_t partno;
5210 	int rv;
5211 
5212 	if (ddi_copyin(arg, &p64, sizeof (struct partition64), flag)) {
5213 		return (EFAULT);
5214 	}
5215 
5216 	VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
5217 
5218 	if ((rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe)) != 0) {
5219 		return (rv);
5220 	}
5221 
5222 	partno = p64.p_partno;
5223 
5224 	if (partno >= gpt->efi_gpt_NumberOfPartitionEntries) {
5225 		vd_efi_free(&edev, gpt, gpe);
5226 		return (ESRCH);
5227 	}
5228 
5229 	bcopy(&gpe[partno].efi_gpe_PartitionTypeGUID, &p64.p_type,
5230 	    sizeof (struct uuid));
5231 	p64.p_start = gpe[partno].efi_gpe_StartingLBA;
5232 	p64.p_size = gpe[partno].efi_gpe_EndingLBA - p64.p_start + 1;
5233 
5234 	if (ddi_copyout(&p64, arg, sizeof (struct partition64), flag)) {
5235 		vd_efi_free(&edev, gpt, gpe);
5236 		return (EFAULT);
5237 	}
5238 
5239 	vd_efi_free(&edev, gpt, gpe);
5240 	return (0);
5241 }
5242 
5243 /*
5244  * Function:
5245  * 	vdc_dioctl_rwcmd()
5246  *
5247  * Description:
5248  *	This function implements the DIOCTL_RWCMD ioctl. This ioctl is used
5249  *	for DKC_DIRECT disks to read or write at an absolute disk offset.
5250  *
5251  * Arguments:
5252  *	dev	- device
5253  *	arg	- a pointer to a dadkio_rwcmd or dadkio_rwcmd32 structure
5254  *	flag	- ioctl flags
5255  */
5256 static int
5257 vdc_dioctl_rwcmd(dev_t dev, caddr_t arg, int flag)
5258 {
5259 	struct dadkio_rwcmd32 rwcmd32;
5260 	struct dadkio_rwcmd rwcmd;
5261 	struct iovec aiov;
5262 	struct uio auio;
5263 	int rw, status;
5264 	struct buf *buf;
5265 
5266 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5267 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd32,
5268 		    sizeof (struct dadkio_rwcmd32), flag)) {
5269 			return (EFAULT);
5270 		}
5271 		rwcmd.cmd = rwcmd32.cmd;
5272 		rwcmd.flags = rwcmd32.flags;
5273 		rwcmd.blkaddr = (daddr_t)rwcmd32.blkaddr;
5274 		rwcmd.buflen = rwcmd32.buflen;
5275 		rwcmd.bufaddr = (caddr_t)(uintptr_t)rwcmd32.bufaddr;
5276 	} else {
5277 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd,
5278 		    sizeof (struct dadkio_rwcmd), flag)) {
5279 			return (EFAULT);
5280 		}
5281 	}
5282 
5283 	switch (rwcmd.cmd) {
5284 	case DADKIO_RWCMD_READ:
5285 		rw = B_READ;
5286 		break;
5287 	case DADKIO_RWCMD_WRITE:
5288 		rw = B_WRITE;
5289 		break;
5290 	default:
5291 		return (EINVAL);
5292 	}
5293 
5294 	bzero((caddr_t)&aiov, sizeof (struct iovec));
5295 	aiov.iov_base   = rwcmd.bufaddr;
5296 	aiov.iov_len    = rwcmd.buflen;
5297 
5298 	bzero((caddr_t)&auio, sizeof (struct uio));
5299 	auio.uio_iov    = &aiov;
5300 	auio.uio_iovcnt = 1;
5301 	auio.uio_loffset = rwcmd.blkaddr * DEV_BSIZE;
5302 	auio.uio_resid  = rwcmd.buflen;
5303 	auio.uio_segflg = flag & FKIOCTL ? UIO_SYSSPACE : UIO_USERSPACE;
5304 
5305 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
5306 	bioinit(buf);
5307 	/*
5308 	 * We use the private field of buf to specify that this is an
5309 	 * I/O using an absolute offset.
5310 	 */
5311 	buf->b_private = (void *)VD_SLICE_NONE;
5312 
5313 	status = physio(vdc_strategy, buf, dev, rw, vdc_min, &auio);
5314 
5315 	biofini(buf);
5316 	kmem_free(buf, sizeof (buf_t));
5317 
5318 	return (status);
5319 }
5320 
5321 /*
5322  * Allocate a buffer for a VD_OP_SCSICMD operation. The size of the allocated
5323  * buffer is returned in alloc_len.
5324  */
5325 static vd_scsi_t *
5326 vdc_scsi_alloc(int cdb_len, int sense_len, int datain_len, int dataout_len,
5327     int *alloc_len)
5328 {
5329 	vd_scsi_t *vd_scsi;
5330 	int vd_scsi_len = VD_SCSI_SIZE;
5331 
5332 	vd_scsi_len += P2ROUNDUP(cdb_len, sizeof (uint64_t));
5333 	vd_scsi_len += P2ROUNDUP(sense_len, sizeof (uint64_t));
5334 	vd_scsi_len += P2ROUNDUP(datain_len, sizeof (uint64_t));
5335 	vd_scsi_len += P2ROUNDUP(dataout_len, sizeof (uint64_t));
5336 
5337 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
5338 
5339 	vd_scsi = kmem_zalloc(vd_scsi_len, KM_SLEEP);
5340 
5341 	vd_scsi->cdb_len = cdb_len;
5342 	vd_scsi->sense_len = sense_len;
5343 	vd_scsi->datain_len = datain_len;
5344 	vd_scsi->dataout_len = dataout_len;
5345 
5346 	*alloc_len = vd_scsi_len;
5347 
5348 	return (vd_scsi);
5349 }
5350 
5351 /*
5352  * Convert the status of a SCSI command to a Solaris return code.
5353  *
5354  * Arguments:
5355  *	vd_scsi		- The SCSI operation buffer.
5356  *	log_error	- indicate if an error message should be logged.
5357  *
5358  * Note that our SCSI error messages are rather primitive for the moment
5359  * and could be improved by decoding some data like the SCSI command and
5360  * the sense key.
5361  *
5362  * Return value:
5363  *	0		- Status is good.
5364  *	EACCES		- Status reports a reservation conflict.
5365  *	ENOTSUP		- Status reports a check condition and sense key
5366  *			  reports an illegal request.
5367  *	EIO		- Any other status.
5368  */
5369 static int
5370 vdc_scsi_status(vdc_t *vdc, vd_scsi_t *vd_scsi, boolean_t log_error)
5371 {
5372 	int rv;
5373 	char path_str[MAXPATHLEN];
5374 	char panic_str[VDC_RESV_CONFLICT_FMT_LEN + MAXPATHLEN];
5375 	union scsi_cdb *cdb;
5376 	struct scsi_extended_sense *sense;
5377 
5378 	if (vd_scsi->cmd_status == STATUS_GOOD)
5379 		/* no error */
5380 		return (0);
5381 
5382 	/* when the tunable vdc_scsi_log_error is true we log all errors */
5383 	if (vdc_scsi_log_error)
5384 		log_error = B_TRUE;
5385 
5386 	if (log_error) {
5387 		cmn_err(CE_WARN, "%s (vdc%d):\tError for Command: 0x%x)\n",
5388 		    ddi_pathname(vdc->dip, path_str), vdc->instance,
5389 		    GETCMD(VD_SCSI_DATA_CDB(vd_scsi)));
5390 	}
5391 
5392 	/* default returned value */
5393 	rv = EIO;
5394 
5395 	switch (vd_scsi->cmd_status) {
5396 
5397 	case STATUS_CHECK:
5398 	case STATUS_TERMINATED:
5399 		if (log_error)
5400 			cmn_err(CE_CONT, "\tCheck Condition Error\n");
5401 
5402 		/* check sense buffer */
5403 		if (vd_scsi->sense_len == 0 ||
5404 		    vd_scsi->sense_status != STATUS_GOOD) {
5405 			if (log_error)
5406 				cmn_err(CE_CONT, "\tNo Sense Data Available\n");
5407 			break;
5408 		}
5409 
5410 		sense = VD_SCSI_DATA_SENSE(vd_scsi);
5411 
5412 		if (log_error) {
5413 			cmn_err(CE_CONT, "\tSense Key:  0x%x\n"
5414 			    "\tASC: 0x%x, ASCQ: 0x%x\n",
5415 			    scsi_sense_key((uint8_t *)sense),
5416 			    scsi_sense_asc((uint8_t *)sense),
5417 			    scsi_sense_ascq((uint8_t *)sense));
5418 		}
5419 
5420 		if (scsi_sense_key((uint8_t *)sense) == KEY_ILLEGAL_REQUEST)
5421 			rv = ENOTSUP;
5422 		break;
5423 
5424 	case STATUS_BUSY:
5425 		if (log_error)
5426 			cmn_err(CE_NOTE, "\tDevice Busy\n");
5427 		break;
5428 
5429 	case STATUS_RESERVATION_CONFLICT:
5430 		/*
5431 		 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then
5432 		 * reservation conflict could be due to various reasons like
5433 		 * incorrect keys, not registered or not reserved etc. So,
5434 		 * we should not panic in that case.
5435 		 */
5436 		cdb = VD_SCSI_DATA_CDB(vd_scsi);
5437 		if (vdc->failfast_interval != 0 &&
5438 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_IN &&
5439 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_OUT) {
5440 			/* failfast is enabled so we have to panic */
5441 			(void) snprintf(panic_str, sizeof (panic_str),
5442 			    VDC_RESV_CONFLICT_FMT_STR "%s",
5443 			    ddi_pathname(vdc->dip, path_str));
5444 			panic(panic_str);
5445 		}
5446 		if (log_error)
5447 			cmn_err(CE_NOTE, "\tReservation Conflict\n");
5448 		rv = EACCES;
5449 		break;
5450 
5451 	case STATUS_QFULL:
5452 		if (log_error)
5453 			cmn_err(CE_NOTE, "\tQueue Full\n");
5454 		break;
5455 
5456 	case STATUS_MET:
5457 	case STATUS_INTERMEDIATE:
5458 	case STATUS_SCSI2:
5459 	case STATUS_INTERMEDIATE_MET:
5460 	case STATUS_ACA_ACTIVE:
5461 		if (log_error)
5462 			cmn_err(CE_CONT,
5463 			    "\tUnexpected SCSI status received: 0x%x\n",
5464 			    vd_scsi->cmd_status);
5465 		break;
5466 
5467 	default:
5468 		if (log_error)
5469 			cmn_err(CE_CONT,
5470 			    "\tInvalid SCSI status received: 0x%x\n",
5471 			    vd_scsi->cmd_status);
5472 		break;
5473 	}
5474 
5475 	return (rv);
5476 }
5477 
5478 /*
5479  * Implemented the USCSICMD uscsi(7I) ioctl. This ioctl is converted to
5480  * a VD_OP_SCSICMD operation which is sent to the vdisk server. If a SCSI
5481  * reset is requested (i.e. a flag USCSI_RESET* is set) then the ioctl is
5482  * converted to a VD_OP_RESET operation.
5483  */
5484 static int
5485 vdc_uscsi_cmd(vdc_t *vdc, caddr_t arg, int mode)
5486 {
5487 	struct uscsi_cmd 	uscsi;
5488 	struct uscsi_cmd32	uscsi32;
5489 	vd_scsi_t 		*vd_scsi;
5490 	int 			vd_scsi_len;
5491 	union scsi_cdb		*cdb;
5492 	struct scsi_extended_sense *sense;
5493 	char 			*datain, *dataout;
5494 	size_t			cdb_len, datain_len, dataout_len, sense_len;
5495 	int 			rv;
5496 
5497 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5498 		if (ddi_copyin(arg, &uscsi32, sizeof (struct uscsi_cmd32),
5499 		    mode) != 0)
5500 			return (EFAULT);
5501 		uscsi_cmd32touscsi_cmd((&uscsi32), (&uscsi));
5502 	} else {
5503 		if (ddi_copyin(arg, &uscsi, sizeof (struct uscsi_cmd),
5504 		    mode) != 0)
5505 			return (EFAULT);
5506 	}
5507 
5508 	/* a uscsi reset is converted to a VD_OP_RESET operation */
5509 	if (uscsi.uscsi_flags & (USCSI_RESET | USCSI_RESET_LUN |
5510 	    USCSI_RESET_ALL)) {
5511 		rv = vdc_do_sync_op(vdc, VD_OP_RESET, NULL, 0, 0, 0, CB_SYNC,
5512 		    (void *)(uint64_t)mode, VIO_both_dir, B_TRUE);
5513 		return (rv);
5514 	}
5515 
5516 	/* cdb buffer length */
5517 	cdb_len = uscsi.uscsi_cdblen;
5518 
5519 	/* data in and out buffers length */
5520 	if (uscsi.uscsi_flags & USCSI_READ) {
5521 		datain_len = uscsi.uscsi_buflen;
5522 		dataout_len = 0;
5523 	} else {
5524 		datain_len = 0;
5525 		dataout_len = uscsi.uscsi_buflen;
5526 	}
5527 
5528 	/* sense buffer length */
5529 	if (uscsi.uscsi_flags & USCSI_RQENABLE)
5530 		sense_len = uscsi.uscsi_rqlen;
5531 	else
5532 		sense_len = 0;
5533 
5534 	/* allocate buffer for the VD_SCSICMD_OP operation */
5535 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5536 	    &vd_scsi_len);
5537 
5538 	/*
5539 	 * The documentation of USCSI_ISOLATE and USCSI_DIAGNOSE is very vague,
5540 	 * but basically they prevent a SCSI command from being retried in case
5541 	 * of an error.
5542 	 */
5543 	if ((uscsi.uscsi_flags & USCSI_ISOLATE) ||
5544 	    (uscsi.uscsi_flags & USCSI_DIAGNOSE))
5545 		vd_scsi->options |= VD_SCSI_OPT_NORETRY;
5546 
5547 	/* set task attribute */
5548 	if (uscsi.uscsi_flags & USCSI_NOTAG) {
5549 		vd_scsi->task_attribute = 0;
5550 	} else {
5551 		if (uscsi.uscsi_flags & USCSI_HEAD)
5552 			vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
5553 		else if (uscsi.uscsi_flags & USCSI_HTAG)
5554 			vd_scsi->task_attribute = VD_SCSI_TASK_HQUEUE;
5555 		else if (uscsi.uscsi_flags & USCSI_OTAG)
5556 			vd_scsi->task_attribute = VD_SCSI_TASK_ORDERED;
5557 		else
5558 			vd_scsi->task_attribute = 0;
5559 	}
5560 
5561 	/* set timeout */
5562 	vd_scsi->timeout = uscsi.uscsi_timeout;
5563 
5564 	/* copy-in cdb data */
5565 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5566 	if (ddi_copyin(uscsi.uscsi_cdb, cdb, cdb_len, mode) != 0) {
5567 		rv = EFAULT;
5568 		goto done;
5569 	}
5570 
5571 	/* keep a pointer to the sense buffer */
5572 	sense = VD_SCSI_DATA_SENSE(vd_scsi);
5573 
5574 	/* keep a pointer to the data-in buffer */
5575 	datain = (char *)VD_SCSI_DATA_IN(vd_scsi);
5576 
5577 	/* copy-in request data to the data-out buffer */
5578 	dataout = (char *)VD_SCSI_DATA_OUT(vd_scsi);
5579 	if (!(uscsi.uscsi_flags & USCSI_READ)) {
5580 		if (ddi_copyin(uscsi.uscsi_bufaddr, dataout, dataout_len,
5581 		    mode)) {
5582 			rv = EFAULT;
5583 			goto done;
5584 		}
5585 	}
5586 
5587 	/* submit the request */
5588 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5589 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5590 
5591 	if (rv != 0)
5592 		goto done;
5593 
5594 	/* update scsi status */
5595 	uscsi.uscsi_status = vd_scsi->cmd_status;
5596 
5597 	/* update sense data */
5598 	if ((uscsi.uscsi_flags & USCSI_RQENABLE) &&
5599 	    (uscsi.uscsi_status == STATUS_CHECK ||
5600 	    uscsi.uscsi_status == STATUS_TERMINATED)) {
5601 
5602 		uscsi.uscsi_rqstatus = vd_scsi->sense_status;
5603 
5604 		if (uscsi.uscsi_rqstatus == STATUS_GOOD) {
5605 			uscsi.uscsi_rqresid = uscsi.uscsi_rqlen -
5606 			    vd_scsi->sense_len;
5607 			if (ddi_copyout(sense, uscsi.uscsi_rqbuf,
5608 			    vd_scsi->sense_len, mode) != 0) {
5609 				rv = EFAULT;
5610 				goto done;
5611 			}
5612 		}
5613 	}
5614 
5615 	/* update request data */
5616 	if (uscsi.uscsi_status == STATUS_GOOD) {
5617 		if (uscsi.uscsi_flags & USCSI_READ) {
5618 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5619 			    vd_scsi->datain_len;
5620 			if (ddi_copyout(datain, uscsi.uscsi_bufaddr,
5621 			    vd_scsi->datain_len, mode) != 0) {
5622 				rv = EFAULT;
5623 				goto done;
5624 			}
5625 		} else {
5626 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5627 			    vd_scsi->dataout_len;
5628 		}
5629 	}
5630 
5631 	/* copy-out result */
5632 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5633 		uscsi_cmdtouscsi_cmd32((&uscsi), (&uscsi32));
5634 		if (ddi_copyout(&uscsi32, arg, sizeof (struct uscsi_cmd32),
5635 		    mode) != 0) {
5636 			rv = EFAULT;
5637 			goto done;
5638 		}
5639 	} else {
5640 		if (ddi_copyout(&uscsi, arg, sizeof (struct uscsi_cmd),
5641 		    mode) != 0) {
5642 			rv = EFAULT;
5643 			goto done;
5644 		}
5645 	}
5646 
5647 	/* get the return code from the SCSI command status */
5648 	rv = vdc_scsi_status(vdc, vd_scsi,
5649 	    !(uscsi.uscsi_flags & USCSI_SILENT));
5650 
5651 done:
5652 	kmem_free(vd_scsi, vd_scsi_len);
5653 	return (rv);
5654 }
5655 
5656 /*
5657  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT IN command.
5658  *
5659  * Arguments:
5660  *	cmd		- SCSI PERSISTENT IN command
5661  *	len		- length of the SCSI input buffer
5662  *	vd_scsi_len	- return the length of the allocated buffer
5663  *
5664  * Returned Value:
5665  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5666  */
5667 static vd_scsi_t *
5668 vdc_scsi_alloc_persistent_in(uchar_t cmd, int len, int *vd_scsi_len)
5669 {
5670 	int cdb_len, sense_len, datain_len, dataout_len;
5671 	vd_scsi_t *vd_scsi;
5672 	union scsi_cdb *cdb;
5673 
5674 	cdb_len = CDB_GROUP1;
5675 	sense_len = sizeof (struct scsi_extended_sense);
5676 	datain_len = len;
5677 	dataout_len = 0;
5678 
5679 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5680 	    vd_scsi_len);
5681 
5682 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5683 
5684 	/* set cdb */
5685 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
5686 	cdb->cdb_opaque[1] = cmd;
5687 	FORMG1COUNT(cdb, datain_len);
5688 
5689 	vd_scsi->timeout = vdc_scsi_timeout;
5690 
5691 	return (vd_scsi);
5692 }
5693 
5694 /*
5695  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT OUT command.
5696  *
5697  * Arguments:
5698  *	cmd		- SCSI PERSISTENT OUT command
5699  *	len		- length of the SCSI output buffer
5700  *	vd_scsi_len	- return the length of the allocated buffer
5701  *
5702  * Returned Code:
5703  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5704  */
5705 static vd_scsi_t *
5706 vdc_scsi_alloc_persistent_out(uchar_t cmd, int len, int *vd_scsi_len)
5707 {
5708 	int cdb_len, sense_len, datain_len, dataout_len;
5709 	vd_scsi_t *vd_scsi;
5710 	union scsi_cdb *cdb;
5711 
5712 	cdb_len = CDB_GROUP1;
5713 	sense_len = sizeof (struct scsi_extended_sense);
5714 	datain_len = 0;
5715 	dataout_len = len;
5716 
5717 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5718 	    vd_scsi_len);
5719 
5720 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5721 
5722 	/* set cdb */
5723 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
5724 	cdb->cdb_opaque[1] = cmd;
5725 	FORMG1COUNT(cdb, dataout_len);
5726 
5727 	vd_scsi->timeout = vdc_scsi_timeout;
5728 
5729 	return (vd_scsi);
5730 }
5731 
5732 /*
5733  * Implement the MHIOCGRP_INKEYS mhd(7i) ioctl. The ioctl is converted
5734  * to a SCSI PERSISTENT IN READ KEYS command which is sent to the vdisk
5735  * server with a VD_OP_SCSICMD operation.
5736  */
5737 static int
5738 vdc_mhd_inkeys(vdc_t *vdc, caddr_t arg, int mode)
5739 {
5740 	vd_scsi_t *vd_scsi;
5741 	mhioc_inkeys_t inkeys;
5742 	mhioc_key_list_t klist;
5743 	struct mhioc_inkeys32 inkeys32;
5744 	struct mhioc_key_list32 klist32;
5745 	sd_prin_readkeys_t *scsi_keys;
5746 	void *user_keys;
5747 	int vd_scsi_len;
5748 	int listsize, listlen, rv;
5749 
5750 	/* copyin arguments */
5751 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5752 		rv = ddi_copyin(arg, &inkeys32, sizeof (inkeys32), mode);
5753 		if (rv != 0)
5754 			return (EFAULT);
5755 
5756 		rv = ddi_copyin((caddr_t)(uintptr_t)inkeys32.li, &klist32,
5757 		    sizeof (klist32), mode);
5758 		if (rv != 0)
5759 			return (EFAULT);
5760 
5761 		listsize = klist32.listsize;
5762 	} else {
5763 		rv = ddi_copyin(arg, &inkeys, sizeof (inkeys), mode);
5764 		if (rv != 0)
5765 			return (EFAULT);
5766 
5767 		rv = ddi_copyin(inkeys.li, &klist, sizeof (klist), mode);
5768 		if (rv != 0)
5769 			return (EFAULT);
5770 
5771 		listsize = klist.listsize;
5772 	}
5773 
5774 	/* build SCSI VD_OP request */
5775 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_KEYS,
5776 	    sizeof (sd_prin_readkeys_t) - sizeof (caddr_t) +
5777 	    (sizeof (mhioc_resv_key_t) * listsize), &vd_scsi_len);
5778 
5779 	scsi_keys = (sd_prin_readkeys_t *)VD_SCSI_DATA_IN(vd_scsi);
5780 
5781 	/* submit the request */
5782 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5783 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5784 
5785 	if (rv != 0)
5786 		goto done;
5787 
5788 	listlen = scsi_keys->len / MHIOC_RESV_KEY_SIZE;
5789 
5790 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5791 		inkeys32.generation = scsi_keys->generation;
5792 		rv = ddi_copyout(&inkeys32, arg, sizeof (inkeys32), mode);
5793 		if (rv != 0) {
5794 			rv = EFAULT;
5795 			goto done;
5796 		}
5797 
5798 		klist32.listlen = listlen;
5799 		rv = ddi_copyout(&klist32, (caddr_t)(uintptr_t)inkeys32.li,
5800 		    sizeof (klist32), mode);
5801 		if (rv != 0) {
5802 			rv = EFAULT;
5803 			goto done;
5804 		}
5805 
5806 		user_keys = (caddr_t)(uintptr_t)klist32.list;
5807 	} else {
5808 		inkeys.generation = scsi_keys->generation;
5809 		rv = ddi_copyout(&inkeys, arg, sizeof (inkeys), mode);
5810 		if (rv != 0) {
5811 			rv = EFAULT;
5812 			goto done;
5813 		}
5814 
5815 		klist.listlen = listlen;
5816 		rv = ddi_copyout(&klist, inkeys.li, sizeof (klist), mode);
5817 		if (rv != 0) {
5818 			rv = EFAULT;
5819 			goto done;
5820 		}
5821 
5822 		user_keys = klist.list;
5823 	}
5824 
5825 	/* copy out keys */
5826 	if (listlen > 0 && listsize > 0) {
5827 		if (listsize < listlen)
5828 			listlen = listsize;
5829 		rv = ddi_copyout(&scsi_keys->keylist, user_keys,
5830 		    listlen * MHIOC_RESV_KEY_SIZE, mode);
5831 		if (rv != 0)
5832 			rv = EFAULT;
5833 	}
5834 
5835 	if (rv == 0)
5836 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5837 
5838 done:
5839 	kmem_free(vd_scsi, vd_scsi_len);
5840 
5841 	return (rv);
5842 }
5843 
5844 /*
5845  * Implement the MHIOCGRP_INRESV mhd(7i) ioctl. The ioctl is converted
5846  * to a SCSI PERSISTENT IN READ RESERVATION command which is sent to
5847  * the vdisk server with a VD_OP_SCSICMD operation.
5848  */
5849 static int
5850 vdc_mhd_inresv(vdc_t *vdc, caddr_t arg, int mode)
5851 {
5852 	vd_scsi_t *vd_scsi;
5853 	mhioc_inresvs_t inresv;
5854 	mhioc_resv_desc_list_t rlist;
5855 	struct mhioc_inresvs32 inresv32;
5856 	struct mhioc_resv_desc_list32 rlist32;
5857 	mhioc_resv_desc_t mhd_resv;
5858 	sd_prin_readresv_t *scsi_resv;
5859 	sd_readresv_desc_t *resv;
5860 	mhioc_resv_desc_t *user_resv;
5861 	int vd_scsi_len;
5862 	int listsize, listlen, i, rv;
5863 
5864 	/* copyin arguments */
5865 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5866 		rv = ddi_copyin(arg, &inresv32, sizeof (inresv32), mode);
5867 		if (rv != 0)
5868 			return (EFAULT);
5869 
5870 		rv = ddi_copyin((caddr_t)(uintptr_t)inresv32.li, &rlist32,
5871 		    sizeof (rlist32), mode);
5872 		if (rv != 0)
5873 			return (EFAULT);
5874 
5875 		listsize = rlist32.listsize;
5876 	} else {
5877 		rv = ddi_copyin(arg, &inresv, sizeof (inresv), mode);
5878 		if (rv != 0)
5879 			return (EFAULT);
5880 
5881 		rv = ddi_copyin(inresv.li, &rlist, sizeof (rlist), mode);
5882 		if (rv != 0)
5883 			return (EFAULT);
5884 
5885 		listsize = rlist.listsize;
5886 	}
5887 
5888 	/* build SCSI VD_OP request */
5889 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_RESV,
5890 	    sizeof (sd_prin_readresv_t) - sizeof (caddr_t) +
5891 	    (SCSI3_RESV_DESC_LEN * listsize), &vd_scsi_len);
5892 
5893 	scsi_resv = (sd_prin_readresv_t *)VD_SCSI_DATA_IN(vd_scsi);
5894 
5895 	/* submit the request */
5896 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5897 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5898 
5899 	if (rv != 0)
5900 		goto done;
5901 
5902 	listlen = scsi_resv->len / SCSI3_RESV_DESC_LEN;
5903 
5904 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5905 		inresv32.generation = scsi_resv->generation;
5906 		rv = ddi_copyout(&inresv32, arg, sizeof (inresv32), mode);
5907 		if (rv != 0) {
5908 			rv = EFAULT;
5909 			goto done;
5910 		}
5911 
5912 		rlist32.listlen = listlen;
5913 		rv = ddi_copyout(&rlist32, (caddr_t)(uintptr_t)inresv32.li,
5914 		    sizeof (rlist32), mode);
5915 		if (rv != 0) {
5916 			rv = EFAULT;
5917 			goto done;
5918 		}
5919 
5920 		user_resv = (mhioc_resv_desc_t *)(uintptr_t)rlist32.list;
5921 	} else {
5922 		inresv.generation = scsi_resv->generation;
5923 		rv = ddi_copyout(&inresv, arg, sizeof (inresv), mode);
5924 		if (rv != 0) {
5925 			rv = EFAULT;
5926 			goto done;
5927 		}
5928 
5929 		rlist.listlen = listlen;
5930 		rv = ddi_copyout(&rlist, inresv.li, sizeof (rlist), mode);
5931 		if (rv != 0) {
5932 			rv = EFAULT;
5933 			goto done;
5934 		}
5935 
5936 		user_resv = rlist.list;
5937 	}
5938 
5939 	/* copy out reservations */
5940 	if (listsize > 0 && listlen > 0) {
5941 		if (listsize < listlen)
5942 			listlen = listsize;
5943 		resv = (sd_readresv_desc_t *)&scsi_resv->readresv_desc;
5944 
5945 		for (i = 0; i < listlen; i++) {
5946 			mhd_resv.type = resv->type;
5947 			mhd_resv.scope = resv->scope;
5948 			mhd_resv.scope_specific_addr =
5949 			    BE_32(resv->scope_specific_addr);
5950 			bcopy(&resv->resvkey, &mhd_resv.key,
5951 			    MHIOC_RESV_KEY_SIZE);
5952 
5953 			rv = ddi_copyout(&mhd_resv, user_resv,
5954 			    sizeof (mhd_resv), mode);
5955 			if (rv != 0) {
5956 				rv = EFAULT;
5957 				goto done;
5958 			}
5959 			resv++;
5960 			user_resv++;
5961 		}
5962 	}
5963 
5964 	if (rv == 0)
5965 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5966 
5967 done:
5968 	kmem_free(vd_scsi, vd_scsi_len);
5969 	return (rv);
5970 }
5971 
5972 /*
5973  * Implement the MHIOCGRP_REGISTER mhd(7i) ioctl. The ioctl is converted
5974  * to a SCSI PERSISTENT OUT REGISTER command which is sent to the vdisk
5975  * server with a VD_OP_SCSICMD operation.
5976  */
5977 static int
5978 vdc_mhd_register(vdc_t *vdc, caddr_t arg, int mode)
5979 {
5980 	vd_scsi_t *vd_scsi;
5981 	sd_prout_t *scsi_prout;
5982 	mhioc_register_t mhd_reg;
5983 	int vd_scsi_len, rv;
5984 
5985 	/* copyin arguments */
5986 	rv = ddi_copyin(arg, &mhd_reg, sizeof (mhd_reg), mode);
5987 	if (rv != 0)
5988 		return (EFAULT);
5989 
5990 	/* build SCSI VD_OP request */
5991 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTER,
5992 	    sizeof (sd_prout_t), &vd_scsi_len);
5993 
5994 	/* set parameters */
5995 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
5996 	bcopy(mhd_reg.oldkey.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
5997 	bcopy(mhd_reg.newkey.key, scsi_prout->service_key, MHIOC_RESV_KEY_SIZE);
5998 	scsi_prout->aptpl = (uchar_t)mhd_reg.aptpl;
5999 
6000 	/* submit the request */
6001 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6002 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6003 
6004 	if (rv == 0)
6005 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6006 
6007 	kmem_free(vd_scsi, vd_scsi_len);
6008 	return (rv);
6009 }
6010 
6011 /*
6012  * Implement the MHIOCGRP_RESERVE mhd(7i) ioctl. The ioctl is converted
6013  * to a SCSI PERSISTENT OUT RESERVE command which is sent to the vdisk
6014  * server with a VD_OP_SCSICMD operation.
6015  */
6016 static int
6017 vdc_mhd_reserve(vdc_t *vdc, caddr_t arg, int mode)
6018 {
6019 	union scsi_cdb *cdb;
6020 	vd_scsi_t *vd_scsi;
6021 	sd_prout_t *scsi_prout;
6022 	mhioc_resv_desc_t mhd_resv;
6023 	int vd_scsi_len, rv;
6024 
6025 	/* copyin arguments */
6026 	rv = ddi_copyin(arg, &mhd_resv, sizeof (mhd_resv), mode);
6027 	if (rv != 0)
6028 		return (EFAULT);
6029 
6030 	/* build SCSI VD_OP request */
6031 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_RESERVE,
6032 	    sizeof (sd_prout_t), &vd_scsi_len);
6033 
6034 	/* set parameters */
6035 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6036 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6037 	bcopy(mhd_resv.key.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6038 	scsi_prout->scope_address = mhd_resv.scope_specific_addr;
6039 	cdb->cdb_opaque[2] = mhd_resv.type;
6040 
6041 	/* submit the request */
6042 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6043 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6044 
6045 	if (rv == 0)
6046 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6047 
6048 	kmem_free(vd_scsi, vd_scsi_len);
6049 	return (rv);
6050 }
6051 
6052 /*
6053  * Implement the MHIOCGRP_PREEMPTANDABORT mhd(7i) ioctl. The ioctl is
6054  * converted to a SCSI PERSISTENT OUT PREEMPT AND ABORT command which
6055  * is sent to the vdisk server with a VD_OP_SCSICMD operation.
6056  */
6057 static int
6058 vdc_mhd_preemptabort(vdc_t *vdc, caddr_t arg, int mode)
6059 {
6060 	union scsi_cdb *cdb;
6061 	vd_scsi_t *vd_scsi;
6062 	sd_prout_t *scsi_prout;
6063 	mhioc_preemptandabort_t mhd_preempt;
6064 	int vd_scsi_len, rv;
6065 
6066 	/* copyin arguments */
6067 	rv = ddi_copyin(arg, &mhd_preempt, sizeof (mhd_preempt), mode);
6068 	if (rv != 0)
6069 		return (EFAULT);
6070 
6071 	/* build SCSI VD_OP request */
6072 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_PREEMPTANDABORT,
6073 	    sizeof (sd_prout_t), &vd_scsi_len);
6074 
6075 	/* set parameters */
6076 	vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
6077 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6078 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6079 	bcopy(mhd_preempt.resvdesc.key.key, scsi_prout->res_key,
6080 	    MHIOC_RESV_KEY_SIZE);
6081 	bcopy(mhd_preempt.victim_key.key, scsi_prout->service_key,
6082 	    MHIOC_RESV_KEY_SIZE);
6083 	scsi_prout->scope_address = mhd_preempt.resvdesc.scope_specific_addr;
6084 	cdb->cdb_opaque[2] = mhd_preempt.resvdesc.type;
6085 
6086 	/* submit the request */
6087 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6088 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6089 
6090 	if (rv == 0)
6091 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6092 
6093 	kmem_free(vd_scsi, vd_scsi_len);
6094 	return (rv);
6095 }
6096 
6097 /*
6098  * Implement the MHIOCGRP_REGISTERANDIGNOREKEY mhd(7i) ioctl. The ioctl
6099  * is converted to a SCSI PERSISTENT OUT REGISTER AND IGNORE EXISTING KEY
6100  * command which is sent to the vdisk server with a VD_OP_SCSICMD operation.
6101  */
6102 static int
6103 vdc_mhd_registerignore(vdc_t *vdc, caddr_t arg, int mode)
6104 {
6105 	vd_scsi_t *vd_scsi;
6106 	sd_prout_t *scsi_prout;
6107 	mhioc_registerandignorekey_t mhd_regi;
6108 	int vd_scsi_len, rv;
6109 
6110 	/* copyin arguments */
6111 	rv = ddi_copyin(arg, &mhd_regi, sizeof (mhd_regi), mode);
6112 	if (rv != 0)
6113 		return (EFAULT);
6114 
6115 	/* build SCSI VD_OP request */
6116 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTERANDIGNOREKEY,
6117 	    sizeof (sd_prout_t), &vd_scsi_len);
6118 
6119 	/* set parameters */
6120 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6121 	bcopy(mhd_regi.newkey.key, scsi_prout->service_key,
6122 	    MHIOC_RESV_KEY_SIZE);
6123 	scsi_prout->aptpl = (uchar_t)mhd_regi.aptpl;
6124 
6125 	/* submit the request */
6126 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6127 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6128 
6129 	if (rv == 0)
6130 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6131 
6132 	kmem_free(vd_scsi, vd_scsi_len);
6133 	return (rv);
6134 }
6135 
6136 /*
6137  * This function is used by the failfast mechanism to send a SCSI command
6138  * to check for reservation conflict.
6139  */
6140 static int
6141 vdc_failfast_scsi_cmd(vdc_t *vdc, uchar_t scmd)
6142 {
6143 	int cdb_len, sense_len, vd_scsi_len;
6144 	vd_scsi_t *vd_scsi;
6145 	union scsi_cdb *cdb;
6146 	int rv;
6147 
6148 	ASSERT(scmd == SCMD_TEST_UNIT_READY || scmd == SCMD_WRITE_G1);
6149 
6150 	if (scmd == SCMD_WRITE_G1)
6151 		cdb_len = CDB_GROUP1;
6152 	else
6153 		cdb_len = CDB_GROUP0;
6154 
6155 	sense_len = sizeof (struct scsi_extended_sense);
6156 
6157 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, 0, 0, &vd_scsi_len);
6158 
6159 	/* set cdb */
6160 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6161 	cdb->scc_cmd = scmd;
6162 
6163 	vd_scsi->timeout = vdc_scsi_timeout;
6164 
6165 	/*
6166 	 * Submit the request. The last argument has to be B_FALSE so that
6167 	 * vdc_do_sync_op does not loop checking for reservation conflict if
6168 	 * the operation returns an error.
6169 	 */
6170 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6171 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_FALSE);
6172 
6173 	if (rv == 0)
6174 		(void) vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6175 
6176 	kmem_free(vd_scsi, vd_scsi_len);
6177 	return (rv);
6178 }
6179 
6180 /*
6181  * This function is used by the failfast mechanism to check for reservation
6182  * conflict. It sends some SCSI commands which will fail with a reservation
6183  * conflict error if the system does not have access to the disk and this
6184  * will panic the system.
6185  *
6186  * Returned Code:
6187  *	0	- disk is accessible without reservation conflict error
6188  *	!= 0	- unable to check if disk is accessible
6189  */
6190 int
6191 vdc_failfast_check_resv(vdc_t *vdc)
6192 {
6193 	int failure = 0;
6194 
6195 	/*
6196 	 * Send a TEST UNIT READY command. The command will panic
6197 	 * the system if it fails with a reservation conflict.
6198 	 */
6199 	if (vdc_failfast_scsi_cmd(vdc, SCMD_TEST_UNIT_READY) != 0)
6200 		failure++;
6201 
6202 	/*
6203 	 * With SPC-3 compliant devices TEST UNIT READY will succeed on
6204 	 * a reserved device, so we also do a WRITE(10) of zero byte in
6205 	 * order to provoke a Reservation Conflict status on those newer
6206 	 * devices.
6207 	 */
6208 	if (vdc_failfast_scsi_cmd(vdc, SCMD_WRITE_G1) != 0)
6209 		failure++;
6210 
6211 	return (failure);
6212 }
6213 
6214 /*
6215  * Add a pending I/O to the failfast I/O queue. An I/O is added to this
6216  * queue when it has failed and failfast is enabled. Then we have to check
6217  * if it has failed because of a reservation conflict in which case we have
6218  * to panic the system.
6219  *
6220  * Async I/O should be queued with their block I/O data transfer structure
6221  * (buf). Sync I/O should be queued with buf = NULL.
6222  */
6223 static vdc_io_t *
6224 vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf)
6225 {
6226 	vdc_io_t *vio;
6227 
6228 	ASSERT(MUTEX_HELD(&vdc->lock));
6229 
6230 	vio = kmem_alloc(sizeof (vdc_io_t), KM_SLEEP);
6231 	vio->vio_next = vdc->failfast_io_queue;
6232 	vio->vio_buf = buf;
6233 	vio->vio_qtime = ddi_get_lbolt();
6234 
6235 	vdc->failfast_io_queue = vio;
6236 
6237 	/* notify the failfast thread that a new I/O is queued */
6238 	cv_signal(&vdc->failfast_cv);
6239 
6240 	return (vio);
6241 }
6242 
6243 /*
6244  * Remove and complete I/O in the failfast I/O queue which have been
6245  * added after the indicated deadline. A deadline of 0 means that all
6246  * I/O have to be unqueued and marked as completed.
6247  */
6248 static void
6249 vdc_failfast_io_unqueue(vdc_t *vdc, clock_t deadline)
6250 {
6251 	vdc_io_t *vio, *vio_tmp;
6252 
6253 	ASSERT(MUTEX_HELD(&vdc->lock));
6254 
6255 	vio_tmp = NULL;
6256 	vio = vdc->failfast_io_queue;
6257 
6258 	if (deadline != 0) {
6259 		/*
6260 		 * Skip any io queued after the deadline. The failfast
6261 		 * I/O queue is ordered starting with the last I/O added
6262 		 * to the queue.
6263 		 */
6264 		while (vio != NULL && vio->vio_qtime > deadline) {
6265 			vio_tmp = vio;
6266 			vio = vio->vio_next;
6267 		}
6268 	}
6269 
6270 	if (vio == NULL)
6271 		/* nothing to unqueue */
6272 		return;
6273 
6274 	/* update the queue */
6275 	if (vio_tmp == NULL)
6276 		vdc->failfast_io_queue = NULL;
6277 	else
6278 		vio_tmp->vio_next = NULL;
6279 
6280 	/*
6281 	 * Complete unqueued I/O. Async I/O have a block I/O data transfer
6282 	 * structure (buf) and they are completed by calling biodone(). Sync
6283 	 * I/O do not have a buf and they are completed by setting the
6284 	 * vio_qtime to zero and signaling failfast_io_cv. In that case, the
6285 	 * thread waiting for the I/O to complete is responsible for freeing
6286 	 * the vio structure.
6287 	 */
6288 	while (vio != NULL) {
6289 		vio_tmp = vio->vio_next;
6290 		if (vio->vio_buf != NULL) {
6291 			VD_KSTAT_RUNQ_EXIT(vdc);
6292 			DTRACE_IO1(done, buf_t *, vio->vio_buf);
6293 			biodone(vio->vio_buf);
6294 			kmem_free(vio, sizeof (vdc_io_t));
6295 		} else {
6296 			vio->vio_qtime = 0;
6297 		}
6298 		vio = vio_tmp;
6299 	}
6300 
6301 	cv_broadcast(&vdc->failfast_io_cv);
6302 }
6303 
6304 /*
6305  * Failfast Thread.
6306  *
6307  * While failfast is enabled, the failfast thread sends a TEST UNIT READY
6308  * and a zero size WRITE(10) SCSI commands on a regular basis to check that
6309  * we still have access to the disk. If a command fails with a RESERVATION
6310  * CONFLICT error then the system will immediatly panic.
6311  *
6312  * The failfast thread is also woken up when an I/O has failed. It then check
6313  * the access to the disk to ensure that the I/O failure was not due to a
6314  * reservation conflict.
6315  *
6316  * There is one failfast thread for each virtual disk for which failfast is
6317  * enabled. We could have only one thread sending requests for all disks but
6318  * this would need vdc to send asynchronous requests and to have callbacks to
6319  * process replies.
6320  */
6321 static void
6322 vdc_failfast_thread(void *arg)
6323 {
6324 	int status;
6325 	vdc_t *vdc = (vdc_t *)arg;
6326 	clock_t timeout, starttime;
6327 
6328 	mutex_enter(&vdc->lock);
6329 
6330 	while (vdc->failfast_interval != 0) {
6331 
6332 		starttime = ddi_get_lbolt();
6333 
6334 		mutex_exit(&vdc->lock);
6335 
6336 		/* check for reservation conflict */
6337 		status = vdc_failfast_check_resv(vdc);
6338 
6339 		mutex_enter(&vdc->lock);
6340 		/*
6341 		 * We have dropped the lock to send the SCSI command so we have
6342 		 * to check that failfast is still enabled.
6343 		 */
6344 		if (vdc->failfast_interval == 0)
6345 			break;
6346 
6347 		/*
6348 		 * If we have successfully check the disk access and there was
6349 		 * no reservation conflict then we can complete any I/O queued
6350 		 * before the last check.
6351 		 */
6352 		if (status == 0)
6353 			vdc_failfast_io_unqueue(vdc, starttime);
6354 
6355 		/* proceed again if some I/O are still in the queue */
6356 		if (vdc->failfast_io_queue != NULL)
6357 			continue;
6358 
6359 		timeout = ddi_get_lbolt() +
6360 		    drv_usectohz(vdc->failfast_interval);
6361 		(void) cv_timedwait(&vdc->failfast_cv, &vdc->lock, timeout);
6362 	}
6363 
6364 	/*
6365 	 * Failfast is being stop so we can complete any queued I/O.
6366 	 */
6367 	vdc_failfast_io_unqueue(vdc, 0);
6368 	vdc->failfast_thread = NULL;
6369 	mutex_exit(&vdc->lock);
6370 	thread_exit();
6371 }
6372 
6373 /*
6374  * Implement the MHIOCENFAILFAST mhd(7i) ioctl.
6375  */
6376 static int
6377 vdc_failfast(vdc_t *vdc, caddr_t arg, int mode)
6378 {
6379 	unsigned int mh_time;
6380 
6381 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), mode))
6382 		return (EFAULT);
6383 
6384 	mutex_enter(&vdc->lock);
6385 	if (mh_time != 0 && vdc->failfast_thread == NULL) {
6386 		vdc->failfast_thread = thread_create(NULL, 0,
6387 		    vdc_failfast_thread, vdc, 0, &p0, TS_RUN,
6388 		    v.v_maxsyspri - 2);
6389 	}
6390 
6391 	vdc->failfast_interval = mh_time * 1000;
6392 	cv_signal(&vdc->failfast_cv);
6393 	mutex_exit(&vdc->lock);
6394 
6395 	return (0);
6396 }
6397 
6398 /*
6399  * Implement the MHIOCTKOWN and MHIOCRELEASE mhd(7i) ioctls. These ioctls are
6400  * converted to VD_OP_SET_ACCESS operations.
6401  */
6402 static int
6403 vdc_access_set(vdc_t *vdc, uint64_t flags, int mode)
6404 {
6405 	int rv;
6406 
6407 	/* submit owership command request */
6408 	rv = vdc_do_sync_op(vdc, VD_OP_SET_ACCESS, (caddr_t)&flags,
6409 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6410 	    VIO_both_dir, B_TRUE);
6411 
6412 	return (rv);
6413 }
6414 
6415 /*
6416  * Implement the MHIOCSTATUS mhd(7i) ioctl. This ioctl is converted to a
6417  * VD_OP_GET_ACCESS operation.
6418  */
6419 static int
6420 vdc_access_get(vdc_t *vdc, uint64_t *status, int mode)
6421 {
6422 	int rv;
6423 
6424 	/* submit owership command request */
6425 	rv = vdc_do_sync_op(vdc, VD_OP_GET_ACCESS, (caddr_t)status,
6426 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6427 	    VIO_both_dir, B_TRUE);
6428 
6429 	return (rv);
6430 }
6431 
6432 /*
6433  * Disk Ownership Thread.
6434  *
6435  * When we have taken the ownership of a disk, this thread waits to be
6436  * notified when the LDC channel is reset so that it can recover the
6437  * ownership.
6438  *
6439  * Note that the thread handling the LDC reset (vdc_process_msg_thread())
6440  * can not be used to do the ownership recovery because it has to be
6441  * running to handle the reply message to the ownership operation.
6442  */
6443 static void
6444 vdc_ownership_thread(void *arg)
6445 {
6446 	vdc_t *vdc = (vdc_t *)arg;
6447 	clock_t timeout;
6448 	uint64_t status;
6449 
6450 	mutex_enter(&vdc->ownership_lock);
6451 	mutex_enter(&vdc->lock);
6452 
6453 	while (vdc->ownership & VDC_OWNERSHIP_WANTED) {
6454 
6455 		if ((vdc->ownership & VDC_OWNERSHIP_RESET) ||
6456 		    !(vdc->ownership & VDC_OWNERSHIP_GRANTED)) {
6457 			/*
6458 			 * There was a reset so the ownership has been lost,
6459 			 * try to recover. We do this without using the preempt
6460 			 * option so that we don't steal the ownership from
6461 			 * someone who has preempted us.
6462 			 */
6463 			DMSG(vdc, 0, "[%d] Ownership lost, recovering",
6464 			    vdc->instance);
6465 
6466 			vdc->ownership &= ~(VDC_OWNERSHIP_RESET |
6467 			    VDC_OWNERSHIP_GRANTED);
6468 
6469 			mutex_exit(&vdc->lock);
6470 
6471 			status = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6472 			    VD_ACCESS_SET_PRESERVE, FKIOCTL);
6473 
6474 			mutex_enter(&vdc->lock);
6475 
6476 			if (status == 0) {
6477 				DMSG(vdc, 0, "[%d] Ownership recovered",
6478 				    vdc->instance);
6479 				vdc->ownership |= VDC_OWNERSHIP_GRANTED;
6480 			} else {
6481 				DMSG(vdc, 0, "[%d] Fail to recover ownership",
6482 				    vdc->instance);
6483 			}
6484 
6485 		}
6486 
6487 		/*
6488 		 * If we have the ownership then we just wait for an event
6489 		 * to happen (LDC reset), otherwise we will retry to recover
6490 		 * after a delay.
6491 		 */
6492 		if (vdc->ownership & VDC_OWNERSHIP_GRANTED)
6493 			timeout = 0;
6494 		else
6495 			timeout = ddi_get_lbolt() +
6496 			    drv_usectohz(vdc_ownership_delay);
6497 
6498 		/* Release the ownership_lock and wait on the vdc lock */
6499 		mutex_exit(&vdc->ownership_lock);
6500 
6501 		if (timeout == 0)
6502 			(void) cv_wait(&vdc->ownership_cv, &vdc->lock);
6503 		else
6504 			(void) cv_timedwait(&vdc->ownership_cv,
6505 			    &vdc->lock, timeout);
6506 
6507 		mutex_exit(&vdc->lock);
6508 
6509 		mutex_enter(&vdc->ownership_lock);
6510 		mutex_enter(&vdc->lock);
6511 	}
6512 
6513 	vdc->ownership_thread = NULL;
6514 	mutex_exit(&vdc->lock);
6515 	mutex_exit(&vdc->ownership_lock);
6516 
6517 	thread_exit();
6518 }
6519 
6520 static void
6521 vdc_ownership_update(vdc_t *vdc, int ownership_flags)
6522 {
6523 	ASSERT(MUTEX_HELD(&vdc->ownership_lock));
6524 
6525 	mutex_enter(&vdc->lock);
6526 	vdc->ownership = ownership_flags;
6527 	if ((vdc->ownership & VDC_OWNERSHIP_WANTED) &&
6528 	    vdc->ownership_thread == NULL) {
6529 		/* start ownership thread */
6530 		vdc->ownership_thread = thread_create(NULL, 0,
6531 		    vdc_ownership_thread, vdc, 0, &p0, TS_RUN,
6532 		    v.v_maxsyspri - 2);
6533 	} else {
6534 		/* notify the ownership thread */
6535 		cv_signal(&vdc->ownership_cv);
6536 	}
6537 	mutex_exit(&vdc->lock);
6538 }
6539 
6540 /*
6541  * Get the size and the block size of a virtual disk from the vdisk server.
6542  * We need to use this operation when the vdisk_size attribute was not
6543  * available during the handshake with the vdisk server.
6544  */
6545 static int
6546 vdc_check_capacity(vdc_t *vdc)
6547 {
6548 	int rv = 0;
6549 	size_t alloc_len;
6550 	vd_capacity_t *vd_cap;
6551 
6552 	if (vdc->vdisk_size != 0)
6553 		return (0);
6554 
6555 	alloc_len = P2ROUNDUP(sizeof (vd_capacity_t), sizeof (uint64_t));
6556 
6557 	vd_cap = kmem_zalloc(alloc_len, KM_SLEEP);
6558 
6559 	rv = vdc_do_sync_op(vdc, VD_OP_GET_CAPACITY, (caddr_t)vd_cap, alloc_len,
6560 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_TRUE);
6561 
6562 	if (rv == 0) {
6563 		if (vd_cap->vdisk_block_size != vdc->block_size ||
6564 		    vd_cap->vdisk_size == VD_SIZE_UNKNOWN ||
6565 		    vd_cap->vdisk_size == 0)
6566 			rv = EINVAL;
6567 		else
6568 			vdc->vdisk_size = vd_cap->vdisk_size;
6569 	}
6570 
6571 	kmem_free(vd_cap, alloc_len);
6572 	return (rv);
6573 }
6574 
6575 /*
6576  * This structure is used in the DKIO(7I) array below.
6577  */
6578 typedef struct vdc_dk_ioctl {
6579 	uint8_t		op;		/* VD_OP_XXX value */
6580 	int		cmd;		/* Solaris ioctl operation number */
6581 	size_t		nbytes;		/* size of structure to be copied */
6582 
6583 	/* function to convert between vDisk and Solaris structure formats */
6584 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
6585 	    int mode, int dir);
6586 } vdc_dk_ioctl_t;
6587 
6588 /*
6589  * Subset of DKIO(7I) operations currently supported
6590  */
6591 static vdc_dk_ioctl_t	dk_ioctl[] = {
6592 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	0,
6593 		vdc_null_copy_func},
6594 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
6595 		vdc_get_wce_convert},
6596 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
6597 		vdc_set_wce_convert},
6598 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
6599 		vdc_get_vtoc_convert},
6600 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
6601 		vdc_set_vtoc_convert},
6602 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
6603 		vdc_get_geom_convert},
6604 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
6605 		vdc_get_geom_convert},
6606 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
6607 		vdc_get_geom_convert},
6608 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
6609 		vdc_set_geom_convert},
6610 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
6611 		vdc_get_efi_convert},
6612 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
6613 		vdc_set_efi_convert},
6614 
6615 	/* DIOCTL_RWCMD is converted to a read or a write */
6616 	{0, DIOCTL_RWCMD,  sizeof (struct dadkio_rwcmd), NULL},
6617 
6618 	/* mhd(7I) non-shared multihost disks ioctls */
6619 	{0, MHIOCTKOWN,				0, vdc_null_copy_func},
6620 	{0, MHIOCRELEASE,			0, vdc_null_copy_func},
6621 	{0, MHIOCSTATUS,			0, vdc_null_copy_func},
6622 	{0, MHIOCQRESERVE,			0, vdc_null_copy_func},
6623 
6624 	/* mhd(7I) shared multihost disks ioctls */
6625 	{0, MHIOCGRP_INKEYS,			0, vdc_null_copy_func},
6626 	{0, MHIOCGRP_INRESV,			0, vdc_null_copy_func},
6627 	{0, MHIOCGRP_REGISTER,			0, vdc_null_copy_func},
6628 	{0, MHIOCGRP_RESERVE, 			0, vdc_null_copy_func},
6629 	{0, MHIOCGRP_PREEMPTANDABORT,		0, vdc_null_copy_func},
6630 	{0, MHIOCGRP_REGISTERANDIGNOREKEY,	0, vdc_null_copy_func},
6631 
6632 	/* mhd(7I) failfast ioctl */
6633 	{0, MHIOCENFAILFAST,			0, vdc_null_copy_func},
6634 
6635 	/*
6636 	 * These particular ioctls are not sent to the server - vdc fakes up
6637 	 * the necessary info.
6638 	 */
6639 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
6640 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
6641 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
6642 	{0, DKIOCPARTITION, 0, vdc_null_copy_func },
6643 	{0, DKIOCGAPART, 0, vdc_null_copy_func },
6644 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
6645 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
6646 };
6647 
6648 /*
6649  * This function handles ioctl requests from the vd_efi_alloc_and_read()
6650  * function and forward them to the vdisk.
6651  */
6652 static int
6653 vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg)
6654 {
6655 	vdc_t *vdc = (vdc_t *)vdisk;
6656 	dev_t dev;
6657 	int rval;
6658 
6659 	dev = makedevice(ddi_driver_major(vdc->dip),
6660 	    VD_MAKE_DEV(vdc->instance, 0));
6661 
6662 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, FKIOCTL, &rval));
6663 }
6664 
6665 /*
6666  * Function:
6667  *	vd_process_ioctl()
6668  *
6669  * Description:
6670  *	This routine processes disk specific ioctl calls
6671  *
6672  * Arguments:
6673  *	dev	- the device number
6674  *	cmd	- the operation [dkio(7I)] to be processed
6675  *	arg	- pointer to user provided structure
6676  *		  (contains data to be set or reference parameter for get)
6677  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
6678  *	rvalp	- pointer to return value for calling process.
6679  *
6680  * Return Code:
6681  *	0
6682  *	EFAULT
6683  *	ENXIO
6684  *	EIO
6685  *	ENOTSUP
6686  */
6687 static int
6688 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, int *rvalp)
6689 {
6690 	int		instance = VDCUNIT(dev);
6691 	vdc_t		*vdc = NULL;
6692 	int		rv = -1;
6693 	int		idx = 0;		/* index into dk_ioctl[] */
6694 	size_t		len = 0;		/* #bytes to send to vds */
6695 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
6696 	caddr_t		mem_p = NULL;
6697 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
6698 	vdc_dk_ioctl_t	*iop;
6699 
6700 	vdc = ddi_get_soft_state(vdc_state, instance);
6701 	if (vdc == NULL) {
6702 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
6703 		    instance);
6704 		return (ENXIO);
6705 	}
6706 
6707 	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
6708 	    instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
6709 
6710 	if (rvalp != NULL) {
6711 		/* the return value of the ioctl is 0 by default */
6712 		*rvalp = 0;
6713 	}
6714 
6715 	/*
6716 	 * Validate the ioctl operation to be performed.
6717 	 *
6718 	 * If we have looped through the array without finding a match then we
6719 	 * don't support this ioctl.
6720 	 */
6721 	for (idx = 0; idx < nioctls; idx++) {
6722 		if (cmd == dk_ioctl[idx].cmd)
6723 			break;
6724 	}
6725 
6726 	if (idx >= nioctls) {
6727 		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
6728 		    vdc->instance, cmd);
6729 		return (ENOTSUP);
6730 	}
6731 
6732 	iop = &(dk_ioctl[idx]);
6733 
6734 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
6735 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
6736 		dk_efi_t	dk_efi;
6737 
6738 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
6739 		if (rv != 0)
6740 			return (EFAULT);
6741 
6742 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
6743 	} else {
6744 		len = iop->nbytes;
6745 	}
6746 
6747 	/* check if the ioctl is applicable */
6748 	switch (cmd) {
6749 	case CDROMREADOFFSET:
6750 	case DKIOCREMOVABLE:
6751 		return (ENOTTY);
6752 
6753 	case USCSICMD:
6754 	case MHIOCTKOWN:
6755 	case MHIOCSTATUS:
6756 	case MHIOCQRESERVE:
6757 	case MHIOCRELEASE:
6758 	case MHIOCGRP_INKEYS:
6759 	case MHIOCGRP_INRESV:
6760 	case MHIOCGRP_REGISTER:
6761 	case MHIOCGRP_RESERVE:
6762 	case MHIOCGRP_PREEMPTANDABORT:
6763 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6764 	case MHIOCENFAILFAST:
6765 		if (vdc->cinfo == NULL)
6766 			return (ENXIO);
6767 		if (vdc->cinfo->dki_ctype != DKC_SCSI_CCS)
6768 			return (ENOTTY);
6769 		break;
6770 
6771 	case DIOCTL_RWCMD:
6772 		if (vdc->cinfo == NULL)
6773 			return (ENXIO);
6774 		if (vdc->cinfo->dki_ctype != DKC_DIRECT)
6775 			return (ENOTTY);
6776 		break;
6777 
6778 	case DKIOCINFO:
6779 		if (vdc->cinfo == NULL)
6780 			return (ENXIO);
6781 		break;
6782 
6783 	case DKIOCGMEDIAINFO:
6784 		if (vdc->minfo == NULL)
6785 			return (ENXIO);
6786 		if (vdc_check_capacity(vdc) != 0)
6787 			/* disk capacity is not available */
6788 			return (EIO);
6789 		break;
6790 	}
6791 
6792 	/*
6793 	 * Deal with ioctls which require a processing different than
6794 	 * converting ioctl arguments and sending a corresponding
6795 	 * VD operation.
6796 	 */
6797 	switch (cmd) {
6798 
6799 	case USCSICMD:
6800 	{
6801 		return (vdc_uscsi_cmd(vdc, arg, mode));
6802 	}
6803 
6804 	case MHIOCTKOWN:
6805 	{
6806 		mutex_enter(&vdc->ownership_lock);
6807 		/*
6808 		 * We have to set VDC_OWNERSHIP_WANTED now so that the ownership
6809 		 * can be flagged with VDC_OWNERSHIP_RESET if the LDC is reset
6810 		 * while we are processing the ioctl.
6811 		 */
6812 		vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED);
6813 
6814 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6815 		    VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE, mode);
6816 		if (rv == 0) {
6817 			vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED |
6818 			    VDC_OWNERSHIP_GRANTED);
6819 		} else {
6820 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6821 		}
6822 		mutex_exit(&vdc->ownership_lock);
6823 		return (rv);
6824 	}
6825 
6826 	case MHIOCRELEASE:
6827 	{
6828 		mutex_enter(&vdc->ownership_lock);
6829 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, mode);
6830 		if (rv == 0) {
6831 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6832 		}
6833 		mutex_exit(&vdc->ownership_lock);
6834 		return (rv);
6835 	}
6836 
6837 	case MHIOCSTATUS:
6838 	{
6839 		uint64_t status;
6840 
6841 		rv = vdc_access_get(vdc, &status, mode);
6842 		if (rv == 0 && rvalp != NULL)
6843 			*rvalp = (status & VD_ACCESS_ALLOWED)? 0 : 1;
6844 		return (rv);
6845 	}
6846 
6847 	case MHIOCQRESERVE:
6848 	{
6849 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE, mode);
6850 		return (rv);
6851 	}
6852 
6853 	case MHIOCGRP_INKEYS:
6854 	{
6855 		return (vdc_mhd_inkeys(vdc, arg, mode));
6856 	}
6857 
6858 	case MHIOCGRP_INRESV:
6859 	{
6860 		return (vdc_mhd_inresv(vdc, arg, mode));
6861 	}
6862 
6863 	case MHIOCGRP_REGISTER:
6864 	{
6865 		return (vdc_mhd_register(vdc, arg, mode));
6866 	}
6867 
6868 	case MHIOCGRP_RESERVE:
6869 	{
6870 		return (vdc_mhd_reserve(vdc, arg, mode));
6871 	}
6872 
6873 	case MHIOCGRP_PREEMPTANDABORT:
6874 	{
6875 		return (vdc_mhd_preemptabort(vdc, arg, mode));
6876 	}
6877 
6878 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6879 	{
6880 		return (vdc_mhd_registerignore(vdc, arg, mode));
6881 	}
6882 
6883 	case MHIOCENFAILFAST:
6884 	{
6885 		rv = vdc_failfast(vdc, arg, mode);
6886 		return (rv);
6887 	}
6888 
6889 	case DIOCTL_RWCMD:
6890 	{
6891 		return (vdc_dioctl_rwcmd(dev, arg, mode));
6892 	}
6893 
6894 	case DKIOCGAPART:
6895 	{
6896 		return (vdc_dkio_gapart(vdc, arg, mode));
6897 	}
6898 
6899 	case DKIOCPARTITION:
6900 	{
6901 		return (vdc_dkio_partition(vdc, arg, mode));
6902 	}
6903 
6904 	case DKIOCINFO:
6905 	{
6906 		struct dk_cinfo	cinfo;
6907 
6908 		bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
6909 		cinfo.dki_partition = VDCPART(dev);
6910 
6911 		rv = ddi_copyout(&cinfo, (void *)arg,
6912 		    sizeof (struct dk_cinfo), mode);
6913 		if (rv != 0)
6914 			return (EFAULT);
6915 
6916 		return (0);
6917 	}
6918 
6919 	case DKIOCGMEDIAINFO:
6920 	{
6921 		ASSERT(vdc->vdisk_size != 0);
6922 		if (vdc->minfo->dki_capacity == 0)
6923 			vdc->minfo->dki_capacity = vdc->vdisk_size;
6924 		rv = ddi_copyout(vdc->minfo, (void *)arg,
6925 		    sizeof (struct dk_minfo), mode);
6926 		if (rv != 0)
6927 			return (EFAULT);
6928 
6929 		return (0);
6930 	}
6931 
6932 	case DKIOCFLUSHWRITECACHE:
6933 		{
6934 			struct dk_callback *dkc =
6935 			    (struct dk_callback *)(uintptr_t)arg;
6936 			vdc_dk_arg_t	*dkarg = NULL;
6937 
6938 			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
6939 			    instance, mode);
6940 
6941 			/*
6942 			 * If arg is NULL, then there is no callback function
6943 			 * registered and the call operates synchronously; we
6944 			 * break and continue with the rest of the function and
6945 			 * wait for vds to return (i.e. after the request to
6946 			 * vds returns successfully, all writes completed prior
6947 			 * to the ioctl will have been flushed from the disk
6948 			 * write cache to persistent media.
6949 			 *
6950 			 * If a callback function is registered, we dispatch
6951 			 * the request on a task queue and return immediately.
6952 			 * The callback will deal with informing the calling
6953 			 * thread that the flush request is completed.
6954 			 */
6955 			if (dkc == NULL)
6956 				break;
6957 
6958 			/*
6959 			 * the asynchronous callback is only supported if
6960 			 * invoked from within the kernel
6961 			 */
6962 			if ((mode & FKIOCTL) == 0)
6963 				return (ENOTSUP);
6964 
6965 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
6966 
6967 			dkarg->mode = mode;
6968 			dkarg->dev = dev;
6969 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
6970 
6971 			mutex_enter(&vdc->lock);
6972 			vdc->dkio_flush_pending++;
6973 			dkarg->vdc = vdc;
6974 			mutex_exit(&vdc->lock);
6975 
6976 			/* put the request on a task queue */
6977 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
6978 			    (void *)dkarg, DDI_SLEEP);
6979 			if (rv == NULL) {
6980 				/* clean up if dispatch fails */
6981 				mutex_enter(&vdc->lock);
6982 				vdc->dkio_flush_pending--;
6983 				mutex_exit(&vdc->lock);
6984 				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
6985 			}
6986 
6987 			return (rv == NULL ? ENOMEM : 0);
6988 		}
6989 	}
6990 
6991 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
6992 	ASSERT(iop->op != 0);
6993 
6994 	/* check if the vDisk server handles the operation for this vDisk */
6995 	if (VD_OP_SUPPORTED(vdc->operations, iop->op) == B_FALSE) {
6996 		DMSG(vdc, 0, "[%d] Unsupported VD_OP operation (0x%x)\n",
6997 		    vdc->instance, iop->op);
6998 		return (ENOTSUP);
6999 	}
7000 
7001 	/* LDC requires that the memory being mapped is 8-byte aligned */
7002 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
7003 	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
7004 	    instance, len, alloc_len);
7005 
7006 	if (alloc_len > 0)
7007 		mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
7008 
7009 	/*
7010 	 * Call the conversion function for this ioctl which, if necessary,
7011 	 * converts from the Solaris format to the format ARC'ed
7012 	 * as part of the vDisk protocol (FWARC 2006/195)
7013 	 */
7014 	ASSERT(iop->convert != NULL);
7015 	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
7016 	if (rv != 0) {
7017 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7018 		    instance, rv, cmd);
7019 		if (mem_p != NULL)
7020 			kmem_free(mem_p, alloc_len);
7021 		return (rv);
7022 	}
7023 
7024 	/*
7025 	 * send request to vds to service the ioctl.
7026 	 */
7027 	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
7028 	    VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode,
7029 	    VIO_both_dir, B_TRUE);
7030 
7031 	if (rv != 0) {
7032 		/*
7033 		 * This is not necessarily an error. The ioctl could
7034 		 * be returning a value such as ENOTTY to indicate
7035 		 * that the ioctl is not applicable.
7036 		 */
7037 		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
7038 		    instance, rv, cmd);
7039 		if (mem_p != NULL)
7040 			kmem_free(mem_p, alloc_len);
7041 
7042 		return (rv);
7043 	}
7044 
7045 	/*
7046 	 * Call the conversion function (if it exists) for this ioctl
7047 	 * which converts from the format ARC'ed as part of the vDisk
7048 	 * protocol (FWARC 2006/195) back to a format understood by
7049 	 * the rest of Solaris.
7050 	 */
7051 	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
7052 	if (rv != 0) {
7053 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7054 		    instance, rv, cmd);
7055 		if (mem_p != NULL)
7056 			kmem_free(mem_p, alloc_len);
7057 		return (rv);
7058 	}
7059 
7060 	if (mem_p != NULL)
7061 		kmem_free(mem_p, alloc_len);
7062 
7063 	return (rv);
7064 }
7065 
7066 /*
7067  * Function:
7068  *
7069  * Description:
7070  *	This is an empty conversion function used by ioctl calls which
7071  *	do not need to convert the data being passed in/out to userland
7072  */
7073 static int
7074 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
7075 {
7076 	_NOTE(ARGUNUSED(vdc))
7077 	_NOTE(ARGUNUSED(from))
7078 	_NOTE(ARGUNUSED(to))
7079 	_NOTE(ARGUNUSED(mode))
7080 	_NOTE(ARGUNUSED(dir))
7081 
7082 	return (0);
7083 }
7084 
7085 static int
7086 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
7087     int mode, int dir)
7088 {
7089 	_NOTE(ARGUNUSED(vdc))
7090 
7091 	if (dir == VD_COPYIN)
7092 		return (0);		/* nothing to do */
7093 
7094 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
7095 		return (EFAULT);
7096 
7097 	return (0);
7098 }
7099 
7100 static int
7101 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
7102     int mode, int dir)
7103 {
7104 	_NOTE(ARGUNUSED(vdc))
7105 
7106 	if (dir == VD_COPYOUT)
7107 		return (0);		/* nothing to do */
7108 
7109 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
7110 		return (EFAULT);
7111 
7112 	return (0);
7113 }
7114 
7115 /*
7116  * Function:
7117  *	vdc_get_vtoc_convert()
7118  *
7119  * Description:
7120  *	This routine performs the necessary convertions from the DKIOCGVTOC
7121  *	Solaris structure to the format defined in FWARC 2006/195.
7122  *
7123  *	In the struct vtoc definition, the timestamp field is marked as not
7124  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
7125  *	However SVM uses that field to check it can write into the VTOC,
7126  *	so we fake up the info of that field.
7127  *
7128  * Arguments:
7129  *	vdc	- the vDisk client
7130  *	from	- the buffer containing the data to be copied from
7131  *	to	- the buffer to be copied to
7132  *	mode	- flags passed to ioctl() call
7133  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
7134  *
7135  * Return Code:
7136  *	0	- Success
7137  *	ENXIO	- incorrect buffer passed in.
7138  *	EFAULT	- ddi_copyout routine encountered an error.
7139  */
7140 static int
7141 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7142 {
7143 	int		i;
7144 	void		*tmp_mem = NULL;
7145 	void		*tmp_memp;
7146 	struct vtoc	vt;
7147 	struct vtoc32	vt32;
7148 	int		copy_len = 0;
7149 	int		rv = 0;
7150 
7151 	if (dir != VD_COPYOUT)
7152 		return (0);	/* nothing to do */
7153 
7154 	if ((from == NULL) || (to == NULL))
7155 		return (ENXIO);
7156 
7157 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
7158 		copy_len = sizeof (struct vtoc32);
7159 	else
7160 		copy_len = sizeof (struct vtoc);
7161 
7162 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7163 
7164 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
7165 
7166 	/* fake the VTOC timestamp field */
7167 	for (i = 0; i < V_NUMPAR; i++) {
7168 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
7169 	}
7170 
7171 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7172 		/* LINTED E_ASSIGN_NARROW_CONV */
7173 		vtoctovtoc32(vt, vt32);
7174 		tmp_memp = &vt32;
7175 	} else {
7176 		tmp_memp = &vt;
7177 	}
7178 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
7179 	if (rv != 0)
7180 		rv = EFAULT;
7181 
7182 	kmem_free(tmp_mem, copy_len);
7183 	return (rv);
7184 }
7185 
7186 /*
7187  * Function:
7188  *	vdc_set_vtoc_convert()
7189  *
7190  * Description:
7191  *	This routine performs the necessary convertions from the DKIOCSVTOC
7192  *	Solaris structure to the format defined in FWARC 2006/195.
7193  *
7194  * Arguments:
7195  *	vdc	- the vDisk client
7196  *	from	- Buffer with data
7197  *	to	- Buffer where data is to be copied to
7198  *	mode	- flags passed to ioctl
7199  *	dir	- direction of copy (in or out)
7200  *
7201  * Return Code:
7202  *	0	- Success
7203  *	ENXIO	- Invalid buffer passed in
7204  *	EFAULT	- ddi_copyin of data failed
7205  */
7206 static int
7207 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7208 {
7209 	_NOTE(ARGUNUSED(vdc))
7210 
7211 	void		*tmp_mem = NULL, *uvtoc;
7212 	struct vtoc	vt;
7213 	struct vtoc	*vtp = &vt;
7214 	vd_vtoc_t	vtvd;
7215 	int		copy_len = 0;
7216 	int		i, rv = 0;
7217 
7218 	if ((from == NULL) || (to == NULL))
7219 		return (ENXIO);
7220 
7221 	if (dir == VD_COPYIN)
7222 		uvtoc = from;
7223 	else
7224 		uvtoc = to;
7225 
7226 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
7227 		copy_len = sizeof (struct vtoc32);
7228 	else
7229 		copy_len = sizeof (struct vtoc);
7230 
7231 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7232 
7233 	rv = ddi_copyin(uvtoc, tmp_mem, copy_len, mode);
7234 	if (rv != 0) {
7235 		kmem_free(tmp_mem, copy_len);
7236 		return (EFAULT);
7237 	}
7238 
7239 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7240 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
7241 	} else {
7242 		vtp = tmp_mem;
7243 	}
7244 
7245 	if (dir == VD_COPYOUT) {
7246 		/*
7247 		 * The disk label may have changed. Revalidate the disk
7248 		 * geometry. This will also update the device nodes.
7249 		 */
7250 		vdc_validate(vdc);
7251 
7252 		/*
7253 		 * We also need to keep track of the timestamp fields.
7254 		 */
7255 		for (i = 0; i < V_NUMPAR; i++) {
7256 			vdc->vtoc->timestamp[i] = vtp->timestamp[i];
7257 		}
7258 
7259 		return (0);
7260 	}
7261 
7262 	VTOC2VD_VTOC(vtp, &vtvd);
7263 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
7264 	kmem_free(tmp_mem, copy_len);
7265 
7266 	return (0);
7267 }
7268 
7269 /*
7270  * Function:
7271  *	vdc_get_geom_convert()
7272  *
7273  * Description:
7274  *	This routine performs the necessary convertions from the DKIOCGGEOM,
7275  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
7276  *	defined in FWARC 2006/195
7277  *
7278  * Arguments:
7279  *	vdc	- the vDisk client
7280  *	from	- Buffer with data
7281  *	to	- Buffer where data is to be copied to
7282  *	mode	- flags passed to ioctl
7283  *	dir	- direction of copy (in or out)
7284  *
7285  * Return Code:
7286  *	0	- Success
7287  *	ENXIO	- Invalid buffer passed in
7288  *	EFAULT	- ddi_copyout of data failed
7289  */
7290 static int
7291 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7292 {
7293 	_NOTE(ARGUNUSED(vdc))
7294 
7295 	struct dk_geom	geom;
7296 	int	copy_len = sizeof (struct dk_geom);
7297 	int	rv = 0;
7298 
7299 	if (dir != VD_COPYOUT)
7300 		return (0);	/* nothing to do */
7301 
7302 	if ((from == NULL) || (to == NULL))
7303 		return (ENXIO);
7304 
7305 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
7306 	rv = ddi_copyout(&geom, to, copy_len, mode);
7307 	if (rv != 0)
7308 		rv = EFAULT;
7309 
7310 	return (rv);
7311 }
7312 
7313 /*
7314  * Function:
7315  *	vdc_set_geom_convert()
7316  *
7317  * Description:
7318  *	This routine performs the necessary convertions from the DKIOCSGEOM
7319  *	Solaris structure to the format defined in FWARC 2006/195.
7320  *
7321  * Arguments:
7322  *	vdc	- the vDisk client
7323  *	from	- Buffer with data
7324  *	to	- Buffer where data is to be copied to
7325  *	mode	- flags passed to ioctl
7326  *	dir	- direction of copy (in or out)
7327  *
7328  * Return Code:
7329  *	0	- Success
7330  *	ENXIO	- Invalid buffer passed in
7331  *	EFAULT	- ddi_copyin of data failed
7332  */
7333 static int
7334 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7335 {
7336 	_NOTE(ARGUNUSED(vdc))
7337 
7338 	vd_geom_t	vdgeom;
7339 	void		*tmp_mem = NULL;
7340 	int		copy_len = sizeof (struct dk_geom);
7341 	int		rv = 0;
7342 
7343 	if (dir != VD_COPYIN)
7344 		return (0);	/* nothing to do */
7345 
7346 	if ((from == NULL) || (to == NULL))
7347 		return (ENXIO);
7348 
7349 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7350 
7351 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
7352 	if (rv != 0) {
7353 		kmem_free(tmp_mem, copy_len);
7354 		return (EFAULT);
7355 	}
7356 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
7357 	bcopy(&vdgeom, to, sizeof (vdgeom));
7358 	kmem_free(tmp_mem, copy_len);
7359 
7360 	return (0);
7361 }
7362 
7363 static int
7364 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7365 {
7366 	_NOTE(ARGUNUSED(vdc))
7367 
7368 	vd_efi_t	*vd_efi;
7369 	dk_efi_t	dk_efi;
7370 	int		rv = 0;
7371 	void		*uaddr;
7372 
7373 	if ((from == NULL) || (to == NULL))
7374 		return (ENXIO);
7375 
7376 	if (dir == VD_COPYIN) {
7377 
7378 		vd_efi = (vd_efi_t *)to;
7379 
7380 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
7381 		if (rv != 0)
7382 			return (EFAULT);
7383 
7384 		vd_efi->lba = dk_efi.dki_lba;
7385 		vd_efi->length = dk_efi.dki_length;
7386 		bzero(vd_efi->data, vd_efi->length);
7387 
7388 	} else {
7389 
7390 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
7391 		if (rv != 0)
7392 			return (EFAULT);
7393 
7394 		uaddr = dk_efi.dki_data;
7395 
7396 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7397 
7398 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
7399 
7400 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
7401 		    mode);
7402 		if (rv != 0)
7403 			return (EFAULT);
7404 
7405 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7406 	}
7407 
7408 	return (0);
7409 }
7410 
7411 static int
7412 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7413 {
7414 	_NOTE(ARGUNUSED(vdc))
7415 
7416 	dk_efi_t	dk_efi;
7417 	void		*uaddr;
7418 
7419 	if (dir == VD_COPYOUT) {
7420 		/*
7421 		 * The disk label may have changed. Revalidate the disk
7422 		 * geometry. This will also update the device nodes.
7423 		 */
7424 		vdc_validate(vdc);
7425 		return (0);
7426 	}
7427 
7428 	if ((from == NULL) || (to == NULL))
7429 		return (ENXIO);
7430 
7431 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
7432 		return (EFAULT);
7433 
7434 	uaddr = dk_efi.dki_data;
7435 
7436 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7437 
7438 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
7439 		return (EFAULT);
7440 
7441 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
7442 
7443 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7444 
7445 	return (0);
7446 }
7447 
7448 
7449 /* -------------------------------------------------------------------------- */
7450 
7451 /*
7452  * Function:
7453  *	vdc_create_fake_geometry()
7454  *
7455  * Description:
7456  *	This routine fakes up the disk info needed for some DKIO ioctls such
7457  *	as DKIOCINFO and DKIOCGMEDIAINFO [just like lofi(7D) and ramdisk(7D) do]
7458  *
7459  *	Note: This function must not be called until the vDisk attributes have
7460  *	been exchanged as part of the handshake with the vDisk server.
7461  *
7462  * Arguments:
7463  *	vdc	- soft state pointer for this instance of the device driver.
7464  *
7465  * Return Code:
7466  *	none.
7467  */
7468 static void
7469 vdc_create_fake_geometry(vdc_t *vdc)
7470 {
7471 	ASSERT(vdc != NULL);
7472 	ASSERT(vdc->max_xfer_sz != 0);
7473 
7474 	/*
7475 	 * DKIOCINFO support
7476 	 */
7477 	if (vdc->cinfo == NULL)
7478 		vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
7479 
7480 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
7481 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
7482 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
7483 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
7484 
7485 	/*
7486 	 * We set the controller type to DKC_SCSI_CCS only if the VD_OP_SCSICMD
7487 	 * operation is supported, otherwise the controller type is DKC_DIRECT.
7488 	 * Version 1.0 does not support the VD_OP_SCSICMD operation, so the
7489 	 * controller type is always DKC_DIRECT in that case.
7490 	 *
7491 	 * If the virtual disk is backed by a physical CD/DVD device or
7492 	 * an ISO image, modify the controller type to indicate this
7493 	 */
7494 	switch (vdc->vdisk_media) {
7495 	case VD_MEDIA_CD:
7496 	case VD_MEDIA_DVD:
7497 		vdc->cinfo->dki_ctype = DKC_CDROM;
7498 		break;
7499 	case VD_MEDIA_FIXED:
7500 		if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD))
7501 			vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
7502 		else
7503 			vdc->cinfo->dki_ctype = DKC_DIRECT;
7504 		break;
7505 	default:
7506 		/* in the case of v1.0 we default to a fixed disk */
7507 		vdc->cinfo->dki_ctype = DKC_DIRECT;
7508 		break;
7509 	}
7510 	vdc->cinfo->dki_flags = DKI_FMTVOL;
7511 	vdc->cinfo->dki_cnum = 0;
7512 	vdc->cinfo->dki_addr = 0;
7513 	vdc->cinfo->dki_space = 0;
7514 	vdc->cinfo->dki_prio = 0;
7515 	vdc->cinfo->dki_vec = 0;
7516 	vdc->cinfo->dki_unit = vdc->instance;
7517 	vdc->cinfo->dki_slave = 0;
7518 	/*
7519 	 * The partition number will be created on the fly depending on the
7520 	 * actual slice (i.e. minor node) that is used to request the data.
7521 	 */
7522 	vdc->cinfo->dki_partition = 0;
7523 
7524 	/*
7525 	 * DKIOCGMEDIAINFO support
7526 	 */
7527 	if (vdc->minfo == NULL)
7528 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
7529 
7530 	if (vio_ver_is_supported(vdc->ver, 1, 1)) {
7531 		vdc->minfo->dki_media_type =
7532 		    VD_MEDIATYPE2DK_MEDIATYPE(vdc->vdisk_media);
7533 	} else {
7534 		vdc->minfo->dki_media_type = DK_FIXED_DISK;
7535 	}
7536 
7537 	vdc->minfo->dki_capacity = vdc->vdisk_size;
7538 	vdc->minfo->dki_lbsize = vdc->block_size;
7539 }
7540 
7541 static ushort_t
7542 vdc_lbl2cksum(struct dk_label *label)
7543 {
7544 	int	count;
7545 	ushort_t sum, *sp;
7546 
7547 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
7548 	sp = (ushort_t *)label;
7549 	sum = 0;
7550 	while (count--) {
7551 		sum ^= *sp++;
7552 	}
7553 
7554 	return (sum);
7555 }
7556 
7557 /*
7558  * Function:
7559  *	vdc_validate_geometry
7560  *
7561  * Description:
7562  *	This routine discovers the label and geometry of the disk. It stores
7563  *	the disk label and related information in the vdc structure. If it
7564  *	fails to validate the geometry or to discover the disk label then
7565  *	the label is marked as unknown (VD_DISK_LABEL_UNK).
7566  *
7567  * Arguments:
7568  *	vdc	- soft state pointer for this instance of the device driver.
7569  *
7570  * Return Code:
7571  *	0	- success.
7572  *	EINVAL	- unknown disk label.
7573  *	ENOTSUP	- geometry not applicable (EFI label).
7574  *	EIO	- error accessing the disk.
7575  */
7576 static int
7577 vdc_validate_geometry(vdc_t *vdc)
7578 {
7579 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
7580 	dev_t	dev;
7581 	int	rv, rval;
7582 	struct dk_label label;
7583 	struct dk_geom geom;
7584 	struct vtoc vtoc;
7585 	efi_gpt_t *gpt;
7586 	efi_gpe_t *gpe;
7587 	vd_efi_dev_t edev;
7588 
7589 	ASSERT(vdc != NULL);
7590 	ASSERT(vdc->vtoc != NULL && vdc->geom != NULL);
7591 	ASSERT(MUTEX_HELD(&vdc->lock));
7592 
7593 	mutex_exit(&vdc->lock);
7594 
7595 	dev = makedevice(ddi_driver_major(vdc->dip),
7596 	    VD_MAKE_DEV(vdc->instance, 0));
7597 
7598 	rv = vd_process_ioctl(dev, DKIOCGGEOM, (caddr_t)&geom, FKIOCTL, &rval);
7599 	if (rv == 0)
7600 		rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)&vtoc,
7601 		    FKIOCTL, &rval);
7602 
7603 	if (rv == ENOTSUP) {
7604 		/*
7605 		 * If the device does not support VTOC then we try
7606 		 * to read an EFI label.
7607 		 *
7608 		 * We need to know the block size and the disk size to
7609 		 * be able to read an EFI label.
7610 		 */
7611 		if (vdc->vdisk_size == 0) {
7612 			if ((rv = vdc_check_capacity(vdc)) != 0) {
7613 				mutex_enter(&vdc->lock);
7614 				vdc_store_label_unk(vdc);
7615 				return (rv);
7616 			}
7617 		}
7618 
7619 		VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
7620 
7621 		rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe);
7622 
7623 		if (rv) {
7624 			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
7625 			    vdc->instance, rv);
7626 			mutex_enter(&vdc->lock);
7627 			vdc_store_label_unk(vdc);
7628 			return (EIO);
7629 		}
7630 
7631 		mutex_enter(&vdc->lock);
7632 		vdc_store_label_efi(vdc, gpt, gpe);
7633 		vd_efi_free(&edev, gpt, gpe);
7634 		return (ENOTSUP);
7635 	}
7636 
7637 	if (rv != 0) {
7638 		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
7639 		    vdc->instance, rv);
7640 		mutex_enter(&vdc->lock);
7641 		vdc_store_label_unk(vdc);
7642 		if (rv != EINVAL)
7643 			rv = EIO;
7644 		return (rv);
7645 	}
7646 
7647 	/* check that geometry and vtoc are valid */
7648 	if (geom.dkg_nhead == 0 || geom.dkg_nsect == 0 ||
7649 	    vtoc.v_sanity != VTOC_SANE) {
7650 		mutex_enter(&vdc->lock);
7651 		vdc_store_label_unk(vdc);
7652 		return (EINVAL);
7653 	}
7654 
7655 	/*
7656 	 * We have a disk and a valid VTOC. However this does not mean
7657 	 * that the disk currently have a VTOC label. The returned VTOC may
7658 	 * be a default VTOC to be used for configuring the disk (this is
7659 	 * what is done for disk image). So we read the label from the
7660 	 * beginning of the disk to ensure we really have a VTOC label.
7661 	 *
7662 	 * FUTURE: This could be the default way for reading the VTOC
7663 	 * from the disk as opposed to sending the VD_OP_GET_VTOC
7664 	 * to the server. This will be the default if vdc is implemented
7665 	 * ontop of cmlb.
7666 	 */
7667 
7668 	/*
7669 	 * Single slice disk does not support read using an absolute disk
7670 	 * offset so we just rely on the DKIOCGVTOC ioctl in that case.
7671 	 */
7672 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
7673 		mutex_enter(&vdc->lock);
7674 		if (vtoc.v_nparts != 1) {
7675 			vdc_store_label_unk(vdc);
7676 			return (EINVAL);
7677 		}
7678 		vdc_store_label_vtoc(vdc, &geom, &vtoc);
7679 		return (0);
7680 	}
7681 
7682 	if (vtoc.v_nparts != V_NUMPAR) {
7683 		mutex_enter(&vdc->lock);
7684 		vdc_store_label_unk(vdc);
7685 		return (EINVAL);
7686 	}
7687 
7688 	/*
7689 	 * Read disk label from start of disk
7690 	 */
7691 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
7692 	bioinit(buf);
7693 	buf->b_un.b_addr = (caddr_t)&label;
7694 	buf->b_bcount = DK_LABEL_SIZE;
7695 	buf->b_flags = B_BUSY | B_READ;
7696 	buf->b_dev = cmpdev(dev);
7697 	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)&label,
7698 	    DK_LABEL_SIZE, VD_SLICE_NONE, 0, CB_STRATEGY, buf, VIO_read_dir);
7699 	if (rv) {
7700 		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
7701 		    vdc->instance);
7702 	} else {
7703 		rv = biowait(buf);
7704 		biofini(buf);
7705 	}
7706 	kmem_free(buf, sizeof (buf_t));
7707 
7708 	if (rv != 0 || label.dkl_magic != DKL_MAGIC ||
7709 	    label.dkl_cksum != vdc_lbl2cksum(&label)) {
7710 		DMSG(vdc, 1, "[%d] Got VTOC with invalid label\n",
7711 		    vdc->instance);
7712 		mutex_enter(&vdc->lock);
7713 		vdc_store_label_unk(vdc);
7714 		return (EINVAL);
7715 	}
7716 
7717 	mutex_enter(&vdc->lock);
7718 	vdc_store_label_vtoc(vdc, &geom, &vtoc);
7719 	return (0);
7720 }
7721 
7722 /*
7723  * Function:
7724  *	vdc_validate
7725  *
7726  * Description:
7727  *	This routine discovers the label of the disk and create the
7728  *	appropriate device nodes if the label has changed.
7729  *
7730  * Arguments:
7731  *	vdc	- soft state pointer for this instance of the device driver.
7732  *
7733  * Return Code:
7734  *	none.
7735  */
7736 static void
7737 vdc_validate(vdc_t *vdc)
7738 {
7739 	vd_disk_label_t old_label;
7740 	vd_slice_t old_slice[V_NUMPAR];
7741 	int rv;
7742 
7743 	ASSERT(!MUTEX_HELD(&vdc->lock));
7744 
7745 	mutex_enter(&vdc->lock);
7746 
7747 	/* save the current label and vtoc */
7748 	old_label = vdc->vdisk_label;
7749 	bcopy(vdc->slice, &old_slice, sizeof (vd_slice_t) * V_NUMPAR);
7750 
7751 	/* check the geometry */
7752 	(void) vdc_validate_geometry(vdc);
7753 
7754 	/* if the disk label has changed, update device nodes */
7755 	if (vdc->vdisk_label != old_label) {
7756 
7757 		if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
7758 			rv = vdc_create_device_nodes_efi(vdc);
7759 		else
7760 			rv = vdc_create_device_nodes_vtoc(vdc);
7761 
7762 		if (rv != 0) {
7763 			DMSG(vdc, 0, "![%d] Failed to update device nodes",
7764 			    vdc->instance);
7765 		}
7766 	}
7767 
7768 	mutex_exit(&vdc->lock);
7769 }
7770 
7771 static void
7772 vdc_validate_task(void *arg)
7773 {
7774 	vdc_t *vdc = (vdc_t *)arg;
7775 
7776 	vdc_validate(vdc);
7777 
7778 	mutex_enter(&vdc->lock);
7779 	ASSERT(vdc->validate_pending > 0);
7780 	vdc->validate_pending--;
7781 	mutex_exit(&vdc->lock);
7782 }
7783 
7784 /*
7785  * Function:
7786  *	vdc_setup_devid()
7787  *
7788  * Description:
7789  *	This routine discovers the devid of a vDisk. It requests the devid of
7790  *	the underlying device from the vDisk server, builds an encapsulated
7791  *	devid based on the retrieved devid and registers that new devid to
7792  *	the vDisk.
7793  *
7794  * Arguments:
7795  *	vdc	- soft state pointer for this instance of the device driver.
7796  *
7797  * Return Code:
7798  *	0	- A devid was succesfully registered for the vDisk
7799  */
7800 static int
7801 vdc_setup_devid(vdc_t *vdc)
7802 {
7803 	int rv;
7804 	vd_devid_t *vd_devid;
7805 	size_t bufsize, bufid_len;
7806 
7807 	/*
7808 	 * At first sight, we don't know the size of the devid that the
7809 	 * server will return but this size will be encoded into the
7810 	 * reply. So we do a first request using a default size then we
7811 	 * check if this size was large enough. If not then we do a second
7812 	 * request with the correct size returned by the server. Note that
7813 	 * ldc requires size to be 8-byte aligned.
7814 	 */
7815 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
7816 	    sizeof (uint64_t));
7817 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7818 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7819 
7820 	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
7821 	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
7822 
7823 	DMSG(vdc, 2, "sync_op returned %d\n", rv);
7824 
7825 	if (rv) {
7826 		kmem_free(vd_devid, bufsize);
7827 		return (rv);
7828 	}
7829 
7830 	if (vd_devid->length > bufid_len) {
7831 		/*
7832 		 * The returned devid is larger than the buffer used. Try again
7833 		 * with a buffer with the right size.
7834 		 */
7835 		kmem_free(vd_devid, bufsize);
7836 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
7837 		    sizeof (uint64_t));
7838 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7839 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7840 
7841 		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
7842 		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
7843 		    VIO_both_dir, B_TRUE);
7844 
7845 		if (rv) {
7846 			kmem_free(vd_devid, bufsize);
7847 			return (rv);
7848 		}
7849 	}
7850 
7851 	/*
7852 	 * The virtual disk should have the same device id as the one associated
7853 	 * with the physical disk it is mapped on, otherwise sharing a disk
7854 	 * between a LDom and a non-LDom may not work (for example for a shared
7855 	 * SVM disk set).
7856 	 *
7857 	 * The DDI framework does not allow creating a device id with any
7858 	 * type so we first create a device id of type DEVID_ENCAP and then
7859 	 * we restore the orignal type of the physical device.
7860 	 */
7861 
7862 	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
7863 
7864 	/* build an encapsulated devid based on the returned devid */
7865 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
7866 	    vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
7867 		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
7868 		kmem_free(vd_devid, bufsize);
7869 		return (1);
7870 	}
7871 
7872 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
7873 
7874 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
7875 
7876 	kmem_free(vd_devid, bufsize);
7877 
7878 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
7879 		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
7880 		return (1);
7881 	}
7882 
7883 	return (0);
7884 }
7885 
7886 static void
7887 vdc_store_label_efi(vdc_t *vdc, efi_gpt_t *gpt, efi_gpe_t *gpe)
7888 {
7889 	int i, nparts;
7890 
7891 	ASSERT(MUTEX_HELD(&vdc->lock));
7892 
7893 	vdc->vdisk_label = VD_DISK_LABEL_EFI;
7894 	bzero(vdc->vtoc, sizeof (struct vtoc));
7895 	bzero(vdc->geom, sizeof (struct dk_geom));
7896 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7897 
7898 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
7899 
7900 	for (i = 0; i < nparts && i < VD_EFI_WD_SLICE; i++) {
7901 
7902 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
7903 		    gpe[i].efi_gpe_EndingLBA == 0) {
7904 			continue;
7905 		}
7906 
7907 		vdc->slice[i].start = gpe[i].efi_gpe_StartingLBA;
7908 		vdc->slice[i].nblocks = gpe[i].efi_gpe_EndingLBA -
7909 		    gpe[i].efi_gpe_StartingLBA + 1;
7910 	}
7911 
7912 	ASSERT(vdc->vdisk_size != 0);
7913 	vdc->slice[VD_EFI_WD_SLICE].start = 0;
7914 	vdc->slice[VD_EFI_WD_SLICE].nblocks = vdc->vdisk_size;
7915 
7916 }
7917 
7918 static void
7919 vdc_store_label_vtoc(vdc_t *vdc, struct dk_geom *geom, struct vtoc *vtoc)
7920 {
7921 	int i;
7922 
7923 	ASSERT(MUTEX_HELD(&vdc->lock));
7924 	ASSERT(vdc->block_size == vtoc->v_sectorsz);
7925 
7926 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
7927 	bcopy(vtoc, vdc->vtoc, sizeof (struct vtoc));
7928 	bcopy(geom, vdc->geom, sizeof (struct dk_geom));
7929 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7930 
7931 	for (i = 0; i < vtoc->v_nparts; i++) {
7932 		vdc->slice[i].start = vtoc->v_part[i].p_start;
7933 		vdc->slice[i].nblocks = vtoc->v_part[i].p_size;
7934 	}
7935 }
7936 
7937 static void
7938 vdc_store_label_unk(vdc_t *vdc)
7939 {
7940 	ASSERT(MUTEX_HELD(&vdc->lock));
7941 
7942 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
7943 	bzero(vdc->vtoc, sizeof (struct vtoc));
7944 	bzero(vdc->geom, sizeof (struct dk_geom));
7945 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7946 }
7947