xref: /illumos-gate/usr/src/uts/i86pc/os/startup.c (revision dd4eeefdb8e4583c47e28a7f315db6087931ef06)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 #include <sys/conf.h>
38 #include <sys/avintr.h>
39 #include <sys/autoconf.h>
40 #include <sys/disp.h>
41 #include <sys/class.h>
42 #include <sys/bitmap.h>
43 
44 #include <sys/privregs.h>
45 
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49 #include <sys/mem.h>
50 #include <sys/kstat.h>
51 
52 #include <sys/reboot.h>
53 
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 
58 #include <sys/procfs.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/cmn_err.h>
62 #include <sys/utsname.h>
63 #include <sys/debug.h>
64 #include <sys/kdi.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
71 
72 #include <sys/sunddi.h>
73 #include <sys/sunndi.h>
74 #include <sys/ndi_impldefs.h>
75 #include <sys/ddidmareq.h>
76 #include <sys/psw.h>
77 #include <sys/regset.h>
78 #include <sys/clock.h>
79 #include <sys/pte.h>
80 #include <sys/tss.h>
81 #include <sys/stack.h>
82 #include <sys/trap.h>
83 #include <sys/fp.h>
84 #include <vm/anon.h>
85 #include <vm/as.h>
86 #include <vm/page.h>
87 #include <vm/seg.h>
88 #include <vm/seg_dev.h>
89 #include <vm/seg_kmem.h>
90 #include <vm/seg_kpm.h>
91 #include <vm/seg_map.h>
92 #include <vm/seg_vn.h>
93 #include <vm/seg_kp.h>
94 #include <sys/memnode.h>
95 #include <vm/vm_dep.h>
96 #include <sys/thread.h>
97 #include <sys/sysconf.h>
98 #include <sys/vm_machparam.h>
99 #include <sys/archsystm.h>
100 #include <sys/machsystm.h>
101 #include <vm/hat.h>
102 #include <vm/hat_i86.h>
103 #include <sys/pmem.h>
104 #include <sys/smp_impldefs.h>
105 #include <sys/x86_archext.h>
106 #include <sys/segments.h>
107 #include <sys/clconf.h>
108 #include <sys/kobj.h>
109 #include <sys/kobj_lex.h>
110 #include <sys/cpc_impl.h>
111 #include <sys/x86_archext.h>
112 #include <sys/cpu_module.h>
113 #include <sys/smbios.h>
114 #include <sys/debug_info.h>
115 #include <sys/ddi_timer.h>
116 
117 #ifdef __xpv
118 #include <sys/hypervisor.h>
119 #include <sys/xen_mmu.h>
120 #include <sys/evtchn_impl.h>
121 #include <sys/gnttab.h>
122 #include <sys/xpv_panic.h>
123 #include <xen/sys/xenbus_comms.h>
124 #include <xen/public/physdev.h>
125 extern void xen_late_startup(void);
126 extern struct xen_evt_data cpu0_evt_data;
127 #endif
128 
129 #include <sys/bootinfo.h>
130 #include <vm/kboot_mmu.h>
131 
132 extern void progressbar_init(void);
133 extern void progressbar_start(void);
134 extern void brand_init(void);
135 
136 extern int size_pse_array(pgcnt_t, int);
137 
138 /*
139  * XXX make declaration below "static" when drivers no longer use this
140  * interface.
141  */
142 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
143 
144 /*
145  * segkp
146  */
147 extern int segkp_fromheap;
148 
149 static void kvm_init(void);
150 static void startup_init(void);
151 static void startup_memlist(void);
152 static void startup_kmem(void);
153 static void startup_modules(void);
154 static void startup_vm(void);
155 static void startup_end(void);
156 static void layout_kernel_va(void);
157 
158 /*
159  * Declare these as initialized data so we can patch them.
160  */
161 #ifdef __i386
162 
163 /*
164  * Due to virtual address space limitations running in 32 bit mode, restrict
165  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
166  *
167  * If the physical max memory size of 64g were allowed to be configured, the
168  * size of user virtual address space will be less than 1g. A limited user
169  * address space greatly reduces the range of applications that can run.
170  *
171  * If more physical memory than PHYSMEM is required, users should preferably
172  * run in 64 bit mode which has far looser virtual address space limitations.
173  *
174  * If 64 bit mode is not available (as in IA32) and/or more physical memory
175  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
176  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
177  * should also be carefully tuned to balance out the need of the user
178  * application while minimizing the risk of kernel heap exhaustion due to
179  * kernelbase being set too high.
180  */
181 #define	PHYSMEM	0x400000
182 
183 #else /* __amd64 */
184 
185 /*
186  * For now we can handle memory with physical addresses up to about
187  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
188  * half the VA space for seg_kpm. When systems get bigger than 64TB this
189  * code will need revisiting. There is an implicit assumption that there
190  * are no *huge* holes in the physical address space too.
191  */
192 #define	TERABYTE		(1ul << 40)
193 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
194 #define	PHYSMEM			PHYSMEM_MAX64
195 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
196 
197 #endif /* __amd64 */
198 
199 pgcnt_t physmem = PHYSMEM;
200 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
201 
202 char *kobj_file_buf;
203 int kobj_file_bufsize;	/* set in /etc/system */
204 
205 /* Global variables for MP support. Used in mp_startup */
206 caddr_t	rm_platter_va;
207 uint32_t rm_platter_pa;
208 
209 int	auto_lpg_disable = 1;
210 
211 /*
212  * Some CPUs have holes in the middle of the 64-bit virtual address range.
213  */
214 uintptr_t hole_start, hole_end;
215 
216 /*
217  * kpm mapping window
218  */
219 caddr_t kpm_vbase;
220 size_t  kpm_size;
221 static int kpm_desired;
222 #ifdef __amd64
223 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
224 #endif
225 
226 /*
227  * Configuration parameters set at boot time.
228  */
229 
230 caddr_t econtig;		/* end of first block of contiguous kernel */
231 
232 struct bootops		*bootops = 0;	/* passed in from boot */
233 struct bootops		**bootopsp;
234 struct boot_syscalls	*sysp;		/* passed in from boot */
235 
236 char bootblock_fstype[16];
237 
238 char kern_bootargs[OBP_MAXPATHLEN];
239 
240 /*
241  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
242  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
243  * zio buffers from their own segment, otherwise they are allocated from the
244  * heap.  The optimization of allocating zio buffers from their own segment is
245  * only valid on 64-bit kernels.
246  */
247 #if defined(__amd64)
248 int segzio_fromheap = 0;
249 #else
250 int segzio_fromheap = 1;
251 #endif
252 
253 /*
254  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
255  * depends on number of BOP_ALLOC calls made and requested size, memory size
256  * combination and whether boot.bin memory needs to be freed.
257  */
258 #define	POSS_NEW_FRAGMENTS	12
259 
260 /*
261  * VM data structures
262  */
263 long page_hashsz;		/* Size of page hash table (power of two) */
264 struct page *pp_base;		/* Base of initial system page struct array */
265 struct page **page_hash;	/* Page hash table */
266 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
267 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
268 int pse_shift;			/* log2(pse_table_size) */
269 struct seg ktextseg;		/* Segment used for kernel executable image */
270 struct seg kvalloc;		/* Segment used for "valloc" mapping */
271 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
272 struct seg kmapseg;		/* Segment used for generic kernel mappings */
273 struct seg kdebugseg;		/* Segment used for the kernel debugger */
274 
275 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
276 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
277 
278 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
279 
280 #if defined(__amd64)
281 struct seg kvseg_core;		/* Segment used for the core heap */
282 struct seg kpmseg;		/* Segment used for physical mapping */
283 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
284 #else
285 struct seg *segkpm = NULL;	/* Unused on IA32 */
286 #endif
287 
288 caddr_t segkp_base;		/* Base address of segkp */
289 caddr_t segzio_base;		/* Base address of segzio */
290 #if defined(__amd64)
291 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
292 #else
293 pgcnt_t segkpsize = 0;
294 #endif
295 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
296 
297 /*
298  * VA range available to the debugger
299  */
300 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
301 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
302 
303 struct memseg *memseg_base;
304 struct vnode unused_pages_vp;
305 
306 #define	FOURGB	0x100000000LL
307 
308 struct memlist *memlist;
309 
310 caddr_t s_text;		/* start of kernel text segment */
311 caddr_t e_text;		/* end of kernel text segment */
312 caddr_t s_data;		/* start of kernel data segment */
313 caddr_t e_data;		/* end of kernel data segment */
314 caddr_t modtext;	/* start of loadable module text reserved */
315 caddr_t e_modtext;	/* end of loadable module text reserved */
316 caddr_t moddata;	/* start of loadable module data reserved */
317 caddr_t e_moddata;	/* end of loadable module data reserved */
318 
319 struct memlist *phys_install;	/* Total installed physical memory */
320 struct memlist *phys_avail;	/* Total available physical memory */
321 
322 /*
323  * kphysm_init returns the number of pages that were processed
324  */
325 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
326 
327 #define	IO_PROP_SIZE	64	/* device property size */
328 
329 /*
330  * a couple useful roundup macros
331  */
332 #define	ROUND_UP_PAGE(x)	\
333 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
334 #define	ROUND_UP_LPAGE(x)	\
335 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
336 #define	ROUND_UP_4MEG(x)	\
337 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
338 #define	ROUND_UP_TOPLEVEL(x)	\
339 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
340 
341 /*
342  *	32-bit Kernel's Virtual memory layout.
343  *		+-----------------------+
344  *		|			|
345  * 0xFFC00000  -|-----------------------|- ARGSBASE
346  *		|	debugger	|
347  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
348  *		|      Kernel Data	|
349  * 0xFEC00000  -|-----------------------|
350  *              |      Kernel Text	|
351  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
352  *		|---       GDT       ---|- GDT page (GDT_VA)
353  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
354  *		|			|
355  * 		|   page_t structures	|
356  * 		|   memsegs, memlists, 	|
357  * 		|   page hash, etc.	|
358  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
359  *		|			|  (segkp is just an arena in the heap)
360  *		|			|
361  *		|	kvseg		|
362  *		|			|
363  *		|			|
364  * ---         -|-----------------------|- kernelheap (floating)
365  * 		|        Segkmap	|
366  * 0xC3002000  -|-----------------------|- segmap_start (floating)
367  *		|	Red Zone	|
368  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
369  *		|			|			||
370  *		|     Shared objects	|			\/
371  *		|			|
372  *		:			:
373  *		|	user data	|
374  *		|-----------------------|
375  *		|	user text	|
376  * 0x08048000  -|-----------------------|
377  *		|	user stack	|
378  *		:			:
379  *		|	invalid		|
380  * 0x00000000	+-----------------------+
381  *
382  *
383  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
384  *			+-----------------------+
385  *			|			|
386  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
387  *			|	debugger (?)	|
388  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
389  *			|      unused    	|
390  *			+-----------------------+
391  *			|      Kernel Data	|
392  * 0xFFFFFFFF.FBC00000  |-----------------------|
393  *			|      Kernel Text	|
394  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
395  *			|---       GDT       ---|- GDT page (GDT_VA)
396  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
397  *			|			|
398  * 			|      Core heap	| (used for loadable modules)
399  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
400  *			|	 Kernel		|
401  *			|	  heap		|
402  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
403  *			|	 segmap		|
404  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
405  *			|    device mappings	|
406  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
407  *			|	  segzio	|
408  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
409  *			|	  segkp		|
410  * ---                  |-----------------------|- segkp_base (floating)
411  * 			|   page_t structures	|  valloc_base + valloc_sz
412  * 			|   memsegs, memlists, 	|
413  * 			|   page hash, etc.	|
414  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
415  *			|	 segkpm		|
416  * 0xFFFFFE00.00000000  |-----------------------|
417  *			|	Red Zone	|
418  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
419  *			|     User stack	|- User space memory
420  * 			|			|
421  * 			| shared objects, etc	|	(grows downwards)
422  *			:			:
423  * 			|			|
424  * 0xFFFF8000.00000000  |-----------------------|
425  * 			|			|
426  * 			| VA Hole / unused	|
427  * 			|			|
428  * 0x00008000.00000000  |-----------------------|
429  *			|			|
430  *			|			|
431  *			:			:
432  *			|	user heap	|	(grows upwards)
433  *			|			|
434  *			|	user data	|
435  *			|-----------------------|
436  *			|	user text	|
437  * 0x00000000.04000000  |-----------------------|
438  *			|	invalid		|
439  * 0x00000000.00000000	+-----------------------+
440  *
441  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
442  * kernel, except that userlimit is raised to 0xfe000000
443  *
444  * Floating values:
445  *
446  * valloc_base: start of the kernel's memory management/tracking data
447  * structures.  This region contains page_t structures for
448  * physical memory, memsegs, memlists, and the page hash.
449  *
450  * core_base: start of the kernel's "core" heap area on 64-bit systems.
451  * This area is intended to be used for global data as well as for module
452  * text/data that does not fit into the nucleus pages.  The core heap is
453  * restricted to a 2GB range, allowing every address within it to be
454  * accessed using rip-relative addressing
455  *
456  * ekernelheap: end of kernelheap and start of segmap.
457  *
458  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
459  * above a red zone that separates the user's address space from the
460  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
461  *
462  * segmap_start: start of segmap. The length of segmap can be modified
463  * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
464  * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
465  *
466  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
467  * decreased by 2X the size required for page_t.  This allows the kernel
468  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
469  * bytes, the following shows the values of kernelbase and kernel heap
470  * sizes for different memory configurations (assuming default segmap and
471  * segkp sizes).
472  *
473  *	mem	size for	kernelbase	kernel heap
474  *	size	page_t's			size
475  *	----	---------	----------	-----------
476  *	1gb	0x01400000	0xd1800000	684MB
477  *	2gb	0x02800000	0xcf000000	704MB
478  *	4gb	0x05000000	0xca000000	744MB
479  *	6gb	0x07800000	0xc5000000	784MB
480  *	8gb	0x0a000000	0xc0000000	824MB
481  *	16gb	0x14000000	0xac000000	984MB
482  *	32gb	0x28000000	0x84000000	1304MB
483  *	64gb	0x50000000	0x34000000	1944MB (*)
484  *
485  * kernelbase is less than the abi minimum of 0xc0000000 for memory
486  * configurations above 8gb.
487  *
488  * (*) support for memory configurations above 32gb will require manual tuning
489  * of kernelbase to balance out the need of user applications.
490  */
491 
492 /* real-time-clock initialization parameters */
493 extern time_t process_rtc_config_file(void);
494 
495 uintptr_t	kernelbase;
496 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
497 uintptr_t	eprom_kernelbase;
498 size_t		segmapsize;
499 uintptr_t	segmap_start;
500 int		segmapfreelists;
501 pgcnt_t		npages;
502 pgcnt_t		orig_npages;
503 size_t		core_size;		/* size of "core" heap */
504 uintptr_t	core_base;		/* base address of "core" heap */
505 
506 /*
507  * List of bootstrap pages. We mark these as allocated in startup.
508  * release_bootstrap() will free them when we're completely done with
509  * the bootstrap.
510  */
511 static page_t *bootpages;
512 
513 /*
514  * boot time pages that have a vnode from the ramdisk will keep that forever.
515  */
516 static page_t *rd_pages;
517 
518 struct system_hardware system_hardware;
519 
520 /*
521  * Enable some debugging messages concerning memory usage...
522  */
523 static void
524 print_memlist(char *title, struct memlist *mp)
525 {
526 	prom_printf("MEMLIST: %s:\n", title);
527 	while (mp != NULL)  {
528 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
529 		    mp->address, mp->size);
530 		mp = mp->next;
531 	}
532 }
533 
534 /*
535  * XX64 need a comment here.. are these just default values, surely
536  * we read the "cpuid" type information to figure this out.
537  */
538 int	l2cache_sz = 0x80000;
539 int	l2cache_linesz = 0x40;
540 int	l2cache_assoc = 1;
541 
542 static size_t	textrepl_min_gb = 10;
543 
544 /*
545  * on 64 bit we use a predifined VA range for mapping devices in the kernel
546  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
547  */
548 #ifdef __amd64
549 
550 vmem_t		*device_arena;
551 uintptr_t	toxic_addr = (uintptr_t)NULL;
552 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
553 
554 #else	/* __i386 */
555 
556 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
557 size_t		toxic_bit_map_len = 0;	/* in bits */
558 
559 #endif	/* __i386 */
560 
561 /*
562  * Simple boot time debug facilities
563  */
564 static char *prm_dbg_str[] = {
565 	"%s:%d: '%s' is 0x%x\n",
566 	"%s:%d: '%s' is 0x%llx\n"
567 };
568 
569 int prom_debug;
570 
571 #define	PRM_DEBUG(q)	if (prom_debug) 	\
572 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
573 #define	PRM_POINT(q)	if (prom_debug) 	\
574 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
575 
576 /*
577  * This structure is used to keep track of the intial allocations
578  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
579  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
580  */
581 #define	NUM_ALLOCATIONS 7
582 int num_allocations = 0;
583 struct {
584 	void **al_ptr;
585 	size_t al_size;
586 } allocations[NUM_ALLOCATIONS];
587 size_t valloc_sz = 0;
588 uintptr_t valloc_base;
589 
590 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
591 		size = ROUND_UP_PAGE(size);		 		\
592 		if (num_allocations == NUM_ALLOCATIONS)			\
593 			panic("too many ADD_TO_ALLOCATIONS()");		\
594 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
595 		allocations[num_allocations].al_size = size;		\
596 		valloc_sz += size;					\
597 		++num_allocations;				 	\
598 	}
599 
600 /*
601  * Allocate all the initial memory needed by the page allocator.
602  */
603 static void
604 perform_allocations(void)
605 {
606 	caddr_t mem;
607 	int i;
608 	int valloc_align;
609 
610 	PRM_DEBUG(valloc_base);
611 	PRM_DEBUG(valloc_sz);
612 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
613 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
614 	if (mem != (caddr_t)valloc_base)
615 		panic("BOP_ALLOC() failed");
616 	bzero(mem, valloc_sz);
617 	for (i = 0; i < num_allocations; ++i) {
618 		*allocations[i].al_ptr = (void *)mem;
619 		mem += allocations[i].al_size;
620 	}
621 }
622 
623 /*
624  * Our world looks like this at startup time.
625  *
626  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
627  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
628  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
629  * addresses are fixed in the binary at link time.
630  *
631  * On the text page:
632  * unix/genunix/krtld/module text loads.
633  *
634  * On the data page:
635  * unix/genunix/krtld/module data loads.
636  *
637  * Machine-dependent startup code
638  */
639 void
640 startup(void)
641 {
642 #if !defined(__xpv)
643 	extern void startup_bios_disk(void);
644 	extern void startup_pci_bios(void);
645 #endif
646 	/*
647 	 * Make sure that nobody tries to use sekpm until we have
648 	 * initialized it properly.
649 	 */
650 #if defined(__amd64)
651 	kpm_desired = 1;
652 #endif
653 	kpm_enable = 0;
654 
655 #if defined(__xpv)	/* XXPV fix me! */
656 	{
657 		extern int segvn_use_regions;
658 		segvn_use_regions = 0;
659 	}
660 #endif
661 	progressbar_init();
662 	startup_init();
663 	startup_memlist();
664 	startup_kmem();
665 	startup_vm();
666 #if !defined(__xpv)
667 	startup_pci_bios();
668 #endif
669 	startup_modules();
670 #if !defined(__xpv)
671 	startup_bios_disk();
672 #endif
673 	startup_end();
674 	progressbar_start();
675 }
676 
677 static void
678 startup_init()
679 {
680 	PRM_POINT("startup_init() starting...");
681 
682 	/*
683 	 * Complete the extraction of cpuid data
684 	 */
685 	cpuid_pass2(CPU);
686 
687 	(void) check_boot_version(BOP_GETVERSION(bootops));
688 
689 	/*
690 	 * Check for prom_debug in boot environment
691 	 */
692 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
693 		++prom_debug;
694 		PRM_POINT("prom_debug found in boot enviroment");
695 	}
696 
697 	/*
698 	 * Collect node, cpu and memory configuration information.
699 	 */
700 	get_system_configuration();
701 
702 	/*
703 	 * Halt if this is an unsupported processor.
704 	 */
705 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
706 		printf("\n486 processor (\"%s\") detected.\n",
707 		    CPU->cpu_brandstr);
708 		halt("This processor is not supported by this release "
709 		    "of Solaris.");
710 	}
711 
712 	PRM_POINT("startup_init() done");
713 }
714 
715 /*
716  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
717  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
718  * also filters out physical page zero.  There is some reliance on the
719  * boot loader allocating only a few contiguous physical memory chunks.
720  */
721 static void
722 avail_filter(uint64_t *addr, uint64_t *size)
723 {
724 	uintptr_t va;
725 	uintptr_t next_va;
726 	pfn_t pfn;
727 	uint64_t pfn_addr;
728 	uint64_t pfn_eaddr;
729 	uint_t prot;
730 	size_t len;
731 	uint_t change;
732 
733 	if (prom_debug)
734 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
735 		    *addr, *size);
736 
737 	/*
738 	 * page zero is required for BIOS.. never make it available
739 	 */
740 	if (*addr == 0) {
741 		*addr += MMU_PAGESIZE;
742 		*size -= MMU_PAGESIZE;
743 	}
744 
745 	/*
746 	 * First we trim from the front of the range. Since kbm_probe()
747 	 * walks ranges in virtual order, but addr/size are physical, we need
748 	 * to the list until no changes are seen.  This deals with the case
749 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
750 	 * but w < v.
751 	 */
752 	do {
753 		change = 0;
754 		for (va = KERNEL_TEXT;
755 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
756 		    va = next_va) {
757 
758 			next_va = va + len;
759 			pfn_addr = pfn_to_pa(pfn);
760 			pfn_eaddr = pfn_addr + len;
761 
762 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
763 				change = 1;
764 				while (*size > 0 && len > 0) {
765 					*addr += MMU_PAGESIZE;
766 					*size -= MMU_PAGESIZE;
767 					len -= MMU_PAGESIZE;
768 				}
769 			}
770 		}
771 		if (change && prom_debug)
772 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
773 			    *addr, *size);
774 	} while (change);
775 
776 	/*
777 	 * Trim pages from the end of the range.
778 	 */
779 	for (va = KERNEL_TEXT;
780 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
781 	    va = next_va) {
782 
783 		next_va = va + len;
784 		pfn_addr = pfn_to_pa(pfn);
785 
786 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
787 			*size = pfn_addr - *addr;
788 	}
789 
790 	if (prom_debug)
791 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
792 		    *addr, *size);
793 }
794 
795 static void
796 kpm_init()
797 {
798 	struct segkpm_crargs b;
799 
800 	/*
801 	 * These variables were all designed for sfmmu in which segkpm is
802 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
803 	 * might use 2+ page sizes on a single machine, so none of these
804 	 * variables have a single correct value.  They are set up as if we
805 	 * always use a 4KB pagesize, which should do no harm.  In the long
806 	 * run, we should get rid of KPM's assumption that only a single
807 	 * pagesize is used.
808 	 */
809 	kpm_pgshft = MMU_PAGESHIFT;
810 	kpm_pgsz =  MMU_PAGESIZE;
811 	kpm_pgoff = MMU_PAGEOFFSET;
812 	kpmp2pshft = 0;
813 	kpmpnpgs = 1;
814 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
815 
816 	PRM_POINT("about to create segkpm");
817 	rw_enter(&kas.a_lock, RW_WRITER);
818 
819 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
820 		panic("cannot attach segkpm");
821 
822 	b.prot = PROT_READ | PROT_WRITE;
823 	b.nvcolors = 1;
824 
825 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
826 		panic("segkpm_create segkpm");
827 
828 	rw_exit(&kas.a_lock);
829 }
830 
831 /*
832  * The debug info page provides enough information to allow external
833  * inspectors (e.g. when running under a hypervisor) to bootstrap
834  * themselves into allowing full-blown kernel debugging.
835  */
836 static void
837 init_debug_info(void)
838 {
839 	caddr_t mem;
840 	debug_info_t *di;
841 
842 #ifndef __lint
843 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
844 #endif
845 
846 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
847 	    MMU_PAGESIZE);
848 
849 	if (mem != (caddr_t)DEBUG_INFO_VA)
850 		panic("BOP_ALLOC() failed");
851 	bzero(mem, MMU_PAGESIZE);
852 
853 	di = (debug_info_t *)mem;
854 
855 	di->di_magic = DEBUG_INFO_MAGIC;
856 	di->di_version = DEBUG_INFO_VERSION;
857 	di->di_modules = (uintptr_t)&modules;
858 	di->di_s_text = (uintptr_t)s_text;
859 	di->di_e_text = (uintptr_t)e_text;
860 	di->di_s_data = (uintptr_t)s_data;
861 	di->di_e_data = (uintptr_t)e_data;
862 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
863 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
864 }
865 
866 /*
867  * Build the memlists and other kernel essential memory system data structures.
868  * This is everything at valloc_base.
869  */
870 static void
871 startup_memlist(void)
872 {
873 	size_t memlist_sz;
874 	size_t memseg_sz;
875 	size_t pagehash_sz;
876 	size_t pp_sz;
877 	uintptr_t va;
878 	size_t len;
879 	uint_t prot;
880 	pfn_t pfn;
881 	int memblocks;
882 	caddr_t pagecolor_mem;
883 	size_t pagecolor_memsz;
884 	caddr_t page_ctrs_mem;
885 	size_t page_ctrs_size;
886 	size_t pse_table_alloc_size;
887 	struct memlist *current;
888 	extern void startup_build_mem_nodes(struct memlist *);
889 
890 	/* XX64 fix these - they should be in include files */
891 	extern size_t page_coloring_init(uint_t, int, int);
892 	extern void page_coloring_setup(caddr_t);
893 
894 	PRM_POINT("startup_memlist() starting...");
895 
896 	/*
897 	 * Use leftover large page nucleus text/data space for loadable modules.
898 	 * Use at most MODTEXT/MODDATA.
899 	 */
900 	len = kbm_nucleus_size;
901 	ASSERT(len > MMU_PAGESIZE);
902 
903 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
904 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
905 	if (e_moddata - moddata > MODDATA)
906 		e_moddata = moddata + MODDATA;
907 
908 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
909 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
910 	if (e_modtext - modtext > MODTEXT)
911 		e_modtext = modtext + MODTEXT;
912 
913 	econtig = e_moddata;
914 
915 	PRM_DEBUG(modtext);
916 	PRM_DEBUG(e_modtext);
917 	PRM_DEBUG(moddata);
918 	PRM_DEBUG(e_moddata);
919 	PRM_DEBUG(econtig);
920 
921 	/*
922 	 * Examine the boot loader physical memory map to find out:
923 	 * - total memory in system - physinstalled
924 	 * - the max physical address - physmax
925 	 * - the number of discontiguous segments of memory.
926 	 */
927 	if (prom_debug)
928 		print_memlist("boot physinstalled",
929 		    bootops->boot_mem->physinstalled);
930 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
931 	    &physinstalled, &memblocks);
932 	PRM_DEBUG(physmax);
933 	PRM_DEBUG(physinstalled);
934 	PRM_DEBUG(memblocks);
935 
936 	/*
937 	 * Initialize hat's mmu parameters.
938 	 * Check for enforce-prot-exec in boot environment. It's used to
939 	 * enable/disable support for the page table entry NX bit.
940 	 * The default is to enforce PROT_EXEC on processors that support NX.
941 	 * Boot seems to round up the "len", but 8 seems to be big enough.
942 	 */
943 	mmu_init();
944 
945 #ifdef	__i386
946 	/*
947 	 * physmax is lowered if there is more memory than can be
948 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
949 	 */
950 	if (mmu.pae_hat) {
951 		if (PFN_ABOVE64G(physmax)) {
952 			physinstalled -= (physmax - (PFN_64G - 1));
953 			physmax = PFN_64G - 1;
954 		}
955 	} else {
956 		if (PFN_ABOVE4G(physmax)) {
957 			physinstalled -= (physmax - (PFN_4G - 1));
958 			physmax = PFN_4G - 1;
959 		}
960 	}
961 #endif
962 
963 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
964 
965 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
966 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
967 		char value[8];
968 
969 		if (len < 8)
970 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
971 		else
972 			(void) strcpy(value, "");
973 		if (strcmp(value, "off") == 0)
974 			mmu.pt_nx = 0;
975 	}
976 	PRM_DEBUG(mmu.pt_nx);
977 
978 	/*
979 	 * We will need page_t's for every page in the system, except for
980 	 * memory mapped at or above above the start of the kernel text segment.
981 	 *
982 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
983 	 */
984 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
985 	obp_pages = 0;
986 	va = KERNEL_TEXT;
987 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
988 		npages -= len >> MMU_PAGESHIFT;
989 		if (va >= (uintptr_t)e_moddata)
990 			obp_pages += len >> MMU_PAGESHIFT;
991 		va += len;
992 	}
993 	PRM_DEBUG(npages);
994 	PRM_DEBUG(obp_pages);
995 
996 	/*
997 	 * If physmem is patched to be non-zero, use it instead of the computed
998 	 * value unless it is larger than the actual amount of memory on hand.
999 	 */
1000 	if (physmem == 0 || physmem > npages) {
1001 		physmem = npages;
1002 	} else if (physmem < npages) {
1003 		orig_npages = npages;
1004 		npages = physmem;
1005 	}
1006 	PRM_DEBUG(physmem);
1007 
1008 	/*
1009 	 * We now compute the sizes of all the  initial allocations for
1010 	 * structures the kernel needs in order do kmem_alloc(). These
1011 	 * include:
1012 	 *	memsegs
1013 	 *	memlists
1014 	 *	page hash table
1015 	 *	page_t's
1016 	 *	page coloring data structs
1017 	 */
1018 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1019 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1020 	PRM_DEBUG(memseg_sz);
1021 
1022 	/*
1023 	 * Reserve space for memlists. There's no real good way to know exactly
1024 	 * how much room we'll need, but this should be a good upper bound.
1025 	 */
1026 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1027 	    (memblocks + POSS_NEW_FRAGMENTS));
1028 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1029 	PRM_DEBUG(memlist_sz);
1030 
1031 	/*
1032 	 * The page structure hash table size is a power of 2
1033 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1034 	 */
1035 	page_hashsz = npages / PAGE_HASHAVELEN;
1036 	page_hashsz = 1 << highbit(page_hashsz);
1037 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1038 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1039 	PRM_DEBUG(pagehash_sz);
1040 
1041 	/*
1042 	 * Set aside room for the page structures themselves.
1043 	 */
1044 	PRM_DEBUG(npages);
1045 	pp_sz = sizeof (struct page) * npages;
1046 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1047 	PRM_DEBUG(pp_sz);
1048 
1049 	/*
1050 	 * determine l2 cache info and memory size for page coloring
1051 	 */
1052 	(void) getl2cacheinfo(CPU,
1053 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1054 	pagecolor_memsz =
1055 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1056 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1057 	PRM_DEBUG(pagecolor_memsz);
1058 
1059 	page_ctrs_size = page_ctrs_sz();
1060 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1061 	PRM_DEBUG(page_ctrs_size);
1062 
1063 	/*
1064 	 * Allocate the array that protects pp->p_selock.
1065 	 */
1066 	pse_shift = size_pse_array(physmem, max_ncpus);
1067 	pse_table_size = 1 << pse_shift;
1068 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1069 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1070 
1071 #if defined(__amd64)
1072 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1073 	valloc_base = VALLOC_BASE;
1074 
1075 	/*
1076 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1077 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1078 	 * memory is at addresses above 1 TB.
1079 	 */
1080 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1081 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1082 
1083 		/* Round to largest possible pagesize for now */
1084 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1085 
1086 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1087 
1088 		/* make sure we leave some space for user apps above hole */
1089 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1090 		if (segkpm_base > SEGKPM_BASE)
1091 			segkpm_base = SEGKPM_BASE;
1092 		PRM_DEBUG(segkpm_base);
1093 
1094 		valloc_base = segkpm_base + kpm_resv_amount;
1095 		PRM_DEBUG(valloc_base);
1096 	}
1097 #else	/* __i386 */
1098 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1099 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1100 	PRM_DEBUG(valloc_base);
1101 #endif	/* __i386 */
1102 
1103 	/*
1104 	 * do all the initial allocations
1105 	 */
1106 	perform_allocations();
1107 
1108 	/*
1109 	 * Build phys_install and phys_avail in kernel memspace.
1110 	 * - phys_install should be all memory in the system.
1111 	 * - phys_avail is phys_install minus any memory mapped before this
1112 	 *    point above KERNEL_TEXT.
1113 	 */
1114 	current = phys_install = memlist;
1115 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1116 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1117 		panic("physinstalled was too big!");
1118 	if (prom_debug)
1119 		print_memlist("phys_install", phys_install);
1120 
1121 	phys_avail = current;
1122 	PRM_POINT("Building phys_avail:\n");
1123 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1124 	    avail_filter);
1125 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1126 		panic("physavail was too big!");
1127 	if (prom_debug)
1128 		print_memlist("phys_avail", phys_avail);
1129 
1130 	/*
1131 	 * setup page coloring
1132 	 */
1133 	page_coloring_setup(pagecolor_mem);
1134 	page_lock_init();	/* currently a no-op */
1135 
1136 	/*
1137 	 * free page list counters
1138 	 */
1139 	(void) page_ctrs_alloc(page_ctrs_mem);
1140 
1141 	/*
1142 	 * Initialize the page structures from the memory lists.
1143 	 */
1144 	availrmem_initial = availrmem = freemem = 0;
1145 	PRM_POINT("Calling kphysm_init()...");
1146 	npages = kphysm_init(pp_base, npages);
1147 	PRM_POINT("kphysm_init() done");
1148 	PRM_DEBUG(npages);
1149 
1150 	init_debug_info();
1151 
1152 	/*
1153 	 * Now that page_t's have been initialized, remove all the
1154 	 * initial allocation pages from the kernel free page lists.
1155 	 */
1156 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1157 	boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE);
1158 	boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE);
1159 	PRM_POINT("startup_memlist() done");
1160 
1161 	PRM_DEBUG(valloc_sz);
1162 
1163 #if defined(__amd64)
1164 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1165 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1166 		extern size_t textrepl_size_thresh;
1167 		textrepl_size_thresh = (16 << 20) - 1;
1168 	}
1169 #endif
1170 }
1171 
1172 /*
1173  * Layout the kernel's part of address space and initialize kmem allocator.
1174  */
1175 static void
1176 startup_kmem(void)
1177 {
1178 	extern void page_set_colorequiv_arr(void);
1179 
1180 	PRM_POINT("startup_kmem() starting...");
1181 
1182 #if defined(__amd64)
1183 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1184 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1185 		    "systems.");
1186 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1187 	core_base = (uintptr_t)COREHEAP_BASE;
1188 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1189 #else	/* __i386 */
1190 	/*
1191 	 * We configure kernelbase based on:
1192 	 *
1193 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1194 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1195 	 *
1196 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1197 	 *    On large memory systems we must lower kernelbase to allow
1198 	 *    enough room for page_t's for all of memory.
1199 	 *
1200 	 * The value set here, might be changed a little later.
1201 	 */
1202 	if (eprom_kernelbase) {
1203 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1204 		if (kernelbase > KERNELBASE_MAX)
1205 			kernelbase = KERNELBASE_MAX;
1206 	} else {
1207 		kernelbase = (uintptr_t)KERNELBASE;
1208 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1209 	}
1210 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1211 	core_base = valloc_base;
1212 	core_size = 0;
1213 #endif	/* __i386 */
1214 
1215 	PRM_DEBUG(core_base);
1216 	PRM_DEBUG(core_size);
1217 	PRM_DEBUG(kernelbase);
1218 
1219 #if defined(__i386)
1220 	segkp_fromheap = 1;
1221 #endif	/* __i386 */
1222 
1223 	ekernelheap = (char *)core_base;
1224 	PRM_DEBUG(ekernelheap);
1225 
1226 	/*
1227 	 * Now that we know the real value of kernelbase,
1228 	 * update variables that were initialized with a value of
1229 	 * KERNELBASE (in common/conf/param.c).
1230 	 *
1231 	 * XXX	The problem with this sort of hackery is that the
1232 	 *	compiler just may feel like putting the const declarations
1233 	 *	(in param.c) into the .text section.  Perhaps they should
1234 	 *	just be declared as variables there?
1235 	 */
1236 
1237 	*(uintptr_t *)&_kernelbase = kernelbase;
1238 	*(uintptr_t *)&_userlimit = kernelbase;
1239 #if defined(__amd64)
1240 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1241 #else
1242 	*(uintptr_t *)&_userlimit32 = _userlimit;
1243 #endif
1244 	PRM_DEBUG(_kernelbase);
1245 	PRM_DEBUG(_userlimit);
1246 	PRM_DEBUG(_userlimit32);
1247 
1248 	layout_kernel_va();
1249 
1250 #if defined(__i386)
1251 	/*
1252 	 * If segmap is too large we can push the bottom of the kernel heap
1253 	 * higher than the base.  Or worse, it could exceed the top of the
1254 	 * VA space entirely, causing it to wrap around.
1255 	 */
1256 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1257 		panic("too little address space available for kernelheap,"
1258 		    " use eeprom for lower kernelbase or smaller segmapsize");
1259 #endif	/* __i386 */
1260 
1261 	/*
1262 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1263 	 */
1264 	kernelheap_init(kernelheap, ekernelheap,
1265 	    kernelheap + MMU_PAGESIZE,
1266 	    (void *)core_base, (void *)(core_base + core_size));
1267 
1268 #if defined(__xpv)
1269 	/*
1270 	 * Link pending events struct into cpu struct
1271 	 */
1272 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1273 #endif
1274 	/*
1275 	 * Initialize kernel memory allocator.
1276 	 */
1277 	kmem_init();
1278 
1279 	/*
1280 	 * Factor in colorequiv to check additional 'equivalent' bins
1281 	 */
1282 	page_set_colorequiv_arr();
1283 
1284 #if defined(__xpv)
1285 	xen_version();
1286 #endif
1287 
1288 	/*
1289 	 * print this out early so that we know what's going on
1290 	 */
1291 	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
1292 
1293 	/*
1294 	 * Initialize bp_mapin().
1295 	 */
1296 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1297 
1298 	/*
1299 	 * orig_npages is non-zero if physmem has been configured for less
1300 	 * than the available memory.
1301 	 */
1302 	if (orig_npages) {
1303 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1304 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1305 		    npages, orig_npages);
1306 	}
1307 #if defined(__i386)
1308 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1309 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1310 		    "System using 0x%lx",
1311 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1312 #endif
1313 
1314 #ifdef	KERNELBASE_ABI_MIN
1315 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1316 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1317 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1318 	}
1319 #endif
1320 
1321 #ifdef __xpv
1322 	/*
1323 	 * Some of the xen start information has to be relocated up
1324 	 * into the kernel's permanent address space.
1325 	 */
1326 	PRM_POINT("calling xen_relocate_start_info()");
1327 	xen_relocate_start_info();
1328 	PRM_POINT("xen_relocate_start_info() done");
1329 
1330 	/*
1331 	 * (Update the vcpu pointer in our cpu structure to point into
1332 	 * the relocated shared info.)
1333 	 */
1334 	CPU->cpu_m.mcpu_vcpu_info =
1335 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1336 #endif
1337 
1338 	PRM_POINT("startup_kmem() done");
1339 }
1340 
1341 static void
1342 startup_modules(void)
1343 {
1344 	unsigned int i;
1345 	extern void prom_setup(void);
1346 
1347 	PRM_POINT("startup_modules() starting...");
1348 
1349 #ifndef __xpv
1350 	/*
1351 	 * Initialize ten-micro second timer so that drivers will
1352 	 * not get short changed in their init phase. This was
1353 	 * not getting called until clkinit which, on fast cpu's
1354 	 * caused the drv_usecwait to be way too short.
1355 	 */
1356 	microfind();
1357 #endif
1358 
1359 	/*
1360 	 * Read the GMT lag from /etc/rtc_config.
1361 	 */
1362 	sgmtl(process_rtc_config_file());
1363 
1364 	/*
1365 	 * Calculate default settings of system parameters based upon
1366 	 * maxusers, yet allow to be overridden via the /etc/system file.
1367 	 */
1368 	param_calc(0);
1369 
1370 	mod_setup();
1371 
1372 	/*
1373 	 * Initialize system parameters.
1374 	 */
1375 	param_init();
1376 
1377 	/*
1378 	 * Initialize the default brands
1379 	 */
1380 	brand_init();
1381 
1382 	/*
1383 	 * maxmem is the amount of physical memory we're playing with.
1384 	 */
1385 	maxmem = physmem;
1386 
1387 	/*
1388 	 * Initialize segment management stuff.
1389 	 */
1390 	seg_init();
1391 
1392 	if (modload("fs", "specfs") == -1)
1393 		halt("Can't load specfs");
1394 
1395 	if (modload("fs", "devfs") == -1)
1396 		halt("Can't load devfs");
1397 
1398 	if (modload("fs", "dev") == -1)
1399 		halt("Can't load dev");
1400 
1401 	(void) modloadonly("sys", "lbl_edition");
1402 
1403 	dispinit();
1404 
1405 	/*
1406 	 * This is needed here to initialize hw_serial[] for cluster booting.
1407 	 */
1408 	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
1409 		(void) modunload(i);
1410 	else
1411 		cmn_err(CE_CONT, "sysinit load failed");
1412 
1413 	/* Read cluster configuration data. */
1414 	clconf_init();
1415 
1416 #if defined(__xpv)
1417 	ec_init();
1418 	gnttab_init();
1419 	(void) xs_early_init();
1420 #endif /* __xpv */
1421 
1422 	/*
1423 	 * Create a kernel device tree. First, create rootnex and
1424 	 * then invoke bus specific code to probe devices.
1425 	 */
1426 	setup_ddi();
1427 
1428 	/*
1429 	 * Set up the CPU module subsystem.  Modifies the device tree, so it
1430 	 * must be done after setup_ddi().
1431 	 */
1432 	cmi_init();
1433 
1434 	/*
1435 	 * Initialize the MCA handlers
1436 	 */
1437 	if (x86_feature & X86_MCA)
1438 		cmi_mca_init();
1439 
1440 	/*
1441 	 * Fake a prom tree such that /dev/openprom continues to work
1442 	 */
1443 	PRM_POINT("startup_modules: calling prom_setup...");
1444 	prom_setup();
1445 	PRM_POINT("startup_modules: done");
1446 
1447 	/*
1448 	 * Load all platform specific modules
1449 	 */
1450 	PRM_POINT("startup_modules: calling psm_modload...");
1451 	psm_modload();
1452 
1453 	PRM_POINT("startup_modules() done");
1454 }
1455 
1456 /*
1457  * claim a "setaside" boot page for use in the kernel
1458  */
1459 page_t *
1460 boot_claim_page(pfn_t pfn)
1461 {
1462 	page_t *pp;
1463 
1464 	pp = page_numtopp_nolock(pfn);
1465 	ASSERT(pp != NULL);
1466 
1467 	if (PP_ISBOOTPAGES(pp)) {
1468 		if (pp->p_next != NULL)
1469 			pp->p_next->p_prev = pp->p_prev;
1470 		if (pp->p_prev == NULL)
1471 			bootpages = pp->p_next;
1472 		else
1473 			pp->p_prev->p_next = pp->p_next;
1474 	} else {
1475 		/*
1476 		 * htable_attach() expects a base pagesize page
1477 		 */
1478 		if (pp->p_szc != 0)
1479 			page_boot_demote(pp);
1480 		pp = page_numtopp(pfn, SE_EXCL);
1481 	}
1482 	return (pp);
1483 }
1484 
1485 /*
1486  * Walk through the pagetables looking for pages mapped in by boot.  If the
1487  * setaside flag is set the pages are expected to be returned to the
1488  * kernel later in boot, so we add them to the bootpages list.
1489  */
1490 static void
1491 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1492 {
1493 	uintptr_t va = low;
1494 	size_t len;
1495 	uint_t prot;
1496 	pfn_t pfn;
1497 	page_t *pp;
1498 	pgcnt_t boot_protect_cnt = 0;
1499 
1500 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1501 		if (va + len >= high)
1502 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1503 			    "legal range.", len, (void *)va);
1504 
1505 		while (len > 0) {
1506 			pp = page_numtopp_alloc(pfn);
1507 			if (pp != NULL) {
1508 				if (setaside == 0)
1509 					panic("Unexpected mapping by boot.  "
1510 					    "addr=%p pfn=%lx\n",
1511 					    (void *)va, pfn);
1512 
1513 				pp->p_next = bootpages;
1514 				pp->p_prev = NULL;
1515 				PP_SETBOOTPAGES(pp);
1516 				if (bootpages != NULL) {
1517 					bootpages->p_prev = pp;
1518 				}
1519 				bootpages = pp;
1520 				++boot_protect_cnt;
1521 			}
1522 
1523 			++pfn;
1524 			len -= MMU_PAGESIZE;
1525 			va += MMU_PAGESIZE;
1526 		}
1527 	}
1528 	PRM_DEBUG(boot_protect_cnt);
1529 }
1530 
1531 /*
1532  *
1533  */
1534 static void
1535 layout_kernel_va(void)
1536 {
1537 	PRM_POINT("layout_kernel_va() starting...");
1538 	/*
1539 	 * Establish the final size of the kernel's heap, size of segmap,
1540 	 * segkp, etc.
1541 	 */
1542 
1543 #if defined(__amd64)
1544 
1545 	kpm_vbase = (caddr_t)segkpm_base;
1546 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1547 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1548 		panic("not enough room for kpm!");
1549 	PRM_DEBUG(kpm_size);
1550 	PRM_DEBUG(kpm_vbase);
1551 
1552 	/*
1553 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1554 	 * faster to access than embedding it in the heap.
1555 	 */
1556 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1557 	if (!segkp_fromheap) {
1558 		size_t sz = mmu_ptob(segkpsize);
1559 
1560 		/*
1561 		 * determine size of segkp
1562 		 */
1563 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1564 			sz = SEGKPDEFSIZE;
1565 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1566 			    "segkpsize has been reset to %ld pages",
1567 			    mmu_btop(sz));
1568 		}
1569 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1570 
1571 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1572 	}
1573 	PRM_DEBUG(segkp_base);
1574 	PRM_DEBUG(segkpsize);
1575 
1576 	/*
1577 	 * segzio is used for ZFS cached data. It uses a distinct VA
1578 	 * segment (from kernel heap) so that we can easily tell not to
1579 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1580 	 * to give it lots of VA, but not constrain the kernel heap.
1581 	 * We scale the size of segzio linearly with physmem up to
1582 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1583 	 */
1584 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1585 	if (segzio_fromheap) {
1586 		segziosize = 0;
1587 	} else {
1588 		size_t physmem_size = mmu_ptob(physmem);
1589 		size_t size = (segziosize == 0) ?
1590 		    physmem_size : mmu_ptob(segziosize);
1591 
1592 		if (size < SEGZIOMINSIZE)
1593 			size = SEGZIOMINSIZE;
1594 		if (size > SEGZIOMAXSIZE) {
1595 			size = SEGZIOMAXSIZE;
1596 			if (physmem_size > size)
1597 				size += (physmem_size - size) / 2;
1598 		}
1599 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1600 	}
1601 	PRM_DEBUG(segziosize);
1602 	PRM_DEBUG(segzio_base);
1603 
1604 	/*
1605 	 * Put the range of VA for device mappings next, kmdb knows to not
1606 	 * grep in this range of addresses.
1607 	 */
1608 	toxic_addr =
1609 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1610 	PRM_DEBUG(toxic_addr);
1611 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1612 #else /* __i386 */
1613 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1614 #endif /* __i386 */
1615 	PRM_DEBUG(segmap_start);
1616 
1617 	/*
1618 	 * Users can change segmapsize through eeprom or /etc/system.
1619 	 * If the variable is tuned through eeprom, there is no upper
1620 	 * bound on the size of segmap.  If it is tuned through
1621 	 * /etc/system on 32-bit systems, it must be no larger than we
1622 	 * planned for in startup_memlist().
1623 	 */
1624 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1625 
1626 #if defined(__i386)
1627 	/*
1628 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1629 	 * the bottom of the kernel's address range.  Set aside space for a
1630 	 * small red zone just below the start of segmap.
1631 	 */
1632 	segmap_start += KERNEL_REDZONE_SIZE;
1633 	segmapsize -= KERNEL_REDZONE_SIZE;
1634 #endif
1635 
1636 	PRM_DEBUG(segmap_start);
1637 	PRM_DEBUG(segmapsize);
1638 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1639 	PRM_DEBUG(kernelheap);
1640 	PRM_POINT("layout_kernel_va() done...");
1641 }
1642 
1643 /*
1644  * Finish initializing the VM system, now that we are no longer
1645  * relying on the boot time memory allocators.
1646  */
1647 static void
1648 startup_vm(void)
1649 {
1650 	struct segmap_crargs a;
1651 
1652 	extern int use_brk_lpg, use_stk_lpg;
1653 
1654 	PRM_POINT("startup_vm() starting...");
1655 
1656 	/*
1657 	 * Initialize the hat layer.
1658 	 */
1659 	hat_init();
1660 
1661 	/*
1662 	 * Do final allocations of HAT data structures that need to
1663 	 * be allocated before quiescing the boot loader.
1664 	 */
1665 	PRM_POINT("Calling hat_kern_alloc()...");
1666 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1667 	PRM_POINT("hat_kern_alloc() done");
1668 
1669 #ifndef __xpv
1670 	/*
1671 	 * Setup MTRR (Memory type range registers)
1672 	 */
1673 	setup_mtrr();
1674 #endif
1675 
1676 	/*
1677 	 * The next two loops are done in distinct steps in order
1678 	 * to be sure that any page that is doubly mapped (both above
1679 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1680 	 * Note this may never happen, but it might someday.
1681 	 */
1682 	bootpages = NULL;
1683 	PRM_POINT("Protecting boot pages");
1684 
1685 	/*
1686 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1687 	 * page_t's. This can only happen if something weird allocated
1688 	 * in this range (like kadb/kmdb).
1689 	 */
1690 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1691 
1692 	/*
1693 	 * Before we can take over memory allocation/mapping from the boot
1694 	 * loader we must remove from our free page lists any boot allocated
1695 	 * pages that stay mapped until release_bootstrap().
1696 	 */
1697 	protect_boot_range(0, kernelbase, 1);
1698 
1699 
1700 	/*
1701 	 * Switch to running on regular HAT (not boot_mmu)
1702 	 */
1703 	PRM_POINT("Calling hat_kern_setup()...");
1704 	hat_kern_setup();
1705 
1706 	/*
1707 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1708 	 */
1709 	bop_no_more_mem();
1710 
1711 	PRM_POINT("hat_kern_setup() done");
1712 
1713 	hat_cpu_online(CPU);
1714 
1715 	/*
1716 	 * Initialize VM system
1717 	 */
1718 	PRM_POINT("Calling kvm_init()...");
1719 	kvm_init();
1720 	PRM_POINT("kvm_init() done");
1721 
1722 	/*
1723 	 * Tell kmdb that the VM system is now working
1724 	 */
1725 	if (boothowto & RB_DEBUG)
1726 		kdi_dvec_vmready();
1727 
1728 #if defined(__xpv)
1729 	/*
1730 	 * Populate the I/O pool on domain 0
1731 	 */
1732 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1733 		extern long populate_io_pool(void);
1734 		long init_io_pool_cnt;
1735 
1736 		PRM_POINT("Populating reserve I/O page pool");
1737 		init_io_pool_cnt = populate_io_pool();
1738 		PRM_DEBUG(init_io_pool_cnt);
1739 	}
1740 #endif
1741 	/*
1742 	 * Mangle the brand string etc.
1743 	 */
1744 	cpuid_pass3(CPU);
1745 
1746 #if defined(__amd64)
1747 
1748 	/*
1749 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1750 	 */
1751 	device_arena = vmem_create("device", (void *)toxic_addr,
1752 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1753 
1754 #else	/* __i386 */
1755 
1756 	/*
1757 	 * allocate the bit map that tracks toxic pages
1758 	 */
1759 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1760 	PRM_DEBUG(toxic_bit_map_len);
1761 	toxic_bit_map =
1762 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1763 	ASSERT(toxic_bit_map != NULL);
1764 	PRM_DEBUG(toxic_bit_map);
1765 
1766 #endif	/* __i386 */
1767 
1768 
1769 	/*
1770 	 * Now that we've got more VA, as well as the ability to allocate from
1771 	 * it, tell the debugger.
1772 	 */
1773 	if (boothowto & RB_DEBUG)
1774 		kdi_dvec_memavail();
1775 
1776 	/*
1777 	 * The following code installs a special page fault handler (#pf)
1778 	 * to work around a pentium bug.
1779 	 */
1780 #if !defined(__amd64) && !defined(__xpv)
1781 	if (x86_type == X86_TYPE_P5) {
1782 		desctbr_t idtr;
1783 		gate_desc_t *newidt;
1784 		struct machcpu *mcpu = &CPU->cpu_m;
1785 
1786 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1787 			panic("failed to install pentium_pftrap");
1788 
1789 		bcopy(idt0, newidt, sizeof (idt0));
1790 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1791 		    KCS_SEL, SDT_SYSIGT, TRP_KPL);
1792 
1793 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1794 		    PROT_READ|PROT_EXEC);
1795 
1796 		mcpu->mcpu_idt = newidt;
1797 		idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt;
1798 		idtr.dtr_limit = sizeof (idt0) - 1;
1799 		wr_idtr(&idtr);
1800 	}
1801 #endif	/* !__amd64 */
1802 
1803 #if !defined(__xpv)
1804 	/*
1805 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1806 	 * parameters left there by controllers/BIOS.
1807 	 */
1808 	PRM_POINT("setup up p0_va");
1809 	p0_va = i86devmap(0, 1, PROT_READ);
1810 	PRM_DEBUG(p0_va);
1811 #endif
1812 
1813 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1814 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1815 
1816 	/*
1817 	 * disable automatic large pages for small memory systems or
1818 	 * when the disable flag is set.
1819 	 */
1820 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1821 		max_uheap_lpsize = LEVEL_SIZE(1);
1822 		max_ustack_lpsize = LEVEL_SIZE(1);
1823 		max_privmap_lpsize = LEVEL_SIZE(1);
1824 		max_uidata_lpsize = LEVEL_SIZE(1);
1825 		max_utext_lpsize = LEVEL_SIZE(1);
1826 		max_shm_lpsize = LEVEL_SIZE(1);
1827 	}
1828 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1829 	    auto_lpg_disable) {
1830 		use_brk_lpg = 0;
1831 		use_stk_lpg = 0;
1832 	}
1833 	if (mmu.max_page_level > 0) {
1834 		mcntl0_lpsize = LEVEL_SIZE(1);
1835 	}
1836 
1837 	PRM_POINT("Calling hat_init_finish()...");
1838 	hat_init_finish();
1839 	PRM_POINT("hat_init_finish() done");
1840 
1841 	/*
1842 	 * Initialize the segkp segment type.
1843 	 */
1844 	rw_enter(&kas.a_lock, RW_WRITER);
1845 	PRM_POINT("Attaching segkp");
1846 	if (segkp_fromheap) {
1847 		segkp->s_as = &kas;
1848 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1849 	    segkp) < 0) {
1850 		panic("startup: cannot attach segkp");
1851 		/*NOTREACHED*/
1852 	}
1853 	PRM_POINT("Doing segkp_create()");
1854 	if (segkp_create(segkp) != 0) {
1855 		panic("startup: segkp_create failed");
1856 		/*NOTREACHED*/
1857 	}
1858 	PRM_DEBUG(segkp);
1859 	rw_exit(&kas.a_lock);
1860 
1861 	/*
1862 	 * kpm segment
1863 	 */
1864 	segmap_kpm = 0;
1865 	if (kpm_desired) {
1866 		kpm_init();
1867 		kpm_enable = 1;
1868 		vpm_enable = 1;
1869 	}
1870 
1871 	/*
1872 	 * Now create segmap segment.
1873 	 */
1874 	rw_enter(&kas.a_lock, RW_WRITER);
1875 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
1876 		panic("cannot attach segmap");
1877 		/*NOTREACHED*/
1878 	}
1879 	PRM_DEBUG(segmap);
1880 
1881 	a.prot = PROT_READ | PROT_WRITE;
1882 	a.shmsize = 0;
1883 	a.nfreelist = segmapfreelists;
1884 
1885 	if (segmap_create(segmap, (caddr_t)&a) != 0)
1886 		panic("segmap_create segmap");
1887 	rw_exit(&kas.a_lock);
1888 
1889 	setup_vaddr_for_ppcopy(CPU);
1890 
1891 	segdev_init();
1892 #if defined(__xpv)
1893 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1894 #endif
1895 		pmem_init();
1896 
1897 	PRM_POINT("startup_vm() done");
1898 }
1899 
1900 /*
1901  * Load a tod module for the non-standard tod part found on this system.
1902  */
1903 static void
1904 load_tod_module(char *todmod)
1905 {
1906 	if (modload("tod", todmod) == -1)
1907 		halt("Can't load TOD module");
1908 }
1909 
1910 static void
1911 startup_end(void)
1912 {
1913 	int i;
1914 	extern void setx86isalist(void);
1915 
1916 	PRM_POINT("startup_end() starting...");
1917 
1918 	/*
1919 	 * Perform tasks that get done after most of the VM
1920 	 * initialization has been done but before the clock
1921 	 * and other devices get started.
1922 	 */
1923 	kern_setup1();
1924 
1925 	/*
1926 	 * Perform CPC initialization for this CPU.
1927 	 */
1928 	kcpc_hw_init(CPU);
1929 
1930 #if defined(OPTERON_WORKAROUND_6323525)
1931 	if (opteron_workaround_6323525)
1932 		patch_workaround_6323525();
1933 #endif
1934 	/*
1935 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
1936 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
1937 	 */
1938 	if (tod_module_name != NULL) {
1939 		PRM_POINT("load_tod_module()");
1940 		load_tod_module(tod_module_name);
1941 	}
1942 
1943 #if defined(__xpv)
1944 	/*
1945 	 * Forceload interposing TOD module for the hypervisor.
1946 	 */
1947 	PRM_POINT("load_tod_module()");
1948 	load_tod_module("xpvtod");
1949 #endif
1950 
1951 	/*
1952 	 * Configure the system.
1953 	 */
1954 	PRM_POINT("Calling configure()...");
1955 	configure();		/* set up devices */
1956 	PRM_POINT("configure() done");
1957 
1958 	/*
1959 	 * Set the isa_list string to the defined instruction sets we
1960 	 * support.
1961 	 */
1962 	setx86isalist();
1963 	cpu_intr_alloc(CPU, NINTR_THREADS);
1964 	psm_install();
1965 
1966 	/*
1967 	 * We're done with bootops.  We don't unmap the bootstrap yet because
1968 	 * we're still using bootsvcs.
1969 	 */
1970 	PRM_POINT("NULLing out bootops");
1971 	*bootopsp = (struct bootops *)NULL;
1972 	bootops = (struct bootops *)NULL;
1973 
1974 #if defined(__xpv)
1975 	ec_init_debug_irq();
1976 	xs_domu_init();
1977 #endif
1978 	PRM_POINT("Enabling interrupts");
1979 	(*picinitf)();
1980 	sti();
1981 #if defined(__xpv)
1982 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
1983 	xen_late_startup();
1984 #endif
1985 
1986 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
1987 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
1988 
1989 	/*
1990 	 * Register these software interrupts for ddi timer.
1991 	 * Software interrupts up to the level 10 are supported.
1992 	 */
1993 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
1994 		char name[sizeof ("timer_softintr") + 2];
1995 		(void) sprintf(name, "timer_softintr%02d", i);
1996 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
1997 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
1998 	}
1999 
2000 	PRM_POINT("startup_end() done");
2001 }
2002 
2003 extern char hw_serial[];
2004 char *_hs1107 = hw_serial;
2005 ulong_t  _bdhs34;
2006 
2007 void
2008 post_startup(void)
2009 {
2010 	/*
2011 	 * Set the system wide, processor-specific flags to be passed
2012 	 * to userland via the aux vector for performance hints and
2013 	 * instruction set extensions.
2014 	 */
2015 	bind_hwcap();
2016 
2017 #ifdef __xpv
2018 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2019 #endif
2020 	{
2021 		/*
2022 		 * Load the System Management BIOS into the global ksmbios
2023 		 * handle, if an SMBIOS is present on this system.
2024 		 */
2025 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
2026 
2027 #if defined(__xpv)
2028 		xpv_panic_init();
2029 #else
2030 		/*
2031 		 * Startup the memory scrubber.
2032 		 * XXPV	This should be running somewhere ..
2033 		 */
2034 		memscrub_init();
2035 #endif
2036 	}
2037 
2038 	/*
2039 	 * Complete CPU module initialization
2040 	 */
2041 	cmi_post_init();
2042 
2043 	/*
2044 	 * Perform forceloading tasks for /etc/system.
2045 	 */
2046 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2047 
2048 	/*
2049 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2050 	 * ON4.0: This must be fixed or restated in /etc/systems.
2051 	 */
2052 	(void) modload("fs", "procfs");
2053 
2054 #if defined(__i386)
2055 	/*
2056 	 * Check for required functional Floating Point hardware,
2057 	 * unless FP hardware explicitly disabled.
2058 	 */
2059 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2060 		halt("No working FP hardware found");
2061 #endif
2062 
2063 	maxmem = freemem;
2064 
2065 	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
2066 }
2067 
2068 static int
2069 pp_in_ramdisk(page_t *pp)
2070 {
2071 	extern uint64_t ramdisk_start, ramdisk_end;
2072 
2073 	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
2074 	    (pp->p_pagenum < btopr(ramdisk_end)));
2075 }
2076 
2077 void
2078 release_bootstrap(void)
2079 {
2080 	int root_is_ramdisk;
2081 	page_t *pp;
2082 	extern void kobj_boot_unmountroot(void);
2083 	extern dev_t rootdev;
2084 
2085 	/* unmount boot ramdisk and release kmem usage */
2086 	kobj_boot_unmountroot();
2087 
2088 	/*
2089 	 * We're finished using the boot loader so free its pages.
2090 	 */
2091 	PRM_POINT("Unmapping lower boot pages");
2092 	clear_boot_mappings(0, _userlimit);
2093 	postbootkernelbase = kernelbase;
2094 
2095 	/*
2096 	 * If root isn't on ramdisk, destroy the hardcoded
2097 	 * ramdisk node now and release the memory. Else,
2098 	 * ramdisk memory is kept in rd_pages.
2099 	 */
2100 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2101 	if (!root_is_ramdisk) {
2102 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2103 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2104 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2105 		(void) ddi_remove_child(dip, 0);
2106 	}
2107 
2108 	PRM_POINT("Releasing boot pages");
2109 	while (bootpages) {
2110 		pp = bootpages;
2111 		bootpages = pp->p_next;
2112 		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
2113 			pp->p_next = rd_pages;
2114 			rd_pages = pp;
2115 			continue;
2116 		}
2117 		pp->p_next = (struct page *)0;
2118 		pp->p_prev = (struct page *)0;
2119 		PP_CLRBOOTPAGES(pp);
2120 		page_free(pp, 1);
2121 	}
2122 	PRM_POINT("Boot pages released");
2123 
2124 #if !defined(__xpv)
2125 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2126 	/*
2127 	 * Find 1 page below 1 MB so that other processors can boot up.
2128 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2129 	 * We should have just free'd one up.
2130 	 */
2131 	if (use_mp) {
2132 		pfn_t pfn;
2133 
2134 		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
2135 			if (page_numtopp_alloc(pfn) == NULL)
2136 				continue;
2137 			rm_platter_va = i86devmap(pfn, 1,
2138 			    PROT_READ | PROT_WRITE | PROT_EXEC);
2139 			rm_platter_pa = ptob(pfn);
2140 			hat_devload(kas.a_hat,
2141 			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2142 			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2143 			    HAT_LOAD_NOCONSIST);
2144 			break;
2145 		}
2146 		if (pfn == btop(1*1024*1024))
2147 			panic("No page available for starting "
2148 			    "other processors");
2149 	}
2150 #endif	/* !__xpv */
2151 }
2152 
2153 /*
2154  * Initialize the platform-specific parts of a page_t.
2155  */
2156 void
2157 add_physmem_cb(page_t *pp, pfn_t pnum)
2158 {
2159 	pp->p_pagenum = pnum;
2160 	pp->p_mapping = NULL;
2161 	pp->p_embed = 0;
2162 	pp->p_share = 0;
2163 	pp->p_mlentry = 0;
2164 }
2165 
2166 /*
2167  * kphysm_init() initializes physical memory.
2168  */
2169 static pgcnt_t
2170 kphysm_init(
2171 	page_t *pp,
2172 	pgcnt_t npages)
2173 {
2174 	struct memlist	*pmem;
2175 	struct memseg	*cur_memseg;
2176 	pfn_t		base_pfn;
2177 	pgcnt_t		num;
2178 	pgcnt_t		pages_done = 0;
2179 	uint64_t	addr;
2180 	uint64_t	size;
2181 	extern pfn_t	ddiphysmin;
2182 
2183 	ASSERT(page_hash != NULL && page_hashsz != 0);
2184 
2185 	cur_memseg = memseg_base;
2186 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2187 		/*
2188 		 * In a 32 bit kernel can't use higher memory if we're
2189 		 * not booting in PAE mode. This check takes care of that.
2190 		 */
2191 		addr = pmem->address;
2192 		size = pmem->size;
2193 		if (btop(addr) > physmax)
2194 			continue;
2195 
2196 		/*
2197 		 * align addr and size - they may not be at page boundaries
2198 		 */
2199 		if ((addr & MMU_PAGEOFFSET) != 0) {
2200 			addr += MMU_PAGEOFFSET;
2201 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2202 			size -= addr - pmem->address;
2203 		}
2204 
2205 		/* only process pages below or equal to physmax */
2206 		if ((btop(addr + size) - 1) > physmax)
2207 			size = ptob(physmax - btop(addr) + 1);
2208 
2209 		num = btop(size);
2210 		if (num == 0)
2211 			continue;
2212 
2213 		if (num > npages)
2214 			num = npages;
2215 
2216 		npages -= num;
2217 		pages_done += num;
2218 		base_pfn = btop(addr);
2219 
2220 		if (prom_debug)
2221 			prom_printf("MEMSEG addr=0x%" PRIx64
2222 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2223 			    addr, num, base_pfn, base_pfn + num);
2224 
2225 		/*
2226 		 * Ignore pages below ddiphysmin to simplify ddi memory
2227 		 * allocation with non-zero addr_lo requests.
2228 		 */
2229 		if (base_pfn < ddiphysmin) {
2230 			if (base_pfn + num <= ddiphysmin)
2231 				continue;
2232 			pp += (ddiphysmin - base_pfn);
2233 			num -= (ddiphysmin - base_pfn);
2234 			base_pfn = ddiphysmin;
2235 		}
2236 
2237 		/*
2238 		 * Build the memsegs entry
2239 		 */
2240 		cur_memseg->pages = pp;
2241 		cur_memseg->epages = pp + num;
2242 		cur_memseg->pages_base = base_pfn;
2243 		cur_memseg->pages_end = base_pfn + num;
2244 
2245 		/*
2246 		 * Insert into memseg list in decreasing pfn range order.
2247 		 * Low memory is typically more fragmented such that this
2248 		 * ordering keeps the larger ranges at the front of the list
2249 		 * for code that searches memseg.
2250 		 * This ASSERTS that the memsegs coming in from boot are in
2251 		 * increasing physical address order and not contiguous.
2252 		 */
2253 		if (memsegs != NULL) {
2254 			ASSERT(cur_memseg->pages_base >= memsegs->pages_end);
2255 			cur_memseg->next = memsegs;
2256 		}
2257 		memsegs = cur_memseg;
2258 
2259 		/*
2260 		 * add_physmem() initializes the PSM part of the page
2261 		 * struct by calling the PSM back with add_physmem_cb().
2262 		 * In addition it coalesces pages into larger pages as
2263 		 * it initializes them.
2264 		 */
2265 		add_physmem(pp, num, base_pfn);
2266 		cur_memseg++;
2267 		availrmem_initial += num;
2268 		availrmem += num;
2269 
2270 		pp += num;
2271 	}
2272 
2273 	PRM_DEBUG(availrmem_initial);
2274 	PRM_DEBUG(availrmem);
2275 	PRM_DEBUG(freemem);
2276 	build_pfn_hash();
2277 	return (pages_done);
2278 }
2279 
2280 /*
2281  * Kernel VM initialization.
2282  */
2283 static void
2284 kvm_init(void)
2285 {
2286 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2287 
2288 	/*
2289 	 * Put the kernel segments in kernel address space.
2290 	 */
2291 	rw_enter(&kas.a_lock, RW_WRITER);
2292 	as_avlinit(&kas);
2293 
2294 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2295 	(void) segkmem_create(&ktextseg);
2296 
2297 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2298 	(void) segkmem_create(&kvalloc);
2299 
2300 	(void) seg_attach(&kas, kernelheap,
2301 	    ekernelheap - kernelheap, &kvseg);
2302 	(void) segkmem_create(&kvseg);
2303 
2304 	if (core_size > 0) {
2305 		PRM_POINT("attaching kvseg_core");
2306 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2307 		    &kvseg_core);
2308 		(void) segkmem_create(&kvseg_core);
2309 	}
2310 
2311 	if (segziosize > 0) {
2312 		PRM_POINT("attaching segzio");
2313 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2314 		    &kzioseg);
2315 		(void) segkmem_zio_create(&kzioseg);
2316 
2317 		/* create zio area covering new segment */
2318 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2319 	}
2320 
2321 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2322 	(void) segkmem_create(&kdebugseg);
2323 
2324 	rw_exit(&kas.a_lock);
2325 
2326 	/*
2327 	 * Ensure that the red zone at kernelbase is never accessible.
2328 	 */
2329 	PRM_POINT("protecting redzone");
2330 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2331 
2332 	/*
2333 	 * Make the text writable so that it can be hot patched by DTrace.
2334 	 */
2335 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2336 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2337 
2338 	/*
2339 	 * Make data writable until end.
2340 	 */
2341 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2342 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2343 }
2344 
2345 #ifndef __xpv
2346 /*
2347  * These are MTTR registers supported by P6
2348  */
2349 static struct	mtrrvar	mtrrphys_arr[MAX_MTRRVAR];
2350 static uint64_t mtrr64k, mtrr16k1, mtrr16k2;
2351 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3;
2352 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6;
2353 static uint64_t mtrr4k7, mtrr4k8, mtrrcap;
2354 uint64_t mtrrdef, pat_attr_reg;
2355 
2356 /*
2357  * Disable reprogramming of MTRRs by default.
2358  */
2359 int	enable_relaxed_mtrr = 0;
2360 
2361 void
2362 setup_mtrr(void)
2363 {
2364 	int i, ecx;
2365 	int vcnt;
2366 	struct	mtrrvar	*mtrrphys;
2367 
2368 	if (!(x86_feature & X86_MTRR))
2369 		return;
2370 
2371 	mtrrcap = rdmsr(REG_MTRRCAP);
2372 	mtrrdef = rdmsr(REG_MTRRDEF);
2373 	if (mtrrcap & MTRRCAP_FIX) {
2374 		mtrr64k = rdmsr(REG_MTRR64K);
2375 		mtrr16k1 = rdmsr(REG_MTRR16K1);
2376 		mtrr16k2 = rdmsr(REG_MTRR16K2);
2377 		mtrr4k1 = rdmsr(REG_MTRR4K1);
2378 		mtrr4k2 = rdmsr(REG_MTRR4K2);
2379 		mtrr4k3 = rdmsr(REG_MTRR4K3);
2380 		mtrr4k4 = rdmsr(REG_MTRR4K4);
2381 		mtrr4k5 = rdmsr(REG_MTRR4K5);
2382 		mtrr4k6 = rdmsr(REG_MTRR4K6);
2383 		mtrr4k7 = rdmsr(REG_MTRR4K7);
2384 		mtrr4k8 = rdmsr(REG_MTRR4K8);
2385 	}
2386 	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
2387 		vcnt = MAX_MTRRVAR;
2388 
2389 	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
2390 	    i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
2391 		mtrrphys->mtrrphys_base = rdmsr(ecx);
2392 		mtrrphys->mtrrphys_mask = rdmsr(ecx + 1);
2393 		if ((x86_feature & X86_PAT) && enable_relaxed_mtrr)
2394 			mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V;
2395 	}
2396 	if (x86_feature & X86_PAT) {
2397 		if (enable_relaxed_mtrr)
2398 			mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E;
2399 		pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2400 	}
2401 
2402 	mtrr_sync();
2403 }
2404 
2405 /*
2406  * Sync current cpu mtrr with the incore copy of mtrr.
2407  * This function has to be invoked with interrupts disabled
2408  * Currently we do not capture other cpu's. This is invoked on cpu0
2409  * just after reading /etc/system.
2410  * On other cpu's its invoked from mp_startup().
2411  */
2412 void
2413 mtrr_sync(void)
2414 {
2415 	uint_t	crvalue, cr0_orig;
2416 	int	vcnt, i, ecx;
2417 	struct	mtrrvar	*mtrrphys;
2418 
2419 	cr0_orig = crvalue = getcr0();
2420 	crvalue |= CR0_CD;
2421 	crvalue &= ~CR0_NW;
2422 	setcr0(crvalue);
2423 	invalidate_cache();
2424 
2425 #if !defined(__xpv)
2426 	reload_cr3();
2427 #endif
2428 	if (x86_feature & X86_PAT)
2429 		wrmsr(REG_MTRRPAT, pat_attr_reg);
2430 
2431 	wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) &
2432 	    ~((uint64_t)(uintptr_t)MTRRDEF_E));
2433 
2434 	if (mtrrcap & MTRRCAP_FIX) {
2435 		wrmsr(REG_MTRR64K, mtrr64k);
2436 		wrmsr(REG_MTRR16K1, mtrr16k1);
2437 		wrmsr(REG_MTRR16K2, mtrr16k2);
2438 		wrmsr(REG_MTRR4K1, mtrr4k1);
2439 		wrmsr(REG_MTRR4K2, mtrr4k2);
2440 		wrmsr(REG_MTRR4K3, mtrr4k3);
2441 		wrmsr(REG_MTRR4K4, mtrr4k4);
2442 		wrmsr(REG_MTRR4K5, mtrr4k5);
2443 		wrmsr(REG_MTRR4K6, mtrr4k6);
2444 		wrmsr(REG_MTRR4K7, mtrr4k7);
2445 		wrmsr(REG_MTRR4K8, mtrr4k8);
2446 	}
2447 	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
2448 		vcnt = MAX_MTRRVAR;
2449 	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
2450 	    i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
2451 		wrmsr(ecx, mtrrphys->mtrrphys_base);
2452 		wrmsr(ecx + 1, mtrrphys->mtrrphys_mask);
2453 	}
2454 	wrmsr(REG_MTRRDEF, mtrrdef);
2455 
2456 #if !defined(__xpv)
2457 	reload_cr3();
2458 #endif
2459 	invalidate_cache();
2460 	setcr0(cr0_orig);
2461 }
2462 
2463 /*
2464  * resync mtrr so that BIOS is happy. Called from mdboot
2465  */
2466 void
2467 mtrr_resync(void)
2468 {
2469 	if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
2470 		/*
2471 		 * We could have changed the default mtrr definition.
2472 		 * Put it back to uncached which is what it is at power on
2473 		 */
2474 		mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E;
2475 		mtrr_sync();
2476 	}
2477 }
2478 #endif
2479 
2480 void
2481 get_system_configuration(void)
2482 {
2483 	char	prop[32];
2484 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2485 
2486 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2487 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2488 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2489 	    nodes_ll > MAXNODES ||
2490 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2491 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2492 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2493 		system_hardware.hd_nodes = 1;
2494 		system_hardware.hd_cpus_per_node = 0;
2495 	} else {
2496 		system_hardware.hd_nodes = (int)nodes_ll;
2497 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2498 	}
2499 
2500 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2501 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2502 	    kobj_getvalue(prop, &lvalue) == -1)
2503 		eprom_kernelbase = NULL;
2504 	else
2505 		eprom_kernelbase = (uintptr_t)lvalue;
2506 
2507 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2508 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2509 	    kobj_getvalue(prop, &lvalue) == -1)
2510 		segmapsize = SEGMAPDEFAULT;
2511 	else
2512 		segmapsize = (uintptr_t)lvalue;
2513 
2514 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2515 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2516 	    kobj_getvalue(prop, &lvalue) == -1)
2517 		segmapfreelists = 0;	/* use segmap driver default */
2518 	else
2519 		segmapfreelists = (int)lvalue;
2520 
2521 	/* physmem used to be here, but moved much earlier to fakebop.c */
2522 }
2523 
2524 /*
2525  * Add to a memory list.
2526  * start = start of new memory segment
2527  * len = length of new memory segment in bytes
2528  * new = pointer to a new struct memlist
2529  * memlistp = memory list to which to add segment.
2530  */
2531 void
2532 memlist_add(
2533 	uint64_t start,
2534 	uint64_t len,
2535 	struct memlist *new,
2536 	struct memlist **memlistp)
2537 {
2538 	struct memlist *cur;
2539 	uint64_t end = start + len;
2540 
2541 	new->address = start;
2542 	new->size = len;
2543 
2544 	cur = *memlistp;
2545 
2546 	while (cur) {
2547 		if (cur->address >= end) {
2548 			new->next = cur;
2549 			*memlistp = new;
2550 			new->prev = cur->prev;
2551 			cur->prev = new;
2552 			return;
2553 		}
2554 		ASSERT(cur->address + cur->size <= start);
2555 		if (cur->next == NULL) {
2556 			cur->next = new;
2557 			new->prev = cur;
2558 			new->next = NULL;
2559 			return;
2560 		}
2561 		memlistp = &cur->next;
2562 		cur = cur->next;
2563 	}
2564 }
2565 
2566 void
2567 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2568 {
2569 	size_t tsize = e_modtext - modtext;
2570 	size_t dsize = e_moddata - moddata;
2571 
2572 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2573 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2574 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2575 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2576 }
2577 
2578 caddr_t
2579 kobj_text_alloc(vmem_t *arena, size_t size)
2580 {
2581 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2582 }
2583 
2584 /*ARGSUSED*/
2585 caddr_t
2586 kobj_texthole_alloc(caddr_t addr, size_t size)
2587 {
2588 	panic("unexpected call to kobj_texthole_alloc()");
2589 	/*NOTREACHED*/
2590 	return (0);
2591 }
2592 
2593 /*ARGSUSED*/
2594 void
2595 kobj_texthole_free(caddr_t addr, size_t size)
2596 {
2597 	panic("unexpected call to kobj_texthole_free()");
2598 }
2599 
2600 /*
2601  * This is called just after configure() in startup().
2602  *
2603  * The ISALIST concept is a bit hopeless on Intel, because
2604  * there's no guarantee of an ever-more-capable processor
2605  * given that various parts of the instruction set may appear
2606  * and disappear between different implementations.
2607  *
2608  * While it would be possible to correct it and even enhance
2609  * it somewhat, the explicit hardware capability bitmask allows
2610  * more flexibility.
2611  *
2612  * So, we just leave this alone.
2613  */
2614 void
2615 setx86isalist(void)
2616 {
2617 	char *tp;
2618 	size_t len;
2619 	extern char *isa_list;
2620 
2621 #define	TBUFSIZE	1024
2622 
2623 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2624 	*tp = '\0';
2625 
2626 #if defined(__amd64)
2627 	(void) strcpy(tp, "amd64 ");
2628 #endif
2629 
2630 	switch (x86_vendor) {
2631 	case X86_VENDOR_Intel:
2632 	case X86_VENDOR_AMD:
2633 	case X86_VENDOR_TM:
2634 		if (x86_feature & X86_CMOV) {
2635 			/*
2636 			 * Pentium Pro or later
2637 			 */
2638 			(void) strcat(tp, "pentium_pro");
2639 			(void) strcat(tp, x86_feature & X86_MMX ?
2640 			    "+mmx pentium_pro " : " ");
2641 		}
2642 		/*FALLTHROUGH*/
2643 	case X86_VENDOR_Cyrix:
2644 		/*
2645 		 * The Cyrix 6x86 does not have any Pentium features
2646 		 * accessible while not at privilege level 0.
2647 		 */
2648 		if (x86_feature & X86_CPUID) {
2649 			(void) strcat(tp, "pentium");
2650 			(void) strcat(tp, x86_feature & X86_MMX ?
2651 			    "+mmx pentium " : " ");
2652 		}
2653 		break;
2654 	default:
2655 		break;
2656 	}
2657 	(void) strcat(tp, "i486 i386 i86");
2658 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2659 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2660 	kmem_free(tp, TBUFSIZE);
2661 
2662 #undef TBUFSIZE
2663 }
2664 
2665 
2666 #ifdef __amd64
2667 
2668 void *
2669 device_arena_alloc(size_t size, int vm_flag)
2670 {
2671 	return (vmem_alloc(device_arena, size, vm_flag));
2672 }
2673 
2674 void
2675 device_arena_free(void *vaddr, size_t size)
2676 {
2677 	vmem_free(device_arena, vaddr, size);
2678 }
2679 
2680 #else /* __i386 */
2681 
2682 void *
2683 device_arena_alloc(size_t size, int vm_flag)
2684 {
2685 	caddr_t	vaddr;
2686 	uintptr_t v;
2687 	size_t	start;
2688 	size_t	end;
2689 
2690 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2691 	if (vaddr == NULL)
2692 		return (NULL);
2693 
2694 	v = (uintptr_t)vaddr;
2695 	ASSERT(v >= kernelbase);
2696 	ASSERT(v + size <= valloc_base);
2697 
2698 	start = btop(v - kernelbase);
2699 	end = btop(v + size - 1 - kernelbase);
2700 	ASSERT(start < toxic_bit_map_len);
2701 	ASSERT(end < toxic_bit_map_len);
2702 
2703 	while (start <= end) {
2704 		BT_ATOMIC_SET(toxic_bit_map, start);
2705 		++start;
2706 	}
2707 	return (vaddr);
2708 }
2709 
2710 void
2711 device_arena_free(void *vaddr, size_t size)
2712 {
2713 	uintptr_t v = (uintptr_t)vaddr;
2714 	size_t	start;
2715 	size_t	end;
2716 
2717 	ASSERT(v >= kernelbase);
2718 	ASSERT(v + size <= valloc_base);
2719 
2720 	start = btop(v - kernelbase);
2721 	end = btop(v + size - 1 - kernelbase);
2722 	ASSERT(start < toxic_bit_map_len);
2723 	ASSERT(end < toxic_bit_map_len);
2724 
2725 	while (start <= end) {
2726 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
2727 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
2728 		++start;
2729 	}
2730 	vmem_free(heap_arena, vaddr, size);
2731 }
2732 
2733 /*
2734  * returns 1st address in range that is in device arena, or NULL
2735  * if len is not NULL it returns the length of the toxic range
2736  */
2737 void *
2738 device_arena_contains(void *vaddr, size_t size, size_t *len)
2739 {
2740 	uintptr_t v = (uintptr_t)vaddr;
2741 	uintptr_t eaddr = v + size;
2742 	size_t start;
2743 	size_t end;
2744 
2745 	/*
2746 	 * if called very early by kmdb, just return NULL
2747 	 */
2748 	if (toxic_bit_map == NULL)
2749 		return (NULL);
2750 
2751 	/*
2752 	 * First check if we're completely outside the bitmap range.
2753 	 */
2754 	if (v >= valloc_base || eaddr < kernelbase)
2755 		return (NULL);
2756 
2757 	/*
2758 	 * Trim ends of search to look at only what the bitmap covers.
2759 	 */
2760 	if (v < kernelbase)
2761 		v = kernelbase;
2762 	start = btop(v - kernelbase);
2763 	end = btop(eaddr - kernelbase);
2764 	if (end >= toxic_bit_map_len)
2765 		end = toxic_bit_map_len;
2766 
2767 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
2768 		return (NULL);
2769 
2770 	v = kernelbase + ptob(start);
2771 	if (len != NULL)
2772 		*len = ptob(end - start);
2773 	return ((void *)v);
2774 }
2775 
2776 #endif	/* __i386 */
2777