xref: /illumos-gate/usr/src/uts/i86pc/os/mp_startup.c (revision fb2f18f820d90b001aea4fb27dd654bc1263c440)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/proc.h>
34 #include <sys/disp.h>
35 #include <sys/mmu.h>
36 #include <sys/class.h>
37 #include <sys/cmn_err.h>
38 #include <sys/debug.h>
39 #include <sys/asm_linkage.h>
40 #include <sys/x_call.h>
41 #include <sys/systm.h>
42 #include <sys/var.h>
43 #include <sys/vtrace.h>
44 #include <vm/hat.h>
45 #include <sys/mmu.h>
46 #include <vm/as.h>
47 #include <vm/seg_kmem.h>
48 #include <sys/segments.h>
49 #include <sys/kmem.h>
50 #include <sys/stack.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/x86_archext.h>
53 #include <sys/machsystm.h>
54 #include <sys/traptrace.h>
55 #include <sys/clock.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/pg.h>
58 #include <sys/cmt.h>
59 #include <sys/dtrace.h>
60 #include <sys/archsystm.h>
61 #include <sys/fp.h>
62 #include <sys/reboot.h>
63 #include <sys/kdi.h>
64 #include <vm/hat_i86.h>
65 #include <sys/memnode.h>
66 #include <sys/pci_cfgspace.h>
67 #include <sys/cpu_module.h>
68 
69 struct cpu	cpus[1];			/* CPU data */
70 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
71 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
72 
73 /*
74  * Useful for disabling MP bring-up for an MP capable kernel
75  * (a kernel that was built with MP defined)
76  */
77 int use_mp = 1;
78 
79 /*
80  * To be set by a PSM to indicate what CPUs are available on the system.
81  */
82 cpuset_t mp_cpus = 1;
83 
84 /*
85  * This variable is used by the hat layer to decide whether or not
86  * critical sections are needed to prevent race conditions.  For sun4m,
87  * this variable is set once enough MP initialization has been done in
88  * order to allow cross calls.
89  */
90 int flushes_require_xcalls = 0;
91 cpuset_t	cpu_ready_set = 1;
92 
93 extern	void	real_mode_start(void);
94 extern	void	real_mode_end(void);
95 static 	void	mp_startup(void);
96 
97 static void cpu_sep_enable(void);
98 static void cpu_sep_disable(void);
99 static void cpu_asysc_enable(void);
100 static void cpu_asysc_disable(void);
101 
102 extern int tsc_gethrtime_enable;
103 
104 /*
105  * Init CPU info - get CPU type info for processor_info system call.
106  */
107 void
108 init_cpu_info(struct cpu *cp)
109 {
110 	processor_info_t *pi = &cp->cpu_type_info;
111 	char buf[CPU_IDSTRLEN];
112 
113 	/*
114 	 * Get clock-frequency property for the CPU.
115 	 */
116 	pi->pi_clock = cpu_freq;
117 
118 	(void) strcpy(pi->pi_processor_type, "i386");
119 	if (fpu_exists)
120 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
121 
122 	(void) cpuid_getidstr(cp, buf, sizeof (buf));
123 
124 	cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
125 	(void) strcpy(cp->cpu_idstr, buf);
126 
127 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
128 
129 	(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
130 	cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
131 	(void) strcpy(cp->cpu_brandstr, buf);
132 
133 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
134 }
135 
136 /*
137  * Configure syscall support on this CPU.
138  */
139 /*ARGSUSED*/
140 static void
141 init_cpu_syscall(struct cpu *cp)
142 {
143 	kpreempt_disable();
144 
145 #if defined(__amd64)
146 	if (x86_feature & X86_ASYSC) {
147 
148 #if !defined(__lint)
149 		/*
150 		 * The syscall instruction imposes a certain ordering on
151 		 * segment selectors, so we double-check that ordering
152 		 * here.
153 		 */
154 		ASSERT(KDS_SEL == KCS_SEL + 8);
155 		ASSERT(UDS_SEL == U32CS_SEL + 8);
156 		ASSERT(UCS_SEL == U32CS_SEL + 16);
157 #endif
158 		/*
159 		 * Turn syscall/sysret extensions on.
160 		 */
161 		cpu_asysc_enable();
162 
163 		/*
164 		 * Program the magic registers ..
165 		 */
166 		wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) <<
167 		    32);
168 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
169 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
170 
171 		/*
172 		 * This list of flags is masked off the incoming
173 		 * %rfl when we enter the kernel.
174 		 */
175 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
176 	}
177 #endif
178 
179 	/*
180 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
181 	 * hard to use syscall/sysret, and it is more portable anyway.
182 	 *
183 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
184 	 * variant isn't available to 32-bit applications, but sysenter is.
185 	 */
186 	if (x86_feature & X86_SEP) {
187 
188 #if !defined(__lint)
189 		/*
190 		 * The sysenter instruction imposes a certain ordering on
191 		 * segment selectors, so we double-check that ordering
192 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
193 		 * Intel Architecture Software Developer's Manual Volume 2:
194 		 * Instruction Set Reference"
195 		 */
196 		ASSERT(KDS_SEL == KCS_SEL + 8);
197 
198 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
199 		ASSERT32(UDS_SEL == UCS_SEL + 8);
200 
201 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
202 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
203 #endif
204 
205 		cpu_sep_enable();
206 
207 		/*
208 		 * resume() sets this value to the base of the threads stack
209 		 * via a context handler.
210 		 */
211 		wrmsr(MSR_INTC_SEP_ESP, 0ULL);
212 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
213 	}
214 
215 	kpreempt_enable();
216 }
217 
218 /*
219  * Multiprocessor initialization.
220  *
221  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
222  * startup and idle threads for the specified CPU.
223  */
224 static void
225 mp_startup_init(int cpun)
226 {
227 #if defined(__amd64)
228 extern void *long_mode_64(void);
229 #endif	/* __amd64 */
230 
231 	struct cpu *cp;
232 	struct tss *ntss;
233 	kthread_id_t tp;
234 	caddr_t	sp;
235 	int size;
236 	proc_t *procp;
237 	extern void idle();
238 
239 	struct cpu_tables *tablesp;
240 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
241 
242 #ifdef TRAPTRACE
243 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
244 #endif
245 
246 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
247 
248 	if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) {
249 		panic("mp_startup_init: cpu%d: "
250 		    "no memory for cpu structure", cpun);
251 		/*NOTREACHED*/
252 	}
253 	procp = curthread->t_procp;
254 
255 	mutex_enter(&cpu_lock);
256 	/*
257 	 * Initialize the dispatcher first.
258 	 */
259 	disp_cpu_init(cp);
260 	mutex_exit(&cpu_lock);
261 
262 	cpu_vm_data_init(cp);
263 
264 	/*
265 	 * Allocate and initialize the startup thread for this CPU.
266 	 * Interrupt and process switch stacks get allocated later
267 	 * when the CPU starts running.
268 	 */
269 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
270 	    TS_STOPPED, maxclsyspri);
271 
272 	/*
273 	 * Set state to TS_ONPROC since this thread will start running
274 	 * as soon as the CPU comes online.
275 	 *
276 	 * All the other fields of the thread structure are setup by
277 	 * thread_create().
278 	 */
279 	THREAD_ONPROC(tp, cp);
280 	tp->t_preempt = 1;
281 	tp->t_bound_cpu = cp;
282 	tp->t_affinitycnt = 1;
283 	tp->t_cpu = cp;
284 	tp->t_disp_queue = cp->cpu_disp;
285 
286 	/*
287 	 * Setup thread to start in mp_startup.
288 	 */
289 	sp = tp->t_stk;
290 	tp->t_pc = (uintptr_t)mp_startup;
291 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
292 
293 	cp->cpu_id = cpun;
294 	cp->cpu_self = cp;
295 	cp->cpu_thread = tp;
296 	cp->cpu_lwp = NULL;
297 	cp->cpu_dispthread = tp;
298 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
299 
300 	/*
301 	 * cpu_base_spl must be set explicitly here to prevent any blocking
302 	 * operations in mp_startup from causing the spl of the cpu to drop
303 	 * to 0 (allowing device interrupts before we're ready) in resume().
304 	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
305 	 * As an extra bit of security on DEBUG kernels, this is enforced with
306 	 * an assertion in mp_startup() -- before cpu_base_spl is set to its
307 	 * proper value.
308 	 */
309 	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
310 
311 	/*
312 	 * Now, initialize per-CPU idle thread for this CPU.
313 	 */
314 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
315 
316 	cp->cpu_idle_thread = tp;
317 
318 	tp->t_preempt = 1;
319 	tp->t_bound_cpu = cp;
320 	tp->t_affinitycnt = 1;
321 	tp->t_cpu = cp;
322 	tp->t_disp_queue = cp->cpu_disp;
323 
324 	/*
325 	 * Bootstrap the CPU's PG data
326 	 */
327 	pg_cpu_bootstrap(cp);
328 
329 	/*
330 	 * Perform CPC intialization on the new CPU.
331 	 */
332 	kcpc_hw_init(cp);
333 
334 	/*
335 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
336 	 * for each CPU.
337 	 */
338 
339 	setup_vaddr_for_ppcopy(cp);
340 
341 	/*
342 	 * Allocate space for page directory, stack, tss, gdt and idt.
343 	 * This assumes that kmem_alloc will return memory which is aligned
344 	 * to the next higher power of 2 or a page(if size > MAXABIG)
345 	 * If this assumption goes wrong at any time due to change in
346 	 * kmem alloc, things may not work as the page directory has to be
347 	 * page aligned
348 	 */
349 	if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL)
350 		panic("mp_startup_init: cpu%d cannot allocate tables", cpun);
351 
352 	if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) {
353 		kmem_free(tablesp, sizeof (struct cpu_tables));
354 		size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE;
355 		tablesp = kmem_zalloc(size, KM_NOSLEEP);
356 		tablesp = (struct cpu_tables *)
357 		    (((uintptr_t)tablesp + MMU_STD_PAGESIZE) &
358 		    MMU_STD_PAGEMASK);
359 	}
360 
361 	ntss = cp->cpu_tss = &tablesp->ct_tss;
362 
363 	if ((tablesp->ct_gdt = kmem_zalloc(PAGESIZE, KM_NOSLEEP)) == NULL)
364 		panic("mp_startup_init: cpu%d cannot allocate GDT", cpun);
365 	cp->cpu_gdt = tablesp->ct_gdt;
366 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t)));
367 
368 #if defined(__amd64)
369 
370 	/*
371 	 * #DF (double fault).
372 	 */
373 	ntss->tss_ist1 =
374 	    (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
375 
376 #elif defined(__i386)
377 
378 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
379 	    (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
380 
381 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
382 
383 	ntss->tss_eip = (uint32_t)mp_startup;
384 
385 	ntss->tss_cs = KCS_SEL;
386 	ntss->tss_fs = KFS_SEL;
387 	ntss->tss_gs = KGS_SEL;
388 
389 	/*
390 	 * setup kernel %gs.
391 	 */
392 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
393 	    SEL_KPL, 0, 1);
394 
395 #endif	/* __i386 */
396 
397 	/*
398 	 * Set I/O bit map offset equal to size of TSS segment limit
399 	 * for no I/O permission map. This will cause all user I/O
400 	 * instructions to generate #gp fault.
401 	 */
402 	ntss->tss_bitmapbase = sizeof (*ntss);
403 
404 	/*
405 	 * setup kernel tss.
406 	 */
407 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
408 	    sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL);
409 
410 	/*
411 	 * If we have more than one node, each cpu gets a copy of IDT
412 	 * local to its node. If this is a Pentium box, we use cpu 0's
413 	 * IDT. cpu 0's IDT has been made read-only to workaround the
414 	 * cmpxchgl register bug
415 	 */
416 	cp->cpu_idt = CPU->cpu_idt;
417 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
418 		cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP);
419 		bcopy(idt0, cp->cpu_idt, sizeof (idt0));
420 	}
421 
422 	/*
423 	 * Get interrupt priority data from cpu 0
424 	 */
425 	cp->cpu_pri_data = CPU->cpu_pri_data;
426 
427 	hat_cpu_online(cp);
428 
429 	/* Should remove all entries for the current process/thread here */
430 
431 	/*
432 	 * Fill up the real mode platter to make it easy for real mode code to
433 	 * kick it off. This area should really be one passed by boot to kernel
434 	 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
435 	 * have identical physical and virtual address in paged mode.
436 	 */
437 	real_mode_platter->rm_idt_base = cp->cpu_idt;
438 	real_mode_platter->rm_idt_lim = sizeof (idt0) - 1;
439 	real_mode_platter->rm_gdt_base = cp->cpu_gdt;
440 	real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1;
441 	real_mode_platter->rm_pdbr = getcr3();
442 	real_mode_platter->rm_cpu = cpun;
443 	real_mode_platter->rm_x86feature = x86_feature;
444 	real_mode_platter->rm_cr4 = cr4_value;
445 
446 #if defined(__amd64)
447 	if (getcr3() > 0xffffffffUL)
448 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
449 			"located above 4G in physical memory (@ 0x%llx).",
450 			(unsigned long long)getcr3());
451 
452 	/*
453 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
454 	 * by code in real_mode_start():
455 	 *
456 	 * GDT[0]:  NULL selector
457 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
458 	 *
459 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
460 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
461 	 * a course of action as any other, though it may cause the entire
462 	 * platform to reset in some cases...
463 	 */
464 	real_mode_platter->rm_temp_gdt[0] = 0ULL;
465 	real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
466 
467 	real_mode_platter->rm_temp_gdt_lim = (ushort_t)
468 	    (sizeof (real_mode_platter->rm_temp_gdt) - 1);
469 	real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
470 	    (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
471 
472 	real_mode_platter->rm_temp_idt_lim = 0;
473 	real_mode_platter->rm_temp_idt_base = 0;
474 
475 	/*
476 	 * Since the CPU needs to jump to protected mode using an identity
477 	 * mapped address, we need to calculate it here.
478 	 */
479 	real_mode_platter->rm_longmode64_addr = rm_platter_pa +
480 	    ((uint32_t)long_mode_64 - (uint32_t)real_mode_start);
481 #endif	/* __amd64 */
482 
483 #ifdef TRAPTRACE
484 	/*
485 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this
486 	 * CPU.
487 	 */
488 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
489 	ttc->ttc_next = ttc->ttc_first;
490 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
491 #endif
492 
493 	/*
494 	 * Record that we have another CPU.
495 	 */
496 	mutex_enter(&cpu_lock);
497 	/*
498 	 * Initialize the interrupt threads for this CPU
499 	 */
500 	cpu_intr_alloc(cp, NINTR_THREADS);
501 	/*
502 	 * Add CPU to list of available CPUs.  It'll be on the active list
503 	 * after mp_startup().
504 	 */
505 	cpu_add_unit(cp);
506 	mutex_exit(&cpu_lock);
507 }
508 
509 /*
510  * Apply workarounds for known errata, and warn about those that are absent.
511  *
512  * System vendors occasionally create configurations which contain different
513  * revisions of the CPUs that are almost but not exactly the same.  At the
514  * time of writing, this meant that their clock rates were the same, their
515  * feature sets were the same, but the required workaround were -not-
516  * necessarily the same.  So, this routine is invoked on -every- CPU soon
517  * after starting to make sure that the resulting system contains the most
518  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
519  * system.
520  *
521  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
522  * mp_startup() for all slave CPUs. Slaves process workaround_errata prior
523  * to acknowledging their readiness to the master, so this routine will
524  * never be executed by multiple CPUs in parallel, thus making updates to
525  * global data safe.
526  *
527  * These workarounds are based on Rev 3.57 of the Revision Guide for
528  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
529  */
530 
531 #if defined(OPTERON_ERRATUM_91)
532 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
533 #endif
534 
535 #if defined(OPTERON_ERRATUM_93)
536 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
537 #endif
538 
539 #if defined(OPTERON_ERRATUM_100)
540 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
541 #endif
542 
543 #if defined(OPTERON_ERRATUM_109)
544 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
545 #endif
546 
547 #if defined(OPTERON_ERRATUM_121)
548 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
549 #endif
550 
551 #if defined(OPTERON_ERRATUM_122)
552 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
553 #endif
554 
555 #if defined(OPTERON_ERRATUM_123)
556 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
557 #endif
558 
559 #if defined(OPTERON_ERRATUM_131)
560 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
561 #endif
562 
563 #if defined(OPTERON_WORKAROUND_6336786)
564 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
565 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
566 #endif
567 
568 #if defined(OPTERON_WORKAROUND_6323525)
569 int opteron_workaround_6323525;	/* if non-zero -> at least one cpu has it */
570 #endif
571 
572 #define	WARNING(cpu, n)						\
573 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d",	\
574 	    (cpu)->cpu_id, (n))
575 
576 uint_t
577 workaround_errata(struct cpu *cpu)
578 {
579 	uint_t missing = 0;
580 
581 	ASSERT(cpu == CPU);
582 
583 	/*LINTED*/
584 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
585 		/*
586 		 * SWAPGS May Fail To Read Correct GS Base
587 		 */
588 #if defined(OPTERON_ERRATUM_88)
589 		/*
590 		 * The workaround is an mfence in the relevant assembler code
591 		 */
592 #else
593 		WARNING(cpu, 88);
594 		missing++;
595 #endif
596 	}
597 
598 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
599 		/*
600 		 * Software Prefetches May Report A Page Fault
601 		 */
602 #if defined(OPTERON_ERRATUM_91)
603 		/*
604 		 * fix is in trap.c
605 		 */
606 		opteron_erratum_91++;
607 #else
608 		WARNING(cpu, 91);
609 		missing++;
610 #endif
611 	}
612 
613 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
614 		/*
615 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
616 		 */
617 #if defined(OPTERON_ERRATUM_93)
618 		/*
619 		 * fix is in trap.c
620 		 */
621 		opteron_erratum_93++;
622 #else
623 		WARNING(cpu, 93);
624 		missing++;
625 #endif
626 	}
627 
628 	/*LINTED*/
629 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
630 		/*
631 		 * RET Instruction May Return to Incorrect EIP
632 		 */
633 #if defined(OPTERON_ERRATUM_95)
634 #if defined(_LP64)
635 		/*
636 		 * Workaround this by ensuring that 32-bit user code and
637 		 * 64-bit kernel code never occupy the same address
638 		 * range mod 4G.
639 		 */
640 		if (_userlimit32 > 0xc0000000ul)
641 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
642 
643 		/*LINTED*/
644 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
645 #endif	/* _LP64 */
646 #else
647 		WARNING(cpu, 95);
648 		missing++;
649 #endif	/* OPTERON_ERRATUM_95 */
650 	}
651 
652 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
653 		/*
654 		 * Compatibility Mode Branches Transfer to Illegal Address
655 		 */
656 #if defined(OPTERON_ERRATUM_100)
657 		/*
658 		 * fix is in trap.c
659 		 */
660 		opteron_erratum_100++;
661 #else
662 		WARNING(cpu, 100);
663 		missing++;
664 #endif
665 	}
666 
667 	/*LINTED*/
668 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
669 		/*
670 		 * CPUID Instruction May Return Incorrect Model Number In
671 		 * Some Processors
672 		 */
673 #if defined(OPTERON_ERRATUM_108)
674 		/*
675 		 * (Our cpuid-handling code corrects the model number on
676 		 * those processors)
677 		 */
678 #else
679 		WARNING(cpu, 108);
680 		missing++;
681 #endif
682 	}
683 
684 	/*LINTED*/
685 	if (cpuid_opteron_erratum(cpu, 109) > 0) {
686 		/*
687 		 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour
688 		 */
689 #if defined(OPTERON_ERRATUM_109)
690 
691 		/* workaround is to print a warning to upgrade BIOS */
692 		if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
693 			opteron_erratum_109++;
694 #else
695 		WARNING(cpu, 109);
696 		missing++;
697 #endif
698 	}
699 	/*LINTED*/
700 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
701 		/*
702 		 * Sequential Execution Across Non_Canonical Boundary Caused
703 		 * Processor Hang
704 		 */
705 #if defined(OPTERON_ERRATUM_121)
706 		static int	lma;
707 
708 		if (opteron_erratum_121)
709 			opteron_erratum_121++;
710 
711 		/*
712 		 * Erratum 121 is only present in long (64 bit) mode.
713 		 * Workaround is to include the page immediately before the
714 		 * va hole to eliminate the possibility of system hangs due to
715 		 * sequential execution across the va hole boundary.
716 		 */
717 		if (lma == 0) {
718 			/*
719 			 * check LMA once: assume all cpus are in long mode
720 			 * or not.
721 			 */
722 			lma = 1;
723 
724 			if (rdmsr(MSR_AMD_EFER) & AMD_EFER_LMA) {
725 				if (hole_start) {
726 					hole_start -= PAGESIZE;
727 				} else {
728 					/*
729 					 * hole_start not yet initialized by
730 					 * mmu_init. Initialize hole_start
731 					 * with value to be subtracted.
732 					 */
733 					hole_start = PAGESIZE;
734 				}
735 				opteron_erratum_121++;
736 			}
737 		}
738 #else
739 		WARNING(cpu, 121);
740 		missing++;
741 #endif
742 	}
743 
744 	/*LINTED*/
745 	if (cpuid_opteron_erratum(cpu, 122) > 0) {
746 		/*
747 		 * TLB Flush Filter May Cause Cohenrency Problem in
748 		 * Multiprocessor Systems
749 		 */
750 #if defined(OPTERON_ERRATUM_122)
751 		/*
752 		 * Erratum 122 is only present in MP configurations (multi-core
753 		 * or multi-processor).
754 		 */
755 
756 		if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 ||
757 		    cpuid_get_ncpu_per_chip(cpu) > 1) {
758 			/* disable TLB Flush Filter */
759 			wrmsr(MSR_AMD_HWCR, rdmsr(MSR_AMD_HWCR) |
760 			    (uint64_t)(uintptr_t)AMD_HWCR_FFDIS);
761 			opteron_erratum_122++;
762 		}
763 
764 #else
765 		WARNING(cpu, 122);
766 		missing++;
767 #endif
768 	}
769 
770 #if defined(OPTERON_ERRATUM_123)
771 	/*LINTED*/
772 	if (cpuid_opteron_erratum(cpu, 123) > 0) {
773 		/*
774 		 * Bypassed Reads May Cause Data Corruption of System Hang in
775 		 * Dual Core Processors
776 		 */
777 		/*
778 		 * Erratum 123 applies only to multi-core cpus.
779 		 */
780 
781 		if (cpuid_get_ncpu_per_chip(cpu) > 1) {
782 			/* workaround is to print a warning to upgrade BIOS */
783 			if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
784 				opteron_erratum_123++;
785 		}
786 	}
787 #endif
788 
789 #if defined(OPTERON_ERRATUM_131)
790 	/*LINTED*/
791 	if (cpuid_opteron_erratum(cpu, 131) > 0) {
792 		/*
793 		 * Multiprocessor Systems with Four or More Cores May Deadlock
794 		 * Waiting for a Probe Response
795 		 */
796 		/*
797 		 * Erratum 131 applies to any system with four or more cores.
798 		 */
799 		if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt *
800 		    cpuid_get_ncpu_per_chip(cpu)) >= 4)) {
801 			uint64_t nbcfg;
802 			uint64_t wabits;
803 
804 			/*
805 			 * Print a warning if neither of the workarounds
806 			 * for Erratum 131 is present.
807 			 */
808 
809 			wabits = AMD_NB_CFG_SRQ_HEARTBEAT |
810 			    AMD_NB_CFG_SRQ_SPR;
811 
812 			nbcfg = rdmsr(MSR_AMD_NB_CFG);
813 			if ((nbcfg & wabits) == 0) {
814 				opteron_erratum_131++;
815 			} else {
816 				/* cannot have both workarounds set */
817 				ASSERT((nbcfg & wabits) != wabits);
818 			}
819 		}
820 	}
821 #endif
822 
823 #if defined(OPTERON_WORKAROUND_6336786)
824 	/*
825 	 * This isn't really erratum, but for convenience the
826 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
827 	 */
828 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
829 		int	node;
830 		uint8_t data;
831 
832 		/*
833 		 * Disable C1-Clock ramping on multi-core/multi-processor
834 		 * K8 platforms to guard against TSC drift.
835 		 */
836 		if (opteron_workaround_6336786) {
837 			opteron_workaround_6336786++;
838 		} else if ((lgrp_plat_node_cnt *
839 		    cpuid_get_ncpu_per_chip(cpu) >= 2) ||
840 		    opteron_workaround_6336786_UP) {
841 			for (node = 0; node < lgrp_plat_node_cnt; node++) {
842 				/*
843 				 * Clear PMM7[1:0] (function 3, offset 0x87)
844 				 * Northbridge device is the node id + 24.
845 				 */
846 				data = pci_getb_func(0, node + 24, 3, 0x87);
847 				data &= 0xFC;
848 				pci_putb_func(0, node + 24, 3, 0x87, data);
849 			}
850 			opteron_workaround_6336786++;
851 		}
852 	}
853 #endif
854 
855 #if defined(OPTERON_WORKAROUND_6323525)
856 	/*LINTED*/
857 	/*
858 	 * Mutex primitives don't work as expected.
859 	 */
860 	if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
861 
862 		/*
863 		 * problem only occurs with 2 or more cores. If bit in
864 		 * MSR_BU_CFG set, then not applicable. The workaround
865 		 * is to patch the semaphone routines with the lfence
866 		 * instruction to provide necessary load memory barrier with
867 		 * possible subsequent read-modify-write ops.
868 		 *
869 		 * It is too early in boot to call the patch routine so
870 		 * set erratum variable to be done in startup_end().
871 		 */
872 		if (opteron_workaround_6323525) {
873 			opteron_workaround_6323525++;
874 		} else if ((x86_feature & X86_SSE2) && ((lgrp_plat_node_cnt *
875 		    cpuid_get_ncpu_per_chip(cpu)) >= 2)) {
876 			if ((xrdmsr(MSR_BU_CFG) & 0x02) == 0)
877 				opteron_workaround_6323525++;
878 		}
879 	}
880 #endif
881 	return (missing);
882 }
883 
884 void
885 workaround_errata_end()
886 {
887 #if defined(OPTERON_ERRATUM_109)
888 	if (opteron_erratum_109) {
889 		cmn_err(CE_WARN,
890 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
891 		    " processor\nerratum 109 was not detected; updating your"
892 		    " system's BIOS to a version\ncontaining this"
893 		    " microcode patch is HIGHLY recommended or erroneous"
894 		    " system\noperation may occur.\n");
895 	}
896 #endif	/* OPTERON_ERRATUM_109 */
897 #if defined(OPTERON_ERRATUM_123)
898 	if (opteron_erratum_123) {
899 		cmn_err(CE_WARN,
900 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
901 		    " processor\nerratum 123 was not detected; updating your"
902 		    " system's BIOS to a version\ncontaining this"
903 		    " microcode patch is HIGHLY recommended or erroneous"
904 		    " system\noperation may occur.\n");
905 	}
906 #endif	/* OPTERON_ERRATUM_123 */
907 #if defined(OPTERON_ERRATUM_131)
908 	if (opteron_erratum_131) {
909 		cmn_err(CE_WARN,
910 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
911 		    " processor\nerratum 131 was not detected; updating your"
912 		    " system's BIOS to a version\ncontaining this"
913 		    " microcode patch is HIGHLY recommended or erroneous"
914 		    " system\noperation may occur.\n");
915 	}
916 #endif	/* OPTERON_ERRATUM_131 */
917 }
918 
919 static ushort_t *mp_map_warm_reset_vector();
920 static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector);
921 
922 static cpuset_t procset = 1;
923 
924 /*ARGSUSED*/
925 void
926 start_other_cpus(int cprboot)
927 {
928 	unsigned int who;
929 	int skipped = 0;
930 	int cpuid = 0;
931 	int delays = 0;
932 	int started_cpu;
933 	ushort_t *warm_reset_vector = NULL;
934 
935 	/*
936 	 * Initialize our own cpu_info.
937 	 */
938 	init_cpu_info(CPU);
939 
940 	/*
941 	 * Initialize our syscall handlers
942 	 */
943 	init_cpu_syscall(CPU);
944 
945 	/*
946 	 * if only 1 cpu or not using MP, skip the rest of this
947 	 */
948 	if (CPUSET_ISEQUAL(mp_cpus, cpu_ready_set) || use_mp == 0) {
949 		if (use_mp == 0)
950 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
951 		goto done;
952 	}
953 
954 	/*
955 	 * perform such initialization as is needed
956 	 * to be able to take CPUs on- and off-line.
957 	 */
958 	cpu_pause_init();
959 
960 	xc_init();		/* initialize processor crosscalls */
961 
962 	/*
963 	 * Copy the real mode code at "real_mode_start" to the
964 	 * page at rm_platter_va.
965 	 */
966 	warm_reset_vector = mp_map_warm_reset_vector();
967 	if (warm_reset_vector == NULL)
968 		goto done;
969 
970 	bcopy((caddr_t)real_mode_start,
971 	    (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code,
972 	    (size_t)real_mode_end - (size_t)real_mode_start);
973 
974 	flushes_require_xcalls = 1;
975 
976 	ASSERT(CPU_IN_SET(procset, cpuid));
977 	ASSERT(CPU_IN_SET(cpu_ready_set, cpuid));
978 
979 	/*
980 	 * We lock our affinity to the master CPU to ensure that all slave CPUs
981 	 * do their TSC syncs with the same CPU.
982 	 */
983 	affinity_set(CPU_CURRENT);
984 
985 	for (who = 0; who < NCPU; who++) {
986 		if (who == cpuid)
987 			continue;
988 
989 		delays = 0;
990 
991 		if (!CPU_IN_SET(mp_cpus, who))
992 			continue;
993 
994 		if (ncpus >= max_ncpus) {
995 			skipped = who;
996 			continue;
997 		}
998 
999 		mp_startup_init(who);
1000 		started_cpu = 1;
1001 		(*cpu_startf)(who, rm_platter_pa);
1002 
1003 		while (!CPU_IN_SET(procset, who)) {
1004 			delay(1);
1005 			if (++delays > (20 * hz)) {
1006 
1007 				cmn_err(CE_WARN,
1008 				    "cpu%d failed to start", who);
1009 
1010 				mutex_enter(&cpu_lock);
1011 				cpu[who]->cpu_flags = 0;
1012 				cpu_vm_data_destroy(cpu[who]);
1013 				cpu_del_unit(who);
1014 				mutex_exit(&cpu_lock);
1015 
1016 				started_cpu = 0;
1017 				break;
1018 			}
1019 		}
1020 		if (!started_cpu)
1021 			continue;
1022 		if (tsc_gethrtime_enable)
1023 			tsc_sync_master(who);
1024 
1025 	}
1026 
1027 	affinity_clear();
1028 
1029 	/*
1030 	 * Wait for all CPUs that booted (have presence in procset)
1031 	 * to come online (have presence in cpu_ready_set).  Note
1032 	 * that the start CPU already satisfies both of these, so no
1033 	 * special case is needed.
1034 	 */
1035 	for (who = 0; who < NCPU; who++) {
1036 		if (!CPU_IN_SET(procset, who))
1037 			continue;
1038 
1039 		while (!CPU_IN_SET(cpu_ready_set, who))
1040 			delay(1);
1041 	}
1042 
1043 	if (skipped) {
1044 		cmn_err(CE_NOTE,
1045 		    "System detected %d CPU(s), but "
1046 		    "only %d CPU(s) were enabled during boot.",
1047 		    skipped + 1, ncpus);
1048 		cmn_err(CE_NOTE,
1049 		    "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1050 		    "See eeprom(1M).");
1051 	}
1052 
1053 done:
1054 	workaround_errata_end();
1055 
1056 	if (warm_reset_vector != NULL)
1057 		mp_unmap_warm_reset_vector(warm_reset_vector);
1058 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
1059 	    HAT_UNLOAD);
1060 
1061 	cmi_post_mpstartup();
1062 }
1063 
1064 /*
1065  * Dummy functions - no i86pc platforms support dynamic cpu allocation.
1066  */
1067 /*ARGSUSED*/
1068 int
1069 mp_cpu_configure(int cpuid)
1070 {
1071 	return (ENOTSUP);		/* not supported */
1072 }
1073 
1074 /*ARGSUSED*/
1075 int
1076 mp_cpu_unconfigure(int cpuid)
1077 {
1078 	return (ENOTSUP);		/* not supported */
1079 }
1080 
1081 /*
1082  * Startup function for 'other' CPUs (besides boot cpu).
1083  * Called from real_mode_start.
1084  *
1085  * WARNING: until CPU_READY is set, mp_startup and routines called by
1086  * mp_startup should not call routines (e.g. kmem_free) that could call
1087  * hat_unload which requires CPU_READY to be set.
1088  */
1089 void
1090 mp_startup(void)
1091 {
1092 	struct cpu *cp = CPU;
1093 	uint_t new_x86_feature;
1094 
1095 	/*
1096 	 * We need to get TSC on this proc synced (i.e., any delta
1097 	 * from cpu0 accounted for) as soon as we can, because many
1098 	 * many things use gethrtime/pc_gethrestime, including
1099 	 * interrupts, cmn_err, etc.
1100 	 */
1101 
1102 	/* Let cpu0 continue into tsc_sync_master() */
1103 	CPUSET_ATOMIC_ADD(procset, cp->cpu_id);
1104 
1105 	if (tsc_gethrtime_enable)
1106 		tsc_sync_slave();
1107 
1108 	/*
1109 	 * Once this was done from assembly, but it's safer here; if
1110 	 * it blocks, we need to be able to swtch() to and from, and
1111 	 * since we get here by calling t_pc, we need to do that call
1112 	 * before swtch() overwrites it.
1113 	 */
1114 
1115 	(void) (*ap_mlsetup)();
1116 
1117 	new_x86_feature = cpuid_pass1(cp);
1118 
1119 	/*
1120 	 * We need to Sync MTRR with cpu0's MTRR. We have to do
1121 	 * this with interrupts disabled.
1122 	 */
1123 	if (x86_feature & X86_MTRR)
1124 		mtrr_sync();
1125 
1126 	/*
1127 	 * Initialize this CPU's syscall handlers
1128 	 */
1129 	init_cpu_syscall(cp);
1130 
1131 	/*
1132 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1133 	 * highest level at which a routine is permitted to block on
1134 	 * an adaptive mutex (allows for cpu poke interrupt in case
1135 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1136 	 * device interrupts that may end up in the hat layer issuing cross
1137 	 * calls before CPU_READY is set.
1138 	 */
1139 	(void) splx(ipltospl(LOCK_LEVEL));
1140 
1141 	/*
1142 	 * Do a sanity check to make sure this new CPU is a sane thing
1143 	 * to add to the collection of processors running this system.
1144 	 *
1145 	 * XXX	Clearly this needs to get more sophisticated, if x86
1146 	 * systems start to get built out of heterogenous CPUs; as is
1147 	 * likely to happen once the number of processors in a configuration
1148 	 * gets large enough.
1149 	 */
1150 	if ((x86_feature & new_x86_feature) != x86_feature) {
1151 		cmn_err(CE_CONT, "?cpu%d: %b\n",
1152 		    cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
1153 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1154 	}
1155 
1156 	/*
1157 	 * We could be more sophisticated here, and just mark the CPU
1158 	 * as "faulted" but at this point we'll opt for the easier
1159 	 * answer of dieing horribly.  Provided the boot cpu is ok,
1160 	 * the system can be recovered by booting with use_mp set to zero.
1161 	 */
1162 	if (workaround_errata(cp) != 0)
1163 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1164 
1165 	cpuid_pass2(cp);
1166 	cpuid_pass3(cp);
1167 	(void) cpuid_pass4(cp);
1168 
1169 	init_cpu_info(cp);
1170 
1171 	mutex_enter(&cpu_lock);
1172 	/*
1173 	 * Processor group initialization for this CPU is dependent on the
1174 	 * cpuid probing, which must be done in the context of the current
1175 	 * CPU.
1176 	 */
1177 	pghw_physid_create(cp);
1178 	pg_cpu_init(cp);
1179 	pg_cmt_cpu_startup(cp);
1180 
1181 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS;
1182 	cpu_add_active(cp);
1183 
1184 	if (dtrace_cpu_init != NULL) {
1185 		(*dtrace_cpu_init)(cp->cpu_id);
1186 	}
1187 
1188 	mutex_exit(&cpu_lock);
1189 
1190 	/*
1191 	 * Enable preemption here so that contention for any locks acquired
1192 	 * later in mp_startup may be preempted if the thread owning those
1193 	 * locks is continously executing on other CPUs (for example, this
1194 	 * CPU must be preemptible to allow other CPUs to pause it during their
1195 	 * startup phases).  It's safe to enable preemption here because the
1196 	 * CPU state is pretty-much fully constructed.
1197 	 */
1198 	curthread->t_preempt = 0;
1199 
1200 	add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
1201 
1202 	/* The base spl should still be at LOCK LEVEL here */
1203 	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1204 	set_base_spl();		/* Restore the spl to its proper value */
1205 
1206 	(void) spl0();				/* enable interrupts */
1207 
1208 	/*
1209 	 * Set up the CPU module for this CPU.  This can't be done before
1210 	 * this CPU is made CPU_READY, because we may (in heterogeneous systems)
1211 	 * need to go load another CPU module.  The act of attempting to load
1212 	 * a module may trigger a cross-call, which will ASSERT unless this
1213 	 * cpu is CPU_READY.
1214 	 */
1215 	cmi_init();
1216 
1217 	if (x86_feature & X86_MCA)
1218 		cmi_mca_init();
1219 
1220 	if (boothowto & RB_DEBUG)
1221 		kdi_dvec_cpu_init(cp);
1222 
1223 	/*
1224 	 * Setting the bit in cpu_ready_set must be the last operation in
1225 	 * processor initialization; the boot CPU will continue to boot once
1226 	 * it sees this bit set for all active CPUs.
1227 	 */
1228 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1229 
1230 	/*
1231 	 * Because mp_startup() gets fired off after init() starts, we
1232 	 * can't use the '?' trick to do 'boot -v' printing - so we
1233 	 * always direct the 'cpu .. online' messages to the log.
1234 	 */
1235 	cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
1236 	    cp->cpu_id);
1237 
1238 	/*
1239 	 * Now we are done with the startup thread, so free it up.
1240 	 */
1241 	thread_exit();
1242 	panic("mp_startup: cannot return");
1243 	/*NOTREACHED*/
1244 }
1245 
1246 
1247 /*
1248  * Start CPU on user request.
1249  */
1250 /* ARGSUSED */
1251 int
1252 mp_cpu_start(struct cpu *cp)
1253 {
1254 	ASSERT(MUTEX_HELD(&cpu_lock));
1255 	return (0);
1256 }
1257 
1258 /*
1259  * Stop CPU on user request.
1260  */
1261 /* ARGSUSED */
1262 int
1263 mp_cpu_stop(struct cpu *cp)
1264 {
1265 	extern int cbe_psm_timer_mode;
1266 	ASSERT(MUTEX_HELD(&cpu_lock));
1267 
1268 	/*
1269 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1270 	 * can't stop it.  (This is true only for machines with no TSC.)
1271 	 */
1272 
1273 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1274 		return (1);
1275 
1276 	return (0);
1277 }
1278 
1279 /*
1280  * Power on CPU.
1281  */
1282 /* ARGSUSED */
1283 int
1284 mp_cpu_poweron(struct cpu *cp)
1285 {
1286 	ASSERT(MUTEX_HELD(&cpu_lock));
1287 	return (ENOTSUP);		/* not supported */
1288 }
1289 
1290 /*
1291  * Power off CPU.
1292  */
1293 /* ARGSUSED */
1294 int
1295 mp_cpu_poweroff(struct cpu *cp)
1296 {
1297 	ASSERT(MUTEX_HELD(&cpu_lock));
1298 	return (ENOTSUP);		/* not supported */
1299 }
1300 
1301 
1302 /*
1303  * Take the specified CPU out of participation in interrupts.
1304  */
1305 int
1306 cpu_disable_intr(struct cpu *cp)
1307 {
1308 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1309 		return (EBUSY);
1310 
1311 	cp->cpu_flags &= ~CPU_ENABLE;
1312 	return (0);
1313 }
1314 
1315 /*
1316  * Allow the specified CPU to participate in interrupts.
1317  */
1318 void
1319 cpu_enable_intr(struct cpu *cp)
1320 {
1321 	ASSERT(MUTEX_HELD(&cpu_lock));
1322 	cp->cpu_flags |= CPU_ENABLE;
1323 	psm_enable_intr(cp->cpu_id);
1324 }
1325 
1326 
1327 
1328 static ushort_t *
1329 mp_map_warm_reset_vector()
1330 {
1331 	ushort_t *warm_reset_vector;
1332 
1333 	if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
1334 	    sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
1335 		return (NULL);
1336 
1337 	/*
1338 	 * setup secondary cpu bios boot up vector
1339 	 */
1340 	*warm_reset_vector = (ushort_t)((caddr_t)
1341 		((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
1342 		+ ((ulong_t)rm_platter_va & 0xf));
1343 	warm_reset_vector++;
1344 	*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
1345 
1346 	--warm_reset_vector;
1347 	return (warm_reset_vector);
1348 }
1349 
1350 static void
1351 mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector)
1352 {
1353 	psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
1354 }
1355 
1356 void
1357 mp_cpu_faulted_enter(struct cpu *cp)
1358 {
1359 	cmi_faulted_enter(cp);
1360 }
1361 
1362 void
1363 mp_cpu_faulted_exit(struct cpu *cp)
1364 {
1365 	cmi_faulted_exit(cp);
1366 }
1367 
1368 /*
1369  * The following two routines are used as context operators on threads belonging
1370  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1371  * processes, these routines are currently written for best code readability and
1372  * organization rather than speed.  We could avoid checking x86_feature at every
1373  * context switch by installing different context ops, depending on the
1374  * x86_feature flags, at LDT creation time -- one for each combination of fast
1375  * syscall feature flags.
1376  */
1377 
1378 /*ARGSUSED*/
1379 void
1380 cpu_fast_syscall_disable(void *arg)
1381 {
1382 	if (x86_feature & X86_SEP)
1383 		cpu_sep_disable();
1384 	if (x86_feature & X86_ASYSC)
1385 		cpu_asysc_disable();
1386 }
1387 
1388 /*ARGSUSED*/
1389 void
1390 cpu_fast_syscall_enable(void *arg)
1391 {
1392 	if (x86_feature & X86_SEP)
1393 		cpu_sep_enable();
1394 	if (x86_feature & X86_ASYSC)
1395 		cpu_asysc_enable();
1396 }
1397 
1398 static void
1399 cpu_sep_enable(void)
1400 {
1401 	ASSERT(x86_feature & X86_SEP);
1402 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1403 
1404 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
1405 }
1406 
1407 static void
1408 cpu_sep_disable(void)
1409 {
1410 	ASSERT(x86_feature & X86_SEP);
1411 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1412 
1413 	/*
1414 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
1415 	 * the sysenter or sysexit instruction to trigger a #gp fault.
1416 	 */
1417 	wrmsr(MSR_INTC_SEP_CS, 0ULL);
1418 }
1419 
1420 static void
1421 cpu_asysc_enable(void)
1422 {
1423 	ASSERT(x86_feature & X86_ASYSC);
1424 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1425 
1426 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
1427 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
1428 }
1429 
1430 static void
1431 cpu_asysc_disable(void)
1432 {
1433 	ASSERT(x86_feature & X86_ASYSC);
1434 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1435 
1436 	/*
1437 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
1438 	 * executing syscall or sysret with this bit off will incur a #ud trap.
1439 	 */
1440 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
1441 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
1442 }
1443