1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/regset.h>
35 #include <sys/privregs.h>
36 #include <sys/segments.h>
37 #include <sys/sysmacros.h>
38 #include <sys/trap.h>
39 
40 /*
41  * Lossless User-Land Tracing on x86
42  * ---------------------------------
43  *
44  * Most instructions' execution is not dependent on their address; for these
45  * instrutions it is sufficient to copy them into the user process's address
46  * space and execute them. To effectively single-step an instruction in
47  * user-land, we copy out the following sequence of instructions to scratch
48  * space in the user thread's ulwp_t structure.
49  *
50  * We then set the program counter (%eip or %rip) to point to this scratch
51  * space. Once execution resumes, the original instruction is executed and
52  * then control flow is redirected to what was originally the subsequent
53  * instruction. If the kernel attemps to deliver a signal while single-
54  * stepping, the signal is deferred and the program counter is moved into the
55  * second sequence of instructions. The second sequence ends in a trap into
56  * the kernel where the deferred signal is then properly handled and delivered.
57  *
58  * For instructions whose execute is position dependent, we perform simple
59  * emulation. These instructions are limited to control transfer
60  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
61  * of %rip-relative addressing that means that almost any instruction can be
62  * position dependent. For all the details on how we emulate generic
63  * instructions included %rip-relative instructions, see the code in
64  * fasttrap_pid_probe() below where we handle instructions of type
65  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
66  */
67 
68 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
69 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
70 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
71 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
72 
73 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
74 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
75 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
76 
77 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
78 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
79 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
80 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
81 #define	FASTTRAP_REX(w, r, x, b)	\
82 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
83 
84 /*
85  * Single-byte op-codes.
86  */
87 #define	FASTTRAP_PUSHL_EBP	0x55
88 
89 #define	FASTTRAP_JO		0x70
90 #define	FASTTRAP_JNO		0x71
91 #define	FASTTRAP_JB		0x72
92 #define	FASTTRAP_JAE		0x73
93 #define	FASTTRAP_JE		0x74
94 #define	FASTTRAP_JNE		0x75
95 #define	FASTTRAP_JBE		0x76
96 #define	FASTTRAP_JA		0x77
97 #define	FASTTRAP_JS		0x78
98 #define	FASTTRAP_JNS		0x79
99 #define	FASTTRAP_JP		0x7a
100 #define	FASTTRAP_JNP		0x7b
101 #define	FASTTRAP_JL		0x7c
102 #define	FASTTRAP_JGE		0x7d
103 #define	FASTTRAP_JLE		0x7e
104 #define	FASTTRAP_JG		0x7f
105 
106 #define	FASTTRAP_MOV_EAX	0xb8
107 #define	FASTTRAP_MOV_ECX	0xb9
108 
109 #define	FASTTRAP_RET16		0xc2
110 #define	FASTTRAP_RET		0xc3
111 
112 #define	FASTTRAP_LOOPNZ		0xe0
113 #define	FASTTRAP_LOOPZ		0xe1
114 #define	FASTTRAP_LOOP		0xe2
115 #define	FASTTRAP_JCXZ		0xe3
116 
117 #define	FASTTRAP_CALL		0xe8
118 #define	FASTTRAP_JMP32		0xe9
119 #define	FASTTRAP_JMP8		0xeb
120 
121 #define	FASTTRAP_INT3		0xcc
122 #define	FASTTRAP_INT		0xcd
123 
124 #define	FASTTRAP_2_BYTE_OP	0x0f
125 #define	FASTTRAP_GROUP5_OP	0xff
126 
127 /*
128  * Two-byte op-codes (second byte only).
129  */
130 #define	FASTTRAP_0F_JO		0x80
131 #define	FASTTRAP_0F_JNO		0x81
132 #define	FASTTRAP_0F_JB		0x82
133 #define	FASTTRAP_0F_JAE		0x83
134 #define	FASTTRAP_0F_JE		0x84
135 #define	FASTTRAP_0F_JNE		0x85
136 #define	FASTTRAP_0F_JBE		0x86
137 #define	FASTTRAP_0F_JA		0x87
138 #define	FASTTRAP_0F_JS		0x88
139 #define	FASTTRAP_0F_JNS		0x89
140 #define	FASTTRAP_0F_JP		0x8a
141 #define	FASTTRAP_0F_JNP		0x8b
142 #define	FASTTRAP_0F_JL		0x8c
143 #define	FASTTRAP_0F_JGE		0x8d
144 #define	FASTTRAP_0F_JLE		0x8e
145 #define	FASTTRAP_0F_JG		0x8f
146 
147 #define	FASTTRAP_EFLAGS_OF	0x800
148 #define	FASTTRAP_EFLAGS_DF	0x400
149 #define	FASTTRAP_EFLAGS_SF	0x080
150 #define	FASTTRAP_EFLAGS_ZF	0x040
151 #define	FASTTRAP_EFLAGS_AF	0x010
152 #define	FASTTRAP_EFLAGS_PF	0x004
153 #define	FASTTRAP_EFLAGS_CF	0x001
154 
155 /*
156  * Instruction prefixes.
157  */
158 #define	FASTTRAP_PREFIX_OPERAND	0x66
159 #define	FASTTRAP_PREFIX_ADDRESS	0x67
160 #define	FASTTRAP_PREFIX_CS	0x2E
161 #define	FASTTRAP_PREFIX_DS	0x3E
162 #define	FASTTRAP_PREFIX_ES	0x26
163 #define	FASTTRAP_PREFIX_FS	0x64
164 #define	FASTTRAP_PREFIX_GS	0x65
165 #define	FASTTRAP_PREFIX_SS	0x36
166 #define	FASTTRAP_PREFIX_LOCK	0xF0
167 #define	FASTTRAP_PREFIX_REP	0xF3
168 #define	FASTTRAP_PREFIX_REPNE	0xF2
169 
170 #define	FASTTRAP_NOREG	0xff
171 
172 /*
173  * Map between instruction register encodings and the kernel constants which
174  * correspond to indicies into struct regs.
175  */
176 #ifdef __amd64
177 static const uint8_t regmap[16] = {
178 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
179 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
180 };
181 #else
182 static const uint8_t regmap[8] = {
183 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
184 };
185 #endif
186 
187 static ulong_t fasttrap_getreg(struct regs *, uint_t);
188 
189 static uint64_t
190 fasttrap_anarg(struct regs *rp, int function_entry, int argno)
191 {
192 	uint64_t value;
193 	int shift = function_entry ? 1 : 0;
194 
195 #ifdef __amd64
196 	if (curproc->p_model == DATAMODEL_LP64) {
197 		uintptr_t *stack;
198 
199 		/*
200 		 * In 64-bit mode, the first six arguments are stored in
201 		 * registers.
202 		 */
203 		if (argno < 6)
204 			return ((&rp->r_rdi)[argno]);
205 
206 		stack = (uintptr_t *)rp->r_sp;
207 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
208 		value = dtrace_fulword(&stack[argno - 6 + shift]);
209 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
210 	} else {
211 #endif
212 		uint32_t *stack = (uint32_t *)rp->r_sp;
213 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
214 		value = dtrace_fuword32(&stack[argno + shift]);
215 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
216 #ifdef __amd64
217 	}
218 #endif
219 
220 	return (value);
221 }
222 
223 /*ARGSUSED*/
224 int
225 fasttrap_tracepoint_init(proc_t *p, fasttrap_probe_t *probe,
226     fasttrap_tracepoint_t *tp, uintptr_t pc)
227 {
228 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
229 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
230 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
231 	uint_t start = 0;
232 	int rmindex;
233 	uint8_t rex = 0;
234 
235 	/*
236 	 * Read the instruction at the given address out of the process's
237 	 * address space. We don't have to worry about a debugger
238 	 * changing this instruction before we overwrite it with our trap
239 	 * instruction since P_PR_LOCK is set. Since instructions can span
240 	 * pages, we potentially read the instruction in two parts. If the
241 	 * second part fails, we just zero out that part of the instruction.
242 	 */
243 	if (uread(p, &instr[0], first, pc) != 0)
244 		return (-1);
245 	if (len > first &&
246 	    uread(p, &instr[first], len - first, pc + first) != 0) {
247 		bzero(&instr[first], len - first);
248 		len = first;
249 	}
250 
251 	/*
252 	 * If the disassembly fails, then we have a malformed instruction.
253 	 */
254 	if ((tp->ftt_size = dtrace_instr_size_isa(instr, p->p_model,
255 	    &rmindex)) <= 0)
256 		return (-1);
257 
258 	/*
259 	 * Make sure the disassembler isn't completely broken.
260 	 */
261 	ASSERT(-1 <= rmindex && rmindex < tp->ftt_size);
262 
263 	/*
264 	 * If the computed size is greater than the number of bytes read,
265 	 * then it was a malformed instruction possibly because it fell on a
266 	 * page boundary and the subsequent page was missing or because of
267 	 * some malicious user.
268 	 */
269 	if (tp->ftt_size > len)
270 		return (-1);
271 
272 	/*
273 	 * Find the start of the instruction's opcode by processing any
274 	 * legacy prefixes.
275 	 */
276 	for (;;) {
277 		switch (instr[start]) {
278 		case FASTTRAP_PREFIX_OPERAND:
279 		case FASTTRAP_PREFIX_ADDRESS:
280 		case FASTTRAP_PREFIX_CS:
281 		case FASTTRAP_PREFIX_DS:
282 		case FASTTRAP_PREFIX_ES:
283 		case FASTTRAP_PREFIX_FS:
284 		case FASTTRAP_PREFIX_GS:
285 		case FASTTRAP_PREFIX_SS:
286 		case FASTTRAP_PREFIX_LOCK:
287 		case FASTTRAP_PREFIX_REP:
288 		case FASTTRAP_PREFIX_REPNE:
289 			start++;
290 			continue;
291 		}
292 		break;
293 	}
294 
295 #ifdef __amd64
296 	/*
297 	 * Identify the REX prefix on 64-bit processes.
298 	 */
299 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
300 		rex = instr[start++];
301 #endif
302 
303 	/*
304 	 * Now that we're pretty sure that the instruction is okay, copy the
305 	 * valid part to the tracepoint.
306 	 */
307 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
308 
309 	tp->ftt_type = FASTTRAP_T_COMMON;
310 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
311 		switch (instr[start + 1]) {
312 		case FASTTRAP_0F_JO:
313 		case FASTTRAP_0F_JNO:
314 		case FASTTRAP_0F_JB:
315 		case FASTTRAP_0F_JAE:
316 		case FASTTRAP_0F_JE:
317 		case FASTTRAP_0F_JNE:
318 		case FASTTRAP_0F_JBE:
319 		case FASTTRAP_0F_JA:
320 		case FASTTRAP_0F_JS:
321 		case FASTTRAP_0F_JNS:
322 		case FASTTRAP_0F_JP:
323 		case FASTTRAP_0F_JNP:
324 		case FASTTRAP_0F_JL:
325 		case FASTTRAP_0F_JGE:
326 		case FASTTRAP_0F_JLE:
327 		case FASTTRAP_0F_JG:
328 			tp->ftt_type = FASTTRAP_T_JCC;
329 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
330 			tp->ftt_dest = pc + tp->ftt_size +
331 			    *(int32_t *)&instr[start + 2];
332 			break;
333 		}
334 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
335 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
336 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
337 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
338 
339 		if (reg == 2 || reg == 4) {
340 			uint_t i, sz;
341 
342 			if (reg == 2)
343 				tp->ftt_type = FASTTRAP_T_CALL;
344 			else
345 				tp->ftt_type = FASTTRAP_T_JMP;
346 
347 			if (mod == 3)
348 				tp->ftt_code = 2;
349 			else
350 				tp->ftt_code = 1;
351 
352 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
353 
354 			/*
355 			 * See AMD x86-64 Architecture Programmer's Manual
356 			 * Volume 3, Section 1.2.7, Table 1-12, and
357 			 * Appendix A.3.1, Table A-15.
358 			 */
359 			if (mod != 3 && rm == 4) {
360 				uint8_t sib = instr[start + 2];
361 				uint_t index = FASTTRAP_SIB_INDEX(sib);
362 				uint_t base = FASTTRAP_SIB_BASE(sib);
363 
364 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
365 
366 				tp->ftt_index = (index == 4) ?
367 				    FASTTRAP_NOREG :
368 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
369 				tp->ftt_base = (mod == 0 && base == 5) ?
370 				    FASTTRAP_NOREG :
371 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
372 
373 				i = 3;
374 				sz = mod == 1 ? 1 : 4;
375 			} else {
376 				/*
377 				 * In 64-bit mode, mod == 0 and r/m == 5
378 				 * denotes %rip-relative addressing; in 32-bit
379 				 * mode, the base register isn't used. In both
380 				 * modes, there is a 32-bit operand.
381 				 */
382 				if (mod == 0 && rm == 5) {
383 #ifdef __amd64
384 					if (p->p_model == DATAMODEL_LP64)
385 						tp->ftt_base = REG_RIP;
386 					else
387 #endif
388 						tp->ftt_base = FASTTRAP_NOREG;
389 					sz = 4;
390 				} else  {
391 					uint8_t base = rm |
392 					    (FASTTRAP_REX_B(rex) << 3);
393 
394 					tp->ftt_base = regmap[base];
395 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
396 				}
397 				tp->ftt_index = FASTTRAP_NOREG;
398 				i = 2;
399 			}
400 
401 			if (sz == 1)
402 				tp->ftt_dest = *(int8_t *)&instr[start + i];
403 			else if (sz == 4)
404 				tp->ftt_dest = *(int32_t *)&instr[start + i];
405 			else
406 				tp->ftt_dest = 0;
407 		}
408 	} else {
409 		switch (instr[start]) {
410 		case FASTTRAP_RET:
411 			tp->ftt_type = FASTTRAP_T_RET;
412 			break;
413 
414 		case FASTTRAP_RET16:
415 			tp->ftt_type = FASTTRAP_T_RET16;
416 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
417 			break;
418 
419 		case FASTTRAP_JO:
420 		case FASTTRAP_JNO:
421 		case FASTTRAP_JB:
422 		case FASTTRAP_JAE:
423 		case FASTTRAP_JE:
424 		case FASTTRAP_JNE:
425 		case FASTTRAP_JBE:
426 		case FASTTRAP_JA:
427 		case FASTTRAP_JS:
428 		case FASTTRAP_JNS:
429 		case FASTTRAP_JP:
430 		case FASTTRAP_JNP:
431 		case FASTTRAP_JL:
432 		case FASTTRAP_JGE:
433 		case FASTTRAP_JLE:
434 		case FASTTRAP_JG:
435 			tp->ftt_type = FASTTRAP_T_JCC;
436 			tp->ftt_code = instr[start];
437 			tp->ftt_dest = pc + tp->ftt_size +
438 			    (int8_t)instr[start + 1];
439 			break;
440 
441 		case FASTTRAP_LOOPNZ:
442 		case FASTTRAP_LOOPZ:
443 		case FASTTRAP_LOOP:
444 			tp->ftt_type = FASTTRAP_T_LOOP;
445 			tp->ftt_code = instr[start];
446 			tp->ftt_dest = pc + tp->ftt_size +
447 			    (int8_t)instr[start + 1];
448 			break;
449 
450 		case FASTTRAP_JCXZ:
451 			tp->ftt_type = FASTTRAP_T_JCXZ;
452 			tp->ftt_dest = pc + tp->ftt_size +
453 			    (int8_t)instr[start + 1];
454 			break;
455 
456 		case FASTTRAP_CALL:
457 			tp->ftt_type = FASTTRAP_T_CALL;
458 			tp->ftt_dest = pc + tp->ftt_size +
459 			    *(int32_t *)&instr[start + 1];
460 			tp->ftt_code = 0;
461 			break;
462 
463 		case FASTTRAP_JMP32:
464 			tp->ftt_type = FASTTRAP_T_JMP;
465 			tp->ftt_dest = pc + tp->ftt_size +
466 			    *(int32_t *)&instr[start + 1];
467 			break;
468 		case FASTTRAP_JMP8:
469 			tp->ftt_type = FASTTRAP_T_JMP;
470 			tp->ftt_dest = pc + tp->ftt_size +
471 			    (int8_t)instr[start + 1];
472 			break;
473 
474 		case FASTTRAP_PUSHL_EBP:
475 			if (start == 0)
476 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
477 			break;
478 
479 		case FASTTRAP_INT3:
480 			/*
481 			 * The pid provider shares the int3 trap with debugger
482 			 * breakpoints so we can't instrument them.
483 			 */
484 			ASSERT(instr[start] == FASTTRAP_INSTR);
485 			return (-1);
486 		}
487 	}
488 
489 #ifdef __amd64
490 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
491 		/*
492 		 * If the process is 64-bit and the instruction type is still
493 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
494 		 * execute it -- we need to watch for %rip-relative
495 		 * addressing mode. See the portion of fasttrap_pid_probe()
496 		 * below where we handle tracepoints with type
497 		 * FASTTRAP_T_COMMON for how we emulate instructions that
498 		 * employ %rip-relative addressing.
499 		 */
500 		if (rmindex != -1) {
501 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
502 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
503 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
504 
505 			ASSERT(rmindex > start);
506 
507 			if (mod == 0 && rm == 5) {
508 				/*
509 				 * We need to be sure to avoid other
510 				 * registers used by this instruction. While
511 				 * the reg field may determine the op code
512 				 * rather than denoting a register, assuming
513 				 * that it denotes a register is always safe.
514 				 * We leave the REX field intact and use
515 				 * whatever value's there for simplicity.
516 				 */
517 				if (reg != 0) {
518 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
519 					    (FASTTRAP_RIP_X *
520 					    FASTTRAP_REX_B(rex));
521 					rm = 0;
522 				} else {
523 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
524 					    (FASTTRAP_RIP_X *
525 					    FASTTRAP_REX_B(rex));
526 					rm = 1;
527 				}
528 
529 				tp->ftt_modrm = tp->ftt_instr[rmindex];
530 				tp->ftt_instr[rmindex] =
531 				    FASTTRAP_MODRM(2, reg, rm);
532 			}
533 		}
534 	}
535 #endif
536 
537 	return (0);
538 }
539 
540 int
541 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
542 {
543 	fasttrap_instr_t instr = FASTTRAP_INSTR;
544 
545 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
546 		return (-1);
547 
548 	return (0);
549 }
550 
551 int
552 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
553 {
554 	uint8_t instr;
555 
556 	/*
557 	 * Distinguish between read or write failures and a changed
558 	 * instruction.
559 	 */
560 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
561 		return (0);
562 	if (instr != FASTTRAP_INSTR)
563 		return (0);
564 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
565 		return (-1);
566 
567 	return (0);
568 }
569 
570 static uintptr_t
571 fasttrap_fulword_noerr(const void *uaddr)
572 {
573 	uintptr_t ret;
574 
575 	if (fasttrap_fulword(uaddr, &ret) == 0)
576 		return (ret);
577 
578 	return (0);
579 }
580 
581 static uint32_t
582 fasttrap_fuword32_noerr(const void *uaddr)
583 {
584 	uint32_t ret;
585 
586 	if (fasttrap_fuword32(uaddr, &ret) == 0)
587 		return (ret);
588 
589 	return (0);
590 }
591 
592 /*ARGSUSED*/
593 int
594 fasttrap_probe(struct regs *rp)
595 {
596 #ifdef __amd64
597 	proc_t *p = curproc;
598 #endif
599 
600 #ifdef __amd64
601 	if (p->p_model == DATAMODEL_LP64) {
602 		dtrace_probe(fasttrap_probe_id, rp->r_rdi, rp->r_rsi,
603 		    rp->r_rdx, rp->r_rcx, rp->r_r8);
604 	} else {
605 #endif
606 		uint32_t *stack = (uint32_t *)rp->r_sp;
607 		uintptr_t s0, s1, s2, s3, s4;
608 
609 		s0 = fasttrap_fuword32_noerr(&stack[1]);
610 		s1 = fasttrap_fuword32_noerr(&stack[2]);
611 		s2 = fasttrap_fuword32_noerr(&stack[3]);
612 		s3 = fasttrap_fuword32_noerr(&stack[4]);
613 		s4 = fasttrap_fuword32_noerr(&stack[5]);
614 
615 		dtrace_probe(fasttrap_probe_id, s0, s1, s2, s3, s4);
616 #ifdef __amd64
617 	}
618 #endif
619 
620 	return (0);
621 }
622 
623 static void
624 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
625     uintptr_t new_pc)
626 {
627 	fasttrap_tracepoint_t *tp;
628 	fasttrap_bucket_t *bucket;
629 	fasttrap_id_t *id;
630 	kmutex_t *pid_mtx;
631 
632 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
633 	mutex_enter(pid_mtx);
634 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
635 
636 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
637 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
638 		    !tp->ftt_prov->ftp_defunct)
639 			break;
640 	}
641 
642 	/*
643 	 * Don't sweat it if we can't find the tracepoint again; unlike
644 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
645 	 * is not essential to the correct execution of the process.
646 	 */
647 	if (tp == NULL) {
648 		mutex_exit(pid_mtx);
649 		return;
650 	}
651 
652 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
653 		/*
654 		 * If there's a branch that could act as a return site, we
655 		 * need to trace it, and check here if the program counter is
656 		 * external to the function.
657 		 */
658 		if (tp->ftt_type != FASTTRAP_T_RET &&
659 		    tp->ftt_type != FASTTRAP_T_RET16 &&
660 		    new_pc - id->fti_probe->ftp_faddr <
661 		    id->fti_probe->ftp_fsize)
662 			continue;
663 
664 		dtrace_probe(id->fti_probe->ftp_id,
665 		    pc - id->fti_probe->ftp_faddr,
666 		    rp->r_r0, rp->r_r1, 0, 0);
667 	}
668 
669 	mutex_exit(pid_mtx);
670 }
671 
672 static void
673 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
674 {
675 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
676 
677 	sqp->sq_info.si_signo = SIGSEGV;
678 	sqp->sq_info.si_code = SEGV_MAPERR;
679 	sqp->sq_info.si_addr = (caddr_t)addr;
680 
681 	mutex_enter(&p->p_lock);
682 	sigaddqa(p, t, sqp);
683 	mutex_exit(&p->p_lock);
684 
685 	if (t != NULL)
686 		aston(t);
687 }
688 
689 #ifdef __amd64
690 static void
691 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct regs *rp, int argc,
692     uintptr_t *argv)
693 {
694 	int i, x, cap = MIN(argc, probe->ftp_nargs);
695 	uintptr_t *stack = (uintptr_t *)rp->r_sp;
696 
697 	for (i = 0; i < cap; i++) {
698 		x = probe->ftp_argmap[i];
699 
700 		if (x < 6)
701 			argv[i] = (&rp->r_rdi)[x];
702 		else
703 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
704 	}
705 
706 	for (; i < argc; i++) {
707 		argv[i] = 0;
708 	}
709 }
710 #endif
711 
712 static void
713 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct regs *rp, int argc,
714     uint32_t *argv)
715 {
716 	int i, x, cap = MIN(argc, probe->ftp_nargs);
717 	uint32_t *stack = (uint32_t *)rp->r_sp;
718 
719 	for (i = 0; i < cap; i++) {
720 		x = probe->ftp_argmap[i];
721 
722 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
723 	}
724 
725 	for (; i < argc; i++) {
726 		argv[i] = 0;
727 	}
728 }
729 
730 int
731 fasttrap_pid_probe(struct regs *rp)
732 {
733 	proc_t *p = curproc;
734 	uintptr_t pc = rp->r_pc - 1, new_pc = 0;
735 	fasttrap_bucket_t *bucket;
736 	kmutex_t *pid_mtx;
737 	fasttrap_tracepoint_t *tp, tp_local;
738 	pid_t pid;
739 	dtrace_icookie_t cookie;
740 
741 	/*
742 	 * It's possible that a user (in a veritable orgy of bad planning)
743 	 * could redirect this thread's flow of control before it reached the
744 	 * return probe fasttrap. In this case we need to kill the process
745 	 * since it's in a unrecoverable state.
746 	 */
747 	if (curthread->t_dtrace_step) {
748 		ASSERT(curthread->t_dtrace_on);
749 		fasttrap_sigtrap(p, curthread, pc);
750 		return (0);
751 	}
752 
753 	/*
754 	 * Clear all user tracing flags.
755 	 */
756 	curthread->t_dtrace_ft = 0;
757 	curthread->t_dtrace_pc = 0;
758 	curthread->t_dtrace_npc = 0;
759 	curthread->t_dtrace_scrpc = 0;
760 	curthread->t_dtrace_astpc = 0;
761 #ifdef __amd64
762 	curthread->t_dtrace_regv = 0;
763 #endif
764 
765 	/*
766 	 * Treat a child created by a call to vfork(2) as if it were its
767 	 * parent. We know that there's only one thread of control in such a
768 	 * process: this one.
769 	 */
770 	while (p->p_flag & SVFORK) {
771 		p = p->p_parent;
772 	}
773 
774 	pid = p->p_pid;
775 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
776 	mutex_enter(pid_mtx);
777 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
778 
779 	/*
780 	 * Lookup the tracepoint that the process just hit.
781 	 */
782 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
783 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
784 		    !tp->ftt_prov->ftp_defunct)
785 			break;
786 	}
787 
788 	/*
789 	 * If we couldn't find a matching tracepoint, either a tracepoint has
790 	 * been inserted without using the pid<pid> ioctl interface (see
791 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
792 	 */
793 	if (tp == NULL) {
794 		mutex_exit(pid_mtx);
795 		return (-1);
796 	}
797 
798 	/*
799 	 * Set the program counter to the address of the traced instruction
800 	 * so that it looks right in ustack() output.
801 	 */
802 	rp->r_pc = pc;
803 
804 	if (tp->ftt_ids != NULL) {
805 		fasttrap_id_t *id;
806 
807 #ifdef __amd64
808 		if (p->p_model == DATAMODEL_LP64) {
809 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
810 				fasttrap_probe_t *probe = id->fti_probe;
811 
812 				if (probe->ftp_type == DTFTP_ENTRY) {
813 					/*
814 					 * We note that this was an entry
815 					 * probe to help ustack() find the
816 					 * first caller.
817 					 */
818 					cookie = dtrace_interrupt_disable();
819 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
820 					dtrace_probe(probe->ftp_id, rp->r_rdi,
821 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
822 					    rp->r_r8);
823 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
824 					dtrace_interrupt_enable(cookie);
825 				} else if (probe->ftp_argmap == NULL) {
826 					dtrace_probe(probe->ftp_id, rp->r_rdi,
827 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
828 					    rp->r_r8);
829 				} else {
830 					uintptr_t t[5];
831 
832 					fasttrap_usdt_args64(probe, rp,
833 					    sizeof (t) / sizeof (t[0]), t);
834 
835 					dtrace_probe(probe->ftp_id, t[0], t[1],
836 					    t[2], t[3], t[4]);
837 				}
838 			}
839 		} else {
840 #endif
841 			uintptr_t s0, s1, s2, s3, s4, s5;
842 			uint32_t *stack = (uint32_t *)rp->r_sp;
843 
844 			/*
845 			 * In 32-bit mode, all arguments are passed on the
846 			 * stack. If this is a function entry probe, we need
847 			 * to skip the first entry on the stack as it
848 			 * represents the return address rather than a
849 			 * parameter to the function.
850 			 */
851 			s0 = fasttrap_fuword32_noerr(&stack[0]);
852 			s1 = fasttrap_fuword32_noerr(&stack[1]);
853 			s2 = fasttrap_fuword32_noerr(&stack[2]);
854 			s3 = fasttrap_fuword32_noerr(&stack[3]);
855 			s4 = fasttrap_fuword32_noerr(&stack[4]);
856 			s5 = fasttrap_fuword32_noerr(&stack[5]);
857 
858 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
859 				fasttrap_probe_t *probe = id->fti_probe;
860 
861 				if (probe->ftp_type == DTFTP_ENTRY) {
862 					/*
863 					 * We note that this was an entry
864 					 * probe to help ustack() find the
865 					 * first caller.
866 					 */
867 					cookie = dtrace_interrupt_disable();
868 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
869 					dtrace_probe(probe->ftp_id, s1, s2,
870 					    s3, s4, s5);
871 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
872 					dtrace_interrupt_enable(cookie);
873 				} else if (probe->ftp_argmap == NULL) {
874 					dtrace_probe(probe->ftp_id, s0, s1,
875 					    s2, s3, s4);
876 				} else {
877 					uint32_t t[5];
878 
879 					fasttrap_usdt_args32(probe, rp,
880 					    sizeof (t) / sizeof (t[0]), t);
881 
882 					dtrace_probe(probe->ftp_id, t[0], t[1],
883 					    t[2], t[3], t[4]);
884 				}
885 			}
886 #ifdef __amd64
887 		}
888 #endif
889 	}
890 
891 	/*
892 	 * We're about to do a bunch of work so we cache a local copy of
893 	 * the tracepoint to emulate the instruction, and then find the
894 	 * tracepoint again later if we need to light up any return probes.
895 	 */
896 	tp_local = *tp;
897 	mutex_exit(pid_mtx);
898 	tp = &tp_local;
899 
900 	/*
901 	 * Set the program counter to appear as though the traced instruction
902 	 * had completely executed. This ensures that fasttrap_getreg() will
903 	 * report the expected value for REG_RIP.
904 	 */
905 	rp->r_pc = pc + tp->ftt_size;
906 
907 	switch (tp->ftt_type) {
908 	case FASTTRAP_T_RET:
909 	case FASTTRAP_T_RET16:
910 	{
911 		uintptr_t dst;
912 		uintptr_t addr;
913 		int ret;
914 
915 		/*
916 		 * We have to emulate _every_ facet of the behavior of a ret
917 		 * instruction including what happens if the load from %esp
918 		 * fails; in that case, we send a SIGSEGV.
919 		 */
920 #ifdef __amd64
921 		if (p->p_model == DATAMODEL_NATIVE) {
922 #endif
923 			ret = fasttrap_fulword((void *)rp->r_sp, &dst);
924 			addr = rp->r_sp + sizeof (uintptr_t);
925 #ifdef __amd64
926 		} else {
927 			uint32_t dst32;
928 			ret = fasttrap_fuword32((void *)rp->r_sp, &dst32);
929 			dst = dst32;
930 			addr = rp->r_sp + sizeof (uint32_t);
931 		}
932 #endif
933 
934 		if (ret == -1) {
935 			fasttrap_sigsegv(p, curthread, rp->r_sp);
936 			new_pc = pc;
937 			break;
938 		}
939 
940 		if (tp->ftt_type == FASTTRAP_T_RET16)
941 			addr += tp->ftt_dest;
942 
943 		rp->r_sp = addr;
944 		new_pc = dst;
945 		break;
946 	}
947 
948 	case FASTTRAP_T_JCC:
949 	{
950 		uint_t taken;
951 
952 		switch (tp->ftt_code) {
953 		case FASTTRAP_JO:
954 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) != 0;
955 			break;
956 		case FASTTRAP_JNO:
957 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) == 0;
958 			break;
959 		case FASTTRAP_JB:
960 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0;
961 			break;
962 		case FASTTRAP_JAE:
963 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0;
964 			break;
965 		case FASTTRAP_JE:
966 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
967 			break;
968 		case FASTTRAP_JNE:
969 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
970 			break;
971 		case FASTTRAP_JBE:
972 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0 ||
973 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
974 			break;
975 		case FASTTRAP_JA:
976 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0 &&
977 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
978 			break;
979 		case FASTTRAP_JS:
980 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) != 0;
981 			break;
982 		case FASTTRAP_JNS:
983 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) == 0;
984 			break;
985 		case FASTTRAP_JP:
986 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) != 0;
987 			break;
988 		case FASTTRAP_JNP:
989 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) == 0;
990 			break;
991 		case FASTTRAP_JL:
992 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
993 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
994 			break;
995 		case FASTTRAP_JGE:
996 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
997 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
998 			break;
999 		case FASTTRAP_JLE:
1000 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 ||
1001 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1002 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1003 			break;
1004 		case FASTTRAP_JG:
1005 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1006 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1007 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1008 			break;
1009 
1010 		}
1011 
1012 		if (taken)
1013 			new_pc = tp->ftt_dest;
1014 		else
1015 			new_pc = pc + tp->ftt_size;
1016 		break;
1017 	}
1018 
1019 	case FASTTRAP_T_LOOP:
1020 	{
1021 		uint_t taken;
1022 #ifdef __amd64
1023 		greg_t cx = rp->r_rcx--;
1024 #else
1025 		greg_t cx = rp->r_ecx--;
1026 #endif
1027 
1028 		switch (tp->ftt_code) {
1029 		case FASTTRAP_LOOPNZ:
1030 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1031 			    cx != 0;
1032 			break;
1033 		case FASTTRAP_LOOPZ:
1034 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 &&
1035 			    cx != 0;
1036 			break;
1037 		case FASTTRAP_LOOP:
1038 			taken = (cx != 0);
1039 			break;
1040 		}
1041 
1042 		if (taken)
1043 			new_pc = tp->ftt_dest;
1044 		else
1045 			new_pc = pc + tp->ftt_size;
1046 		break;
1047 	}
1048 
1049 	case FASTTRAP_T_JCXZ:
1050 	{
1051 #ifdef __amd64
1052 		greg_t cx = rp->r_rcx;
1053 #else
1054 		greg_t cx = rp->r_ecx;
1055 #endif
1056 
1057 		if (cx == 0)
1058 			new_pc = tp->ftt_dest;
1059 		else
1060 			new_pc = pc + tp->ftt_size;
1061 		break;
1062 	}
1063 
1064 	case FASTTRAP_T_PUSHL_EBP:
1065 	{
1066 		int ret;
1067 		uintptr_t addr;
1068 #ifdef __amd64
1069 		if (p->p_model == DATAMODEL_NATIVE) {
1070 #endif
1071 			addr = rp->r_sp - sizeof (uintptr_t);
1072 			ret = fasttrap_sulword((void *)addr, rp->r_fp);
1073 #ifdef __amd64
1074 		} else {
1075 			addr = rp->r_sp - sizeof (uint32_t);
1076 			ret = fasttrap_suword32((void *)addr,
1077 			    (uint32_t)rp->r_fp);
1078 		}
1079 #endif
1080 
1081 		if (ret == -1) {
1082 			fasttrap_sigsegv(p, curthread, addr);
1083 			new_pc = pc;
1084 			break;
1085 		}
1086 
1087 		rp->r_sp = addr;
1088 		new_pc = pc + tp->ftt_size;
1089 		break;
1090 	}
1091 
1092 	case FASTTRAP_T_JMP:
1093 	case FASTTRAP_T_CALL:
1094 		if (tp->ftt_code == 0) {
1095 			new_pc = tp->ftt_dest;
1096 		} else {
1097 			uintptr_t addr = tp->ftt_dest;
1098 
1099 			if (tp->ftt_base != FASTTRAP_NOREG)
1100 				addr += fasttrap_getreg(rp, tp->ftt_base);
1101 			if (tp->ftt_index != FASTTRAP_NOREG)
1102 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1103 				    tp->ftt_scale;
1104 
1105 			if (tp->ftt_code == 1) {
1106 #ifdef __amd64
1107 				if (p->p_model == DATAMODEL_NATIVE) {
1108 #endif
1109 					uintptr_t value;
1110 					if (fasttrap_fulword((void *)addr,
1111 					    &value) == -1) {
1112 						fasttrap_sigsegv(p, curthread,
1113 						    addr);
1114 						new_pc = pc;
1115 						break;
1116 					}
1117 					new_pc = value;
1118 #ifdef __amd64
1119 				} else {
1120 					uint32_t value;
1121 					if (fasttrap_fuword32((void *)addr,
1122 					    &value) == -1) {
1123 						fasttrap_sigsegv(p, curthread,
1124 						    addr);
1125 						new_pc = pc;
1126 						break;
1127 					}
1128 					new_pc = value;
1129 				}
1130 #endif
1131 			} else {
1132 				new_pc = addr;
1133 			}
1134 		}
1135 
1136 		/*
1137 		 * If this is a call instruction, we need to push the return
1138 		 * address onto the stack. If this fails, we send the process
1139 		 * a SIGSEGV and reset the pc to emulate what would happen if
1140 		 * this instruction weren't traced.
1141 		 */
1142 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1143 			int ret;
1144 			uintptr_t addr;
1145 #ifdef __amd64
1146 			if (p->p_model == DATAMODEL_NATIVE) {
1147 				addr = rp->r_sp - sizeof (uintptr_t);
1148 				ret = fasttrap_sulword((void *)addr,
1149 				    pc + tp->ftt_size);
1150 			} else {
1151 #endif
1152 				addr = rp->r_sp - sizeof (uint32_t);
1153 				ret = fasttrap_suword32((void *)addr,
1154 				    (uint32_t)(pc + tp->ftt_size));
1155 #ifdef __amd64
1156 			}
1157 #endif
1158 
1159 			if (ret == -1) {
1160 				fasttrap_sigsegv(p, curthread, addr);
1161 				new_pc = pc;
1162 				break;
1163 			}
1164 
1165 			rp->r_sp = addr;
1166 		}
1167 
1168 		break;
1169 
1170 	case FASTTRAP_T_COMMON:
1171 	{
1172 		uintptr_t addr;
1173 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 5 + 2];
1174 		uint_t i = 0;
1175 		klwp_t *lwp = ttolwp(curthread);
1176 
1177 		/*
1178 		 * Compute the address of the ulwp_t and step over the
1179 		 * ul_self pointer. The method used to store the user-land
1180 		 * thread pointer is very different on 32- and 64-bit
1181 		 * kernels.
1182 		 */
1183 #if defined(__amd64)
1184 		if (p->p_model == DATAMODEL_LP64) {
1185 			addr = lwp->lwp_pcb.pcb_fsbase;
1186 			addr += sizeof (void *);
1187 		} else {
1188 			addr = lwp->lwp_pcb.pcb_gsbase;
1189 			addr += sizeof (caddr32_t);
1190 		}
1191 #elif defined(__i386)
1192 		addr = USEGD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1193 		addr += sizeof (void *);
1194 #endif
1195 
1196 		/*
1197 		 * Generic Instruction Tracing
1198 		 * ---------------------------
1199 		 *
1200 		 * This is the layout of the scratch space in the user-land
1201 		 * thread structure for our generated instructions.
1202 		 *
1203 		 *	32-bit mode			bytes
1204 		 *	------------------------	-----
1205 		 * a:	<original instruction>		<= 15
1206 		 *	jmp	<pc + tp->ftt_size>	    5
1207 		 * b:	<original instrction>		<= 15
1208 		 *	int	T_DTRACE_RET		    2
1209 		 *					-----
1210 		 *					<= 37
1211 		 *
1212 		 *	64-bit mode			bytes
1213 		 *	------------------------	-----
1214 		 * a:	<original instruction>		<= 15
1215 		 *	jmp	0(%rip)			    6
1216 		 *	<pc + tp->ftt_size>		    8
1217 		 * b:	<original instruction>		<= 15
1218 		 * 	int	T_DTRACE_RET		    2
1219 		 * 					-----
1220 		 * 					<= 46
1221 		 *
1222 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1223 		 * to b. If we encounter a signal on the way out of the
1224 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1225 		 * so that we execute the original instruction and re-enter
1226 		 * the kernel rather than redirecting to the next instruction.
1227 		 *
1228 		 * If there are return probes (so we know that we're going to
1229 		 * need to reenter the kernel after executing the original
1230 		 * instruction), the scratch space will just contain the
1231 		 * original instruction followed by an interrupt -- the same
1232 		 * data as at b.
1233 		 *
1234 		 * %rip-relative Addressing
1235 		 * ------------------------
1236 		 *
1237 		 * There's a further complication in 64-bit mode due to %rip-
1238 		 * relative addressing. While this is clearly a beneficial
1239 		 * architectural decision for position independent code, it's
1240 		 * hard not to see it as a personal attack against the pid
1241 		 * provider since before there was a relatively small set of
1242 		 * instructions to emulate; with %rip-relative addressing,
1243 		 * almost every instruction can potentially depend on the
1244 		 * address at which it's executed. Rather than emulating
1245 		 * the broad spectrum of instructions that can now be
1246 		 * position dependent, we emulate jumps and others as in
1247 		 * 32-bit mode, and take a different tack for instructions
1248 		 * using %rip-relative addressing.
1249 		 *
1250 		 * For every instruction that uses the ModRM byte, the
1251 		 * in-kernel disassembler reports its location. We use the
1252 		 * ModRM byte to identify that an instruction uses
1253 		 * %rip-relative addressing and to see what other registers
1254 		 * the instruction uses. To emulate those instructions,
1255 		 * we modify the instruction to be %rax-relative rather than
1256 		 * %rip-relative (or %rcx-relative if the instruction uses
1257 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1258 		 * we don't have to rewrite the REX prefix). We then load
1259 		 * the value that %rip would have been into the scratch
1260 		 * register and generate an instruction to reset the scratch
1261 		 * register back to its original value. The instruction
1262 		 * sequence looks like this:
1263 		 *
1264 		 *	64-mode %rip-relative		bytes
1265 		 *	------------------------	-----
1266 		 * a:	<modified instruction>		<= 15
1267 		 *	movq	$<value>, %<scratch>	    6
1268 		 *	jmp	0(%rip)			    6
1269 		 *	<pc + tp->ftt_size>		    8
1270 		 * b:	<modified instruction>  	<= 15
1271 		 * 	int	T_DTRACE_RET		    2
1272 		 * 					-----
1273 		 *					   52
1274 		 *
1275 		 * We set curthread->t_dtrace_regv so that upon receiving
1276 		 * a signal we can reset the value of the scratch register.
1277 		 */
1278 
1279 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1280 
1281 		curthread->t_dtrace_scrpc = addr;
1282 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1283 		i += tp->ftt_size;
1284 
1285 #ifdef __amd64
1286 		if (tp->ftt_ripmode != 0) {
1287 			greg_t *reg;
1288 
1289 			ASSERT(p->p_model == DATAMODEL_LP64);
1290 			ASSERT(tp->ftt_ripmode &
1291 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1292 
1293 			/*
1294 			 * If this was a %rip-relative instruction, we change
1295 			 * it to be either a %rax- or %rcx-relative
1296 			 * instruction (depending on whether those registers
1297 			 * are used as another operand; or %r8- or %r9-
1298 			 * relative depending on the value of REX.B). We then
1299 			 * set that register and generate a movq instruction
1300 			 * to reset the value.
1301 			 */
1302 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1303 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1304 			else
1305 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1306 
1307 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1308 				scratch[i++] = FASTTRAP_MOV_EAX;
1309 			else
1310 				scratch[i++] = FASTTRAP_MOV_ECX;
1311 
1312 			switch (tp->ftt_ripmode) {
1313 			case FASTTRAP_RIP_1:
1314 				reg = &rp->r_rax;
1315 				curthread->t_dtrace_reg = REG_RAX;
1316 				break;
1317 			case FASTTRAP_RIP_2:
1318 				reg = &rp->r_rcx;
1319 				curthread->t_dtrace_reg = REG_RCX;
1320 				break;
1321 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1322 				reg = &rp->r_r8;
1323 				curthread->t_dtrace_reg = REG_R8;
1324 				break;
1325 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1326 				reg = &rp->r_r9;
1327 				curthread->t_dtrace_reg = REG_R9;
1328 				break;
1329 			}
1330 
1331 			*(uint64_t *)&scratch[i] = *reg;
1332 			curthread->t_dtrace_regv = *reg;
1333 			*reg = pc + tp->ftt_size;
1334 			i += sizeof (uint64_t);
1335 		}
1336 #endif
1337 
1338 		/*
1339 		 * Generate the branch instruction to what would have
1340 		 * normally been the subsequent instruction. In 32-bit mode,
1341 		 * this is just a relative branch; in 64-bit mode this is a
1342 		 * %rip-relative branch that loads the 64-bit pc value
1343 		 * immediately after the jmp instruction.
1344 		 */
1345 #ifdef __amd64
1346 		if (p->p_model == DATAMODEL_LP64) {
1347 			scratch[i++] = FASTTRAP_GROUP5_OP;
1348 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1349 			*(uint32_t *)&scratch[i] = 0;
1350 			i += sizeof (uint32_t);
1351 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1352 			i += sizeof (uint64_t);
1353 		} else {
1354 #endif
1355 			/*
1356 			 * Set up the jmp to the next instruction; note that
1357 			 * the size of the traced instruction cancels out.
1358 			 */
1359 			scratch[i++] = FASTTRAP_JMP32;
1360 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1361 			i += sizeof (uint32_t);
1362 #ifdef __amd64
1363 		}
1364 #endif
1365 
1366 		curthread->t_dtrace_astpc = addr + i;
1367 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1368 		i += tp->ftt_size;
1369 		scratch[i++] = FASTTRAP_INT;
1370 		scratch[i++] = T_DTRACE_RET;
1371 
1372 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1373 			fasttrap_sigtrap(p, curthread, pc);
1374 			new_pc = pc;
1375 			break;
1376 		}
1377 
1378 		if (tp->ftt_retids != NULL) {
1379 			curthread->t_dtrace_step = 1;
1380 			curthread->t_dtrace_ret = 1;
1381 			new_pc = curthread->t_dtrace_astpc;
1382 		} else {
1383 			new_pc = curthread->t_dtrace_scrpc;
1384 		}
1385 
1386 		curthread->t_dtrace_pc = pc;
1387 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1388 		curthread->t_dtrace_on = 1;
1389 		break;
1390 	}
1391 
1392 	default:
1393 		panic("fasttrap: mishandled an instruction");
1394 	}
1395 
1396 	/*
1397 	 * If there were no return probes when we first found the tracepoint,
1398 	 * we should feel no obligation to honor any return probes that were
1399 	 * subsequently enabled -- they'll just have to wait until the next
1400 	 * time around.
1401 	 */
1402 	if (tp->ftt_retids != NULL) {
1403 		/*
1404 		 * We need to wait until the results of the instruction are
1405 		 * apparent before invoking any return probes. If this
1406 		 * instruction was emulated we can just call
1407 		 * fasttrap_return_common(); if it needs to be executed, we
1408 		 * need to wait until the user thread returns to the kernel.
1409 		 */
1410 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1411 			/*
1412 			 * Set the program counter to the address of the traced
1413 			 * instruction so that it looks right in ustack()
1414 			 * output. We had previously set it to the end of the
1415 			 * instruction to simplify %rip-relative addressing.
1416 			 */
1417 			rp->r_pc = pc;
1418 
1419 			fasttrap_return_common(rp, pc, pid, new_pc);
1420 		} else {
1421 			ASSERT(curthread->t_dtrace_ret != 0);
1422 			ASSERT(curthread->t_dtrace_pc == pc);
1423 			ASSERT(curthread->t_dtrace_scrpc != 0);
1424 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1425 		}
1426 	}
1427 
1428 	ASSERT(new_pc != 0);
1429 	rp->r_pc = new_pc;
1430 
1431 	return (0);
1432 }
1433 
1434 int
1435 fasttrap_return_probe(struct regs *rp)
1436 {
1437 	proc_t *p = curproc;
1438 	uintptr_t pc = curthread->t_dtrace_pc;
1439 	uintptr_t npc = curthread->t_dtrace_npc;
1440 
1441 	curthread->t_dtrace_pc = 0;
1442 	curthread->t_dtrace_npc = 0;
1443 	curthread->t_dtrace_scrpc = 0;
1444 	curthread->t_dtrace_astpc = 0;
1445 
1446 	/*
1447 	 * Treat a child created by a call to vfork(2) as if it were its
1448 	 * parent. We know that there's only one thread of control in such a
1449 	 * process: this one.
1450 	 */
1451 	while (p->p_flag & SVFORK) {
1452 		p = p->p_parent;
1453 	}
1454 
1455 	/*
1456 	 * We set rp->r_pc to the address of the traced instruction so
1457 	 * that it appears to dtrace_probe() that we're on the original
1458 	 * instruction, and so that the user can't easily detect our
1459 	 * complex web of lies. dtrace_return_probe() (our caller)
1460 	 * will correctly set %pc after we return.
1461 	 */
1462 	rp->r_pc = pc;
1463 
1464 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1465 
1466 	return (0);
1467 }
1468 
1469 /*ARGSUSED*/
1470 uint64_t
1471 fasttrap_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes)
1472 {
1473 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 1, argno));
1474 }
1475 
1476 /*ARGSUSED*/
1477 uint64_t
1478 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1479     int aframes)
1480 {
1481 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno));
1482 }
1483 
1484 static ulong_t
1485 fasttrap_getreg(struct regs *rp, uint_t reg)
1486 {
1487 #ifdef __amd64
1488 	switch (reg) {
1489 	case REG_R15:		return (rp->r_r15);
1490 	case REG_R14:		return (rp->r_r14);
1491 	case REG_R13:		return (rp->r_r13);
1492 	case REG_R12:		return (rp->r_r12);
1493 	case REG_R11:		return (rp->r_r11);
1494 	case REG_R10:		return (rp->r_r10);
1495 	case REG_R9:		return (rp->r_r9);
1496 	case REG_R8:		return (rp->r_r8);
1497 	case REG_RDI:		return (rp->r_rdi);
1498 	case REG_RSI:		return (rp->r_rsi);
1499 	case REG_RBP:		return (rp->r_rbp);
1500 	case REG_RBX:		return (rp->r_rbx);
1501 	case REG_RDX:		return (rp->r_rdx);
1502 	case REG_RCX:		return (rp->r_rcx);
1503 	case REG_RAX:		return (rp->r_rax);
1504 	case REG_TRAPNO:	return (rp->r_trapno);
1505 	case REG_ERR:		return (rp->r_err);
1506 	case REG_RIP:		return (rp->r_rip);
1507 	case REG_CS:		return (rp->r_cs);
1508 	case REG_RFL:		return (rp->r_rfl);
1509 	case REG_RSP:		return (rp->r_rsp);
1510 	case REG_SS:		return (rp->r_ss);
1511 	case REG_FS:		return (rp->r_fs);
1512 	case REG_GS:		return (rp->r_gs);
1513 	case REG_DS:		return (rp->r_ds);
1514 	case REG_ES:		return (rp->r_es);
1515 	case REG_FSBASE:	return (rp->r_fsbase);
1516 	case REG_GSBASE:	return (rp->r_gsbase);
1517 	}
1518 
1519 	panic("dtrace: illegal register constant");
1520 	/*NOTREACHED*/
1521 #else
1522 	if (reg >= _NGREG)
1523 		panic("dtrace: illegal register constant");
1524 
1525 	return (((greg_t *)&rp->r_gs)[reg]);
1526 #endif
1527 }
1528