xref: /illumos-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 4af09fce)
125cf1a30Sjl /*
225cf1a30Sjl  * CDDL HEADER START
325cf1a30Sjl  *
425cf1a30Sjl  * The contents of this file are subject to the terms of the
525cf1a30Sjl  * Common Development and Distribution License (the "License").
625cf1a30Sjl  * You may not use this file except in compliance with the License.
725cf1a30Sjl  *
825cf1a30Sjl  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925cf1a30Sjl  * or http://www.opensolaris.org/os/licensing.
1025cf1a30Sjl  * See the License for the specific language governing permissions
1125cf1a30Sjl  * and limitations under the License.
1225cf1a30Sjl  *
1325cf1a30Sjl  * When distributing Covered Code, include this CDDL HEADER in each
1425cf1a30Sjl  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525cf1a30Sjl  * If applicable, add the following below this CDDL HEADER, with the
1625cf1a30Sjl  * fields enclosed by brackets "[]" replaced with your own identifying
1725cf1a30Sjl  * information: Portions Copyright [yyyy] [name of copyright owner]
1825cf1a30Sjl  *
1925cf1a30Sjl  * CDDL HEADER END
2025cf1a30Sjl  */
2125cf1a30Sjl /*
222850d85bSmv  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
2325cf1a30Sjl  * Use is subject to license terms.
2425cf1a30Sjl  */
2525cf1a30Sjl 
2625cf1a30Sjl #pragma ident	"%Z%%M%	%I%	%E% SMI"
2725cf1a30Sjl 
2825cf1a30Sjl #include <sys/cpuvar.h>
2925cf1a30Sjl #include <sys/systm.h>
3025cf1a30Sjl #include <sys/sysmacros.h>
3125cf1a30Sjl #include <sys/promif.h>
3225cf1a30Sjl #include <sys/platform_module.h>
3325cf1a30Sjl #include <sys/cmn_err.h>
3425cf1a30Sjl #include <sys/errno.h>
3525cf1a30Sjl #include <sys/machsystm.h>
3625cf1a30Sjl #include <sys/bootconf.h>
3725cf1a30Sjl #include <sys/nvpair.h>
3825cf1a30Sjl #include <sys/kobj.h>
3925cf1a30Sjl #include <sys/mem_cage.h>
4025cf1a30Sjl #include <sys/opl.h>
4125cf1a30Sjl #include <sys/scfd/scfostoescf.h>
4225cf1a30Sjl #include <sys/cpu_sgnblk_defs.h>
4325cf1a30Sjl #include <sys/utsname.h>
4425cf1a30Sjl #include <sys/ddi.h>
4525cf1a30Sjl #include <sys/sunndi.h>
4625cf1a30Sjl #include <sys/lgrp.h>
4725cf1a30Sjl #include <sys/memnode.h>
4825cf1a30Sjl #include <sys/sysmacros.h>
49e603b7d4Spm #include <sys/time.h>
50e603b7d4Spm #include <sys/cpu.h>
5125cf1a30Sjl #include <vm/vm_dep.h>
5225cf1a30Sjl 
5325cf1a30Sjl int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
540cc8ae86Sav int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
550cc8ae86Sav int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
560cc8ae86Sav int (*opl_get_mem_addr)(char *unum, char *sid,
570cc8ae86Sav     uint64_t offset, uint64_t *paddr);
5825cf1a30Sjl 
5925cf1a30Sjl /* Memory for fcode claims.  16k times # maximum possible IO units */
6025cf1a30Sjl #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
6125cf1a30Sjl int efcode_size = EFCODE_SIZE;
6225cf1a30Sjl 
6325cf1a30Sjl #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
6425cf1a30Sjl 
6525cf1a30Sjl /* Set the maximum number of boards for DR */
6625cf1a30Sjl int opl_boards = OPL_MAX_BOARDS;
6725cf1a30Sjl 
6825cf1a30Sjl void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
6925cf1a30Sjl 
7025cf1a30Sjl extern int tsb_lgrp_affinity;
7125cf1a30Sjl 
7225cf1a30Sjl int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
7325cf1a30Sjl 	(OPL_MAX_TSBS_PER_PCICH);
7425cf1a30Sjl 
7525cf1a30Sjl pgcnt_t opl_startup_cage_size = 0;
7625cf1a30Sjl 
773f1fa9a7Sjfrank /*
783f1fa9a7Sjfrank  * The length of the delay in seconds in communication with XSCF after
793f1fa9a7Sjfrank  * which the warning message will be logged.
803f1fa9a7Sjfrank  */
813f1fa9a7Sjfrank uint_t	xscf_connect_delay = 60 * 15;
823f1fa9a7Sjfrank 
831e2e7a75Shuah static opl_model_info_t opl_models[] = {
84195196c6Ssubhan 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
85195196c6Ssubhan 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
86195196c6Ssubhan 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
87195196c6Ssubhan 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
88195196c6Ssubhan 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
8978ed97a7Sjl 	{ "IKKAKU", OPL_MAX_BOARDS_IKKAKU, IKKAKU, STD_DISPATCH_TABLE },
901e2e7a75Shuah };
911e2e7a75Shuah static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
921e2e7a75Shuah 
93195196c6Ssubhan /*
9472b9fce9Ssubhan  * opl_cur_model
95195196c6Ssubhan  */
9672b9fce9Ssubhan static	opl_model_info_t *opl_cur_model = NULL;
971e2e7a75Shuah 
9825cf1a30Sjl static struct memlist *opl_memlist_per_board(struct memlist *ml);
993f1fa9a7Sjfrank static void post_xscf_msg(char *, int);
1003f1fa9a7Sjfrank static void pass2xscf_thread();
10125cf1a30Sjl 
102e603b7d4Spm /*
103e603b7d4Spm  * Note FF/DC out-of-order instruction engine takes only a
104e603b7d4Spm  * single cycle to execute each spin loop
105e603b7d4Spm  * for comparison, Panther takes 6 cycles for same loop
106575a7426Spt  * OPL_BOFF_SPIN = base spin loop, roughly one memory reference time
107575a7426Spt  * OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C)
108575a7426Spt  * OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep
109575a7426Spt  * OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus
110575a7426Spt  * Listed values tuned for 2.15GHz to 2.64GHz systems
111e603b7d4Spm  * Value may change for future systems
112e603b7d4Spm  */
113575a7426Spt #define	OPL_BOFF_SPIN 7
114575a7426Spt #define	OPL_BOFF_SLEEP 4
115575a7426Spt #define	OPL_BOFF_TM 1600
116575a7426Spt #define	OPL_BOFF_MAX_SCALE 8
117e603b7d4Spm 
1182850d85bSmv #define	OPL_CLOCK_TICK_THRESHOLD	128
1192850d85bSmv #define	OPL_CLOCK_TICK_NCPUS		64
1202850d85bSmv 
1212850d85bSmv extern int	clock_tick_threshold;
1222850d85bSmv extern int	clock_tick_ncpus;
1232850d85bSmv 
12425cf1a30Sjl int
12525cf1a30Sjl set_platform_max_ncpus(void)
12625cf1a30Sjl {
12725cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
12825cf1a30Sjl }
12925cf1a30Sjl 
13025cf1a30Sjl int
13125cf1a30Sjl set_platform_tsb_spares(void)
13225cf1a30Sjl {
13325cf1a30Sjl 	return (MIN(opl_tsb_spares, MAX_UPA));
13425cf1a30Sjl }
13525cf1a30Sjl 
1361e2e7a75Shuah static void
1371e2e7a75Shuah set_model_info()
1381e2e7a75Shuah {
139195196c6Ssubhan 	extern int ts_dispatch_extended;
1401e2e7a75Shuah 	char	name[MAXSYSNAME];
1411e2e7a75Shuah 	int	i;
1421e2e7a75Shuah 
1431e2e7a75Shuah 	/*
1441e2e7a75Shuah 	 * Get model name from the root node.
1451e2e7a75Shuah 	 *
1461e2e7a75Shuah 	 * We are using the prom device tree since, at this point,
1471e2e7a75Shuah 	 * the Solaris device tree is not yet setup.
1481e2e7a75Shuah 	 */
1491e2e7a75Shuah 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
1501e2e7a75Shuah 
1511e2e7a75Shuah 	for (i = 0; i < opl_num_models; i++) {
1521e2e7a75Shuah 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
1531e2e7a75Shuah 			opl_cur_model = &opl_models[i];
1541e2e7a75Shuah 			break;
1551e2e7a75Shuah 		}
1561e2e7a75Shuah 	}
157195196c6Ssubhan 
1589b71d8e9Swh 	/*
1599b71d8e9Swh 	 * If model not matched, it's an unknown model.
16078ed97a7Sjl 	 * Just return.  It will default to standard dispatch tables.
1619b71d8e9Swh 	 */
1621e2e7a75Shuah 	if (i == opl_num_models)
1639b71d8e9Swh 		return;
164195196c6Ssubhan 
165195196c6Ssubhan 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
166e98fafb9Sjl 	    (ts_dispatch_extended == -1)) {
167195196c6Ssubhan 		/*
168195196c6Ssubhan 		 * Based on a platform model, select a dispatch table.
169195196c6Ssubhan 		 * Only DC2 and DC3 systems uses the alternate/extended
170195196c6Ssubhan 		 * TS dispatch table.
17178ed97a7Sjl 		 * IKKAKU, FF1, FF2 and DC1 systems use standard dispatch
17278ed97a7Sjl 		 * tables.
173195196c6Ssubhan 		 */
174195196c6Ssubhan 		ts_dispatch_extended = 1;
175195196c6Ssubhan 	}
176195196c6Ssubhan 
1771e2e7a75Shuah }
1781e2e7a75Shuah 
1791e2e7a75Shuah static void
1801e2e7a75Shuah set_max_mmu_ctxdoms()
1811e2e7a75Shuah {
1821e2e7a75Shuah 	extern uint_t	max_mmu_ctxdoms;
1831e2e7a75Shuah 	int		max_boards;
1841e2e7a75Shuah 
1851e2e7a75Shuah 	/*
1861e2e7a75Shuah 	 * From the model, get the maximum number of boards
1871e2e7a75Shuah 	 * supported and set the value accordingly. If the model
1881e2e7a75Shuah 	 * could not be determined or recognized, we assume the max value.
1891e2e7a75Shuah 	 */
1901e2e7a75Shuah 	if (opl_cur_model == NULL)
1911e2e7a75Shuah 		max_boards = OPL_MAX_BOARDS;
1921e2e7a75Shuah 	else
1931e2e7a75Shuah 		max_boards = opl_cur_model->model_max_boards;
1941e2e7a75Shuah 
1951e2e7a75Shuah 	/*
1961e2e7a75Shuah 	 * On OPL, cores and MMUs are one-to-one.
1971e2e7a75Shuah 	 */
1981e2e7a75Shuah 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
1991e2e7a75Shuah }
2001e2e7a75Shuah 
20125cf1a30Sjl #pragma weak mmu_init_large_pages
20225cf1a30Sjl 
20325cf1a30Sjl void
20425cf1a30Sjl set_platform_defaults(void)
20525cf1a30Sjl {
20625cf1a30Sjl 	extern char *tod_module_name;
20725cf1a30Sjl 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
20825cf1a30Sjl 	extern void mmu_init_large_pages(size_t);
20925cf1a30Sjl 
21025cf1a30Sjl 	/* Set the CPU signature function pointer */
21125cf1a30Sjl 	cpu_sgn_func = cpu_sgn_update;
21225cf1a30Sjl 
21325cf1a30Sjl 	/* Set appropriate tod module for OPL platform */
21425cf1a30Sjl 	ASSERT(tod_module_name == NULL);
21525cf1a30Sjl 	tod_module_name = "todopl";
21625cf1a30Sjl 
21725cf1a30Sjl 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
218e12a8a13Ssusans 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
21925cf1a30Sjl 		if (&mmu_init_large_pages)
22025cf1a30Sjl 			mmu_init_large_pages(mmu_ism_pagesize);
22125cf1a30Sjl 	}
22225cf1a30Sjl 
22325cf1a30Sjl 	tsb_lgrp_affinity = 1;
2241e2e7a75Shuah 
2251e2e7a75Shuah 	set_max_mmu_ctxdoms();
22625cf1a30Sjl }
22725cf1a30Sjl 
22825cf1a30Sjl /*
22925cf1a30Sjl  * Convert logical a board number to a physical one.
23025cf1a30Sjl  */
23125cf1a30Sjl 
23225cf1a30Sjl #define	LSBPROP		"board#"
23325cf1a30Sjl #define	PSBPROP		"physical-board#"
23425cf1a30Sjl 
23525cf1a30Sjl int
23625cf1a30Sjl opl_get_physical_board(int id)
23725cf1a30Sjl {
23825cf1a30Sjl 	dev_info_t	*root_dip, *dip = NULL;
23925cf1a30Sjl 	char		*dname = NULL;
24025cf1a30Sjl 	int		circ;
24125cf1a30Sjl 
24225cf1a30Sjl 	pnode_t		pnode;
24325cf1a30Sjl 	char		pname[MAXSYSNAME] = {0};
24425cf1a30Sjl 
24525cf1a30Sjl 	int		lsb_id;	/* Logical System Board ID */
24625cf1a30Sjl 	int		psb_id;	/* Physical System Board ID */
24725cf1a30Sjl 
24825cf1a30Sjl 
24925cf1a30Sjl 	/*
25025cf1a30Sjl 	 * This function is called on early stage of bootup when the
25125cf1a30Sjl 	 * kernel device tree is not initialized yet, and also
25225cf1a30Sjl 	 * later on when the device tree is up. We want to try
25325cf1a30Sjl 	 * the fast track first.
25425cf1a30Sjl 	 */
25525cf1a30Sjl 	root_dip = ddi_root_node();
25625cf1a30Sjl 	if (root_dip) {
25725cf1a30Sjl 		/* Get from devinfo node */
25825cf1a30Sjl 		ndi_devi_enter(root_dip, &circ);
25925cf1a30Sjl 		for (dip = ddi_get_child(root_dip); dip;
26025cf1a30Sjl 		    dip = ddi_get_next_sibling(dip)) {
26125cf1a30Sjl 
26225cf1a30Sjl 			dname = ddi_node_name(dip);
26325cf1a30Sjl 			if (strncmp(dname, "pseudo-mc", 9) != 0)
26425cf1a30Sjl 				continue;
26525cf1a30Sjl 
26625cf1a30Sjl 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
26725cf1a30Sjl 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
26825cf1a30Sjl 				continue;
26925cf1a30Sjl 
27025cf1a30Sjl 			if (id == lsb_id) {
27125cf1a30Sjl 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
27225cf1a30Sjl 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
27325cf1a30Sjl 				    == -1) {
27425cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
27525cf1a30Sjl 					return (-1);
27625cf1a30Sjl 				} else {
27725cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
27825cf1a30Sjl 					return (psb_id);
27925cf1a30Sjl 				}
28025cf1a30Sjl 			}
28125cf1a30Sjl 		}
28225cf1a30Sjl 		ndi_devi_exit(root_dip, circ);
28325cf1a30Sjl 	}
28425cf1a30Sjl 
28525cf1a30Sjl 	/*
28625cf1a30Sjl 	 * We do not have the kernel device tree, or we did not
28725cf1a30Sjl 	 * find the node for some reason (let's say the kernel
28825cf1a30Sjl 	 * device tree was modified), let's try the OBP tree.
28925cf1a30Sjl 	 */
29025cf1a30Sjl 	pnode = prom_rootnode();
29125cf1a30Sjl 	for (pnode = prom_childnode(pnode); pnode;
29225cf1a30Sjl 	    pnode = prom_nextnode(pnode)) {
29325cf1a30Sjl 
29425cf1a30Sjl 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
29525cf1a30Sjl 		    (strncmp(pname, "pseudo-mc", 9) != 0))
29625cf1a30Sjl 			continue;
29725cf1a30Sjl 
29825cf1a30Sjl 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
29925cf1a30Sjl 			continue;
30025cf1a30Sjl 
30125cf1a30Sjl 		if (id == lsb_id) {
30225cf1a30Sjl 			if (prom_getprop(pnode, PSBPROP,
30325cf1a30Sjl 			    (caddr_t)&psb_id) == -1) {
30425cf1a30Sjl 				return (-1);
30525cf1a30Sjl 			} else {
30625cf1a30Sjl 				return (psb_id);
30725cf1a30Sjl 			}
30825cf1a30Sjl 		}
30925cf1a30Sjl 	}
31025cf1a30Sjl 
31125cf1a30Sjl 	return (-1);
31225cf1a30Sjl }
31325cf1a30Sjl 
31425cf1a30Sjl /*
31525cf1a30Sjl  * For OPL it's possible that memory from two or more successive boards
31625cf1a30Sjl  * will be contiguous across the boards, and therefore represented as a
31725cf1a30Sjl  * single chunk.
31825cf1a30Sjl  * This function splits such chunks down the board boundaries.
31925cf1a30Sjl  */
32025cf1a30Sjl static struct memlist *
32125cf1a30Sjl opl_memlist_per_board(struct memlist *ml)
32225cf1a30Sjl {
32325cf1a30Sjl 	uint64_t ssize, low, high, boundary;
32425cf1a30Sjl 	struct memlist *head, *tail, *new;
32525cf1a30Sjl 
32625cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
32725cf1a30Sjl 
32825cf1a30Sjl 	head = tail = NULL;
32925cf1a30Sjl 
33025cf1a30Sjl 	for (; ml; ml = ml->next) {
33125cf1a30Sjl 		low  = (uint64_t)ml->address;
33225cf1a30Sjl 		high = low+(uint64_t)(ml->size);
33325cf1a30Sjl 		while (low < high) {
33425cf1a30Sjl 			boundary = roundup(low+1, ssize);
33525cf1a30Sjl 			boundary = MIN(high, boundary);
33625cf1a30Sjl 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
33725cf1a30Sjl 			new->address = low;
33825cf1a30Sjl 			new->size = boundary - low;
33925cf1a30Sjl 			if (head == NULL)
34025cf1a30Sjl 				head = new;
34125cf1a30Sjl 			if (tail) {
34225cf1a30Sjl 				tail->next = new;
34325cf1a30Sjl 				new->prev = tail;
34425cf1a30Sjl 			}
34525cf1a30Sjl 			tail = new;
34625cf1a30Sjl 			low = boundary;
34725cf1a30Sjl 		}
34825cf1a30Sjl 	}
34925cf1a30Sjl 	return (head);
35025cf1a30Sjl }
35125cf1a30Sjl 
35225cf1a30Sjl void
35325cf1a30Sjl set_platform_cage_params(void)
35425cf1a30Sjl {
35525cf1a30Sjl 	extern pgcnt_t total_pages;
35625cf1a30Sjl 	extern struct memlist *phys_avail;
35725cf1a30Sjl 	struct memlist *ml, *tml;
35825cf1a30Sjl 
35925cf1a30Sjl 	if (kernel_cage_enable) {
36025cf1a30Sjl 		pgcnt_t preferred_cage_size;
36125cf1a30Sjl 
362e98fafb9Sjl 		preferred_cage_size = MAX(opl_startup_cage_size,
363e98fafb9Sjl 		    total_pages / 256);
36425cf1a30Sjl 
36525cf1a30Sjl 		ml = opl_memlist_per_board(phys_avail);
36625cf1a30Sjl 
36725cf1a30Sjl 		/*
36825cf1a30Sjl 		 * Note: we are assuming that post has load the
36925cf1a30Sjl 		 * whole show in to the high end of memory. Having
37025cf1a30Sjl 		 * taken this leap, we copy the whole of phys_avail
37125cf1a30Sjl 		 * the glist and arrange for the cage to grow
37225cf1a30Sjl 		 * downward (descending pfns).
37325cf1a30Sjl 		 */
37485f58038Sdp 		kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
37525cf1a30Sjl 
37625cf1a30Sjl 		/* free the memlist */
37725cf1a30Sjl 		do {
37825cf1a30Sjl 			tml = ml->next;
37925cf1a30Sjl 			kmem_free(ml, sizeof (struct memlist));
38025cf1a30Sjl 			ml = tml;
38125cf1a30Sjl 		} while (ml != NULL);
38225cf1a30Sjl 	}
38325cf1a30Sjl 
38425cf1a30Sjl 	if (kcage_on)
38525cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
38625cf1a30Sjl 	else
38725cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
38825cf1a30Sjl }
38925cf1a30Sjl 
39025cf1a30Sjl /*ARGSUSED*/
39125cf1a30Sjl int
39225cf1a30Sjl plat_cpu_poweron(struct cpu *cp)
39325cf1a30Sjl {
39425cf1a30Sjl 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
39525cf1a30Sjl 
39625cf1a30Sjl 	opl_cpu_poweron =
39725cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
39825cf1a30Sjl 
39925cf1a30Sjl 	if (opl_cpu_poweron == NULL)
40025cf1a30Sjl 		return (ENOTSUP);
40125cf1a30Sjl 	else
40225cf1a30Sjl 		return ((opl_cpu_poweron)(cp));
40325cf1a30Sjl 
40425cf1a30Sjl }
40525cf1a30Sjl 
40625cf1a30Sjl /*ARGSUSED*/
40725cf1a30Sjl int
40825cf1a30Sjl plat_cpu_poweroff(struct cpu *cp)
40925cf1a30Sjl {
41025cf1a30Sjl 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
41125cf1a30Sjl 
41225cf1a30Sjl 	opl_cpu_poweroff =
41325cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
41425cf1a30Sjl 
41525cf1a30Sjl 	if (opl_cpu_poweroff == NULL)
41625cf1a30Sjl 		return (ENOTSUP);
41725cf1a30Sjl 	else
41825cf1a30Sjl 		return ((opl_cpu_poweroff)(cp));
41925cf1a30Sjl 
42025cf1a30Sjl }
42125cf1a30Sjl 
42225cf1a30Sjl int
42325cf1a30Sjl plat_max_boards(void)
42425cf1a30Sjl {
425*4af09fceSwh 	/*
426*4af09fceSwh 	 * If the model cannot be determined, default to the max value.
427*4af09fceSwh 	 * Otherwise, Ikkaku model only supports 1 system board.
428*4af09fceSwh 	 */
429*4af09fceSwh 	if ((opl_cur_model != NULL) && (opl_cur_model->model_type == IKKAKU))
430*4af09fceSwh 		return (OPL_MAX_BOARDS_IKKAKU);
431*4af09fceSwh 	else
432*4af09fceSwh 		return (OPL_MAX_BOARDS);
43325cf1a30Sjl }
43425cf1a30Sjl 
43525cf1a30Sjl int
43625cf1a30Sjl plat_max_cpu_units_per_board(void)
43725cf1a30Sjl {
43825cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD);
43925cf1a30Sjl }
44025cf1a30Sjl 
44125cf1a30Sjl int
44225cf1a30Sjl plat_max_mem_units_per_board(void)
44325cf1a30Sjl {
44425cf1a30Sjl 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
44525cf1a30Sjl }
44625cf1a30Sjl 
44725cf1a30Sjl int
44825cf1a30Sjl plat_max_io_units_per_board(void)
44925cf1a30Sjl {
45025cf1a30Sjl 	return (OPL_MAX_IO_UNITS_PER_BOARD);
45125cf1a30Sjl }
45225cf1a30Sjl 
45325cf1a30Sjl int
45425cf1a30Sjl plat_max_cmp_units_per_board(void)
45525cf1a30Sjl {
45625cf1a30Sjl 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
45725cf1a30Sjl }
45825cf1a30Sjl 
45925cf1a30Sjl int
46025cf1a30Sjl plat_max_core_units_per_board(void)
46125cf1a30Sjl {
46225cf1a30Sjl 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
46325cf1a30Sjl }
46425cf1a30Sjl 
46525cf1a30Sjl int
46625cf1a30Sjl plat_pfn_to_mem_node(pfn_t pfn)
46725cf1a30Sjl {
46825cf1a30Sjl 	return (pfn >> mem_node_pfn_shift);
46925cf1a30Sjl }
47025cf1a30Sjl 
47125cf1a30Sjl /* ARGSUSED */
47225cf1a30Sjl void
473986fd29aSsetje plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
47425cf1a30Sjl {
47525cf1a30Sjl 	size_t	elem;
47625cf1a30Sjl 	pfn_t	basepfn;
47725cf1a30Sjl 	pgcnt_t	npgs;
47825cf1a30Sjl 	uint64_t	boundary, ssize;
47925cf1a30Sjl 	uint64_t	low, high;
48025cf1a30Sjl 
48125cf1a30Sjl 	/*
48225cf1a30Sjl 	 * OPL mem slices are always aligned on a 256GB boundary.
48325cf1a30Sjl 	 */
48425cf1a30Sjl 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
48525cf1a30Sjl 	mem_node_physalign = 0;
48625cf1a30Sjl 
48725cf1a30Sjl 	/*
48825cf1a30Sjl 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
48925cf1a30Sjl 	 */
49025cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
491986fd29aSsetje 	for (elem = 0; elem < nelems; list++, elem++) {
492986fd29aSsetje 		low  = list->addr;
493986fd29aSsetje 		high = low + list->size;
49425cf1a30Sjl 		while (low < high) {
49525cf1a30Sjl 			boundary = roundup(low+1, ssize);
49625cf1a30Sjl 			boundary = MIN(high, boundary);
49725cf1a30Sjl 			basepfn = btop(low);
49825cf1a30Sjl 			npgs = btop(boundary - low);
49925cf1a30Sjl 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
50025cf1a30Sjl 			low = boundary;
50125cf1a30Sjl 		}
50225cf1a30Sjl 	}
50325cf1a30Sjl }
50425cf1a30Sjl 
50525cf1a30Sjl /*
50625cf1a30Sjl  * Find the CPU associated with a slice at boot-time.
50725cf1a30Sjl  */
50825cf1a30Sjl void
50925cf1a30Sjl plat_fill_mc(pnode_t nodeid)
51025cf1a30Sjl {
51125cf1a30Sjl 	int board;
51225cf1a30Sjl 	int memnode;
51325cf1a30Sjl 	struct {
51425cf1a30Sjl 		uint64_t	addr;
51525cf1a30Sjl 		uint64_t	size;
51625cf1a30Sjl 	} mem_range;
51725cf1a30Sjl 
51825cf1a30Sjl 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
51925cf1a30Sjl 		panic("Can not find board# property in mc node %x", nodeid);
52025cf1a30Sjl 	}
52125cf1a30Sjl 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
52225cf1a30Sjl 		panic("Can not find sb-mem-ranges property in mc node %x",
523e98fafb9Sjl 		    nodeid);
52425cf1a30Sjl 	}
52525cf1a30Sjl 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
52625cf1a30Sjl 	plat_assign_lgrphand_to_mem_node(board, memnode);
52725cf1a30Sjl }
52825cf1a30Sjl 
52925cf1a30Sjl /*
53025cf1a30Sjl  * Return the platform handle for the lgroup containing the given CPU
53125cf1a30Sjl  *
53225cf1a30Sjl  * For OPL, lgroup platform handle == board #.
53325cf1a30Sjl  */
53425cf1a30Sjl 
53525cf1a30Sjl extern int mpo_disabled;
53625cf1a30Sjl extern lgrp_handle_t lgrp_default_handle;
53725cf1a30Sjl 
53825cf1a30Sjl lgrp_handle_t
53925cf1a30Sjl plat_lgrp_cpu_to_hand(processorid_t id)
54025cf1a30Sjl {
54125cf1a30Sjl 	lgrp_handle_t plathand;
54225cf1a30Sjl 
54325cf1a30Sjl 	/*
54425cf1a30Sjl 	 * Return the real platform handle for the CPU until
54525cf1a30Sjl 	 * such time as we know that MPO should be disabled.
54625cf1a30Sjl 	 * At that point, we set the "mpo_disabled" flag to true,
54725cf1a30Sjl 	 * and from that point on, return the default handle.
54825cf1a30Sjl 	 *
54925cf1a30Sjl 	 * By the time we know that MPO should be disabled, the
55025cf1a30Sjl 	 * first CPU will have already been added to a leaf
55125cf1a30Sjl 	 * lgroup, but that's ok. The common lgroup code will
55225cf1a30Sjl 	 * double check that the boot CPU is in the correct place,
55325cf1a30Sjl 	 * and in the case where mpo should be disabled, will move
55425cf1a30Sjl 	 * it to the root if necessary.
55525cf1a30Sjl 	 */
55625cf1a30Sjl 	if (mpo_disabled) {
55725cf1a30Sjl 		/* If MPO is disabled, return the default (UMA) handle */
55825cf1a30Sjl 		plathand = lgrp_default_handle;
55925cf1a30Sjl 	} else
56025cf1a30Sjl 		plathand = (lgrp_handle_t)LSB_ID(id);
56125cf1a30Sjl 	return (plathand);
56225cf1a30Sjl }
56325cf1a30Sjl 
56425cf1a30Sjl /*
56525cf1a30Sjl  * Platform specific lgroup initialization
56625cf1a30Sjl  */
56725cf1a30Sjl void
56825cf1a30Sjl plat_lgrp_init(void)
56925cf1a30Sjl {
57025cf1a30Sjl 	extern uint32_t lgrp_expand_proc_thresh;
57125cf1a30Sjl 	extern uint32_t lgrp_expand_proc_diff;
572cc85acdaSpm 	const uint_t m = LGRP_LOADAVG_THREAD_MAX;
57325cf1a30Sjl 
57425cf1a30Sjl 	/*
57525cf1a30Sjl 	 * Set tuneables for the OPL architecture
57625cf1a30Sjl 	 *
577cc85acdaSpm 	 * lgrp_expand_proc_thresh is the threshold load on the set of
578cc85acdaSpm 	 * lgroups a process is currently using on before considering
579cc85acdaSpm 	 * adding another lgroup to the set.  For Oly-C and Jupiter
580cc85acdaSpm 	 * systems, there are four sockets per lgroup. Setting
581cc85acdaSpm 	 * lgrp_expand_proc_thresh to add lgroups when the load reaches
582cc85acdaSpm 	 * four threads will spread the load when it exceeds one thread
583cc85acdaSpm 	 * per socket, optimizing memory bandwidth and L2 cache space.
58425cf1a30Sjl 	 *
585cc85acdaSpm 	 * lgrp_expand_proc_diff determines how much less another lgroup
586cc85acdaSpm 	 * must be loaded before shifting the start location of a thread
587cc85acdaSpm 	 * to it.
58825cf1a30Sjl 	 *
589cc85acdaSpm 	 * lgrp_loadavg_tolerance is the threshold where two lgroups are
590cc85acdaSpm 	 * considered to have different loads.  It is set to be less than
591cc85acdaSpm 	 * 1% so that even a small residual load will be considered different
592cc85acdaSpm 	 * from no residual load.
593cc85acdaSpm 	 *
594cc85acdaSpm 	 * We note loadavg values are not precise.
595cc85acdaSpm 	 * Every 1/10 of a second loadavg values are reduced by 5%.
596cc85acdaSpm 	 * This adjustment can come in the middle of the lgroup selection
597cc85acdaSpm 	 * process, and for larger parallel apps with many threads can
598cc85acdaSpm 	 * frequently occur between the start of the second thread
599cc85acdaSpm 	 * placement and the finish of the last thread placement.
600cc85acdaSpm 	 * We also must be careful to not use too small of a threshold
601cc85acdaSpm 	 * since the cumulative decay for 1 second idle time is 40%.
602cc85acdaSpm 	 * That is, the residual load from completed threads will still
603cc85acdaSpm 	 * be 60% one second after the proc goes idle or 8% after 5 seconds.
604cc85acdaSpm 	 *
605cc85acdaSpm 	 * To allow for lag time in loadavg calculations
606cc85acdaSpm 	 * remote thresh = 3.75 * LGRP_LOADAVG_THREAD_MAX
607cc85acdaSpm 	 * local thresh  = 0.75 * LGRP_LOADAVG_THREAD_MAX
608cc85acdaSpm 	 * tolerance	 = 0.0078 * LGRP_LOADAVG_THREAD_MAX
609cc85acdaSpm 	 *
610cc85acdaSpm 	 * The load placement algorithms consider LGRP_LOADAVG_THREAD_MAX
611cc85acdaSpm 	 * as the equivalent of a load of 1. To make the code more compact,
612cc85acdaSpm 	 * we set m = LGRP_LOADAVG_THREAD_MAX.
61325cf1a30Sjl 	 */
614cc85acdaSpm 	lgrp_expand_proc_thresh = (m * 3) + (m >> 1) + (m >> 2);
615cc85acdaSpm 	lgrp_expand_proc_diff = (m >> 1) + (m >> 2);
616cc85acdaSpm 	lgrp_loadavg_tolerance = (m >> 7);
61725cf1a30Sjl }
61825cf1a30Sjl 
61925cf1a30Sjl /*
62025cf1a30Sjl  * Platform notification of lgroup (re)configuration changes
62125cf1a30Sjl  */
62225cf1a30Sjl /*ARGSUSED*/
62325cf1a30Sjl void
62425cf1a30Sjl plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
62525cf1a30Sjl {
62625cf1a30Sjl 	update_membounds_t *umb;
62725cf1a30Sjl 	lgrp_config_mem_rename_t lmr;
62825cf1a30Sjl 	int sbd, tbd;
62925cf1a30Sjl 	lgrp_handle_t hand, shand, thand;
63025cf1a30Sjl 	int mnode, snode, tnode;
63125cf1a30Sjl 	pfn_t start, end;
63225cf1a30Sjl 
63325cf1a30Sjl 	if (mpo_disabled)
63425cf1a30Sjl 		return;
63525cf1a30Sjl 
63625cf1a30Sjl 	switch (evt) {
63725cf1a30Sjl 
63825cf1a30Sjl 	case LGRP_CONFIG_MEM_ADD:
63925cf1a30Sjl 		/*
64025cf1a30Sjl 		 * Establish the lgroup handle to memnode translation.
64125cf1a30Sjl 		 */
64225cf1a30Sjl 		umb = (update_membounds_t *)arg;
64325cf1a30Sjl 
64425cf1a30Sjl 		hand = umb->u_board;
64525cf1a30Sjl 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
64625cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(hand, mnode);
64725cf1a30Sjl 
64825cf1a30Sjl 		break;
64925cf1a30Sjl 
65025cf1a30Sjl 	case LGRP_CONFIG_MEM_DEL:
65125cf1a30Sjl 		/*
65225cf1a30Sjl 		 * Special handling for possible memory holes.
65325cf1a30Sjl 		 */
65425cf1a30Sjl 		umb = (update_membounds_t *)arg;
65525cf1a30Sjl 		hand = umb->u_board;
65625cf1a30Sjl 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
65725cf1a30Sjl 			if (mem_node_config[mnode].exists) {
65825cf1a30Sjl 				start = mem_node_config[mnode].physbase;
65925cf1a30Sjl 				end = mem_node_config[mnode].physmax;
66025cf1a30Sjl 				mem_node_pre_del_slice(start, end);
66125cf1a30Sjl 				mem_node_post_del_slice(start, end, 0);
66225cf1a30Sjl 			}
66325cf1a30Sjl 		}
66425cf1a30Sjl 
66525cf1a30Sjl 		break;
66625cf1a30Sjl 
66725cf1a30Sjl 	case LGRP_CONFIG_MEM_RENAME:
66825cf1a30Sjl 		/*
66925cf1a30Sjl 		 * During a DR copy-rename operation, all of the memory
67025cf1a30Sjl 		 * on one board is moved to another board -- but the
67125cf1a30Sjl 		 * addresses/pfns and memnodes don't change. This means
67225cf1a30Sjl 		 * the memory has changed locations without changing identity.
67325cf1a30Sjl 		 *
67425cf1a30Sjl 		 * Source is where we are copying from and target is where we
67525cf1a30Sjl 		 * are copying to.  After source memnode is copied to target
67625cf1a30Sjl 		 * memnode, the physical addresses of the target memnode are
67725cf1a30Sjl 		 * renamed to match what the source memnode had.  Then target
67825cf1a30Sjl 		 * memnode can be removed and source memnode can take its
67925cf1a30Sjl 		 * place.
68025cf1a30Sjl 		 *
68125cf1a30Sjl 		 * To do this, swap the lgroup handle to memnode mappings for
68225cf1a30Sjl 		 * the boards, so target lgroup will have source memnode and
68325cf1a30Sjl 		 * source lgroup will have empty target memnode which is where
68425cf1a30Sjl 		 * its memory will go (if any is added to it later).
68525cf1a30Sjl 		 *
68625cf1a30Sjl 		 * Then source memnode needs to be removed from its lgroup
68725cf1a30Sjl 		 * and added to the target lgroup where the memory was living
68825cf1a30Sjl 		 * but under a different name/memnode.  The memory was in the
68925cf1a30Sjl 		 * target memnode and now lives in the source memnode with
69025cf1a30Sjl 		 * different physical addresses even though it is the same
69125cf1a30Sjl 		 * memory.
69225cf1a30Sjl 		 */
69325cf1a30Sjl 		sbd = arg & 0xffff;
69425cf1a30Sjl 		tbd = (arg & 0xffff0000) >> 16;
69525cf1a30Sjl 		shand = sbd;
69625cf1a30Sjl 		thand = tbd;
69725cf1a30Sjl 		snode = plat_lgrphand_to_mem_node(shand);
69825cf1a30Sjl 		tnode = plat_lgrphand_to_mem_node(thand);
69925cf1a30Sjl 
70025cf1a30Sjl 		/*
70125cf1a30Sjl 		 * Special handling for possible memory holes.
70225cf1a30Sjl 		 */
70325cf1a30Sjl 		if (tnode != -1 && mem_node_config[tnode].exists) {
70468ac2337Sjl 			start = mem_node_config[tnode].physbase;
70568ac2337Sjl 			end = mem_node_config[tnode].physmax;
70625cf1a30Sjl 			mem_node_pre_del_slice(start, end);
70725cf1a30Sjl 			mem_node_post_del_slice(start, end, 0);
70825cf1a30Sjl 		}
70925cf1a30Sjl 
71025cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(thand, snode);
71125cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(shand, tnode);
71225cf1a30Sjl 
71325cf1a30Sjl 		lmr.lmem_rename_from = shand;
71425cf1a30Sjl 		lmr.lmem_rename_to = thand;
71525cf1a30Sjl 
71625cf1a30Sjl 		/*
71725cf1a30Sjl 		 * Remove source memnode of copy rename from its lgroup
71825cf1a30Sjl 		 * and add it to its new target lgroup
71925cf1a30Sjl 		 */
72025cf1a30Sjl 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
72125cf1a30Sjl 		    (uintptr_t)&lmr);
72225cf1a30Sjl 
72325cf1a30Sjl 		break;
72425cf1a30Sjl 
72525cf1a30Sjl 	default:
72625cf1a30Sjl 		break;
72725cf1a30Sjl 	}
72825cf1a30Sjl }
72925cf1a30Sjl 
73025cf1a30Sjl /*
73125cf1a30Sjl  * Return latency between "from" and "to" lgroups
73225cf1a30Sjl  *
73325cf1a30Sjl  * This latency number can only be used for relative comparison
73425cf1a30Sjl  * between lgroups on the running system, cannot be used across platforms,
73525cf1a30Sjl  * and may not reflect the actual latency.  It is platform and implementation
73625cf1a30Sjl  * specific, so platform gets to decide its value.  It would be nice if the
73725cf1a30Sjl  * number was at least proportional to make comparisons more meaningful though.
73825cf1a30Sjl  * NOTE: The numbers below are supposed to be load latencies for uncached
73925cf1a30Sjl  * memory divided by 10.
74025cf1a30Sjl  *
74125cf1a30Sjl  */
74225cf1a30Sjl int
74325cf1a30Sjl plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
74425cf1a30Sjl {
74525cf1a30Sjl 	/*
74625cf1a30Sjl 	 * Return min remote latency when there are more than two lgroups
74725cf1a30Sjl 	 * (root and child) and getting latency between two different lgroups
74825cf1a30Sjl 	 * or root is involved
74925cf1a30Sjl 	 */
75025cf1a30Sjl 	if (lgrp_optimizations() && (from != to ||
75125cf1a30Sjl 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
75271b3c2ffShyw 		return (42);
75325cf1a30Sjl 	else
75471b3c2ffShyw 		return (35);
75525cf1a30Sjl }
75625cf1a30Sjl 
75725cf1a30Sjl /*
75825cf1a30Sjl  * Return platform handle for root lgroup
75925cf1a30Sjl  */
76025cf1a30Sjl lgrp_handle_t
76125cf1a30Sjl plat_lgrp_root_hand(void)
76225cf1a30Sjl {
76325cf1a30Sjl 	if (mpo_disabled)
76425cf1a30Sjl 		return (lgrp_default_handle);
76525cf1a30Sjl 
76625cf1a30Sjl 	return (LGRP_DEFAULT_HANDLE);
76725cf1a30Sjl }
76825cf1a30Sjl 
76925cf1a30Sjl /*ARGSUSED*/
77025cf1a30Sjl void
77125cf1a30Sjl plat_freelist_process(int mnode)
77225cf1a30Sjl {
77325cf1a30Sjl }
77425cf1a30Sjl 
77525cf1a30Sjl void
77625cf1a30Sjl load_platform_drivers(void)
77725cf1a30Sjl {
77825cf1a30Sjl 	(void) i_ddi_attach_pseudo_node("dr");
77925cf1a30Sjl }
78025cf1a30Sjl 
78125cf1a30Sjl /*
78225cf1a30Sjl  * No platform drivers on this platform
78325cf1a30Sjl  */
78425cf1a30Sjl char *platform_module_list[] = {
78525cf1a30Sjl 	(char *)0
78625cf1a30Sjl };
78725cf1a30Sjl 
78825cf1a30Sjl /*ARGSUSED*/
78925cf1a30Sjl void
79025cf1a30Sjl plat_tod_fault(enum tod_fault_type tod_bad)
79125cf1a30Sjl {
79225cf1a30Sjl }
79325cf1a30Sjl 
79425cf1a30Sjl /*ARGSUSED*/
79525cf1a30Sjl void
79625cf1a30Sjl cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
79725cf1a30Sjl {
79825cf1a30Sjl 	static void (*scf_panic_callback)(int);
79925cf1a30Sjl 	static void (*scf_shutdown_callback)(int);
80025cf1a30Sjl 
80125cf1a30Sjl 	/*
80225cf1a30Sjl 	 * This is for notifing system panic/shutdown to SCF.
80325cf1a30Sjl 	 * In case of shutdown and panic, SCF call back
80425cf1a30Sjl 	 * function should be called.
80525cf1a30Sjl 	 *  <SCF call back functions>
80625cf1a30Sjl 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
80725cf1a30Sjl 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
80825cf1a30Sjl 	 * cpuid should be -1 and state should be SIGST_EXIT.
80925cf1a30Sjl 	 */
81025cf1a30Sjl 	if (state == SIGST_EXIT && cpuid == -1) {
81125cf1a30Sjl 
81225cf1a30Sjl 		/*
81325cf1a30Sjl 		 * find the symbol for the SCF panic callback routine in driver
81425cf1a30Sjl 		 */
81525cf1a30Sjl 		if (scf_panic_callback == NULL)
81625cf1a30Sjl 			scf_panic_callback = (void (*)(int))
817e98fafb9Sjl 			    modgetsymvalue("scf_panic_callb", 0);
81825cf1a30Sjl 		if (scf_shutdown_callback == NULL)
81925cf1a30Sjl 			scf_shutdown_callback = (void (*)(int))
820e98fafb9Sjl 			    modgetsymvalue("scf_shutdown_callb", 0);
82125cf1a30Sjl 
82225cf1a30Sjl 		switch (sub_state) {
82325cf1a30Sjl 		case SIGSUBST_PANIC:
82425cf1a30Sjl 			if (scf_panic_callback == NULL) {
82525cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
82625cf1a30Sjl 				    "scf_panic_callb not found\n");
82725cf1a30Sjl 				return;
82825cf1a30Sjl 			}
82925cf1a30Sjl 			scf_panic_callback(SIGSUBST_PANIC);
83025cf1a30Sjl 			break;
83125cf1a30Sjl 
83225cf1a30Sjl 		case SIGSUBST_HALT:
83325cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
83425cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
83525cf1a30Sjl 				    "scf_shutdown_callb not found\n");
83625cf1a30Sjl 				return;
83725cf1a30Sjl 			}
83825cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_HALT);
83925cf1a30Sjl 			break;
84025cf1a30Sjl 
84125cf1a30Sjl 		case SIGSUBST_ENVIRON:
84225cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
84325cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
84425cf1a30Sjl 				    "scf_shutdown_callb not found\n");
84525cf1a30Sjl 				return;
84625cf1a30Sjl 			}
84725cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_ENVIRON);
84825cf1a30Sjl 			break;
84925cf1a30Sjl 
85025cf1a30Sjl 		case SIGSUBST_REBOOT:
85125cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
85225cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
85325cf1a30Sjl 				    "scf_shutdown_callb not found\n");
85425cf1a30Sjl 				return;
85525cf1a30Sjl 			}
85625cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_REBOOT);
85725cf1a30Sjl 			break;
85825cf1a30Sjl 		}
85925cf1a30Sjl 	}
86025cf1a30Sjl }
86125cf1a30Sjl 
86225cf1a30Sjl /*ARGSUSED*/
86325cf1a30Sjl int
86425cf1a30Sjl plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
86525cf1a30Sjl 	int flt_in_memory, ushort_t flt_status,
86625cf1a30Sjl 	char *buf, int buflen, int *lenp)
86725cf1a30Sjl {
86825cf1a30Sjl 	/*
86925cf1a30Sjl 	 * check if it's a Memory error.
87025cf1a30Sjl 	 */
87125cf1a30Sjl 	if (flt_in_memory) {
87225cf1a30Sjl 		if (opl_get_mem_unum != NULL) {
873e98fafb9Sjl 			return (opl_get_mem_unum(synd_code, flt_addr, buf,
874e98fafb9Sjl 			    buflen, lenp));
87525cf1a30Sjl 		} else {
87625cf1a30Sjl 			return (ENOTSUP);
87725cf1a30Sjl 		}
87825cf1a30Sjl 	} else {
87925cf1a30Sjl 		return (ENOTSUP);
88025cf1a30Sjl 	}
88125cf1a30Sjl }
88225cf1a30Sjl 
88325cf1a30Sjl /*ARGSUSED*/
88425cf1a30Sjl int
88525cf1a30Sjl plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
88625cf1a30Sjl {
8870cc8ae86Sav 	int	ret = 0;
8883f1fa9a7Sjfrank 	int	sb;
889195196c6Ssubhan 	int	plen;
89025cf1a30Sjl 
89125cf1a30Sjl 	sb = opl_get_physical_board(LSB_ID(cpuid));
89225cf1a30Sjl 	if (sb == -1) {
89325cf1a30Sjl 		return (ENXIO);
89425cf1a30Sjl 	}
89525cf1a30Sjl 
89672b9fce9Ssubhan 	/*
89772b9fce9Ssubhan 	 * opl_cur_model is assigned here
89872b9fce9Ssubhan 	 */
89972b9fce9Ssubhan 	if (opl_cur_model == NULL) {
90072b9fce9Ssubhan 		set_model_info();
9019b71d8e9Swh 
9029b71d8e9Swh 		/*
9039b71d8e9Swh 		 * if not matched, return
9049b71d8e9Swh 		 */
9059b71d8e9Swh 		if (opl_cur_model == NULL)
9069b71d8e9Swh 			return (ENODEV);
90772b9fce9Ssubhan 	}
90872b9fce9Ssubhan 
909195196c6Ssubhan 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
910195196c6Ssubhan 
911195196c6Ssubhan 	switch (opl_cur_model->model_type) {
912195196c6Ssubhan 	case FF1:
9130cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
9140cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
9150cc8ae86Sav 		break;
9160cc8ae86Sav 
917195196c6Ssubhan 	case FF2:
9180cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
91911114147Sav 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
9200cc8ae86Sav 		break;
9210cc8ae86Sav 
922195196c6Ssubhan 	case DC1:
923195196c6Ssubhan 	case DC2:
924195196c6Ssubhan 	case DC3:
9250cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
9260cc8ae86Sav 		    CHIP_ID(cpuid));
9270cc8ae86Sav 		break;
9280cc8ae86Sav 
92978ed97a7Sjl 	case IKKAKU:
93078ed97a7Sjl 		plen = snprintf(buf, buflen, "/%s", "MBU_A");
93178ed97a7Sjl 		break;
93278ed97a7Sjl 
9330cc8ae86Sav 	default:
9340cc8ae86Sav 		/* This should never happen */
9350cc8ae86Sav 		return (ENODEV);
9360cc8ae86Sav 	}
9370cc8ae86Sav 
9380cc8ae86Sav 	if (plen >= buflen) {
9390cc8ae86Sav 		ret = ENOSPC;
94025cf1a30Sjl 	} else {
94125cf1a30Sjl 		if (lenp)
94225cf1a30Sjl 			*lenp = strlen(buf);
94325cf1a30Sjl 	}
9440cc8ae86Sav 	return (ret);
94525cf1a30Sjl }
94625cf1a30Sjl 
94725cf1a30Sjl void
94825cf1a30Sjl plat_nodename_set(void)
94925cf1a30Sjl {
9503f1fa9a7Sjfrank 	post_xscf_msg((char *)&utsname, sizeof (struct utsname));
95125cf1a30Sjl }
95225cf1a30Sjl 
95325cf1a30Sjl caddr_t	efcode_vaddr = NULL;
95425cf1a30Sjl 
95525cf1a30Sjl /*
95625cf1a30Sjl  * Preallocate enough memory for fcode claims.
95725cf1a30Sjl  */
95825cf1a30Sjl 
95925cf1a30Sjl caddr_t
96025cf1a30Sjl efcode_alloc(caddr_t alloc_base)
96125cf1a30Sjl {
96225cf1a30Sjl 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
96325cf1a30Sjl 	    MMU_PAGESIZE);
96425cf1a30Sjl 	caddr_t vaddr;
96525cf1a30Sjl 
96625cf1a30Sjl 	/*
96725cf1a30Sjl 	 * allocate the physical memory for the Oberon fcode.
96825cf1a30Sjl 	 */
96925cf1a30Sjl 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
97025cf1a30Sjl 	    efcode_size, MMU_PAGESIZE)) == NULL)
97125cf1a30Sjl 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
97225cf1a30Sjl 
97325cf1a30Sjl 	efcode_vaddr = vaddr;
97425cf1a30Sjl 
97525cf1a30Sjl 	return (efcode_alloc_base + efcode_size);
97625cf1a30Sjl }
97725cf1a30Sjl 
97825cf1a30Sjl caddr_t
97925cf1a30Sjl plat_startup_memlist(caddr_t alloc_base)
98025cf1a30Sjl {
98125cf1a30Sjl 	caddr_t tmp_alloc_base;
98225cf1a30Sjl 
98325cf1a30Sjl 	tmp_alloc_base = efcode_alloc(alloc_base);
98425cf1a30Sjl 	tmp_alloc_base =
98525cf1a30Sjl 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
98625cf1a30Sjl 	return (tmp_alloc_base);
98725cf1a30Sjl }
98825cf1a30Sjl 
989575a7426Spt /* need to forward declare these */
990575a7426Spt static void plat_lock_delay(uint_t);
991575a7426Spt 
99225cf1a30Sjl void
99325cf1a30Sjl startup_platform(void)
99425cf1a30Sjl {
9952850d85bSmv 	if (clock_tick_threshold == 0)
9962850d85bSmv 		clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD;
9972850d85bSmv 	if (clock_tick_ncpus == 0)
9982850d85bSmv 		clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS;
999575a7426Spt 	mutex_lock_delay = plat_lock_delay;
1000575a7426Spt 	mutex_cap_factor = OPL_BOFF_MAX_SCALE;
100125cf1a30Sjl }
10020cc8ae86Sav 
100304938e8bSjfrank static uint_t
100404938e8bSjfrank get_mmu_id(processorid_t cpuid)
100504938e8bSjfrank {
100604938e8bSjfrank 	int pb = opl_get_physical_board(LSB_ID(cpuid));
100704938e8bSjfrank 
100804938e8bSjfrank 	if (pb == -1) {
100904938e8bSjfrank 		cmn_err(CE_PANIC,
101004938e8bSjfrank 		    "opl_get_physical_board failed (cpu %d LSB %u)",
101104938e8bSjfrank 		    cpuid, LSB_ID(cpuid));
101204938e8bSjfrank 	}
101304938e8bSjfrank 	return (pb * OPL_MAX_COREID_PER_BOARD) + (CHIP_ID(cpuid) *
101404938e8bSjfrank 	    OPL_MAX_COREID_PER_CMP) + CORE_ID(cpuid);
101504938e8bSjfrank }
101604938e8bSjfrank 
10171e2e7a75Shuah void
10181e2e7a75Shuah plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
10191e2e7a75Shuah {
10201e2e7a75Shuah 	int	impl;
10211e2e7a75Shuah 
10221e2e7a75Shuah 	impl = cpunodes[cpuid].implementation;
1023e98fafb9Sjl 	if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
102404938e8bSjfrank 		info->mmu_idx = get_mmu_id(cpuid);
10251e2e7a75Shuah 		info->mmu_nctxs = 8192;
10261e2e7a75Shuah 	} else {
10271e2e7a75Shuah 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
10281e2e7a75Shuah 	}
10291e2e7a75Shuah }
10301e2e7a75Shuah 
10310cc8ae86Sav int
10320cc8ae86Sav plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
10330cc8ae86Sav {
10340cc8ae86Sav 	if (opl_get_mem_sid == NULL) {
10350cc8ae86Sav 		return (ENOTSUP);
10360cc8ae86Sav 	}
10370cc8ae86Sav 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
10380cc8ae86Sav }
10390cc8ae86Sav 
10400cc8ae86Sav int
10410cc8ae86Sav plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
10420cc8ae86Sav {
10430cc8ae86Sav 	if (opl_get_mem_offset == NULL) {
10440cc8ae86Sav 		return (ENOTSUP);
10450cc8ae86Sav 	}
10460cc8ae86Sav 	return (opl_get_mem_offset(paddr, offp));
10470cc8ae86Sav }
10480cc8ae86Sav 
10490cc8ae86Sav int
10500cc8ae86Sav plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
10510cc8ae86Sav {
10520cc8ae86Sav 	if (opl_get_mem_addr == NULL) {
10530cc8ae86Sav 		return (ENOTSUP);
10540cc8ae86Sav 	}
10550cc8ae86Sav 	return (opl_get_mem_addr(unum, sid, offset, addrp));
10560cc8ae86Sav }
1057e603b7d4Spm 
1058e603b7d4Spm void
1059575a7426Spt plat_lock_delay(uint_t backoff)
1060e603b7d4Spm {
1061e603b7d4Spm 	int i;
1062575a7426Spt 	uint_t cnt, remcnt;
1063e603b7d4Spm 	int ctr;
1064575a7426Spt 	hrtime_t delay_start, rem_delay;
1065e603b7d4Spm 	/*
1066e603b7d4Spm 	 * Platform specific lock delay code for OPL
1067e603b7d4Spm 	 *
1068e603b7d4Spm 	 * Using staged linear increases in the delay.
1069e603b7d4Spm 	 * The sleep instruction is the preferred method of delay,
1070e603b7d4Spm 	 * but is too large of granularity for the initial backoff.
1071e603b7d4Spm 	 */
1072e603b7d4Spm 
1073575a7426Spt 	if (backoff < 100) {
1074e603b7d4Spm 		/*
1075e603b7d4Spm 		 * If desired backoff is long enough,
1076e603b7d4Spm 		 * use sleep for most of it
1077e603b7d4Spm 		 */
1078575a7426Spt 		for (cnt = backoff;
1079575a7426Spt 		    cnt >= OPL_BOFF_SLEEP;
1080e98fafb9Sjl 		    cnt -= OPL_BOFF_SLEEP) {
1081e603b7d4Spm 			cpu_smt_pause();
1082e603b7d4Spm 		}
1083e603b7d4Spm 		/*
1084e603b7d4Spm 		 * spin for small remainder of backoff
1085e603b7d4Spm 		 */
1086e603b7d4Spm 		for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
1087575a7426Spt 			mutex_delay_default();
1088e603b7d4Spm 		}
1089e603b7d4Spm 	} else {
1090575a7426Spt 		/* backoff is large.  Fill it by sleeping */
1091fb81f553Sck 		delay_start = gethrtime_waitfree();
1092575a7426Spt 		cnt = backoff / OPL_BOFF_SLEEP;
1093e603b7d4Spm 		/*
1094e603b7d4Spm 		 * use sleep instructions for delay
1095e603b7d4Spm 		 */
1096e603b7d4Spm 		for (i = 0; i < cnt; i++) {
1097e603b7d4Spm 			cpu_smt_pause();
1098e603b7d4Spm 		}
1099e603b7d4Spm 
1100e603b7d4Spm 		/*
1101e603b7d4Spm 		 * Note: if the other strand executes a sleep instruction,
1102e603b7d4Spm 		 * then the sleep ends immediately with a minimum time of
1103e603b7d4Spm 		 * 42 clocks.  We check gethrtime to insure we have
1104e603b7d4Spm 		 * waited long enough.  And we include both a short
1105575a7426Spt 		 * spin loop and a sleep for repeated delay times.
1106e603b7d4Spm 		 */
1107e603b7d4Spm 
1108fb81f553Sck 		rem_delay = gethrtime_waitfree() - delay_start;
1109575a7426Spt 		while (rem_delay < cnt * OPL_BOFF_TM) {
1110575a7426Spt 			remcnt = cnt - (rem_delay / OPL_BOFF_TM);
1111575a7426Spt 			for (i = 0; i < remcnt; i++) {
1112575a7426Spt 				cpu_smt_pause();
1113575a7426Spt 				for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
1114575a7426Spt 					mutex_delay_default();
1115575a7426Spt 				}
1116e603b7d4Spm 			}
1117fb81f553Sck 			rem_delay = gethrtime_waitfree() - delay_start;
1118e603b7d4Spm 		}
1119e603b7d4Spm 	}
1120e603b7d4Spm }
11213f1fa9a7Sjfrank 
11223f1fa9a7Sjfrank /*
11233f1fa9a7Sjfrank  * The following code implements asynchronous call to XSCF to setup the
11243f1fa9a7Sjfrank  * domain node name.
11253f1fa9a7Sjfrank  */
11263f1fa9a7Sjfrank 
11273f1fa9a7Sjfrank #define	FREE_MSG(m)		kmem_free((m), NM_LEN((m)->len))
11283f1fa9a7Sjfrank 
11293f1fa9a7Sjfrank /*
11303f1fa9a7Sjfrank  * The following three macros define the all operations on the request
11313f1fa9a7Sjfrank  * list we are using here, and hide the details of the list
11323f1fa9a7Sjfrank  * implementation from the code.
11333f1fa9a7Sjfrank  */
11343f1fa9a7Sjfrank #define	PUSH(m) \
11353f1fa9a7Sjfrank 	{ \
11363f1fa9a7Sjfrank 		(m)->next = ctl_msg.head; \
11373f1fa9a7Sjfrank 		(m)->prev = NULL; \
11383f1fa9a7Sjfrank 		if ((m)->next != NULL) \
11393f1fa9a7Sjfrank 			(m)->next->prev = (m); \
11403f1fa9a7Sjfrank 		ctl_msg.head = (m); \
11413f1fa9a7Sjfrank 	}
11423f1fa9a7Sjfrank 
11433f1fa9a7Sjfrank #define	REMOVE(m) \
11443f1fa9a7Sjfrank 	{ \
11453f1fa9a7Sjfrank 		if ((m)->prev != NULL) \
11463f1fa9a7Sjfrank 			(m)->prev->next = (m)->next; \
11473f1fa9a7Sjfrank 		else \
11483f1fa9a7Sjfrank 			ctl_msg.head = (m)->next; \
11493f1fa9a7Sjfrank 		if ((m)->next != NULL) \
11503f1fa9a7Sjfrank 			(m)->next->prev = (m)->prev; \
11513f1fa9a7Sjfrank 	}
11523f1fa9a7Sjfrank 
11533f1fa9a7Sjfrank #define	FREE_THE_TAIL(head) \
11543f1fa9a7Sjfrank 	{ \
11553f1fa9a7Sjfrank 		nm_msg_t *n_msg, *m; \
11563f1fa9a7Sjfrank 		m = (head)->next; \
11573f1fa9a7Sjfrank 		(head)->next = NULL; \
11583f1fa9a7Sjfrank 		while (m != NULL) { \
11593f1fa9a7Sjfrank 			n_msg = m->next; \
11603f1fa9a7Sjfrank 			FREE_MSG(m); \
11613f1fa9a7Sjfrank 			m = n_msg; \
11623f1fa9a7Sjfrank 		} \
11633f1fa9a7Sjfrank 	}
11643f1fa9a7Sjfrank 
11653f1fa9a7Sjfrank #define	SCF_PUTINFO(f, s, p) \
11663f1fa9a7Sjfrank 	f(KEY_ESCF, 0x01, 0, s, p)
11673f1fa9a7Sjfrank 
11683f1fa9a7Sjfrank #define	PASS2XSCF(m, r)	((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
11693f1fa9a7Sjfrank 					    (m)->len, (m)->data)) == 0)
11703f1fa9a7Sjfrank 
11713f1fa9a7Sjfrank /*
11723f1fa9a7Sjfrank  * The value of the following macro loosely depends on the
11733f1fa9a7Sjfrank  * value of the "device busy" timeout used in the SCF driver.
11743f1fa9a7Sjfrank  * (See pass2xscf_thread()).
11753f1fa9a7Sjfrank  */
11763f1fa9a7Sjfrank #define	SCF_DEVBUSY_DELAY	10
11773f1fa9a7Sjfrank 
11783f1fa9a7Sjfrank /*
11793f1fa9a7Sjfrank  * The default number of attempts to contact the scf driver
11803f1fa9a7Sjfrank  * if we cannot fetch any information about the timeout value
11813f1fa9a7Sjfrank  * it uses.
11823f1fa9a7Sjfrank  */
11833f1fa9a7Sjfrank 
11843f1fa9a7Sjfrank #define	REPEATS		4
11853f1fa9a7Sjfrank 
11863f1fa9a7Sjfrank typedef struct nm_msg {
11873f1fa9a7Sjfrank 	struct nm_msg *next;
11883f1fa9a7Sjfrank 	struct nm_msg *prev;
11893f1fa9a7Sjfrank 	int len;
11903f1fa9a7Sjfrank 	char data[1];
11913f1fa9a7Sjfrank } nm_msg_t;
11923f1fa9a7Sjfrank 
11933f1fa9a7Sjfrank #define	NM_LEN(len)		(sizeof (nm_msg_t) + (len) - 1)
11943f1fa9a7Sjfrank 
11953f1fa9a7Sjfrank static struct ctlmsg {
11963f1fa9a7Sjfrank 	nm_msg_t	*head;
11973f1fa9a7Sjfrank 	nm_msg_t	*now_serving;
11983f1fa9a7Sjfrank 	kmutex_t	nm_lock;
11993f1fa9a7Sjfrank 	kthread_t	*nmt;
12003f1fa9a7Sjfrank 	int		cnt;
12013f1fa9a7Sjfrank 	int (*scf_service_function)(uint32_t, uint8_t,
12023f1fa9a7Sjfrank 				    uint32_t, uint32_t, void *);
12033f1fa9a7Sjfrank } ctl_msg;
12043f1fa9a7Sjfrank 
12053f1fa9a7Sjfrank static void
12063f1fa9a7Sjfrank post_xscf_msg(char *dp, int len)
12073f1fa9a7Sjfrank {
12083f1fa9a7Sjfrank 	nm_msg_t *msg;
12093f1fa9a7Sjfrank 
12103f1fa9a7Sjfrank 	msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
12113f1fa9a7Sjfrank 
12123f1fa9a7Sjfrank 	bcopy(dp, msg->data, len);
12133f1fa9a7Sjfrank 	msg->len = len;
12143f1fa9a7Sjfrank 
12153f1fa9a7Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
12163f1fa9a7Sjfrank 	if (ctl_msg.nmt == NULL) {
12173f1fa9a7Sjfrank 		ctl_msg.nmt =  thread_create(NULL, 0, pass2xscf_thread,
12183f1fa9a7Sjfrank 		    NULL, 0, &p0, TS_RUN, minclsyspri);
12193f1fa9a7Sjfrank 	}
12203f1fa9a7Sjfrank 
12213f1fa9a7Sjfrank 	PUSH(msg);
12223f1fa9a7Sjfrank 	ctl_msg.cnt++;
12233f1fa9a7Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
12243f1fa9a7Sjfrank }
12253f1fa9a7Sjfrank 
12263f1fa9a7Sjfrank static void
12273f1fa9a7Sjfrank pass2xscf_thread()
12283f1fa9a7Sjfrank {
12293f1fa9a7Sjfrank 	nm_msg_t *msg;
12303f1fa9a7Sjfrank 	int ret;
12313f1fa9a7Sjfrank 	uint_t i, msg_sent, xscf_driver_delay;
12323f1fa9a7Sjfrank 	static uint_t repeat_cnt;
12333f1fa9a7Sjfrank 	uint_t *scf_wait_cnt;
12343f1fa9a7Sjfrank 
12353f1fa9a7Sjfrank 	mutex_enter(&ctl_msg.nm_lock);
12363f1fa9a7Sjfrank 
12373f1fa9a7Sjfrank 	/*
12383f1fa9a7Sjfrank 	 * Find the address of the SCF put routine if it's not done yet.
12393f1fa9a7Sjfrank 	 */
12403f1fa9a7Sjfrank 	if (ctl_msg.scf_service_function == NULL) {
12413f1fa9a7Sjfrank 		if ((ctl_msg.scf_service_function =
12423f1fa9a7Sjfrank 		    (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
12433f1fa9a7Sjfrank 		    modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
12443f1fa9a7Sjfrank 			cmn_err(CE_NOTE, "pass2xscf_thread: "
12453f1fa9a7Sjfrank 			    "scf_service_putinfo not found\n");
12463f1fa9a7Sjfrank 			ctl_msg.nmt = NULL;
12473f1fa9a7Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
12483f1fa9a7Sjfrank 			return;
12493f1fa9a7Sjfrank 		}
12503f1fa9a7Sjfrank 	}
12513f1fa9a7Sjfrank 
12523f1fa9a7Sjfrank 	/*
12533f1fa9a7Sjfrank 	 * Calculate the number of attempts to connect XSCF based on the
12543f1fa9a7Sjfrank 	 * scf driver delay (which is
12553f1fa9a7Sjfrank 	 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
12563f1fa9a7Sjfrank 	 * of xscf_connect_delay (the total number of seconds to wait
12573f1fa9a7Sjfrank 	 * till xscf get ready.)
12583f1fa9a7Sjfrank 	 */
12593f1fa9a7Sjfrank 	if (repeat_cnt == 0) {
12603f1fa9a7Sjfrank 		if ((scf_wait_cnt =
12613f1fa9a7Sjfrank 		    (uint_t *)
12623f1fa9a7Sjfrank 		    modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
12633f1fa9a7Sjfrank 			repeat_cnt = REPEATS;
12643f1fa9a7Sjfrank 		} else {
12653f1fa9a7Sjfrank 
12663f1fa9a7Sjfrank 			xscf_driver_delay = *scf_wait_cnt *
12673f1fa9a7Sjfrank 			    SCF_DEVBUSY_DELAY;
12683f1fa9a7Sjfrank 			repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
12693f1fa9a7Sjfrank 		}
12703f1fa9a7Sjfrank 	}
12713f1fa9a7Sjfrank 
12723f1fa9a7Sjfrank 	while (ctl_msg.cnt != 0) {
12733f1fa9a7Sjfrank 
12743f1fa9a7Sjfrank 		/*
12753f1fa9a7Sjfrank 		 * Take the very last request from the queue,
12763f1fa9a7Sjfrank 		 */
12773f1fa9a7Sjfrank 		ctl_msg.now_serving = ctl_msg.head;
12783f1fa9a7Sjfrank 		ASSERT(ctl_msg.now_serving != NULL);
12793f1fa9a7Sjfrank 
12803f1fa9a7Sjfrank 		/*
12813f1fa9a7Sjfrank 		 * and discard all the others if any.
12823f1fa9a7Sjfrank 		 */
12833f1fa9a7Sjfrank 		FREE_THE_TAIL(ctl_msg.now_serving);
12843f1fa9a7Sjfrank 		ctl_msg.cnt = 1;
12853f1fa9a7Sjfrank 		mutex_exit(&ctl_msg.nm_lock);
12863f1fa9a7Sjfrank 
12873f1fa9a7Sjfrank 		/*
12883f1fa9a7Sjfrank 		 * Pass the name to XSCF. Note please, we do not hold the
12893f1fa9a7Sjfrank 		 * mutex while we are doing this.
12903f1fa9a7Sjfrank 		 */
12913f1fa9a7Sjfrank 		msg_sent = 0;
12923f1fa9a7Sjfrank 		for (i = 0; i < repeat_cnt; i++) {
12933f1fa9a7Sjfrank 			if (PASS2XSCF(ctl_msg.now_serving, ret)) {
12943f1fa9a7Sjfrank 				msg_sent = 1;
12953f1fa9a7Sjfrank 				break;
12963f1fa9a7Sjfrank 			} else {
12973f1fa9a7Sjfrank 				if (ret != EBUSY) {
12983f1fa9a7Sjfrank 					cmn_err(CE_NOTE, "pass2xscf_thread:"
12993f1fa9a7Sjfrank 					    " unexpected return code"
13003f1fa9a7Sjfrank 					    " from scf_service_putinfo():"
13013f1fa9a7Sjfrank 					    " %d\n", ret);
13023f1fa9a7Sjfrank 				}
13033f1fa9a7Sjfrank 			}
13043f1fa9a7Sjfrank 		}
13053f1fa9a7Sjfrank 
13063f1fa9a7Sjfrank 		if (msg_sent) {
13073f1fa9a7Sjfrank 
13083f1fa9a7Sjfrank 			/*
13093f1fa9a7Sjfrank 			 * Remove the request from the list
13103f1fa9a7Sjfrank 			 */
13113f1fa9a7Sjfrank 			mutex_enter(&ctl_msg.nm_lock);
13123f1fa9a7Sjfrank 			msg = ctl_msg.now_serving;
13133f1fa9a7Sjfrank 			ctl_msg.now_serving = NULL;
13143f1fa9a7Sjfrank 			REMOVE(msg);
13153f1fa9a7Sjfrank 			ctl_msg.cnt--;
13163f1fa9a7Sjfrank 			mutex_exit(&ctl_msg.nm_lock);
13173f1fa9a7Sjfrank 			FREE_MSG(msg);
13183f1fa9a7Sjfrank 		} else {
13193f1fa9a7Sjfrank 
13203f1fa9a7Sjfrank 			/*
13213f1fa9a7Sjfrank 			 * If while we have tried to communicate with
13223f1fa9a7Sjfrank 			 * XSCF there were any other requests we are
13233f1fa9a7Sjfrank 			 * going to drop this one and take the latest
13243f1fa9a7Sjfrank 			 * one.  Otherwise we will try to pass this one
13253f1fa9a7Sjfrank 			 * again.
13263f1fa9a7Sjfrank 			 */
13273f1fa9a7Sjfrank 			cmn_err(CE_NOTE,
13283f1fa9a7Sjfrank 			    "pass2xscf_thread: "
13293f1fa9a7Sjfrank 			    "scf_service_putinfo "
13303f1fa9a7Sjfrank 			    "not responding\n");
13313f1fa9a7Sjfrank 		}
13323f1fa9a7Sjfrank 		mutex_enter(&ctl_msg.nm_lock);
13333f1fa9a7Sjfrank 	}
13343f1fa9a7Sjfrank 
13353f1fa9a7Sjfrank 	/*
13363f1fa9a7Sjfrank 	 * The request queue is empty, exit.
13373f1fa9a7Sjfrank 	 */
13383f1fa9a7Sjfrank 	ctl_msg.nmt = NULL;
13393f1fa9a7Sjfrank 	mutex_exit(&ctl_msg.nm_lock);
13403f1fa9a7Sjfrank }
1341