xref: /illumos-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 1e2e7a75)
125cf1a30Sjl /*
225cf1a30Sjl  * CDDL HEADER START
325cf1a30Sjl  *
425cf1a30Sjl  * The contents of this file are subject to the terms of the
525cf1a30Sjl  * Common Development and Distribution License (the "License").
625cf1a30Sjl  * You may not use this file except in compliance with the License.
725cf1a30Sjl  *
825cf1a30Sjl  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925cf1a30Sjl  * or http://www.opensolaris.org/os/licensing.
1025cf1a30Sjl  * See the License for the specific language governing permissions
1125cf1a30Sjl  * and limitations under the License.
1225cf1a30Sjl  *
1325cf1a30Sjl  * When distributing Covered Code, include this CDDL HEADER in each
1425cf1a30Sjl  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525cf1a30Sjl  * If applicable, add the following below this CDDL HEADER, with the
1625cf1a30Sjl  * fields enclosed by brackets "[]" replaced with your own identifying
1725cf1a30Sjl  * information: Portions Copyright [yyyy] [name of copyright owner]
1825cf1a30Sjl  *
1925cf1a30Sjl  * CDDL HEADER END
2025cf1a30Sjl  */
2125cf1a30Sjl /*
2225cf1a30Sjl  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
2325cf1a30Sjl  * Use is subject to license terms.
2425cf1a30Sjl  */
2525cf1a30Sjl 
2625cf1a30Sjl #pragma ident	"%Z%%M%	%I%	%E% SMI"
2725cf1a30Sjl 
2825cf1a30Sjl #include <sys/cpuvar.h>
2925cf1a30Sjl #include <sys/systm.h>
3025cf1a30Sjl #include <sys/sysmacros.h>
3125cf1a30Sjl #include <sys/promif.h>
3225cf1a30Sjl #include <sys/platform_module.h>
3325cf1a30Sjl #include <sys/cmn_err.h>
3425cf1a30Sjl #include <sys/errno.h>
3525cf1a30Sjl #include <sys/machsystm.h>
3625cf1a30Sjl #include <sys/bootconf.h>
3725cf1a30Sjl #include <sys/nvpair.h>
3825cf1a30Sjl #include <sys/kobj.h>
3925cf1a30Sjl #include <sys/mem_cage.h>
4025cf1a30Sjl #include <sys/opl.h>
4125cf1a30Sjl #include <sys/scfd/scfostoescf.h>
4225cf1a30Sjl #include <sys/cpu_sgnblk_defs.h>
4325cf1a30Sjl #include <sys/utsname.h>
4425cf1a30Sjl #include <sys/ddi.h>
4525cf1a30Sjl #include <sys/sunndi.h>
4625cf1a30Sjl #include <sys/lgrp.h>
4725cf1a30Sjl #include <sys/memnode.h>
4825cf1a30Sjl #include <sys/sysmacros.h>
4925cf1a30Sjl #include <vm/vm_dep.h>
5025cf1a30Sjl 
5125cf1a30Sjl int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
520cc8ae86Sav int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
530cc8ae86Sav int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
540cc8ae86Sav int (*opl_get_mem_addr)(char *unum, char *sid,
550cc8ae86Sav     uint64_t offset, uint64_t *paddr);
5625cf1a30Sjl 
5725cf1a30Sjl /* Memory for fcode claims.  16k times # maximum possible IO units */
5825cf1a30Sjl #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
5925cf1a30Sjl int efcode_size = EFCODE_SIZE;
6025cf1a30Sjl 
6125cf1a30Sjl #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
6225cf1a30Sjl 
6325cf1a30Sjl /* Set the maximum number of boards for DR */
6425cf1a30Sjl int opl_boards = OPL_MAX_BOARDS;
6525cf1a30Sjl 
6625cf1a30Sjl void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
6725cf1a30Sjl 
6825cf1a30Sjl extern int tsb_lgrp_affinity;
6925cf1a30Sjl 
7025cf1a30Sjl int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
7125cf1a30Sjl 	(OPL_MAX_TSBS_PER_PCICH);
7225cf1a30Sjl 
7325cf1a30Sjl pgcnt_t opl_startup_cage_size = 0;
7425cf1a30Sjl 
75*1e2e7a75Shuah static opl_model_info_t opl_models[] = {
76*1e2e7a75Shuah 	{ "FF1", OPL_MAX_BOARDS_FF1 },
77*1e2e7a75Shuah 	{ "FF2", OPL_MAX_BOARDS_FF2 },
78*1e2e7a75Shuah 	{ "DC1", OPL_MAX_BOARDS_DC1 },
79*1e2e7a75Shuah 	{ "DC2", OPL_MAX_BOARDS_DC2 },
80*1e2e7a75Shuah 	{ "DC3", OPL_MAX_BOARDS_DC3 },
81*1e2e7a75Shuah };
82*1e2e7a75Shuah static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
83*1e2e7a75Shuah 
84*1e2e7a75Shuah static	opl_model_info_t *opl_cur_model = NULL;
85*1e2e7a75Shuah 
8625cf1a30Sjl static struct memlist *opl_memlist_per_board(struct memlist *ml);
8725cf1a30Sjl 
880cc8ae86Sav static enum {
890cc8ae86Sav 	MODEL_FF1 = 0,
900cc8ae86Sav 	MODEL_FF2 = 1,
910cc8ae86Sav 	MODEL_DC = 2
920cc8ae86Sav } plat_model = -1;
930cc8ae86Sav 
9425cf1a30Sjl int
9525cf1a30Sjl set_platform_max_ncpus(void)
9625cf1a30Sjl {
9725cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
9825cf1a30Sjl }
9925cf1a30Sjl 
10025cf1a30Sjl int
10125cf1a30Sjl set_platform_tsb_spares(void)
10225cf1a30Sjl {
10325cf1a30Sjl 	return (MIN(opl_tsb_spares, MAX_UPA));
10425cf1a30Sjl }
10525cf1a30Sjl 
106*1e2e7a75Shuah static void
107*1e2e7a75Shuah set_model_info()
108*1e2e7a75Shuah {
109*1e2e7a75Shuah 	char	name[MAXSYSNAME];
110*1e2e7a75Shuah 	int	i;
111*1e2e7a75Shuah 
112*1e2e7a75Shuah 	/*
113*1e2e7a75Shuah 	 * Get model name from the root node.
114*1e2e7a75Shuah 	 *
115*1e2e7a75Shuah 	 * We are using the prom device tree since, at this point,
116*1e2e7a75Shuah 	 * the Solaris device tree is not yet setup.
117*1e2e7a75Shuah 	 */
118*1e2e7a75Shuah 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
119*1e2e7a75Shuah 
120*1e2e7a75Shuah 	for (i = 0; i < opl_num_models; i++) {
121*1e2e7a75Shuah 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
122*1e2e7a75Shuah 			opl_cur_model = &opl_models[i];
123*1e2e7a75Shuah 			break;
124*1e2e7a75Shuah 		}
125*1e2e7a75Shuah 	}
126*1e2e7a75Shuah 	if (i == opl_num_models)
127*1e2e7a75Shuah 		cmn_err(CE_WARN, "No valid OPL model is found!"
128*1e2e7a75Shuah 		    "Set max_mmu_ctxdoms to the default.");
129*1e2e7a75Shuah }
130*1e2e7a75Shuah 
131*1e2e7a75Shuah static void
132*1e2e7a75Shuah set_max_mmu_ctxdoms()
133*1e2e7a75Shuah {
134*1e2e7a75Shuah 	extern uint_t	max_mmu_ctxdoms;
135*1e2e7a75Shuah 	int		max_boards;
136*1e2e7a75Shuah 
137*1e2e7a75Shuah 	/*
138*1e2e7a75Shuah 	 * From the model, get the maximum number of boards
139*1e2e7a75Shuah 	 * supported and set the value accordingly. If the model
140*1e2e7a75Shuah 	 * could not be determined or recognized, we assume the max value.
141*1e2e7a75Shuah 	 */
142*1e2e7a75Shuah 	if (opl_cur_model == NULL)
143*1e2e7a75Shuah 		max_boards = OPL_MAX_BOARDS;
144*1e2e7a75Shuah 	else
145*1e2e7a75Shuah 		max_boards = opl_cur_model->model_max_boards;
146*1e2e7a75Shuah 
147*1e2e7a75Shuah 	/*
148*1e2e7a75Shuah 	 * On OPL, cores and MMUs are one-to-one.
149*1e2e7a75Shuah 	 */
150*1e2e7a75Shuah 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
151*1e2e7a75Shuah }
152*1e2e7a75Shuah 
15325cf1a30Sjl #pragma weak mmu_init_large_pages
15425cf1a30Sjl 
15525cf1a30Sjl void
15625cf1a30Sjl set_platform_defaults(void)
15725cf1a30Sjl {
15825cf1a30Sjl 	extern char *tod_module_name;
15925cf1a30Sjl 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
16025cf1a30Sjl 	extern int ts_dispatch_extended;
16125cf1a30Sjl 	extern void mmu_init_large_pages(size_t);
16225cf1a30Sjl 
16325cf1a30Sjl 	/* Set the CPU signature function pointer */
16425cf1a30Sjl 	cpu_sgn_func = cpu_sgn_update;
16525cf1a30Sjl 
16625cf1a30Sjl 	/* Set appropriate tod module for OPL platform */
16725cf1a30Sjl 	ASSERT(tod_module_name == NULL);
16825cf1a30Sjl 	tod_module_name = "todopl";
16925cf1a30Sjl 
17025cf1a30Sjl 	/*
17125cf1a30Sjl 	 * Use the alternate TS dispatch table, which is better tuned
17225cf1a30Sjl 	 * for large servers.
17325cf1a30Sjl 	 */
17425cf1a30Sjl 	if (ts_dispatch_extended == -1)
17525cf1a30Sjl 		ts_dispatch_extended = 1;
17625cf1a30Sjl 
17725cf1a30Sjl 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
17825cf1a30Sjl 	    (mmu_ism_pagesize != MMU_PAGESIZE32M)) {
17925cf1a30Sjl 		if (&mmu_init_large_pages)
18025cf1a30Sjl 			mmu_init_large_pages(mmu_ism_pagesize);
18125cf1a30Sjl 	}
18225cf1a30Sjl 
18325cf1a30Sjl 	tsb_lgrp_affinity = 1;
184*1e2e7a75Shuah 
185*1e2e7a75Shuah 	set_model_info();
186*1e2e7a75Shuah 	set_max_mmu_ctxdoms();
18725cf1a30Sjl }
18825cf1a30Sjl 
18925cf1a30Sjl /*
19025cf1a30Sjl  * Convert logical a board number to a physical one.
19125cf1a30Sjl  */
19225cf1a30Sjl 
19325cf1a30Sjl #define	LSBPROP		"board#"
19425cf1a30Sjl #define	PSBPROP		"physical-board#"
19525cf1a30Sjl 
19625cf1a30Sjl int
19725cf1a30Sjl opl_get_physical_board(int id)
19825cf1a30Sjl {
19925cf1a30Sjl 	dev_info_t	*root_dip, *dip = NULL;
20025cf1a30Sjl 	char		*dname = NULL;
20125cf1a30Sjl 	int		circ;
20225cf1a30Sjl 
20325cf1a30Sjl 	pnode_t		pnode;
20425cf1a30Sjl 	char		pname[MAXSYSNAME] = {0};
20525cf1a30Sjl 
20625cf1a30Sjl 	int		lsb_id;	/* Logical System Board ID */
20725cf1a30Sjl 	int		psb_id;	/* Physical System Board ID */
20825cf1a30Sjl 
20925cf1a30Sjl 
21025cf1a30Sjl 	/*
21125cf1a30Sjl 	 * This function is called on early stage of bootup when the
21225cf1a30Sjl 	 * kernel device tree is not initialized yet, and also
21325cf1a30Sjl 	 * later on when the device tree is up. We want to try
21425cf1a30Sjl 	 * the fast track first.
21525cf1a30Sjl 	 */
21625cf1a30Sjl 	root_dip = ddi_root_node();
21725cf1a30Sjl 	if (root_dip) {
21825cf1a30Sjl 		/* Get from devinfo node */
21925cf1a30Sjl 		ndi_devi_enter(root_dip, &circ);
22025cf1a30Sjl 		for (dip = ddi_get_child(root_dip); dip;
22125cf1a30Sjl 		    dip = ddi_get_next_sibling(dip)) {
22225cf1a30Sjl 
22325cf1a30Sjl 			dname = ddi_node_name(dip);
22425cf1a30Sjl 			if (strncmp(dname, "pseudo-mc", 9) != 0)
22525cf1a30Sjl 				continue;
22625cf1a30Sjl 
22725cf1a30Sjl 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
22825cf1a30Sjl 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
22925cf1a30Sjl 				continue;
23025cf1a30Sjl 
23125cf1a30Sjl 			if (id == lsb_id) {
23225cf1a30Sjl 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
23325cf1a30Sjl 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
23425cf1a30Sjl 				    == -1) {
23525cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
23625cf1a30Sjl 					return (-1);
23725cf1a30Sjl 				} else {
23825cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
23925cf1a30Sjl 					return (psb_id);
24025cf1a30Sjl 				}
24125cf1a30Sjl 			}
24225cf1a30Sjl 		}
24325cf1a30Sjl 		ndi_devi_exit(root_dip, circ);
24425cf1a30Sjl 	}
24525cf1a30Sjl 
24625cf1a30Sjl 	/*
24725cf1a30Sjl 	 * We do not have the kernel device tree, or we did not
24825cf1a30Sjl 	 * find the node for some reason (let's say the kernel
24925cf1a30Sjl 	 * device tree was modified), let's try the OBP tree.
25025cf1a30Sjl 	 */
25125cf1a30Sjl 	pnode = prom_rootnode();
25225cf1a30Sjl 	for (pnode = prom_childnode(pnode); pnode;
25325cf1a30Sjl 	    pnode = prom_nextnode(pnode)) {
25425cf1a30Sjl 
25525cf1a30Sjl 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
25625cf1a30Sjl 		    (strncmp(pname, "pseudo-mc", 9) != 0))
25725cf1a30Sjl 			continue;
25825cf1a30Sjl 
25925cf1a30Sjl 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
26025cf1a30Sjl 			continue;
26125cf1a30Sjl 
26225cf1a30Sjl 		if (id == lsb_id) {
26325cf1a30Sjl 			if (prom_getprop(pnode, PSBPROP,
26425cf1a30Sjl 			    (caddr_t)&psb_id) == -1) {
26525cf1a30Sjl 				return (-1);
26625cf1a30Sjl 			} else {
26725cf1a30Sjl 				return (psb_id);
26825cf1a30Sjl 			}
26925cf1a30Sjl 		}
27025cf1a30Sjl 	}
27125cf1a30Sjl 
27225cf1a30Sjl 	return (-1);
27325cf1a30Sjl }
27425cf1a30Sjl 
27525cf1a30Sjl /*
27625cf1a30Sjl  * For OPL it's possible that memory from two or more successive boards
27725cf1a30Sjl  * will be contiguous across the boards, and therefore represented as a
27825cf1a30Sjl  * single chunk.
27925cf1a30Sjl  * This function splits such chunks down the board boundaries.
28025cf1a30Sjl  */
28125cf1a30Sjl static struct memlist *
28225cf1a30Sjl opl_memlist_per_board(struct memlist *ml)
28325cf1a30Sjl {
28425cf1a30Sjl 	uint64_t ssize, low, high, boundary;
28525cf1a30Sjl 	struct memlist *head, *tail, *new;
28625cf1a30Sjl 
28725cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
28825cf1a30Sjl 
28925cf1a30Sjl 	head = tail = NULL;
29025cf1a30Sjl 
29125cf1a30Sjl 	for (; ml; ml = ml->next) {
29225cf1a30Sjl 		low  = (uint64_t)ml->address;
29325cf1a30Sjl 		high = low+(uint64_t)(ml->size);
29425cf1a30Sjl 		while (low < high) {
29525cf1a30Sjl 			boundary = roundup(low+1, ssize);
29625cf1a30Sjl 			boundary = MIN(high, boundary);
29725cf1a30Sjl 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
29825cf1a30Sjl 			new->address = low;
29925cf1a30Sjl 			new->size = boundary - low;
30025cf1a30Sjl 			if (head == NULL)
30125cf1a30Sjl 				head = new;
30225cf1a30Sjl 			if (tail) {
30325cf1a30Sjl 				tail->next = new;
30425cf1a30Sjl 				new->prev = tail;
30525cf1a30Sjl 			}
30625cf1a30Sjl 			tail = new;
30725cf1a30Sjl 			low = boundary;
30825cf1a30Sjl 		}
30925cf1a30Sjl 	}
31025cf1a30Sjl 	return (head);
31125cf1a30Sjl }
31225cf1a30Sjl 
31325cf1a30Sjl void
31425cf1a30Sjl set_platform_cage_params(void)
31525cf1a30Sjl {
31625cf1a30Sjl 	extern pgcnt_t total_pages;
31725cf1a30Sjl 	extern struct memlist *phys_avail;
31825cf1a30Sjl 	struct memlist *ml, *tml;
31925cf1a30Sjl 	int ret;
32025cf1a30Sjl 
32125cf1a30Sjl 	if (kernel_cage_enable) {
32225cf1a30Sjl 		pgcnt_t preferred_cage_size;
32325cf1a30Sjl 
32425cf1a30Sjl 		preferred_cage_size =
32525cf1a30Sjl 			MAX(opl_startup_cage_size, total_pages / 256);
32625cf1a30Sjl 
32725cf1a30Sjl 		ml = opl_memlist_per_board(phys_avail);
32825cf1a30Sjl 
32925cf1a30Sjl 		kcage_range_lock();
33025cf1a30Sjl 		/*
33125cf1a30Sjl 		 * Note: we are assuming that post has load the
33225cf1a30Sjl 		 * whole show in to the high end of memory. Having
33325cf1a30Sjl 		 * taken this leap, we copy the whole of phys_avail
33425cf1a30Sjl 		 * the glist and arrange for the cage to grow
33525cf1a30Sjl 		 * downward (descending pfns).
33625cf1a30Sjl 		 */
33725cf1a30Sjl 		ret = kcage_range_init(ml, 1);
33825cf1a30Sjl 
33925cf1a30Sjl 		/* free the memlist */
34025cf1a30Sjl 		do {
34125cf1a30Sjl 			tml = ml->next;
34225cf1a30Sjl 			kmem_free(ml, sizeof (struct memlist));
34325cf1a30Sjl 			ml = tml;
34425cf1a30Sjl 		} while (ml != NULL);
34525cf1a30Sjl 
34625cf1a30Sjl 		if (ret == 0)
34725cf1a30Sjl 			kcage_init(preferred_cage_size);
34825cf1a30Sjl 		kcage_range_unlock();
34925cf1a30Sjl 	}
35025cf1a30Sjl 
35125cf1a30Sjl 	if (kcage_on)
35225cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
35325cf1a30Sjl 	else
35425cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
35525cf1a30Sjl }
35625cf1a30Sjl 
35725cf1a30Sjl /*ARGSUSED*/
35825cf1a30Sjl int
35925cf1a30Sjl plat_cpu_poweron(struct cpu *cp)
36025cf1a30Sjl {
36125cf1a30Sjl 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
36225cf1a30Sjl 
36325cf1a30Sjl 	opl_cpu_poweron =
36425cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
36525cf1a30Sjl 
36625cf1a30Sjl 	if (opl_cpu_poweron == NULL)
36725cf1a30Sjl 		return (ENOTSUP);
36825cf1a30Sjl 	else
36925cf1a30Sjl 		return ((opl_cpu_poweron)(cp));
37025cf1a30Sjl 
37125cf1a30Sjl }
37225cf1a30Sjl 
37325cf1a30Sjl /*ARGSUSED*/
37425cf1a30Sjl int
37525cf1a30Sjl plat_cpu_poweroff(struct cpu *cp)
37625cf1a30Sjl {
37725cf1a30Sjl 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
37825cf1a30Sjl 
37925cf1a30Sjl 	opl_cpu_poweroff =
38025cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
38125cf1a30Sjl 
38225cf1a30Sjl 	if (opl_cpu_poweroff == NULL)
38325cf1a30Sjl 		return (ENOTSUP);
38425cf1a30Sjl 	else
38525cf1a30Sjl 		return ((opl_cpu_poweroff)(cp));
38625cf1a30Sjl 
38725cf1a30Sjl }
38825cf1a30Sjl 
38925cf1a30Sjl int
39025cf1a30Sjl plat_max_boards(void)
39125cf1a30Sjl {
39225cf1a30Sjl 	return (OPL_MAX_BOARDS);
39325cf1a30Sjl }
39425cf1a30Sjl 
39525cf1a30Sjl int
39625cf1a30Sjl plat_max_cpu_units_per_board(void)
39725cf1a30Sjl {
39825cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD);
39925cf1a30Sjl }
40025cf1a30Sjl 
40125cf1a30Sjl int
40225cf1a30Sjl plat_max_mem_units_per_board(void)
40325cf1a30Sjl {
40425cf1a30Sjl 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
40525cf1a30Sjl }
40625cf1a30Sjl 
40725cf1a30Sjl int
40825cf1a30Sjl plat_max_io_units_per_board(void)
40925cf1a30Sjl {
41025cf1a30Sjl 	return (OPL_MAX_IO_UNITS_PER_BOARD);
41125cf1a30Sjl }
41225cf1a30Sjl 
41325cf1a30Sjl int
41425cf1a30Sjl plat_max_cmp_units_per_board(void)
41525cf1a30Sjl {
41625cf1a30Sjl 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
41725cf1a30Sjl }
41825cf1a30Sjl 
41925cf1a30Sjl int
42025cf1a30Sjl plat_max_core_units_per_board(void)
42125cf1a30Sjl {
42225cf1a30Sjl 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
42325cf1a30Sjl }
42425cf1a30Sjl 
42525cf1a30Sjl int
42625cf1a30Sjl plat_pfn_to_mem_node(pfn_t pfn)
42725cf1a30Sjl {
42825cf1a30Sjl 	return (pfn >> mem_node_pfn_shift);
42925cf1a30Sjl }
43025cf1a30Sjl 
43125cf1a30Sjl /* ARGSUSED */
43225cf1a30Sjl void
43325cf1a30Sjl plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
43425cf1a30Sjl {
43525cf1a30Sjl 	size_t	elem;
43625cf1a30Sjl 	pfn_t	basepfn;
43725cf1a30Sjl 	pgcnt_t	npgs;
43825cf1a30Sjl 	uint64_t	boundary, ssize;
43925cf1a30Sjl 	uint64_t	low, high;
44025cf1a30Sjl 
44125cf1a30Sjl 	/*
44225cf1a30Sjl 	 * OPL mem slices are always aligned on a 256GB boundary.
44325cf1a30Sjl 	 */
44425cf1a30Sjl 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
44525cf1a30Sjl 	mem_node_physalign = 0;
44625cf1a30Sjl 
44725cf1a30Sjl 	/*
44825cf1a30Sjl 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
44925cf1a30Sjl 	 */
45025cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
45125cf1a30Sjl 	for (elem = 0; elem < nelems; elem += 2) {
45225cf1a30Sjl 		low  = (uint64_t)list[elem];
45325cf1a30Sjl 		high = low+(uint64_t)(list[elem+1]);
45425cf1a30Sjl 		while (low < high) {
45525cf1a30Sjl 			boundary = roundup(low+1, ssize);
45625cf1a30Sjl 			boundary = MIN(high, boundary);
45725cf1a30Sjl 			basepfn = btop(low);
45825cf1a30Sjl 			npgs = btop(boundary - low);
45925cf1a30Sjl 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
46025cf1a30Sjl 			low = boundary;
46125cf1a30Sjl 		}
46225cf1a30Sjl 	}
46325cf1a30Sjl }
46425cf1a30Sjl 
46525cf1a30Sjl /*
46625cf1a30Sjl  * Find the CPU associated with a slice at boot-time.
46725cf1a30Sjl  */
46825cf1a30Sjl void
46925cf1a30Sjl plat_fill_mc(pnode_t nodeid)
47025cf1a30Sjl {
47125cf1a30Sjl 	int board;
47225cf1a30Sjl 	int memnode;
47325cf1a30Sjl 	struct {
47425cf1a30Sjl 		uint64_t	addr;
47525cf1a30Sjl 		uint64_t	size;
47625cf1a30Sjl 	} mem_range;
47725cf1a30Sjl 
47825cf1a30Sjl 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
47925cf1a30Sjl 		panic("Can not find board# property in mc node %x", nodeid);
48025cf1a30Sjl 	}
48125cf1a30Sjl 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
48225cf1a30Sjl 		panic("Can not find sb-mem-ranges property in mc node %x",
48325cf1a30Sjl 			nodeid);
48425cf1a30Sjl 	}
48525cf1a30Sjl 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
48625cf1a30Sjl 	plat_assign_lgrphand_to_mem_node(board, memnode);
48725cf1a30Sjl }
48825cf1a30Sjl 
48925cf1a30Sjl /*
49025cf1a30Sjl  * Return the platform handle for the lgroup containing the given CPU
49125cf1a30Sjl  *
49225cf1a30Sjl  * For OPL, lgroup platform handle == board #.
49325cf1a30Sjl  */
49425cf1a30Sjl 
49525cf1a30Sjl extern int mpo_disabled;
49625cf1a30Sjl extern lgrp_handle_t lgrp_default_handle;
49725cf1a30Sjl 
49825cf1a30Sjl lgrp_handle_t
49925cf1a30Sjl plat_lgrp_cpu_to_hand(processorid_t id)
50025cf1a30Sjl {
50125cf1a30Sjl 	lgrp_handle_t plathand;
50225cf1a30Sjl 
50325cf1a30Sjl 	/*
50425cf1a30Sjl 	 * Return the real platform handle for the CPU until
50525cf1a30Sjl 	 * such time as we know that MPO should be disabled.
50625cf1a30Sjl 	 * At that point, we set the "mpo_disabled" flag to true,
50725cf1a30Sjl 	 * and from that point on, return the default handle.
50825cf1a30Sjl 	 *
50925cf1a30Sjl 	 * By the time we know that MPO should be disabled, the
51025cf1a30Sjl 	 * first CPU will have already been added to a leaf
51125cf1a30Sjl 	 * lgroup, but that's ok. The common lgroup code will
51225cf1a30Sjl 	 * double check that the boot CPU is in the correct place,
51325cf1a30Sjl 	 * and in the case where mpo should be disabled, will move
51425cf1a30Sjl 	 * it to the root if necessary.
51525cf1a30Sjl 	 */
51625cf1a30Sjl 	if (mpo_disabled) {
51725cf1a30Sjl 		/* If MPO is disabled, return the default (UMA) handle */
51825cf1a30Sjl 		plathand = lgrp_default_handle;
51925cf1a30Sjl 	} else
52025cf1a30Sjl 		plathand = (lgrp_handle_t)LSB_ID(id);
52125cf1a30Sjl 	return (plathand);
52225cf1a30Sjl }
52325cf1a30Sjl 
52425cf1a30Sjl /*
52525cf1a30Sjl  * Platform specific lgroup initialization
52625cf1a30Sjl  */
52725cf1a30Sjl void
52825cf1a30Sjl plat_lgrp_init(void)
52925cf1a30Sjl {
53025cf1a30Sjl 	extern uint32_t lgrp_expand_proc_thresh;
53125cf1a30Sjl 	extern uint32_t lgrp_expand_proc_diff;
53225cf1a30Sjl 
53325cf1a30Sjl 	/*
53425cf1a30Sjl 	 * Set tuneables for the OPL architecture
53525cf1a30Sjl 	 *
53625cf1a30Sjl 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
53725cf1a30Sjl 	 * this process is currently running on before considering
53825cf1a30Sjl 	 * expanding threads to another lgroup.
53925cf1a30Sjl 	 *
54025cf1a30Sjl 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
54125cf1a30Sjl 	 * must be loaded before expanding to it.
54225cf1a30Sjl 	 *
54325cf1a30Sjl 	 * Since remote latencies can be costly, attempt to keep 3 threads
54425cf1a30Sjl 	 * within the same lgroup before expanding to the next lgroup.
54525cf1a30Sjl 	 */
54625cf1a30Sjl 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
54725cf1a30Sjl 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
54825cf1a30Sjl }
54925cf1a30Sjl 
55025cf1a30Sjl /*
55125cf1a30Sjl  * Platform notification of lgroup (re)configuration changes
55225cf1a30Sjl  */
55325cf1a30Sjl /*ARGSUSED*/
55425cf1a30Sjl void
55525cf1a30Sjl plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
55625cf1a30Sjl {
55725cf1a30Sjl 	update_membounds_t *umb;
55825cf1a30Sjl 	lgrp_config_mem_rename_t lmr;
55925cf1a30Sjl 	int sbd, tbd;
56025cf1a30Sjl 	lgrp_handle_t hand, shand, thand;
56125cf1a30Sjl 	int mnode, snode, tnode;
56225cf1a30Sjl 	pfn_t start, end;
56325cf1a30Sjl 
56425cf1a30Sjl 	if (mpo_disabled)
56525cf1a30Sjl 		return;
56625cf1a30Sjl 
56725cf1a30Sjl 	switch (evt) {
56825cf1a30Sjl 
56925cf1a30Sjl 	case LGRP_CONFIG_MEM_ADD:
57025cf1a30Sjl 		/*
57125cf1a30Sjl 		 * Establish the lgroup handle to memnode translation.
57225cf1a30Sjl 		 */
57325cf1a30Sjl 		umb = (update_membounds_t *)arg;
57425cf1a30Sjl 
57525cf1a30Sjl 		hand = umb->u_board;
57625cf1a30Sjl 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
57725cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(hand, mnode);
57825cf1a30Sjl 
57925cf1a30Sjl 		break;
58025cf1a30Sjl 
58125cf1a30Sjl 	case LGRP_CONFIG_MEM_DEL:
58225cf1a30Sjl 		/*
58325cf1a30Sjl 		 * Special handling for possible memory holes.
58425cf1a30Sjl 		 */
58525cf1a30Sjl 		umb = (update_membounds_t *)arg;
58625cf1a30Sjl 		hand = umb->u_board;
58725cf1a30Sjl 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
58825cf1a30Sjl 			if (mem_node_config[mnode].exists) {
58925cf1a30Sjl 				start = mem_node_config[mnode].physbase;
59025cf1a30Sjl 				end = mem_node_config[mnode].physmax;
59125cf1a30Sjl 				mem_node_pre_del_slice(start, end);
59225cf1a30Sjl 				mem_node_post_del_slice(start, end, 0);
59325cf1a30Sjl 			}
59425cf1a30Sjl 		}
59525cf1a30Sjl 
59625cf1a30Sjl 		break;
59725cf1a30Sjl 
59825cf1a30Sjl 	case LGRP_CONFIG_MEM_RENAME:
59925cf1a30Sjl 		/*
60025cf1a30Sjl 		 * During a DR copy-rename operation, all of the memory
60125cf1a30Sjl 		 * on one board is moved to another board -- but the
60225cf1a30Sjl 		 * addresses/pfns and memnodes don't change. This means
60325cf1a30Sjl 		 * the memory has changed locations without changing identity.
60425cf1a30Sjl 		 *
60525cf1a30Sjl 		 * Source is where we are copying from and target is where we
60625cf1a30Sjl 		 * are copying to.  After source memnode is copied to target
60725cf1a30Sjl 		 * memnode, the physical addresses of the target memnode are
60825cf1a30Sjl 		 * renamed to match what the source memnode had.  Then target
60925cf1a30Sjl 		 * memnode can be removed and source memnode can take its
61025cf1a30Sjl 		 * place.
61125cf1a30Sjl 		 *
61225cf1a30Sjl 		 * To do this, swap the lgroup handle to memnode mappings for
61325cf1a30Sjl 		 * the boards, so target lgroup will have source memnode and
61425cf1a30Sjl 		 * source lgroup will have empty target memnode which is where
61525cf1a30Sjl 		 * its memory will go (if any is added to it later).
61625cf1a30Sjl 		 *
61725cf1a30Sjl 		 * Then source memnode needs to be removed from its lgroup
61825cf1a30Sjl 		 * and added to the target lgroup where the memory was living
61925cf1a30Sjl 		 * but under a different name/memnode.  The memory was in the
62025cf1a30Sjl 		 * target memnode and now lives in the source memnode with
62125cf1a30Sjl 		 * different physical addresses even though it is the same
62225cf1a30Sjl 		 * memory.
62325cf1a30Sjl 		 */
62425cf1a30Sjl 		sbd = arg & 0xffff;
62525cf1a30Sjl 		tbd = (arg & 0xffff0000) >> 16;
62625cf1a30Sjl 		shand = sbd;
62725cf1a30Sjl 		thand = tbd;
62825cf1a30Sjl 		snode = plat_lgrphand_to_mem_node(shand);
62925cf1a30Sjl 		tnode = plat_lgrphand_to_mem_node(thand);
63025cf1a30Sjl 
63125cf1a30Sjl 		/*
63225cf1a30Sjl 		 * Special handling for possible memory holes.
63325cf1a30Sjl 		 */
63425cf1a30Sjl 		if (tnode != -1 && mem_node_config[tnode].exists) {
63525cf1a30Sjl 			start = mem_node_config[mnode].physbase;
63625cf1a30Sjl 			end = mem_node_config[mnode].physmax;
63725cf1a30Sjl 			mem_node_pre_del_slice(start, end);
63825cf1a30Sjl 			mem_node_post_del_slice(start, end, 0);
63925cf1a30Sjl 		}
64025cf1a30Sjl 
64125cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(thand, snode);
64225cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(shand, tnode);
64325cf1a30Sjl 
64425cf1a30Sjl 		lmr.lmem_rename_from = shand;
64525cf1a30Sjl 		lmr.lmem_rename_to = thand;
64625cf1a30Sjl 
64725cf1a30Sjl 		/*
64825cf1a30Sjl 		 * Remove source memnode of copy rename from its lgroup
64925cf1a30Sjl 		 * and add it to its new target lgroup
65025cf1a30Sjl 		 */
65125cf1a30Sjl 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
65225cf1a30Sjl 		    (uintptr_t)&lmr);
65325cf1a30Sjl 
65425cf1a30Sjl 		break;
65525cf1a30Sjl 
65625cf1a30Sjl 	default:
65725cf1a30Sjl 		break;
65825cf1a30Sjl 	}
65925cf1a30Sjl }
66025cf1a30Sjl 
66125cf1a30Sjl /*
66225cf1a30Sjl  * Return latency between "from" and "to" lgroups
66325cf1a30Sjl  *
66425cf1a30Sjl  * This latency number can only be used for relative comparison
66525cf1a30Sjl  * between lgroups on the running system, cannot be used across platforms,
66625cf1a30Sjl  * and may not reflect the actual latency.  It is platform and implementation
66725cf1a30Sjl  * specific, so platform gets to decide its value.  It would be nice if the
66825cf1a30Sjl  * number was at least proportional to make comparisons more meaningful though.
66925cf1a30Sjl  * NOTE: The numbers below are supposed to be load latencies for uncached
67025cf1a30Sjl  * memory divided by 10.
67125cf1a30Sjl  *
67225cf1a30Sjl  * XXX latency values for Columbus, not Columbus2. Should be fixed later when
67325cf1a30Sjl  *	we know the actual numbers for Columbus2.
67425cf1a30Sjl  */
67525cf1a30Sjl int
67625cf1a30Sjl plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
67725cf1a30Sjl {
67825cf1a30Sjl 	/*
67925cf1a30Sjl 	 * Return min remote latency when there are more than two lgroups
68025cf1a30Sjl 	 * (root and child) and getting latency between two different lgroups
68125cf1a30Sjl 	 * or root is involved
68225cf1a30Sjl 	 */
68325cf1a30Sjl 	if (lgrp_optimizations() && (from != to ||
68425cf1a30Sjl 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
68525cf1a30Sjl 		return (27);
68625cf1a30Sjl 	else
68725cf1a30Sjl 		return (25);
68825cf1a30Sjl }
68925cf1a30Sjl 
69025cf1a30Sjl /*
69125cf1a30Sjl  * Return platform handle for root lgroup
69225cf1a30Sjl  */
69325cf1a30Sjl lgrp_handle_t
69425cf1a30Sjl plat_lgrp_root_hand(void)
69525cf1a30Sjl {
69625cf1a30Sjl 	if (mpo_disabled)
69725cf1a30Sjl 		return (lgrp_default_handle);
69825cf1a30Sjl 
69925cf1a30Sjl 	return (LGRP_DEFAULT_HANDLE);
70025cf1a30Sjl }
70125cf1a30Sjl 
70225cf1a30Sjl /*ARGSUSED*/
70325cf1a30Sjl void
70425cf1a30Sjl plat_freelist_process(int mnode)
70525cf1a30Sjl {
70625cf1a30Sjl }
70725cf1a30Sjl 
70825cf1a30Sjl void
70925cf1a30Sjl load_platform_drivers(void)
71025cf1a30Sjl {
71125cf1a30Sjl 	(void) i_ddi_attach_pseudo_node("dr");
71225cf1a30Sjl }
71325cf1a30Sjl 
71425cf1a30Sjl /*
71525cf1a30Sjl  * No platform drivers on this platform
71625cf1a30Sjl  */
71725cf1a30Sjl char *platform_module_list[] = {
71825cf1a30Sjl 	(char *)0
71925cf1a30Sjl };
72025cf1a30Sjl 
72125cf1a30Sjl /*ARGSUSED*/
72225cf1a30Sjl void
72325cf1a30Sjl plat_tod_fault(enum tod_fault_type tod_bad)
72425cf1a30Sjl {
72525cf1a30Sjl }
72625cf1a30Sjl 
72725cf1a30Sjl /*ARGSUSED*/
72825cf1a30Sjl void
72925cf1a30Sjl cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
73025cf1a30Sjl {
73125cf1a30Sjl 	static void (*scf_panic_callback)(int);
73225cf1a30Sjl 	static void (*scf_shutdown_callback)(int);
73325cf1a30Sjl 
73425cf1a30Sjl 	/*
73525cf1a30Sjl 	 * This is for notifing system panic/shutdown to SCF.
73625cf1a30Sjl 	 * In case of shutdown and panic, SCF call back
73725cf1a30Sjl 	 * function should be called.
73825cf1a30Sjl 	 *  <SCF call back functions>
73925cf1a30Sjl 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
74025cf1a30Sjl 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
74125cf1a30Sjl 	 * cpuid should be -1 and state should be SIGST_EXIT.
74225cf1a30Sjl 	 */
74325cf1a30Sjl 	if (state == SIGST_EXIT && cpuid == -1) {
74425cf1a30Sjl 
74525cf1a30Sjl 		/*
74625cf1a30Sjl 		 * find the symbol for the SCF panic callback routine in driver
74725cf1a30Sjl 		 */
74825cf1a30Sjl 		if (scf_panic_callback == NULL)
74925cf1a30Sjl 			scf_panic_callback = (void (*)(int))
75025cf1a30Sjl 				modgetsymvalue("scf_panic_callb", 0);
75125cf1a30Sjl 		if (scf_shutdown_callback == NULL)
75225cf1a30Sjl 			scf_shutdown_callback = (void (*)(int))
75325cf1a30Sjl 				modgetsymvalue("scf_shutdown_callb", 0);
75425cf1a30Sjl 
75525cf1a30Sjl 		switch (sub_state) {
75625cf1a30Sjl 		case SIGSUBST_PANIC:
75725cf1a30Sjl 			if (scf_panic_callback == NULL) {
75825cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
75925cf1a30Sjl 				    "scf_panic_callb not found\n");
76025cf1a30Sjl 				return;
76125cf1a30Sjl 			}
76225cf1a30Sjl 			scf_panic_callback(SIGSUBST_PANIC);
76325cf1a30Sjl 			break;
76425cf1a30Sjl 
76525cf1a30Sjl 		case SIGSUBST_HALT:
76625cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
76725cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
76825cf1a30Sjl 				    "scf_shutdown_callb not found\n");
76925cf1a30Sjl 				return;
77025cf1a30Sjl 			}
77125cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_HALT);
77225cf1a30Sjl 			break;
77325cf1a30Sjl 
77425cf1a30Sjl 		case SIGSUBST_ENVIRON:
77525cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
77625cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
77725cf1a30Sjl 				    "scf_shutdown_callb not found\n");
77825cf1a30Sjl 				return;
77925cf1a30Sjl 			}
78025cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_ENVIRON);
78125cf1a30Sjl 			break;
78225cf1a30Sjl 
78325cf1a30Sjl 		case SIGSUBST_REBOOT:
78425cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
78525cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
78625cf1a30Sjl 				    "scf_shutdown_callb not found\n");
78725cf1a30Sjl 				return;
78825cf1a30Sjl 			}
78925cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_REBOOT);
79025cf1a30Sjl 			break;
79125cf1a30Sjl 		}
79225cf1a30Sjl 	}
79325cf1a30Sjl }
79425cf1a30Sjl 
79525cf1a30Sjl /*ARGSUSED*/
79625cf1a30Sjl int
79725cf1a30Sjl plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
79825cf1a30Sjl 	int flt_in_memory, ushort_t flt_status,
79925cf1a30Sjl 	char *buf, int buflen, int *lenp)
80025cf1a30Sjl {
80125cf1a30Sjl 	/*
80225cf1a30Sjl 	 * check if it's a Memory error.
80325cf1a30Sjl 	 */
80425cf1a30Sjl 	if (flt_in_memory) {
80525cf1a30Sjl 		if (opl_get_mem_unum != NULL) {
80625cf1a30Sjl 			return (opl_get_mem_unum(synd_code, flt_addr,
80725cf1a30Sjl 				buf, buflen, lenp));
80825cf1a30Sjl 		} else {
80925cf1a30Sjl 			return (ENOTSUP);
81025cf1a30Sjl 		}
81125cf1a30Sjl 	} else {
81225cf1a30Sjl 		return (ENOTSUP);
81325cf1a30Sjl 	}
81425cf1a30Sjl }
81525cf1a30Sjl 
81625cf1a30Sjl /*ARGSUSED*/
81725cf1a30Sjl int
81825cf1a30Sjl plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
81925cf1a30Sjl {
8200cc8ae86Sav 	int	plen;
8210cc8ae86Sav 	int	ret = 0;
8220cc8ae86Sav 	char	model[20];
8230cc8ae86Sav 	uint_t	sb;
8240cc8ae86Sav 	pnode_t	node;
8250cc8ae86Sav 
8260cc8ae86Sav 	/* determine the platform model once */
8270cc8ae86Sav 	if (plat_model == -1) {
8280cc8ae86Sav 		plat_model = MODEL_DC; /* Default model */
8290cc8ae86Sav 		node = prom_rootnode();
8300cc8ae86Sav 		plen = prom_getproplen(node, "model");
8310cc8ae86Sav 		if (plen > 0 && plen < sizeof (model)) {
8320cc8ae86Sav 			(void) prom_getprop(node, "model", model);
8330cc8ae86Sav 			model[plen] = '\0';
8340cc8ae86Sav 			if (strcmp(model, "FF1") == 0)
8350cc8ae86Sav 				plat_model = MODEL_FF1;
8360cc8ae86Sav 			else if (strcmp(model, "FF2") == 0)
8370cc8ae86Sav 				plat_model = MODEL_FF2;
8380cc8ae86Sav 			else if (strncmp(model, "DC", 2) == 0)
8390cc8ae86Sav 				plat_model = MODEL_DC;
8400cc8ae86Sav 		}
8410cc8ae86Sav 	}
84225cf1a30Sjl 
84325cf1a30Sjl 	sb = opl_get_physical_board(LSB_ID(cpuid));
84425cf1a30Sjl 	if (sb == -1) {
84525cf1a30Sjl 		return (ENXIO);
84625cf1a30Sjl 	}
84725cf1a30Sjl 
8480cc8ae86Sav 	switch (plat_model) {
8490cc8ae86Sav 	case MODEL_FF1:
8500cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
8510cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
8520cc8ae86Sav 		break;
8530cc8ae86Sav 
8540cc8ae86Sav 	case MODEL_FF2:
8550cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
8560cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
8570cc8ae86Sav 		break;
8580cc8ae86Sav 
8590cc8ae86Sav 	case MODEL_DC:
8600cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
8610cc8ae86Sav 		    CHIP_ID(cpuid));
8620cc8ae86Sav 		break;
8630cc8ae86Sav 
8640cc8ae86Sav 	default:
8650cc8ae86Sav 		/* This should never happen */
8660cc8ae86Sav 		return (ENODEV);
8670cc8ae86Sav 	}
8680cc8ae86Sav 
8690cc8ae86Sav 	if (plen >= buflen) {
8700cc8ae86Sav 		ret = ENOSPC;
87125cf1a30Sjl 	} else {
87225cf1a30Sjl 		if (lenp)
87325cf1a30Sjl 			*lenp = strlen(buf);
87425cf1a30Sjl 	}
8750cc8ae86Sav 	return (ret);
87625cf1a30Sjl }
87725cf1a30Sjl 
87825cf1a30Sjl #define	SCF_PUTINFO(f, s, p)	\
87925cf1a30Sjl 	f(KEY_ESCF, 0x01, 0, s, p)
88025cf1a30Sjl void
88125cf1a30Sjl plat_nodename_set(void)
88225cf1a30Sjl {
88325cf1a30Sjl 	void *datap;
88425cf1a30Sjl 	static int (*scf_service_function)(uint32_t, uint8_t,
88525cf1a30Sjl 	    uint32_t, uint32_t, void *);
88625cf1a30Sjl 	int counter = 5;
88725cf1a30Sjl 
88825cf1a30Sjl 	/*
88925cf1a30Sjl 	 * find the symbol for the SCF put routine in driver
89025cf1a30Sjl 	 */
89125cf1a30Sjl 	if (scf_service_function == NULL)
89225cf1a30Sjl 		scf_service_function =
89325cf1a30Sjl 			(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
89425cf1a30Sjl 			modgetsymvalue("scf_service_putinfo", 0);
89525cf1a30Sjl 
89625cf1a30Sjl 	/*
89725cf1a30Sjl 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
89825cf1a30Sjl 	 * the console).
89925cf1a30Sjl 	 */
90025cf1a30Sjl 
90125cf1a30Sjl 	if (scf_service_function == NULL) {
90225cf1a30Sjl 		cmn_err(CE_NOTE,
90325cf1a30Sjl 		    "!plat_nodename_set: scf_service_putinfo not found\n");
90425cf1a30Sjl 		return;
90525cf1a30Sjl 	}
90625cf1a30Sjl 
90725cf1a30Sjl 	datap =
90825cf1a30Sjl 	    (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP);
90925cf1a30Sjl 
91025cf1a30Sjl 	if (datap == NULL) {
91125cf1a30Sjl 		return;
91225cf1a30Sjl 	}
91325cf1a30Sjl 
91425cf1a30Sjl 	bcopy((struct utsname *)&utsname,
91525cf1a30Sjl 	    (struct utsname *)datap, sizeof (struct utsname));
91625cf1a30Sjl 
91725cf1a30Sjl 	while ((SCF_PUTINFO(scf_service_function,
91825cf1a30Sjl 		sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) {
91925cf1a30Sjl 		delay(10 * drv_usectohz(1000000));
92025cf1a30Sjl 	}
92125cf1a30Sjl 	if (counter == 0)
92225cf1a30Sjl 		cmn_err(CE_NOTE,
92325cf1a30Sjl 			"!plat_nodename_set: "
92425cf1a30Sjl 			"scf_service_putinfo not responding\n");
92525cf1a30Sjl 
92625cf1a30Sjl 	kmem_free(datap, sizeof (struct utsname));
92725cf1a30Sjl }
92825cf1a30Sjl 
92925cf1a30Sjl caddr_t	efcode_vaddr = NULL;
93025cf1a30Sjl 
93125cf1a30Sjl /*
93225cf1a30Sjl  * Preallocate enough memory for fcode claims.
93325cf1a30Sjl  */
93425cf1a30Sjl 
93525cf1a30Sjl caddr_t
93625cf1a30Sjl efcode_alloc(caddr_t alloc_base)
93725cf1a30Sjl {
93825cf1a30Sjl 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
93925cf1a30Sjl 	    MMU_PAGESIZE);
94025cf1a30Sjl 	caddr_t vaddr;
94125cf1a30Sjl 
94225cf1a30Sjl 	/*
94325cf1a30Sjl 	 * allocate the physical memory for the Oberon fcode.
94425cf1a30Sjl 	 */
94525cf1a30Sjl 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
94625cf1a30Sjl 	    efcode_size, MMU_PAGESIZE)) == NULL)
94725cf1a30Sjl 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
94825cf1a30Sjl 
94925cf1a30Sjl 	efcode_vaddr = vaddr;
95025cf1a30Sjl 
95125cf1a30Sjl 	return (efcode_alloc_base + efcode_size);
95225cf1a30Sjl }
95325cf1a30Sjl 
95425cf1a30Sjl caddr_t
95525cf1a30Sjl plat_startup_memlist(caddr_t alloc_base)
95625cf1a30Sjl {
95725cf1a30Sjl 	caddr_t tmp_alloc_base;
95825cf1a30Sjl 
95925cf1a30Sjl 	tmp_alloc_base = efcode_alloc(alloc_base);
96025cf1a30Sjl 	tmp_alloc_base =
96125cf1a30Sjl 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
96225cf1a30Sjl 	return (tmp_alloc_base);
96325cf1a30Sjl }
96425cf1a30Sjl 
96525cf1a30Sjl void
96625cf1a30Sjl startup_platform(void)
96725cf1a30Sjl {
96825cf1a30Sjl }
9690cc8ae86Sav 
970*1e2e7a75Shuah void
971*1e2e7a75Shuah plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
972*1e2e7a75Shuah {
973*1e2e7a75Shuah 	int	impl;
974*1e2e7a75Shuah 
975*1e2e7a75Shuah 	impl = cpunodes[cpuid].implementation;
976*1e2e7a75Shuah 	if (IS_OLYMPUS_C(impl)) {
977*1e2e7a75Shuah 		/*
978*1e2e7a75Shuah 		 * Olympus-C processor supports 2 strands per core.
979*1e2e7a75Shuah 		 */
980*1e2e7a75Shuah 		info->mmu_idx = cpuid >> 1;
981*1e2e7a75Shuah 		info->mmu_nctxs = 8192;
982*1e2e7a75Shuah 	} else {
983*1e2e7a75Shuah 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
984*1e2e7a75Shuah 	}
985*1e2e7a75Shuah }
986*1e2e7a75Shuah 
9870cc8ae86Sav int
9880cc8ae86Sav plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
9890cc8ae86Sav {
9900cc8ae86Sav 	if (opl_get_mem_sid == NULL) {
9910cc8ae86Sav 		return (ENOTSUP);
9920cc8ae86Sav 	}
9930cc8ae86Sav 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
9940cc8ae86Sav }
9950cc8ae86Sav 
9960cc8ae86Sav int
9970cc8ae86Sav plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
9980cc8ae86Sav {
9990cc8ae86Sav 	if (opl_get_mem_offset == NULL) {
10000cc8ae86Sav 		return (ENOTSUP);
10010cc8ae86Sav 	}
10020cc8ae86Sav 	return (opl_get_mem_offset(paddr, offp));
10030cc8ae86Sav }
10040cc8ae86Sav 
10050cc8ae86Sav int
10060cc8ae86Sav plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
10070cc8ae86Sav {
10080cc8ae86Sav 	if (opl_get_mem_addr == NULL) {
10090cc8ae86Sav 		return (ENOTSUP);
10100cc8ae86Sav 	}
10110cc8ae86Sav 	return (opl_get_mem_addr(unum, sid, offset, addrp));
10120cc8ae86Sav }
1013