xref: /illumos-gate/usr/src/uts/sun4u/io/sysiosbus.c (revision 7c478bd95313f5f23a4c958a745db2134aa03244)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/conf.h>
31 #include <sys/ddi.h>
32 #include <sys/sunddi.h>
33 #include <sys/sunndi.h>
34 #include <sys/ddi_impldefs.h>
35 #include <sys/ddi_implfuncs.h>
36 #include <sys/obpdefs.h>
37 #include <sys/cmn_err.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/debug.h>
41 #include <sys/sysmacros.h>
42 #include <sys/autoconf.h>
43 #include <sys/spl.h>
44 #include <sys/iommu.h>
45 #include <sys/sysiosbus.h>
46 #include <sys/sysioerr.h>
47 #include <sys/iocache.h>
48 #include <sys/async.h>
49 #include <sys/machsystm.h>
50 #include <sys/intreg.h>
51 #include <sys/ddi_subrdefs.h>
52 #ifdef _STARFIRE
53 #include <sys/starfire.h>
54 #endif /* _STARFIRE */
55 #include <sys/sdt.h>
56 
57 /* Useful debugging Stuff */
58 #include <sys/nexusdebug.h>
59 /* Bitfield debugging definitions for this file */
60 #define	SBUS_ATTACH_DEBUG	0x1
61 #define	SBUS_SBUSMEM_DEBUG	0x2
62 #define	SBUS_INTERRUPT_DEBUG	0x4
63 #define	SBUS_REGISTERS_DEBUG	0x8
64 
65 /*
66  * Interrupt registers table.
67  * This table is necessary due to inconsistencies in the sysio register
68  * layout.  If this gets fixed in the chip, we can get rid of this stupid
69  * table.
70  */
71 static struct sbus_slot_entry ino_1 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
72 					SBUS_SLOT0_L1_CLEAR, NULL};
73 static struct sbus_slot_entry ino_2 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
74 					SBUS_SLOT0_L2_CLEAR, NULL};
75 static struct sbus_slot_entry ino_3 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
76 					SBUS_SLOT0_L3_CLEAR, NULL};
77 static struct sbus_slot_entry ino_4 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
78 					SBUS_SLOT0_L4_CLEAR, NULL};
79 static struct sbus_slot_entry ino_5 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
80 					SBUS_SLOT0_L5_CLEAR, NULL};
81 static struct sbus_slot_entry ino_6 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
82 					SBUS_SLOT0_L6_CLEAR, NULL};
83 static struct sbus_slot_entry ino_7 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
84 					SBUS_SLOT0_L7_CLEAR, NULL};
85 static struct sbus_slot_entry ino_9 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
86 					SBUS_SLOT1_L1_CLEAR, NULL};
87 static struct sbus_slot_entry ino_10 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
88 					SBUS_SLOT1_L2_CLEAR, NULL};
89 static struct sbus_slot_entry ino_11 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
90 					SBUS_SLOT1_L3_CLEAR, NULL};
91 static struct sbus_slot_entry ino_12 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
92 					SBUS_SLOT1_L4_CLEAR, NULL};
93 static struct sbus_slot_entry ino_13 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
94 					SBUS_SLOT1_L5_CLEAR, NULL};
95 static struct sbus_slot_entry ino_14 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
96 					SBUS_SLOT1_L6_CLEAR, NULL};
97 static struct sbus_slot_entry ino_15 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
98 					SBUS_SLOT1_L7_CLEAR, NULL};
99 static struct sbus_slot_entry ino_17 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
100 					SBUS_SLOT2_L1_CLEAR, NULL};
101 static struct sbus_slot_entry ino_18 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
102 					SBUS_SLOT2_L2_CLEAR, NULL};
103 static struct sbus_slot_entry ino_19 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
104 					SBUS_SLOT2_L3_CLEAR, NULL};
105 static struct sbus_slot_entry ino_20 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
106 					SBUS_SLOT2_L4_CLEAR, NULL};
107 static struct sbus_slot_entry ino_21 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
108 					SBUS_SLOT2_L5_CLEAR, NULL};
109 static struct sbus_slot_entry ino_22 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
110 					SBUS_SLOT2_L6_CLEAR, NULL};
111 static struct sbus_slot_entry ino_23 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
112 					SBUS_SLOT2_L7_CLEAR, NULL};
113 static struct sbus_slot_entry ino_25 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
114 					SBUS_SLOT3_L1_CLEAR, NULL};
115 static struct sbus_slot_entry ino_26 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
116 					SBUS_SLOT3_L2_CLEAR, NULL};
117 static struct sbus_slot_entry ino_27 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
118 					SBUS_SLOT3_L3_CLEAR, NULL};
119 static struct sbus_slot_entry ino_28 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
120 					SBUS_SLOT3_L4_CLEAR, NULL};
121 static struct sbus_slot_entry ino_29 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
122 					SBUS_SLOT3_L5_CLEAR, NULL};
123 static struct sbus_slot_entry ino_30 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
124 					SBUS_SLOT3_L6_CLEAR, NULL};
125 static struct sbus_slot_entry ino_31 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
126 					SBUS_SLOT3_L7_CLEAR, NULL};
127 static struct sbus_slot_entry ino_32 = {SBUS_SLOT5_CONFIG, ESP_MAPREG,
128 					ESP_CLEAR, ESP_INTR_STATE_SHIFT};
129 static struct sbus_slot_entry ino_33 = {SBUS_SLOT5_CONFIG, ETHER_MAPREG,
130 					ETHER_CLEAR, ETHER_INTR_STATE_SHIFT};
131 static struct sbus_slot_entry ino_34 = {SBUS_SLOT5_CONFIG, PP_MAPREG,
132 					PP_CLEAR, PP_INTR_STATE_SHIFT};
133 static struct sbus_slot_entry ino_36 = {SBUS_SLOT4_CONFIG, AUDIO_MAPREG,
134 					AUDIO_CLEAR, AUDIO_INTR_STATE_SHIFT};
135 static struct sbus_slot_entry ino_40 = {SBUS_SLOT6_CONFIG, KBDMOUSE_MAPREG,
136 					KBDMOUSE_CLEAR,
137 					KBDMOUSE_INTR_STATE_SHIFT};
138 static struct sbus_slot_entry ino_41 = {SBUS_SLOT6_CONFIG, FLOPPY_MAPREG,
139 					FLOPPY_CLEAR, FLOPPY_INTR_STATE_SHIFT};
140 static struct sbus_slot_entry ino_42 = {SBUS_SLOT6_CONFIG, THERMAL_MAPREG,
141 					THERMAL_CLEAR,
142 					THERMAL_INTR_STATE_SHIFT};
143 static struct sbus_slot_entry ino_48 = {SBUS_SLOT6_CONFIG, TIMER0_MAPREG,
144 					TIMER0_CLEAR, TIMER0_INTR_STATE_SHIFT};
145 static struct sbus_slot_entry ino_49 = {SBUS_SLOT6_CONFIG, TIMER1_MAPREG,
146 					TIMER1_CLEAR, TIMER1_INTR_STATE_SHIFT};
147 static struct sbus_slot_entry ino_52 = {SBUS_SLOT6_CONFIG, UE_ECC_MAPREG,
148 					UE_ECC_CLEAR, UE_INTR_STATE_SHIFT};
149 static struct sbus_slot_entry ino_53 = {SBUS_SLOT6_CONFIG, CE_ECC_MAPREG,
150 					CE_ECC_CLEAR, CE_INTR_STATE_SHIFT};
151 static struct sbus_slot_entry ino_54 = {SBUS_SLOT6_CONFIG, SBUS_ERR_MAPREG,
152 					SBUS_ERR_CLEAR, SERR_INTR_STATE_SHIFT};
153 static struct sbus_slot_entry ino_55 = {SBUS_SLOT6_CONFIG, PM_WAKEUP_MAPREG,
154 					PM_WAKEUP_CLEAR, PM_INTR_STATE_SHIFT};
155 static struct sbus_slot_entry ino_ffb = {NULL, FFB_MAPPING_REG, NULL, NULL};
156 static struct sbus_slot_entry ino_exp = {NULL, EXP_MAPPING_REG, NULL, NULL};
157 
158 /* Construct the interrupt number array */
159 struct sbus_slot_entry *ino_table[] = {
160 	NULL, &ino_1, &ino_2, &ino_3, &ino_4, &ino_5, &ino_6, &ino_7,
161 	NULL, &ino_9, &ino_10, &ino_11, &ino_12, &ino_13, &ino_14, &ino_15,
162 	NULL, &ino_17, &ino_18, &ino_19, &ino_20, &ino_21, &ino_22, &ino_23,
163 	NULL, &ino_25, &ino_26, &ino_27, &ino_28, &ino_29, &ino_30, &ino_31,
164 	&ino_32, &ino_33, &ino_34, NULL, &ino_36, NULL, NULL, NULL,
165 	&ino_40, &ino_41, &ino_42, NULL, NULL, NULL, NULL, NULL, &ino_48,
166 	&ino_49, NULL, NULL, &ino_52, &ino_53, &ino_54, &ino_55, &ino_ffb,
167 	&ino_exp
168 };
169 
170 /*
171  * This table represents the Fusion interrupt priorities.  They range
172  * from 1 - 15, so we'll pattern the priorities after the 4M.  We map Fusion
173  * interrupt number to system priority.  The mondo number is used as an
174  * index into this table.
175  */
176 int interrupt_priorities[] = {
177 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 0 sbus level 1 - 7 */
178 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 1 sbus level 1 - 7 */
179 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 2 sbus level 1 - 7 */
180 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 3 sbus level 1 - 7 */
181 	4,				/* Onboard SCSI */
182 	6,				/* Onboard Ethernet */
183 	3,				/* Onboard Parallel port */
184 	-1,				/* Not in use */
185 	9,				/* Onboard Audio */
186 	-1, -1, -1,			/* Not in use */
187 	12,				/* Onboard keyboard/serial ports */
188 	11,				/* Onboard Floppy */
189 	9,				/* Thermal interrupt */
190 	-1, -1, -1,			/* Not is use */
191 	10,				/* Timer 0 (tick timer) */
192 	14,				/* Timer 1 (not used) */
193 	15,				/* Sysio UE ECC error */
194 	10,				/* Sysio CE ECC error */
195 	10,				/* Sysio Sbus error */
196 	10,				/* PM Wakeup */
197 };
198 
199 /* Interrupt counter flag.  To enable/disable spurious interrupt counter. */
200 static int intr_cntr_on;
201 
202 /*
203  * Function prototypes.
204  */
205 static int
206 sbus_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *);
207 
208 static int
209 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
210     ddi_intr_handle_impl_t *hdlp);
211 
212 static void
213 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
214     ddi_intr_handle_impl_t *hdlp);
215 
216 static int
217 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
218     ddi_intr_handle_impl_t *hdlp, void *result);
219 
220 static int
221 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, ddi_ispec_t *ispecp,
222     int32_t ign);
223 
224 static int
225 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd);
226 
227 static int
228 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
229 
230 static int
231 sbus_do_detach(dev_info_t *devi);
232 
233 static	void
234 sbus_add_picN_kstats(dev_info_t *dip);
235 
236 static	void
237 sbus_add_kstats(struct sbus_soft_state *);
238 
239 static	int
240 sbus_counters_kstat_update(kstat_t *, int);
241 
242 extern int
243 sysio_err_uninit(struct sbus_soft_state *softsp);
244 
245 extern int
246 iommu_uninit(struct sbus_soft_state *softsp);
247 
248 extern int
249 stream_buf_uninit(struct sbus_soft_state *softsp);
250 
251 static int
252 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip);
253 
254 static void make_sbus_ppd(dev_info_t *child);
255 
256 static int
257 sbusmem_initchild(dev_info_t *dip, dev_info_t *child);
258 
259 static int
260 sbus_initchild(dev_info_t *dip, dev_info_t *child);
261 
262 static int
263 sbus_uninitchild(dev_info_t *dip);
264 
265 static int
266 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args);
267 
268 static int
269 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
270     void *result);
271 
272 static int
273 sbus_init(struct sbus_soft_state *softsp, caddr_t address);
274 
275 static int
276 sbus_resume_init(struct sbus_soft_state *softsp, int resume);
277 
278 static void
279 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
280     int flag);
281 
282 static void sbus_intrdist(void *);
283 static uint_t sbus_intr_reset(void *);
284 
285 static int
286 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
287     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state);
288 
289 #ifdef	_STARFIRE
290 void
291 pc_ittrans_init(int, caddr_t *);
292 
293 void
294 pc_ittrans_uninit(caddr_t);
295 
296 int
297 pc_translate_tgtid(caddr_t, int, volatile uint64_t *);
298 
299 void
300 pc_ittrans_cleanup(caddr_t, volatile uint64_t *);
301 #endif	/* _STARFIRE */
302 
303 /*
304  * Configuration data structures
305  */
306 static struct bus_ops sbus_bus_ops = {
307 	BUSO_REV,
308 	i_ddi_bus_map,
309 	0,
310 	0,
311 	0,
312 	i_ddi_map_fault,
313 	iommu_dma_map,
314 	iommu_dma_allochdl,
315 	iommu_dma_freehdl,
316 	iommu_dma_bindhdl,
317 	iommu_dma_unbindhdl,
318 	iommu_dma_flush,
319 	iommu_dma_win,
320 	iommu_dma_mctl,
321 	sbus_ctlops,
322 	ddi_bus_prop_op,
323 	0,			/* (*bus_get_eventcookie)();	*/
324 	0,			/* (*bus_add_eventcall)();	*/
325 	0,			/* (*bus_remove_eventcall)();	*/
326 	0,			/* (*bus_post_event)();		*/
327 	0,			/* (*bus_intr_control)();	*/
328 	0,			/* (*bus_config)();		*/
329 	0,			/* (*bus_unconfig)();		*/
330 	0,			/* (*bus_fm_init)();		*/
331 	0,			/* (*bus_fm_fini)();		*/
332 	0,			/* (*bus_fm_access_enter)();	*/
333 	0,			/* (*bus_fm_access_exit)();	*/
334 	0,			/* (*bus_power)();		*/
335 	sbus_intr_ops		/* (*bus_intr_op)();		*/
336 };
337 
338 static struct cb_ops sbus_cb_ops = {
339 	nodev,			/* open */
340 	nodev,			/* close */
341 	nodev,			/* strategy */
342 	nodev,			/* print */
343 	nodev,			/* dump */
344 	nodev,			/* read */
345 	nodev,			/* write */
346 	nodev,			/* ioctl */
347 	nodev,			/* devmap */
348 	nodev,			/* mmap */
349 	nodev,			/* segmap */
350 	nochpoll,		/* poll */
351 	ddi_prop_op,		/* prop_op */
352 	NULL,
353 	D_NEW | D_MP | D_HOTPLUG,
354 	CB_REV,				/* rev */
355 	nodev,				/* int (*cb_aread)() */
356 	nodev				/* int (*cb_awrite)() */
357 };
358 
359 static struct dev_ops sbus_ops = {
360 	DEVO_REV,		/* devo_rev, */
361 	0,			/* refcnt  */
362 	ddi_no_info,		/* info */
363 	nulldev,		/* identify */
364 	nulldev,		/* probe */
365 	sbus_attach,		/* attach */
366 	sbus_detach,		/* detach */
367 	nodev,			/* reset */
368 	&sbus_cb_ops,		/* driver operations */
369 	&sbus_bus_ops,		/* bus operations */
370 	nulldev			/* power */
371 };
372 
373 /* global data */
374 void *sbusp;		/* sbus soft state hook */
375 void *sbus_cprp;	/* subs suspend/resume soft state hook */
376 static kstat_t *sbus_picN_ksp[SBUS_NUM_PICS]; /* performance picN kstats */
377 static int	sbus_attachcnt = 0;   /* number of instances attached */
378 static kmutex_t	sbus_attachcnt_mutex; /* sbus_attachcnt lock - attach/detach */
379 
380 #include <sys/modctl.h>
381 extern struct mod_ops mod_driverops;
382 
383 static struct modldrv modldrv = {
384 	&mod_driverops, 	/* Type of module.  This one is a driver */
385 	"SBus (sysio) nexus driver %I%",	/* Name of module. */
386 	&sbus_ops,		/* driver ops */
387 };
388 
389 static struct modlinkage modlinkage = {
390 	MODREV_1, (void *)&modldrv, NULL
391 };
392 
393 /*
394  * These are the module initialization routines.
395  */
396 int
397 _init(void)
398 {
399 	int error;
400 
401 	if ((error = ddi_soft_state_init(&sbusp,
402 	    sizeof (struct sbus_soft_state), 1)) != 0)
403 		return (error);
404 
405 	/*
406 	 * Initialize cpr soft state structure
407 	 */
408 	if ((error = ddi_soft_state_init(&sbus_cprp,
409 	    sizeof (uint64_t) * MAX_INO_TABLE_SIZE, 0)) != 0)
410 		return (error);
411 
412 	/* Initialize global mutex */
413 	mutex_init(&sbus_attachcnt_mutex, NULL, MUTEX_DRIVER, NULL);
414 
415 	return (mod_install(&modlinkage));
416 }
417 
418 int
419 _fini(void)
420 {
421 	int error;
422 
423 	if ((error = mod_remove(&modlinkage)) != 0)
424 		return (error);
425 
426 	mutex_destroy(&sbus_attachcnt_mutex);
427 	ddi_soft_state_fini(&sbusp);
428 	ddi_soft_state_fini(&sbus_cprp);
429 	return (0);
430 }
431 
432 int
433 _info(struct modinfo *modinfop)
434 {
435 	return (mod_info(&modlinkage, modinfop));
436 }
437 
438 /*ARGSUSED*/
439 static int
440 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
441 {
442 	struct sbus_soft_state *softsp;
443 	int instance, error;
444 	uint64_t *cpr_softsp;
445 	ddi_device_acc_attr_t attr;
446 
447 
448 #ifdef	DEBUG
449 	debug_info = 1;
450 	debug_print_level = 0;
451 #endif
452 
453 	instance = ddi_get_instance(devi);
454 
455 	switch (cmd) {
456 	case DDI_ATTACH:
457 		break;
458 
459 	case DDI_RESUME:
460 		softsp = ddi_get_soft_state(sbusp, instance);
461 
462 		if ((error = iommu_resume_init(softsp)) != DDI_SUCCESS)
463 			return (error);
464 
465 		if ((error = sbus_resume_init(softsp, 1)) != DDI_SUCCESS)
466 			return (error);
467 
468 		if ((error = stream_buf_resume_init(softsp)) != DDI_SUCCESS)
469 			return (error);
470 
471 		/*
472 		 * Restore Interrupt Mapping registers
473 		 */
474 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
475 
476 		if (cpr_softsp != NULL) {
477 			sbus_cpr_handle_intr_map_reg(cpr_softsp,
478 			    softsp->intr_mapping_reg, 0);
479 			ddi_soft_state_free(sbus_cprp, instance);
480 		}
481 
482 		return (DDI_SUCCESS);
483 
484 	default:
485 		return (DDI_FAILURE);
486 	}
487 
488 	if (ddi_soft_state_zalloc(sbusp, instance) != DDI_SUCCESS)
489 		return (DDI_FAILURE);
490 
491 	softsp = ddi_get_soft_state(sbusp, instance);
492 
493 	/* Set the dip in the soft state */
494 	softsp->dip = devi;
495 
496 	if ((softsp->upa_id = (int)ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
497 	    DDI_PROP_DONTPASS, "upa-portid", -1)) == -1) {
498 		cmn_err(CE_WARN, "Unable to retrieve sbus upa-portid"
499 		    "property.");
500 		error = DDI_FAILURE;
501 		goto bad;
502 	}
503 
504 	/*
505 	 * The firmware maps in all 3 pages of the sysio chips device
506 	 * device registers and exports the mapping in the int-sized
507 	 * property "address".  Read in this address and pass it to
508 	 * the subsidiary *_init functions, so we don't create extra
509 	 * mappings to the same physical pages and we don't have to
510 	 * retrieve the more than once.
511 	 */
512 	/*
513 	 * Implement new policy to start ignoring the "address" property
514 	 * due to new requirements from DR.  The problem is that the contents
515 	 * of the "address" property contain vm mappings from OBP which needs
516 	 * to be recaptured into kernel vm.  Instead of relying on a blanket
517 	 * recapture during boot time, we map psycho registers each time during
518 	 * attach and unmap the during detach.  In some future point of time
519 	 * OBP will drop creating "address" property but this driver will
520 	 * will already not rely on this property any more.
521 	 */
522 
523 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
524 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
525 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
526 	if (ddi_regs_map_setup(softsp->dip, 0, &softsp->address, 0, 0,
527 		&attr, &softsp->ac) != DDI_SUCCESS) {
528 		cmn_err(CE_WARN, "%s%d: unable to map reg set 0\n",
529 			ddi_get_name(softsp->dip),
530 			ddi_get_instance(softsp->dip));
531 		return (0);
532 	}
533 	if (softsp->address == (caddr_t)-1) {
534 		cmn_err(CE_CONT, "?sbus%d: No sysio <address> property\n",
535 		    ddi_get_instance(softsp->dip));
536 		return (DDI_FAILURE);
537 	}
538 
539 	DPRINTF(SBUS_ATTACH_DEBUG, ("sbus: devi=0x%x, softsp=0x%x\n",
540 	    devi, softsp));
541 
542 #ifdef	notdef
543 	/*
544 	 * This bit of code, plus the firmware, will tell us if
545 	 * the #size-cells infrastructure code works, to some degree.
546 	 * You should be able to use the firmware to determine if
547 	 * the address returned by ddi_map_regs maps the correct phys. pages.
548 	 */
549 
550 	{
551 		caddr_t addr;
552 		int rv;
553 
554 		cmn_err(CE_CONT, "?sbus: address property = 0x%x\n", address);
555 
556 		if ((rv = ddi_map_regs(softsp->dip, 0, &addr,
557 		    (off_t)0, (off_t)0)) != DDI_SUCCESS)  {
558 			cmn_err(CE_CONT, "?sbus: ddi_map_regs failed: %d\n",
559 			    rv);
560 		} else {
561 			cmn_err(CE_CONT, "?sbus: ddi_map_regs returned "
562 			    " virtual address 0x%x\n", addr);
563 		}
564 	}
565 #endif	/* notdef */
566 
567 	if ((error = iommu_init(softsp, softsp->address)) != DDI_SUCCESS)
568 		goto bad;
569 
570 	if ((error = sbus_init(softsp, softsp->address)) != DDI_SUCCESS)
571 		goto bad;
572 
573 	if ((error = sysio_err_init(softsp, softsp->address)) != DDI_SUCCESS)
574 		goto bad;
575 
576 	if ((error = stream_buf_init(softsp, softsp->address)) != DDI_SUCCESS)
577 		goto bad;
578 
579 	/* Init the pokefault mutex for sbus devices */
580 	mutex_init(&softsp->pokefault_mutex, NULL, MUTEX_SPIN,
581 	    (void *)ipltospl(SBUS_ERR_PIL - 1));
582 
583 	sbus_add_kstats(softsp);
584 
585 	bus_func_register(BF_TYPE_RESINTR, sbus_intr_reset, devi);
586 
587 	intr_dist_add(sbus_intrdist, devi);
588 
589 	ddi_report_dev(devi);
590 
591 	return (DDI_SUCCESS);
592 
593 bad:
594 	ddi_soft_state_free(sbusp, instance);
595 	return (error);
596 }
597 
598 /* ARGSUSED */
599 static int
600 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
601 {
602 	int instance;
603 	struct sbus_soft_state *softsp;
604 	uint64_t *cpr_softsp;
605 
606 	switch (cmd) {
607 	case DDI_SUSPEND:
608 		/*
609 		 * Allocate the cpr  soft data structure to save the current
610 		 * state of the interrupt mapping registers.
611 		 * This structure will be deallocated after the system
612 		 * is resumed.
613 		 */
614 		instance = ddi_get_instance(devi);
615 
616 		if (ddi_soft_state_zalloc(sbus_cprp, instance)
617 			!= DDI_SUCCESS)
618 			return (DDI_FAILURE);
619 
620 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
621 
622 		softsp = ddi_get_soft_state(sbusp, instance);
623 
624 		sbus_cpr_handle_intr_map_reg(cpr_softsp,
625 		    softsp->intr_mapping_reg, 1);
626 		return (DDI_SUCCESS);
627 
628 	case DDI_DETACH:
629 		return (sbus_do_detach(devi));
630 	default:
631 		return (DDI_FAILURE);
632 	}
633 }
634 
635 static int
636 sbus_do_detach(dev_info_t *devi)
637 {
638 	int instance, pic;
639 	struct sbus_soft_state *softsp;
640 
641 	instance = ddi_get_instance(devi);
642 	softsp = ddi_get_soft_state(sbusp, instance);
643 	ASSERT(softsp != NULL);
644 
645 	bus_func_unregister(BF_TYPE_RESINTR, sbus_intr_reset, devi);
646 
647 	intr_dist_rem(sbus_intrdist, devi);
648 
649 	/* disable the streamming cache */
650 	if (stream_buf_uninit(softsp) == DDI_FAILURE) {
651 		goto err;
652 	}
653 
654 	/* remove the interrupt handlers from the system */
655 	if (sysio_err_uninit(softsp) == DDI_FAILURE) {
656 		goto err;
657 	}
658 
659 	/* disable the IOMMU */
660 	if (iommu_uninit(softsp)) {
661 		goto err;
662 	}
663 
664 	/* unmap register space if we have a handle */
665 	if (softsp->ac) {
666 		ddi_regs_map_free(&softsp->ac);
667 		softsp->address = NULL;
668 	}
669 
670 	/*
671 	 * remove counter kstats for this device
672 	 */
673 	if (softsp->sbus_counters_ksp != (kstat_t *)NULL)
674 		kstat_delete(softsp->sbus_counters_ksp);
675 
676 	/*
677 	 * if we are the last instance to detach we need to
678 	 * remove the picN kstats. We use sbus_attachcnt as a
679 	 * count of how many instances are still attached. This
680 	 * is protected by a mutex.
681 	 */
682 	mutex_enter(&sbus_attachcnt_mutex);
683 	sbus_attachcnt --;
684 	if (sbus_attachcnt == 0) {
685 		for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
686 			if (sbus_picN_ksp[pic] != (kstat_t *)NULL) {
687 				kstat_delete(sbus_picN_ksp[pic]);
688 				sbus_picN_ksp[pic] = NULL;
689 			}
690 		}
691 	}
692 	mutex_exit(&sbus_attachcnt_mutex);
693 
694 #ifdef _STARFIRE
695 	/* free starfire specific soft intr mapping structure */
696 	pc_ittrans_uninit(softsp->ittrans_cookie);
697 #endif /* _STARFIRE */
698 
699 	/* free the soft state structure */
700 	ddi_soft_state_free(sbusp, instance);
701 
702 	return (DDI_SUCCESS);
703 err:
704 	return (DDI_FAILURE);
705 }
706 
707 static int
708 sbus_init(struct sbus_soft_state *softsp, caddr_t address)
709 {
710 	int i;
711 	extern void set_intr_mapping_reg(int, uint64_t *, int);
712 	int numproxy;
713 
714 	/*
715 	 * Simply add each registers offset to the base address
716 	 * to calculate the already mapped virtual address of
717 	 * the device register...
718 	 *
719 	 * define a macro for the pointer arithmetic; all registers
720 	 * are 64 bits wide and are defined as uint64_t's.
721 	 */
722 
723 #define	REG_ADDR(b, o)	(uint64_t *)((caddr_t)(b) + (o))
724 
725 	softsp->sysio_ctrl_reg = REG_ADDR(address, OFF_SYSIO_CTRL_REG);
726 	softsp->sbus_ctrl_reg = REG_ADDR(address, OFF_SBUS_CTRL_REG);
727 	softsp->sbus_slot_config_reg = REG_ADDR(address, OFF_SBUS_SLOT_CONFIG);
728 	softsp->intr_mapping_reg = REG_ADDR(address, OFF_INTR_MAPPING_REG);
729 	softsp->clr_intr_reg = REG_ADDR(address, OFF_CLR_INTR_REG);
730 	softsp->intr_retry_reg = REG_ADDR(address, OFF_INTR_RETRY_REG);
731 	softsp->sbus_intr_state = REG_ADDR(address, OFF_SBUS_INTR_STATE_REG);
732 	softsp->sbus_pcr = REG_ADDR(address, OFF_SBUS_PCR);
733 	softsp->sbus_pic = REG_ADDR(address, OFF_SBUS_PIC);
734 
735 #undef	REG_ADDR
736 
737 	DPRINTF(SBUS_REGISTERS_DEBUG, ("SYSIO Control reg: 0x%x\n"
738 	    "SBUS Control reg: 0x%x", softsp->sysio_ctrl_reg,
739 	    softsp->sbus_ctrl_reg));
740 
741 #ifdef _STARFIRE
742 	/* Setup interrupt target translation for starfire */
743 	pc_ittrans_init(softsp->upa_id, &softsp->ittrans_cookie);
744 #endif /* _STARFIRE */
745 
746 	softsp->intr_mapping_ign =
747 	    UPAID_TO_IGN(softsp->upa_id) << IMR_IGN_SHIFT;
748 
749 	/* Diag reg 2 is the next 64 bit word after diag reg 1 */
750 	softsp->obio_intr_state = softsp->sbus_intr_state + 1;
751 
752 	(void) sbus_resume_init(softsp, 0);
753 
754 	/*
755 	 * Set the initial burstsizes for each slot to all 1's.  This will
756 	 * get changed at initchild time.
757 	 */
758 	for (i = 0; i < MAX_SBUS_SLOTS; i++)
759 		softsp->sbus_slave_burstsizes[i] = 0xffffffffu;
760 
761 	/*
762 	 * Since SYSIO is used as an interrupt mastering device for slave
763 	 * only UPA devices, we call a dedicated kernel function to register
764 	 * The address of the interrupt mapping register for the slave device.
765 	 *
766 	 * If RISC/sysio is wired to support 2 upa slave interrupt
767 	 * devices then register 2nd mapping register with system.
768 	 * The slave/proxy portid algorithm (decribed in Fusion Desktop Spec)
769 	 * allows for upto 3 slaves per proxy but Psycho/SYSIO only support 2.
770 	 *
771 	 * #upa-interrupt-proxies property defines how many UPA interrupt
772 	 * slaves a bridge is wired to support. Older systems that lack
773 	 * this property will default to 1.
774 	 */
775 	numproxy = ddi_prop_get_int(DDI_DEV_T_ANY, softsp->dip,
776 	    DDI_PROP_DONTPASS, "#upa-interrupt-proxies", 1);
777 
778 	if (numproxy > 0)
779 		set_intr_mapping_reg(softsp->upa_id,
780 		    (uint64_t *)(softsp->intr_mapping_reg +
781 		    FFB_MAPPING_REG), 1);
782 
783 	if (numproxy > 1)
784 		set_intr_mapping_reg(softsp->upa_id,
785 		    (uint64_t *)(softsp->intr_mapping_reg +
786 		    EXP_MAPPING_REG), 2);
787 
788 	/* support for a 3 interrupt proxy would go here */
789 
790 	/* Turn on spurious interrupt counter if we're not a DEBUG kernel. */
791 #ifndef DEBUG
792 	intr_cntr_on = 1;
793 #else
794 	intr_cntr_on = 0;
795 #endif
796 
797 
798 	return (DDI_SUCCESS);
799 }
800 
801 /*
802  * This procedure is part of sbus initialization. It is called by
803  * sbus_init() and is invoked when the system is being resumed.
804  */
805 static int
806 sbus_resume_init(struct sbus_soft_state *softsp, int resume)
807 {
808 	int i;
809 	uint_t sbus_burst_sizes;
810 
811 	/*
812 	 * This shouldn't be needed when we have a real OBP PROM.
813 	 * (RAZ) Get rid of this later!!!
814 	 */
815 
816 #ifdef _STARFIRE
817 	/*
818 	 * For Starfire, we need to program a
819 	 * constant odd value.
820 	 * Zero out the MID field before ORing
821 	 * We leave the LSB of the MID field intact since
822 	 * we cannot have a zero(even) MID value
823 	 */
824 	uint64_t tmpconst = 0x1DULL;
825 	*softsp->sysio_ctrl_reg &= 0xFF0FFFFFFFFFFFFFULL;
826 	*softsp->sysio_ctrl_reg |= tmpconst << 51;
827 
828 	/*
829 	 * Program in the interrupt group number
830 	 * Here we have to convert the starfire
831 	 * 7 bit upaid into a 5bit value.
832 	 */
833 	*softsp->sysio_ctrl_reg |=
834 		(uint64_t)STARFIRE_UPAID2HWIGN(softsp->upa_id)
835 				<< SYSIO_IGN;
836 #else
837 	/* for the rest of sun4u's */
838 	*softsp->sysio_ctrl_reg |=
839 		(uint64_t)softsp->upa_id << 51;
840 
841 	/* Program in the interrupt group number */
842 	*softsp->sysio_ctrl_reg |=
843 		(uint64_t)softsp->upa_id << SYSIO_IGN;
844 #endif /* _STARFIRE */
845 
846 	/*
847 	 * Set appropriate fields of sbus control register.
848 	 * Set DVMA arbitration enable for all devices.
849 	 */
850 	*softsp->sbus_ctrl_reg |= SBUS_ARBIT_ALL;
851 
852 	/* Calculate our burstsizes now so we don't have to do it later */
853 	sbus_burst_sizes = (SYSIO64_BURST_RANGE << SYSIO64_BURST_SHIFT)
854 		| SYSIO_BURST_RANGE;
855 
856 	sbus_burst_sizes = ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
857 		DDI_PROP_DONTPASS, "up-burst-sizes", sbus_burst_sizes);
858 
859 	softsp->sbus_burst_sizes = sbus_burst_sizes & SYSIO_BURST_MASK;
860 	softsp->sbus64_burst_sizes = sbus_burst_sizes & SYSIO64_BURST_MASK;
861 
862 	if (!resume) {
863 		/* Set burstsizes to smallest value */
864 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
865 			volatile uint64_t *config;
866 			uint64_t tmpreg;
867 
868 			config = softsp->sbus_slot_config_reg + i;
869 
870 			/* Write out the burst size */
871 			tmpreg = (uint64_t)0;
872 			*config = tmpreg;
873 
874 			/* Flush any write buffers */
875 			tmpreg = *softsp->sbus_ctrl_reg;
876 
877 			DPRINTF(SBUS_REGISTERS_DEBUG, ("Sbus slot 0x%x slot "
878 			    "configuration reg: 0x%x", (i > 3) ? i + 9 : i,
879 			    config));
880 		}
881 	} else {
882 		/* Program the slot configuration registers */
883 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
884 			volatile uint64_t *config;
885 #ifndef lint
886 			uint64_t tmpreg;
887 #endif /* !lint */
888 			uint_t slave_burstsizes;
889 
890 			slave_burstsizes = 0;
891 			if (softsp->sbus_slave_burstsizes[i] != 0xffffffffu) {
892 				config = softsp->sbus_slot_config_reg + i;
893 
894 				if (softsp->sbus_slave_burstsizes[i] &
895 				    SYSIO64_BURST_MASK) {
896 					/* get the 64 bit burstsizes */
897 					slave_burstsizes =
898 					    softsp->sbus_slave_burstsizes[i] >>
899 					    SYSIO64_BURST_SHIFT;
900 
901 					/* Turn on 64 bit PIO's on the sbus */
902 					*config |= SBUS_ETM;
903 				} else {
904 					slave_burstsizes =
905 					    softsp->sbus_slave_burstsizes[i] &
906 					    SYSIO_BURST_MASK;
907 				}
908 
909 				/* Get burstsizes into sysio register format */
910 				slave_burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
911 
912 				/* Program the burstsizes */
913 				*config |= (uint64_t)slave_burstsizes;
914 
915 				/* Flush any write buffers */
916 #ifndef lint
917 				tmpreg = *softsp->sbus_ctrl_reg;
918 #endif /* !lint */
919 			}
920 		}
921 	}
922 
923 	return (DDI_SUCCESS);
924 }
925 
926 #define	get_prop(di, pname, flag, pval, plen)	\
927 	(ddi_prop_op(DDI_DEV_T_NONE, di, PROP_LEN_AND_VAL_ALLOC, \
928 	flag | DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, \
929 	pname, (caddr_t)pval, plen))
930 
931 struct prop_ispec {
932 	uint_t	pri, vec;
933 };
934 
935 /*
936  * Create a sysio_parent_private_data structure from the ddi properties of
937  * the dev_info node.
938  *
939  * The "reg" and either an "intr" or "interrupts" properties are required
940  * if the driver wishes to create mappings or field interrupts on behalf
941  * of the device.
942  *
943  * The "reg" property is assumed to be a list of at least one triple
944  *
945  *	<bustype, address, size>*1
946  *
947  * On pre-fusion machines, the "intr" property was the IPL for the system.
948  * Most new sbus devices post an "interrupts" property that corresponds to
949  * a particular bus level.  All devices on fusion using an "intr" property
950  * will have it's contents translated into a bus level.  Hence, "intr" and
951  * "interrupts on the fusion platform can be treated the same.
952  *
953  * The "interrupts" property is assumed to be a list of at least one
954  * n-tuples that describes the interrupt capabilities of the bus the device
955  * is connected to.  For SBus, this looks like
956  *
957  *	<SBus-level>*1
958  *
959  * (This property obsoletes the 'intr' property).
960  *
961  * The OBP_RANGES property is optional.
962  */
963 static void
964 make_sbus_ppd(dev_info_t *child)
965 {
966 	struct sysio_parent_private_data *pdptr;
967 	int n;
968 	int *reg_prop, *rgstr_prop, *rng_prop;
969 	int reg_len, rgstr_len, rng_len;
970 
971 	/*
972 	 * Make the function idempotent, because name_child could
973 	 * be called multiple times on a node.
974 	 */
975 	if (ddi_get_parent_data(child) != NULL)
976 		return;
977 
978 	pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
979 	ddi_set_parent_data(child, pdptr);
980 
981 	/*
982 	 * Handle the 'reg'/'registers' properties.
983 	 * "registers" overrides "reg", but requires that "reg" be exported,
984 	 * so we can handle wildcard specifiers.  "registers" implies an
985 	 * sbus style device.  "registers" implies that we insert the
986 	 * correct value in the regspec_bustype field of each spec for a real
987 	 * (non-pseudo) device node.  "registers" is a s/w only property, so
988 	 * we inhibit the prom search for this property.
989 	 */
990 	if (get_prop(child, OBP_REG, 0, &reg_prop, &reg_len) != DDI_SUCCESS)
991 		reg_len = 0;
992 
993 	/*
994 	 * Save the underlying slot number and slot offset.
995 	 * Among other things, we use these to name the child node.
996 	 */
997 	pdptr->slot = (uint_t)-1;
998 	if (reg_len != 0) {
999 		pdptr->slot = ((struct regspec *)reg_prop)->regspec_bustype;
1000 		pdptr->offset = ((struct regspec *)reg_prop)->regspec_addr;
1001 	}
1002 
1003 	rgstr_len = 0;
1004 	(void) get_prop(child, "registers", DDI_PROP_NOTPROM,
1005 	    &rgstr_prop, &rgstr_len);
1006 
1007 	if (rgstr_len != 0)  {
1008 		if (ndi_dev_is_persistent_node(child) && (reg_len != 0))  {
1009 			/*
1010 			 * Convert wildcard "registers" for a real node...
1011 			 * (Else, this is the wildcard prototype node)
1012 			 */
1013 			struct regspec *rp = (struct regspec *)reg_prop;
1014 			uint_t slot = rp->regspec_bustype;
1015 			int i;
1016 
1017 			rp = (struct regspec *)rgstr_prop;
1018 			n = rgstr_len / sizeof (struct regspec);
1019 			for (i = 0; i < n; ++i, ++rp)
1020 				rp->regspec_bustype = slot;
1021 		}
1022 
1023 		if (reg_len != 0)
1024 			kmem_free(reg_prop, reg_len);
1025 
1026 		reg_prop = rgstr_prop;
1027 		reg_len = rgstr_len;
1028 	}
1029 	if (reg_len != 0)  {
1030 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
1031 		pdptr->par_reg = (struct regspec *)reg_prop;
1032 	}
1033 
1034 	/*
1035 	 * See if I have ranges.
1036 	 */
1037 	if (get_prop(child, OBP_RANGES, 0, &rng_prop, &rng_len) ==
1038 	    DDI_SUCCESS) {
1039 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
1040 		pdptr->par_rng = (struct rangespec *)rng_prop;
1041 	}
1042 }
1043 
1044 /*
1045  * Special handling for "sbusmem" pseudo device nodes.
1046  * The special handling automatically creates the "reg"
1047  * property in the sbusmem nodes, based on the parent's
1048  * property so that each slot will automtically have a
1049  * correctly sized "reg" property, once created,
1050  * sbus_initchild does the rest of the work to init
1051  * the child node.
1052  */
1053 static int
1054 sbusmem_initchild(dev_info_t *dip, dev_info_t *child)
1055 {
1056 	int i, n;
1057 	int slot, size;
1058 	char ident[10];
1059 
1060 	slot = ddi_getprop(DDI_DEV_T_NONE, child,
1061 	    DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "slot", -1);
1062 	if (slot == -1) {
1063 		DPRINTF(SBUS_SBUSMEM_DEBUG, ("can't get slot property\n"));
1064 		return (DDI_FAILURE);
1065 	}
1066 
1067 	/*
1068 	 * Find the parent range corresponding to this "slot",
1069 	 * so we can set the size of the child's "reg" property.
1070 	 */
1071 	for (i = 0, n = sparc_pd_getnrng(dip); i < n; i++) {
1072 		struct rangespec *rp = sparc_pd_getrng(dip, i);
1073 
1074 		if (rp->rng_cbustype == (uint_t)slot) {
1075 			struct regspec r;
1076 
1077 			/* create reg property */
1078 
1079 			r.regspec_bustype = (uint_t)slot;
1080 			r.regspec_addr = 0;
1081 			r.regspec_size = rp->rng_size;
1082 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
1083 			    child, "reg", (int *)&r,
1084 			    sizeof (struct regspec) / sizeof (int));
1085 
1086 			/* create size property for slot */
1087 
1088 			size = rp->rng_size;
1089 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
1090 			    child, "size", size);
1091 
1092 			(void) sprintf(ident, "slot%x", slot);
1093 			(void) ddi_prop_update_string(DDI_DEV_T_NONE,
1094 			    child, "ident", ident);
1095 
1096 			return (DDI_SUCCESS);
1097 		}
1098 	}
1099 	return (DDI_FAILURE);
1100 }
1101 
1102 /*
1103  * Nexus routine to name a child.
1104  * It takes a dev_info node and a buffer, returns the name
1105  * in the buffer.
1106  */
1107 static int
1108 sysio_name_child(dev_info_t *child, char *name, int namelen)
1109 {
1110 	/*
1111 	 * Fill in parent-private data
1112 	 */
1113 	make_sbus_ppd(child);
1114 
1115 	/*
1116 	 * Name the device node using the underlying (prom) values
1117 	 * of the first entry in the "reg" property.  For SBus devices,
1118 	 * the textual form of the name is <name>@<slot#>,<offset>.
1119 	 * This must match the prom's pathname or mountroot, etc, won't
1120 	 */
1121 	name[0] = '\0';
1122 	if (sysio_pd_getslot(child) != (uint_t)-1) {
1123 		(void) snprintf(name, namelen, "%x,%x",
1124 		    sysio_pd_getslot(child), sysio_pd_getoffset(child));
1125 	}
1126 	return (DDI_SUCCESS);
1127 }
1128 
1129 /*
1130  * Called from the bus_ctl op of sysio sbus nexus driver
1131  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
1132  * the children of sysio sbusses based on the reg spec.
1133  *
1134  * Handles the following properties:
1135  *
1136  *	Property		value
1137  *	  Name			type
1138  *
1139  *	reg		register spec
1140  *	registers	wildcard s/w sbus register spec (.conf file property)
1141  *	intr		old-form interrupt spec
1142  *	interrupts	new (bus-oriented) interrupt spec
1143  *	ranges		range spec
1144  */
1145 static int
1146 sbus_initchild(dev_info_t *dip, dev_info_t *child)
1147 {
1148 	char name[MAXNAMELEN];
1149 	ulong_t slave_burstsizes;
1150 	int slot;
1151 	volatile uint64_t *slot_reg;
1152 #ifndef lint
1153 	uint64_t tmp;
1154 #endif /* !lint */
1155 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1156 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1157 
1158 	if (strcmp(ddi_get_name(child), "sbusmem") == 0) {
1159 		if (sbusmem_initchild(dip, child) != DDI_SUCCESS)
1160 			return (DDI_FAILURE);
1161 	}
1162 
1163 	/*
1164 	 * If this is a s/w node defined with the "registers" property,
1165 	 * this means that this is a wildcard specifier, whose properties
1166 	 * get applied to all previously defined h/w nodes with the same
1167 	 * name and same parent.
1168 	 */
1169 	if (ndi_dev_is_persistent_node(child) == 0) {
1170 		int len = 0;
1171 		if ((ddi_getproplen(DDI_DEV_T_ANY, child, DDI_PROP_NOTPROM,
1172 		    "registers", &len) == DDI_SUCCESS) && (len != 0)) {
1173 			ndi_merge_wildcard_node(child);
1174 			return (DDI_FAILURE);
1175 		}
1176 	}
1177 
1178 	/* name the child */
1179 	(void) sysio_name_child(child, name, MAXNAMELEN);
1180 	ddi_set_name_addr(child, name);
1181 
1182 	/*
1183 	 * If a pseudo node, attempt to merge it into a hw node.
1184 	 * If merge is successful, we uinitialize the node and
1185 	 * return failure, to allow caller to remove the node.
1186 	 * The merge fails, this is a real pseudo node. Allow
1187 	 * initchild to continue.
1188 	 */
1189 	if ((ndi_dev_is_persistent_node(child) == 0) &&
1190 	    (ndi_merge_node(child, sysio_name_child) == DDI_SUCCESS)) {
1191 		(void) sbus_uninitchild(child);
1192 		return (DDI_FAILURE);
1193 	}
1194 
1195 	/* Figure out the child devices slot number */
1196 	slot = sysio_pd_getslot(child);
1197 
1198 	/* If we don't have a reg property, bypass slot specific programming */
1199 	if (slot < 0 || slot >= MAX_SBUS_SLOT_ADDR) {
1200 #ifdef DEBUG
1201 		cmn_err(CE_WARN, "?Invalid sbus slot address 0x%x for %s "
1202 		    "device\n", slot, ddi_get_name(child));
1203 #endif /* DEBUG */
1204 		goto done;
1205 	}
1206 
1207 	/* Modify the onboard slot numbers if applicable. */
1208 	slot = (slot > 3) ? slot - 9 : slot;
1209 
1210 	/* Get the slot configuration register for the child device. */
1211 	slot_reg = softsp->sbus_slot_config_reg + slot;
1212 
1213 	/*
1214 	 * Program the devices slot configuration register for the
1215 	 * appropriate slave burstsizes.
1216 	 * The upper 16 bits of the slave-burst-sizes are for 64 bit sbus
1217 	 * and the lower 16 bits are the burst sizes for 32 bit sbus. If
1218 	 * we see that a device supports both 64 bit and 32 bit slave accesses,
1219 	 * we default to 64 bit and turn it on in the slot config reg.
1220 	 *
1221 	 * For older devices, make sure we check the "burst-sizes" property
1222 	 * too.
1223 	 */
1224 	if ((slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1225 	    DDI_PROP_DONTPASS, "slave-burst-sizes", 0)) != 0 ||
1226 	    (slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1227 	    DDI_PROP_DONTPASS, "burst-sizes", 0)) != 0) {
1228 		uint_t burstsizes = 0;
1229 
1230 		/*
1231 		 * If we only have 32 bit burst sizes from a previous device,
1232 		 * mask out any burstsizes for 64 bit mode.
1233 		 */
1234 		if (((softsp->sbus_slave_burstsizes[slot] &
1235 		    0xffff0000u) == 0) &&
1236 		    ((softsp->sbus_slave_burstsizes[slot] & 0xffff) != 0)) {
1237 			slave_burstsizes &= 0xffff;
1238 		}
1239 
1240 		/*
1241 		 * If "slave-burst-sizes was defined but we have 0 at this
1242 		 * point, we must have had 64 bit burstsizes, however a prior
1243 		 * device can only burst in 32 bit mode.  Therefore, we leave
1244 		 * the burstsizes in the 32 bit mode and disregard the 64 bit.
1245 		 */
1246 		if (slave_burstsizes == 0)
1247 			goto done;
1248 
1249 		/*
1250 		 * We and in the new burst sizes with that of prior devices.
1251 		 * This ensures that we always take the least common
1252 		 * denominator of the burst sizes.
1253 		 */
1254 		softsp->sbus_slave_burstsizes[slot] &=
1255 		    (slave_burstsizes &
1256 		    ((SYSIO64_SLAVEBURST_RANGE <<
1257 		    SYSIO64_BURST_SHIFT) |
1258 		    SYSIO_SLAVEBURST_RANGE));
1259 
1260 		/* Get the 64 bit burstsizes. */
1261 		if (softsp->sbus_slave_burstsizes[slot] &
1262 		    SYSIO64_BURST_MASK) {
1263 			/* get the 64 bit burstsizes */
1264 			burstsizes = softsp->sbus_slave_burstsizes[slot] >>
1265 			    SYSIO64_BURST_SHIFT;
1266 
1267 			/* Turn on 64 bit PIO's on the sbus */
1268 			*slot_reg |= SBUS_ETM;
1269 		} else {
1270 			/* Turn off 64 bit PIO's on the sbus */
1271 			*slot_reg &= ~SBUS_ETM;
1272 
1273 			/* Get the 32 bit burstsizes if we don't have 64 bit. */
1274 			if (softsp->sbus_slave_burstsizes[slot] &
1275 			    SYSIO_BURST_MASK) {
1276 				burstsizes =
1277 				    softsp->sbus_slave_burstsizes[slot] &
1278 				    SYSIO_BURST_MASK;
1279 			}
1280 		}
1281 
1282 		/* Get the burstsizes into sysio register format */
1283 		burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
1284 
1285 		/* Reset reg in case we're scaling back */
1286 		*slot_reg &= (uint64_t)~SYSIO_SLAVEBURST_MASK;
1287 
1288 		/* Program the burstsizes */
1289 		*slot_reg |= (uint64_t)burstsizes;
1290 
1291 		/* Flush system load/store buffers */
1292 #ifndef lint
1293 		tmp = *slot_reg;
1294 #endif /* !lint */
1295 	}
1296 
1297 done:
1298 	return (DDI_SUCCESS);
1299 }
1300 
1301 static int
1302 sbus_uninitchild(dev_info_t *dip)
1303 {
1304 	struct sysio_parent_private_data *pdptr;
1305 	size_t n;
1306 
1307 	if ((pdptr = ddi_get_parent_data(dip)) != NULL)  {
1308 		if ((n = (size_t)pdptr->par_nrng) != 0)
1309 			kmem_free(pdptr->par_rng, n *
1310 			    sizeof (struct rangespec));
1311 
1312 		if ((n = pdptr->par_nreg) != 0)
1313 			kmem_free(pdptr->par_reg, n * sizeof (struct regspec));
1314 
1315 		kmem_free(pdptr, sizeof (*pdptr));
1316 		ddi_set_parent_data(dip, NULL);
1317 	}
1318 	ddi_set_name_addr(dip, NULL);
1319 	/*
1320 	 * Strip the node to properly convert it back to prototype form
1321 	 */
1322 	ddi_remove_minor_node(dip, NULL);
1323 	impl_rem_dev_props(dip);
1324 	return (DDI_SUCCESS);
1325 }
1326 
1327 #ifdef  DEBUG
1328 int	sbus_peekfault_cnt = 0;
1329 int	sbus_pokefault_cnt = 0;
1330 #endif  /* DEBUG */
1331 
1332 static int
1333 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args)
1334 {
1335 	int err = DDI_SUCCESS;
1336 	on_trap_data_t otd;
1337 	volatile uint64_t tmpreg;
1338 
1339 	/* Cautious access not supported. */
1340 	if (in_args->handle != NULL)
1341 		return (DDI_FAILURE);
1342 
1343 	mutex_enter(&softsp->pokefault_mutex);
1344 	softsp->ontrap_data = &otd;
1345 
1346 	/* Set up protected environment. */
1347 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1348 		uintptr_t tramp = otd.ot_trampoline;
1349 
1350 		otd.ot_trampoline = (uintptr_t)&poke_fault;
1351 		err = do_poke(in_args->size, (void *)in_args->dev_addr,
1352 		    (void *)in_args->host_addr);
1353 		otd.ot_trampoline = tramp;
1354 	} else
1355 		err = DDI_FAILURE;
1356 
1357 	/* Flush any sbus store buffers. */
1358 	tmpreg = *softsp->sbus_ctrl_reg;
1359 
1360 	/*
1361 	 * Read the sbus error reg and see if a fault occured.  If
1362 	 * one has, give the SYSIO time to packetize the interrupt
1363 	 * for the fault and send it out.  The sbus error handler will
1364 	 * 0 these fields when it's called to service the fault.
1365 	 */
1366 	tmpreg = *softsp->sbus_err_reg;
1367 	while (tmpreg & SB_AFSR_P_TO || tmpreg & SB_AFSR_P_BERR)
1368 		tmpreg = *softsp->sbus_err_reg;
1369 
1370 	/* Take down protected environment. */
1371 	no_trap();
1372 
1373 	softsp->ontrap_data = NULL;
1374 	mutex_exit(&softsp->pokefault_mutex);
1375 
1376 #ifdef  DEBUG
1377 	if (err == DDI_FAILURE)
1378 		sbus_pokefault_cnt++;
1379 #endif
1380 	return (err);
1381 }
1382 
1383 /*ARGSUSED*/
1384 static int
1385 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
1386     void *result)
1387 {
1388 	int err = DDI_SUCCESS;
1389 	on_trap_data_t otd;
1390 
1391 	/* No safe access except for peek is supported. */
1392 	if (in_args->handle != NULL)
1393 		return (DDI_FAILURE);
1394 
1395 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1396 		uintptr_t tramp = otd.ot_trampoline;
1397 
1398 		otd.ot_trampoline = (uintptr_t)&peek_fault;
1399 		err = do_peek(in_args->size, (void *)in_args->dev_addr,
1400 		    (void *)in_args->host_addr);
1401 		otd.ot_trampoline = tramp;
1402 		result = (void *)in_args->host_addr;
1403 	} else
1404 		err = DDI_FAILURE;
1405 
1406 #ifdef  DEBUG
1407 	if (err == DDI_FAILURE)
1408 		sbus_peekfault_cnt++;
1409 #endif
1410 	no_trap();
1411 	return (err);
1412 }
1413 
1414 static int
1415 sbus_ctlops(dev_info_t *dip, dev_info_t *rdip,
1416     ddi_ctl_enum_t op, void *arg, void *result)
1417 {
1418 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1419 		ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1420 
1421 	switch (op) {
1422 
1423 	case DDI_CTLOPS_INITCHILD:
1424 		return (sbus_initchild(dip, (dev_info_t *)arg));
1425 
1426 	case DDI_CTLOPS_UNINITCHILD:
1427 		return (sbus_uninitchild(arg));
1428 
1429 	case DDI_CTLOPS_IOMIN: {
1430 		int val = *((int *)result);
1431 
1432 		/*
1433 		 * The 'arg' value of nonzero indicates 'streaming' mode.
1434 		 * If in streaming mode, pick the largest of our burstsizes
1435 		 * available and say that that is our minimum value (modulo
1436 		 * what mincycle is).
1437 		 */
1438 		if ((int)arg)
1439 			val = maxbit(val,
1440 			    (1 << (ddi_fls(softsp->sbus_burst_sizes) - 1)));
1441 		else
1442 			val = maxbit(val,
1443 			    (1 << (ddi_ffs(softsp->sbus_burst_sizes) - 1)));
1444 
1445 		*((int *)result) = val;
1446 		return (ddi_ctlops(dip, rdip, op, arg, result));
1447 	}
1448 
1449 	case DDI_CTLOPS_REPORTDEV: {
1450 		dev_info_t *pdev;
1451 		int i, n, len, f_len;
1452 		char *msgbuf;
1453 
1454 	/*
1455 	 * So we can do one atomic cmn_err call, we allocate a 4k
1456 	 * buffer, and format the reportdev message into that buffer,
1457 	 * send it to cmn_err, and then free the allocated buffer.
1458 	 * If message is longer than 1k, the message is truncated and
1459 	 * an error message is emitted (debug kernel only).
1460 	 */
1461 #define	REPORTDEV_BUFSIZE	1024
1462 
1463 		int sbusid = ddi_get_instance(dip);
1464 
1465 		if (ddi_get_parent_data(rdip) == NULL)
1466 			return (DDI_FAILURE);
1467 
1468 		msgbuf = kmem_zalloc(REPORTDEV_BUFSIZE, KM_SLEEP);
1469 
1470 		pdev = ddi_get_parent(rdip);
1471 		f_len = snprintf(msgbuf, REPORTDEV_BUFSIZE,
1472 		    "%s%d at %s%d: SBus%d ",
1473 		    ddi_driver_name(rdip), ddi_get_instance(rdip),
1474 		    ddi_driver_name(pdev), ddi_get_instance(pdev), sbusid);
1475 		len = strlen(msgbuf);
1476 
1477 		for (i = 0, n = sysio_pd_getnreg(rdip); i < n; i++) {
1478 			struct regspec *rp;
1479 
1480 			rp = sysio_pd_getreg(rdip, i);
1481 			if (i != 0) {
1482 				f_len += snprintf(msgbuf + len,
1483 				    REPORTDEV_BUFSIZE - len, " and ");
1484 				len = strlen(msgbuf);
1485 			}
1486 
1487 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1488 			    "slot 0x%x offset 0x%x",
1489 			    rp->regspec_bustype, rp->regspec_addr);
1490 			len = strlen(msgbuf);
1491 		}
1492 
1493 		for (i = 0, n = i_ddi_get_nintrs(rdip); i < n; i++) {
1494 			ddi_ispec_t *ispecp;
1495 			uint32_t sbuslevel, pri;
1496 
1497 			if (i != 0) {
1498 				f_len += snprintf(msgbuf + len,
1499 				    REPORTDEV_BUFSIZE - len, ",");
1500 				len = strlen(msgbuf);
1501 			}
1502 
1503 			i_ddi_alloc_ispec(rdip, i,
1504 			    (ddi_intrspec_t *)&ispecp);
1505 
1506 			sbuslevel = *ispecp->is_intr;
1507 
1508 			(void) sbus_xlate_intrs(dip, rdip, ispecp,
1509 			    softsp->intr_mapping_ign);
1510 
1511 			pri = ispecp->is_pil;
1512 
1513 			if (sbuslevel > MAX_SBUS_LEVEL)
1514 				f_len += snprintf(msgbuf + len,
1515 				    REPORTDEV_BUFSIZE - len,
1516 				    " Onboard device ");
1517 			else
1518 				f_len += snprintf(msgbuf + len,
1519 				    REPORTDEV_BUFSIZE - len, " SBus level %d ",
1520 				    sbuslevel);
1521 			len = strlen(msgbuf);
1522 
1523 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1524 			    "sparc9 ipl %d", pri);
1525 			len = strlen(msgbuf);
1526 
1527 			i_ddi_free_ispec((ddi_intrspec_t)ispecp);
1528 		}
1529 #ifdef DEBUG
1530 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
1531 		cmn_err(CE_NOTE, "next message is truncated: "
1532 		    "printed length 1024, real length %d", f_len);
1533 	}
1534 #endif /* DEBUG */
1535 
1536 		cmn_err(CE_CONT, "?%s\n", msgbuf);
1537 		kmem_free(msgbuf, REPORTDEV_BUFSIZE);
1538 		return (DDI_SUCCESS);
1539 
1540 #undef	REPORTDEV_BUFSIZE
1541 	}
1542 
1543 	case DDI_CTLOPS_SLAVEONLY:
1544 		return (DDI_FAILURE);
1545 
1546 	case DDI_CTLOPS_AFFINITY: {
1547 		dev_info_t *dipb = (dev_info_t *)arg;
1548 		int r_slot, b_slot;
1549 
1550 		if ((b_slot = find_sbus_slot(dip, dipb)) < 0)
1551 			return (DDI_FAILURE);
1552 
1553 		if ((r_slot = find_sbus_slot(dip, rdip)) < 0)
1554 			return (DDI_FAILURE);
1555 
1556 		return ((b_slot == r_slot)? DDI_SUCCESS : DDI_FAILURE);
1557 
1558 	}
1559 	case DDI_CTLOPS_DMAPMAPC:
1560 		cmn_err(CE_CONT, "?DDI_DMAPMAPC called!!\n");
1561 		return (DDI_FAILURE);
1562 
1563 	case DDI_CTLOPS_POKE:
1564 		return (sbus_ctlops_poke(softsp, (peekpoke_ctlops_t *)arg));
1565 
1566 	case DDI_CTLOPS_PEEK:
1567 		return (sbus_ctlops_peek(softsp, (peekpoke_ctlops_t *)arg,
1568 		    result));
1569 
1570 	case DDI_CTLOPS_DVMAPAGESIZE:
1571 		*(ulong_t *)result = IOMMU_PAGESIZE;
1572 		return (DDI_SUCCESS);
1573 
1574 	default:
1575 		return (ddi_ctlops(dip, rdip, op, arg, result));
1576 	}
1577 }
1578 
1579 static int
1580 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip)
1581 {
1582 	dev_info_t *child;
1583 	int slot = -1;
1584 
1585 	/*
1586 	 * look for the node that's a direct child of this Sbus node.
1587 	 */
1588 	while (rdip && (child = ddi_get_parent(rdip)) != dip) {
1589 		rdip = child;
1590 	}
1591 
1592 	/*
1593 	 * If there is one, get the slot number of *my* child
1594 	 */
1595 	if (child == dip)
1596 		slot = sysio_pd_getslot(rdip);
1597 
1598 	return (slot);
1599 }
1600 
1601 /*
1602  * This is the sbus interrupt routine wrapper function.  This function
1603  * installs itself as a child devices interrupt handler.  It's function is
1604  * to dispatch a child devices interrupt handler, and then
1605  * reset the interrupt clear register for the child device.
1606  *
1607  * Warning: This routine may need to be implemented as an assembly level
1608  * routine to improve performance.
1609  */
1610 
1611 #define	MAX_INTR_CNT 10
1612 
1613 static uint_t
1614 sbus_intr_wrapper(caddr_t arg)
1615 {
1616 	uint_t intr_return = DDI_INTR_UNCLAIMED;
1617 	volatile uint64_t tmpreg;
1618 	struct sbus_wrapper_arg *intr_info;
1619 	struct sbus_intr_handler *intr_handler;
1620 	uchar_t *spurious_cntr;
1621 
1622 	intr_info = (struct sbus_wrapper_arg *)arg;
1623 	spurious_cntr = &intr_info->softsp->spurious_cntrs[intr_info->pil];
1624 	intr_handler = intr_info->handler_list;
1625 
1626 	while (intr_handler) {
1627 		caddr_t arg1 = intr_handler->arg1;
1628 		caddr_t arg2 = intr_handler->arg2;
1629 		uint_t (*funcp)() = intr_handler->funcp;
1630 		dev_info_t *dip = intr_handler->dip;
1631 		int r;
1632 
1633 		if (intr_handler->intr_state == SBUS_INTR_STATE_DISABLE) {
1634 			intr_handler = intr_handler->next;
1635 			continue;
1636 		}
1637 
1638 		DTRACE_PROBE4(interrupt__start, dev_info_t, dip,
1639 		    void *, funcp, caddr_t, arg1, caddr_t, arg2);
1640 
1641 		r = (*funcp)(arg1, arg2);
1642 
1643 		DTRACE_PROBE4(interrupt__complete, dev_info_t, dip,
1644 		    void *, funcp, caddr_t, arg1, int, r);
1645 
1646 		intr_return |= r;
1647 		intr_handler = intr_handler->next;
1648 	}
1649 
1650 	/* Set the interrupt state machine to idle */
1651 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1652 	tmpreg = SBUS_INTR_IDLE;
1653 	*intr_info->clear_reg = tmpreg;
1654 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1655 
1656 	if (intr_return == DDI_INTR_UNCLAIMED) {
1657 		(*spurious_cntr)++;
1658 
1659 		if (*spurious_cntr < MAX_INTR_CNT) {
1660 			if (intr_cntr_on)
1661 				return (DDI_INTR_CLAIMED);
1662 		}
1663 #ifdef DEBUG
1664 		else if (intr_info->pil >= LOCK_LEVEL) {
1665 			cmn_err(CE_PANIC, "%d unclaimed interrupts at "
1666 			    "interrupt level %d", MAX_INTR_CNT,
1667 			    intr_info->pil);
1668 		}
1669 #endif
1670 
1671 		/*
1672 		 * Reset spurious counter once we acknowledge
1673 		 * it to the system level.
1674 		 */
1675 		*spurious_cntr = (uchar_t)0;
1676 	} else {
1677 		*spurious_cntr = (uchar_t)0;
1678 	}
1679 
1680 	return (intr_return);
1681 }
1682 
1683 /*
1684  * add_intrspec - Add an interrupt specification.
1685  */
1686 static int
1687 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1688     ddi_intr_handle_impl_t *hdlp)
1689 {
1690 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1691 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1692 	ddi_ispec_t *ip = (ddi_ispec_t *)hdlp->ih_private;
1693 	volatile uint64_t *mondo_vec_reg;
1694 	volatile uint64_t tmp_mondo_vec;
1695 	volatile uint64_t *intr_state_reg;
1696 	volatile uint64_t tmpreg;	/* HW flush reg */
1697 	uint_t start_bit;
1698 	int ino;
1699 	uint_t cpu_id;
1700 	struct sbus_wrapper_arg *sbus_arg;
1701 	struct sbus_intr_handler *intr_handler;
1702 	uint32_t slot;
1703 	/* Interrupt state machine reset flag */
1704 	int reset_ism_register = 1;
1705 	int ret = DDI_SUCCESS;
1706 
1707 	/* Check if we have a valid sbus slot address */
1708 	if (((slot = (uint_t)find_sbus_slot(dip, rdip)) >=
1709 	    MAX_SBUS_SLOT_ADDR) || (slot < (uint_t)0)) {
1710 		cmn_err(CE_WARN, "Invalid sbus slot 0x%x during add intr\n",
1711 		    slot);
1712 		return (DDI_FAILURE);
1713 	}
1714 
1715 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: sbus interrupt %d "
1716 	    "for device %s%d\n", hdlp->ih_vector, ddi_get_name(rdip),
1717 	    ddi_get_instance(rdip)));
1718 
1719 	/* Xlate the interrupt */
1720 	if (sbus_xlate_intrs(dip, rdip, ip,
1721 	    softsp->intr_mapping_ign) == DDI_FAILURE) {
1722 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1723 		    ddi_get_name(rdip));
1724 		return (DDI_FAILURE);
1725 	}
1726 
1727 	/* get the ino number */
1728 	ino = (*ip->is_intr) & SBUS_MAX_INO;
1729 	mondo_vec_reg = (softsp->intr_mapping_reg +
1730 	    ino_table[ino]->mapping_reg);
1731 
1732 	/*
1733 	 * This is an intermediate step in identifying
1734 	 * the exact bits which represent the device in the interrupt
1735 	 * state diagnostic register.
1736 	 */
1737 	if (ino > MAX_MONDO_EXTERNAL) {
1738 		start_bit = ino_table[ino]->diagreg_shift;
1739 		intr_state_reg = softsp->obio_intr_state;
1740 	} else {
1741 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1742 		intr_state_reg = softsp->sbus_intr_state;
1743 	}
1744 
1745 
1746 	/* Allocate a nexus interrupt data structure */
1747 	intr_handler = kmem_zalloc(sizeof (struct sbus_intr_handler), KM_SLEEP);
1748 	intr_handler->dip = rdip;
1749 	intr_handler->funcp = hdlp->ih_cb_func;
1750 	intr_handler->arg1 = hdlp->ih_cb_arg1;
1751 	intr_handler->arg2 = hdlp->ih_cb_arg2;
1752 	intr_handler->inum = hdlp->ih_inum;
1753 
1754 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: xlated interrupt 0x%x "
1755 	    "intr_handler 0x%x\n", *ip->is_intr, intr_handler));
1756 
1757 	/*
1758 	 * Grab this lock here. So it will protect the poll list.
1759 	 */
1760 	mutex_enter(&softsp->intr_poll_list_lock);
1761 
1762 	sbus_arg = softsp->intr_list[ino];
1763 	/* Check if we have a poll list to deal with */
1764 	if (sbus_arg) {
1765 		tmp_mondo_vec = *mondo_vec_reg;
1766 		tmp_mondo_vec &= ~INTERRUPT_VALID;
1767 		*mondo_vec_reg = tmp_mondo_vec;
1768 
1769 		tmpreg = *softsp->sbus_ctrl_reg;
1770 #ifdef	lint
1771 		tmpreg = tmpreg;
1772 #endif
1773 
1774 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:sbus_arg exists "
1775 		    "0x%x\n", sbus_arg));
1776 		/*
1777 		 * Two bits per ino in the diagnostic register
1778 		 * indicate the status of its interrupt.
1779 		 * 0 - idle, 1 - transmit, 3 - pending.
1780 		 */
1781 		while (((*intr_state_reg >>
1782 		    start_bit) & 0x3) == INT_PENDING && !panicstr)
1783 			/* empty */;
1784 
1785 		intr_handler->next = sbus_arg->handler_list;
1786 		sbus_arg->handler_list = intr_handler;
1787 
1788 		reset_ism_register = 0;
1789 	} else {
1790 		sbus_arg = kmem_zalloc(sizeof (struct sbus_wrapper_arg),
1791 		    KM_SLEEP);
1792 
1793 		softsp->intr_list[ino] = sbus_arg;
1794 		sbus_arg->clear_reg = (softsp->clr_intr_reg +
1795 		    ino_table[ino]->clear_reg);
1796 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Ino 0x%x Interrupt "
1797 		    "clear reg: 0x%x\n", ino, sbus_arg->clear_reg));
1798 		sbus_arg->softsp = softsp;
1799 		sbus_arg->handler_list = intr_handler;
1800 
1801 		hdlp->ih_vector = *ip->is_intr;
1802 
1803 		/*
1804 		 * No handler added yet in the interrupt vector
1805 		 * table for this ino.
1806 		 * Install the nexus interrupt wrapper in the
1807 		 * system. The wrapper will call the device
1808 		 * interrupt handler.
1809 		 */
1810 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp,
1811 		    (ddi_intr_handler_t *)sbus_intr_wrapper,
1812 		    (caddr_t)sbus_arg, NULL);
1813 
1814 		ret = i_ddi_add_ivintr(hdlp);
1815 
1816 		/*
1817 		 * Restore original interrupt handler
1818 		 * and arguments in interrupt handle.
1819 		 */
1820 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, intr_handler->funcp,
1821 		    intr_handler->arg1, intr_handler->arg2);
1822 
1823 		if (ret != DDI_SUCCESS)
1824 		    goto done;
1825 
1826 		if ((slot >= EXT_SBUS_SLOTS) ||
1827 		    (softsp->intr_hndlr_cnt[slot] == 0)) {
1828 
1829 			cpu_id = intr_dist_cpuid();
1830 #ifdef	_STARFIRE
1831 			tmp_mondo_vec = pc_translate_tgtid(
1832 			    softsp->ittrans_cookie, cpu_id,
1833 				mondo_vec_reg) << IMR_TID_SHIFT;
1834 #else
1835 			tmp_mondo_vec =
1836 			    cpu_id << IMR_TID_SHIFT;
1837 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: initial "
1838 			    "mapping reg 0x%llx\n", tmp_mondo_vec));
1839 #endif	/* _STARFIRE */
1840 		} else {
1841 			/*
1842 			 * There is already a different
1843 			 * ino programmed at this IMR.
1844 			 * Just read the IMR out to get the
1845 			 * correct MID target.
1846 			 */
1847 			tmp_mondo_vec = *mondo_vec_reg;
1848 			tmp_mondo_vec &= ~INTERRUPT_VALID;
1849 			*mondo_vec_reg = tmp_mondo_vec;
1850 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: existing "
1851 			    "mapping reg 0x%llx\n", tmp_mondo_vec));
1852 		}
1853 
1854 		sbus_arg->pil = hdlp->ih_pri;
1855 
1856 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Alloc sbus_arg "
1857 		    "0x%x\n", sbus_arg));
1858 	}
1859 
1860 	softsp->intr_hndlr_cnt[slot]++;
1861 
1862 	mutex_exit(&softsp->intr_poll_list_lock);
1863 
1864 	/*
1865 	 * Program the ino vector accordingly.  This MUST be the
1866 	 * last thing we do.  Once we program the ino, the device
1867 	 * may begin to interrupt. Add this hardware interrupt to
1868 	 * the interrupt lists, and get the CPU to target it at.
1869 	 */
1870 
1871 	tmp_mondo_vec |= INTERRUPT_VALID;
1872 
1873 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: Ino 0x%x mapping reg: 0x%x "
1874 	    "Intr cntr %d\n", ino, mondo_vec_reg,
1875 	    softsp->intr_hndlr_cnt[slot]));
1876 
1877 	/* Force the interrupt state machine to idle. */
1878 	if (reset_ism_register) {
1879 		tmpreg = SBUS_INTR_IDLE;
1880 		*sbus_arg->clear_reg = tmpreg;
1881 	}
1882 
1883 	/* Store it in the hardware reg. */
1884 	*mondo_vec_reg = tmp_mondo_vec;
1885 
1886 	/* Flush store buffers */
1887 	tmpreg = *softsp->sbus_ctrl_reg;
1888 
1889 done:
1890 	return (ret);
1891 }
1892 
1893 static void
1894 sbus_free_handler(dev_info_t *dip, uint32_t inum,
1895     struct sbus_wrapper_arg *sbus_arg)
1896 {
1897 	struct sbus_intr_handler *listp, *prevp;
1898 
1899 	if (sbus_arg) {
1900 		prevp = NULL;
1901 		listp = sbus_arg->handler_list;
1902 
1903 		while (listp) {
1904 			if (listp->dip == dip && listp->inum == inum) {
1905 				if (prevp)
1906 					prevp->next = listp->next;
1907 				else {
1908 					prevp = listp->next;
1909 					sbus_arg->handler_list = prevp;
1910 				}
1911 
1912 				kmem_free(listp,
1913 				    sizeof (struct sbus_intr_handler));
1914 				break;
1915 			}
1916 			prevp = listp;
1917 			listp = listp->next;
1918 		}
1919 	}
1920 }
1921 
1922 /*
1923  * remove_intrspec - Remove an interrupt specification.
1924  */
1925 /*ARGSUSED*/
1926 static void
1927 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1928     ddi_intr_handle_impl_t *hdlp)
1929 {
1930 	volatile uint64_t *mondo_vec_reg;
1931 	volatile uint64_t *intr_state_reg;
1932 #ifndef lint
1933 	volatile uint64_t tmpreg;
1934 #endif /* !lint */
1935 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1936 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1937 	ddi_ispec_t *ip = (ddi_ispec_t *)hdlp->ih_private;
1938 	int start_bit, ino, slot;
1939 	struct sbus_wrapper_arg *sbus_arg;
1940 
1941 	/* Grab the mutex protecting the poll list */
1942 	mutex_enter(&softsp->intr_poll_list_lock);
1943 
1944 	/* Xlate the interrupt */
1945 	if (sbus_xlate_intrs(dip, rdip, ip,
1946 	    softsp->intr_mapping_ign) == DDI_FAILURE) {
1947 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1948 		    ddi_get_name(rdip));
1949 		goto done;
1950 	}
1951 
1952 	ino = ((int32_t)*ip->is_intr) & SBUS_MAX_INO;
1953 
1954 	mondo_vec_reg = (softsp->intr_mapping_reg +
1955 	    ino_table[ino]->mapping_reg);
1956 
1957 	/* Turn off the valid bit in the mapping register. */
1958 	*mondo_vec_reg &= ~INTERRUPT_VALID;
1959 #ifndef lint
1960 	tmpreg = *softsp->sbus_ctrl_reg;
1961 #endif /* !lint */
1962 
1963 	/* Get our bit position for checking intr pending */
1964 	if (ino > MAX_MONDO_EXTERNAL) {
1965 		start_bit = ino_table[ino]->diagreg_shift;
1966 		intr_state_reg = softsp->obio_intr_state;
1967 	} else {
1968 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1969 		intr_state_reg = softsp->sbus_intr_state;
1970 	}
1971 
1972 	while (((*intr_state_reg >> start_bit) & 0x3) == INT_PENDING &&
1973 	    !panicstr)
1974 		/* empty */;
1975 
1976 	slot = find_sbus_slot(dip, rdip);
1977 
1978 	/* Return if the slot is invalid */
1979 	if (slot >= MAX_SBUS_SLOT_ADDR || slot < 0) {
1980 		goto done;
1981 	}
1982 
1983 	sbus_arg = softsp->intr_list[ino];
1984 
1985 	/* Decrement the intr handler count on this slot */
1986 	softsp->intr_hndlr_cnt[slot]--;
1987 
1988 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Softsp 0x%x, Mondo 0x%x, "
1989 	    "ino 0x%x, sbus_arg 0x%x intr cntr %d\n", softsp,
1990 	    *ip->is_intr, ino, sbus_arg, softsp->intr_hndlr_cnt[slot]));
1991 
1992 	ASSERT(sbus_arg != NULL);
1993 	ASSERT(sbus_arg->handler_list != NULL);
1994 	sbus_free_handler(rdip, hdlp->ih_inum, sbus_arg);
1995 
1996 	/* If we still have a list, we're done. */
1997 	if (sbus_arg->handler_list == NULL) {
1998 		hdlp->ih_vector = *ip->is_intr;
1999 		i_ddi_rem_ivintr(hdlp);
2000 	}
2001 
2002 	/*
2003 	 * If other devices are still installed for this slot, we need to
2004 	 * turn the valid bit back on.
2005 	 */
2006 	if (softsp->intr_hndlr_cnt[slot] > 0) {
2007 		*mondo_vec_reg |= INTERRUPT_VALID;
2008 #ifndef lint
2009 		tmpreg = *softsp->sbus_ctrl_reg;
2010 #endif /* !lint */
2011 	}
2012 
2013 	if ((softsp->intr_hndlr_cnt[slot] == 0) || (slot >= EXT_SBUS_SLOTS)) {
2014 		ASSERT(sbus_arg->handler_list == NULL);
2015 #ifdef	_STARFIRE
2016 		/* Do cleanup for interrupt target translation */
2017 		pc_ittrans_cleanup(softsp->ittrans_cookie, mondo_vec_reg);
2018 #endif	/* _STARFIRE */
2019 	}
2020 
2021 
2022 	/* Free up the memory used for the sbus interrupt handler */
2023 	if (sbus_arg->handler_list == NULL) {
2024 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Freeing sbus arg "
2025 		    "0x%x\n", sbus_arg));
2026 		kmem_free(sbus_arg, sizeof (struct sbus_wrapper_arg));
2027 		softsp->intr_list[ino] = NULL;
2028 	}
2029 
2030 done:
2031 	mutex_exit(&softsp->intr_poll_list_lock);
2032 }
2033 
2034 /*
2035  * We're prepared to claim that the interrupt string is in
2036  * the form of a list of <SBusintr> specifications, or we're dealing
2037  * with on-board devices and we have an interrupt_number property which
2038  * gives us our mondo number.
2039  * Translate the sbus levels or mondos into sysiointrspecs.
2040  */
2041 static int
2042 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, ddi_ispec_t *ispecp,
2043     int32_t ign)
2044 {
2045 	uint32_t ino, slot, level = *ispecp->is_intr;
2046 	int ret = DDI_SUCCESS;
2047 
2048 	/*
2049 	 * Create the sysio ino number.  onboard devices will have
2050 	 * an "interrupts" property, that is equal to the ino number.
2051 	 * If the devices are from the
2052 	 * expansion slots, we construct the ino number by putting
2053 	 * the slot number in the upper three bits, and the sbus
2054 	 * interrupt level in the lower three bits.
2055 	 */
2056 	if (level > MAX_SBUS_LEVEL) {
2057 		ino = level;
2058 	} else {
2059 		/* Construct ino from slot and interrupts */
2060 		if ((slot = find_sbus_slot(dip, rdip)) == -1) {
2061 			cmn_err(CE_WARN, "Can't determine sbus slot "
2062 			    "of %s device\n", ddi_get_name(rdip));
2063 			ret = DDI_FAILURE;
2064 			goto done;
2065 		}
2066 
2067 		if (slot >= MAX_SBUS_SLOT_ADDR) {
2068 			cmn_err(CE_WARN, "Invalid sbus slot 0x%x"
2069 			    "in %s device\n", slot, ddi_get_name(rdip));
2070 			ret = DDI_FAILURE;
2071 			goto done;
2072 		}
2073 
2074 		ino = slot << 3;
2075 		ino |= level;
2076 	}
2077 
2078 	/* Sanity check the inos range */
2079 	if (ino >= MAX_INO_TABLE_SIZE) {
2080 		cmn_err(CE_WARN, "Ino vector 0x%x out of range", ino);
2081 		ret = DDI_FAILURE;
2082 		goto done;
2083 	}
2084 	/* Sanity check the inos value */
2085 	if (!ino_table[ino]) {
2086 		cmn_err(CE_WARN, "Ino vector 0x%x is invalid", ino);
2087 		ret = DDI_FAILURE;
2088 		goto done;
2089 	}
2090 
2091 	if (ispecp->is_pil == 0) {
2092 #define	SOC_PRIORITY 5
2093 		/* The sunfire i/o board has a soc in the printer slot */
2094 		if ((ino_table[ino]->clear_reg == PP_CLEAR) &&
2095 		    ((strcmp(ddi_get_name(rdip), "soc") == 0) ||
2096 			(strcmp(ddi_get_name(rdip), "SUNW,soc") == 0))) {
2097 			ispecp->is_pil = SOC_PRIORITY;
2098 		} else {
2099 			/* Figure out the pil associated with this interrupt */
2100 			ispecp->is_pil = interrupt_priorities[ino];
2101 		}
2102 	}
2103 
2104 	/* Or in the upa_id into the interrupt group number field */
2105 	*ispecp->is_intr = (uint32_t)(ino | ign);
2106 
2107 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Xlate intr: Interrupt info for "
2108 	    "device %s Mondo: 0x%x, ino: 0x%x, Pil: 0x%x, sbus level: 0x%x\n",
2109 	    ddi_get_name(rdip), *ispecp->is_intr, ino, ispecp->is_pil, level));
2110 
2111 done:
2112 	return (ret);
2113 
2114 }
2115 
2116 /* new intr_ops structure */
2117 int
2118 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
2119     ddi_intr_handle_impl_t *hdlp, void *result)
2120 {
2121 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2122 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2123 	ddi_ispec_t		*ip = (ddi_ispec_t *)hdlp->ih_private;
2124 	int			ret = DDI_SUCCESS;
2125 
2126 
2127 	switch (intr_op) {
2128 	case DDI_INTROP_GETCAP:
2129 		*(int *)result = 0;
2130 		break;
2131 	case DDI_INTROP_ALLOC:
2132 		*(int *)result = hdlp->ih_scratch1;
2133 		break;
2134 	case DDI_INTROP_FREE:
2135 		break;
2136 	case DDI_INTROP_GETPRI:
2137 		if (ip->is_pil == 0) {
2138 			/* Xlate the interrupt */
2139 			(void) sbus_xlate_intrs(dip, rdip,
2140 			    ip, softsp->intr_mapping_ign);
2141 		}
2142 
2143 		*(int *)result = ip->is_pil;
2144 		break;
2145 	case DDI_INTROP_SETPRI:
2146 		ip->is_pil = (*(int *)result);
2147 		break;
2148 	case DDI_INTROP_ADDISR:
2149 		hdlp->ih_vector = *ip->is_intr;
2150 		ret = sbus_add_intr_impl(dip, rdip, hdlp);
2151 		break;
2152 	case DDI_INTROP_REMISR:
2153 		hdlp->ih_vector = *ip->is_intr;
2154 		sbus_remove_intr_impl(dip, rdip, hdlp);
2155 		break;
2156 	case DDI_INTROP_ENABLE:
2157 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2158 		    SBUS_INTR_STATE_ENABLE);
2159 		break;
2160 	case DDI_INTROP_DISABLE:
2161 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2162 		    SBUS_INTR_STATE_DISABLE);
2163 		break;
2164 	case DDI_INTROP_NINTRS:
2165 	case DDI_INTROP_NAVAIL:
2166 		*(int *)result = i_ddi_get_nintrs(rdip);
2167 		break;
2168 	case DDI_INTROP_SETCAP:
2169 	case DDI_INTROP_SETMASK:
2170 	case DDI_INTROP_CLRMASK:
2171 	case DDI_INTROP_GETPENDING:
2172 		ret = DDI_ENOTSUP;
2173 		break;
2174 	case DDI_INTROP_SUPPORTED_TYPES:
2175 		/* Sbus nexus driver supports only fixed interrupts */
2176 		*(int *)result = i_ddi_get_nintrs(rdip) ?
2177 		    DDI_INTR_TYPE_FIXED : 0;
2178 		break;
2179 	default:
2180 		ret = i_ddi_intr_ops(dip, rdip, intr_op, hdlp, result);
2181 		break;
2182 	}
2183 
2184 	return (ret);
2185 }
2186 
2187 
2188 /*
2189  * Called by suspend/resume to save/restore the interrupt status (valid bit)
2190  * of the interrupt mapping registers.
2191  */
2192 static void
2193 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
2194     int save)
2195 {
2196 	int i;
2197 	volatile uint64_t *mondo_vec_reg;
2198 
2199 	for (i = 0; i < MAX_INO_TABLE_SIZE; i++) {
2200 		if (ino_table[i] != NULL) {
2201 			mondo_vec_reg = baddr + ino_table[i]->mapping_reg;
2202 			if (save) {
2203 				if (*mondo_vec_reg & INTERRUPT_VALID) {
2204 					cpr_softsp[i] = *mondo_vec_reg;
2205 				}
2206 			} else {
2207 				if (cpr_softsp[i]) {
2208 					*mondo_vec_reg = cpr_softsp[i];
2209 				}
2210 			}
2211 		}
2212 	}
2213 }
2214 
2215 #define	SZ_INO_TABLE (sizeof (ino_table) / sizeof (ino_table[0]))
2216 
2217 /*
2218  * sbus_intrdist
2219  *
2220  * This function retargets active interrupts by reprogramming the mondo
2221  * vec register. If the CPU ID of the target has not changed, then
2222  * the mondo is not reprogrammed. The routine must hold the mondo
2223  * lock for this instance of the sbus.
2224  */
2225 static void
2226 sbus_intrdist(void *arg)
2227 {
2228 	struct sbus_soft_state *softsp;
2229 	dev_info_t *dip = (dev_info_t *)arg;
2230 	volatile uint64_t *mondo_vec_reg;
2231 	uint64_t *last_mondo_vec_reg;
2232 	uint64_t mondo_vec;
2233 	volatile uint64_t *intr_state_reg;
2234 	uint_t start_bit;
2235 	volatile uint64_t tmpreg; /* HW flush reg */
2236 	uint_t mondo;
2237 	uint_t cpu_id;
2238 
2239 	/* extract the soft state pointer */
2240 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2241 
2242 	last_mondo_vec_reg = NULL;
2243 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2244 		if (ino_table[mondo] == NULL)
2245 			continue;
2246 
2247 		mondo_vec_reg = (softsp->intr_mapping_reg +
2248 			ino_table[mondo]->mapping_reg);
2249 
2250 		/* Don't reprogram the same register twice */
2251 		if (mondo_vec_reg == last_mondo_vec_reg)
2252 			continue;
2253 
2254 		if ((*mondo_vec_reg & INTERRUPT_VALID) == 0)
2255 			continue;
2256 
2257 		last_mondo_vec_reg = (uint64_t *)mondo_vec_reg;
2258 
2259 		cpu_id = intr_dist_cpuid();
2260 #ifdef _STARFIRE
2261 		/*
2262 		 * For Starfire it is a pain to check the current target for
2263 		 * the mondo since we have to read the PC asics ITTR slot
2264 		 * assigned to this mondo. It will be much easier to assume
2265 		 * the current target is always different and do the target
2266 		 * reprogram all the time.
2267 		 */
2268 #else
2269 		if (((*mondo_vec_reg & IMR_TID) >> IMR_TID_SHIFT) == cpu_id) {
2270 			/* It is the same, don't reprogram */
2271 			return;
2272 		}
2273 #endif	/* _STARFIRE */
2274 
2275 		/* So it's OK to reprogram the CPU target */
2276 
2277 		/* turn off valid bit and wait for the state machine to idle */
2278 		*mondo_vec_reg &= ~INTERRUPT_VALID;
2279 
2280 		tmpreg = *softsp->sbus_ctrl_reg;
2281 
2282 #ifdef	lint
2283 		tmpreg = tmpreg;
2284 #endif	/* lint */
2285 
2286 		if (mondo > MAX_MONDO_EXTERNAL) {
2287 			start_bit = ino_table[mondo]->diagreg_shift;
2288 			intr_state_reg = softsp->obio_intr_state;
2289 
2290 			/*
2291 			 * Loop waiting for state machine to idle. Do not keep
2292 			 * looping on a panic so that the system does not hang.
2293 			 */
2294 			while ((((*intr_state_reg >> start_bit) & 0x3) ==
2295 			    INT_PENDING) && !panicstr)
2296 				/* empty */;
2297 		} else {
2298 			int int_pending = 0;	/* interrupts pending */
2299 
2300 			/*
2301 			 * Shift over to first bit for this Sbus slot, 16
2302 			 * bits per slot, bits 0-1 of each slot are reserved.
2303 			 */
2304 			start_bit = 16 * (mondo >> 3) + 2;
2305 			intr_state_reg = softsp->sbus_intr_state;
2306 
2307 			/*
2308 			 * Make sure interrupts for levels 1-7 of this slot
2309 			 * are not pending.
2310 			 */
2311 			do {
2312 				int level;	/* Sbus interrupt level */
2313 				int shift;		/* # of bits to shift */
2314 				uint64_t state_reg = *intr_state_reg;
2315 
2316 				int_pending = 0;
2317 
2318 				for (shift = start_bit, level = 1; level < 8;
2319 				    level++, shift += 2) {
2320 					if (((state_reg >> shift) &
2321 					    0x3) == INT_PENDING) {
2322 						int_pending = 1;
2323 						break;
2324 					}
2325 				}
2326 			} while (int_pending && !panicstr);
2327 		}
2328 
2329 		/* re-target the mondo and turn it on */
2330 #ifdef _STARFIRE
2331 		mondo_vec = (pc_translate_tgtid(softsp->ittrans_cookie,
2332 		    cpu_id, mondo_vec_reg) <<
2333 		    INTERRUPT_CPU_FIELD) |
2334 		    INTERRUPT_VALID;
2335 #else
2336 		mondo_vec = (cpu_id << INTERRUPT_CPU_FIELD) | INTERRUPT_VALID;
2337 #endif	/* _STARFIRE */
2338 
2339 		/* write it back to the hardware. */
2340 		*mondo_vec_reg = mondo_vec;
2341 
2342 		/* flush the hardware buffers. */
2343 		tmpreg = *mondo_vec_reg;
2344 
2345 #ifdef	lint
2346 		tmpreg = tmpreg;
2347 #endif	/* lint */
2348 	}
2349 }
2350 
2351 /*
2352  * Reset interrupts to IDLE.  This function is called during
2353  * panic handling after redistributing interrupts; it's needed to
2354  * support dumping to network devices after 'sync' from OBP.
2355  *
2356  * N.B.  This routine runs in a context where all other threads
2357  * are permanently suspended.
2358  */
2359 static uint_t
2360 sbus_intr_reset(void *arg)
2361 {
2362 	dev_info_t *dip = (dev_info_t *)arg;
2363 	struct sbus_soft_state *softsp;
2364 	uint_t mondo;
2365 	volatile uint64_t *mondo_clear_reg;
2366 
2367 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2368 
2369 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2370 		if (ino_table[mondo] == NULL ||
2371 			ino_table[mondo]->clear_reg == NULL) {
2372 
2373 			continue;
2374 		}
2375 
2376 		mondo_clear_reg = (softsp->clr_intr_reg +
2377 		    ino_table[mondo]->clear_reg);
2378 		*mondo_clear_reg = SBUS_INTR_IDLE;
2379 	}
2380 
2381 	return (BF_NONE);
2382 }
2383 
2384 /*
2385  * called from sbus_add_kstats() to create a kstat for each %pic
2386  * that the SBUS supports. These (read-only) kstats export the
2387  * event names that each %pic supports.
2388  *
2389  * if we fail to create any of these kstats we must remove any
2390  * that we have already created and return;
2391  *
2392  * NOTE: because all sbus devices use the same events we only
2393  *	 need to create the picN kstats once. All instances can
2394  *	 use the same picN kstats.
2395  *
2396  *       The flexibility exists to allow each device specify it's
2397  *       own events by creating picN kstats with the instance number
2398  *       set to ddi_get_instance(softsp->dip).
2399  *
2400  *       When searching for a picN kstat for a device you should
2401  *       first search for a picN kstat using the instance number
2402  *       of the device you are interested in. If that fails you
2403  *       should use the first picN kstat found for that device.
2404  */
2405 static	void
2406 sbus_add_picN_kstats(dev_info_t *dip)
2407 {
2408 	/*
2409 	 * SBUS Performance Events.
2410 	 *
2411 	 * We declare an array of event-names and event-masks.
2412 	 * The num of events in this array is AC_NUM_EVENTS.
2413 	 */
2414 	sbus_event_mask_t sbus_events_arr[SBUS_NUM_EVENTS] = {
2415 		{"dvma_stream_rd", 0x0}, {"dvma_stream_wr", 0x1},
2416 		{"dvma_const_rd", 0x2}, {"dvma_const_wr", 0x3},
2417 		{"dvma_tlb_misses", 0x4}, {"dvma_stream_buf_mis", 0x5},
2418 		{"dvma_cycles", 0x6}, {"dvma_bytes_xfr", 0x7},
2419 		{"interrupts", 0x8}, {"upa_inter_nack", 0x9},
2420 		{"pio_reads", 0xA}, {"pio_writes", 0xB},
2421 		{"sbus_reruns", 0xC}, {"pio_cycles", 0xD}
2422 	};
2423 
2424 	/*
2425 	 * We declare an array of clear masks for each pic.
2426 	 * These masks are used to clear the %pcr bits for
2427 	 * each pic.
2428 	 */
2429 	sbus_event_mask_t sbus_clear_pic[SBUS_NUM_PICS] = {
2430 		/* pic0 */
2431 		{"clear_pic", (uint64_t)~(0xf)},
2432 		/* pic1 */
2433 		{"clear_pic", (uint64_t)~(0xf << 8)}
2434 	};
2435 
2436 	struct kstat_named *sbus_pic_named_data;
2437 	int  		event, pic;
2438 	char 		pic_name[30];
2439 	int		instance = ddi_get_instance(dip);
2440 	int		pic_shift = 0;
2441 
2442 	for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
2443 		/*
2444 		 * create the picN kstat. The size of this kstat is
2445 		 * SBUS_NUM_EVENTS + 1 for the clear_event_mask
2446 		 */
2447 		(void) sprintf(pic_name, "pic%d", pic);	/* pic0, pic1 ... */
2448 		if ((sbus_picN_ksp[pic] = kstat_create("sbus",
2449 			instance, pic_name, "bus", KSTAT_TYPE_NAMED,
2450 			SBUS_NUM_EVENTS + 1, NULL)) == NULL) {
2451 				cmn_err(CE_WARN, "sbus %s: kstat_create failed",
2452 					pic_name);
2453 
2454 			/* remove pic0 kstat if pic1 create fails */
2455 			if (pic == 1) {
2456 				kstat_delete(sbus_picN_ksp[0]);
2457 				sbus_picN_ksp[0] = NULL;
2458 			}
2459 			return;
2460 		}
2461 
2462 		sbus_pic_named_data =
2463 			(struct kstat_named *)(sbus_picN_ksp[pic]->ks_data);
2464 
2465 		/*
2466 		 * when we are writing pcr_masks to the kstat we need to
2467 		 * shift bits left by 8 for pic1 events.
2468 		 */
2469 		if (pic == 1)
2470 			pic_shift = 8;
2471 
2472 		/*
2473 		 * for each picN event we need to write a kstat record
2474 		 * (name = EVENT, value.ui64 = PCR_MASK)
2475 		 */
2476 		for (event = 0; event < SBUS_NUM_EVENTS; event ++) {
2477 
2478 			/* pcr_mask */
2479 			sbus_pic_named_data[event].value.ui64 =
2480 				sbus_events_arr[event].pcr_mask << pic_shift;
2481 
2482 			/* event-name */
2483 			kstat_named_init(&sbus_pic_named_data[event],
2484 				sbus_events_arr[event].event_name,
2485 				KSTAT_DATA_UINT64);
2486 		}
2487 
2488 		/*
2489 		 * we add the clear_pic event and mask as the last
2490 		 * record in the kstat
2491 		 */
2492 		/* pcr mask */
2493 		sbus_pic_named_data[SBUS_NUM_EVENTS].value.ui64 =
2494 			sbus_clear_pic[pic].pcr_mask;
2495 
2496 		/* event-name */
2497 		kstat_named_init(&sbus_pic_named_data[SBUS_NUM_EVENTS],
2498 			sbus_clear_pic[pic].event_name,
2499 			KSTAT_DATA_UINT64);
2500 
2501 		kstat_install(sbus_picN_ksp[pic]);
2502 	}
2503 }
2504 
2505 static	void
2506 sbus_add_kstats(struct sbus_soft_state *softsp)
2507 {
2508 	struct kstat *sbus_counters_ksp;
2509 	struct kstat_named *sbus_counters_named_data;
2510 
2511 	/*
2512 	 * Create the picN kstats if we are the first instance
2513 	 * to attach. We use sbus_attachcnt as a count of how
2514 	 * many instances have attached. This is protected by
2515 	 * a mutex.
2516 	 */
2517 	mutex_enter(&sbus_attachcnt_mutex);
2518 	if (sbus_attachcnt == 0)
2519 		sbus_add_picN_kstats(softsp->dip);
2520 
2521 	sbus_attachcnt ++;
2522 	mutex_exit(&sbus_attachcnt_mutex);
2523 
2524 	/*
2525 	 * A "counter" kstat is created for each sbus
2526 	 * instance that provides access to the %pcr and %pic
2527 	 * registers for that instance.
2528 	 *
2529 	 * The size of this kstat is SBUS_NUM_PICS + 1 for %pcr
2530 	 */
2531 	if ((sbus_counters_ksp = kstat_create("sbus",
2532 		ddi_get_instance(softsp->dip), "counters",
2533 		"bus", KSTAT_TYPE_NAMED, SBUS_NUM_PICS + 1,
2534 		KSTAT_FLAG_WRITABLE)) == NULL) {
2535 
2536 			cmn_err(CE_WARN, "sbus%d counters: kstat_create"
2537 				" failed", ddi_get_instance(softsp->dip));
2538 		return;
2539 	}
2540 
2541 	sbus_counters_named_data =
2542 		(struct kstat_named *)(sbus_counters_ksp->ks_data);
2543 
2544 	/* initialize the named kstats */
2545 	kstat_named_init(&sbus_counters_named_data[0],
2546 		"pcr", KSTAT_DATA_UINT64);
2547 
2548 	kstat_named_init(&sbus_counters_named_data[1],
2549 		"pic0", KSTAT_DATA_UINT64);
2550 
2551 	kstat_named_init(&sbus_counters_named_data[2],
2552 		"pic1", KSTAT_DATA_UINT64);
2553 
2554 	sbus_counters_ksp->ks_update = sbus_counters_kstat_update;
2555 	sbus_counters_ksp->ks_private = (void *)softsp;
2556 
2557 	kstat_install(sbus_counters_ksp);
2558 
2559 	/* update the sofstate */
2560 	softsp->sbus_counters_ksp = sbus_counters_ksp;
2561 }
2562 
2563 static	int
2564 sbus_counters_kstat_update(kstat_t *ksp, int rw)
2565 {
2566 	struct kstat_named *sbus_counters_data;
2567 	struct sbus_soft_state *softsp;
2568 	uint64_t pic_register;
2569 
2570 	sbus_counters_data = (struct kstat_named *)ksp->ks_data;
2571 	softsp = (struct sbus_soft_state *)ksp->ks_private;
2572 
2573 	if (rw == KSTAT_WRITE) {
2574 
2575 		/*
2576 		 * Write the pcr value to the softsp->sbus_pcr.
2577 		 * The pic register is read-only so we don't
2578 		 * attempt to write to it.
2579 		 */
2580 
2581 		*softsp->sbus_pcr =
2582 			(uint32_t)sbus_counters_data[0].value.ui64;
2583 
2584 	} else {
2585 		/*
2586 		 * Read %pcr and %pic register values and write them
2587 		 * into counters kstat.
2588 		 *
2589 		 * Due to a hardware bug we need to right shift the %pcr
2590 		 * by 4 bits. This is only done when reading the %pcr.
2591 		 *
2592 		 */
2593 		/* pcr */
2594 		sbus_counters_data[0].value.ui64 = *softsp->sbus_pcr >> 4;
2595 
2596 		pic_register = *softsp->sbus_pic;
2597 		/*
2598 		 * sbus pic register:
2599 		 *  (63:32) = pic0
2600 		 *  (31:00) = pic1
2601 		 */
2602 
2603 		/* pic0 */
2604 		sbus_counters_data[1].value.ui64 = pic_register >> 32;
2605 		/* pic1 */
2606 		sbus_counters_data[2].value.ui64 =
2607 			pic_register & SBUS_PIC0_MASK;
2608 
2609 	}
2610 	return (0);
2611 }
2612 
2613 static int
2614 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
2615     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
2616 {
2617 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2618 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2619 	int ino;
2620 	struct sbus_wrapper_arg *sbus_arg;
2621 	struct sbus_intr_handler *intr_handler;
2622 	ddi_ispec_t *ip = (ddi_ispec_t *)hdlp->ih_private;
2623 
2624 	/* Xlate the interrupt */
2625 	if (sbus_xlate_intrs(dip, rdip, ip,
2626 	    softsp->intr_mapping_ign) == DDI_FAILURE) {
2627 		cmn_err(CE_WARN, "sbus_update_intr_state() can't xlate SBUS "
2628 		    "devices %s interrupt.", ddi_get_name(rdip));
2629 		return (DDI_FAILURE);
2630 	}
2631 
2632 	ino = ((int32_t)*ip->is_intr) & SBUS_MAX_INO;
2633 	sbus_arg = softsp->intr_list[ino];
2634 
2635 	ASSERT(sbus_arg != NULL);
2636 	ASSERT(sbus_arg->handler_list != NULL);
2637 	intr_handler = sbus_arg->handler_list;
2638 
2639 	while (intr_handler) {
2640 		if ((intr_handler->inum == hdlp->ih_inum) &&
2641 		    (intr_handler->dip == rdip)) {
2642 			intr_handler->intr_state = new_intr_state;
2643 			return (DDI_SUCCESS);
2644 		}
2645 
2646 		intr_handler = intr_handler->next;
2647 	}
2648 
2649 	return (DDI_FAILURE);
2650 }
2651