1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/time.h>
30 #include <sys/nvpair.h>
31 #include <sys/cmn_err.h>
32 #include <sys/cred.h>
33 #include <sys/open.h>
34 #include <sys/ddi.h>
35 #include <sys/sunddi.h>
36 #include <sys/conf.h>
37 #include <sys/modctl.h>
38 #include <sys/cyclic.h>
39 #include <sys/errorq.h>
40 #include <sys/stat.h>
41 #include <sys/cpuvar.h>
42 #include <sys/mc_intel.h>
43 #include <sys/mc.h>
44 #include <sys/fm/protocol.h>
45 #include "nb_log.h"
46 #include "nb5000.h"
47 
48 nvlist_t *inb_mc_nvl;
49 krwlock_t inb_mc_lock;
50 
51 char *inb_mc_snapshot;
52 uint_t nb_config_gen;
53 uint_t inb_mc_snapshotgen;
54 size_t inb_mc_snapshotsz;
55 static dev_info_t *inb_dip;
56 int nb_allow_detach = 0;
57 int nb_no_smbios;
58 
59 static uint64_t
60 rank_to_base(uint8_t branch, uint8_t rank, uint8_t *interleave, uint64_t *limit,
61     uint64_t *hole_base, uint64_t *hole_size, uint8_t *wayp,
62     uint8_t *branch_interleavep)
63 {
64 	uint8_t i, j;
65 	uint64_t base = 0;
66 	uint64_t lt = 0;
67 	uint64_t h = 0;
68 	uint64_t hs = 0;
69 	uint8_t il = 1;
70 	uint8_t way = 0;
71 	uint8_t branch_interleave = 0;
72 
73 	for (i = 0; i < NB_MEM_RANK_SELECT; i++) {
74 		for (j = 0; j < NB_RANKS_IN_SELECT; j++) {
75 			if (nb_ranks[branch][i].rank[j] == rank) {
76 				base = nb_ranks[branch][i].base;
77 				lt = nb_ranks[branch][i].limit;
78 				il = nb_ranks[branch][i].interleave;
79 				h = nb_ranks[branch][i].hole_base;
80 				hs = nb_ranks[branch][i].hole_size;
81 				way = j;
82 				branch_interleave =
83 				    nb_ranks[branch][i].branch_interleave;
84 				i = NB_MEM_RANK_SELECT;
85 				break;
86 			}
87 		}
88 	}
89 	if (lt == 0) {
90 		for (i = 0; lt == 0 && i < NB_MEM_BRANCH_SELECT; i++) {
91 			if (nb_banks[i].way[branch] &&
92 			    base >= nb_banks[i].base &&
93 			    base < nb_banks[i].base + nb_banks[i].limit) {
94 				lt = nb_banks[i].limit;
95 				break;
96 			}
97 		}
98 	}
99 	*interleave = il;
100 	*limit = lt;
101 	*hole_base = h;
102 	*hole_size = hs;
103 	*wayp = way;
104 	*branch_interleavep = branch_interleave;
105 	return (base);
106 }
107 
108 /*ARGSUSED*/
109 void
110 inb_rank(nvlist_t *newdimm, nb_dimm_t *nb_dimm, uint8_t channel, uint32_t dimm)
111 {
112 	nvlist_t **newrank;
113 	int i;
114 
115 	newrank = kmem_zalloc(sizeof (nvlist_t *) * nb_dimm->nranks, KM_SLEEP);
116 	for (i = 0; i < nb_dimm->nranks; i++) {
117 		uint64_t dimm_base;
118 		uint64_t limit;
119 		uint8_t interleave;
120 		uint8_t way;
121 		uint8_t branch_interleave;
122 		uint64_t hole_base;
123 		uint64_t hole_size;
124 
125 		dimm_base = rank_to_base(channel/nb_channels_per_branch,
126 		    nb_dimm->start_rank + i, &interleave,
127 		    &limit, &hole_base, &hole_size, &way, &branch_interleave);
128 		(void) nvlist_alloc(&newrank[i], NV_UNIQUE_NAME, KM_SLEEP);
129 
130 		(void) nvlist_add_uint64(newrank[i], "dimm-rank-base",
131 		    dimm_base);
132 		if (hole_size) {
133 			(void) nvlist_add_uint64(newrank[i], "dimm-hole",
134 			    hole_base);
135 			(void) nvlist_add_uint64(newrank[i], "dimm-hole-size",
136 			    hole_size);
137 		}
138 		(void) nvlist_add_uint64(newrank[i], "dimm-rank-limit",
139 		    limit);
140 		if (interleave > 1) {
141 			(void) nvlist_add_uint32(newrank[i],
142 			    "dimm-rank-interleave", (uint32_t)interleave);
143 			(void) nvlist_add_uint32(newrank[i],
144 			    "dimm-rank-interleave-way", (uint32_t)way);
145 			if (branch_interleave) {
146 				(void) nvlist_add_uint32(newrank[i],
147 				    "dimm-rank-interleave-branch", (uint32_t)1);
148 			}
149 		}
150 	}
151 	(void) nvlist_add_nvlist_array(newdimm, MCINTEL_NVLIST_RANKS, newrank,
152 	    nb_dimm->nranks);
153 	for (i = 0; i < nb_dimm->nranks; i++)
154 		nvlist_free(newrank[i]);
155 	kmem_free(newrank, sizeof (nvlist_t *) * nb_dimm->nranks);
156 }
157 
158 nvlist_t *
159 inb_dimm(nb_dimm_t *nb_dimm, uint8_t channel, uint32_t dimm)
160 {
161 	nvlist_t *newdimm;
162 	uint8_t t;
163 	char sbuf[65];
164 
165 	(void) nvlist_alloc(&newdimm, NV_UNIQUE_NAME, KM_SLEEP);
166 	(void) nvlist_add_uint32(newdimm, "dimm-number", dimm);
167 
168 	if (nb_dimm->dimm_size >= 1024*1024*1024) {
169 		(void) snprintf(sbuf, sizeof (sbuf), "%dG",
170 		    (int)(nb_dimm->dimm_size / (1024*1024*1024)));
171 	} else {
172 		(void) snprintf(sbuf, sizeof (sbuf), "%dM",
173 		    (int)(nb_dimm->dimm_size / (1024*1024)));
174 	}
175 	(void) nvlist_add_string(newdimm, "dimm-size", sbuf);
176 	(void) nvlist_add_uint64(newdimm, "size", nb_dimm->dimm_size);
177 	(void) nvlist_add_uint32(newdimm, "nbanks", (uint32_t)nb_dimm->nbanks);
178 	(void) nvlist_add_uint32(newdimm, "ncolumn",
179 	    (uint32_t)nb_dimm->ncolumn);
180 	(void) nvlist_add_uint32(newdimm, "nrow", (uint32_t)nb_dimm->nrow);
181 	(void) nvlist_add_uint32(newdimm, "width", (uint32_t)nb_dimm->width);
182 	(void) nvlist_add_int32(newdimm, MCINTEL_NVLIST_1ST_RANK,
183 	    (int32_t)nb_dimm->start_rank);
184 	(void) nvlist_add_uint32(newdimm, "ranks", (uint32_t)nb_dimm->nranks);
185 	inb_rank(newdimm, nb_dimm, channel, dimm);
186 	(void) nvlist_add_uint32(newdimm, "manufacture-id",
187 	    (uint32_t)nb_dimm->manufacture_id);
188 	(void) nvlist_add_uint32(newdimm, "manufacture-location",
189 	    (uint32_t)nb_dimm->manufacture_location);
190 	(void) nvlist_add_uint32(newdimm, "manufacture-week",
191 	    (uint32_t)nb_dimm->manufacture_week);
192 	(void) nvlist_add_uint32(newdimm, "manufacture-year",
193 	    (uint32_t)nb_dimm->manufacture_year + 2000);
194 	/* create Sun Serial number from SPD data */
195 	(void) snprintf(sbuf, sizeof (sbuf), "%04x%02x%02x%02x%08x",
196 	    (uint32_t)nb_dimm->manufacture_id & 0x7fff,
197 	    (uint32_t)nb_dimm->manufacture_location,
198 	    (uint32_t)nb_dimm->manufacture_year,
199 	    (uint32_t)nb_dimm->manufacture_week,
200 	    nb_dimm->serial_number);
201 	(void) nvlist_add_string(newdimm, FM_FMRI_HC_SERIAL_ID, sbuf);
202 	if (nb_dimm->part_number && nb_dimm->part_number[0]) {
203 		t = sizeof (nb_dimm->part_number);
204 		(void) strncpy(sbuf, nb_dimm->part_number, t);
205 		sbuf[t] = 0;
206 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_PART, sbuf);
207 	}
208 	if (nb_dimm->revision && nb_dimm->revision[0]) {
209 		t = sizeof (nb_dimm->revision);
210 		(void) strncpy(sbuf, nb_dimm->revision, t);
211 		sbuf[t] = 0;
212 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_REVISION, sbuf);
213 	}
214 	t = sizeof (nb_dimm->label);
215 	(void) strncpy(sbuf, nb_dimm->label, t);
216 	sbuf[t] = 0;
217 	(void) nvlist_add_string(newdimm, FM_FAULT_FRU_LABEL, sbuf);
218 	return (newdimm);
219 }
220 
221 static void
222 inb_dimmlist(nvlist_t *nvl)
223 {
224 	nvlist_t **dimmlist;
225 	nvlist_t **newchannel;
226 	int nchannels = nb_number_memory_controllers * nb_channels_per_branch;
227 	int nd;
228 	uint8_t i, j;
229 	nb_dimm_t **dimmpp;
230 	nb_dimm_t *dimmp;
231 
232 	dimmlist =  kmem_zalloc(sizeof (nvlist_t *) * nb_dimms_per_channel,
233 	    KM_SLEEP);
234 	newchannel = kmem_zalloc(sizeof (nvlist_t *) * nchannels, KM_SLEEP);
235 	dimmpp = nb_dimms;
236 	for (i = 0; i < nchannels; i++) {
237 		(void) nvlist_alloc(&newchannel[i], NV_UNIQUE_NAME, KM_SLEEP);
238 		nd = 0;
239 		for (j = 0; j < nb_dimms_per_channel; j++) {
240 			dimmp = *dimmpp;
241 			if (dimmp != NULL) {
242 				dimmlist[nd] = inb_dimm(dimmp, i, (uint32_t)j);
243 				nd++;
244 			}
245 			dimmpp++;
246 		}
247 		if (nd) {
248 			(void) nvlist_add_nvlist_array(newchannel[i],
249 			    "memory-dimms", dimmlist, nd);
250 			for (j = 0; j < nd; j++)
251 				nvlist_free(dimmlist[j]);
252 		}
253 	}
254 	(void) nvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_MC, newchannel,
255 	    nchannels);
256 	for (i = 0; i < nchannels; i++)
257 		nvlist_free(newchannel[i]);
258 	kmem_free(dimmlist, sizeof (nvlist_t *) * nb_dimms_per_channel);
259 	kmem_free(newchannel, sizeof (nvlist_t *) * nchannels);
260 }
261 
262 static char *
263 inb_mc_name()
264 {
265 	char *mc;
266 
267 	switch (nb_chipset) {
268 	case INTEL_NB_7300:
269 		mc = "Intel 7300";
270 		break;
271 	case INTEL_NB_5400:
272 		mc = "Intel 5400";
273 		break;
274 	case INTEL_NB_5400A:
275 		mc = "Intel 5400A";
276 		break;
277 	case INTEL_NB_5400B:
278 		mc = "Intel 5400B";
279 		break;
280 	case INTEL_NB_5100:
281 		mc = "Intel 5100";
282 		break;
283 	case INTEL_NB_5000P:
284 		mc = "Intel 5000P";
285 		break;
286 	case INTEL_NB_5000V:
287 		mc = "Intel 5000V";
288 		break;
289 	case INTEL_NB_5000X:
290 		mc = "Intel 5000X";
291 		break;
292 	case INTEL_NB_5000Z:
293 		mc = "Intel 5000Z";
294 		break;
295 	default:
296 		mc = "Intel 5000";
297 		break;
298 	}
299 	return (mc);
300 }
301 
302 static void
303 inb_create_nvl()
304 {
305 	nvlist_t *nvl;
306 
307 	(void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
308 	(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
309 	    MCINTEL_NVLIST_VERS);
310 	(void) nvlist_add_string(nvl, "memory-controller", inb_mc_name());
311 	if (nb_chipset == INTEL_NB_5100)
312 		(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NMEM,
313 		    (uint8_t)nb_number_memory_controllers);
314 	inb_dimmlist(nvl);
315 
316 	if (inb_mc_nvl)
317 		nvlist_free(inb_mc_nvl);
318 	inb_mc_nvl = nvl;
319 }
320 
321 static void
322 inb_mc_snapshot_destroy()
323 {
324 	ASSERT(RW_LOCK_HELD(&inb_mc_lock));
325 
326 	if (inb_mc_snapshot == NULL)
327 		return;
328 
329 	kmem_free(inb_mc_snapshot, inb_mc_snapshotsz);
330 	inb_mc_snapshot = NULL;
331 	inb_mc_snapshotsz = 0;
332 	inb_mc_snapshotgen++;
333 }
334 
335 static int
336 inb_mc_snapshot_update()
337 {
338 	ASSERT(RW_LOCK_HELD(&inb_mc_lock));
339 
340 	if (inb_mc_snapshot != NULL)
341 		return (0);
342 
343 	if (nvlist_pack(inb_mc_nvl, &inb_mc_snapshot, &inb_mc_snapshotsz,
344 	    NV_ENCODE_XDR, KM_SLEEP) != 0)
345 		return (-1);
346 
347 	return (0);
348 }
349 
350 /*ARGSUSED*/
351 static int
352 inb_mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
353     int *rvalp)
354 {
355 	int rc = 0;
356 	mc_snapshot_info_t mcs;
357 
358 	if (cmd != MC_IOC_SNAPSHOT_INFO && cmd != MC_IOC_SNAPSHOT)
359 		return (EINVAL);
360 
361 	rw_enter(&inb_mc_lock, RW_READER);
362 	if (inb_mc_nvl == NULL || inb_mc_snapshotgen != nb_config_gen) {
363 		if (!rw_tryupgrade(&inb_mc_lock)) {
364 			rw_exit(&inb_mc_lock);
365 			return (EAGAIN);
366 		}
367 		if (inb_mc_nvl)
368 			inb_mc_snapshot_destroy();
369 		inb_create_nvl();
370 		nb_config_gen = inb_mc_snapshotgen;
371 		(void) inb_mc_snapshot_update();
372 	}
373 	switch (cmd) {
374 	case MC_IOC_SNAPSHOT_INFO:
375 		mcs.mcs_size = (uint32_t)inb_mc_snapshotsz;
376 		mcs.mcs_gen = inb_mc_snapshotgen;
377 
378 		if (ddi_copyout(&mcs, (void *)arg, sizeof (mc_snapshot_info_t),
379 		    mode) < 0)
380 			rc = EFAULT;
381 		break;
382 	case MC_IOC_SNAPSHOT:
383 		if (ddi_copyout(inb_mc_snapshot, (void *)arg, inb_mc_snapshotsz,
384 		    mode) < 0)
385 			rc = EFAULT;
386 		break;
387 	}
388 	rw_exit(&inb_mc_lock);
389 	return (rc);
390 }
391 
392 /*ARGSUSED*/
393 static int
394 inb_mc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
395     void **result)
396 {
397 	if ((infocmd != DDI_INFO_DEVT2DEVINFO &&
398 	    infocmd != DDI_INFO_DEVT2INSTANCE) || inb_dip == NULL) {
399 		*result = NULL;
400 		return (DDI_FAILURE);
401 	}
402 	if (infocmd == DDI_INFO_DEVT2DEVINFO)
403 		*result = inb_dip;
404 	else
405 		*result = (void *)(uintptr_t)ddi_get_instance(inb_dip);
406 	return (0);
407 }
408 
409 static int
410 inb_mc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
411 {
412 	if (cmd == DDI_RESUME) {
413 		nb_dev_reinit();
414 		return (DDI_SUCCESS);
415 	}
416 	if (cmd != DDI_ATTACH)
417 		return (DDI_FAILURE);
418 	if (inb_dip == NULL) {
419 		inb_dip = dip;
420 		nb_no_smbios = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
421 		    DDI_PROP_DONTPASS, "no-smbios", 0);
422 		nb_pci_cfg_setup(dip);
423 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
424 		    inb_mc_name());
425 		if (nb_dev_init()) {
426 			nb_pci_cfg_free();
427 			inb_dip = NULL;
428 			return (DDI_FAILURE);
429 		}
430 		if (ddi_create_minor_node(dip, "mc-intel", S_IFCHR, 0,
431 		    "ddi_mem_ctrl", 0) != DDI_SUCCESS) {
432 			cmn_err(CE_WARN, "failed to create minor node"
433 			    " for memory controller\n");
434 		}
435 		cmi_hdl_walk(inb_mc_register, NULL, NULL, NULL);
436 	}
437 
438 	return (DDI_SUCCESS);
439 }
440 
441 /*ARGSUSED*/
442 static int
443 inb_mc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
444 {
445 	if (nb_allow_detach && cmd == DDI_DETACH && dip == inb_dip) {
446 		rw_enter(&inb_mc_lock, RW_WRITER);
447 		inb_mc_snapshot_destroy();
448 		rw_exit(&inb_mc_lock);
449 		inb_dip = NULL;
450 		return (DDI_SUCCESS);
451 	} else if (cmd == DDI_SUSPEND || cmd == DDI_PM_SUSPEND) {
452 		return (DDI_SUCCESS);
453 	} else {
454 		return (DDI_FAILURE);
455 	}
456 }
457 
458 /*ARGSUSED*/
459 static int
460 inb_mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
461 {
462 	if (otyp != OTYP_CHR)
463 		return (EINVAL);
464 
465 	rw_enter(&inb_mc_lock, RW_READER);
466 	if (getminor(*devp) >= 1) {
467 		rw_exit(&inb_mc_lock);
468 		return (EINVAL);
469 	}
470 	rw_exit(&inb_mc_lock);
471 
472 	return (0);
473 }
474 
475 /*ARGSUSED*/
476 static int
477 inb_mc_close(dev_t dev, int flag, int otyp, cred_t *credp)
478 {
479 	return (0);
480 }
481 
482 
483 static struct cb_ops inb_mc_cb_ops = {
484 	inb_mc_open,
485 	inb_mc_close,
486 	nodev,		/* not a block driver */
487 	nodev,		/* no print routine */
488 	nodev,		/* no dump routine */
489 	nodev,		/* no read routine */
490 	nodev,		/* no write routine */
491 	inb_mc_ioctl,
492 	nodev,		/* no devmap routine */
493 	nodev,		/* no mmap routine */
494 	nodev,		/* no segmap routine */
495 	nochpoll,	/* no chpoll routine */
496 	ddi_prop_op,
497 	0,		/* not a STREAMS driver */
498 	D_NEW | D_MP,	/* safe for multi-thread/multi-processor */
499 };
500 
501 static struct dev_ops inb_mc_ops = {
502 	DEVO_REV,		/* devo_rev */
503 	0,			/* devo_refcnt */
504 	inb_mc_getinfo,		/* devo_getinfo */
505 	nulldev,		/* devo_identify */
506 	nulldev,		/* devo_probe */
507 	inb_mc_attach,		/* devo_attach */
508 	inb_mc_detach,		/* devo_detach */
509 	nodev,			/* devo_reset */
510 	&inb_mc_cb_ops,		/* devo_cb_ops */
511 	NULL,			/* devo_bus_ops */
512 	NULL,			/* devo_power */
513 	ddi_quiesce_not_needed,		/* devo_quiesce */
514 };
515 
516 static struct modldrv modldrv = {
517 	&mod_driverops,
518 	"Intel 5000 Memory Controller Hub Module",
519 	&inb_mc_ops
520 };
521 
522 static struct modlinkage modlinkage = {
523 	MODREV_1,
524 	(void *)&modldrv,
525 	NULL
526 };
527 
528 int
529 _init(void)
530 {
531 	int err;
532 
533 	err = nb_init();
534 	if (err == 0 && (err = mod_install(&modlinkage)) == 0)
535 		rw_init(&inb_mc_lock, NULL, RW_DRIVER, NULL);
536 
537 	return (err);
538 }
539 
540 int
541 _info(struct modinfo *modinfop)
542 {
543 	return (mod_info(&modlinkage, modinfop));
544 }
545 
546 int
547 _fini(void)
548 {
549 	int err;
550 
551 	if ((err = mod_remove(&modlinkage)) == 0) {
552 		nb_unload();
553 		rw_destroy(&inb_mc_lock);
554 	}
555 
556 	return (err);
557 }
558