xref: /illumos-gate/usr/src/uts/sun4u/opl/os/opl.c (revision 0cc8ae86)
125cf1a30Sjl /*
225cf1a30Sjl  * CDDL HEADER START
325cf1a30Sjl  *
425cf1a30Sjl  * The contents of this file are subject to the terms of the
525cf1a30Sjl  * Common Development and Distribution License (the "License").
625cf1a30Sjl  * You may not use this file except in compliance with the License.
725cf1a30Sjl  *
825cf1a30Sjl  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925cf1a30Sjl  * or http://www.opensolaris.org/os/licensing.
1025cf1a30Sjl  * See the License for the specific language governing permissions
1125cf1a30Sjl  * and limitations under the License.
1225cf1a30Sjl  *
1325cf1a30Sjl  * When distributing Covered Code, include this CDDL HEADER in each
1425cf1a30Sjl  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525cf1a30Sjl  * If applicable, add the following below this CDDL HEADER, with the
1625cf1a30Sjl  * fields enclosed by brackets "[]" replaced with your own identifying
1725cf1a30Sjl  * information: Portions Copyright [yyyy] [name of copyright owner]
1825cf1a30Sjl  *
1925cf1a30Sjl  * CDDL HEADER END
2025cf1a30Sjl  */
2125cf1a30Sjl /*
2225cf1a30Sjl  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
2325cf1a30Sjl  * Use is subject to license terms.
2425cf1a30Sjl  */
2525cf1a30Sjl 
2625cf1a30Sjl #pragma ident	"%Z%%M%	%I%	%E% SMI"
2725cf1a30Sjl 
2825cf1a30Sjl #include <sys/cpuvar.h>
2925cf1a30Sjl #include <sys/systm.h>
3025cf1a30Sjl #include <sys/sysmacros.h>
3125cf1a30Sjl #include <sys/promif.h>
3225cf1a30Sjl #include <sys/platform_module.h>
3325cf1a30Sjl #include <sys/cmn_err.h>
3425cf1a30Sjl #include <sys/errno.h>
3525cf1a30Sjl #include <sys/machsystm.h>
3625cf1a30Sjl #include <sys/bootconf.h>
3725cf1a30Sjl #include <sys/nvpair.h>
3825cf1a30Sjl #include <sys/kobj.h>
3925cf1a30Sjl #include <sys/mem_cage.h>
4025cf1a30Sjl #include <sys/opl.h>
4125cf1a30Sjl #include <sys/scfd/scfostoescf.h>
4225cf1a30Sjl #include <sys/cpu_sgnblk_defs.h>
4325cf1a30Sjl #include <sys/utsname.h>
4425cf1a30Sjl #include <sys/ddi.h>
4525cf1a30Sjl #include <sys/sunndi.h>
4625cf1a30Sjl #include <sys/lgrp.h>
4725cf1a30Sjl #include <sys/memnode.h>
4825cf1a30Sjl #include <sys/sysmacros.h>
4925cf1a30Sjl #include <vm/vm_dep.h>
5025cf1a30Sjl 
5125cf1a30Sjl int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
52*0cc8ae86Sav int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
53*0cc8ae86Sav int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
54*0cc8ae86Sav int (*opl_get_mem_addr)(char *unum, char *sid,
55*0cc8ae86Sav     uint64_t offset, uint64_t *paddr);
5625cf1a30Sjl 
5725cf1a30Sjl /* Memory for fcode claims.  16k times # maximum possible IO units */
5825cf1a30Sjl #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
5925cf1a30Sjl int efcode_size = EFCODE_SIZE;
6025cf1a30Sjl 
6125cf1a30Sjl #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
6225cf1a30Sjl 
6325cf1a30Sjl /* Set the maximum number of boards for DR */
6425cf1a30Sjl int opl_boards = OPL_MAX_BOARDS;
6525cf1a30Sjl 
6625cf1a30Sjl void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
6725cf1a30Sjl 
6825cf1a30Sjl extern int tsb_lgrp_affinity;
6925cf1a30Sjl 
7025cf1a30Sjl int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
7125cf1a30Sjl 	(OPL_MAX_TSBS_PER_PCICH);
7225cf1a30Sjl 
7325cf1a30Sjl pgcnt_t opl_startup_cage_size = 0;
7425cf1a30Sjl 
7525cf1a30Sjl static struct memlist *opl_memlist_per_board(struct memlist *ml);
7625cf1a30Sjl 
77*0cc8ae86Sav static enum {
78*0cc8ae86Sav 	MODEL_FF1 = 0,
79*0cc8ae86Sav 	MODEL_FF2 = 1,
80*0cc8ae86Sav 	MODEL_DC = 2
81*0cc8ae86Sav } plat_model = -1;
82*0cc8ae86Sav 
8325cf1a30Sjl int
8425cf1a30Sjl set_platform_max_ncpus(void)
8525cf1a30Sjl {
8625cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
8725cf1a30Sjl }
8825cf1a30Sjl 
8925cf1a30Sjl int
9025cf1a30Sjl set_platform_tsb_spares(void)
9125cf1a30Sjl {
9225cf1a30Sjl 	return (MIN(opl_tsb_spares, MAX_UPA));
9325cf1a30Sjl }
9425cf1a30Sjl 
9525cf1a30Sjl #pragma weak mmu_init_large_pages
9625cf1a30Sjl 
9725cf1a30Sjl void
9825cf1a30Sjl set_platform_defaults(void)
9925cf1a30Sjl {
10025cf1a30Sjl 	extern char *tod_module_name;
10125cf1a30Sjl 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
10225cf1a30Sjl 	extern int ts_dispatch_extended;
10325cf1a30Sjl 	extern void mmu_init_large_pages(size_t);
10425cf1a30Sjl 
10525cf1a30Sjl 	/* Set the CPU signature function pointer */
10625cf1a30Sjl 	cpu_sgn_func = cpu_sgn_update;
10725cf1a30Sjl 
10825cf1a30Sjl 	/* Set appropriate tod module for OPL platform */
10925cf1a30Sjl 	ASSERT(tod_module_name == NULL);
11025cf1a30Sjl 	tod_module_name = "todopl";
11125cf1a30Sjl 
11225cf1a30Sjl 	/*
11325cf1a30Sjl 	 * Use the alternate TS dispatch table, which is better tuned
11425cf1a30Sjl 	 * for large servers.
11525cf1a30Sjl 	 */
11625cf1a30Sjl 	if (ts_dispatch_extended == -1)
11725cf1a30Sjl 		ts_dispatch_extended = 1;
11825cf1a30Sjl 
11925cf1a30Sjl 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
12025cf1a30Sjl 	    (mmu_ism_pagesize != MMU_PAGESIZE32M)) {
12125cf1a30Sjl 		if (&mmu_init_large_pages)
12225cf1a30Sjl 			mmu_init_large_pages(mmu_ism_pagesize);
12325cf1a30Sjl 	}
12425cf1a30Sjl 
12525cf1a30Sjl 	tsb_lgrp_affinity = 1;
12625cf1a30Sjl }
12725cf1a30Sjl 
12825cf1a30Sjl /*
12925cf1a30Sjl  * Convert logical a board number to a physical one.
13025cf1a30Sjl  */
13125cf1a30Sjl 
13225cf1a30Sjl #define	LSBPROP		"board#"
13325cf1a30Sjl #define	PSBPROP		"physical-board#"
13425cf1a30Sjl 
13525cf1a30Sjl int
13625cf1a30Sjl opl_get_physical_board(int id)
13725cf1a30Sjl {
13825cf1a30Sjl 	dev_info_t	*root_dip, *dip = NULL;
13925cf1a30Sjl 	char		*dname = NULL;
14025cf1a30Sjl 	int		circ;
14125cf1a30Sjl 
14225cf1a30Sjl 	pnode_t		pnode;
14325cf1a30Sjl 	char		pname[MAXSYSNAME] = {0};
14425cf1a30Sjl 
14525cf1a30Sjl 	int		lsb_id;	/* Logical System Board ID */
14625cf1a30Sjl 	int		psb_id;	/* Physical System Board ID */
14725cf1a30Sjl 
14825cf1a30Sjl 
14925cf1a30Sjl 	/*
15025cf1a30Sjl 	 * This function is called on early stage of bootup when the
15125cf1a30Sjl 	 * kernel device tree is not initialized yet, and also
15225cf1a30Sjl 	 * later on when the device tree is up. We want to try
15325cf1a30Sjl 	 * the fast track first.
15425cf1a30Sjl 	 */
15525cf1a30Sjl 	root_dip = ddi_root_node();
15625cf1a30Sjl 	if (root_dip) {
15725cf1a30Sjl 		/* Get from devinfo node */
15825cf1a30Sjl 		ndi_devi_enter(root_dip, &circ);
15925cf1a30Sjl 		for (dip = ddi_get_child(root_dip); dip;
16025cf1a30Sjl 		    dip = ddi_get_next_sibling(dip)) {
16125cf1a30Sjl 
16225cf1a30Sjl 			dname = ddi_node_name(dip);
16325cf1a30Sjl 			if (strncmp(dname, "pseudo-mc", 9) != 0)
16425cf1a30Sjl 				continue;
16525cf1a30Sjl 
16625cf1a30Sjl 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
16725cf1a30Sjl 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
16825cf1a30Sjl 				continue;
16925cf1a30Sjl 
17025cf1a30Sjl 			if (id == lsb_id) {
17125cf1a30Sjl 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
17225cf1a30Sjl 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
17325cf1a30Sjl 				    == -1) {
17425cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
17525cf1a30Sjl 					return (-1);
17625cf1a30Sjl 				} else {
17725cf1a30Sjl 					ndi_devi_exit(root_dip, circ);
17825cf1a30Sjl 					return (psb_id);
17925cf1a30Sjl 				}
18025cf1a30Sjl 			}
18125cf1a30Sjl 		}
18225cf1a30Sjl 		ndi_devi_exit(root_dip, circ);
18325cf1a30Sjl 	}
18425cf1a30Sjl 
18525cf1a30Sjl 	/*
18625cf1a30Sjl 	 * We do not have the kernel device tree, or we did not
18725cf1a30Sjl 	 * find the node for some reason (let's say the kernel
18825cf1a30Sjl 	 * device tree was modified), let's try the OBP tree.
18925cf1a30Sjl 	 */
19025cf1a30Sjl 	pnode = prom_rootnode();
19125cf1a30Sjl 	for (pnode = prom_childnode(pnode); pnode;
19225cf1a30Sjl 	    pnode = prom_nextnode(pnode)) {
19325cf1a30Sjl 
19425cf1a30Sjl 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
19525cf1a30Sjl 		    (strncmp(pname, "pseudo-mc", 9) != 0))
19625cf1a30Sjl 			continue;
19725cf1a30Sjl 
19825cf1a30Sjl 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
19925cf1a30Sjl 			continue;
20025cf1a30Sjl 
20125cf1a30Sjl 		if (id == lsb_id) {
20225cf1a30Sjl 			if (prom_getprop(pnode, PSBPROP,
20325cf1a30Sjl 			    (caddr_t)&psb_id) == -1) {
20425cf1a30Sjl 				return (-1);
20525cf1a30Sjl 			} else {
20625cf1a30Sjl 				return (psb_id);
20725cf1a30Sjl 			}
20825cf1a30Sjl 		}
20925cf1a30Sjl 	}
21025cf1a30Sjl 
21125cf1a30Sjl 	return (-1);
21225cf1a30Sjl }
21325cf1a30Sjl 
21425cf1a30Sjl /*
21525cf1a30Sjl  * For OPL it's possible that memory from two or more successive boards
21625cf1a30Sjl  * will be contiguous across the boards, and therefore represented as a
21725cf1a30Sjl  * single chunk.
21825cf1a30Sjl  * This function splits such chunks down the board boundaries.
21925cf1a30Sjl  */
22025cf1a30Sjl static struct memlist *
22125cf1a30Sjl opl_memlist_per_board(struct memlist *ml)
22225cf1a30Sjl {
22325cf1a30Sjl 	uint64_t ssize, low, high, boundary;
22425cf1a30Sjl 	struct memlist *head, *tail, *new;
22525cf1a30Sjl 
22625cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
22725cf1a30Sjl 
22825cf1a30Sjl 	head = tail = NULL;
22925cf1a30Sjl 
23025cf1a30Sjl 	for (; ml; ml = ml->next) {
23125cf1a30Sjl 		low  = (uint64_t)ml->address;
23225cf1a30Sjl 		high = low+(uint64_t)(ml->size);
23325cf1a30Sjl 		while (low < high) {
23425cf1a30Sjl 			boundary = roundup(low+1, ssize);
23525cf1a30Sjl 			boundary = MIN(high, boundary);
23625cf1a30Sjl 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
23725cf1a30Sjl 			new->address = low;
23825cf1a30Sjl 			new->size = boundary - low;
23925cf1a30Sjl 			if (head == NULL)
24025cf1a30Sjl 				head = new;
24125cf1a30Sjl 			if (tail) {
24225cf1a30Sjl 				tail->next = new;
24325cf1a30Sjl 				new->prev = tail;
24425cf1a30Sjl 			}
24525cf1a30Sjl 			tail = new;
24625cf1a30Sjl 			low = boundary;
24725cf1a30Sjl 		}
24825cf1a30Sjl 	}
24925cf1a30Sjl 	return (head);
25025cf1a30Sjl }
25125cf1a30Sjl 
25225cf1a30Sjl void
25325cf1a30Sjl set_platform_cage_params(void)
25425cf1a30Sjl {
25525cf1a30Sjl 	extern pgcnt_t total_pages;
25625cf1a30Sjl 	extern struct memlist *phys_avail;
25725cf1a30Sjl 	struct memlist *ml, *tml;
25825cf1a30Sjl 	int ret;
25925cf1a30Sjl 
26025cf1a30Sjl 	if (kernel_cage_enable) {
26125cf1a30Sjl 		pgcnt_t preferred_cage_size;
26225cf1a30Sjl 
26325cf1a30Sjl 		preferred_cage_size =
26425cf1a30Sjl 			MAX(opl_startup_cage_size, total_pages / 256);
26525cf1a30Sjl 
26625cf1a30Sjl 		ml = opl_memlist_per_board(phys_avail);
26725cf1a30Sjl 
26825cf1a30Sjl 		kcage_range_lock();
26925cf1a30Sjl 		/*
27025cf1a30Sjl 		 * Note: we are assuming that post has load the
27125cf1a30Sjl 		 * whole show in to the high end of memory. Having
27225cf1a30Sjl 		 * taken this leap, we copy the whole of phys_avail
27325cf1a30Sjl 		 * the glist and arrange for the cage to grow
27425cf1a30Sjl 		 * downward (descending pfns).
27525cf1a30Sjl 		 */
27625cf1a30Sjl 		ret = kcage_range_init(ml, 1);
27725cf1a30Sjl 
27825cf1a30Sjl 		/* free the memlist */
27925cf1a30Sjl 		do {
28025cf1a30Sjl 			tml = ml->next;
28125cf1a30Sjl 			kmem_free(ml, sizeof (struct memlist));
28225cf1a30Sjl 			ml = tml;
28325cf1a30Sjl 		} while (ml != NULL);
28425cf1a30Sjl 
28525cf1a30Sjl 		if (ret == 0)
28625cf1a30Sjl 			kcage_init(preferred_cage_size);
28725cf1a30Sjl 		kcage_range_unlock();
28825cf1a30Sjl 	}
28925cf1a30Sjl 
29025cf1a30Sjl 	if (kcage_on)
29125cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
29225cf1a30Sjl 	else
29325cf1a30Sjl 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
29425cf1a30Sjl }
29525cf1a30Sjl 
29625cf1a30Sjl /*ARGSUSED*/
29725cf1a30Sjl int
29825cf1a30Sjl plat_cpu_poweron(struct cpu *cp)
29925cf1a30Sjl {
30025cf1a30Sjl 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
30125cf1a30Sjl 
30225cf1a30Sjl 	opl_cpu_poweron =
30325cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
30425cf1a30Sjl 
30525cf1a30Sjl 	if (opl_cpu_poweron == NULL)
30625cf1a30Sjl 		return (ENOTSUP);
30725cf1a30Sjl 	else
30825cf1a30Sjl 		return ((opl_cpu_poweron)(cp));
30925cf1a30Sjl 
31025cf1a30Sjl }
31125cf1a30Sjl 
31225cf1a30Sjl /*ARGSUSED*/
31325cf1a30Sjl int
31425cf1a30Sjl plat_cpu_poweroff(struct cpu *cp)
31525cf1a30Sjl {
31625cf1a30Sjl 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
31725cf1a30Sjl 
31825cf1a30Sjl 	opl_cpu_poweroff =
31925cf1a30Sjl 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
32025cf1a30Sjl 
32125cf1a30Sjl 	if (opl_cpu_poweroff == NULL)
32225cf1a30Sjl 		return (ENOTSUP);
32325cf1a30Sjl 	else
32425cf1a30Sjl 		return ((opl_cpu_poweroff)(cp));
32525cf1a30Sjl 
32625cf1a30Sjl }
32725cf1a30Sjl 
32825cf1a30Sjl int
32925cf1a30Sjl plat_max_boards(void)
33025cf1a30Sjl {
33125cf1a30Sjl 	return (OPL_MAX_BOARDS);
33225cf1a30Sjl }
33325cf1a30Sjl 
33425cf1a30Sjl int
33525cf1a30Sjl plat_max_cpu_units_per_board(void)
33625cf1a30Sjl {
33725cf1a30Sjl 	return (OPL_MAX_CPU_PER_BOARD);
33825cf1a30Sjl }
33925cf1a30Sjl 
34025cf1a30Sjl int
34125cf1a30Sjl plat_max_mem_units_per_board(void)
34225cf1a30Sjl {
34325cf1a30Sjl 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
34425cf1a30Sjl }
34525cf1a30Sjl 
34625cf1a30Sjl int
34725cf1a30Sjl plat_max_io_units_per_board(void)
34825cf1a30Sjl {
34925cf1a30Sjl 	return (OPL_MAX_IO_UNITS_PER_BOARD);
35025cf1a30Sjl }
35125cf1a30Sjl 
35225cf1a30Sjl int
35325cf1a30Sjl plat_max_cmp_units_per_board(void)
35425cf1a30Sjl {
35525cf1a30Sjl 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
35625cf1a30Sjl }
35725cf1a30Sjl 
35825cf1a30Sjl int
35925cf1a30Sjl plat_max_core_units_per_board(void)
36025cf1a30Sjl {
36125cf1a30Sjl 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
36225cf1a30Sjl }
36325cf1a30Sjl 
36425cf1a30Sjl int
36525cf1a30Sjl plat_pfn_to_mem_node(pfn_t pfn)
36625cf1a30Sjl {
36725cf1a30Sjl 	return (pfn >> mem_node_pfn_shift);
36825cf1a30Sjl }
36925cf1a30Sjl 
37025cf1a30Sjl /* ARGSUSED */
37125cf1a30Sjl void
37225cf1a30Sjl plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
37325cf1a30Sjl {
37425cf1a30Sjl 	size_t	elem;
37525cf1a30Sjl 	pfn_t	basepfn;
37625cf1a30Sjl 	pgcnt_t	npgs;
37725cf1a30Sjl 	uint64_t	boundary, ssize;
37825cf1a30Sjl 	uint64_t	low, high;
37925cf1a30Sjl 
38025cf1a30Sjl 	/*
38125cf1a30Sjl 	 * OPL mem slices are always aligned on a 256GB boundary.
38225cf1a30Sjl 	 */
38325cf1a30Sjl 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
38425cf1a30Sjl 	mem_node_physalign = 0;
38525cf1a30Sjl 
38625cf1a30Sjl 	/*
38725cf1a30Sjl 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
38825cf1a30Sjl 	 */
38925cf1a30Sjl 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
39025cf1a30Sjl 	for (elem = 0; elem < nelems; elem += 2) {
39125cf1a30Sjl 		low  = (uint64_t)list[elem];
39225cf1a30Sjl 		high = low+(uint64_t)(list[elem+1]);
39325cf1a30Sjl 		while (low < high) {
39425cf1a30Sjl 			boundary = roundup(low+1, ssize);
39525cf1a30Sjl 			boundary = MIN(high, boundary);
39625cf1a30Sjl 			basepfn = btop(low);
39725cf1a30Sjl 			npgs = btop(boundary - low);
39825cf1a30Sjl 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
39925cf1a30Sjl 			low = boundary;
40025cf1a30Sjl 		}
40125cf1a30Sjl 	}
40225cf1a30Sjl }
40325cf1a30Sjl 
40425cf1a30Sjl /*
40525cf1a30Sjl  * Find the CPU associated with a slice at boot-time.
40625cf1a30Sjl  */
40725cf1a30Sjl void
40825cf1a30Sjl plat_fill_mc(pnode_t nodeid)
40925cf1a30Sjl {
41025cf1a30Sjl 	int board;
41125cf1a30Sjl 	int memnode;
41225cf1a30Sjl 	struct {
41325cf1a30Sjl 		uint64_t	addr;
41425cf1a30Sjl 		uint64_t	size;
41525cf1a30Sjl 	} mem_range;
41625cf1a30Sjl 
41725cf1a30Sjl 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
41825cf1a30Sjl 		panic("Can not find board# property in mc node %x", nodeid);
41925cf1a30Sjl 	}
42025cf1a30Sjl 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
42125cf1a30Sjl 		panic("Can not find sb-mem-ranges property in mc node %x",
42225cf1a30Sjl 			nodeid);
42325cf1a30Sjl 	}
42425cf1a30Sjl 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
42525cf1a30Sjl 	plat_assign_lgrphand_to_mem_node(board, memnode);
42625cf1a30Sjl }
42725cf1a30Sjl 
42825cf1a30Sjl /*
42925cf1a30Sjl  * Return the platform handle for the lgroup containing the given CPU
43025cf1a30Sjl  *
43125cf1a30Sjl  * For OPL, lgroup platform handle == board #.
43225cf1a30Sjl  */
43325cf1a30Sjl 
43425cf1a30Sjl extern int mpo_disabled;
43525cf1a30Sjl extern lgrp_handle_t lgrp_default_handle;
43625cf1a30Sjl 
43725cf1a30Sjl lgrp_handle_t
43825cf1a30Sjl plat_lgrp_cpu_to_hand(processorid_t id)
43925cf1a30Sjl {
44025cf1a30Sjl 	lgrp_handle_t plathand;
44125cf1a30Sjl 
44225cf1a30Sjl 	/*
44325cf1a30Sjl 	 * Return the real platform handle for the CPU until
44425cf1a30Sjl 	 * such time as we know that MPO should be disabled.
44525cf1a30Sjl 	 * At that point, we set the "mpo_disabled" flag to true,
44625cf1a30Sjl 	 * and from that point on, return the default handle.
44725cf1a30Sjl 	 *
44825cf1a30Sjl 	 * By the time we know that MPO should be disabled, the
44925cf1a30Sjl 	 * first CPU will have already been added to a leaf
45025cf1a30Sjl 	 * lgroup, but that's ok. The common lgroup code will
45125cf1a30Sjl 	 * double check that the boot CPU is in the correct place,
45225cf1a30Sjl 	 * and in the case where mpo should be disabled, will move
45325cf1a30Sjl 	 * it to the root if necessary.
45425cf1a30Sjl 	 */
45525cf1a30Sjl 	if (mpo_disabled) {
45625cf1a30Sjl 		/* If MPO is disabled, return the default (UMA) handle */
45725cf1a30Sjl 		plathand = lgrp_default_handle;
45825cf1a30Sjl 	} else
45925cf1a30Sjl 		plathand = (lgrp_handle_t)LSB_ID(id);
46025cf1a30Sjl 	return (plathand);
46125cf1a30Sjl }
46225cf1a30Sjl 
46325cf1a30Sjl /*
46425cf1a30Sjl  * Platform specific lgroup initialization
46525cf1a30Sjl  */
46625cf1a30Sjl void
46725cf1a30Sjl plat_lgrp_init(void)
46825cf1a30Sjl {
46925cf1a30Sjl 	extern uint32_t lgrp_expand_proc_thresh;
47025cf1a30Sjl 	extern uint32_t lgrp_expand_proc_diff;
47125cf1a30Sjl 
47225cf1a30Sjl 	/*
47325cf1a30Sjl 	 * Set tuneables for the OPL architecture
47425cf1a30Sjl 	 *
47525cf1a30Sjl 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
47625cf1a30Sjl 	 * this process is currently running on before considering
47725cf1a30Sjl 	 * expanding threads to another lgroup.
47825cf1a30Sjl 	 *
47925cf1a30Sjl 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
48025cf1a30Sjl 	 * must be loaded before expanding to it.
48125cf1a30Sjl 	 *
48225cf1a30Sjl 	 * Since remote latencies can be costly, attempt to keep 3 threads
48325cf1a30Sjl 	 * within the same lgroup before expanding to the next lgroup.
48425cf1a30Sjl 	 */
48525cf1a30Sjl 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
48625cf1a30Sjl 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
48725cf1a30Sjl }
48825cf1a30Sjl 
48925cf1a30Sjl /*
49025cf1a30Sjl  * Platform notification of lgroup (re)configuration changes
49125cf1a30Sjl  */
49225cf1a30Sjl /*ARGSUSED*/
49325cf1a30Sjl void
49425cf1a30Sjl plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
49525cf1a30Sjl {
49625cf1a30Sjl 	update_membounds_t *umb;
49725cf1a30Sjl 	lgrp_config_mem_rename_t lmr;
49825cf1a30Sjl 	int sbd, tbd;
49925cf1a30Sjl 	lgrp_handle_t hand, shand, thand;
50025cf1a30Sjl 	int mnode, snode, tnode;
50125cf1a30Sjl 	pfn_t start, end;
50225cf1a30Sjl 
50325cf1a30Sjl 	if (mpo_disabled)
50425cf1a30Sjl 		return;
50525cf1a30Sjl 
50625cf1a30Sjl 	switch (evt) {
50725cf1a30Sjl 
50825cf1a30Sjl 	case LGRP_CONFIG_MEM_ADD:
50925cf1a30Sjl 		/*
51025cf1a30Sjl 		 * Establish the lgroup handle to memnode translation.
51125cf1a30Sjl 		 */
51225cf1a30Sjl 		umb = (update_membounds_t *)arg;
51325cf1a30Sjl 
51425cf1a30Sjl 		hand = umb->u_board;
51525cf1a30Sjl 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
51625cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(hand, mnode);
51725cf1a30Sjl 
51825cf1a30Sjl 		break;
51925cf1a30Sjl 
52025cf1a30Sjl 	case LGRP_CONFIG_MEM_DEL:
52125cf1a30Sjl 		/*
52225cf1a30Sjl 		 * Special handling for possible memory holes.
52325cf1a30Sjl 		 */
52425cf1a30Sjl 		umb = (update_membounds_t *)arg;
52525cf1a30Sjl 		hand = umb->u_board;
52625cf1a30Sjl 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
52725cf1a30Sjl 			if (mem_node_config[mnode].exists) {
52825cf1a30Sjl 				start = mem_node_config[mnode].physbase;
52925cf1a30Sjl 				end = mem_node_config[mnode].physmax;
53025cf1a30Sjl 				mem_node_pre_del_slice(start, end);
53125cf1a30Sjl 				mem_node_post_del_slice(start, end, 0);
53225cf1a30Sjl 			}
53325cf1a30Sjl 		}
53425cf1a30Sjl 
53525cf1a30Sjl 		break;
53625cf1a30Sjl 
53725cf1a30Sjl 	case LGRP_CONFIG_MEM_RENAME:
53825cf1a30Sjl 		/*
53925cf1a30Sjl 		 * During a DR copy-rename operation, all of the memory
54025cf1a30Sjl 		 * on one board is moved to another board -- but the
54125cf1a30Sjl 		 * addresses/pfns and memnodes don't change. This means
54225cf1a30Sjl 		 * the memory has changed locations without changing identity.
54325cf1a30Sjl 		 *
54425cf1a30Sjl 		 * Source is where we are copying from and target is where we
54525cf1a30Sjl 		 * are copying to.  After source memnode is copied to target
54625cf1a30Sjl 		 * memnode, the physical addresses of the target memnode are
54725cf1a30Sjl 		 * renamed to match what the source memnode had.  Then target
54825cf1a30Sjl 		 * memnode can be removed and source memnode can take its
54925cf1a30Sjl 		 * place.
55025cf1a30Sjl 		 *
55125cf1a30Sjl 		 * To do this, swap the lgroup handle to memnode mappings for
55225cf1a30Sjl 		 * the boards, so target lgroup will have source memnode and
55325cf1a30Sjl 		 * source lgroup will have empty target memnode which is where
55425cf1a30Sjl 		 * its memory will go (if any is added to it later).
55525cf1a30Sjl 		 *
55625cf1a30Sjl 		 * Then source memnode needs to be removed from its lgroup
55725cf1a30Sjl 		 * and added to the target lgroup where the memory was living
55825cf1a30Sjl 		 * but under a different name/memnode.  The memory was in the
55925cf1a30Sjl 		 * target memnode and now lives in the source memnode with
56025cf1a30Sjl 		 * different physical addresses even though it is the same
56125cf1a30Sjl 		 * memory.
56225cf1a30Sjl 		 */
56325cf1a30Sjl 		sbd = arg & 0xffff;
56425cf1a30Sjl 		tbd = (arg & 0xffff0000) >> 16;
56525cf1a30Sjl 		shand = sbd;
56625cf1a30Sjl 		thand = tbd;
56725cf1a30Sjl 		snode = plat_lgrphand_to_mem_node(shand);
56825cf1a30Sjl 		tnode = plat_lgrphand_to_mem_node(thand);
56925cf1a30Sjl 
57025cf1a30Sjl 		/*
57125cf1a30Sjl 		 * Special handling for possible memory holes.
57225cf1a30Sjl 		 */
57325cf1a30Sjl 		if (tnode != -1 && mem_node_config[tnode].exists) {
57425cf1a30Sjl 			start = mem_node_config[mnode].physbase;
57525cf1a30Sjl 			end = mem_node_config[mnode].physmax;
57625cf1a30Sjl 			mem_node_pre_del_slice(start, end);
57725cf1a30Sjl 			mem_node_post_del_slice(start, end, 0);
57825cf1a30Sjl 		}
57925cf1a30Sjl 
58025cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(thand, snode);
58125cf1a30Sjl 		plat_assign_lgrphand_to_mem_node(shand, tnode);
58225cf1a30Sjl 
58325cf1a30Sjl 		lmr.lmem_rename_from = shand;
58425cf1a30Sjl 		lmr.lmem_rename_to = thand;
58525cf1a30Sjl 
58625cf1a30Sjl 		/*
58725cf1a30Sjl 		 * Remove source memnode of copy rename from its lgroup
58825cf1a30Sjl 		 * and add it to its new target lgroup
58925cf1a30Sjl 		 */
59025cf1a30Sjl 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
59125cf1a30Sjl 		    (uintptr_t)&lmr);
59225cf1a30Sjl 
59325cf1a30Sjl 		break;
59425cf1a30Sjl 
59525cf1a30Sjl 	default:
59625cf1a30Sjl 		break;
59725cf1a30Sjl 	}
59825cf1a30Sjl }
59925cf1a30Sjl 
60025cf1a30Sjl /*
60125cf1a30Sjl  * Return latency between "from" and "to" lgroups
60225cf1a30Sjl  *
60325cf1a30Sjl  * This latency number can only be used for relative comparison
60425cf1a30Sjl  * between lgroups on the running system, cannot be used across platforms,
60525cf1a30Sjl  * and may not reflect the actual latency.  It is platform and implementation
60625cf1a30Sjl  * specific, so platform gets to decide its value.  It would be nice if the
60725cf1a30Sjl  * number was at least proportional to make comparisons more meaningful though.
60825cf1a30Sjl  * NOTE: The numbers below are supposed to be load latencies for uncached
60925cf1a30Sjl  * memory divided by 10.
61025cf1a30Sjl  *
61125cf1a30Sjl  * XXX latency values for Columbus, not Columbus2. Should be fixed later when
61225cf1a30Sjl  *	we know the actual numbers for Columbus2.
61325cf1a30Sjl  */
61425cf1a30Sjl int
61525cf1a30Sjl plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
61625cf1a30Sjl {
61725cf1a30Sjl 	/*
61825cf1a30Sjl 	 * Return min remote latency when there are more than two lgroups
61925cf1a30Sjl 	 * (root and child) and getting latency between two different lgroups
62025cf1a30Sjl 	 * or root is involved
62125cf1a30Sjl 	 */
62225cf1a30Sjl 	if (lgrp_optimizations() && (from != to ||
62325cf1a30Sjl 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
62425cf1a30Sjl 		return (27);
62525cf1a30Sjl 	else
62625cf1a30Sjl 		return (25);
62725cf1a30Sjl }
62825cf1a30Sjl 
62925cf1a30Sjl /*
63025cf1a30Sjl  * Return platform handle for root lgroup
63125cf1a30Sjl  */
63225cf1a30Sjl lgrp_handle_t
63325cf1a30Sjl plat_lgrp_root_hand(void)
63425cf1a30Sjl {
63525cf1a30Sjl 	if (mpo_disabled)
63625cf1a30Sjl 		return (lgrp_default_handle);
63725cf1a30Sjl 
63825cf1a30Sjl 	return (LGRP_DEFAULT_HANDLE);
63925cf1a30Sjl }
64025cf1a30Sjl 
64125cf1a30Sjl /*ARGSUSED*/
64225cf1a30Sjl void
64325cf1a30Sjl plat_freelist_process(int mnode)
64425cf1a30Sjl {
64525cf1a30Sjl }
64625cf1a30Sjl 
64725cf1a30Sjl void
64825cf1a30Sjl load_platform_drivers(void)
64925cf1a30Sjl {
65025cf1a30Sjl 	(void) i_ddi_attach_pseudo_node("dr");
65125cf1a30Sjl }
65225cf1a30Sjl 
65325cf1a30Sjl /*
65425cf1a30Sjl  * No platform drivers on this platform
65525cf1a30Sjl  */
65625cf1a30Sjl char *platform_module_list[] = {
65725cf1a30Sjl 	(char *)0
65825cf1a30Sjl };
65925cf1a30Sjl 
66025cf1a30Sjl /*ARGSUSED*/
66125cf1a30Sjl void
66225cf1a30Sjl plat_tod_fault(enum tod_fault_type tod_bad)
66325cf1a30Sjl {
66425cf1a30Sjl }
66525cf1a30Sjl 
66625cf1a30Sjl /*ARGSUSED*/
66725cf1a30Sjl void
66825cf1a30Sjl cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
66925cf1a30Sjl {
67025cf1a30Sjl 	static void (*scf_panic_callback)(int);
67125cf1a30Sjl 	static void (*scf_shutdown_callback)(int);
67225cf1a30Sjl 
67325cf1a30Sjl 	/*
67425cf1a30Sjl 	 * This is for notifing system panic/shutdown to SCF.
67525cf1a30Sjl 	 * In case of shutdown and panic, SCF call back
67625cf1a30Sjl 	 * function should be called.
67725cf1a30Sjl 	 *  <SCF call back functions>
67825cf1a30Sjl 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
67925cf1a30Sjl 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
68025cf1a30Sjl 	 * cpuid should be -1 and state should be SIGST_EXIT.
68125cf1a30Sjl 	 */
68225cf1a30Sjl 	if (state == SIGST_EXIT && cpuid == -1) {
68325cf1a30Sjl 
68425cf1a30Sjl 		/*
68525cf1a30Sjl 		 * find the symbol for the SCF panic callback routine in driver
68625cf1a30Sjl 		 */
68725cf1a30Sjl 		if (scf_panic_callback == NULL)
68825cf1a30Sjl 			scf_panic_callback = (void (*)(int))
68925cf1a30Sjl 				modgetsymvalue("scf_panic_callb", 0);
69025cf1a30Sjl 		if (scf_shutdown_callback == NULL)
69125cf1a30Sjl 			scf_shutdown_callback = (void (*)(int))
69225cf1a30Sjl 				modgetsymvalue("scf_shutdown_callb", 0);
69325cf1a30Sjl 
69425cf1a30Sjl 		switch (sub_state) {
69525cf1a30Sjl 		case SIGSUBST_PANIC:
69625cf1a30Sjl 			if (scf_panic_callback == NULL) {
69725cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
69825cf1a30Sjl 				    "scf_panic_callb not found\n");
69925cf1a30Sjl 				return;
70025cf1a30Sjl 			}
70125cf1a30Sjl 			scf_panic_callback(SIGSUBST_PANIC);
70225cf1a30Sjl 			break;
70325cf1a30Sjl 
70425cf1a30Sjl 		case SIGSUBST_HALT:
70525cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
70625cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
70725cf1a30Sjl 				    "scf_shutdown_callb not found\n");
70825cf1a30Sjl 				return;
70925cf1a30Sjl 			}
71025cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_HALT);
71125cf1a30Sjl 			break;
71225cf1a30Sjl 
71325cf1a30Sjl 		case SIGSUBST_ENVIRON:
71425cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
71525cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
71625cf1a30Sjl 				    "scf_shutdown_callb not found\n");
71725cf1a30Sjl 				return;
71825cf1a30Sjl 			}
71925cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_ENVIRON);
72025cf1a30Sjl 			break;
72125cf1a30Sjl 
72225cf1a30Sjl 		case SIGSUBST_REBOOT:
72325cf1a30Sjl 			if (scf_shutdown_callback == NULL) {
72425cf1a30Sjl 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
72525cf1a30Sjl 				    "scf_shutdown_callb not found\n");
72625cf1a30Sjl 				return;
72725cf1a30Sjl 			}
72825cf1a30Sjl 			scf_shutdown_callback(SIGSUBST_REBOOT);
72925cf1a30Sjl 			break;
73025cf1a30Sjl 		}
73125cf1a30Sjl 	}
73225cf1a30Sjl }
73325cf1a30Sjl 
73425cf1a30Sjl /*ARGSUSED*/
73525cf1a30Sjl int
73625cf1a30Sjl plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
73725cf1a30Sjl 	int flt_in_memory, ushort_t flt_status,
73825cf1a30Sjl 	char *buf, int buflen, int *lenp)
73925cf1a30Sjl {
74025cf1a30Sjl 	/*
74125cf1a30Sjl 	 * check if it's a Memory error.
74225cf1a30Sjl 	 */
74325cf1a30Sjl 	if (flt_in_memory) {
74425cf1a30Sjl 		if (opl_get_mem_unum != NULL) {
74525cf1a30Sjl 			return (opl_get_mem_unum(synd_code, flt_addr,
74625cf1a30Sjl 				buf, buflen, lenp));
74725cf1a30Sjl 		} else {
74825cf1a30Sjl 			return (ENOTSUP);
74925cf1a30Sjl 		}
75025cf1a30Sjl 	} else {
75125cf1a30Sjl 		return (ENOTSUP);
75225cf1a30Sjl 	}
75325cf1a30Sjl }
75425cf1a30Sjl 
75525cf1a30Sjl /*ARGSUSED*/
75625cf1a30Sjl int
75725cf1a30Sjl plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
75825cf1a30Sjl {
759*0cc8ae86Sav 	int	plen;
760*0cc8ae86Sav 	int	ret = 0;
761*0cc8ae86Sav 	char	model[20];
762*0cc8ae86Sav 	uint_t	sb;
763*0cc8ae86Sav 	pnode_t	node;
764*0cc8ae86Sav 
765*0cc8ae86Sav 	/* determine the platform model once */
766*0cc8ae86Sav 	if (plat_model == -1) {
767*0cc8ae86Sav 		plat_model = MODEL_DC; /* Default model */
768*0cc8ae86Sav 		node = prom_rootnode();
769*0cc8ae86Sav 		plen = prom_getproplen(node, "model");
770*0cc8ae86Sav 		if (plen > 0 && plen < sizeof (model)) {
771*0cc8ae86Sav 			(void) prom_getprop(node, "model", model);
772*0cc8ae86Sav 			model[plen] = '\0';
773*0cc8ae86Sav 			if (strcmp(model, "FF1") == 0)
774*0cc8ae86Sav 				plat_model = MODEL_FF1;
775*0cc8ae86Sav 			else if (strcmp(model, "FF2") == 0)
776*0cc8ae86Sav 				plat_model = MODEL_FF2;
777*0cc8ae86Sav 			else if (strncmp(model, "DC", 2) == 0)
778*0cc8ae86Sav 				plat_model = MODEL_DC;
779*0cc8ae86Sav 		}
780*0cc8ae86Sav 	}
78125cf1a30Sjl 
78225cf1a30Sjl 	sb = opl_get_physical_board(LSB_ID(cpuid));
78325cf1a30Sjl 	if (sb == -1) {
78425cf1a30Sjl 		return (ENXIO);
78525cf1a30Sjl 	}
78625cf1a30Sjl 
787*0cc8ae86Sav 	switch (plat_model) {
788*0cc8ae86Sav 	case MODEL_FF1:
789*0cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
790*0cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
791*0cc8ae86Sav 		break;
792*0cc8ae86Sav 
793*0cc8ae86Sav 	case MODEL_FF2:
794*0cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
795*0cc8ae86Sav 		    CHIP_ID(cpuid) / 2);
796*0cc8ae86Sav 		break;
797*0cc8ae86Sav 
798*0cc8ae86Sav 	case MODEL_DC:
799*0cc8ae86Sav 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
800*0cc8ae86Sav 		    CHIP_ID(cpuid));
801*0cc8ae86Sav 		break;
802*0cc8ae86Sav 
803*0cc8ae86Sav 	default:
804*0cc8ae86Sav 		/* This should never happen */
805*0cc8ae86Sav 		return (ENODEV);
806*0cc8ae86Sav 	}
807*0cc8ae86Sav 
808*0cc8ae86Sav 	if (plen >= buflen) {
809*0cc8ae86Sav 		ret = ENOSPC;
81025cf1a30Sjl 	} else {
81125cf1a30Sjl 		if (lenp)
81225cf1a30Sjl 			*lenp = strlen(buf);
81325cf1a30Sjl 	}
814*0cc8ae86Sav 	return (ret);
81525cf1a30Sjl }
81625cf1a30Sjl 
81725cf1a30Sjl #define	SCF_PUTINFO(f, s, p)	\
81825cf1a30Sjl 	f(KEY_ESCF, 0x01, 0, s, p)
81925cf1a30Sjl void
82025cf1a30Sjl plat_nodename_set(void)
82125cf1a30Sjl {
82225cf1a30Sjl 	void *datap;
82325cf1a30Sjl 	static int (*scf_service_function)(uint32_t, uint8_t,
82425cf1a30Sjl 	    uint32_t, uint32_t, void *);
82525cf1a30Sjl 	int counter = 5;
82625cf1a30Sjl 
82725cf1a30Sjl 	/*
82825cf1a30Sjl 	 * find the symbol for the SCF put routine in driver
82925cf1a30Sjl 	 */
83025cf1a30Sjl 	if (scf_service_function == NULL)
83125cf1a30Sjl 		scf_service_function =
83225cf1a30Sjl 			(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
83325cf1a30Sjl 			modgetsymvalue("scf_service_putinfo", 0);
83425cf1a30Sjl 
83525cf1a30Sjl 	/*
83625cf1a30Sjl 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
83725cf1a30Sjl 	 * the console).
83825cf1a30Sjl 	 */
83925cf1a30Sjl 
84025cf1a30Sjl 	if (scf_service_function == NULL) {
84125cf1a30Sjl 		cmn_err(CE_NOTE,
84225cf1a30Sjl 		    "!plat_nodename_set: scf_service_putinfo not found\n");
84325cf1a30Sjl 		return;
84425cf1a30Sjl 	}
84525cf1a30Sjl 
84625cf1a30Sjl 	datap =
84725cf1a30Sjl 	    (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP);
84825cf1a30Sjl 
84925cf1a30Sjl 	if (datap == NULL) {
85025cf1a30Sjl 		return;
85125cf1a30Sjl 	}
85225cf1a30Sjl 
85325cf1a30Sjl 	bcopy((struct utsname *)&utsname,
85425cf1a30Sjl 	    (struct utsname *)datap, sizeof (struct utsname));
85525cf1a30Sjl 
85625cf1a30Sjl 	while ((SCF_PUTINFO(scf_service_function,
85725cf1a30Sjl 		sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) {
85825cf1a30Sjl 		delay(10 * drv_usectohz(1000000));
85925cf1a30Sjl 	}
86025cf1a30Sjl 	if (counter == 0)
86125cf1a30Sjl 		cmn_err(CE_NOTE,
86225cf1a30Sjl 			"!plat_nodename_set: "
86325cf1a30Sjl 			"scf_service_putinfo not responding\n");
86425cf1a30Sjl 
86525cf1a30Sjl 	kmem_free(datap, sizeof (struct utsname));
86625cf1a30Sjl }
86725cf1a30Sjl 
86825cf1a30Sjl caddr_t	efcode_vaddr = NULL;
86925cf1a30Sjl 
87025cf1a30Sjl /*
87125cf1a30Sjl  * Preallocate enough memory for fcode claims.
87225cf1a30Sjl  */
87325cf1a30Sjl 
87425cf1a30Sjl caddr_t
87525cf1a30Sjl efcode_alloc(caddr_t alloc_base)
87625cf1a30Sjl {
87725cf1a30Sjl 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
87825cf1a30Sjl 	    MMU_PAGESIZE);
87925cf1a30Sjl 	caddr_t vaddr;
88025cf1a30Sjl 
88125cf1a30Sjl 	/*
88225cf1a30Sjl 	 * allocate the physical memory for the Oberon fcode.
88325cf1a30Sjl 	 */
88425cf1a30Sjl 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
88525cf1a30Sjl 	    efcode_size, MMU_PAGESIZE)) == NULL)
88625cf1a30Sjl 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
88725cf1a30Sjl 
88825cf1a30Sjl 	efcode_vaddr = vaddr;
88925cf1a30Sjl 
89025cf1a30Sjl 	return (efcode_alloc_base + efcode_size);
89125cf1a30Sjl }
89225cf1a30Sjl 
89325cf1a30Sjl caddr_t
89425cf1a30Sjl plat_startup_memlist(caddr_t alloc_base)
89525cf1a30Sjl {
89625cf1a30Sjl 	caddr_t tmp_alloc_base;
89725cf1a30Sjl 
89825cf1a30Sjl 	tmp_alloc_base = efcode_alloc(alloc_base);
89925cf1a30Sjl 	tmp_alloc_base =
90025cf1a30Sjl 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
90125cf1a30Sjl 	return (tmp_alloc_base);
90225cf1a30Sjl }
90325cf1a30Sjl 
90425cf1a30Sjl void
90525cf1a30Sjl startup_platform(void)
90625cf1a30Sjl {
90725cf1a30Sjl }
908*0cc8ae86Sav 
909*0cc8ae86Sav int
910*0cc8ae86Sav plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
911*0cc8ae86Sav {
912*0cc8ae86Sav 	if (opl_get_mem_sid == NULL) {
913*0cc8ae86Sav 		return (ENOTSUP);
914*0cc8ae86Sav 	}
915*0cc8ae86Sav 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
916*0cc8ae86Sav }
917*0cc8ae86Sav 
918*0cc8ae86Sav int
919*0cc8ae86Sav plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
920*0cc8ae86Sav {
921*0cc8ae86Sav 	if (opl_get_mem_offset == NULL) {
922*0cc8ae86Sav 		return (ENOTSUP);
923*0cc8ae86Sav 	}
924*0cc8ae86Sav 	return (opl_get_mem_offset(paddr, offp));
925*0cc8ae86Sav }
926*0cc8ae86Sav 
927*0cc8ae86Sav int
928*0cc8ae86Sav plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
929*0cc8ae86Sav {
930*0cc8ae86Sav 	if (opl_get_mem_addr == NULL) {
931*0cc8ae86Sav 		return (ENOTSUP);
932*0cc8ae86Sav 	}
933*0cc8ae86Sav 	return (opl_get_mem_addr(unum, sid, offset, addrp));
934*0cc8ae86Sav }
935