xref: /illumos-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 68ac2337)
125cf1a30Sjl /*
225cf1a30Sjl  * CDDL HEADER START
325cf1a30Sjl  *
425cf1a30Sjl  * The contents of this file are subject to the terms of the
525cf1a30Sjl  * Common Development and Distribution License (the "License").
625cf1a30Sjl  * You may not use this file except in compliance with the License.
725cf1a30Sjl  *
825cf1a30Sjl  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925cf1a30Sjl  * or http://www.opensolaris.org/os/licensing.
1025cf1a30Sjl  * See the License for the specific language governing permissions
1125cf1a30Sjl  * and limitations under the License.
1225cf1a30Sjl  *
1325cf1a30Sjl  * When distributing Covered Code, include this CDDL HEADER in each
1425cf1a30Sjl  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525cf1a30Sjl  * If applicable, add the following below this CDDL HEADER, with the
1625cf1a30Sjl  * fields enclosed by brackets "[]" replaced with your own identifying
1725cf1a30Sjl  * information: Portions Copyright [yyyy] [name of copyright owner]
1825cf1a30Sjl  *
1925cf1a30Sjl  * CDDL HEADER END
2025cf1a30Sjl  */
2125cf1a30Sjl /*
22*68ac2337Sjl  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
2325cf1a30Sjl  * Use is subject to license terms.
2425cf1a30Sjl  */
2525cf1a30Sjl 
2625cf1a30Sjl #pragma ident	"%Z%%M%	%I%	%E% SMI"
2725cf1a30Sjl 
2825cf1a30Sjl #include <sys/cpuvar.h>
2925cf1a30Sjl #include <sys/systm.h>
3025cf1a30Sjl #include <sys/sysmacros.h>
3125cf1a30Sjl #include <sys/promif.h>
3225cf1a30Sjl #include <sys/platform_module.h>
3325cf1a30Sjl #include <sys/cmn_err.h>
3425cf1a30Sjl #include <sys/errno.h>
3525cf1a30Sjl #include <sys/machsystm.h>
3625cf1a30Sjl #include <sys/bootconf.h>
3725cf1a30Sjl #include <sys/nvpair.h>
3825cf1a30Sjl #include <sys/kobj.h>
3925cf1a30Sjl #include <sys/mem_cage.h>
4025cf1a30Sjl #include <sys/opl.h>
4125cf1a30Sjl #include <sys/scfd/scfostoescf.h>
4225cf1a30Sjl #include <sys/cpu_sgnblk_defs.h>
4325cf1a30Sjl #include <sys/utsname.h>
4425cf1a30Sjl #include <sys/ddi.h>
4525cf1a30Sjl #include <sys/sunndi.h>
4625cf1a30Sjl #include <sys/lgrp.h>
4725cf1a30Sjl #include <sys/memnode.h>
4825cf1a30Sjl #include <sys/sysmacros.h>
4925cf1a30Sjl #include <vm/vm_dep.h>
5025cf1a30Sjl 
5125cf1a30Sjl int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
520cc8ae86Sav int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
530cc8ae86Sav int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
540cc8ae86Sav int (*opl_get_mem_addr)(char *unum, char *sid,
550cc8ae86Sav     uint64_t offset, uint64_t *paddr);
5625cf1a30Sjl 
5725cf1a30Sjl /* Memory for fcode claims.  16k times # maximum possible IO units */
5825cf1a30Sjl #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
5925cf1a30Sjl int efcode_size = EFCODE_SIZE;
6025cf1a30Sjl 
6125cf1a30Sjl #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
6225cf1a30Sjl 
6325cf1a30Sjl /* Set the maximum number of boards for DR */
6425cf1a30Sjl int opl_boards = OPL_MAX_BOARDS;
6525cf1a30Sjl 
6625cf1a30Sjl void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
6725cf1a30Sjl 
6825cf1a30Sjl extern int tsb_lgrp_affinity;
6925cf1a30Sjl 
7025cf1a30Sjl int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
7125cf1a30Sjl 	(OPL_MAX_TSBS_PER_PCICH);
7225cf1a30Sjl 
7325cf1a30Sjl pgcnt_t opl_startup_cage_size = 0;
7425cf1a30Sjl 
751e2e7a75Shuah static opl_model_info_t opl_models[] = {
76195196c6Ssubhan 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
77195196c6Ssubhan 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
78195196c6Ssubhan 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
79195196c6Ssubhan 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
80195196c6Ssubhan 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
811e2e7a75Shuah };
821e2e7a75Shuah static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
831e2e7a75Shuah 
84195196c6Ssubhan /*
85195196c6Ssubhan  * opl_cur_model defaults to FF1.
86195196c6Ssubhan  */
87195196c6Ssubhan static	opl_model_info_t *opl_cur_model = &opl_models[0];
881e2e7a75Shuah 
8925cf1a30Sjl static struct memlist *opl_memlist_per_board(struct memlist *ml);
9025cf1a30Sjl 
9125cf1a30Sjl int
9225cf1a30Sjl set_platform_max_ncpus(void)
9325cf1a30Sjl {
9425cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
9525cf1a30Sjl }
9625cf1a30Sjl 
9725cf1a30Sjl int
9825cf1a30Sjl set_platform_tsb_spares(void)
9925cf1a30Sjl {
10025cf1a30Sjl 	return (MIN(opl_tsb_spares, MAX_UPA));
10125cf1a30Sjl }
10225cf1a30Sjl 
1031e2e7a75Shuah static void
1041e2e7a75Shuah set_model_info()
1051e2e7a75Shuah {
106195196c6Ssubhan 	extern int ts_dispatch_extended;
1071e2e7a75Shuah 	char	name[MAXSYSNAME];
1081e2e7a75Shuah 	int	i;
1091e2e7a75Shuah 
1101e2e7a75Shuah 	/*
1111e2e7a75Shuah 	 * Get model name from the root node.
1121e2e7a75Shuah 	 *
1131e2e7a75Shuah 	 * We are using the prom device tree since, at this point,
1141e2e7a75Shuah 	 * the Solaris device tree is not yet setup.
1151e2e7a75Shuah 	 */
1161e2e7a75Shuah 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
1171e2e7a75Shuah 
1181e2e7a75Shuah 	for (i = 0; i < opl_num_models; i++) {
1191e2e7a75Shuah 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
1201e2e7a75Shuah 			opl_cur_model = &opl_models[i];
1211e2e7a75Shuah 			break;
1221e2e7a75Shuah 		}
1231e2e7a75Shuah 	}
124195196c6Ssubhan 
1251e2e7a75Shuah 	if (i == opl_num_models)
126195196c6Ssubhan 		halt("No valid OPL model is found!");
127195196c6Ssubhan 
128195196c6Ssubhan 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
129195196c6Ssubhan 				(ts_dispatch_extended == -1)) {
130195196c6Ssubhan 		/*
131195196c6Ssubhan 		 * Based on a platform model, select a dispatch table.
132195196c6Ssubhan 		 * Only DC2 and DC3 systems uses the alternate/extended
133195196c6Ssubhan 		 * TS dispatch table.
134195196c6Ssubhan 		 * FF1, FF2 and DC1 systems used standard dispatch tables.
135195196c6Ssubhan 		 */
136195196c6Ssubhan 		ts_dispatch_extended = 1;
137195196c6Ssubhan 	}
138195196c6Ssubhan 
1391e2e7a75Shuah }
1401e2e7a75Shuah 
1411e2e7a75Shuah static void
1421e2e7a75Shuah set_max_mmu_ctxdoms()
1431e2e7a75Shuah {
1441e2e7a75Shuah 	extern uint_t	max_mmu_ctxdoms;
1451e2e7a75Shuah 	int		max_boards;
1461e2e7a75Shuah 
1471e2e7a75Shuah 	/*
1481e2e7a75Shuah 	 * From the model, get the maximum number of boards
1491e2e7a75Shuah 	 * supported and set the value accordingly. If the model
1501e2e7a75Shuah 	 * could not be determined or recognized, we assume the max value.
1511e2e7a75Shuah 	 */
1521e2e7a75Shuah 	if (opl_cur_model == NULL)
1531e2e7a75Shuah 		max_boards = OPL_MAX_BOARDS;
1541e2e7a75Shuah 	else
1551e2e7a75Shuah 		max_boards = opl_cur_model->model_max_boards;
1561e2e7a75Shuah 
1571e2e7a75Shuah 	/*
1581e2e7a75Shuah 	 * On OPL, cores and MMUs are one-to-one.
1591e2e7a75Shuah 	 */
1601e2e7a75Shuah 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
1611e2e7a75Shuah }
1621e2e7a75Shuah 
16325cf1a30Sjl #pragma weak mmu_init_large_pages
16425cf1a30Sjl 
16525cf1a30Sjl void
16625cf1a30Sjl set_platform_defaults(void)
16725cf1a30Sjl {
16825cf1a30Sjl 	extern char *tod_module_name;
16925cf1a30Sjl 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
17025cf1a30Sjl 	extern void mmu_init_large_pages(size_t);
17125cf1a30Sjl 
17225cf1a30Sjl 	/* Set the CPU signature function pointer */
17325cf1a30Sjl 	cpu_sgn_func = cpu_sgn_update;
17425cf1a30Sjl 
17525cf1a30Sjl 	/* Set appropriate tod module for OPL platform */
17625cf1a30Sjl 	ASSERT(tod_module_name == NULL);
17725cf1a30Sjl 	tod_module_name = "todopl";
17825cf1a30Sjl 
17925cf1a30Sjl 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
180e12a8a13Ssusans 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
18125cf1a30Sjl 		if (&mmu_init_large_pages)
18225cf1a30Sjl 			mmu_init_large_pages(mmu_ism_pagesize);
18325cf1a30Sjl 	}
18425cf1a30Sjl 
18525cf1a30Sjl 	tsb_lgrp_affinity = 1;
1861e2e7a75Shuah 
1871e2e7a75Shuah 	set_model_info();
1881e2e7a75Shuah 	set_max_mmu_ctxdoms();
18925cf1a30Sjl }
19025cf1a30Sjl 
19125cf1a30Sjl /*
19225cf1a30Sjl  * Convert logical a board number to a physical one.
19325cf1a30Sjl  */
19425cf1a30Sjl 
19525cf1a30Sjl #define	LSBPROP		"board#"
19625cf1a30Sjl #define	PSBPROP		"physical-board#"
19725cf1a30Sjl 
19825cf1a30Sjl int
19925cf1a30Sjl opl_get_physical_board(int id)
20025cf1a30Sjl {
20125cf1a30Sjl 	dev_info_t	*root_dip, *dip = NULL;
20225cf1a30Sjl 	char		*dname = NULL;
20325cf1a30Sjl 	int		circ;
20425cf1a30Sjl 
20525cf1a30Sjl 	pnode_t		pnode;
20625cf1a30Sjl 	char		pname[MAXSYSNAME] = {0};
20725cf1a30Sjl 
20825cf1a30Sjl 	int		lsb_id;	/* Logical System Board ID */
20925cf1a30Sjl 	int		psb_id;	/* Physical System Board ID */
21025cf1a30Sjl 
21125cf1a30Sjl 
21225cf1a30Sjl 	/*
21325cf1a30Sjl 	 * This function is called on early stage of bootup when the
21425cf1a30Sjl 	 * kernel device tree is not initialized yet, and also
21525cf1a30Sjl 	 * later on when the device tree is up. We want to try
21625cf1a30Sjl 	 * the fast track first.
21725cf1a30Sjl 	 */
21825cf1a30Sjl 	root_dip = ddi_root_node();
21925cf1a30Sjl 	if (root_dip) {
22025cf1a30Sjl 		/* Get from devinfo node */
22125cf1a30Sjl 		ndi_devi_enter(root_dip, &circ);
22225cf1a30Sjl 		for (dip = ddi_get_child(root_dip); dip;
22325cf1a30Sjl 		    dip = ddi_get_next_sibling(dip)) {
22425cf1a30Sjl 
22525cf1a30Sjl 			dname = ddi_node_name(dip);
22625cf1a30Sjl 			if (strncmp(dname, "pseudo-mc", 9) != 0)
22725cf1a30Sjl 				continue;
22825cf1a30Sjl 
22925cf1a30Sjl 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
23025cf1a30Sjl 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
23125cf1a30Sjl 				continue;
23225cf1a30Sjl 
23325cf1a30Sjl 			if (id == lsb_id) {
23425cf1a30Sjl 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
23525cf1a30Sjl 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
23625cf1a30Sjl 				    == -1) {
23725cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
23825cf1a30Sjl 					return (-1);
23925cf1a30Sjl 				} else {
24025cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
24125cf1a30Sjl 					return (psb_id);
24225cf1a30Sjl 				}
24325cf1a30Sjl 			}
24425cf1a30Sjl 		}
24525cf1a30Sjl 		ndi_devi_exit(root_dip, circ);
24625cf1a30Sjl 	}
24725cf1a30Sjl 
24825cf1a30Sjl 	/*
24925cf1a30Sjl 	 * We do not have the kernel device tree, or we did not
25025cf1a30Sjl 	 * find the node for some reason (let's say the kernel
25125cf1a30Sjl 	 * device tree was modified), let's try the OBP tree.
25225cf1a30Sjl 	 */
25325cf1a30Sjl 	pnode = prom_rootnode();
25425cf1a30Sjl 	for (pnode = prom_childnode(pnode); pnode;
25525cf1a30Sjl 	    pnode = prom_nextnode(pnode)) {
25625cf1a30Sjl 
25725cf1a30Sjl 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
25825cf1a30Sjl 		    (strncmp(pname, "pseudo-mc", 9) != 0))
25925cf1a30Sjl 			continue;
26025cf1a30Sjl 
26125cf1a30Sjl 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
26225cf1a30Sjl 			continue;
26325cf1a30Sjl 
26425cf1a30Sjl 		if (id == lsb_id) {
26525cf1a30Sjl 			if (prom_getprop(pnode, PSBPROP,
26625cf1a30Sjl 			    (caddr_t)&psb_id) == -1) {
26725cf1a30Sjl 				return (-1);
26825cf1a30Sjl 			} else {
26925cf1a30Sjl 				return (psb_id);
27025cf1a30Sjl 			}
27125cf1a30Sjl 		}
27225cf1a30Sjl 	}
27325cf1a30Sjl 
27425cf1a30Sjl 	return (-1);
27525cf1a30Sjl }
27625cf1a30Sjl 
27725cf1a30Sjl /*
27825cf1a30Sjl  * For OPL it's possible that memory from two or more successive boards
27925cf1a30Sjl  * will be contiguous across the boards, and therefore represented as a
28025cf1a30Sjl  * single chunk.
28125cf1a30Sjl  * This function splits such chunks down the board boundaries.
28225cf1a30Sjl  */
28325cf1a30Sjl static struct memlist *
28425cf1a30Sjl opl_memlist_per_board(struct memlist *ml)
28525cf1a30Sjl {
28625cf1a30Sjl 	uint64_t ssize, low, high, boundary;
28725cf1a30Sjl 	struct memlist *head, *tail, *new;
28825cf1a30Sjl 
28925cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
29025cf1a30Sjl 
29125cf1a30Sjl 	head = tail = NULL;
29225cf1a30Sjl 
29325cf1a30Sjl 	for (; ml; ml = ml->next) {
29425cf1a30Sjl 		low  = (uint64_t)ml->address;
29525cf1a30Sjl 		high = low+(uint64_t)(ml->size);
29625cf1a30Sjl 		while (low < high) {
29725cf1a30Sjl 			boundary = roundup(low+1, ssize);
29825cf1a30Sjl 			boundary = MIN(high, boundary);
29925cf1a30Sjl 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
30025cf1a30Sjl 			new->address = low;
30125cf1a30Sjl 			new->size = boundary - low;
30225cf1a30Sjl 			if (head == NULL)
30325cf1a30Sjl 				head = new;
30425cf1a30Sjl 			if (tail) {
30525cf1a30Sjl 				tail->next = new;
30625cf1a30Sjl 				new->prev = tail;
30725cf1a30Sjl 			}
30825cf1a30Sjl 			tail = new;
30925cf1a30Sjl 			low = boundary;
31025cf1a30Sjl 		}
31125cf1a30Sjl 	}
31225cf1a30Sjl 	return (head);
31325cf1a30Sjl }
31425cf1a30Sjl 
31525cf1a30Sjl void
31625cf1a30Sjl set_platform_cage_params(void)
31725cf1a30Sjl {
31825cf1a30Sjl 	extern pgcnt_t total_pages;
31925cf1a30Sjl 	extern struct memlist *phys_avail;
32025cf1a30Sjl 	struct memlist *ml, *tml;
32125cf1a30Sjl 	int ret;
32225cf1a30Sjl 
32325cf1a30Sjl 	if (kernel_cage_enable) {
32425cf1a30Sjl 		pgcnt_t preferred_cage_size;
32525cf1a30Sjl 
32625cf1a30Sjl 		preferred_cage_size =
32725cf1a30Sjl 			MAX(opl_startup_cage_size, total_pages / 256);
32825cf1a30Sjl 
32925cf1a30Sjl 		ml = opl_memlist_per_board(phys_avail);
33025cf1a30Sjl 
33125cf1a30Sjl 		kcage_range_lock();
33225cf1a30Sjl 		/*
33325cf1a30Sjl 		 * Note: we are assuming that post has load the
33425cf1a30Sjl 		 * whole show in to the high end of memory. Having
33525cf1a30Sjl 		 * taken this leap, we copy the whole of phys_avail
33625cf1a30Sjl 		 * the glist and arrange for the cage to grow
33725cf1a30Sjl 		 * downward (descending pfns).
33825cf1a30Sjl 		 */
33925cf1a30Sjl 		ret = kcage_range_init(ml, 1);
34025cf1a30Sjl 
34125cf1a30Sjl 		/* free the memlist */
34225cf1a30Sjl 		do {
34325cf1a30Sjl 			tml = ml->next;
34425cf1a30Sjl 			kmem_free(ml, sizeof (struct memlist));
34525cf1a30Sjl 			ml = tml;
34625cf1a30Sjl 		} while (ml != NULL);
34725cf1a30Sjl 
34825cf1a30Sjl 		if (ret == 0)
34925cf1a30Sjl 			kcage_init(preferred_cage_size);
35025cf1a30Sjl 		kcage_range_unlock();
35125cf1a30Sjl 	}
35225cf1a30Sjl 
35325cf1a30Sjl 	if (kcage_on)
35425cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
35525cf1a30Sjl 	else
35625cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
35725cf1a30Sjl }
35825cf1a30Sjl 
35925cf1a30Sjl /*ARGSUSED*/
36025cf1a30Sjl int
36125cf1a30Sjl plat_cpu_poweron(struct cpu *cp)
36225cf1a30Sjl {
36325cf1a30Sjl 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
36425cf1a30Sjl 
36525cf1a30Sjl 	opl_cpu_poweron =
36625cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
36725cf1a30Sjl 
36825cf1a30Sjl 	if (opl_cpu_poweron == NULL)
36925cf1a30Sjl 		return (ENOTSUP);
37025cf1a30Sjl 	else
37125cf1a30Sjl 		return ((opl_cpu_poweron)(cp));
37225cf1a30Sjl 
37325cf1a30Sjl }
37425cf1a30Sjl 
37525cf1a30Sjl /*ARGSUSED*/
37625cf1a30Sjl int
37725cf1a30Sjl plat_cpu_poweroff(struct cpu *cp)
37825cf1a30Sjl {
37925cf1a30Sjl 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
38025cf1a30Sjl 
38125cf1a30Sjl 	opl_cpu_poweroff =
38225cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
38325cf1a30Sjl 
38425cf1a30Sjl 	if (opl_cpu_poweroff == NULL)
38525cf1a30Sjl 		return (ENOTSUP);
38625cf1a30Sjl 	else
38725cf1a30Sjl 		return ((opl_cpu_poweroff)(cp));
38825cf1a30Sjl 
38925cf1a30Sjl }
39025cf1a30Sjl 
39125cf1a30Sjl int
39225cf1a30Sjl plat_max_boards(void)
39325cf1a30Sjl {
39425cf1a30Sjl 	return (OPL_MAX_BOARDS);
39525cf1a30Sjl }
39625cf1a30Sjl 
39725cf1a30Sjl int
39825cf1a30Sjl plat_max_cpu_units_per_board(void)
39925cf1a30Sjl {
40025cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD);
40125cf1a30Sjl }
40225cf1a30Sjl 
40325cf1a30Sjl int
40425cf1a30Sjl plat_max_mem_units_per_board(void)
40525cf1a30Sjl {
40625cf1a30Sjl 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
40725cf1a30Sjl }
40825cf1a30Sjl 
40925cf1a30Sjl int
41025cf1a30Sjl plat_max_io_units_per_board(void)
41125cf1a30Sjl {
41225cf1a30Sjl 	return (OPL_MAX_IO_UNITS_PER_BOARD);
41325cf1a30Sjl }
41425cf1a30Sjl 
41525cf1a30Sjl int
41625cf1a30Sjl plat_max_cmp_units_per_board(void)
41725cf1a30Sjl {
41825cf1a30Sjl 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
41925cf1a30Sjl }
42025cf1a30Sjl 
42125cf1a30Sjl int
42225cf1a30Sjl plat_max_core_units_per_board(void)
42325cf1a30Sjl {
42425cf1a30Sjl 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
42525cf1a30Sjl }
42625cf1a30Sjl 
42725cf1a30Sjl int
42825cf1a30Sjl plat_pfn_to_mem_node(pfn_t pfn)
42925cf1a30Sjl {
43025cf1a30Sjl 	return (pfn >> mem_node_pfn_shift);
43125cf1a30Sjl }
43225cf1a30Sjl 
43325cf1a30Sjl /* ARGSUSED */
43425cf1a30Sjl void
43525cf1a30Sjl plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
43625cf1a30Sjl {
43725cf1a30Sjl 	size_t	elem;
43825cf1a30Sjl 	pfn_t	basepfn;
43925cf1a30Sjl 	pgcnt_t	npgs;
44025cf1a30Sjl 	uint64_t	boundary, ssize;
44125cf1a30Sjl 	uint64_t	low, high;
44225cf1a30Sjl 
44325cf1a30Sjl 	/*
44425cf1a30Sjl 	 * OPL mem slices are always aligned on a 256GB boundary.
44525cf1a30Sjl 	 */
44625cf1a30Sjl 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
44725cf1a30Sjl 	mem_node_physalign = 0;
44825cf1a30Sjl 
44925cf1a30Sjl 	/*
45025cf1a30Sjl 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
45125cf1a30Sjl 	 */
45225cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
45325cf1a30Sjl 	for (elem = 0; elem < nelems; elem += 2) {
45425cf1a30Sjl 		low  = (uint64_t)list[elem];
45525cf1a30Sjl 		high = low+(uint64_t)(list[elem+1]);
45625cf1a30Sjl 		while (low < high) {
45725cf1a30Sjl 			boundary = roundup(low+1, ssize);
45825cf1a30Sjl 			boundary = MIN(high, boundary);
45925cf1a30Sjl 			basepfn = btop(low);
46025cf1a30Sjl 			npgs = btop(boundary - low);
46125cf1a30Sjl 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
46225cf1a30Sjl 			low = boundary;
46325cf1a30Sjl 		}
46425cf1a30Sjl 	}
46525cf1a30Sjl }
46625cf1a30Sjl 
46725cf1a30Sjl /*
46825cf1a30Sjl  * Find the CPU associated with a slice at boot-time.
46925cf1a30Sjl  */
47025cf1a30Sjl void
47125cf1a30Sjl plat_fill_mc(pnode_t nodeid)
47225cf1a30Sjl {
47325cf1a30Sjl 	int board;
47425cf1a30Sjl 	int memnode;
47525cf1a30Sjl 	struct {
47625cf1a30Sjl 		uint64_t	addr;
47725cf1a30Sjl 		uint64_t	size;
47825cf1a30Sjl 	} mem_range;
47925cf1a30Sjl 
48025cf1a30Sjl 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
48125cf1a30Sjl 		panic("Can not find board# property in mc node %x", nodeid);
48225cf1a30Sjl 	}
48325cf1a30Sjl 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
48425cf1a30Sjl 		panic("Can not find sb-mem-ranges property in mc node %x",
48525cf1a30Sjl 			nodeid);
48625cf1a30Sjl 	}
48725cf1a30Sjl 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
48825cf1a30Sjl 	plat_assign_lgrphand_to_mem_node(board, memnode);
48925cf1a30Sjl }
49025cf1a30Sjl 
49125cf1a30Sjl /*
49225cf1a30Sjl  * Return the platform handle for the lgroup containing the given CPU
49325cf1a30Sjl  *
49425cf1a30Sjl  * For OPL, lgroup platform handle == board #.
49525cf1a30Sjl  */
49625cf1a30Sjl 
49725cf1a30Sjl extern int mpo_disabled;
49825cf1a30Sjl extern lgrp_handle_t lgrp_default_handle;
49925cf1a30Sjl 
50025cf1a30Sjl lgrp_handle_t
50125cf1a30Sjl plat_lgrp_cpu_to_hand(processorid_t id)
50225cf1a30Sjl {
50325cf1a30Sjl 	lgrp_handle_t plathand;
50425cf1a30Sjl 
50525cf1a30Sjl 	/*
50625cf1a30Sjl 	 * Return the real platform handle for the CPU until
50725cf1a30Sjl 	 * such time as we know that MPO should be disabled.
50825cf1a30Sjl 	 * At that point, we set the "mpo_disabled" flag to true,
50925cf1a30Sjl 	 * and from that point on, return the default handle.
51025cf1a30Sjl 	 *
51125cf1a30Sjl 	 * By the time we know that MPO should be disabled, the
51225cf1a30Sjl 	 * first CPU will have already been added to a leaf
51325cf1a30Sjl 	 * lgroup, but that's ok. The common lgroup code will
51425cf1a30Sjl 	 * double check that the boot CPU is in the correct place,
51525cf1a30Sjl 	 * and in the case where mpo should be disabled, will move
51625cf1a30Sjl 	 * it to the root if necessary.
51725cf1a30Sjl 	 */
51825cf1a30Sjl 	if (mpo_disabled) {
51925cf1a30Sjl 		/* If MPO is disabled, return the default (UMA) handle */
52025cf1a30Sjl 		plathand = lgrp_default_handle;
52125cf1a30Sjl 	} else
52225cf1a30Sjl 		plathand = (lgrp_handle_t)LSB_ID(id);
52325cf1a30Sjl 	return (plathand);
52425cf1a30Sjl }
52525cf1a30Sjl 
52625cf1a30Sjl /*
52725cf1a30Sjl  * Platform specific lgroup initialization
52825cf1a30Sjl  */
52925cf1a30Sjl void
53025cf1a30Sjl plat_lgrp_init(void)
53125cf1a30Sjl {
53225cf1a30Sjl 	extern uint32_t lgrp_expand_proc_thresh;
53325cf1a30Sjl 	extern uint32_t lgrp_expand_proc_diff;
53425cf1a30Sjl 
53525cf1a30Sjl 	/*
53625cf1a30Sjl 	 * Set tuneables for the OPL architecture
53725cf1a30Sjl 	 *
53825cf1a30Sjl 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
53925cf1a30Sjl 	 * this process is currently running on before considering
54025cf1a30Sjl 	 * expanding threads to another lgroup.
54125cf1a30Sjl 	 *
54225cf1a30Sjl 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
54325cf1a30Sjl 	 * must be loaded before expanding to it.
54425cf1a30Sjl 	 *
54525cf1a30Sjl 	 * Since remote latencies can be costly, attempt to keep 3 threads
54625cf1a30Sjl 	 * within the same lgroup before expanding to the next lgroup.
54725cf1a30Sjl 	 */
54825cf1a30Sjl 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
54925cf1a30Sjl 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
55025cf1a30Sjl }
55125cf1a30Sjl 
55225cf1a30Sjl /*
55325cf1a30Sjl  * Platform notification of lgroup (re)configuration changes
55425cf1a30Sjl  */
55525cf1a30Sjl /*ARGSUSED*/
55625cf1a30Sjl void
55725cf1a30Sjl plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
55825cf1a30Sjl {
55925cf1a30Sjl 	update_membounds_t *umb;
56025cf1a30Sjl 	lgrp_config_mem_rename_t lmr;
56125cf1a30Sjl 	int sbd, tbd;
56225cf1a30Sjl 	lgrp_handle_t hand, shand, thand;
56325cf1a30Sjl 	int mnode, snode, tnode;
56425cf1a30Sjl 	pfn_t start, end;
56525cf1a30Sjl 
56625cf1a30Sjl 	if (mpo_disabled)
56725cf1a30Sjl 		return;
56825cf1a30Sjl 
56925cf1a30Sjl 	switch (evt) {
57025cf1a30Sjl 
57125cf1a30Sjl 	case LGRP_CONFIG_MEM_ADD:
57225cf1a30Sjl 		/*
57325cf1a30Sjl 		 * Establish the lgroup handle to memnode translation.
57425cf1a30Sjl 		 */
57525cf1a30Sjl 		umb = (update_membounds_t *)arg;
57625cf1a30Sjl 
57725cf1a30Sjl 		hand = umb->u_board;
57825cf1a30Sjl 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
57925cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(hand, mnode);
58025cf1a30Sjl 
58125cf1a30Sjl 		break;
58225cf1a30Sjl 
58325cf1a30Sjl 	case LGRP_CONFIG_MEM_DEL:
58425cf1a30Sjl 		/*
58525cf1a30Sjl 		 * Special handling for possible memory holes.
58625cf1a30Sjl 		 */
58725cf1a30Sjl 		umb = (update_membounds_t *)arg;
58825cf1a30Sjl 		hand = umb->u_board;
58925cf1a30Sjl 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
59025cf1a30Sjl 			if (mem_node_config[mnode].exists) {
59125cf1a30Sjl 				start = mem_node_config[mnode].physbase;
59225cf1a30Sjl 				end = mem_node_config[mnode].physmax;
59325cf1a30Sjl 				mem_node_pre_del_slice(start, end);
59425cf1a30Sjl 				mem_node_post_del_slice(start, end, 0);
59525cf1a30Sjl 			}
59625cf1a30Sjl 		}
59725cf1a30Sjl 
59825cf1a30Sjl 		break;
59925cf1a30Sjl 
60025cf1a30Sjl 	case LGRP_CONFIG_MEM_RENAME:
60125cf1a30Sjl 		/*
60225cf1a30Sjl 		 * During a DR copy-rename operation, all of the memory
60325cf1a30Sjl 		 * on one board is moved to another board -- but the
60425cf1a30Sjl 		 * addresses/pfns and memnodes don't change. This means
60525cf1a30Sjl 		 * the memory has changed locations without changing identity.
60625cf1a30Sjl 		 *
60725cf1a30Sjl 		 * Source is where we are copying from and target is where we
60825cf1a30Sjl 		 * are copying to.  After source memnode is copied to target
60925cf1a30Sjl 		 * memnode, the physical addresses of the target memnode are
61025cf1a30Sjl 		 * renamed to match what the source memnode had.  Then target
61125cf1a30Sjl 		 * memnode can be removed and source memnode can take its
61225cf1a30Sjl 		 * place.
61325cf1a30Sjl 		 *
61425cf1a30Sjl 		 * To do this, swap the lgroup handle to memnode mappings for
61525cf1a30Sjl 		 * the boards, so target lgroup will have source memnode and
61625cf1a30Sjl 		 * source lgroup will have empty target memnode which is where
61725cf1a30Sjl 		 * its memory will go (if any is added to it later).
61825cf1a30Sjl 		 *
61925cf1a30Sjl 		 * Then source memnode needs to be removed from its lgroup
62025cf1a30Sjl 		 * and added to the target lgroup where the memory was living
62125cf1a30Sjl 		 * but under a different name/memnode.  The memory was in the
62225cf1a30Sjl 		 * target memnode and now lives in the source memnode with
62325cf1a30Sjl 		 * different physical addresses even though it is the same
62425cf1a30Sjl 		 * memory.
62525cf1a30Sjl 		 */
62625cf1a30Sjl 		sbd = arg & 0xffff;
62725cf1a30Sjl 		tbd = (arg & 0xffff0000) >> 16;
62825cf1a30Sjl 		shand = sbd;
62925cf1a30Sjl 		thand = tbd;
63025cf1a30Sjl 		snode = plat_lgrphand_to_mem_node(shand);
63125cf1a30Sjl 		tnode = plat_lgrphand_to_mem_node(thand);
63225cf1a30Sjl 
63325cf1a30Sjl 		/*
63425cf1a30Sjl 		 * Special handling for possible memory holes.
63525cf1a30Sjl 		 */
63625cf1a30Sjl 		if (tnode != -1 && mem_node_config[tnode].exists) {
637*68ac2337Sjl 			start = mem_node_config[tnode].physbase;
638*68ac2337Sjl 			end = mem_node_config[tnode].physmax;
63925cf1a30Sjl 			mem_node_pre_del_slice(start, end);
64025cf1a30Sjl 			mem_node_post_del_slice(start, end, 0);
64125cf1a30Sjl 		}
64225cf1a30Sjl 
64325cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(thand, snode);
64425cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(shand, tnode);
64525cf1a30Sjl 
64625cf1a30Sjl 		lmr.lmem_rename_from = shand;
64725cf1a30Sjl 		lmr.lmem_rename_to = thand;
64825cf1a30Sjl 
64925cf1a30Sjl 		/*
65025cf1a30Sjl 		 * Remove source memnode of copy rename from its lgroup
65125cf1a30Sjl 		 * and add it to its new target lgroup
65225cf1a30Sjl 		 */
65325cf1a30Sjl 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
65425cf1a30Sjl 		    (uintptr_t)&lmr);
65525cf1a30Sjl 
65625cf1a30Sjl 		break;
65725cf1a30Sjl 
65825cf1a30Sjl 	default:
65925cf1a30Sjl 		break;
66025cf1a30Sjl 	}
66125cf1a30Sjl }
66225cf1a30Sjl 
66325cf1a30Sjl /*
66425cf1a30Sjl  * Return latency between "from" and "to" lgroups
66525cf1a30Sjl  *
66625cf1a30Sjl  * This latency number can only be used for relative comparison
66725cf1a30Sjl  * between lgroups on the running system, cannot be used across platforms,
66825cf1a30Sjl  * and may not reflect the actual latency.  It is platform and implementation
66925cf1a30Sjl  * specific, so platform gets to decide its value.  It would be nice if the
67025cf1a30Sjl  * number was at least proportional to make comparisons more meaningful though.
67125cf1a30Sjl  * NOTE: The numbers below are supposed to be load latencies for uncached
67225cf1a30Sjl  * memory divided by 10.
67325cf1a30Sjl  *
67425cf1a30Sjl  */
67525cf1a30Sjl int
67625cf1a30Sjl plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
67725cf1a30Sjl {
67825cf1a30Sjl 	/*
67925cf1a30Sjl 	 * Return min remote latency when there are more than two lgroups
68025cf1a30Sjl 	 * (root and child) and getting latency between two different lgroups
68125cf1a30Sjl 	 * or root is involved
68225cf1a30Sjl 	 */
68325cf1a30Sjl 	if (lgrp_optimizations() && (from != to ||
68425cf1a30Sjl 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
68571b3c2ffShyw 		return (42);
68625cf1a30Sjl 	else
68771b3c2ffShyw 		return (35);
68825cf1a30Sjl }
68925cf1a30Sjl 
69025cf1a30Sjl /*
69125cf1a30Sjl  * Return platform handle for root lgroup
69225cf1a30Sjl  */
69325cf1a30Sjl lgrp_handle_t
69425cf1a30Sjl plat_lgrp_root_hand(void)
69525cf1a30Sjl {
69625cf1a30Sjl 	if (mpo_disabled)
69725cf1a30Sjl 		return (lgrp_default_handle);
69825cf1a30Sjl 
69925cf1a30Sjl 	return (LGRP_DEFAULT_HANDLE);
70025cf1a30Sjl }
70125cf1a30Sjl 
70225cf1a30Sjl /*ARGSUSED*/
70325cf1a30Sjl void
70425cf1a30Sjl plat_freelist_process(int mnode)
70525cf1a30Sjl {
70625cf1a30Sjl }
70725cf1a30Sjl 
70825cf1a30Sjl void
70925cf1a30Sjl load_platform_drivers(void)
71025cf1a30Sjl {
71125cf1a30Sjl 	(void) i_ddi_attach_pseudo_node("dr");
71225cf1a30Sjl }
71325cf1a30Sjl 
71425cf1a30Sjl /*
71525cf1a30Sjl  * No platform drivers on this platform
71625cf1a30Sjl  */
71725cf1a30Sjl char *platform_module_list[] = {
71825cf1a30Sjl 	(char *)0
71925cf1a30Sjl };
72025cf1a30Sjl 
72125cf1a30Sjl /*ARGSUSED*/
72225cf1a30Sjl void
72325cf1a30Sjl plat_tod_fault(enum tod_fault_type tod_bad)
72425cf1a30Sjl {
72525cf1a30Sjl }
72625cf1a30Sjl 
72725cf1a30Sjl /*ARGSUSED*/
72825cf1a30Sjl void
72925cf1a30Sjl cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
73025cf1a30Sjl {
73125cf1a30Sjl 	static void (*scf_panic_callback)(int);
73225cf1a30Sjl 	static void (*scf_shutdown_callback)(int);
73325cf1a30Sjl 
73425cf1a30Sjl 	/*
73525cf1a30Sjl 	 * This is for notifing system panic/shutdown to SCF.
73625cf1a30Sjl 	 * In case of shutdown and panic, SCF call back
73725cf1a30Sjl 	 * function should be called.
73825cf1a30Sjl 	 *  <SCF call back functions>
73925cf1a30Sjl 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
74025cf1a30Sjl 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
74125cf1a30Sjl 	 * cpuid should be -1 and state should be SIGST_EXIT.
74225cf1a30Sjl 	 */
74325cf1a30Sjl 	if (state == SIGST_EXIT && cpuid == -1) {
74425cf1a30Sjl 
74525cf1a30Sjl 		/*
74625cf1a30Sjl 		 * find the symbol for the SCF panic callback routine in driver
74725cf1a30Sjl 		 */
74825cf1a30Sjl 		if (scf_panic_callback == NULL)
74925cf1a30Sjl 			scf_panic_callback = (void (*)(int))
75025cf1a30Sjl 				modgetsymvalue("scf_panic_callb", 0);
75125cf1a30Sjl 		if (scf_shutdown_callback == NULL)
75225cf1a30Sjl 			scf_shutdown_callback = (void (*)(int))
75325cf1a30Sjl 				modgetsymvalue("scf_shutdown_callb", 0);
75425cf1a30Sjl 
75525cf1a30Sjl 		switch (sub_state) {
75625cf1a30Sjl 		case SIGSUBST_PANIC:
75725cf1a30Sjl 			if (scf_panic_callback == NULL) {
75825cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
75925cf1a30Sjl 				    "scf_panic_callb not found\n");
76025cf1a30Sjl 				return;
76125cf1a30Sjl 			}
76225cf1a30Sjl 			scf_panic_callback(SIGSUBST_PANIC);
76325cf1a30Sjl 			break;
76425cf1a30Sjl 
76525cf1a30Sjl 		case SIGSUBST_HALT:
76625cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
76725cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
76825cf1a30Sjl 				    "scf_shutdown_callb not found\n");
76925cf1a30Sjl 				return;
77025cf1a30Sjl 			}
77125cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_HALT);
77225cf1a30Sjl 			break;
77325cf1a30Sjl 
77425cf1a30Sjl 		case SIGSUBST_ENVIRON:
77525cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
77625cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
77725cf1a30Sjl 				    "scf_shutdown_callb not found\n");
77825cf1a30Sjl 				return;
77925cf1a30Sjl 			}
78025cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_ENVIRON);
78125cf1a30Sjl 			break;
78225cf1a30Sjl 
78325cf1a30Sjl 		case SIGSUBST_REBOOT:
78425cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
78525cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
78625cf1a30Sjl 				    "scf_shutdown_callb not found\n");
78725cf1a30Sjl 				return;
78825cf1a30Sjl 			}
78925cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_REBOOT);
79025cf1a30Sjl 			break;
79125cf1a30Sjl 		}
79225cf1a30Sjl 	}
79325cf1a30Sjl }
79425cf1a30Sjl 
79525cf1a30Sjl /*ARGSUSED*/
79625cf1a30Sjl int
79725cf1a30Sjl plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
79825cf1a30Sjl 	int flt_in_memory, ushort_t flt_status,
79925cf1a30Sjl 	char *buf, int buflen, int *lenp)
80025cf1a30Sjl {
80125cf1a30Sjl 	/*
80225cf1a30Sjl 	 * check if it's a Memory error.
80325cf1a30Sjl 	 */
80425cf1a30Sjl 	if (flt_in_memory) {
80525cf1a30Sjl 		if (opl_get_mem_unum != NULL) {
80625cf1a30Sjl 			return (opl_get_mem_unum(synd_code, flt_addr,
80725cf1a30Sjl 				buf, buflen, lenp));
80825cf1a30Sjl 		} else {
80925cf1a30Sjl 			return (ENOTSUP);
81025cf1a30Sjl 		}
81125cf1a30Sjl 	} else {
81225cf1a30Sjl 		return (ENOTSUP);
81325cf1a30Sjl 	}
81425cf1a30Sjl }
81525cf1a30Sjl 
81625cf1a30Sjl /*ARGSUSED*/
81725cf1a30Sjl int
81825cf1a30Sjl plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
81925cf1a30Sjl {
8200cc8ae86Sav 	int	ret = 0;
8210cc8ae86Sav 	uint_t	sb;
822195196c6Ssubhan 	int	plen;
82325cf1a30Sjl 
82425cf1a30Sjl 	sb = opl_get_physical_board(LSB_ID(cpuid));
82525cf1a30Sjl 	if (sb == -1) {
82625cf1a30Sjl 		return (ENXIO);
82725cf1a30Sjl 	}
82825cf1a30Sjl 
829195196c6Ssubhan 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
830195196c6Ssubhan 
831195196c6Ssubhan 	switch (opl_cur_model->model_type) {
832195196c6Ssubhan 	case FF1:
8330cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
8340cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
8350cc8ae86Sav 		break;
8360cc8ae86Sav 
837195196c6Ssubhan 	case FF2:
8380cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
83911114147Sav 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
8400cc8ae86Sav 		break;
8410cc8ae86Sav 
842195196c6Ssubhan 	case DC1:
843195196c6Ssubhan 	case DC2:
844195196c6Ssubhan 	case DC3:
8450cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
8460cc8ae86Sav 		    CHIP_ID(cpuid));
8470cc8ae86Sav 		break;
8480cc8ae86Sav 
8490cc8ae86Sav 	default:
8500cc8ae86Sav 		/* This should never happen */
8510cc8ae86Sav 		return (ENODEV);
8520cc8ae86Sav 	}
8530cc8ae86Sav 
8540cc8ae86Sav 	if (plen >= buflen) {
8550cc8ae86Sav 		ret = ENOSPC;
85625cf1a30Sjl 	} else {
85725cf1a30Sjl 		if (lenp)
85825cf1a30Sjl 			*lenp = strlen(buf);
85925cf1a30Sjl 	}
8600cc8ae86Sav 	return (ret);
86125cf1a30Sjl }
86225cf1a30Sjl 
86325cf1a30Sjl #define	SCF_PUTINFO(f, s, p)	\
86425cf1a30Sjl 	f(KEY_ESCF, 0x01, 0, s, p)
86525cf1a30Sjl void
86625cf1a30Sjl plat_nodename_set(void)
86725cf1a30Sjl {
86825cf1a30Sjl 	void *datap;
86925cf1a30Sjl 	static int (*scf_service_function)(uint32_t, uint8_t,
87025cf1a30Sjl 	    uint32_t, uint32_t, void *);
87125cf1a30Sjl 	int counter = 5;
87225cf1a30Sjl 
87325cf1a30Sjl 	/*
87425cf1a30Sjl 	 * find the symbol for the SCF put routine in driver
87525cf1a30Sjl 	 */
87625cf1a30Sjl 	if (scf_service_function == NULL)
87725cf1a30Sjl 		scf_service_function =
87825cf1a30Sjl 			(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
87925cf1a30Sjl 			modgetsymvalue("scf_service_putinfo", 0);
88025cf1a30Sjl 
88125cf1a30Sjl 	/*
88225cf1a30Sjl 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
88325cf1a30Sjl 	 * the console).
88425cf1a30Sjl 	 */
88525cf1a30Sjl 
88625cf1a30Sjl 	if (scf_service_function == NULL) {
88725cf1a30Sjl 		cmn_err(CE_NOTE,
88825cf1a30Sjl 		    "!plat_nodename_set: scf_service_putinfo not found\n");
88925cf1a30Sjl 		return;
89025cf1a30Sjl 	}
89125cf1a30Sjl 
89225cf1a30Sjl 	datap =
89325cf1a30Sjl 	    (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP);
89425cf1a30Sjl 
89525cf1a30Sjl 	if (datap == NULL) {
89625cf1a30Sjl 		return;
89725cf1a30Sjl 	}
89825cf1a30Sjl 
89925cf1a30Sjl 	bcopy((struct utsname *)&utsname,
90025cf1a30Sjl 	    (struct utsname *)datap, sizeof (struct utsname));
90125cf1a30Sjl 
90225cf1a30Sjl 	while ((SCF_PUTINFO(scf_service_function,
90325cf1a30Sjl 		sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) {
90425cf1a30Sjl 		delay(10 * drv_usectohz(1000000));
90525cf1a30Sjl 	}
90625cf1a30Sjl 	if (counter == 0)
90725cf1a30Sjl 		cmn_err(CE_NOTE,
90825cf1a30Sjl 			"!plat_nodename_set: "
90925cf1a30Sjl 			"scf_service_putinfo not responding\n");
91025cf1a30Sjl 
91125cf1a30Sjl 	kmem_free(datap, sizeof (struct utsname));
91225cf1a30Sjl }
91325cf1a30Sjl 
91425cf1a30Sjl caddr_t	efcode_vaddr = NULL;
91525cf1a30Sjl 
91625cf1a30Sjl /*
91725cf1a30Sjl  * Preallocate enough memory for fcode claims.
91825cf1a30Sjl  */
91925cf1a30Sjl 
92025cf1a30Sjl caddr_t
92125cf1a30Sjl efcode_alloc(caddr_t alloc_base)
92225cf1a30Sjl {
92325cf1a30Sjl 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
92425cf1a30Sjl 	    MMU_PAGESIZE);
92525cf1a30Sjl 	caddr_t vaddr;
92625cf1a30Sjl 
92725cf1a30Sjl 	/*
92825cf1a30Sjl 	 * allocate the physical memory for the Oberon fcode.
92925cf1a30Sjl 	 */
93025cf1a30Sjl 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
93125cf1a30Sjl 	    efcode_size, MMU_PAGESIZE)) == NULL)
93225cf1a30Sjl 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
93325cf1a30Sjl 
93425cf1a30Sjl 	efcode_vaddr = vaddr;
93525cf1a30Sjl 
93625cf1a30Sjl 	return (efcode_alloc_base + efcode_size);
93725cf1a30Sjl }
93825cf1a30Sjl 
93925cf1a30Sjl caddr_t
94025cf1a30Sjl plat_startup_memlist(caddr_t alloc_base)
94125cf1a30Sjl {
94225cf1a30Sjl 	caddr_t tmp_alloc_base;
94325cf1a30Sjl 
94425cf1a30Sjl 	tmp_alloc_base = efcode_alloc(alloc_base);
94525cf1a30Sjl 	tmp_alloc_base =
94625cf1a30Sjl 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
94725cf1a30Sjl 	return (tmp_alloc_base);
94825cf1a30Sjl }
94925cf1a30Sjl 
95025cf1a30Sjl void
95125cf1a30Sjl startup_platform(void)
95225cf1a30Sjl {
95325cf1a30Sjl }
9540cc8ae86Sav 
9551e2e7a75Shuah void
9561e2e7a75Shuah plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
9571e2e7a75Shuah {
9581e2e7a75Shuah 	int	impl;
9591e2e7a75Shuah 
9601e2e7a75Shuah 	impl = cpunodes[cpuid].implementation;
9611e2e7a75Shuah 	if (IS_OLYMPUS_C(impl)) {
96231f6f5eeSmv 		info->mmu_idx = MMU_ID(cpuid);
9631e2e7a75Shuah 		info->mmu_nctxs = 8192;
9641e2e7a75Shuah 	} else {
9651e2e7a75Shuah 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
9661e2e7a75Shuah 	}
9671e2e7a75Shuah }
9681e2e7a75Shuah 
9690cc8ae86Sav int
9700cc8ae86Sav plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
9710cc8ae86Sav {
9720cc8ae86Sav 	if (opl_get_mem_sid == NULL) {
9730cc8ae86Sav 		return (ENOTSUP);
9740cc8ae86Sav 	}
9750cc8ae86Sav 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
9760cc8ae86Sav }
9770cc8ae86Sav 
9780cc8ae86Sav int
9790cc8ae86Sav plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
9800cc8ae86Sav {
9810cc8ae86Sav 	if (opl_get_mem_offset == NULL) {
9820cc8ae86Sav 		return (ENOTSUP);
9830cc8ae86Sav 	}
9840cc8ae86Sav 	return (opl_get_mem_offset(paddr, offp));
9850cc8ae86Sav }
9860cc8ae86Sav 
9870cc8ae86Sav int
9880cc8ae86Sav plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
9890cc8ae86Sav {
9900cc8ae86Sav 	if (opl_get_mem_addr == NULL) {
9910cc8ae86Sav 		return (ENOTSUP);
9920cc8ae86Sav 	}
9930cc8ae86Sav 	return (opl_get_mem_addr(unum, sid, offset, addrp));
9940cc8ae86Sav }
995