xref: /illumos-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 575a7426)
125cf1a30Sjl /*
225cf1a30Sjl  * CDDL HEADER START
325cf1a30Sjl  *
425cf1a30Sjl  * The contents of this file are subject to the terms of the
525cf1a30Sjl  * Common Development and Distribution License (the "License").
625cf1a30Sjl  * You may not use this file except in compliance with the License.
725cf1a30Sjl  *
825cf1a30Sjl  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925cf1a30Sjl  * or http://www.opensolaris.org/os/licensing.
1025cf1a30Sjl  * See the License for the specific language governing permissions
1125cf1a30Sjl  * and limitations under the License.
1225cf1a30Sjl  *
1325cf1a30Sjl  * When distributing Covered Code, include this CDDL HEADER in each
1425cf1a30Sjl  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525cf1a30Sjl  * If applicable, add the following below this CDDL HEADER, with the
1625cf1a30Sjl  * fields enclosed by brackets "[]" replaced with your own identifying
1725cf1a30Sjl  * information: Portions Copyright [yyyy] [name of copyright owner]
1825cf1a30Sjl  *
1925cf1a30Sjl  * CDDL HEADER END
2025cf1a30Sjl  */
2125cf1a30Sjl /*
222850d85bSmv  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
2325cf1a30Sjl  * Use is subject to license terms.
2425cf1a30Sjl  */
2525cf1a30Sjl 
2625cf1a30Sjl #pragma ident	"%Z%%M%	%I%	%E% SMI"
2725cf1a30Sjl 
2825cf1a30Sjl #include <sys/cpuvar.h>
2925cf1a30Sjl #include <sys/systm.h>
3025cf1a30Sjl #include <sys/sysmacros.h>
3125cf1a30Sjl #include <sys/promif.h>
3225cf1a30Sjl #include <sys/platform_module.h>
3325cf1a30Sjl #include <sys/cmn_err.h>
3425cf1a30Sjl #include <sys/errno.h>
3525cf1a30Sjl #include <sys/machsystm.h>
3625cf1a30Sjl #include <sys/bootconf.h>
3725cf1a30Sjl #include <sys/nvpair.h>
3825cf1a30Sjl #include <sys/kobj.h>
3925cf1a30Sjl #include <sys/mem_cage.h>
4025cf1a30Sjl #include <sys/opl.h>
4125cf1a30Sjl #include <sys/scfd/scfostoescf.h>
4225cf1a30Sjl #include <sys/cpu_sgnblk_defs.h>
4325cf1a30Sjl #include <sys/utsname.h>
4425cf1a30Sjl #include <sys/ddi.h>
4525cf1a30Sjl #include <sys/sunndi.h>
4625cf1a30Sjl #include <sys/lgrp.h>
4725cf1a30Sjl #include <sys/memnode.h>
4825cf1a30Sjl #include <sys/sysmacros.h>
49e603b7d4Spm #include <sys/time.h>
50e603b7d4Spm #include <sys/cpu.h>
5125cf1a30Sjl #include <vm/vm_dep.h>
5225cf1a30Sjl 
5325cf1a30Sjl int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
540cc8ae86Sav int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
550cc8ae86Sav int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
560cc8ae86Sav int (*opl_get_mem_addr)(char *unum, char *sid,
570cc8ae86Sav     uint64_t offset, uint64_t *paddr);
5825cf1a30Sjl 
5925cf1a30Sjl /* Memory for fcode claims.  16k times # maximum possible IO units */
6025cf1a30Sjl #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
6125cf1a30Sjl int efcode_size = EFCODE_SIZE;
6225cf1a30Sjl 
6325cf1a30Sjl #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
6425cf1a30Sjl 
6525cf1a30Sjl /* Set the maximum number of boards for DR */
6625cf1a30Sjl int opl_boards = OPL_MAX_BOARDS;
6725cf1a30Sjl 
6825cf1a30Sjl void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
6925cf1a30Sjl 
7025cf1a30Sjl extern int tsb_lgrp_affinity;
7125cf1a30Sjl 
7225cf1a30Sjl int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
7325cf1a30Sjl 	(OPL_MAX_TSBS_PER_PCICH);
7425cf1a30Sjl 
7525cf1a30Sjl pgcnt_t opl_startup_cage_size = 0;
7625cf1a30Sjl 
773f1fa9a7Sjfrank /*
783f1fa9a7Sjfrank  * The length of the delay in seconds in communication with XSCF after
793f1fa9a7Sjfrank  * which the warning message will be logged.
803f1fa9a7Sjfrank  */
813f1fa9a7Sjfrank uint_t	xscf_connect_delay = 60 * 15;
823f1fa9a7Sjfrank 
831e2e7a75Shuah static opl_model_info_t opl_models[] = {
84195196c6Ssubhan 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
85195196c6Ssubhan 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
86195196c6Ssubhan 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
87195196c6Ssubhan 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
88195196c6Ssubhan 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
891e2e7a75Shuah };
901e2e7a75Shuah static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
911e2e7a75Shuah 
92195196c6Ssubhan /*
9372b9fce9Ssubhan  * opl_cur_model
94195196c6Ssubhan  */
9572b9fce9Ssubhan static	opl_model_info_t *opl_cur_model = NULL;
961e2e7a75Shuah 
9725cf1a30Sjl static struct memlist *opl_memlist_per_board(struct memlist *ml);
983f1fa9a7Sjfrank static void post_xscf_msg(char *, int);
993f1fa9a7Sjfrank static void pass2xscf_thread();
10025cf1a30Sjl 
101e603b7d4Spm /*
102e603b7d4Spm  * Note FF/DC out-of-order instruction engine takes only a
103e603b7d4Spm  * single cycle to execute each spin loop
104e603b7d4Spm  * for comparison, Panther takes 6 cycles for same loop
105*575a7426Spt  * OPL_BOFF_SPIN = base spin loop, roughly one memory reference time
106*575a7426Spt  * OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C)
107*575a7426Spt  * OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep
108*575a7426Spt  * OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus
109*575a7426Spt  * Listed values tuned for 2.15GHz to 2.64GHz systems
110e603b7d4Spm  * Value may change for future systems
111e603b7d4Spm  */
112*575a7426Spt #define	OPL_BOFF_SPIN 7
113*575a7426Spt #define	OPL_BOFF_SLEEP 4
114*575a7426Spt #define	OPL_BOFF_TM 1600
115*575a7426Spt #define	OPL_BOFF_MAX_SCALE 8
116e603b7d4Spm 
1172850d85bSmv #define	OPL_CLOCK_TICK_THRESHOLD	128
1182850d85bSmv #define	OPL_CLOCK_TICK_NCPUS		64
1192850d85bSmv 
1202850d85bSmv extern int	clock_tick_threshold;
1212850d85bSmv extern int	clock_tick_ncpus;
1222850d85bSmv 
12325cf1a30Sjl int
12425cf1a30Sjl set_platform_max_ncpus(void)
12525cf1a30Sjl {
12625cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
12725cf1a30Sjl }
12825cf1a30Sjl 
12925cf1a30Sjl int
13025cf1a30Sjl set_platform_tsb_spares(void)
13125cf1a30Sjl {
13225cf1a30Sjl 	return (MIN(opl_tsb_spares, MAX_UPA));
13325cf1a30Sjl }
13425cf1a30Sjl 
1351e2e7a75Shuah static void
1361e2e7a75Shuah set_model_info()
1371e2e7a75Shuah {
138195196c6Ssubhan 	extern int ts_dispatch_extended;
1391e2e7a75Shuah 	char	name[MAXSYSNAME];
1401e2e7a75Shuah 	int	i;
1411e2e7a75Shuah 
1421e2e7a75Shuah 	/*
1431e2e7a75Shuah 	 * Get model name from the root node.
1441e2e7a75Shuah 	 *
1451e2e7a75Shuah 	 * We are using the prom device tree since, at this point,
1461e2e7a75Shuah 	 * the Solaris device tree is not yet setup.
1471e2e7a75Shuah 	 */
1481e2e7a75Shuah 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
1491e2e7a75Shuah 
1501e2e7a75Shuah 	for (i = 0; i < opl_num_models; i++) {
1511e2e7a75Shuah 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
1521e2e7a75Shuah 			opl_cur_model = &opl_models[i];
1531e2e7a75Shuah 			break;
1541e2e7a75Shuah 		}
1551e2e7a75Shuah 	}
156195196c6Ssubhan 
1579b71d8e9Swh 	/*
1589b71d8e9Swh 	 * If model not matched, it's an unknown model.
1599b71d8e9Swh 	 * just return.
1609b71d8e9Swh 	 */
1611e2e7a75Shuah 	if (i == opl_num_models)
1629b71d8e9Swh 		return;
163195196c6Ssubhan 
164195196c6Ssubhan 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
165e98fafb9Sjl 	    (ts_dispatch_extended == -1)) {
166195196c6Ssubhan 		/*
167195196c6Ssubhan 		 * Based on a platform model, select a dispatch table.
168195196c6Ssubhan 		 * Only DC2 and DC3 systems uses the alternate/extended
169195196c6Ssubhan 		 * TS dispatch table.
170195196c6Ssubhan 		 * FF1, FF2 and DC1 systems used standard dispatch tables.
171195196c6Ssubhan 		 */
172195196c6Ssubhan 		ts_dispatch_extended = 1;
173195196c6Ssubhan 	}
174195196c6Ssubhan 
1751e2e7a75Shuah }
1761e2e7a75Shuah 
1771e2e7a75Shuah static void
1781e2e7a75Shuah set_max_mmu_ctxdoms()
1791e2e7a75Shuah {
1801e2e7a75Shuah 	extern uint_t	max_mmu_ctxdoms;
1811e2e7a75Shuah 	int		max_boards;
1821e2e7a75Shuah 
1831e2e7a75Shuah 	/*
1841e2e7a75Shuah 	 * From the model, get the maximum number of boards
1851e2e7a75Shuah 	 * supported and set the value accordingly. If the model
1861e2e7a75Shuah 	 * could not be determined or recognized, we assume the max value.
1871e2e7a75Shuah 	 */
1881e2e7a75Shuah 	if (opl_cur_model == NULL)
1891e2e7a75Shuah 		max_boards = OPL_MAX_BOARDS;
1901e2e7a75Shuah 	else
1911e2e7a75Shuah 		max_boards = opl_cur_model->model_max_boards;
1921e2e7a75Shuah 
1931e2e7a75Shuah 	/*
1941e2e7a75Shuah 	 * On OPL, cores and MMUs are one-to-one.
1951e2e7a75Shuah 	 */
1961e2e7a75Shuah 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
1971e2e7a75Shuah }
1981e2e7a75Shuah 
19925cf1a30Sjl #pragma weak mmu_init_large_pages
20025cf1a30Sjl 
20125cf1a30Sjl void
20225cf1a30Sjl set_platform_defaults(void)
20325cf1a30Sjl {
20425cf1a30Sjl 	extern char *tod_module_name;
20525cf1a30Sjl 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
20625cf1a30Sjl 	extern void mmu_init_large_pages(size_t);
20725cf1a30Sjl 
20825cf1a30Sjl 	/* Set the CPU signature function pointer */
20925cf1a30Sjl 	cpu_sgn_func = cpu_sgn_update;
21025cf1a30Sjl 
21125cf1a30Sjl 	/* Set appropriate tod module for OPL platform */
21225cf1a30Sjl 	ASSERT(tod_module_name == NULL);
21325cf1a30Sjl 	tod_module_name = "todopl";
21425cf1a30Sjl 
21525cf1a30Sjl 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
216e12a8a13Ssusans 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
21725cf1a30Sjl 		if (&mmu_init_large_pages)
21825cf1a30Sjl 			mmu_init_large_pages(mmu_ism_pagesize);
21925cf1a30Sjl 	}
22025cf1a30Sjl 
22125cf1a30Sjl 	tsb_lgrp_affinity = 1;
2221e2e7a75Shuah 
2231e2e7a75Shuah 	set_max_mmu_ctxdoms();
22425cf1a30Sjl }
22525cf1a30Sjl 
22625cf1a30Sjl /*
22725cf1a30Sjl  * Convert logical a board number to a physical one.
22825cf1a30Sjl  */
22925cf1a30Sjl 
23025cf1a30Sjl #define	LSBPROP		"board#"
23125cf1a30Sjl #define	PSBPROP		"physical-board#"
23225cf1a30Sjl 
23325cf1a30Sjl int
23425cf1a30Sjl opl_get_physical_board(int id)
23525cf1a30Sjl {
23625cf1a30Sjl 	dev_info_t	*root_dip, *dip = NULL;
23725cf1a30Sjl 	char		*dname = NULL;
23825cf1a30Sjl 	int		circ;
23925cf1a30Sjl 
24025cf1a30Sjl 	pnode_t		pnode;
24125cf1a30Sjl 	char		pname[MAXSYSNAME] = {0};
24225cf1a30Sjl 
24325cf1a30Sjl 	int		lsb_id;	/* Logical System Board ID */
24425cf1a30Sjl 	int		psb_id;	/* Physical System Board ID */
24525cf1a30Sjl 
24625cf1a30Sjl 
24725cf1a30Sjl 	/*
24825cf1a30Sjl 	 * This function is called on early stage of bootup when the
24925cf1a30Sjl 	 * kernel device tree is not initialized yet, and also
25025cf1a30Sjl 	 * later on when the device tree is up. We want to try
25125cf1a30Sjl 	 * the fast track first.
25225cf1a30Sjl 	 */
25325cf1a30Sjl 	root_dip = ddi_root_node();
25425cf1a30Sjl 	if (root_dip) {
25525cf1a30Sjl 		/* Get from devinfo node */
25625cf1a30Sjl 		ndi_devi_enter(root_dip, &circ);
25725cf1a30Sjl 		for (dip = ddi_get_child(root_dip); dip;
25825cf1a30Sjl 		    dip = ddi_get_next_sibling(dip)) {
25925cf1a30Sjl 
26025cf1a30Sjl 			dname = ddi_node_name(dip);
26125cf1a30Sjl 			if (strncmp(dname, "pseudo-mc", 9) != 0)
26225cf1a30Sjl 				continue;
26325cf1a30Sjl 
26425cf1a30Sjl 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
26525cf1a30Sjl 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
26625cf1a30Sjl 				continue;
26725cf1a30Sjl 
26825cf1a30Sjl 			if (id == lsb_id) {
26925cf1a30Sjl 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
27025cf1a30Sjl 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
27125cf1a30Sjl 				    == -1) {
27225cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
27325cf1a30Sjl 					return (-1);
27425cf1a30Sjl 				} else {
27525cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
27625cf1a30Sjl 					return (psb_id);
27725cf1a30Sjl 				}
27825cf1a30Sjl 			}
27925cf1a30Sjl 		}
28025cf1a30Sjl 		ndi_devi_exit(root_dip, circ);
28125cf1a30Sjl 	}
28225cf1a30Sjl 
28325cf1a30Sjl 	/*
28425cf1a30Sjl 	 * We do not have the kernel device tree, or we did not
28525cf1a30Sjl 	 * find the node for some reason (let's say the kernel
28625cf1a30Sjl 	 * device tree was modified), let's try the OBP tree.
28725cf1a30Sjl 	 */
28825cf1a30Sjl 	pnode = prom_rootnode();
28925cf1a30Sjl 	for (pnode = prom_childnode(pnode); pnode;
29025cf1a30Sjl 	    pnode = prom_nextnode(pnode)) {
29125cf1a30Sjl 
29225cf1a30Sjl 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
29325cf1a30Sjl 		    (strncmp(pname, "pseudo-mc", 9) != 0))
29425cf1a30Sjl 			continue;
29525cf1a30Sjl 
29625cf1a30Sjl 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
29725cf1a30Sjl 			continue;
29825cf1a30Sjl 
29925cf1a30Sjl 		if (id == lsb_id) {
30025cf1a30Sjl 			if (prom_getprop(pnode, PSBPROP,
30125cf1a30Sjl 			    (caddr_t)&psb_id) == -1) {
30225cf1a30Sjl 				return (-1);
30325cf1a30Sjl 			} else {
30425cf1a30Sjl 				return (psb_id);
30525cf1a30Sjl 			}
30625cf1a30Sjl 		}
30725cf1a30Sjl 	}
30825cf1a30Sjl 
30925cf1a30Sjl 	return (-1);
31025cf1a30Sjl }
31125cf1a30Sjl 
31225cf1a30Sjl /*
31325cf1a30Sjl  * For OPL it's possible that memory from two or more successive boards
31425cf1a30Sjl  * will be contiguous across the boards, and therefore represented as a
31525cf1a30Sjl  * single chunk.
31625cf1a30Sjl  * This function splits such chunks down the board boundaries.
31725cf1a30Sjl  */
31825cf1a30Sjl static struct memlist *
31925cf1a30Sjl opl_memlist_per_board(struct memlist *ml)
32025cf1a30Sjl {
32125cf1a30Sjl 	uint64_t ssize, low, high, boundary;
32225cf1a30Sjl 	struct memlist *head, *tail, *new;
32325cf1a30Sjl 
32425cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
32525cf1a30Sjl 
32625cf1a30Sjl 	head = tail = NULL;
32725cf1a30Sjl 
32825cf1a30Sjl 	for (; ml; ml = ml->next) {
32925cf1a30Sjl 		low  = (uint64_t)ml->address;
33025cf1a30Sjl 		high = low+(uint64_t)(ml->size);
33125cf1a30Sjl 		while (low < high) {
33225cf1a30Sjl 			boundary = roundup(low+1, ssize);
33325cf1a30Sjl 			boundary = MIN(high, boundary);
33425cf1a30Sjl 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
33525cf1a30Sjl 			new->address = low;
33625cf1a30Sjl 			new->size = boundary - low;
33725cf1a30Sjl 			if (head == NULL)
33825cf1a30Sjl 				head = new;
33925cf1a30Sjl 			if (tail) {
34025cf1a30Sjl 				tail->next = new;
34125cf1a30Sjl 				new->prev = tail;
34225cf1a30Sjl 			}
34325cf1a30Sjl 			tail = new;
34425cf1a30Sjl 			low = boundary;
34525cf1a30Sjl 		}
34625cf1a30Sjl 	}
34725cf1a30Sjl 	return (head);
34825cf1a30Sjl }
34925cf1a30Sjl 
35025cf1a30Sjl void
35125cf1a30Sjl set_platform_cage_params(void)
35225cf1a30Sjl {
35325cf1a30Sjl 	extern pgcnt_t total_pages;
35425cf1a30Sjl 	extern struct memlist *phys_avail;
35525cf1a30Sjl 	struct memlist *ml, *tml;
35625cf1a30Sjl 
35725cf1a30Sjl 	if (kernel_cage_enable) {
35825cf1a30Sjl 		pgcnt_t preferred_cage_size;
35925cf1a30Sjl 
360e98fafb9Sjl 		preferred_cage_size = MAX(opl_startup_cage_size,
361e98fafb9Sjl 		    total_pages / 256);
36225cf1a30Sjl 
36325cf1a30Sjl 		ml = opl_memlist_per_board(phys_avail);
36425cf1a30Sjl 
36525cf1a30Sjl 		/*
36625cf1a30Sjl 		 * Note: we are assuming that post has load the
36725cf1a30Sjl 		 * whole show in to the high end of memory. Having
36825cf1a30Sjl 		 * taken this leap, we copy the whole of phys_avail
36925cf1a30Sjl 		 * the glist and arrange for the cage to grow
37025cf1a30Sjl 		 * downward (descending pfns).
37125cf1a30Sjl 		 */
37285f58038Sdp 		kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
37325cf1a30Sjl 
37425cf1a30Sjl 		/* free the memlist */
37525cf1a30Sjl 		do {
37625cf1a30Sjl 			tml = ml->next;
37725cf1a30Sjl 			kmem_free(ml, sizeof (struct memlist));
37825cf1a30Sjl 			ml = tml;
37925cf1a30Sjl 		} while (ml != NULL);
38025cf1a30Sjl 	}
38125cf1a30Sjl 
38225cf1a30Sjl 	if (kcage_on)
38325cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
38425cf1a30Sjl 	else
38525cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
38625cf1a30Sjl }
38725cf1a30Sjl 
38825cf1a30Sjl /*ARGSUSED*/
38925cf1a30Sjl int
39025cf1a30Sjl plat_cpu_poweron(struct cpu *cp)
39125cf1a30Sjl {
39225cf1a30Sjl 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
39325cf1a30Sjl 
39425cf1a30Sjl 	opl_cpu_poweron =
39525cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
39625cf1a30Sjl 
39725cf1a30Sjl 	if (opl_cpu_poweron == NULL)
39825cf1a30Sjl 		return (ENOTSUP);
39925cf1a30Sjl 	else
40025cf1a30Sjl 		return ((opl_cpu_poweron)(cp));
40125cf1a30Sjl 
40225cf1a30Sjl }
40325cf1a30Sjl 
40425cf1a30Sjl /*ARGSUSED*/
40525cf1a30Sjl int
40625cf1a30Sjl plat_cpu_poweroff(struct cpu *cp)
40725cf1a30Sjl {
40825cf1a30Sjl 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
40925cf1a30Sjl 
41025cf1a30Sjl 	opl_cpu_poweroff =
41125cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
41225cf1a30Sjl 
41325cf1a30Sjl 	if (opl_cpu_poweroff == NULL)
41425cf1a30Sjl 		return (ENOTSUP);
41525cf1a30Sjl 	else
41625cf1a30Sjl 		return ((opl_cpu_poweroff)(cp));
41725cf1a30Sjl 
41825cf1a30Sjl }
41925cf1a30Sjl 
42025cf1a30Sjl int
42125cf1a30Sjl plat_max_boards(void)
42225cf1a30Sjl {
42325cf1a30Sjl 	return (OPL_MAX_BOARDS);
42425cf1a30Sjl }
42525cf1a30Sjl 
42625cf1a30Sjl int
42725cf1a30Sjl plat_max_cpu_units_per_board(void)
42825cf1a30Sjl {
42925cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD);
43025cf1a30Sjl }
43125cf1a30Sjl 
43225cf1a30Sjl int
43325cf1a30Sjl plat_max_mem_units_per_board(void)
43425cf1a30Sjl {
43525cf1a30Sjl 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
43625cf1a30Sjl }
43725cf1a30Sjl 
43825cf1a30Sjl int
43925cf1a30Sjl plat_max_io_units_per_board(void)
44025cf1a30Sjl {
44125cf1a30Sjl 	return (OPL_MAX_IO_UNITS_PER_BOARD);
44225cf1a30Sjl }
44325cf1a30Sjl 
44425cf1a30Sjl int
44525cf1a30Sjl plat_max_cmp_units_per_board(void)
44625cf1a30Sjl {
44725cf1a30Sjl 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
44825cf1a30Sjl }
44925cf1a30Sjl 
45025cf1a30Sjl int
45125cf1a30Sjl plat_max_core_units_per_board(void)
45225cf1a30Sjl {
45325cf1a30Sjl 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
45425cf1a30Sjl }
45525cf1a30Sjl 
45625cf1a30Sjl int
45725cf1a30Sjl plat_pfn_to_mem_node(pfn_t pfn)
45825cf1a30Sjl {
45925cf1a30Sjl 	return (pfn >> mem_node_pfn_shift);
46025cf1a30Sjl }
46125cf1a30Sjl 
46225cf1a30Sjl /* ARGSUSED */
46325cf1a30Sjl void
464986fd29aSsetje plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
46525cf1a30Sjl {
46625cf1a30Sjl 	size_t	elem;
46725cf1a30Sjl 	pfn_t	basepfn;
46825cf1a30Sjl 	pgcnt_t	npgs;
46925cf1a30Sjl 	uint64_t	boundary, ssize;
47025cf1a30Sjl 	uint64_t	low, high;
47125cf1a30Sjl 
47225cf1a30Sjl 	/*
47325cf1a30Sjl 	 * OPL mem slices are always aligned on a 256GB boundary.
47425cf1a30Sjl 	 */
47525cf1a30Sjl 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
47625cf1a30Sjl 	mem_node_physalign = 0;
47725cf1a30Sjl 
47825cf1a30Sjl 	/*
47925cf1a30Sjl 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
48025cf1a30Sjl 	 */
48125cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
482986fd29aSsetje 	for (elem = 0; elem < nelems; list++, elem++) {
483986fd29aSsetje 		low  = list->addr;
484986fd29aSsetje 		high = low + list->size;
48525cf1a30Sjl 		while (low < high) {
48625cf1a30Sjl 			boundary = roundup(low+1, ssize);
48725cf1a30Sjl 			boundary = MIN(high, boundary);
48825cf1a30Sjl 			basepfn = btop(low);
48925cf1a30Sjl 			npgs = btop(boundary - low);
49025cf1a30Sjl 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
49125cf1a30Sjl 			low = boundary;
49225cf1a30Sjl 		}
49325cf1a30Sjl 	}
49425cf1a30Sjl }
49525cf1a30Sjl 
49625cf1a30Sjl /*
49725cf1a30Sjl  * Find the CPU associated with a slice at boot-time.
49825cf1a30Sjl  */
49925cf1a30Sjl void
50025cf1a30Sjl plat_fill_mc(pnode_t nodeid)
50125cf1a30Sjl {
50225cf1a30Sjl 	int board;
50325cf1a30Sjl 	int memnode;
50425cf1a30Sjl 	struct {
50525cf1a30Sjl 		uint64_t	addr;
50625cf1a30Sjl 		uint64_t	size;
50725cf1a30Sjl 	} mem_range;
50825cf1a30Sjl 
50925cf1a30Sjl 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
51025cf1a30Sjl 		panic("Can not find board# property in mc node %x", nodeid);
51125cf1a30Sjl 	}
51225cf1a30Sjl 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
51325cf1a30Sjl 		panic("Can not find sb-mem-ranges property in mc node %x",
514e98fafb9Sjl 		    nodeid);
51525cf1a30Sjl 	}
51625cf1a30Sjl 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
51725cf1a30Sjl 	plat_assign_lgrphand_to_mem_node(board, memnode);
51825cf1a30Sjl }
51925cf1a30Sjl 
52025cf1a30Sjl /*
52125cf1a30Sjl  * Return the platform handle for the lgroup containing the given CPU
52225cf1a30Sjl  *
52325cf1a30Sjl  * For OPL, lgroup platform handle == board #.
52425cf1a30Sjl  */
52525cf1a30Sjl 
52625cf1a30Sjl extern int mpo_disabled;
52725cf1a30Sjl extern lgrp_handle_t lgrp_default_handle;
52825cf1a30Sjl 
52925cf1a30Sjl lgrp_handle_t
53025cf1a30Sjl plat_lgrp_cpu_to_hand(processorid_t id)
53125cf1a30Sjl {
53225cf1a30Sjl 	lgrp_handle_t plathand;
53325cf1a30Sjl 
53425cf1a30Sjl 	/*
53525cf1a30Sjl 	 * Return the real platform handle for the CPU until
53625cf1a30Sjl 	 * such time as we know that MPO should be disabled.
53725cf1a30Sjl 	 * At that point, we set the "mpo_disabled" flag to true,
53825cf1a30Sjl 	 * and from that point on, return the default handle.
53925cf1a30Sjl 	 *
54025cf1a30Sjl 	 * By the time we know that MPO should be disabled, the
54125cf1a30Sjl 	 * first CPU will have already been added to a leaf
54225cf1a30Sjl 	 * lgroup, but that's ok. The common lgroup code will
54325cf1a30Sjl 	 * double check that the boot CPU is in the correct place,
54425cf1a30Sjl 	 * and in the case where mpo should be disabled, will move
54525cf1a30Sjl 	 * it to the root if necessary.
54625cf1a30Sjl 	 */
54725cf1a30Sjl 	if (mpo_disabled) {
54825cf1a30Sjl 		/* If MPO is disabled, return the default (UMA) handle */
54925cf1a30Sjl 		plathand = lgrp_default_handle;
55025cf1a30Sjl 	} else
55125cf1a30Sjl 		plathand = (lgrp_handle_t)LSB_ID(id);
55225cf1a30Sjl 	return (plathand);
55325cf1a30Sjl }
55425cf1a30Sjl 
55525cf1a30Sjl /*
55625cf1a30Sjl  * Platform specific lgroup initialization
55725cf1a30Sjl  */
55825cf1a30Sjl void
55925cf1a30Sjl plat_lgrp_init(void)
56025cf1a30Sjl {
56125cf1a30Sjl 	extern uint32_t lgrp_expand_proc_thresh;
56225cf1a30Sjl 	extern uint32_t lgrp_expand_proc_diff;
56325cf1a30Sjl 
56425cf1a30Sjl 	/*
56525cf1a30Sjl 	 * Set tuneables for the OPL architecture
56625cf1a30Sjl 	 *
56725cf1a30Sjl 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
56825cf1a30Sjl 	 * this process is currently running on before considering
56925cf1a30Sjl 	 * expanding threads to another lgroup.
57025cf1a30Sjl 	 *
57125cf1a30Sjl 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
57225cf1a30Sjl 	 * must be loaded before expanding to it.
57325cf1a30Sjl 	 *
57425cf1a30Sjl 	 * Since remote latencies can be costly, attempt to keep 3 threads
57525cf1a30Sjl 	 * within the same lgroup before expanding to the next lgroup.
57625cf1a30Sjl 	 */
57725cf1a30Sjl 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
57825cf1a30Sjl 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
57925cf1a30Sjl }
58025cf1a30Sjl 
58125cf1a30Sjl /*
58225cf1a30Sjl  * Platform notification of lgroup (re)configuration changes
58325cf1a30Sjl  */
58425cf1a30Sjl /*ARGSUSED*/
58525cf1a30Sjl void
58625cf1a30Sjl plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
58725cf1a30Sjl {
58825cf1a30Sjl 	update_membounds_t *umb;
58925cf1a30Sjl 	lgrp_config_mem_rename_t lmr;
59025cf1a30Sjl 	int sbd, tbd;
59125cf1a30Sjl 	lgrp_handle_t hand, shand, thand;
59225cf1a30Sjl 	int mnode, snode, tnode;
59325cf1a30Sjl 	pfn_t start, end;
59425cf1a30Sjl 
59525cf1a30Sjl 	if (mpo_disabled)
59625cf1a30Sjl 		return;
59725cf1a30Sjl 
59825cf1a30Sjl 	switch (evt) {
59925cf1a30Sjl 
60025cf1a30Sjl 	case LGRP_CONFIG_MEM_ADD:
60125cf1a30Sjl 		/*
60225cf1a30Sjl 		 * Establish the lgroup handle to memnode translation.
60325cf1a30Sjl 		 */
60425cf1a30Sjl 		umb = (update_membounds_t *)arg;
60525cf1a30Sjl 
60625cf1a30Sjl 		hand = umb->u_board;
60725cf1a30Sjl 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
60825cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(hand, mnode);
60925cf1a30Sjl 
61025cf1a30Sjl 		break;
61125cf1a30Sjl 
61225cf1a30Sjl 	case LGRP_CONFIG_MEM_DEL:
61325cf1a30Sjl 		/*
61425cf1a30Sjl 		 * Special handling for possible memory holes.
61525cf1a30Sjl 		 */
61625cf1a30Sjl 		umb = (update_membounds_t *)arg;
61725cf1a30Sjl 		hand = umb->u_board;
61825cf1a30Sjl 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
61925cf1a30Sjl 			if (mem_node_config[mnode].exists) {
62025cf1a30Sjl 				start = mem_node_config[mnode].physbase;
62125cf1a30Sjl 				end = mem_node_config[mnode].physmax;
62225cf1a30Sjl 				mem_node_pre_del_slice(start, end);
62325cf1a30Sjl 				mem_node_post_del_slice(start, end, 0);
62425cf1a30Sjl 			}
62525cf1a30Sjl 		}
62625cf1a30Sjl 
62725cf1a30Sjl 		break;
62825cf1a30Sjl 
62925cf1a30Sjl 	case LGRP_CONFIG_MEM_RENAME:
63025cf1a30Sjl 		/*
63125cf1a30Sjl 		 * During a DR copy-rename operation, all of the memory
63225cf1a30Sjl 		 * on one board is moved to another board -- but the
63325cf1a30Sjl 		 * addresses/pfns and memnodes don't change. This means
63425cf1a30Sjl 		 * the memory has changed locations without changing identity.
63525cf1a30Sjl 		 *
63625cf1a30Sjl 		 * Source is where we are copying from and target is where we
63725cf1a30Sjl 		 * are copying to.  After source memnode is copied to target
63825cf1a30Sjl 		 * memnode, the physical addresses of the target memnode are
63925cf1a30Sjl 		 * renamed to match what the source memnode had.  Then target
64025cf1a30Sjl 		 * memnode can be removed and source memnode can take its
64125cf1a30Sjl 		 * place.
64225cf1a30Sjl 		 *
64325cf1a30Sjl 		 * To do this, swap the lgroup handle to memnode mappings for
64425cf1a30Sjl 		 * the boards, so target lgroup will have source memnode and
64525cf1a30Sjl 		 * source lgroup will have empty target memnode which is where
64625cf1a30Sjl 		 * its memory will go (if any is added to it later).
64725cf1a30Sjl 		 *
64825cf1a30Sjl 		 * Then source memnode needs to be removed from its lgroup
64925cf1a30Sjl 		 * and added to the target lgroup where the memory was living
65025cf1a30Sjl 		 * but under a different name/memnode.  The memory was in the
65125cf1a30Sjl 		 * target memnode and now lives in the source memnode with
65225cf1a30Sjl 		 * different physical addresses even though it is the same
65325cf1a30Sjl 		 * memory.
65425cf1a30Sjl 		 */
65525cf1a30Sjl 		sbd = arg & 0xffff;
65625cf1a30Sjl 		tbd = (arg & 0xffff0000) >> 16;
65725cf1a30Sjl 		shand = sbd;
65825cf1a30Sjl 		thand = tbd;
65925cf1a30Sjl 		snode = plat_lgrphand_to_mem_node(shand);
66025cf1a30Sjl 		tnode = plat_lgrphand_to_mem_node(thand);
66125cf1a30Sjl 
66225cf1a30Sjl 		/*
66325cf1a30Sjl 		 * Special handling for possible memory holes.
66425cf1a30Sjl 		 */
66525cf1a30Sjl 		if (tnode != -1 && mem_node_config[tnode].exists) {
66668ac2337Sjl 			start = mem_node_config[tnode].physbase;
66768ac2337Sjl 			end = mem_node_config[tnode].physmax;
66825cf1a30Sjl 			mem_node_pre_del_slice(start, end);
66925cf1a30Sjl 			mem_node_post_del_slice(start, end, 0);
67025cf1a30Sjl 		}
67125cf1a30Sjl 
67225cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(thand, snode);
67325cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(shand, tnode);
67425cf1a30Sjl 
67525cf1a30Sjl 		lmr.lmem_rename_from = shand;
67625cf1a30Sjl 		lmr.lmem_rename_to = thand;
67725cf1a30Sjl 
67825cf1a30Sjl 		/*
67925cf1a30Sjl 		 * Remove source memnode of copy rename from its lgroup
68025cf1a30Sjl 		 * and add it to its new target lgroup
68125cf1a30Sjl 		 */
68225cf1a30Sjl 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
68325cf1a30Sjl 		    (uintptr_t)&lmr);
68425cf1a30Sjl 
68525cf1a30Sjl 		break;
68625cf1a30Sjl 
68725cf1a30Sjl 	default:
68825cf1a30Sjl 		break;
68925cf1a30Sjl 	}
69025cf1a30Sjl }
69125cf1a30Sjl 
69225cf1a30Sjl /*
69325cf1a30Sjl  * Return latency between "from" and "to" lgroups
69425cf1a30Sjl  *
69525cf1a30Sjl  * This latency number can only be used for relative comparison
69625cf1a30Sjl  * between lgroups on the running system, cannot be used across platforms,
69725cf1a30Sjl  * and may not reflect the actual latency.  It is platform and implementation
69825cf1a30Sjl  * specific, so platform gets to decide its value.  It would be nice if the
69925cf1a30Sjl  * number was at least proportional to make comparisons more meaningful though.
70025cf1a30Sjl  * NOTE: The numbers below are supposed to be load latencies for uncached
70125cf1a30Sjl  * memory divided by 10.
70225cf1a30Sjl  *
70325cf1a30Sjl  */
70425cf1a30Sjl int
70525cf1a30Sjl plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
70625cf1a30Sjl {
70725cf1a30Sjl 	/*
70825cf1a30Sjl 	 * Return min remote latency when there are more than two lgroups
70925cf1a30Sjl 	 * (root and child) and getting latency between two different lgroups
71025cf1a30Sjl 	 * or root is involved
71125cf1a30Sjl 	 */
71225cf1a30Sjl 	if (lgrp_optimizations() && (from != to ||
71325cf1a30Sjl 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
71471b3c2ffShyw 		return (42);
71525cf1a30Sjl 	else
71671b3c2ffShyw 		return (35);
71725cf1a30Sjl }
71825cf1a30Sjl 
71925cf1a30Sjl /*
72025cf1a30Sjl  * Return platform handle for root lgroup
72125cf1a30Sjl  */
72225cf1a30Sjl lgrp_handle_t
72325cf1a30Sjl plat_lgrp_root_hand(void)
72425cf1a30Sjl {
72525cf1a30Sjl 	if (mpo_disabled)
72625cf1a30Sjl 		return (lgrp_default_handle);
72725cf1a30Sjl 
72825cf1a30Sjl 	return (LGRP_DEFAULT_HANDLE);
72925cf1a30Sjl }
73025cf1a30Sjl 
73125cf1a30Sjl /*ARGSUSED*/
73225cf1a30Sjl void
73325cf1a30Sjl plat_freelist_process(int mnode)
73425cf1a30Sjl {
73525cf1a30Sjl }
73625cf1a30Sjl 
73725cf1a30Sjl void
73825cf1a30Sjl load_platform_drivers(void)
73925cf1a30Sjl {
74025cf1a30Sjl 	(void) i_ddi_attach_pseudo_node("dr");
74125cf1a30Sjl }
74225cf1a30Sjl 
74325cf1a30Sjl /*
74425cf1a30Sjl  * No platform drivers on this platform
74525cf1a30Sjl  */
74625cf1a30Sjl char *platform_module_list[] = {
74725cf1a30Sjl 	(char *)0
74825cf1a30Sjl };
74925cf1a30Sjl 
75025cf1a30Sjl /*ARGSUSED*/
75125cf1a30Sjl void
75225cf1a30Sjl plat_tod_fault(enum tod_fault_type tod_bad)
75325cf1a30Sjl {
75425cf1a30Sjl }
75525cf1a30Sjl 
75625cf1a30Sjl /*ARGSUSED*/
75725cf1a30Sjl void
75825cf1a30Sjl cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
75925cf1a30Sjl {
76025cf1a30Sjl 	static void (*scf_panic_callback)(int);
76125cf1a30Sjl 	static void (*scf_shutdown_callback)(int);
76225cf1a30Sjl 
76325cf1a30Sjl 	/*
76425cf1a30Sjl 	 * This is for notifing system panic/shutdown to SCF.
76525cf1a30Sjl 	 * In case of shutdown and panic, SCF call back
76625cf1a30Sjl 	 * function should be called.
76725cf1a30Sjl 	 *  <SCF call back functions>
76825cf1a30Sjl 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
76925cf1a30Sjl 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
77025cf1a30Sjl 	 * cpuid should be -1 and state should be SIGST_EXIT.
77125cf1a30Sjl 	 */
77225cf1a30Sjl 	if (state == SIGST_EXIT && cpuid == -1) {
77325cf1a30Sjl 
77425cf1a30Sjl 		/*
77525cf1a30Sjl 		 * find the symbol for the SCF panic callback routine in driver
77625cf1a30Sjl 		 */
77725cf1a30Sjl 		if (scf_panic_callback == NULL)
77825cf1a30Sjl 			scf_panic_callback = (void (*)(int))
779e98fafb9Sjl 			    modgetsymvalue("scf_panic_callb", 0);
78025cf1a30Sjl 		if (scf_shutdown_callback == NULL)
78125cf1a30Sjl 			scf_shutdown_callback = (void (*)(int))
782e98fafb9Sjl 			    modgetsymvalue("scf_shutdown_callb", 0);
78325cf1a30Sjl 
78425cf1a30Sjl 		switch (sub_state) {
78525cf1a30Sjl 		case SIGSUBST_PANIC:
78625cf1a30Sjl 			if (scf_panic_callback == NULL) {
78725cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
78825cf1a30Sjl 				    "scf_panic_callb not found\n");
78925cf1a30Sjl 				return;
79025cf1a30Sjl 			}
79125cf1a30Sjl 			scf_panic_callback(SIGSUBST_PANIC);
79225cf1a30Sjl 			break;
79325cf1a30Sjl 
79425cf1a30Sjl 		case SIGSUBST_HALT:
79525cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
79625cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
79725cf1a30Sjl 				    "scf_shutdown_callb not found\n");
79825cf1a30Sjl 				return;
79925cf1a30Sjl 			}
80025cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_HALT);
80125cf1a30Sjl 			break;
80225cf1a30Sjl 
80325cf1a30Sjl 		case SIGSUBST_ENVIRON:
80425cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
80525cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
80625cf1a30Sjl 				    "scf_shutdown_callb not found\n");
80725cf1a30Sjl 				return;
80825cf1a30Sjl 			}
80925cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_ENVIRON);
81025cf1a30Sjl 			break;
81125cf1a30Sjl 
81225cf1a30Sjl 		case SIGSUBST_REBOOT:
81325cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
81425cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
81525cf1a30Sjl 				    "scf_shutdown_callb not found\n");
81625cf1a30Sjl 				return;
81725cf1a30Sjl 			}
81825cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_REBOOT);
81925cf1a30Sjl 			break;
82025cf1a30Sjl 		}
82125cf1a30Sjl 	}
82225cf1a30Sjl }
82325cf1a30Sjl 
82425cf1a30Sjl /*ARGSUSED*/
82525cf1a30Sjl int
82625cf1a30Sjl plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
82725cf1a30Sjl 	int flt_in_memory, ushort_t flt_status,
82825cf1a30Sjl 	char *buf, int buflen, int *lenp)
82925cf1a30Sjl {
83025cf1a30Sjl 	/*
83125cf1a30Sjl 	 * check if it's a Memory error.
83225cf1a30Sjl 	 */
83325cf1a30Sjl 	if (flt_in_memory) {
83425cf1a30Sjl 		if (opl_get_mem_unum != NULL) {
835e98fafb9Sjl 			return (opl_get_mem_unum(synd_code, flt_addr, buf,
836e98fafb9Sjl 			    buflen, lenp));
83725cf1a30Sjl 		} else {
83825cf1a30Sjl 			return (ENOTSUP);
83925cf1a30Sjl 		}
84025cf1a30Sjl 	} else {
84125cf1a30Sjl 		return (ENOTSUP);
84225cf1a30Sjl 	}
84325cf1a30Sjl }
84425cf1a30Sjl 
84525cf1a30Sjl /*ARGSUSED*/
84625cf1a30Sjl int
84725cf1a30Sjl plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
84825cf1a30Sjl {
8490cc8ae86Sav 	int	ret = 0;
8503f1fa9a7Sjfrank 	int	sb;
851195196c6Ssubhan 	int	plen;
85225cf1a30Sjl 
85325cf1a30Sjl 	sb = opl_get_physical_board(LSB_ID(cpuid));
85425cf1a30Sjl 	if (sb == -1) {
85525cf1a30Sjl 		return (ENXIO);
85625cf1a30Sjl 	}
85725cf1a30Sjl 
85872b9fce9Ssubhan 	/*
85972b9fce9Ssubhan 	 * opl_cur_model is assigned here
86072b9fce9Ssubhan 	 */
86172b9fce9Ssubhan 	if (opl_cur_model == NULL) {
86272b9fce9Ssubhan 		set_model_info();
8639b71d8e9Swh 
8649b71d8e9Swh 		/*
8659b71d8e9Swh 		 * if not matched, return
8669b71d8e9Swh 		 */
8679b71d8e9Swh 		if (opl_cur_model == NULL)
8689b71d8e9Swh 			return (ENODEV);
86972b9fce9Ssubhan 	}
87072b9fce9Ssubhan 
871195196c6Ssubhan 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
872195196c6Ssubhan 
873195196c6Ssubhan 	switch (opl_cur_model->model_type) {
874195196c6Ssubhan 	case FF1:
8750cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
8760cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
8770cc8ae86Sav 		break;
8780cc8ae86Sav 
879195196c6Ssubhan 	case FF2:
8800cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
88111114147Sav 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
8820cc8ae86Sav 		break;
8830cc8ae86Sav 
884195196c6Ssubhan 	case DC1:
885195196c6Ssubhan 	case DC2:
886195196c6Ssubhan 	case DC3:
8870cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
8880cc8ae86Sav 		    CHIP_ID(cpuid));
8890cc8ae86Sav 		break;
8900cc8ae86Sav 
8910cc8ae86Sav 	default:
8920cc8ae86Sav 		/* This should never happen */
8930cc8ae86Sav 		return (ENODEV);
8940cc8ae86Sav 	}
8950cc8ae86Sav 
8960cc8ae86Sav 	if (plen >= buflen) {
8970cc8ae86Sav 		ret = ENOSPC;
89825cf1a30Sjl 	} else {
89925cf1a30Sjl 		if (lenp)
90025cf1a30Sjl 			*lenp = strlen(buf);
90125cf1a30Sjl 	}
9020cc8ae86Sav 	return (ret);
90325cf1a30Sjl }
90425cf1a30Sjl 
90525cf1a30Sjl void
90625cf1a30Sjl plat_nodename_set(void)
90725cf1a30Sjl {
9083f1fa9a7Sjfrank 	post_xscf_msg((char *)&utsname, sizeof (struct utsname));
90925cf1a30Sjl }
91025cf1a30Sjl 
91125cf1a30Sjl caddr_t	efcode_vaddr = NULL;
91225cf1a30Sjl 
91325cf1a30Sjl /*
91425cf1a30Sjl  * Preallocate enough memory for fcode claims.
91525cf1a30Sjl  */
91625cf1a30Sjl 
91725cf1a30Sjl caddr_t
91825cf1a30Sjl efcode_alloc(caddr_t alloc_base)
91925cf1a30Sjl {
92025cf1a30Sjl 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
92125cf1a30Sjl 	    MMU_PAGESIZE);
92225cf1a30Sjl 	caddr_t vaddr;
92325cf1a30Sjl 
92425cf1a30Sjl 	/*
92525cf1a30Sjl 	 * allocate the physical memory for the Oberon fcode.
92625cf1a30Sjl 	 */
92725cf1a30Sjl 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
92825cf1a30Sjl 	    efcode_size, MMU_PAGESIZE)) == NULL)
92925cf1a30Sjl 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
93025cf1a30Sjl 
93125cf1a30Sjl 	efcode_vaddr = vaddr;
93225cf1a30Sjl 
93325cf1a30Sjl 	return (efcode_alloc_base + efcode_size);
93425cf1a30Sjl }
93525cf1a30Sjl 
93625cf1a30Sjl caddr_t
93725cf1a30Sjl plat_startup_memlist(caddr_t alloc_base)
93825cf1a30Sjl {
93925cf1a30Sjl 	caddr_t tmp_alloc_base;
94025cf1a30Sjl 
94125cf1a30Sjl 	tmp_alloc_base = efcode_alloc(alloc_base);
94225cf1a30Sjl 	tmp_alloc_base =
94325cf1a30Sjl 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
94425cf1a30Sjl 	return (tmp_alloc_base);
94525cf1a30Sjl }
94625cf1a30Sjl 
947*575a7426Spt /* need to forward declare these */
948*575a7426Spt static void plat_lock_delay(uint_t);
949*575a7426Spt 
95025cf1a30Sjl void
95125cf1a30Sjl startup_platform(void)
95225cf1a30Sjl {
9532850d85bSmv 	if (clock_tick_threshold == 0)
9542850d85bSmv 		clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD;
9552850d85bSmv 	if (clock_tick_ncpus == 0)
9562850d85bSmv 		clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS;
957*575a7426Spt 	mutex_lock_delay = plat_lock_delay;
958*575a7426Spt 	mutex_cap_factor = OPL_BOFF_MAX_SCALE;
95925cf1a30Sjl }
9600cc8ae86Sav 
9611e2e7a75Shuah void
9621e2e7a75Shuah plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
9631e2e7a75Shuah {
9641e2e7a75Shuah 	int	impl;
9651e2e7a75Shuah 
9661e2e7a75Shuah 	impl = cpunodes[cpuid].implementation;
967e98fafb9Sjl 	if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
96831f6f5eeSmv 		info->mmu_idx = MMU_ID(cpuid);
9691e2e7a75Shuah 		info->mmu_nctxs = 8192;
9701e2e7a75Shuah 	} else {
9711e2e7a75Shuah 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
9721e2e7a75Shuah 	}
9731e2e7a75Shuah }
9741e2e7a75Shuah 
9750cc8ae86Sav int
9760cc8ae86Sav plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
9770cc8ae86Sav {
9780cc8ae86Sav 	if (opl_get_mem_sid == NULL) {
9790cc8ae86Sav 		return (ENOTSUP);
9800cc8ae86Sav 	}
9810cc8ae86Sav 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
9820cc8ae86Sav }
9830cc8ae86Sav 
9840cc8ae86Sav int
9850cc8ae86Sav plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
9860cc8ae86Sav {
9870cc8ae86Sav 	if (opl_get_mem_offset == NULL) {
9880cc8ae86Sav 		return (ENOTSUP);
9890cc8ae86Sav 	}
9900cc8ae86Sav 	return (opl_get_mem_offset(paddr, offp));
9910cc8ae86Sav }
9920cc8ae86Sav 
9930cc8ae86Sav int
9940cc8ae86Sav plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
9950cc8ae86Sav {
9960cc8ae86Sav 	if (opl_get_mem_addr == NULL) {
9970cc8ae86Sav 		return (ENOTSUP);
9980cc8ae86Sav 	}
9990cc8ae86Sav 	return (opl_get_mem_addr(unum, sid, offset, addrp));
10000cc8ae86Sav }
1001e603b7d4Spm 
1002e603b7d4Spm void
1003*575a7426Spt plat_lock_delay(uint_t backoff)
1004e603b7d4Spm {
1005e603b7d4Spm 	int i;
1006*575a7426Spt 	uint_t cnt, remcnt;
1007e603b7d4Spm 	int ctr;
1008*575a7426Spt 	hrtime_t delay_start, rem_delay;
1009e603b7d4Spm 	/*
1010e603b7d4Spm 	 * Platform specific lock delay code for OPL
1011e603b7d4Spm 	 *
1012e603b7d4Spm 	 * Using staged linear increases in the delay.
1013e603b7d4Spm 	 * The sleep instruction is the preferred method of delay,
1014e603b7d4Spm 	 * but is too large of granularity for the initial backoff.
1015e603b7d4Spm 	 */
1016e603b7d4Spm 
1017*575a7426Spt 	if (backoff < 100) {
1018e603b7d4Spm 		/*
1019e603b7d4Spm 		 * If desired backoff is long enough,
1020e603b7d4Spm 		 * use sleep for most of it
1021e603b7d4Spm 		 */
1022*575a7426Spt 		for (cnt = backoff;
1023*575a7426Spt 		    cnt >= OPL_BOFF_SLEEP;
1024e98fafb9Sjl 		    cnt -= OPL_BOFF_SLEEP) {
1025e603b7d4Spm 			cpu_smt_pause();
1026e603b7d4Spm 		}
1027e603b7d4Spm 		/*
1028e603b7d4Spm 		 * spin for small remainder of backoff
1029e603b7d4Spm 		 */
1030e603b7d4Spm 		for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
1031*575a7426Spt 			mutex_delay_default();
1032e603b7d4Spm 		}
1033e603b7d4Spm 	} else {
1034*575a7426Spt 		/* backoff is large.  Fill it by sleeping */
1035e603b7d4Spm 		delay_start = gethrtime();
1036*575a7426Spt 		cnt = backoff / OPL_BOFF_SLEEP;
1037e603b7d4Spm 		/*
1038e603b7d4Spm 		 * use sleep instructions for delay
1039e603b7d4Spm 		 */
1040e603b7d4Spm 		for (i = 0; i < cnt; i++) {
1041e603b7d4Spm 			cpu_smt_pause();
1042e603b7d4Spm 		}
1043e603b7d4Spm 
1044e603b7d4Spm 		/*
1045e603b7d4Spm 		 * Note: if the other strand executes a sleep instruction,
1046e603b7d4Spm 		 * then the sleep ends immediately with a minimum time of
1047e603b7d4Spm 		 * 42 clocks.  We check gethrtime to insure we have
1048e603b7d4Spm 		 * waited long enough.  And we include both a short
1049*575a7426Spt 		 * spin loop and a sleep for repeated delay times.
1050e603b7d4Spm 		 */
1051e603b7d4Spm 
1052*575a7426Spt 		rem_delay = gethrtime() - delay_start;
1053*575a7426Spt 		while (rem_delay < cnt * OPL_BOFF_TM) {
1054*575a7426Spt 			remcnt = cnt - (rem_delay / OPL_BOFF_TM);
1055*575a7426Spt 			for (i = 0; i < remcnt; i++) {
1056*575a7426Spt 				cpu_smt_pause();
1057*575a7426Spt 				for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
1058*575a7426Spt 					mutex_delay_default();
1059*575a7426Spt 				}
1060e603b7d4Spm 			}
1061*575a7426Spt 			rem_delay = gethrtime() - delay_start;
1062e603b7d4Spm 		}
1063e603b7d4Spm 	}
1064e603b7d4Spm }
10653f1fa9a7Sjfrank 
10663f1fa9a7Sjfrank /*
10673f1fa9a7Sjfrank  * The following code implements asynchronous call to XSCF to setup the
10683f1fa9a7Sjfrank  * domain node name.
10693f1fa9a7Sjfrank  */
10703f1fa9a7Sjfrank 
10713f1fa9a7Sjfrank #define	FREE_MSG(m)		kmem_free((m), NM_LEN((m)->len))
10723f1fa9a7Sjfrank 
10733f1fa9a7Sjfrank /*
10743f1fa9a7Sjfrank  * The following three macros define the all operations on the request
10753f1fa9a7Sjfrank  * list we are using here, and hide the details of the list
10763f1fa9a7Sjfrank  * implementation from the code.
10773f1fa9a7Sjfrank  */
10783f1fa9a7Sjfrank #define	PUSH(m) \
10793f1fa9a7Sjfrank 	{ \
10803f1fa9a7Sjfrank 		(m)->next = ctl_msg.head; \
10813f1fa9a7Sjfrank 		(m)->prev = NULL; \
10823f1fa9a7Sjfrank 		if ((m)->next != NULL) \
10833f1fa9a7Sjfrank 			(m)->next->prev = (m); \
10843f1fa9a7Sjfrank 		ctl_msg.head = (m); \
10853f1fa9a7Sjfrank 	}
10863f1fa9a7Sjfrank 
10873f1fa9a7Sjfrank #define	REMOVE(m) \
10883f1fa9a7Sjfrank 	{ \
10893f1fa9a7Sjfrank 		if ((m)->prev != NULL) \
10903f1fa9a7Sjfrank 			(m)->prev->next = (m)->next; \
10913f1fa9a7Sjfrank 		else \
10923f1fa9a7Sjfrank 			ctl_msg.head = (m)->next; \
10933f1fa9a7Sjfrank 		if ((m)->next != NULL) \
10943f1fa9a7Sjfrank 			(m)->next->prev = (m)->prev; \
10953f1fa9a7Sjfrank 	}
10963f1fa9a7Sjfrank 
10973f1fa9a7Sjfrank #define	FREE_THE_TAIL(head) \
10983f1fa9a7Sjfrank 	{ \
10993f1fa9a7Sjfrank 		nm_msg_t *n_msg, *m; \
11003f1fa9a7Sjfrank 		m = (head)->next; \
11013f1fa9a7Sjfrank 		(head)->next = NULL; \
11023f1fa9a7Sjfrank 		while (m != NULL) { \
11033f1fa9a7Sjfrank 			n_msg = m->next; \
11043f1fa9a7Sjfrank 			FREE_MSG(m); \
11053f1fa9a7Sjfrank 			m = n_msg; \
11063f1fa9a7Sjfrank 		} \
11073f1fa9a7Sjfrank 	}
11083f1fa9a7Sjfrank 
11093f1fa9a7Sjfrank #define	SCF_PUTINFO(f, s, p) \
11103f1fa9a7Sjfrank 	f(KEY_ESCF, 0x01, 0, s, p)
11113f1fa9a7Sjfrank 
11123f1fa9a7Sjfrank #define	PASS2XSCF(m, r)	((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
11133f1fa9a7Sjfrank 					    (m)->len, (m)->data)) == 0)
11143f1fa9a7Sjfrank 
11153f1fa9a7Sjfrank /*
11163f1fa9a7Sjfrank  * The value of the following macro loosely depends on the
11173f1fa9a7Sjfrank  * value of the "device busy" timeout used in the SCF driver.
11183f1fa9a7Sjfrank  * (See pass2xscf_thread()).
11193f1fa9a7Sjfrank  */
11203f1fa9a7Sjfrank #define	SCF_DEVBUSY_DELAY	10
11213f1fa9a7Sjfrank 
11223f1fa9a7Sjfrank /*
11233f1fa9a7Sjfrank  * The default number of attempts to contact the scf driver
11243f1fa9a7Sjfrank  * if we cannot fetch any information about the timeout value
11253f1fa9a7Sjfrank  * it uses.
11263f1fa9a7Sjfrank  */
11273f1fa9a7Sjfrank 
11283f1fa9a7Sjfrank #define	REPEATS		4
11293f1fa9a7Sjfrank 
11303f1fa9a7Sjfrank typedef struct nm_msg {
11313f1fa9a7Sjfrank 	struct nm_msg *next;
11323f1fa9a7Sjfrank 	struct nm_msg *prev;
11333f1fa9a7Sjfrank 	int len;
11343f1fa9a7Sjfrank 	char data[1];
11353f1fa9a7Sjfrank } nm_msg_t;
11363f1fa9a7Sjfrank 
11373f1fa9a7Sjfrank #define	NM_LEN(len)		(sizeof (nm_msg_t) + (len) - 1)
11383f1fa9a7Sjfrank 
11393f1fa9a7Sjfrank static struct ctlmsg {
11403f1fa9a7Sjfrank 	nm_msg_t	*head;
11413f1fa9a7Sjfrank 	nm_msg_t	*now_serving;
11423f1fa9a7Sjfrank 	kmutex_t	nm_lock;
11433f1fa9a7Sjfrank 	kthread_t	*nmt;
11443f1fa9a7Sjfrank 	int		cnt;
11453f1fa9a7Sjfrank 	int (*scf_service_function)(uint32_t, uint8_t,
11463f1fa9a7Sjfrank 				    uint32_t, uint32_t, void *);
11473f1fa9a7Sjfrank } ctl_msg;
11483f1fa9a7Sjfrank 
11493f1fa9a7Sjfrank static void
11503f1fa9a7Sjfrank post_xscf_msg(char *dp, int len)
11513f1fa9a7Sjfrank {
11523f1fa9a7Sjfrank 	nm_msg_t *msg;
11533f1fa9a7Sjfrank 
11543f1fa9a7Sjfrank 	msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
11553f1fa9a7Sjfrank 
11563f1fa9a7Sjfrank 	bcopy(dp, msg->data, len);
11573f1fa9a7Sjfrank 	msg->len = len;
11583f1fa9a7Sjfrank 
11593f1fa9a7Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
11603f1fa9a7Sjfrank 	if (ctl_msg.nmt == NULL) {
11613f1fa9a7Sjfrank 		ctl_msg.nmt =  thread_create(NULL, 0, pass2xscf_thread,
11623f1fa9a7Sjfrank 		    NULL, 0, &p0, TS_RUN, minclsyspri);
11633f1fa9a7Sjfrank 	}
11643f1fa9a7Sjfrank 
11653f1fa9a7Sjfrank 	PUSH(msg);
11663f1fa9a7Sjfrank 	ctl_msg.cnt++;
11673f1fa9a7Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
11683f1fa9a7Sjfrank }
11693f1fa9a7Sjfrank 
11703f1fa9a7Sjfrank static void
11713f1fa9a7Sjfrank pass2xscf_thread()
11723f1fa9a7Sjfrank {
11733f1fa9a7Sjfrank 	nm_msg_t *msg;
11743f1fa9a7Sjfrank 	int ret;
11753f1fa9a7Sjfrank 	uint_t i, msg_sent, xscf_driver_delay;
11763f1fa9a7Sjfrank 	static uint_t repeat_cnt;
11773f1fa9a7Sjfrank 	uint_t *scf_wait_cnt;
11783f1fa9a7Sjfrank 
11793f1fa9a7Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
11803f1fa9a7Sjfrank 
11813f1fa9a7Sjfrank 	/*
11823f1fa9a7Sjfrank 	 * Find the address of the SCF put routine if it's not done yet.
11833f1fa9a7Sjfrank 	 */
11843f1fa9a7Sjfrank 	if (ctl_msg.scf_service_function == NULL) {
11853f1fa9a7Sjfrank 		if ((ctl_msg.scf_service_function =
11863f1fa9a7Sjfrank 		    (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
11873f1fa9a7Sjfrank 		    modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
11883f1fa9a7Sjfrank 			cmn_err(CE_NOTE, "pass2xscf_thread: "
11893f1fa9a7Sjfrank 			    "scf_service_putinfo not found\n");
11903f1fa9a7Sjfrank 			ctl_msg.nmt = NULL;
11913f1fa9a7Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
11923f1fa9a7Sjfrank 			return;
11933f1fa9a7Sjfrank 		}
11943f1fa9a7Sjfrank 	}
11953f1fa9a7Sjfrank 
11963f1fa9a7Sjfrank 	/*
11973f1fa9a7Sjfrank 	 * Calculate the number of attempts to connect XSCF based on the
11983f1fa9a7Sjfrank 	 * scf driver delay (which is
11993f1fa9a7Sjfrank 	 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
12003f1fa9a7Sjfrank 	 * of xscf_connect_delay (the total number of seconds to wait
12013f1fa9a7Sjfrank 	 * till xscf get ready.)
12023f1fa9a7Sjfrank 	 */
12033f1fa9a7Sjfrank 	if (repeat_cnt == 0) {
12043f1fa9a7Sjfrank 		if ((scf_wait_cnt =
12053f1fa9a7Sjfrank 		    (uint_t *)
12063f1fa9a7Sjfrank 		    modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
12073f1fa9a7Sjfrank 			repeat_cnt = REPEATS;
12083f1fa9a7Sjfrank 		} else {
12093f1fa9a7Sjfrank 
12103f1fa9a7Sjfrank 			xscf_driver_delay = *scf_wait_cnt *
12113f1fa9a7Sjfrank 			    SCF_DEVBUSY_DELAY;
12123f1fa9a7Sjfrank 			repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
12133f1fa9a7Sjfrank 		}
12143f1fa9a7Sjfrank 	}
12153f1fa9a7Sjfrank 
12163f1fa9a7Sjfrank 	while (ctl_msg.cnt != 0) {
12173f1fa9a7Sjfrank 
12183f1fa9a7Sjfrank 		/*
12193f1fa9a7Sjfrank 		 * Take the very last request from the queue,
12203f1fa9a7Sjfrank 		 */
12213f1fa9a7Sjfrank 		ctl_msg.now_serving = ctl_msg.head;
12223f1fa9a7Sjfrank 		ASSERT(ctl_msg.now_serving != NULL);
12233f1fa9a7Sjfrank 
12243f1fa9a7Sjfrank 		/*
12253f1fa9a7Sjfrank 		 * and discard all the others if any.
12263f1fa9a7Sjfrank 		 */
12273f1fa9a7Sjfrank 		FREE_THE_TAIL(ctl_msg.now_serving);
12283f1fa9a7Sjfrank 		ctl_msg.cnt = 1;
12293f1fa9a7Sjfrank 		mutex_exit(&ctl_msg.nm_lock);
12303f1fa9a7Sjfrank 
12313f1fa9a7Sjfrank 		/*
12323f1fa9a7Sjfrank 		 * Pass the name to XSCF. Note please, we do not hold the
12333f1fa9a7Sjfrank 		 * mutex while we are doing this.
12343f1fa9a7Sjfrank 		 */
12353f1fa9a7Sjfrank 		msg_sent = 0;
12363f1fa9a7Sjfrank 		for (i = 0; i < repeat_cnt; i++) {
12373f1fa9a7Sjfrank 			if (PASS2XSCF(ctl_msg.now_serving, ret)) {
12383f1fa9a7Sjfrank 				msg_sent = 1;
12393f1fa9a7Sjfrank 				break;
12403f1fa9a7Sjfrank 			} else {
12413f1fa9a7Sjfrank 				if (ret != EBUSY) {
12423f1fa9a7Sjfrank 					cmn_err(CE_NOTE, "pass2xscf_thread:"
12433f1fa9a7Sjfrank 					    " unexpected return code"
12443f1fa9a7Sjfrank 					    " from scf_service_putinfo():"
12453f1fa9a7Sjfrank 					    " %d\n", ret);
12463f1fa9a7Sjfrank 				}
12473f1fa9a7Sjfrank 			}
12483f1fa9a7Sjfrank 		}
12493f1fa9a7Sjfrank 
12503f1fa9a7Sjfrank 		if (msg_sent) {
12513f1fa9a7Sjfrank 
12523f1fa9a7Sjfrank 			/*
12533f1fa9a7Sjfrank 			 * Remove the request from the list
12543f1fa9a7Sjfrank 			 */
12553f1fa9a7Sjfrank 			mutex_enter(&ctl_msg.nm_lock);
12563f1fa9a7Sjfrank 			msg = ctl_msg.now_serving;
12573f1fa9a7Sjfrank 			ctl_msg.now_serving = NULL;
12583f1fa9a7Sjfrank 			REMOVE(msg);
12593f1fa9a7Sjfrank 			ctl_msg.cnt--;
12603f1fa9a7Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
12613f1fa9a7Sjfrank 			FREE_MSG(msg);
12623f1fa9a7Sjfrank 		} else {
12633f1fa9a7Sjfrank 
12643f1fa9a7Sjfrank 			/*
12653f1fa9a7Sjfrank 			 * If while we have tried to communicate with
12663f1fa9a7Sjfrank 			 * XSCF there were any other requests we are
12673f1fa9a7Sjfrank 			 * going to drop this one and take the latest
12683f1fa9a7Sjfrank 			 * one.  Otherwise we will try to pass this one
12693f1fa9a7Sjfrank 			 * again.
12703f1fa9a7Sjfrank 			 */
12713f1fa9a7Sjfrank 			cmn_err(CE_NOTE,
12723f1fa9a7Sjfrank 			    "pass2xscf_thread: "
12733f1fa9a7Sjfrank 			    "scf_service_putinfo "
12743f1fa9a7Sjfrank 			    "not responding\n");
12753f1fa9a7Sjfrank 		}
12763f1fa9a7Sjfrank 		mutex_enter(&ctl_msg.nm_lock);
12773f1fa9a7Sjfrank 	}
12783f1fa9a7Sjfrank 
12793f1fa9a7Sjfrank 	/*
12803f1fa9a7Sjfrank 	 * The request queue is empty, exit.
12813f1fa9a7Sjfrank 	 */
12823f1fa9a7Sjfrank 	ctl_msg.nmt = NULL;
12833f1fa9a7Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
12843f1fa9a7Sjfrank }
1285