xref: /illumos-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 986fd29a)
125cf1a30Sjl /*
225cf1a30Sjl  * CDDL HEADER START
325cf1a30Sjl  *
425cf1a30Sjl  * The contents of this file are subject to the terms of the
525cf1a30Sjl  * Common Development and Distribution License (the "License").
625cf1a30Sjl  * You may not use this file except in compliance with the License.
725cf1a30Sjl  *
825cf1a30Sjl  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925cf1a30Sjl  * or http://www.opensolaris.org/os/licensing.
1025cf1a30Sjl  * See the License for the specific language governing permissions
1125cf1a30Sjl  * and limitations under the License.
1225cf1a30Sjl  *
1325cf1a30Sjl  * When distributing Covered Code, include this CDDL HEADER in each
1425cf1a30Sjl  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525cf1a30Sjl  * If applicable, add the following below this CDDL HEADER, with the
1625cf1a30Sjl  * fields enclosed by brackets "[]" replaced with your own identifying
1725cf1a30Sjl  * information: Portions Copyright [yyyy] [name of copyright owner]
1825cf1a30Sjl  *
1925cf1a30Sjl  * CDDL HEADER END
2025cf1a30Sjl  */
2125cf1a30Sjl /*
2268ac2337Sjl  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
2325cf1a30Sjl  * Use is subject to license terms.
2425cf1a30Sjl  */
2525cf1a30Sjl 
2625cf1a30Sjl #pragma ident	"%Z%%M%	%I%	%E% SMI"
2725cf1a30Sjl 
2825cf1a30Sjl #include <sys/cpuvar.h>
2925cf1a30Sjl #include <sys/systm.h>
3025cf1a30Sjl #include <sys/sysmacros.h>
3125cf1a30Sjl #include <sys/promif.h>
3225cf1a30Sjl #include <sys/platform_module.h>
3325cf1a30Sjl #include <sys/cmn_err.h>
3425cf1a30Sjl #include <sys/errno.h>
3525cf1a30Sjl #include <sys/machsystm.h>
3625cf1a30Sjl #include <sys/bootconf.h>
3725cf1a30Sjl #include <sys/nvpair.h>
3825cf1a30Sjl #include <sys/kobj.h>
3925cf1a30Sjl #include <sys/mem_cage.h>
4025cf1a30Sjl #include <sys/opl.h>
4125cf1a30Sjl #include <sys/scfd/scfostoescf.h>
4225cf1a30Sjl #include <sys/cpu_sgnblk_defs.h>
4325cf1a30Sjl #include <sys/utsname.h>
4425cf1a30Sjl #include <sys/ddi.h>
4525cf1a30Sjl #include <sys/sunndi.h>
4625cf1a30Sjl #include <sys/lgrp.h>
4725cf1a30Sjl #include <sys/memnode.h>
4825cf1a30Sjl #include <sys/sysmacros.h>
49e603b7d4Spm #include <sys/time.h>
50e603b7d4Spm #include <sys/cpu.h>
5125cf1a30Sjl #include <vm/vm_dep.h>
5225cf1a30Sjl 
5325cf1a30Sjl int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
540cc8ae86Sav int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
550cc8ae86Sav int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
560cc8ae86Sav int (*opl_get_mem_addr)(char *unum, char *sid,
570cc8ae86Sav     uint64_t offset, uint64_t *paddr);
5825cf1a30Sjl 
5925cf1a30Sjl /* Memory for fcode claims.  16k times # maximum possible IO units */
6025cf1a30Sjl #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
6125cf1a30Sjl int efcode_size = EFCODE_SIZE;
6225cf1a30Sjl 
6325cf1a30Sjl #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
6425cf1a30Sjl 
6525cf1a30Sjl /* Set the maximum number of boards for DR */
6625cf1a30Sjl int opl_boards = OPL_MAX_BOARDS;
6725cf1a30Sjl 
6825cf1a30Sjl void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
6925cf1a30Sjl 
7025cf1a30Sjl extern int tsb_lgrp_affinity;
7125cf1a30Sjl 
7225cf1a30Sjl int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
7325cf1a30Sjl 	(OPL_MAX_TSBS_PER_PCICH);
7425cf1a30Sjl 
7525cf1a30Sjl pgcnt_t opl_startup_cage_size = 0;
7625cf1a30Sjl 
773f1fa9a7Sjfrank /*
783f1fa9a7Sjfrank  * The length of the delay in seconds in communication with XSCF after
793f1fa9a7Sjfrank  * which the warning message will be logged.
803f1fa9a7Sjfrank  */
813f1fa9a7Sjfrank uint_t	xscf_connect_delay = 60 * 15;
823f1fa9a7Sjfrank 
831e2e7a75Shuah static opl_model_info_t opl_models[] = {
84195196c6Ssubhan 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
85195196c6Ssubhan 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
86195196c6Ssubhan 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
87195196c6Ssubhan 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
88195196c6Ssubhan 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
891e2e7a75Shuah };
901e2e7a75Shuah static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
911e2e7a75Shuah 
92195196c6Ssubhan /*
9372b9fce9Ssubhan  * opl_cur_model
94195196c6Ssubhan  */
9572b9fce9Ssubhan static	opl_model_info_t *opl_cur_model = NULL;
961e2e7a75Shuah 
9725cf1a30Sjl static struct memlist *opl_memlist_per_board(struct memlist *ml);
983f1fa9a7Sjfrank static void post_xscf_msg(char *, int);
993f1fa9a7Sjfrank static void pass2xscf_thread();
10025cf1a30Sjl 
101e603b7d4Spm /*
102e603b7d4Spm  * Note FF/DC out-of-order instruction engine takes only a
103e603b7d4Spm  * single cycle to execute each spin loop
104e603b7d4Spm  * for comparison, Panther takes 6 cycles for same loop
105e603b7d4Spm  * 1500 approx nsec for OPL sleep instruction
106e603b7d4Spm  * if spin count = OPL_BOFF_SLEEP*OPL_BOFF_SPIN then
107e603b7d4Spm  * spin time should be equal to OPL_BOFF_TM nsecs
108e603b7d4Spm  * Listed values tuned for 2.15GHz to 2.4GHz systems
109e603b7d4Spm  * Value may change for future systems
110e603b7d4Spm  */
111e603b7d4Spm #define	OPL_BOFF_SPIN 720
112e603b7d4Spm #define	OPL_BOFF_BASE 1
113e603b7d4Spm #define	OPL_BOFF_SLEEP 5
114e603b7d4Spm #define	OPL_BOFF_CAP1 20
115e603b7d4Spm #define	OPL_BOFF_CAP2 60
116e603b7d4Spm #define	OPL_BOFF_MAX (40 * OPL_BOFF_SLEEP)
117e603b7d4Spm #define	OPL_BOFF_TM 1500
118e603b7d4Spm 
11925cf1a30Sjl int
12025cf1a30Sjl set_platform_max_ncpus(void)
12125cf1a30Sjl {
12225cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
12325cf1a30Sjl }
12425cf1a30Sjl 
12525cf1a30Sjl int
12625cf1a30Sjl set_platform_tsb_spares(void)
12725cf1a30Sjl {
12825cf1a30Sjl 	return (MIN(opl_tsb_spares, MAX_UPA));
12925cf1a30Sjl }
13025cf1a30Sjl 
1311e2e7a75Shuah static void
1321e2e7a75Shuah set_model_info()
1331e2e7a75Shuah {
134195196c6Ssubhan 	extern int ts_dispatch_extended;
1351e2e7a75Shuah 	char	name[MAXSYSNAME];
1361e2e7a75Shuah 	int	i;
1371e2e7a75Shuah 
1381e2e7a75Shuah 	/*
1391e2e7a75Shuah 	 * Get model name from the root node.
1401e2e7a75Shuah 	 *
1411e2e7a75Shuah 	 * We are using the prom device tree since, at this point,
1421e2e7a75Shuah 	 * the Solaris device tree is not yet setup.
1431e2e7a75Shuah 	 */
1441e2e7a75Shuah 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
1451e2e7a75Shuah 
1461e2e7a75Shuah 	for (i = 0; i < opl_num_models; i++) {
1471e2e7a75Shuah 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
1481e2e7a75Shuah 			opl_cur_model = &opl_models[i];
1491e2e7a75Shuah 			break;
1501e2e7a75Shuah 		}
1511e2e7a75Shuah 	}
152195196c6Ssubhan 
1539b71d8e9Swh 	/*
1549b71d8e9Swh 	 * If model not matched, it's an unknown model.
1559b71d8e9Swh 	 * just return.
1569b71d8e9Swh 	 */
1571e2e7a75Shuah 	if (i == opl_num_models)
1589b71d8e9Swh 		return;
159195196c6Ssubhan 
160195196c6Ssubhan 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
161e98fafb9Sjl 	    (ts_dispatch_extended == -1)) {
162195196c6Ssubhan 		/*
163195196c6Ssubhan 		 * Based on a platform model, select a dispatch table.
164195196c6Ssubhan 		 * Only DC2 and DC3 systems uses the alternate/extended
165195196c6Ssubhan 		 * TS dispatch table.
166195196c6Ssubhan 		 * FF1, FF2 and DC1 systems used standard dispatch tables.
167195196c6Ssubhan 		 */
168195196c6Ssubhan 		ts_dispatch_extended = 1;
169195196c6Ssubhan 	}
170195196c6Ssubhan 
1711e2e7a75Shuah }
1721e2e7a75Shuah 
1731e2e7a75Shuah static void
1741e2e7a75Shuah set_max_mmu_ctxdoms()
1751e2e7a75Shuah {
1761e2e7a75Shuah 	extern uint_t	max_mmu_ctxdoms;
1771e2e7a75Shuah 	int		max_boards;
1781e2e7a75Shuah 
1791e2e7a75Shuah 	/*
1801e2e7a75Shuah 	 * From the model, get the maximum number of boards
1811e2e7a75Shuah 	 * supported and set the value accordingly. If the model
1821e2e7a75Shuah 	 * could not be determined or recognized, we assume the max value.
1831e2e7a75Shuah 	 */
1841e2e7a75Shuah 	if (opl_cur_model == NULL)
1851e2e7a75Shuah 		max_boards = OPL_MAX_BOARDS;
1861e2e7a75Shuah 	else
1871e2e7a75Shuah 		max_boards = opl_cur_model->model_max_boards;
1881e2e7a75Shuah 
1891e2e7a75Shuah 	/*
1901e2e7a75Shuah 	 * On OPL, cores and MMUs are one-to-one.
1911e2e7a75Shuah 	 */
1921e2e7a75Shuah 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
1931e2e7a75Shuah }
1941e2e7a75Shuah 
19525cf1a30Sjl #pragma weak mmu_init_large_pages
19625cf1a30Sjl 
19725cf1a30Sjl void
19825cf1a30Sjl set_platform_defaults(void)
19925cf1a30Sjl {
20025cf1a30Sjl 	extern char *tod_module_name;
20125cf1a30Sjl 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
20225cf1a30Sjl 	extern void mmu_init_large_pages(size_t);
20325cf1a30Sjl 
20425cf1a30Sjl 	/* Set the CPU signature function pointer */
20525cf1a30Sjl 	cpu_sgn_func = cpu_sgn_update;
20625cf1a30Sjl 
20725cf1a30Sjl 	/* Set appropriate tod module for OPL platform */
20825cf1a30Sjl 	ASSERT(tod_module_name == NULL);
20925cf1a30Sjl 	tod_module_name = "todopl";
21025cf1a30Sjl 
21125cf1a30Sjl 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
212e12a8a13Ssusans 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
21325cf1a30Sjl 		if (&mmu_init_large_pages)
21425cf1a30Sjl 			mmu_init_large_pages(mmu_ism_pagesize);
21525cf1a30Sjl 	}
21625cf1a30Sjl 
21725cf1a30Sjl 	tsb_lgrp_affinity = 1;
2181e2e7a75Shuah 
2191e2e7a75Shuah 	set_max_mmu_ctxdoms();
22025cf1a30Sjl }
22125cf1a30Sjl 
22225cf1a30Sjl /*
22325cf1a30Sjl  * Convert logical a board number to a physical one.
22425cf1a30Sjl  */
22525cf1a30Sjl 
22625cf1a30Sjl #define	LSBPROP		"board#"
22725cf1a30Sjl #define	PSBPROP		"physical-board#"
22825cf1a30Sjl 
22925cf1a30Sjl int
23025cf1a30Sjl opl_get_physical_board(int id)
23125cf1a30Sjl {
23225cf1a30Sjl 	dev_info_t	*root_dip, *dip = NULL;
23325cf1a30Sjl 	char		*dname = NULL;
23425cf1a30Sjl 	int		circ;
23525cf1a30Sjl 
23625cf1a30Sjl 	pnode_t		pnode;
23725cf1a30Sjl 	char		pname[MAXSYSNAME] = {0};
23825cf1a30Sjl 
23925cf1a30Sjl 	int		lsb_id;	/* Logical System Board ID */
24025cf1a30Sjl 	int		psb_id;	/* Physical System Board ID */
24125cf1a30Sjl 
24225cf1a30Sjl 
24325cf1a30Sjl 	/*
24425cf1a30Sjl 	 * This function is called on early stage of bootup when the
24525cf1a30Sjl 	 * kernel device tree is not initialized yet, and also
24625cf1a30Sjl 	 * later on when the device tree is up. We want to try
24725cf1a30Sjl 	 * the fast track first.
24825cf1a30Sjl 	 */
24925cf1a30Sjl 	root_dip = ddi_root_node();
25025cf1a30Sjl 	if (root_dip) {
25125cf1a30Sjl 		/* Get from devinfo node */
25225cf1a30Sjl 		ndi_devi_enter(root_dip, &circ);
25325cf1a30Sjl 		for (dip = ddi_get_child(root_dip); dip;
25425cf1a30Sjl 		    dip = ddi_get_next_sibling(dip)) {
25525cf1a30Sjl 
25625cf1a30Sjl 			dname = ddi_node_name(dip);
25725cf1a30Sjl 			if (strncmp(dname, "pseudo-mc", 9) != 0)
25825cf1a30Sjl 				continue;
25925cf1a30Sjl 
26025cf1a30Sjl 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
26125cf1a30Sjl 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
26225cf1a30Sjl 				continue;
26325cf1a30Sjl 
26425cf1a30Sjl 			if (id == lsb_id) {
26525cf1a30Sjl 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
26625cf1a30Sjl 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
26725cf1a30Sjl 				    == -1) {
26825cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
26925cf1a30Sjl 					return (-1);
27025cf1a30Sjl 				} else {
27125cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
27225cf1a30Sjl 					return (psb_id);
27325cf1a30Sjl 				}
27425cf1a30Sjl 			}
27525cf1a30Sjl 		}
27625cf1a30Sjl 		ndi_devi_exit(root_dip, circ);
27725cf1a30Sjl 	}
27825cf1a30Sjl 
27925cf1a30Sjl 	/*
28025cf1a30Sjl 	 * We do not have the kernel device tree, or we did not
28125cf1a30Sjl 	 * find the node for some reason (let's say the kernel
28225cf1a30Sjl 	 * device tree was modified), let's try the OBP tree.
28325cf1a30Sjl 	 */
28425cf1a30Sjl 	pnode = prom_rootnode();
28525cf1a30Sjl 	for (pnode = prom_childnode(pnode); pnode;
28625cf1a30Sjl 	    pnode = prom_nextnode(pnode)) {
28725cf1a30Sjl 
28825cf1a30Sjl 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
28925cf1a30Sjl 		    (strncmp(pname, "pseudo-mc", 9) != 0))
29025cf1a30Sjl 			continue;
29125cf1a30Sjl 
29225cf1a30Sjl 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
29325cf1a30Sjl 			continue;
29425cf1a30Sjl 
29525cf1a30Sjl 		if (id == lsb_id) {
29625cf1a30Sjl 			if (prom_getprop(pnode, PSBPROP,
29725cf1a30Sjl 			    (caddr_t)&psb_id) == -1) {
29825cf1a30Sjl 				return (-1);
29925cf1a30Sjl 			} else {
30025cf1a30Sjl 				return (psb_id);
30125cf1a30Sjl 			}
30225cf1a30Sjl 		}
30325cf1a30Sjl 	}
30425cf1a30Sjl 
30525cf1a30Sjl 	return (-1);
30625cf1a30Sjl }
30725cf1a30Sjl 
30825cf1a30Sjl /*
30925cf1a30Sjl  * For OPL it's possible that memory from two or more successive boards
31025cf1a30Sjl  * will be contiguous across the boards, and therefore represented as a
31125cf1a30Sjl  * single chunk.
31225cf1a30Sjl  * This function splits such chunks down the board boundaries.
31325cf1a30Sjl  */
31425cf1a30Sjl static struct memlist *
31525cf1a30Sjl opl_memlist_per_board(struct memlist *ml)
31625cf1a30Sjl {
31725cf1a30Sjl 	uint64_t ssize, low, high, boundary;
31825cf1a30Sjl 	struct memlist *head, *tail, *new;
31925cf1a30Sjl 
32025cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
32125cf1a30Sjl 
32225cf1a30Sjl 	head = tail = NULL;
32325cf1a30Sjl 
32425cf1a30Sjl 	for (; ml; ml = ml->next) {
32525cf1a30Sjl 		low  = (uint64_t)ml->address;
32625cf1a30Sjl 		high = low+(uint64_t)(ml->size);
32725cf1a30Sjl 		while (low < high) {
32825cf1a30Sjl 			boundary = roundup(low+1, ssize);
32925cf1a30Sjl 			boundary = MIN(high, boundary);
33025cf1a30Sjl 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
33125cf1a30Sjl 			new->address = low;
33225cf1a30Sjl 			new->size = boundary - low;
33325cf1a30Sjl 			if (head == NULL)
33425cf1a30Sjl 				head = new;
33525cf1a30Sjl 			if (tail) {
33625cf1a30Sjl 				tail->next = new;
33725cf1a30Sjl 				new->prev = tail;
33825cf1a30Sjl 			}
33925cf1a30Sjl 			tail = new;
34025cf1a30Sjl 			low = boundary;
34125cf1a30Sjl 		}
34225cf1a30Sjl 	}
34325cf1a30Sjl 	return (head);
34425cf1a30Sjl }
34525cf1a30Sjl 
34625cf1a30Sjl void
34725cf1a30Sjl set_platform_cage_params(void)
34825cf1a30Sjl {
34925cf1a30Sjl 	extern pgcnt_t total_pages;
35025cf1a30Sjl 	extern struct memlist *phys_avail;
35125cf1a30Sjl 	struct memlist *ml, *tml;
35225cf1a30Sjl 
35325cf1a30Sjl 	if (kernel_cage_enable) {
35425cf1a30Sjl 		pgcnt_t preferred_cage_size;
35525cf1a30Sjl 
356e98fafb9Sjl 		preferred_cage_size = MAX(opl_startup_cage_size,
357e98fafb9Sjl 		    total_pages / 256);
35825cf1a30Sjl 
35925cf1a30Sjl 		ml = opl_memlist_per_board(phys_avail);
36025cf1a30Sjl 
36125cf1a30Sjl 		/*
36225cf1a30Sjl 		 * Note: we are assuming that post has load the
36325cf1a30Sjl 		 * whole show in to the high end of memory. Having
36425cf1a30Sjl 		 * taken this leap, we copy the whole of phys_avail
36525cf1a30Sjl 		 * the glist and arrange for the cage to grow
36625cf1a30Sjl 		 * downward (descending pfns).
36725cf1a30Sjl 		 */
36885f58038Sdp 		kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
36925cf1a30Sjl 
37025cf1a30Sjl 		/* free the memlist */
37125cf1a30Sjl 		do {
37225cf1a30Sjl 			tml = ml->next;
37325cf1a30Sjl 			kmem_free(ml, sizeof (struct memlist));
37425cf1a30Sjl 			ml = tml;
37525cf1a30Sjl 		} while (ml != NULL);
37625cf1a30Sjl 	}
37725cf1a30Sjl 
37825cf1a30Sjl 	if (kcage_on)
37925cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
38025cf1a30Sjl 	else
38125cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
38225cf1a30Sjl }
38325cf1a30Sjl 
38425cf1a30Sjl /*ARGSUSED*/
38525cf1a30Sjl int
38625cf1a30Sjl plat_cpu_poweron(struct cpu *cp)
38725cf1a30Sjl {
38825cf1a30Sjl 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
38925cf1a30Sjl 
39025cf1a30Sjl 	opl_cpu_poweron =
39125cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
39225cf1a30Sjl 
39325cf1a30Sjl 	if (opl_cpu_poweron == NULL)
39425cf1a30Sjl 		return (ENOTSUP);
39525cf1a30Sjl 	else
39625cf1a30Sjl 		return ((opl_cpu_poweron)(cp));
39725cf1a30Sjl 
39825cf1a30Sjl }
39925cf1a30Sjl 
40025cf1a30Sjl /*ARGSUSED*/
40125cf1a30Sjl int
40225cf1a30Sjl plat_cpu_poweroff(struct cpu *cp)
40325cf1a30Sjl {
40425cf1a30Sjl 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
40525cf1a30Sjl 
40625cf1a30Sjl 	opl_cpu_poweroff =
40725cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
40825cf1a30Sjl 
40925cf1a30Sjl 	if (opl_cpu_poweroff == NULL)
41025cf1a30Sjl 		return (ENOTSUP);
41125cf1a30Sjl 	else
41225cf1a30Sjl 		return ((opl_cpu_poweroff)(cp));
41325cf1a30Sjl 
41425cf1a30Sjl }
41525cf1a30Sjl 
41625cf1a30Sjl int
41725cf1a30Sjl plat_max_boards(void)
41825cf1a30Sjl {
41925cf1a30Sjl 	return (OPL_MAX_BOARDS);
42025cf1a30Sjl }
42125cf1a30Sjl 
42225cf1a30Sjl int
42325cf1a30Sjl plat_max_cpu_units_per_board(void)
42425cf1a30Sjl {
42525cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD);
42625cf1a30Sjl }
42725cf1a30Sjl 
42825cf1a30Sjl int
42925cf1a30Sjl plat_max_mem_units_per_board(void)
43025cf1a30Sjl {
43125cf1a30Sjl 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
43225cf1a30Sjl }
43325cf1a30Sjl 
43425cf1a30Sjl int
43525cf1a30Sjl plat_max_io_units_per_board(void)
43625cf1a30Sjl {
43725cf1a30Sjl 	return (OPL_MAX_IO_UNITS_PER_BOARD);
43825cf1a30Sjl }
43925cf1a30Sjl 
44025cf1a30Sjl int
44125cf1a30Sjl plat_max_cmp_units_per_board(void)
44225cf1a30Sjl {
44325cf1a30Sjl 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
44425cf1a30Sjl }
44525cf1a30Sjl 
44625cf1a30Sjl int
44725cf1a30Sjl plat_max_core_units_per_board(void)
44825cf1a30Sjl {
44925cf1a30Sjl 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
45025cf1a30Sjl }
45125cf1a30Sjl 
45225cf1a30Sjl int
45325cf1a30Sjl plat_pfn_to_mem_node(pfn_t pfn)
45425cf1a30Sjl {
45525cf1a30Sjl 	return (pfn >> mem_node_pfn_shift);
45625cf1a30Sjl }
45725cf1a30Sjl 
45825cf1a30Sjl /* ARGSUSED */
45925cf1a30Sjl void
460*986fd29aSsetje plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
46125cf1a30Sjl {
46225cf1a30Sjl 	size_t	elem;
46325cf1a30Sjl 	pfn_t	basepfn;
46425cf1a30Sjl 	pgcnt_t	npgs;
46525cf1a30Sjl 	uint64_t	boundary, ssize;
46625cf1a30Sjl 	uint64_t	low, high;
46725cf1a30Sjl 
46825cf1a30Sjl 	/*
46925cf1a30Sjl 	 * OPL mem slices are always aligned on a 256GB boundary.
47025cf1a30Sjl 	 */
47125cf1a30Sjl 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
47225cf1a30Sjl 	mem_node_physalign = 0;
47325cf1a30Sjl 
47425cf1a30Sjl 	/*
47525cf1a30Sjl 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
47625cf1a30Sjl 	 */
47725cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
478*986fd29aSsetje 	for (elem = 0; elem < nelems; list++, elem++) {
479*986fd29aSsetje 		low  = list->addr;
480*986fd29aSsetje 		high = low + list->size;
48125cf1a30Sjl 		while (low < high) {
48225cf1a30Sjl 			boundary = roundup(low+1, ssize);
48325cf1a30Sjl 			boundary = MIN(high, boundary);
48425cf1a30Sjl 			basepfn = btop(low);
48525cf1a30Sjl 			npgs = btop(boundary - low);
48625cf1a30Sjl 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
48725cf1a30Sjl 			low = boundary;
48825cf1a30Sjl 		}
48925cf1a30Sjl 	}
49025cf1a30Sjl }
49125cf1a30Sjl 
49225cf1a30Sjl /*
49325cf1a30Sjl  * Find the CPU associated with a slice at boot-time.
49425cf1a30Sjl  */
49525cf1a30Sjl void
49625cf1a30Sjl plat_fill_mc(pnode_t nodeid)
49725cf1a30Sjl {
49825cf1a30Sjl 	int board;
49925cf1a30Sjl 	int memnode;
50025cf1a30Sjl 	struct {
50125cf1a30Sjl 		uint64_t	addr;
50225cf1a30Sjl 		uint64_t	size;
50325cf1a30Sjl 	} mem_range;
50425cf1a30Sjl 
50525cf1a30Sjl 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
50625cf1a30Sjl 		panic("Can not find board# property in mc node %x", nodeid);
50725cf1a30Sjl 	}
50825cf1a30Sjl 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
50925cf1a30Sjl 		panic("Can not find sb-mem-ranges property in mc node %x",
510e98fafb9Sjl 		    nodeid);
51125cf1a30Sjl 	}
51225cf1a30Sjl 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
51325cf1a30Sjl 	plat_assign_lgrphand_to_mem_node(board, memnode);
51425cf1a30Sjl }
51525cf1a30Sjl 
51625cf1a30Sjl /*
51725cf1a30Sjl  * Return the platform handle for the lgroup containing the given CPU
51825cf1a30Sjl  *
51925cf1a30Sjl  * For OPL, lgroup platform handle == board #.
52025cf1a30Sjl  */
52125cf1a30Sjl 
52225cf1a30Sjl extern int mpo_disabled;
52325cf1a30Sjl extern lgrp_handle_t lgrp_default_handle;
52425cf1a30Sjl 
52525cf1a30Sjl lgrp_handle_t
52625cf1a30Sjl plat_lgrp_cpu_to_hand(processorid_t id)
52725cf1a30Sjl {
52825cf1a30Sjl 	lgrp_handle_t plathand;
52925cf1a30Sjl 
53025cf1a30Sjl 	/*
53125cf1a30Sjl 	 * Return the real platform handle for the CPU until
53225cf1a30Sjl 	 * such time as we know that MPO should be disabled.
53325cf1a30Sjl 	 * At that point, we set the "mpo_disabled" flag to true,
53425cf1a30Sjl 	 * and from that point on, return the default handle.
53525cf1a30Sjl 	 *
53625cf1a30Sjl 	 * By the time we know that MPO should be disabled, the
53725cf1a30Sjl 	 * first CPU will have already been added to a leaf
53825cf1a30Sjl 	 * lgroup, but that's ok. The common lgroup code will
53925cf1a30Sjl 	 * double check that the boot CPU is in the correct place,
54025cf1a30Sjl 	 * and in the case where mpo should be disabled, will move
54125cf1a30Sjl 	 * it to the root if necessary.
54225cf1a30Sjl 	 */
54325cf1a30Sjl 	if (mpo_disabled) {
54425cf1a30Sjl 		/* If MPO is disabled, return the default (UMA) handle */
54525cf1a30Sjl 		plathand = lgrp_default_handle;
54625cf1a30Sjl 	} else
54725cf1a30Sjl 		plathand = (lgrp_handle_t)LSB_ID(id);
54825cf1a30Sjl 	return (plathand);
54925cf1a30Sjl }
55025cf1a30Sjl 
55125cf1a30Sjl /*
55225cf1a30Sjl  * Platform specific lgroup initialization
55325cf1a30Sjl  */
55425cf1a30Sjl void
55525cf1a30Sjl plat_lgrp_init(void)
55625cf1a30Sjl {
55725cf1a30Sjl 	extern uint32_t lgrp_expand_proc_thresh;
55825cf1a30Sjl 	extern uint32_t lgrp_expand_proc_diff;
55925cf1a30Sjl 
56025cf1a30Sjl 	/*
56125cf1a30Sjl 	 * Set tuneables for the OPL architecture
56225cf1a30Sjl 	 *
56325cf1a30Sjl 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
56425cf1a30Sjl 	 * this process is currently running on before considering
56525cf1a30Sjl 	 * expanding threads to another lgroup.
56625cf1a30Sjl 	 *
56725cf1a30Sjl 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
56825cf1a30Sjl 	 * must be loaded before expanding to it.
56925cf1a30Sjl 	 *
57025cf1a30Sjl 	 * Since remote latencies can be costly, attempt to keep 3 threads
57125cf1a30Sjl 	 * within the same lgroup before expanding to the next lgroup.
57225cf1a30Sjl 	 */
57325cf1a30Sjl 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
57425cf1a30Sjl 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
57525cf1a30Sjl }
57625cf1a30Sjl 
57725cf1a30Sjl /*
57825cf1a30Sjl  * Platform notification of lgroup (re)configuration changes
57925cf1a30Sjl  */
58025cf1a30Sjl /*ARGSUSED*/
58125cf1a30Sjl void
58225cf1a30Sjl plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
58325cf1a30Sjl {
58425cf1a30Sjl 	update_membounds_t *umb;
58525cf1a30Sjl 	lgrp_config_mem_rename_t lmr;
58625cf1a30Sjl 	int sbd, tbd;
58725cf1a30Sjl 	lgrp_handle_t hand, shand, thand;
58825cf1a30Sjl 	int mnode, snode, tnode;
58925cf1a30Sjl 	pfn_t start, end;
59025cf1a30Sjl 
59125cf1a30Sjl 	if (mpo_disabled)
59225cf1a30Sjl 		return;
59325cf1a30Sjl 
59425cf1a30Sjl 	switch (evt) {
59525cf1a30Sjl 
59625cf1a30Sjl 	case LGRP_CONFIG_MEM_ADD:
59725cf1a30Sjl 		/*
59825cf1a30Sjl 		 * Establish the lgroup handle to memnode translation.
59925cf1a30Sjl 		 */
60025cf1a30Sjl 		umb = (update_membounds_t *)arg;
60125cf1a30Sjl 
60225cf1a30Sjl 		hand = umb->u_board;
60325cf1a30Sjl 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
60425cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(hand, mnode);
60525cf1a30Sjl 
60625cf1a30Sjl 		break;
60725cf1a30Sjl 
60825cf1a30Sjl 	case LGRP_CONFIG_MEM_DEL:
60925cf1a30Sjl 		/*
61025cf1a30Sjl 		 * Special handling for possible memory holes.
61125cf1a30Sjl 		 */
61225cf1a30Sjl 		umb = (update_membounds_t *)arg;
61325cf1a30Sjl 		hand = umb->u_board;
61425cf1a30Sjl 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
61525cf1a30Sjl 			if (mem_node_config[mnode].exists) {
61625cf1a30Sjl 				start = mem_node_config[mnode].physbase;
61725cf1a30Sjl 				end = mem_node_config[mnode].physmax;
61825cf1a30Sjl 				mem_node_pre_del_slice(start, end);
61925cf1a30Sjl 				mem_node_post_del_slice(start, end, 0);
62025cf1a30Sjl 			}
62125cf1a30Sjl 		}
62225cf1a30Sjl 
62325cf1a30Sjl 		break;
62425cf1a30Sjl 
62525cf1a30Sjl 	case LGRP_CONFIG_MEM_RENAME:
62625cf1a30Sjl 		/*
62725cf1a30Sjl 		 * During a DR copy-rename operation, all of the memory
62825cf1a30Sjl 		 * on one board is moved to another board -- but the
62925cf1a30Sjl 		 * addresses/pfns and memnodes don't change. This means
63025cf1a30Sjl 		 * the memory has changed locations without changing identity.
63125cf1a30Sjl 		 *
63225cf1a30Sjl 		 * Source is where we are copying from and target is where we
63325cf1a30Sjl 		 * are copying to.  After source memnode is copied to target
63425cf1a30Sjl 		 * memnode, the physical addresses of the target memnode are
63525cf1a30Sjl 		 * renamed to match what the source memnode had.  Then target
63625cf1a30Sjl 		 * memnode can be removed and source memnode can take its
63725cf1a30Sjl 		 * place.
63825cf1a30Sjl 		 *
63925cf1a30Sjl 		 * To do this, swap the lgroup handle to memnode mappings for
64025cf1a30Sjl 		 * the boards, so target lgroup will have source memnode and
64125cf1a30Sjl 		 * source lgroup will have empty target memnode which is where
64225cf1a30Sjl 		 * its memory will go (if any is added to it later).
64325cf1a30Sjl 		 *
64425cf1a30Sjl 		 * Then source memnode needs to be removed from its lgroup
64525cf1a30Sjl 		 * and added to the target lgroup where the memory was living
64625cf1a30Sjl 		 * but under a different name/memnode.  The memory was in the
64725cf1a30Sjl 		 * target memnode and now lives in the source memnode with
64825cf1a30Sjl 		 * different physical addresses even though it is the same
64925cf1a30Sjl 		 * memory.
65025cf1a30Sjl 		 */
65125cf1a30Sjl 		sbd = arg & 0xffff;
65225cf1a30Sjl 		tbd = (arg & 0xffff0000) >> 16;
65325cf1a30Sjl 		shand = sbd;
65425cf1a30Sjl 		thand = tbd;
65525cf1a30Sjl 		snode = plat_lgrphand_to_mem_node(shand);
65625cf1a30Sjl 		tnode = plat_lgrphand_to_mem_node(thand);
65725cf1a30Sjl 
65825cf1a30Sjl 		/*
65925cf1a30Sjl 		 * Special handling for possible memory holes.
66025cf1a30Sjl 		 */
66125cf1a30Sjl 		if (tnode != -1 && mem_node_config[tnode].exists) {
66268ac2337Sjl 			start = mem_node_config[tnode].physbase;
66368ac2337Sjl 			end = mem_node_config[tnode].physmax;
66425cf1a30Sjl 			mem_node_pre_del_slice(start, end);
66525cf1a30Sjl 			mem_node_post_del_slice(start, end, 0);
66625cf1a30Sjl 		}
66725cf1a30Sjl 
66825cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(thand, snode);
66925cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(shand, tnode);
67025cf1a30Sjl 
67125cf1a30Sjl 		lmr.lmem_rename_from = shand;
67225cf1a30Sjl 		lmr.lmem_rename_to = thand;
67325cf1a30Sjl 
67425cf1a30Sjl 		/*
67525cf1a30Sjl 		 * Remove source memnode of copy rename from its lgroup
67625cf1a30Sjl 		 * and add it to its new target lgroup
67725cf1a30Sjl 		 */
67825cf1a30Sjl 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
67925cf1a30Sjl 		    (uintptr_t)&lmr);
68025cf1a30Sjl 
68125cf1a30Sjl 		break;
68225cf1a30Sjl 
68325cf1a30Sjl 	default:
68425cf1a30Sjl 		break;
68525cf1a30Sjl 	}
68625cf1a30Sjl }
68725cf1a30Sjl 
68825cf1a30Sjl /*
68925cf1a30Sjl  * Return latency between "from" and "to" lgroups
69025cf1a30Sjl  *
69125cf1a30Sjl  * This latency number can only be used for relative comparison
69225cf1a30Sjl  * between lgroups on the running system, cannot be used across platforms,
69325cf1a30Sjl  * and may not reflect the actual latency.  It is platform and implementation
69425cf1a30Sjl  * specific, so platform gets to decide its value.  It would be nice if the
69525cf1a30Sjl  * number was at least proportional to make comparisons more meaningful though.
69625cf1a30Sjl  * NOTE: The numbers below are supposed to be load latencies for uncached
69725cf1a30Sjl  * memory divided by 10.
69825cf1a30Sjl  *
69925cf1a30Sjl  */
70025cf1a30Sjl int
70125cf1a30Sjl plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
70225cf1a30Sjl {
70325cf1a30Sjl 	/*
70425cf1a30Sjl 	 * Return min remote latency when there are more than two lgroups
70525cf1a30Sjl 	 * (root and child) and getting latency between two different lgroups
70625cf1a30Sjl 	 * or root is involved
70725cf1a30Sjl 	 */
70825cf1a30Sjl 	if (lgrp_optimizations() && (from != to ||
70925cf1a30Sjl 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
71071b3c2ffShyw 		return (42);
71125cf1a30Sjl 	else
71271b3c2ffShyw 		return (35);
71325cf1a30Sjl }
71425cf1a30Sjl 
71525cf1a30Sjl /*
71625cf1a30Sjl  * Return platform handle for root lgroup
71725cf1a30Sjl  */
71825cf1a30Sjl lgrp_handle_t
71925cf1a30Sjl plat_lgrp_root_hand(void)
72025cf1a30Sjl {
72125cf1a30Sjl 	if (mpo_disabled)
72225cf1a30Sjl 		return (lgrp_default_handle);
72325cf1a30Sjl 
72425cf1a30Sjl 	return (LGRP_DEFAULT_HANDLE);
72525cf1a30Sjl }
72625cf1a30Sjl 
72725cf1a30Sjl /*ARGSUSED*/
72825cf1a30Sjl void
72925cf1a30Sjl plat_freelist_process(int mnode)
73025cf1a30Sjl {
73125cf1a30Sjl }
73225cf1a30Sjl 
73325cf1a30Sjl void
73425cf1a30Sjl load_platform_drivers(void)
73525cf1a30Sjl {
73625cf1a30Sjl 	(void) i_ddi_attach_pseudo_node("dr");
73725cf1a30Sjl }
73825cf1a30Sjl 
73925cf1a30Sjl /*
74025cf1a30Sjl  * No platform drivers on this platform
74125cf1a30Sjl  */
74225cf1a30Sjl char *platform_module_list[] = {
74325cf1a30Sjl 	(char *)0
74425cf1a30Sjl };
74525cf1a30Sjl 
74625cf1a30Sjl /*ARGSUSED*/
74725cf1a30Sjl void
74825cf1a30Sjl plat_tod_fault(enum tod_fault_type tod_bad)
74925cf1a30Sjl {
75025cf1a30Sjl }
75125cf1a30Sjl 
75225cf1a30Sjl /*ARGSUSED*/
75325cf1a30Sjl void
75425cf1a30Sjl cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
75525cf1a30Sjl {
75625cf1a30Sjl 	static void (*scf_panic_callback)(int);
75725cf1a30Sjl 	static void (*scf_shutdown_callback)(int);
75825cf1a30Sjl 
75925cf1a30Sjl 	/*
76025cf1a30Sjl 	 * This is for notifing system panic/shutdown to SCF.
76125cf1a30Sjl 	 * In case of shutdown and panic, SCF call back
76225cf1a30Sjl 	 * function should be called.
76325cf1a30Sjl 	 *  <SCF call back functions>
76425cf1a30Sjl 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
76525cf1a30Sjl 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
76625cf1a30Sjl 	 * cpuid should be -1 and state should be SIGST_EXIT.
76725cf1a30Sjl 	 */
76825cf1a30Sjl 	if (state == SIGST_EXIT && cpuid == -1) {
76925cf1a30Sjl 
77025cf1a30Sjl 		/*
77125cf1a30Sjl 		 * find the symbol for the SCF panic callback routine in driver
77225cf1a30Sjl 		 */
77325cf1a30Sjl 		if (scf_panic_callback == NULL)
77425cf1a30Sjl 			scf_panic_callback = (void (*)(int))
775e98fafb9Sjl 			    modgetsymvalue("scf_panic_callb", 0);
77625cf1a30Sjl 		if (scf_shutdown_callback == NULL)
77725cf1a30Sjl 			scf_shutdown_callback = (void (*)(int))
778e98fafb9Sjl 			    modgetsymvalue("scf_shutdown_callb", 0);
77925cf1a30Sjl 
78025cf1a30Sjl 		switch (sub_state) {
78125cf1a30Sjl 		case SIGSUBST_PANIC:
78225cf1a30Sjl 			if (scf_panic_callback == NULL) {
78325cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
78425cf1a30Sjl 				    "scf_panic_callb not found\n");
78525cf1a30Sjl 				return;
78625cf1a30Sjl 			}
78725cf1a30Sjl 			scf_panic_callback(SIGSUBST_PANIC);
78825cf1a30Sjl 			break;
78925cf1a30Sjl 
79025cf1a30Sjl 		case SIGSUBST_HALT:
79125cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
79225cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
79325cf1a30Sjl 				    "scf_shutdown_callb not found\n");
79425cf1a30Sjl 				return;
79525cf1a30Sjl 			}
79625cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_HALT);
79725cf1a30Sjl 			break;
79825cf1a30Sjl 
79925cf1a30Sjl 		case SIGSUBST_ENVIRON:
80025cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
80125cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
80225cf1a30Sjl 				    "scf_shutdown_callb not found\n");
80325cf1a30Sjl 				return;
80425cf1a30Sjl 			}
80525cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_ENVIRON);
80625cf1a30Sjl 			break;
80725cf1a30Sjl 
80825cf1a30Sjl 		case SIGSUBST_REBOOT:
80925cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
81025cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
81125cf1a30Sjl 				    "scf_shutdown_callb not found\n");
81225cf1a30Sjl 				return;
81325cf1a30Sjl 			}
81425cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_REBOOT);
81525cf1a30Sjl 			break;
81625cf1a30Sjl 		}
81725cf1a30Sjl 	}
81825cf1a30Sjl }
81925cf1a30Sjl 
82025cf1a30Sjl /*ARGSUSED*/
82125cf1a30Sjl int
82225cf1a30Sjl plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
82325cf1a30Sjl 	int flt_in_memory, ushort_t flt_status,
82425cf1a30Sjl 	char *buf, int buflen, int *lenp)
82525cf1a30Sjl {
82625cf1a30Sjl 	/*
82725cf1a30Sjl 	 * check if it's a Memory error.
82825cf1a30Sjl 	 */
82925cf1a30Sjl 	if (flt_in_memory) {
83025cf1a30Sjl 		if (opl_get_mem_unum != NULL) {
831e98fafb9Sjl 			return (opl_get_mem_unum(synd_code, flt_addr, buf,
832e98fafb9Sjl 			    buflen, lenp));
83325cf1a30Sjl 		} else {
83425cf1a30Sjl 			return (ENOTSUP);
83525cf1a30Sjl 		}
83625cf1a30Sjl 	} else {
83725cf1a30Sjl 		return (ENOTSUP);
83825cf1a30Sjl 	}
83925cf1a30Sjl }
84025cf1a30Sjl 
84125cf1a30Sjl /*ARGSUSED*/
84225cf1a30Sjl int
84325cf1a30Sjl plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
84425cf1a30Sjl {
8450cc8ae86Sav 	int	ret = 0;
8463f1fa9a7Sjfrank 	int	sb;
847195196c6Ssubhan 	int	plen;
84825cf1a30Sjl 
84925cf1a30Sjl 	sb = opl_get_physical_board(LSB_ID(cpuid));
85025cf1a30Sjl 	if (sb == -1) {
85125cf1a30Sjl 		return (ENXIO);
85225cf1a30Sjl 	}
85325cf1a30Sjl 
85472b9fce9Ssubhan 	/*
85572b9fce9Ssubhan 	 * opl_cur_model is assigned here
85672b9fce9Ssubhan 	 */
85772b9fce9Ssubhan 	if (opl_cur_model == NULL) {
85872b9fce9Ssubhan 		set_model_info();
8599b71d8e9Swh 
8609b71d8e9Swh 		/*
8619b71d8e9Swh 		 * if not matched, return
8629b71d8e9Swh 		 */
8639b71d8e9Swh 		if (opl_cur_model == NULL)
8649b71d8e9Swh 			return (ENODEV);
86572b9fce9Ssubhan 	}
86672b9fce9Ssubhan 
867195196c6Ssubhan 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
868195196c6Ssubhan 
869195196c6Ssubhan 	switch (opl_cur_model->model_type) {
870195196c6Ssubhan 	case FF1:
8710cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
8720cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
8730cc8ae86Sav 		break;
8740cc8ae86Sav 
875195196c6Ssubhan 	case FF2:
8760cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
87711114147Sav 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
8780cc8ae86Sav 		break;
8790cc8ae86Sav 
880195196c6Ssubhan 	case DC1:
881195196c6Ssubhan 	case DC2:
882195196c6Ssubhan 	case DC3:
8830cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
8840cc8ae86Sav 		    CHIP_ID(cpuid));
8850cc8ae86Sav 		break;
8860cc8ae86Sav 
8870cc8ae86Sav 	default:
8880cc8ae86Sav 		/* This should never happen */
8890cc8ae86Sav 		return (ENODEV);
8900cc8ae86Sav 	}
8910cc8ae86Sav 
8920cc8ae86Sav 	if (plen >= buflen) {
8930cc8ae86Sav 		ret = ENOSPC;
89425cf1a30Sjl 	} else {
89525cf1a30Sjl 		if (lenp)
89625cf1a30Sjl 			*lenp = strlen(buf);
89725cf1a30Sjl 	}
8980cc8ae86Sav 	return (ret);
89925cf1a30Sjl }
90025cf1a30Sjl 
90125cf1a30Sjl void
90225cf1a30Sjl plat_nodename_set(void)
90325cf1a30Sjl {
9043f1fa9a7Sjfrank 	post_xscf_msg((char *)&utsname, sizeof (struct utsname));
90525cf1a30Sjl }
90625cf1a30Sjl 
90725cf1a30Sjl caddr_t	efcode_vaddr = NULL;
90825cf1a30Sjl 
90925cf1a30Sjl /*
91025cf1a30Sjl  * Preallocate enough memory for fcode claims.
91125cf1a30Sjl  */
91225cf1a30Sjl 
91325cf1a30Sjl caddr_t
91425cf1a30Sjl efcode_alloc(caddr_t alloc_base)
91525cf1a30Sjl {
91625cf1a30Sjl 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
91725cf1a30Sjl 	    MMU_PAGESIZE);
91825cf1a30Sjl 	caddr_t vaddr;
91925cf1a30Sjl 
92025cf1a30Sjl 	/*
92125cf1a30Sjl 	 * allocate the physical memory for the Oberon fcode.
92225cf1a30Sjl 	 */
92325cf1a30Sjl 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
92425cf1a30Sjl 	    efcode_size, MMU_PAGESIZE)) == NULL)
92525cf1a30Sjl 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
92625cf1a30Sjl 
92725cf1a30Sjl 	efcode_vaddr = vaddr;
92825cf1a30Sjl 
92925cf1a30Sjl 	return (efcode_alloc_base + efcode_size);
93025cf1a30Sjl }
93125cf1a30Sjl 
93225cf1a30Sjl caddr_t
93325cf1a30Sjl plat_startup_memlist(caddr_t alloc_base)
93425cf1a30Sjl {
93525cf1a30Sjl 	caddr_t tmp_alloc_base;
93625cf1a30Sjl 
93725cf1a30Sjl 	tmp_alloc_base = efcode_alloc(alloc_base);
93825cf1a30Sjl 	tmp_alloc_base =
93925cf1a30Sjl 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
94025cf1a30Sjl 	return (tmp_alloc_base);
94125cf1a30Sjl }
94225cf1a30Sjl 
94325cf1a30Sjl void
94425cf1a30Sjl startup_platform(void)
94525cf1a30Sjl {
94625cf1a30Sjl }
9470cc8ae86Sav 
9481e2e7a75Shuah void
9491e2e7a75Shuah plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
9501e2e7a75Shuah {
9511e2e7a75Shuah 	int	impl;
9521e2e7a75Shuah 
9531e2e7a75Shuah 	impl = cpunodes[cpuid].implementation;
954e98fafb9Sjl 	if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
95531f6f5eeSmv 		info->mmu_idx = MMU_ID(cpuid);
9561e2e7a75Shuah 		info->mmu_nctxs = 8192;
9571e2e7a75Shuah 	} else {
9581e2e7a75Shuah 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
9591e2e7a75Shuah 	}
9601e2e7a75Shuah }
9611e2e7a75Shuah 
9620cc8ae86Sav int
9630cc8ae86Sav plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
9640cc8ae86Sav {
9650cc8ae86Sav 	if (opl_get_mem_sid == NULL) {
9660cc8ae86Sav 		return (ENOTSUP);
9670cc8ae86Sav 	}
9680cc8ae86Sav 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
9690cc8ae86Sav }
9700cc8ae86Sav 
9710cc8ae86Sav int
9720cc8ae86Sav plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
9730cc8ae86Sav {
9740cc8ae86Sav 	if (opl_get_mem_offset == NULL) {
9750cc8ae86Sav 		return (ENOTSUP);
9760cc8ae86Sav 	}
9770cc8ae86Sav 	return (opl_get_mem_offset(paddr, offp));
9780cc8ae86Sav }
9790cc8ae86Sav 
9800cc8ae86Sav int
9810cc8ae86Sav plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
9820cc8ae86Sav {
9830cc8ae86Sav 	if (opl_get_mem_addr == NULL) {
9840cc8ae86Sav 		return (ENOTSUP);
9850cc8ae86Sav 	}
9860cc8ae86Sav 	return (opl_get_mem_addr(unum, sid, offset, addrp));
9870cc8ae86Sav }
988e603b7d4Spm 
989e603b7d4Spm void
990e603b7d4Spm plat_lock_delay(int *backoff)
991e603b7d4Spm {
992e603b7d4Spm 	int i;
993e603b7d4Spm 	int cnt;
994e603b7d4Spm 	int flag;
995e603b7d4Spm 	int ctr;
996e603b7d4Spm 	hrtime_t delay_start;
997e603b7d4Spm 	/*
998e603b7d4Spm 	 * Platform specific lock delay code for OPL
999e603b7d4Spm 	 *
1000e603b7d4Spm 	 * Using staged linear increases in the delay.
1001e603b7d4Spm 	 * The sleep instruction is the preferred method of delay,
1002e603b7d4Spm 	 * but is too large of granularity for the initial backoff.
1003e603b7d4Spm 	 */
1004e603b7d4Spm 
1005e603b7d4Spm 	if (*backoff == 0) *backoff = OPL_BOFF_BASE;
1006e603b7d4Spm 
1007e603b7d4Spm 	flag = !*backoff;
1008e603b7d4Spm 
1009e603b7d4Spm 	if (*backoff < OPL_BOFF_CAP1) {
1010e603b7d4Spm 		/*
1011e603b7d4Spm 		 * If desired backoff is long enough,
1012e603b7d4Spm 		 * use sleep for most of it
1013e603b7d4Spm 		 */
1014e98fafb9Sjl 		for (cnt = *backoff; cnt >= OPL_BOFF_SLEEP;
1015e98fafb9Sjl 		    cnt -= OPL_BOFF_SLEEP) {
1016e603b7d4Spm 			cpu_smt_pause();
1017e603b7d4Spm 		}
1018e603b7d4Spm 		/*
1019e603b7d4Spm 		 * spin for small remainder of backoff
1020e603b7d4Spm 		 *
1021e603b7d4Spm 		 * fake call to nulldev included to prevent
1022e603b7d4Spm 		 * compiler from optimizing out the spin loop
1023e603b7d4Spm 		 */
1024e603b7d4Spm 		for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
1025e603b7d4Spm 			if (flag) (void) nulldev();
1026e603b7d4Spm 		}
1027e603b7d4Spm 	} else {
1028e603b7d4Spm 		/* backoff is very large.  Fill it by sleeping */
1029e603b7d4Spm 		delay_start = gethrtime();
1030e603b7d4Spm 		cnt = *backoff/OPL_BOFF_SLEEP;
1031e603b7d4Spm 		/*
1032e603b7d4Spm 		 * use sleep instructions for delay
1033e603b7d4Spm 		 */
1034e603b7d4Spm 		for (i = 0; i < cnt; i++) {
1035e603b7d4Spm 			cpu_smt_pause();
1036e603b7d4Spm 		}
1037e603b7d4Spm 
1038e603b7d4Spm 		/*
1039e603b7d4Spm 		 * Note: if the other strand executes a sleep instruction,
1040e603b7d4Spm 		 * then the sleep ends immediately with a minimum time of
1041e603b7d4Spm 		 * 42 clocks.  We check gethrtime to insure we have
1042e603b7d4Spm 		 * waited long enough.  And we include both a short
1043e603b7d4Spm 		 * spin loop and a sleep for any final delay time.
1044e603b7d4Spm 		 */
1045e603b7d4Spm 
1046e603b7d4Spm 		while ((gethrtime() - delay_start) < cnt * OPL_BOFF_TM) {
1047e603b7d4Spm 			cpu_smt_pause();
1048e603b7d4Spm 			for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
1049e603b7d4Spm 				if (flag) (void) nulldev();
1050e603b7d4Spm 			}
1051e603b7d4Spm 		}
1052e603b7d4Spm 	}
1053e603b7d4Spm 
1054e603b7d4Spm 	/*
1055e603b7d4Spm 	 * We adjust the backoff in three linear stages
1056e603b7d4Spm 	 * The initial stage has small increases as this phase is
1057e603b7d4Spm 	 * usually handle locks with light contention.  We don't want
1058e603b7d4Spm 	 * to have a long backoff on a lock that is available.
1059e603b7d4Spm 	 *
1060e603b7d4Spm 	 * In the second stage, we are in transition, unsure whether
1061e603b7d4Spm 	 * the lock is under heavy contention.  As the failures to
1062e603b7d4Spm 	 * obtain the lock increase, we back off further.
1063e603b7d4Spm 	 *
1064e603b7d4Spm 	 * For the final stage, we are in a heavily contended or
1065e603b7d4Spm 	 * long held long so we want to reduce the number of tries.
1066e603b7d4Spm 	 */
1067e603b7d4Spm 	if (*backoff < OPL_BOFF_CAP1) {
1068e603b7d4Spm 		*backoff += 1;
1069e603b7d4Spm 	} else {
1070e603b7d4Spm 		if (*backoff < OPL_BOFF_CAP2) {
1071e603b7d4Spm 			*backoff += OPL_BOFF_SLEEP;
1072e603b7d4Spm 		} else {
1073e603b7d4Spm 			*backoff += 2 * OPL_BOFF_SLEEP;
1074e603b7d4Spm 		}
1075e603b7d4Spm 		if (*backoff > OPL_BOFF_MAX) {
1076e603b7d4Spm 			*backoff = OPL_BOFF_MAX;
1077e603b7d4Spm 		}
1078e603b7d4Spm 	}
1079e603b7d4Spm }
10803f1fa9a7Sjfrank 
10813f1fa9a7Sjfrank /*
10823f1fa9a7Sjfrank  * The following code implements asynchronous call to XSCF to setup the
10833f1fa9a7Sjfrank  * domain node name.
10843f1fa9a7Sjfrank  */
10853f1fa9a7Sjfrank 
10863f1fa9a7Sjfrank #define	FREE_MSG(m)		kmem_free((m), NM_LEN((m)->len))
10873f1fa9a7Sjfrank 
10883f1fa9a7Sjfrank /*
10893f1fa9a7Sjfrank  * The following three macros define the all operations on the request
10903f1fa9a7Sjfrank  * list we are using here, and hide the details of the list
10913f1fa9a7Sjfrank  * implementation from the code.
10923f1fa9a7Sjfrank  */
10933f1fa9a7Sjfrank #define	PUSH(m) \
10943f1fa9a7Sjfrank 	{ \
10953f1fa9a7Sjfrank 		(m)->next = ctl_msg.head; \
10963f1fa9a7Sjfrank 		(m)->prev = NULL; \
10973f1fa9a7Sjfrank 		if ((m)->next != NULL) \
10983f1fa9a7Sjfrank 			(m)->next->prev = (m); \
10993f1fa9a7Sjfrank 		ctl_msg.head = (m); \
11003f1fa9a7Sjfrank 	}
11013f1fa9a7Sjfrank 
11023f1fa9a7Sjfrank #define	REMOVE(m) \
11033f1fa9a7Sjfrank 	{ \
11043f1fa9a7Sjfrank 		if ((m)->prev != NULL) \
11053f1fa9a7Sjfrank 			(m)->prev->next = (m)->next; \
11063f1fa9a7Sjfrank 		else \
11073f1fa9a7Sjfrank 			ctl_msg.head = (m)->next; \
11083f1fa9a7Sjfrank 		if ((m)->next != NULL) \
11093f1fa9a7Sjfrank 			(m)->next->prev = (m)->prev; \
11103f1fa9a7Sjfrank 	}
11113f1fa9a7Sjfrank 
11123f1fa9a7Sjfrank #define	FREE_THE_TAIL(head) \
11133f1fa9a7Sjfrank 	{ \
11143f1fa9a7Sjfrank 		nm_msg_t *n_msg, *m; \
11153f1fa9a7Sjfrank 		m = (head)->next; \
11163f1fa9a7Sjfrank 		(head)->next = NULL; \
11173f1fa9a7Sjfrank 		while (m != NULL) { \
11183f1fa9a7Sjfrank 			n_msg = m->next; \
11193f1fa9a7Sjfrank 			FREE_MSG(m); \
11203f1fa9a7Sjfrank 			m = n_msg; \
11213f1fa9a7Sjfrank 		} \
11223f1fa9a7Sjfrank 	}
11233f1fa9a7Sjfrank 
11243f1fa9a7Sjfrank #define	SCF_PUTINFO(f, s, p) \
11253f1fa9a7Sjfrank 	f(KEY_ESCF, 0x01, 0, s, p)
11263f1fa9a7Sjfrank 
11273f1fa9a7Sjfrank #define	PASS2XSCF(m, r)	((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
11283f1fa9a7Sjfrank 					    (m)->len, (m)->data)) == 0)
11293f1fa9a7Sjfrank 
11303f1fa9a7Sjfrank /*
11313f1fa9a7Sjfrank  * The value of the following macro loosely depends on the
11323f1fa9a7Sjfrank  * value of the "device busy" timeout used in the SCF driver.
11333f1fa9a7Sjfrank  * (See pass2xscf_thread()).
11343f1fa9a7Sjfrank  */
11353f1fa9a7Sjfrank #define	SCF_DEVBUSY_DELAY	10
11363f1fa9a7Sjfrank 
11373f1fa9a7Sjfrank /*
11383f1fa9a7Sjfrank  * The default number of attempts to contact the scf driver
11393f1fa9a7Sjfrank  * if we cannot fetch any information about the timeout value
11403f1fa9a7Sjfrank  * it uses.
11413f1fa9a7Sjfrank  */
11423f1fa9a7Sjfrank 
11433f1fa9a7Sjfrank #define	REPEATS		4
11443f1fa9a7Sjfrank 
11453f1fa9a7Sjfrank typedef struct nm_msg {
11463f1fa9a7Sjfrank 	struct nm_msg *next;
11473f1fa9a7Sjfrank 	struct nm_msg *prev;
11483f1fa9a7Sjfrank 	int len;
11493f1fa9a7Sjfrank 	char data[1];
11503f1fa9a7Sjfrank } nm_msg_t;
11513f1fa9a7Sjfrank 
11523f1fa9a7Sjfrank #define	NM_LEN(len)		(sizeof (nm_msg_t) + (len) - 1)
11533f1fa9a7Sjfrank 
11543f1fa9a7Sjfrank static struct ctlmsg {
11553f1fa9a7Sjfrank 	nm_msg_t	*head;
11563f1fa9a7Sjfrank 	nm_msg_t	*now_serving;
11573f1fa9a7Sjfrank 	kmutex_t	nm_lock;
11583f1fa9a7Sjfrank 	kthread_t	*nmt;
11593f1fa9a7Sjfrank 	int		cnt;
11603f1fa9a7Sjfrank 	int (*scf_service_function)(uint32_t, uint8_t,
11613f1fa9a7Sjfrank 				    uint32_t, uint32_t, void *);
11623f1fa9a7Sjfrank } ctl_msg;
11633f1fa9a7Sjfrank 
11643f1fa9a7Sjfrank static void
11653f1fa9a7Sjfrank post_xscf_msg(char *dp, int len)
11663f1fa9a7Sjfrank {
11673f1fa9a7Sjfrank 	nm_msg_t *msg;
11683f1fa9a7Sjfrank 
11693f1fa9a7Sjfrank 	msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
11703f1fa9a7Sjfrank 
11713f1fa9a7Sjfrank 	bcopy(dp, msg->data, len);
11723f1fa9a7Sjfrank 	msg->len = len;
11733f1fa9a7Sjfrank 
11743f1fa9a7Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
11753f1fa9a7Sjfrank 	if (ctl_msg.nmt == NULL) {
11763f1fa9a7Sjfrank 		ctl_msg.nmt =  thread_create(NULL, 0, pass2xscf_thread,
11773f1fa9a7Sjfrank 		    NULL, 0, &p0, TS_RUN, minclsyspri);
11783f1fa9a7Sjfrank 	}
11793f1fa9a7Sjfrank 
11803f1fa9a7Sjfrank 	PUSH(msg);
11813f1fa9a7Sjfrank 	ctl_msg.cnt++;
11823f1fa9a7Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
11833f1fa9a7Sjfrank }
11843f1fa9a7Sjfrank 
11853f1fa9a7Sjfrank static void
11863f1fa9a7Sjfrank pass2xscf_thread()
11873f1fa9a7Sjfrank {
11883f1fa9a7Sjfrank 	nm_msg_t *msg;
11893f1fa9a7Sjfrank 	int ret;
11903f1fa9a7Sjfrank 	uint_t i, msg_sent, xscf_driver_delay;
11913f1fa9a7Sjfrank 	static uint_t repeat_cnt;
11923f1fa9a7Sjfrank 	uint_t *scf_wait_cnt;
11933f1fa9a7Sjfrank 
11943f1fa9a7Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
11953f1fa9a7Sjfrank 
11963f1fa9a7Sjfrank 	/*
11973f1fa9a7Sjfrank 	 * Find the address of the SCF put routine if it's not done yet.
11983f1fa9a7Sjfrank 	 */
11993f1fa9a7Sjfrank 	if (ctl_msg.scf_service_function == NULL) {
12003f1fa9a7Sjfrank 		if ((ctl_msg.scf_service_function =
12013f1fa9a7Sjfrank 		    (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
12023f1fa9a7Sjfrank 		    modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
12033f1fa9a7Sjfrank 			cmn_err(CE_NOTE, "pass2xscf_thread: "
12043f1fa9a7Sjfrank 			    "scf_service_putinfo not found\n");
12053f1fa9a7Sjfrank 			ctl_msg.nmt = NULL;
12063f1fa9a7Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
12073f1fa9a7Sjfrank 			return;
12083f1fa9a7Sjfrank 		}
12093f1fa9a7Sjfrank 	}
12103f1fa9a7Sjfrank 
12113f1fa9a7Sjfrank 	/*
12123f1fa9a7Sjfrank 	 * Calculate the number of attempts to connect XSCF based on the
12133f1fa9a7Sjfrank 	 * scf driver delay (which is
12143f1fa9a7Sjfrank 	 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
12153f1fa9a7Sjfrank 	 * of xscf_connect_delay (the total number of seconds to wait
12163f1fa9a7Sjfrank 	 * till xscf get ready.)
12173f1fa9a7Sjfrank 	 */
12183f1fa9a7Sjfrank 	if (repeat_cnt == 0) {
12193f1fa9a7Sjfrank 		if ((scf_wait_cnt =
12203f1fa9a7Sjfrank 		    (uint_t *)
12213f1fa9a7Sjfrank 		    modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
12223f1fa9a7Sjfrank 			repeat_cnt = REPEATS;
12233f1fa9a7Sjfrank 		} else {
12243f1fa9a7Sjfrank 
12253f1fa9a7Sjfrank 			xscf_driver_delay = *scf_wait_cnt *
12263f1fa9a7Sjfrank 			    SCF_DEVBUSY_DELAY;
12273f1fa9a7Sjfrank 			repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
12283f1fa9a7Sjfrank 		}
12293f1fa9a7Sjfrank 	}
12303f1fa9a7Sjfrank 
12313f1fa9a7Sjfrank 	while (ctl_msg.cnt != 0) {
12323f1fa9a7Sjfrank 
12333f1fa9a7Sjfrank 		/*
12343f1fa9a7Sjfrank 		 * Take the very last request from the queue,
12353f1fa9a7Sjfrank 		 */
12363f1fa9a7Sjfrank 		ctl_msg.now_serving = ctl_msg.head;
12373f1fa9a7Sjfrank 		ASSERT(ctl_msg.now_serving != NULL);
12383f1fa9a7Sjfrank 
12393f1fa9a7Sjfrank 		/*
12403f1fa9a7Sjfrank 		 * and discard all the others if any.
12413f1fa9a7Sjfrank 		 */
12423f1fa9a7Sjfrank 		FREE_THE_TAIL(ctl_msg.now_serving);
12433f1fa9a7Sjfrank 		ctl_msg.cnt = 1;
12443f1fa9a7Sjfrank 		mutex_exit(&ctl_msg.nm_lock);
12453f1fa9a7Sjfrank 
12463f1fa9a7Sjfrank 		/*
12473f1fa9a7Sjfrank 		 * Pass the name to XSCF. Note please, we do not hold the
12483f1fa9a7Sjfrank 		 * mutex while we are doing this.
12493f1fa9a7Sjfrank 		 */
12503f1fa9a7Sjfrank 		msg_sent = 0;
12513f1fa9a7Sjfrank 		for (i = 0; i < repeat_cnt; i++) {
12523f1fa9a7Sjfrank 			if (PASS2XSCF(ctl_msg.now_serving, ret)) {
12533f1fa9a7Sjfrank 				msg_sent = 1;
12543f1fa9a7Sjfrank 				break;
12553f1fa9a7Sjfrank 			} else {
12563f1fa9a7Sjfrank 				if (ret != EBUSY) {
12573f1fa9a7Sjfrank 					cmn_err(CE_NOTE, "pass2xscf_thread:"
12583f1fa9a7Sjfrank 					    " unexpected return code"
12593f1fa9a7Sjfrank 					    " from scf_service_putinfo():"
12603f1fa9a7Sjfrank 					    " %d\n", ret);
12613f1fa9a7Sjfrank 				}
12623f1fa9a7Sjfrank 			}
12633f1fa9a7Sjfrank 		}
12643f1fa9a7Sjfrank 
12653f1fa9a7Sjfrank 		if (msg_sent) {
12663f1fa9a7Sjfrank 
12673f1fa9a7Sjfrank 			/*
12683f1fa9a7Sjfrank 			 * Remove the request from the list
12693f1fa9a7Sjfrank 			 */
12703f1fa9a7Sjfrank 			mutex_enter(&ctl_msg.nm_lock);
12713f1fa9a7Sjfrank 			msg = ctl_msg.now_serving;
12723f1fa9a7Sjfrank 			ctl_msg.now_serving = NULL;
12733f1fa9a7Sjfrank 			REMOVE(msg);
12743f1fa9a7Sjfrank 			ctl_msg.cnt--;
12753f1fa9a7Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
12763f1fa9a7Sjfrank 			FREE_MSG(msg);
12773f1fa9a7Sjfrank 		} else {
12783f1fa9a7Sjfrank 
12793f1fa9a7Sjfrank 			/*
12803f1fa9a7Sjfrank 			 * If while we have tried to communicate with
12813f1fa9a7Sjfrank 			 * XSCF there were any other requests we are
12823f1fa9a7Sjfrank 			 * going to drop this one and take the latest
12833f1fa9a7Sjfrank 			 * one.  Otherwise we will try to pass this one
12843f1fa9a7Sjfrank 			 * again.
12853f1fa9a7Sjfrank 			 */
12863f1fa9a7Sjfrank 			cmn_err(CE_NOTE,
12873f1fa9a7Sjfrank 			    "pass2xscf_thread: "
12883f1fa9a7Sjfrank 			    "scf_service_putinfo "
12893f1fa9a7Sjfrank 			    "not responding\n");
12903f1fa9a7Sjfrank 		}
12913f1fa9a7Sjfrank 		mutex_enter(&ctl_msg.nm_lock);
12923f1fa9a7Sjfrank 	}
12933f1fa9a7Sjfrank 
12943f1fa9a7Sjfrank 	/*
12953f1fa9a7Sjfrank 	 * The request queue is empty, exit.
12963f1fa9a7Sjfrank 	 */
12973f1fa9a7Sjfrank 	ctl_msg.nmt = NULL;
12983f1fa9a7Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
12993f1fa9a7Sjfrank }
1300