xref: /illumos-gate/usr/src/uts/i86pc/os/mp_startup.c (revision 5e54b56d6254caa06251211530e584534f39fba3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/thread.h>
32 #include <sys/cpuvar.h>
33 #include <sys/cpu.h>
34 #include <sys/t_lock.h>
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/disp.h>
38 #include <sys/class.h>
39 #include <sys/cmn_err.h>
40 #include <sys/debug.h>
41 #include <sys/note.h>
42 #include <sys/asm_linkage.h>
43 #include <sys/x_call.h>
44 #include <sys/systm.h>
45 #include <sys/var.h>
46 #include <sys/vtrace.h>
47 #include <vm/hat.h>
48 #include <vm/as.h>
49 #include <vm/seg_kmem.h>
50 #include <vm/seg_kp.h>
51 #include <sys/segments.h>
52 #include <sys/kmem.h>
53 #include <sys/stack.h>
54 #include <sys/smp_impldefs.h>
55 #include <sys/x86_archext.h>
56 #include <sys/machsystm.h>
57 #include <sys/traptrace.h>
58 #include <sys/clock.h>
59 #include <sys/cpc_impl.h>
60 #include <sys/pg.h>
61 #include <sys/cmt.h>
62 #include <sys/dtrace.h>
63 #include <sys/archsystm.h>
64 #include <sys/fp.h>
65 #include <sys/reboot.h>
66 #include <sys/kdi_machimpl.h>
67 #include <vm/hat_i86.h>
68 #include <vm/vm_dep.h>
69 #include <sys/memnode.h>
70 #include <sys/pci_cfgspace.h>
71 #include <sys/mach_mmu.h>
72 #include <sys/sysmacros.h>
73 #if defined(__xpv)
74 #include <sys/hypervisor.h>
75 #endif
76 #include <sys/cpu_module.h>
77 
78 struct cpu	cpus[1];			/* CPU data */
79 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
80 struct cpu	*cpu_free_list;			/* list for released CPUs */
81 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
82 
83 #define	cpu_next_free	cpu_prev
84 
85 /*
86  * Useful for disabling MP bring-up on a MP capable system.
87  */
88 int use_mp = 1;
89 
90 /*
91  * to be set by a PSM to indicate what cpus
92  * are sitting around on the system.
93  */
94 cpuset_t mp_cpus;
95 
96 /*
97  * This variable is used by the hat layer to decide whether or not
98  * critical sections are needed to prevent race conditions.  For sun4m,
99  * this variable is set once enough MP initialization has been done in
100  * order to allow cross calls.
101  */
102 int flushes_require_xcalls;
103 
104 cpuset_t cpu_ready_set;		/* initialized in startup() */
105 
106 static void mp_startup_boot(void);
107 static void mp_startup_hotplug(void);
108 
109 static void cpu_sep_enable(void);
110 static void cpu_sep_disable(void);
111 static void cpu_asysc_enable(void);
112 static void cpu_asysc_disable(void);
113 
114 /*
115  * Init CPU info - get CPU type info for processor_info system call.
116  */
117 void
118 init_cpu_info(struct cpu *cp)
119 {
120 	processor_info_t *pi = &cp->cpu_type_info;
121 
122 	/*
123 	 * Get clock-frequency property for the CPU.
124 	 */
125 	pi->pi_clock = cpu_freq;
126 
127 	/*
128 	 * Current frequency in Hz.
129 	 */
130 	cp->cpu_curr_clock = cpu_freq_hz;
131 
132 	/*
133 	 * Supported frequencies.
134 	 */
135 	if (cp->cpu_supp_freqs == NULL) {
136 		cpu_set_supp_freqs(cp, NULL);
137 	}
138 
139 	(void) strcpy(pi->pi_processor_type, "i386");
140 	if (fpu_exists)
141 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
142 
143 	cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
144 	cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
145 
146 	/*
147 	 * If called for the BSP, cp is equal to current CPU.
148 	 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info
149 	 * of current CPU as default values for cpu_idstr and cpu_brandstr.
150 	 * They will be corrected in mp_startup_common() after cpuid_pass1()
151 	 * has been invoked on target CPU.
152 	 */
153 	(void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN);
154 	(void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN);
155 }
156 
157 /*
158  * Configure syscall support on this CPU.
159  */
160 /*ARGSUSED*/
161 void
162 init_cpu_syscall(struct cpu *cp)
163 {
164 	kpreempt_disable();
165 
166 #if defined(__amd64)
167 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
168 	    is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
169 
170 #if !defined(__lint)
171 		/*
172 		 * The syscall instruction imposes a certain ordering on
173 		 * segment selectors, so we double-check that ordering
174 		 * here.
175 		 */
176 		ASSERT(KDS_SEL == KCS_SEL + 8);
177 		ASSERT(UDS_SEL == U32CS_SEL + 8);
178 		ASSERT(UCS_SEL == U32CS_SEL + 16);
179 #endif
180 		/*
181 		 * Turn syscall/sysret extensions on.
182 		 */
183 		cpu_asysc_enable();
184 
185 		/*
186 		 * Program the magic registers ..
187 		 */
188 		wrmsr(MSR_AMD_STAR,
189 		    ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
190 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
191 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
192 
193 		/*
194 		 * This list of flags is masked off the incoming
195 		 * %rfl when we enter the kernel.
196 		 */
197 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
198 	}
199 #endif
200 
201 	/*
202 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
203 	 * hard to use syscall/sysret, and it is more portable anyway.
204 	 *
205 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
206 	 * variant isn't available to 32-bit applications, but sysenter is.
207 	 */
208 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
209 	    is_x86_feature(x86_featureset, X86FSET_SEP)) {
210 
211 #if !defined(__lint)
212 		/*
213 		 * The sysenter instruction imposes a certain ordering on
214 		 * segment selectors, so we double-check that ordering
215 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
216 		 * Intel Architecture Software Developer's Manual Volume 2:
217 		 * Instruction Set Reference"
218 		 */
219 		ASSERT(KDS_SEL == KCS_SEL + 8);
220 
221 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
222 		ASSERT32(UDS_SEL == UCS_SEL + 8);
223 
224 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
225 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
226 #endif
227 
228 		cpu_sep_enable();
229 
230 		/*
231 		 * resume() sets this value to the base of the threads stack
232 		 * via a context handler.
233 		 */
234 		wrmsr(MSR_INTC_SEP_ESP, 0);
235 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
236 	}
237 
238 	kpreempt_enable();
239 }
240 
241 /*
242  * Multiprocessor initialization.
243  *
244  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
245  * startup and idle threads for the specified CPU.
246  * Parameter boot is true for boot time operations and is false for CPU
247  * DR operations.
248  */
249 static struct cpu *
250 mp_cpu_configure_common(int cpun, boolean_t boot)
251 {
252 	struct cpu *cp;
253 	kthread_id_t tp;
254 	caddr_t	sp;
255 	proc_t *procp;
256 #if !defined(__xpv)
257 	extern int idle_cpu_prefer_mwait;
258 	extern void cpu_idle_mwait();
259 #endif
260 	extern void idle();
261 	extern void cpu_idle();
262 
263 #ifdef TRAPTRACE
264 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
265 #endif
266 
267 	ASSERT(MUTEX_HELD(&cpu_lock));
268 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
269 
270 	if (cpu_free_list == NULL) {
271 		cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
272 	} else {
273 		cp = cpu_free_list;
274 		cpu_free_list = cp->cpu_next_free;
275 	}
276 
277 	cp->cpu_m.mcpu_istamp = cpun << 16;
278 
279 	/* Create per CPU specific threads in the process p0. */
280 	procp = &p0;
281 
282 	/*
283 	 * Initialize the dispatcher first.
284 	 */
285 	disp_cpu_init(cp);
286 
287 	cpu_vm_data_init(cp);
288 
289 	/*
290 	 * Allocate and initialize the startup thread for this CPU.
291 	 * Interrupt and process switch stacks get allocated later
292 	 * when the CPU starts running.
293 	 */
294 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
295 	    TS_STOPPED, maxclsyspri);
296 
297 	/*
298 	 * Set state to TS_ONPROC since this thread will start running
299 	 * as soon as the CPU comes online.
300 	 *
301 	 * All the other fields of the thread structure are setup by
302 	 * thread_create().
303 	 */
304 	THREAD_ONPROC(tp, cp);
305 	tp->t_preempt = 1;
306 	tp->t_bound_cpu = cp;
307 	tp->t_affinitycnt = 1;
308 	tp->t_cpu = cp;
309 	tp->t_disp_queue = cp->cpu_disp;
310 
311 	/*
312 	 * Setup thread to start in mp_startup_common.
313 	 */
314 	sp = tp->t_stk;
315 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
316 #if defined(__amd64)
317 	tp->t_sp -= STACK_ENTRY_ALIGN;		/* fake a call */
318 #endif
319 	/*
320 	 * Setup thread start entry point for boot or hotplug.
321 	 */
322 	if (boot) {
323 		tp->t_pc = (uintptr_t)mp_startup_boot;
324 	} else {
325 		tp->t_pc = (uintptr_t)mp_startup_hotplug;
326 	}
327 
328 	cp->cpu_id = cpun;
329 	cp->cpu_self = cp;
330 	cp->cpu_thread = tp;
331 	cp->cpu_lwp = NULL;
332 	cp->cpu_dispthread = tp;
333 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
334 
335 	/*
336 	 * cpu_base_spl must be set explicitly here to prevent any blocking
337 	 * operations in mp_startup_common from causing the spl of the cpu
338 	 * to drop to 0 (allowing device interrupts before we're ready) in
339 	 * resume().
340 	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
341 	 * As an extra bit of security on DEBUG kernels, this is enforced with
342 	 * an assertion in mp_startup_common() -- before cpu_base_spl is set
343 	 * to its proper value.
344 	 */
345 	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
346 
347 	/*
348 	 * Now, initialize per-CPU idle thread for this CPU.
349 	 */
350 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
351 
352 	cp->cpu_idle_thread = tp;
353 
354 	tp->t_preempt = 1;
355 	tp->t_bound_cpu = cp;
356 	tp->t_affinitycnt = 1;
357 	tp->t_cpu = cp;
358 	tp->t_disp_queue = cp->cpu_disp;
359 
360 	/*
361 	 * Bootstrap the CPU's PG data
362 	 */
363 	pg_cpu_bootstrap(cp);
364 
365 	/*
366 	 * Perform CPC initialization on the new CPU.
367 	 */
368 	kcpc_hw_init(cp);
369 
370 	/*
371 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
372 	 * for each CPU.
373 	 */
374 	setup_vaddr_for_ppcopy(cp);
375 
376 	/*
377 	 * Allocate page for new GDT and initialize from current GDT.
378 	 */
379 #if !defined(__lint)
380 	ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
381 #endif
382 	cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
383 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
384 
385 #if defined(__i386)
386 	/*
387 	 * setup kernel %gs.
388 	 */
389 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
390 	    SEL_KPL, 0, 1);
391 #endif
392 
393 	/*
394 	 * If we have more than one node, each cpu gets a copy of IDT
395 	 * local to its node. If this is a Pentium box, we use cpu 0's
396 	 * IDT. cpu 0's IDT has been made read-only to workaround the
397 	 * cmpxchgl register bug
398 	 */
399 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
400 #if !defined(__lint)
401 		ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
402 #endif
403 		cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
404 		bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
405 	} else {
406 		cp->cpu_idt = CPU->cpu_idt;
407 	}
408 
409 	/*
410 	 * Get interrupt priority data from cpu 0.
411 	 */
412 	cp->cpu_pri_data = CPU->cpu_pri_data;
413 
414 	/*
415 	 * alloc space for cpuid info
416 	 */
417 	cpuid_alloc_space(cp);
418 #if !defined(__xpv)
419 	if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
420 	    idle_cpu_prefer_mwait) {
421 		cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp);
422 		cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
423 	} else
424 #endif
425 		cp->cpu_m.mcpu_idle_cpu = cpu_idle;
426 
427 	init_cpu_info(cp);
428 
429 	/*
430 	 * alloc space for ucode_info
431 	 */
432 	ucode_alloc_space(cp);
433 	xc_init_cpu(cp);
434 	hat_cpu_online(cp);
435 
436 #ifdef TRAPTRACE
437 	/*
438 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
439 	 */
440 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
441 	ttc->ttc_next = ttc->ttc_first;
442 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
443 #endif
444 
445 	/*
446 	 * Record that we have another CPU.
447 	 */
448 	/*
449 	 * Initialize the interrupt threads for this CPU
450 	 */
451 	cpu_intr_alloc(cp, NINTR_THREADS);
452 
453 	cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
454 	cpu_set_state(cp);
455 
456 	/*
457 	 * Add CPU to list of available CPUs.  It'll be on the active list
458 	 * after mp_startup_common().
459 	 */
460 	cpu_add_unit(cp);
461 
462 	return (cp);
463 }
464 
465 /*
466  * Undo what was done in mp_cpu_configure_common
467  */
468 static void
469 mp_cpu_unconfigure_common(struct cpu *cp, int error)
470 {
471 	ASSERT(MUTEX_HELD(&cpu_lock));
472 
473 	/*
474 	 * Remove the CPU from the list of available CPUs.
475 	 */
476 	cpu_del_unit(cp->cpu_id);
477 
478 	if (error == ETIMEDOUT) {
479 		/*
480 		 * The cpu was started, but never *seemed* to run any
481 		 * code in the kernel; it's probably off spinning in its
482 		 * own private world, though with potential references to
483 		 * our kmem-allocated IDTs and GDTs (for example).
484 		 *
485 		 * Worse still, it may actually wake up some time later,
486 		 * so rather than guess what it might or might not do, we
487 		 * leave the fundamental data structures intact.
488 		 */
489 		cp->cpu_flags = 0;
490 		return;
491 	}
492 
493 	/*
494 	 * At this point, the only threads bound to this CPU should
495 	 * special per-cpu threads: it's idle thread, it's pause threads,
496 	 * and it's interrupt threads.  Clean these up.
497 	 */
498 	cpu_destroy_bound_threads(cp);
499 	cp->cpu_idle_thread = NULL;
500 
501 	/*
502 	 * Free the interrupt stack.
503 	 */
504 	segkp_release(segkp,
505 	    cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
506 	cp->cpu_intr_stack = NULL;
507 
508 #ifdef TRAPTRACE
509 	/*
510 	 * Discard the trap trace buffer
511 	 */
512 	{
513 		trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
514 
515 		kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
516 		ttc->ttc_first = NULL;
517 	}
518 #endif
519 
520 	hat_cpu_offline(cp);
521 
522 	ucode_free_space(cp);
523 
524 	/* Free CPU ID string and brand string. */
525 	if (cp->cpu_idstr) {
526 		kmem_free(cp->cpu_idstr, CPU_IDSTRLEN);
527 		cp->cpu_idstr = NULL;
528 	}
529 	if (cp->cpu_brandstr) {
530 		kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN);
531 		cp->cpu_brandstr = NULL;
532 	}
533 
534 #if !defined(__xpv)
535 	if (cp->cpu_m.mcpu_mwait != NULL) {
536 		cpuid_mwait_free(cp);
537 		cp->cpu_m.mcpu_mwait = NULL;
538 	}
539 #endif
540 	cpuid_free_space(cp);
541 
542 	if (cp->cpu_idt != CPU->cpu_idt)
543 		kmem_free(cp->cpu_idt, PAGESIZE);
544 	cp->cpu_idt = NULL;
545 
546 	kmem_free(cp->cpu_gdt, PAGESIZE);
547 	cp->cpu_gdt = NULL;
548 
549 	if (cp->cpu_supp_freqs != NULL) {
550 		size_t len = strlen(cp->cpu_supp_freqs) + 1;
551 		kmem_free(cp->cpu_supp_freqs, len);
552 		cp->cpu_supp_freqs = NULL;
553 	}
554 
555 	teardown_vaddr_for_ppcopy(cp);
556 
557 	kcpc_hw_fini(cp);
558 
559 	cp->cpu_dispthread = NULL;
560 	cp->cpu_thread = NULL;	/* discarded by cpu_destroy_bound_threads() */
561 
562 	cpu_vm_data_destroy(cp);
563 
564 	xc_fini_cpu(cp);
565 	disp_cpu_fini(cp);
566 
567 	ASSERT(cp != CPU0);
568 	bzero(cp, sizeof (*cp));
569 	cp->cpu_next_free = cpu_free_list;
570 	cpu_free_list = cp;
571 }
572 
573 /*
574  * Apply workarounds for known errata, and warn about those that are absent.
575  *
576  * System vendors occasionally create configurations which contain different
577  * revisions of the CPUs that are almost but not exactly the same.  At the
578  * time of writing, this meant that their clock rates were the same, their
579  * feature sets were the same, but the required workaround were -not-
580  * necessarily the same.  So, this routine is invoked on -every- CPU soon
581  * after starting to make sure that the resulting system contains the most
582  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
583  * system.
584  *
585  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
586  * mp_startup_common() for all slave CPUs. Slaves process workaround_errata
587  * prior to acknowledging their readiness to the master, so this routine will
588  * never be executed by multiple CPUs in parallel, thus making updates to
589  * global data safe.
590  *
591  * These workarounds are based on Rev 3.57 of the Revision Guide for
592  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
593  */
594 
595 #if defined(OPTERON_ERRATUM_88)
596 int opteron_erratum_88;		/* if non-zero -> at least one cpu has it */
597 #endif
598 
599 #if defined(OPTERON_ERRATUM_91)
600 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
601 #endif
602 
603 #if defined(OPTERON_ERRATUM_93)
604 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
605 #endif
606 
607 #if defined(OPTERON_ERRATUM_95)
608 int opteron_erratum_95;		/* if non-zero -> at least one cpu has it */
609 #endif
610 
611 #if defined(OPTERON_ERRATUM_100)
612 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
613 #endif
614 
615 #if defined(OPTERON_ERRATUM_108)
616 int opteron_erratum_108;	/* if non-zero -> at least one cpu has it */
617 #endif
618 
619 #if defined(OPTERON_ERRATUM_109)
620 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
621 #endif
622 
623 #if defined(OPTERON_ERRATUM_121)
624 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
625 #endif
626 
627 #if defined(OPTERON_ERRATUM_122)
628 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
629 #endif
630 
631 #if defined(OPTERON_ERRATUM_123)
632 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
633 #endif
634 
635 #if defined(OPTERON_ERRATUM_131)
636 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
637 #endif
638 
639 #if defined(OPTERON_WORKAROUND_6336786)
640 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
641 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
642 #endif
643 
644 #if defined(OPTERON_WORKAROUND_6323525)
645 int opteron_workaround_6323525;	/* if non-zero -> at least one cpu has it */
646 #endif
647 
648 #if defined(OPTERON_ERRATUM_298)
649 int opteron_erratum_298;
650 #endif
651 
652 #if defined(OPTERON_ERRATUM_721)
653 int opteron_erratum_721;
654 #endif
655 
656 static void
657 workaround_warning(cpu_t *cp, uint_t erratum)
658 {
659 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
660 	    cp->cpu_id, erratum);
661 }
662 
663 static void
664 workaround_applied(uint_t erratum)
665 {
666 	if (erratum > 1000000)
667 		cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
668 		    erratum);
669 	else
670 		cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
671 		    erratum);
672 }
673 
674 static void
675 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
676 {
677 	cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
678 	    cp->cpu_id, rw, msr, error);
679 }
680 
681 /*
682  * Determine the number of nodes in a Hammer / Greyhound / Griffin family
683  * system.
684  */
685 static uint_t
686 opteron_get_nnodes(void)
687 {
688 	static uint_t nnodes = 0;
689 
690 	if (nnodes == 0) {
691 #ifdef	DEBUG
692 		uint_t family;
693 
694 		/*
695 		 * This routine uses a PCI config space based mechanism
696 		 * for retrieving the number of nodes in the system.
697 		 * Device 24, function 0, offset 0x60 as used here is not
698 		 * AMD processor architectural, and may not work on processor
699 		 * families other than those listed below.
700 		 *
701 		 * Callers of this routine must ensure that we're running on
702 		 * a processor which supports this mechanism.
703 		 * The assertion below is meant to catch calls on unsupported
704 		 * processors.
705 		 */
706 		family = cpuid_getfamily(CPU);
707 		ASSERT(family == 0xf || family == 0x10 || family == 0x11);
708 #endif	/* DEBUG */
709 
710 		/*
711 		 * Obtain the number of nodes in the system from
712 		 * bits [6:4] of the Node ID register on node 0.
713 		 *
714 		 * The actual node count is NodeID[6:4] + 1
715 		 *
716 		 * The Node ID register is accessed via function 0,
717 		 * offset 0x60. Node 0 is device 24.
718 		 */
719 		nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
720 	}
721 	return (nnodes);
722 }
723 
724 uint_t
725 do_erratum_298(struct cpu *cpu)
726 {
727 	static int	osvwrc = -3;
728 	extern int	osvw_opteron_erratum(cpu_t *, uint_t);
729 
730 	/*
731 	 * L2 Eviction May Occur During Processor Operation To Set
732 	 * Accessed or Dirty Bit.
733 	 */
734 	if (osvwrc == -3) {
735 		osvwrc = osvw_opteron_erratum(cpu, 298);
736 	} else {
737 		/* osvw return codes should be consistent for all cpus */
738 		ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
739 	}
740 
741 	switch (osvwrc) {
742 	case 0:		/* erratum is not present: do nothing */
743 		break;
744 	case 1:		/* erratum is present: BIOS workaround applied */
745 		/*
746 		 * check if workaround is actually in place and issue warning
747 		 * if not.
748 		 */
749 		if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
750 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
751 #if defined(OPTERON_ERRATUM_298)
752 			opteron_erratum_298++;
753 #else
754 			workaround_warning(cpu, 298);
755 			return (1);
756 #endif
757 		}
758 		break;
759 	case -1:	/* cannot determine via osvw: check cpuid */
760 		if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
761 		    (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
762 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
763 #if defined(OPTERON_ERRATUM_298)
764 			opteron_erratum_298++;
765 #else
766 			workaround_warning(cpu, 298);
767 			return (1);
768 #endif
769 		}
770 		break;
771 	}
772 	return (0);
773 }
774 
775 uint_t
776 workaround_errata(struct cpu *cpu)
777 {
778 	uint_t missing = 0;
779 
780 	ASSERT(cpu == CPU);
781 
782 	/*LINTED*/
783 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
784 		/*
785 		 * SWAPGS May Fail To Read Correct GS Base
786 		 */
787 #if defined(OPTERON_ERRATUM_88)
788 		/*
789 		 * The workaround is an mfence in the relevant assembler code
790 		 */
791 		opteron_erratum_88++;
792 #else
793 		workaround_warning(cpu, 88);
794 		missing++;
795 #endif
796 	}
797 
798 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
799 		/*
800 		 * Software Prefetches May Report A Page Fault
801 		 */
802 #if defined(OPTERON_ERRATUM_91)
803 		/*
804 		 * fix is in trap.c
805 		 */
806 		opteron_erratum_91++;
807 #else
808 		workaround_warning(cpu, 91);
809 		missing++;
810 #endif
811 	}
812 
813 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
814 		/*
815 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
816 		 */
817 #if defined(OPTERON_ERRATUM_93)
818 		/*
819 		 * fix is in trap.c
820 		 */
821 		opteron_erratum_93++;
822 #else
823 		workaround_warning(cpu, 93);
824 		missing++;
825 #endif
826 	}
827 
828 	/*LINTED*/
829 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
830 		/*
831 		 * RET Instruction May Return to Incorrect EIP
832 		 */
833 #if defined(OPTERON_ERRATUM_95)
834 #if defined(_LP64)
835 		/*
836 		 * Workaround this by ensuring that 32-bit user code and
837 		 * 64-bit kernel code never occupy the same address
838 		 * range mod 4G.
839 		 */
840 		if (_userlimit32 > 0xc0000000ul)
841 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
842 
843 		/*LINTED*/
844 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
845 		opteron_erratum_95++;
846 #endif	/* _LP64 */
847 #else
848 		workaround_warning(cpu, 95);
849 		missing++;
850 #endif
851 	}
852 
853 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
854 		/*
855 		 * Compatibility Mode Branches Transfer to Illegal Address
856 		 */
857 #if defined(OPTERON_ERRATUM_100)
858 		/*
859 		 * fix is in trap.c
860 		 */
861 		opteron_erratum_100++;
862 #else
863 		workaround_warning(cpu, 100);
864 		missing++;
865 #endif
866 	}
867 
868 	/*LINTED*/
869 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
870 		/*
871 		 * CPUID Instruction May Return Incorrect Model Number In
872 		 * Some Processors
873 		 */
874 #if defined(OPTERON_ERRATUM_108)
875 		/*
876 		 * (Our cpuid-handling code corrects the model number on
877 		 * those processors)
878 		 */
879 #else
880 		workaround_warning(cpu, 108);
881 		missing++;
882 #endif
883 	}
884 
885 	/*LINTED*/
886 	if (cpuid_opteron_erratum(cpu, 109) > 0) do {
887 		/*
888 		 * Certain Reverse REP MOVS May Produce Unpredictable Behavior
889 		 */
890 #if defined(OPTERON_ERRATUM_109)
891 		/*
892 		 * The "workaround" is to print a warning to upgrade the BIOS
893 		 */
894 		uint64_t value;
895 		const uint_t msr = MSR_AMD_PATCHLEVEL;
896 		int err;
897 
898 		if ((err = checked_rdmsr(msr, &value)) != 0) {
899 			msr_warning(cpu, "rd", msr, err);
900 			workaround_warning(cpu, 109);
901 			missing++;
902 		}
903 		if (value == 0)
904 			opteron_erratum_109++;
905 #else
906 		workaround_warning(cpu, 109);
907 		missing++;
908 #endif
909 	/*CONSTANTCONDITION*/
910 	} while (0);
911 
912 	/*LINTED*/
913 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
914 		/*
915 		 * Sequential Execution Across Non_Canonical Boundary Caused
916 		 * Processor Hang
917 		 */
918 #if defined(OPTERON_ERRATUM_121)
919 #if defined(_LP64)
920 		/*
921 		 * Erratum 121 is only present in long (64 bit) mode.
922 		 * Workaround is to include the page immediately before the
923 		 * va hole to eliminate the possibility of system hangs due to
924 		 * sequential execution across the va hole boundary.
925 		 */
926 		if (opteron_erratum_121)
927 			opteron_erratum_121++;
928 		else {
929 			if (hole_start) {
930 				hole_start -= PAGESIZE;
931 			} else {
932 				/*
933 				 * hole_start not yet initialized by
934 				 * mmu_init. Initialize hole_start
935 				 * with value to be subtracted.
936 				 */
937 				hole_start = PAGESIZE;
938 			}
939 			opteron_erratum_121++;
940 		}
941 #endif	/* _LP64 */
942 #else
943 		workaround_warning(cpu, 121);
944 		missing++;
945 #endif
946 	}
947 
948 	/*LINTED*/
949 	if (cpuid_opteron_erratum(cpu, 122) > 0) do {
950 		/*
951 		 * TLB Flush Filter May Cause Coherency Problem in
952 		 * Multiprocessor Systems
953 		 */
954 #if defined(OPTERON_ERRATUM_122)
955 		uint64_t value;
956 		const uint_t msr = MSR_AMD_HWCR;
957 		int error;
958 
959 		/*
960 		 * Erratum 122 is only present in MP configurations (multi-core
961 		 * or multi-processor).
962 		 */
963 #if defined(__xpv)
964 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
965 			break;
966 		if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
967 			break;
968 #else
969 		if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
970 		    cpuid_get_ncpu_per_chip(cpu) == 1)
971 			break;
972 #endif
973 		/* disable TLB Flush Filter */
974 
975 		if ((error = checked_rdmsr(msr, &value)) != 0) {
976 			msr_warning(cpu, "rd", msr, error);
977 			workaround_warning(cpu, 122);
978 			missing++;
979 		} else {
980 			value |= (uint64_t)AMD_HWCR_FFDIS;
981 			if ((error = checked_wrmsr(msr, value)) != 0) {
982 				msr_warning(cpu, "wr", msr, error);
983 				workaround_warning(cpu, 122);
984 				missing++;
985 			}
986 		}
987 		opteron_erratum_122++;
988 #else
989 		workaround_warning(cpu, 122);
990 		missing++;
991 #endif
992 	/*CONSTANTCONDITION*/
993 	} while (0);
994 
995 	/*LINTED*/
996 	if (cpuid_opteron_erratum(cpu, 123) > 0) do {
997 		/*
998 		 * Bypassed Reads May Cause Data Corruption of System Hang in
999 		 * Dual Core Processors
1000 		 */
1001 #if defined(OPTERON_ERRATUM_123)
1002 		uint64_t value;
1003 		const uint_t msr = MSR_AMD_PATCHLEVEL;
1004 		int err;
1005 
1006 		/*
1007 		 * Erratum 123 applies only to multi-core cpus.
1008 		 */
1009 		if (cpuid_get_ncpu_per_chip(cpu) < 2)
1010 			break;
1011 #if defined(__xpv)
1012 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1013 			break;
1014 #endif
1015 		/*
1016 		 * The "workaround" is to print a warning to upgrade the BIOS
1017 		 */
1018 		if ((err = checked_rdmsr(msr, &value)) != 0) {
1019 			msr_warning(cpu, "rd", msr, err);
1020 			workaround_warning(cpu, 123);
1021 			missing++;
1022 		}
1023 		if (value == 0)
1024 			opteron_erratum_123++;
1025 #else
1026 		workaround_warning(cpu, 123);
1027 		missing++;
1028 
1029 #endif
1030 	/*CONSTANTCONDITION*/
1031 	} while (0);
1032 
1033 	/*LINTED*/
1034 	if (cpuid_opteron_erratum(cpu, 131) > 0) do {
1035 		/*
1036 		 * Multiprocessor Systems with Four or More Cores May Deadlock
1037 		 * Waiting for a Probe Response
1038 		 */
1039 #if defined(OPTERON_ERRATUM_131)
1040 		uint64_t nbcfg;
1041 		const uint_t msr = MSR_AMD_NB_CFG;
1042 		const uint64_t wabits =
1043 		    AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
1044 		int error;
1045 
1046 		/*
1047 		 * Erratum 131 applies to any system with four or more cores.
1048 		 */
1049 		if (opteron_erratum_131)
1050 			break;
1051 #if defined(__xpv)
1052 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
1053 			break;
1054 		if (xpv_nr_phys_cpus() < 4)
1055 			break;
1056 #else
1057 		if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1058 			break;
1059 #endif
1060 		/*
1061 		 * Print a warning if neither of the workarounds for
1062 		 * erratum 131 is present.
1063 		 */
1064 		if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1065 			msr_warning(cpu, "rd", msr, error);
1066 			workaround_warning(cpu, 131);
1067 			missing++;
1068 		} else if ((nbcfg & wabits) == 0) {
1069 			opteron_erratum_131++;
1070 		} else {
1071 			/* cannot have both workarounds set */
1072 			ASSERT((nbcfg & wabits) != wabits);
1073 		}
1074 #else
1075 		workaround_warning(cpu, 131);
1076 		missing++;
1077 #endif
1078 	/*CONSTANTCONDITION*/
1079 	} while (0);
1080 
1081 	/*
1082 	 * This isn't really an erratum, but for convenience the
1083 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
1084 	 */
1085 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1086 #if defined(OPTERON_WORKAROUND_6336786)
1087 		/*
1088 		 * Disable C1-Clock ramping on multi-core/multi-processor
1089 		 * K8 platforms to guard against TSC drift.
1090 		 */
1091 		if (opteron_workaround_6336786) {
1092 			opteron_workaround_6336786++;
1093 #if defined(__xpv)
1094 		} else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1095 		    xpv_nr_phys_cpus() > 1) ||
1096 		    opteron_workaround_6336786_UP) {
1097 			/*
1098 			 * XXPV	Hmm.  We can't walk the Northbridges on
1099 			 *	the hypervisor; so just complain and drive
1100 			 *	on.  This probably needs to be fixed in
1101 			 *	the hypervisor itself.
1102 			 */
1103 			opteron_workaround_6336786++;
1104 			workaround_warning(cpu, 6336786);
1105 #else	/* __xpv */
1106 		} else if ((opteron_get_nnodes() *
1107 		    cpuid_get_ncpu_per_chip(cpu) > 1) ||
1108 		    opteron_workaround_6336786_UP) {
1109 
1110 			uint_t	node, nnodes;
1111 			uint8_t data;
1112 
1113 			nnodes = opteron_get_nnodes();
1114 			for (node = 0; node < nnodes; node++) {
1115 				/*
1116 				 * Clear PMM7[1:0] (function 3, offset 0x87)
1117 				 * Northbridge device is the node id + 24.
1118 				 */
1119 				data = pci_getb_func(0, node + 24, 3, 0x87);
1120 				data &= 0xFC;
1121 				pci_putb_func(0, node + 24, 3, 0x87, data);
1122 			}
1123 			opteron_workaround_6336786++;
1124 #endif	/* __xpv */
1125 		}
1126 #else
1127 		workaround_warning(cpu, 6336786);
1128 		missing++;
1129 #endif
1130 	}
1131 
1132 	/*LINTED*/
1133 	/*
1134 	 * Mutex primitives don't work as expected.
1135 	 */
1136 	if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1137 #if defined(OPTERON_WORKAROUND_6323525)
1138 		/*
1139 		 * This problem only occurs with 2 or more cores. If bit in
1140 		 * MSR_AMD_BU_CFG set, then not applicable. The workaround
1141 		 * is to patch the semaphone routines with the lfence
1142 		 * instruction to provide necessary load memory barrier with
1143 		 * possible subsequent read-modify-write ops.
1144 		 *
1145 		 * It is too early in boot to call the patch routine so
1146 		 * set erratum variable to be done in startup_end().
1147 		 */
1148 		if (opteron_workaround_6323525) {
1149 			opteron_workaround_6323525++;
1150 #if defined(__xpv)
1151 		} else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1152 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1153 				/*
1154 				 * XXPV	Use dom0_msr here when extended
1155 				 *	operations are supported?
1156 				 */
1157 				if (xpv_nr_phys_cpus() > 1)
1158 					opteron_workaround_6323525++;
1159 			} else {
1160 				/*
1161 				 * We have no way to tell how many physical
1162 				 * cpus there are, or even if this processor
1163 				 * has the problem, so enable the workaround
1164 				 * unconditionally (at some performance cost).
1165 				 */
1166 				opteron_workaround_6323525++;
1167 			}
1168 #else	/* __xpv */
1169 		} else if (is_x86_feature(x86_featureset, X86FSET_SSE2) &&
1170 		    ((opteron_get_nnodes() *
1171 		    cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1172 			if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
1173 				opteron_workaround_6323525++;
1174 #endif	/* __xpv */
1175 		}
1176 #else
1177 		workaround_warning(cpu, 6323525);
1178 		missing++;
1179 #endif
1180 	}
1181 
1182 	missing += do_erratum_298(cpu);
1183 
1184 	if (cpuid_opteron_erratum(cpu, 721) > 0) {
1185 #if defined(OPTERON_ERRATUM_721)
1186 		wrmsr(MSR_AMD_DE_CFG, rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721);
1187 		opteron_erratum_721++;
1188 #else
1189 		workaround_warning(cpu, 721);
1190 		missing++;
1191 #endif
1192 	}
1193 
1194 #ifdef __xpv
1195 	return (0);
1196 #else
1197 	return (missing);
1198 #endif
1199 }
1200 
1201 void
1202 workaround_errata_end()
1203 {
1204 #if defined(OPTERON_ERRATUM_88)
1205 	if (opteron_erratum_88)
1206 		workaround_applied(88);
1207 #endif
1208 #if defined(OPTERON_ERRATUM_91)
1209 	if (opteron_erratum_91)
1210 		workaround_applied(91);
1211 #endif
1212 #if defined(OPTERON_ERRATUM_93)
1213 	if (opteron_erratum_93)
1214 		workaround_applied(93);
1215 #endif
1216 #if defined(OPTERON_ERRATUM_95)
1217 	if (opteron_erratum_95)
1218 		workaround_applied(95);
1219 #endif
1220 #if defined(OPTERON_ERRATUM_100)
1221 	if (opteron_erratum_100)
1222 		workaround_applied(100);
1223 #endif
1224 #if defined(OPTERON_ERRATUM_108)
1225 	if (opteron_erratum_108)
1226 		workaround_applied(108);
1227 #endif
1228 #if defined(OPTERON_ERRATUM_109)
1229 	if (opteron_erratum_109) {
1230 		cmn_err(CE_WARN,
1231 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1232 		    " processor\nerratum 109 was not detected; updating your"
1233 		    " system's BIOS to a version\ncontaining this"
1234 		    " microcode patch is HIGHLY recommended or erroneous"
1235 		    " system\noperation may occur.\n");
1236 	}
1237 #endif
1238 #if defined(OPTERON_ERRATUM_121)
1239 	if (opteron_erratum_121)
1240 		workaround_applied(121);
1241 #endif
1242 #if defined(OPTERON_ERRATUM_122)
1243 	if (opteron_erratum_122)
1244 		workaround_applied(122);
1245 #endif
1246 #if defined(OPTERON_ERRATUM_123)
1247 	if (opteron_erratum_123) {
1248 		cmn_err(CE_WARN,
1249 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1250 		    " processor\nerratum 123 was not detected; updating your"
1251 		    " system's BIOS to a version\ncontaining this"
1252 		    " microcode patch is HIGHLY recommended or erroneous"
1253 		    " system\noperation may occur.\n");
1254 	}
1255 #endif
1256 #if defined(OPTERON_ERRATUM_131)
1257 	if (opteron_erratum_131) {
1258 		cmn_err(CE_WARN,
1259 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1260 		    " processor\nerratum 131 was not detected; updating your"
1261 		    " system's BIOS to a version\ncontaining this"
1262 		    " microcode patch is HIGHLY recommended or erroneous"
1263 		    " system\noperation may occur.\n");
1264 	}
1265 #endif
1266 #if defined(OPTERON_WORKAROUND_6336786)
1267 	if (opteron_workaround_6336786)
1268 		workaround_applied(6336786);
1269 #endif
1270 #if defined(OPTERON_WORKAROUND_6323525)
1271 	if (opteron_workaround_6323525)
1272 		workaround_applied(6323525);
1273 #endif
1274 #if defined(OPTERON_ERRATUM_298)
1275 	if (opteron_erratum_298) {
1276 		cmn_err(CE_WARN,
1277 		    "BIOS microcode patch for AMD 64/Opteron(tm)"
1278 		    " processor\nerratum 298 was not detected; updating your"
1279 		    " system's BIOS to a version\ncontaining this"
1280 		    " microcode patch is HIGHLY recommended or erroneous"
1281 		    " system\noperation may occur.\n");
1282 	}
1283 #endif
1284 #if defined(OPTERON_ERRATUM_721)
1285 	if (opteron_erratum_721)
1286 		workaround_applied(721);
1287 #endif
1288 }
1289 
1290 /*
1291  * The procset_slave and procset_master are used to synchronize
1292  * between the control CPU and the target CPU when starting CPUs.
1293  */
1294 static cpuset_t procset_slave, procset_master;
1295 
1296 static void
1297 mp_startup_wait(cpuset_t *sp, processorid_t cpuid)
1298 {
1299 	cpuset_t tempset;
1300 
1301 	for (tempset = *sp; !CPU_IN_SET(tempset, cpuid);
1302 	    tempset = *(volatile cpuset_t *)sp) {
1303 		SMT_PAUSE();
1304 	}
1305 	CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid);
1306 }
1307 
1308 static void
1309 mp_startup_signal(cpuset_t *sp, processorid_t cpuid)
1310 {
1311 	cpuset_t tempset;
1312 
1313 	CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid);
1314 	for (tempset = *sp; CPU_IN_SET(tempset, cpuid);
1315 	    tempset = *(volatile cpuset_t *)sp) {
1316 		SMT_PAUSE();
1317 	}
1318 }
1319 
1320 int
1321 mp_start_cpu_common(cpu_t *cp, boolean_t boot)
1322 {
1323 	_NOTE(ARGUNUSED(boot));
1324 
1325 	void *ctx;
1326 	int delays;
1327 	int error = 0;
1328 	cpuset_t tempset;
1329 	processorid_t cpuid;
1330 #ifndef __xpv
1331 	extern void cpupm_init(cpu_t *);
1332 #endif
1333 
1334 	ASSERT(cp != NULL);
1335 	cpuid = cp->cpu_id;
1336 	ctx = mach_cpucontext_alloc(cp);
1337 	if (ctx == NULL) {
1338 		cmn_err(CE_WARN,
1339 		    "cpu%d: failed to allocate context", cp->cpu_id);
1340 		return (EAGAIN);
1341 	}
1342 	error = mach_cpu_start(cp, ctx);
1343 	if (error != 0) {
1344 		cmn_err(CE_WARN,
1345 		    "cpu%d: failed to start, error %d", cp->cpu_id, error);
1346 		mach_cpucontext_free(cp, ctx, error);
1347 		return (error);
1348 	}
1349 
1350 	for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid);
1351 	    delays++) {
1352 		if (delays == 500) {
1353 			/*
1354 			 * After five seconds, things are probably looking
1355 			 * a bit bleak - explain the hang.
1356 			 */
1357 			cmn_err(CE_NOTE, "cpu%d: started, "
1358 			    "but not running in the kernel yet", cpuid);
1359 		} else if (delays > 2000) {
1360 			/*
1361 			 * We waited at least 20 seconds, bail ..
1362 			 */
1363 			error = ETIMEDOUT;
1364 			cmn_err(CE_WARN, "cpu%d: timed out", cpuid);
1365 			mach_cpucontext_free(cp, ctx, error);
1366 			return (error);
1367 		}
1368 
1369 		/*
1370 		 * wait at least 10ms, then check again..
1371 		 */
1372 		delay(USEC_TO_TICK_ROUNDUP(10000));
1373 		tempset = *((volatile cpuset_t *)&procset_slave);
1374 	}
1375 	CPUSET_ATOMIC_DEL(procset_slave, cpuid);
1376 
1377 	mach_cpucontext_free(cp, ctx, 0);
1378 
1379 #ifndef __xpv
1380 	if (tsc_gethrtime_enable)
1381 		tsc_sync_master(cpuid);
1382 #endif
1383 
1384 	if (dtrace_cpu_init != NULL) {
1385 		(*dtrace_cpu_init)(cpuid);
1386 	}
1387 
1388 	/*
1389 	 * During CPU DR operations, the cpu_lock is held by current
1390 	 * (the control) thread. We can't release the cpu_lock here
1391 	 * because that will break the CPU DR logic.
1392 	 * On the other hand, CPUPM and processor group initialization
1393 	 * routines need to access the cpu_lock. So we invoke those
1394 	 * routines here on behalf of mp_startup_common().
1395 	 *
1396 	 * CPUPM and processor group initialization routines depend
1397 	 * on the cpuid probing results. Wait for mp_startup_common()
1398 	 * to signal that cpuid probing is done.
1399 	 */
1400 	mp_startup_wait(&procset_slave, cpuid);
1401 #ifndef __xpv
1402 	cpupm_init(cp);
1403 #endif
1404 	(void) pg_cpu_init(cp, B_FALSE);
1405 	cpu_set_state(cp);
1406 	mp_startup_signal(&procset_master, cpuid);
1407 
1408 	return (0);
1409 }
1410 
1411 /*
1412  * Start a single cpu, assuming that the kernel context is available
1413  * to successfully start another cpu.
1414  *
1415  * (For example, real mode code is mapped into the right place
1416  * in memory and is ready to be run.)
1417  */
1418 int
1419 start_cpu(processorid_t who)
1420 {
1421 	cpu_t *cp;
1422 	int error = 0;
1423 	cpuset_t tempset;
1424 
1425 	ASSERT(who != 0);
1426 
1427 	/*
1428 	 * Check if there's at least a Mbyte of kmem available
1429 	 * before attempting to start the cpu.
1430 	 */
1431 	if (kmem_avail() < 1024 * 1024) {
1432 		/*
1433 		 * Kick off a reap in case that helps us with
1434 		 * later attempts ..
1435 		 */
1436 		kmem_reap();
1437 		return (ENOMEM);
1438 	}
1439 
1440 	/*
1441 	 * First configure cpu.
1442 	 */
1443 	cp = mp_cpu_configure_common(who, B_TRUE);
1444 	ASSERT(cp != NULL);
1445 
1446 	/*
1447 	 * Then start cpu.
1448 	 */
1449 	error = mp_start_cpu_common(cp, B_TRUE);
1450 	if (error != 0) {
1451 		mp_cpu_unconfigure_common(cp, error);
1452 		return (error);
1453 	}
1454 
1455 	mutex_exit(&cpu_lock);
1456 	tempset = cpu_ready_set;
1457 	while (!CPU_IN_SET(tempset, who)) {
1458 		drv_usecwait(1);
1459 		tempset = *((volatile cpuset_t *)&cpu_ready_set);
1460 	}
1461 	mutex_enter(&cpu_lock);
1462 
1463 	return (0);
1464 }
1465 
1466 void
1467 start_other_cpus(int cprboot)
1468 {
1469 	_NOTE(ARGUNUSED(cprboot));
1470 
1471 	uint_t who;
1472 	uint_t bootcpuid = 0;
1473 
1474 	/*
1475 	 * Initialize our own cpu_info.
1476 	 */
1477 	init_cpu_info(CPU);
1478 
1479 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1480 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1481 
1482 	/*
1483 	 * Initialize our syscall handlers
1484 	 */
1485 	init_cpu_syscall(CPU);
1486 
1487 	/*
1488 	 * Take the boot cpu out of the mp_cpus set because we know
1489 	 * it's already running.  Add it to the cpu_ready_set for
1490 	 * precisely the same reason.
1491 	 */
1492 	CPUSET_DEL(mp_cpus, bootcpuid);
1493 	CPUSET_ADD(cpu_ready_set, bootcpuid);
1494 
1495 	/*
1496 	 * skip the rest of this if
1497 	 * . only 1 cpu dectected and system isn't hotplug-capable
1498 	 * . not using MP
1499 	 */
1500 	if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) ||
1501 	    use_mp == 0) {
1502 		if (use_mp == 0)
1503 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
1504 		goto done;
1505 	}
1506 
1507 	/*
1508 	 * perform such initialization as is needed
1509 	 * to be able to take CPUs on- and off-line.
1510 	 */
1511 	cpu_pause_init();
1512 
1513 	xc_init_cpu(CPU);		/* initialize processor crosscalls */
1514 
1515 	if (mach_cpucontext_init() != 0)
1516 		goto done;
1517 
1518 	flushes_require_xcalls = 1;
1519 
1520 	/*
1521 	 * We lock our affinity to the master CPU to ensure that all slave CPUs
1522 	 * do their TSC syncs with the same CPU.
1523 	 */
1524 	affinity_set(CPU_CURRENT);
1525 
1526 	for (who = 0; who < NCPU; who++) {
1527 		if (!CPU_IN_SET(mp_cpus, who))
1528 			continue;
1529 		ASSERT(who != bootcpuid);
1530 
1531 		mutex_enter(&cpu_lock);
1532 		if (start_cpu(who) != 0)
1533 			CPUSET_DEL(mp_cpus, who);
1534 		cpu_state_change_notify(who, CPU_SETUP);
1535 		mutex_exit(&cpu_lock);
1536 	}
1537 
1538 	/* Free the space allocated to hold the microcode file */
1539 	ucode_cleanup();
1540 
1541 	affinity_clear();
1542 
1543 	mach_cpucontext_fini();
1544 
1545 done:
1546 	if (get_hwenv() == HW_NATIVE)
1547 		workaround_errata_end();
1548 	cmi_post_mpstartup();
1549 
1550 	if (use_mp && ncpus != boot_max_ncpus) {
1551 		cmn_err(CE_NOTE,
1552 		    "System detected %d cpus, but "
1553 		    "only %d cpu(s) were enabled during boot.",
1554 		    boot_max_ncpus, ncpus);
1555 		cmn_err(CE_NOTE,
1556 		    "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1557 		    "See eeprom(1M).");
1558 	}
1559 }
1560 
1561 int
1562 mp_cpu_configure(int cpuid)
1563 {
1564 	cpu_t *cp;
1565 
1566 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1567 		return (ENOTSUP);
1568 	}
1569 
1570 	cp = cpu_get(cpuid);
1571 	if (cp != NULL) {
1572 		return (EALREADY);
1573 	}
1574 
1575 	/*
1576 	 * Check if there's at least a Mbyte of kmem available
1577 	 * before attempting to start the cpu.
1578 	 */
1579 	if (kmem_avail() < 1024 * 1024) {
1580 		/*
1581 		 * Kick off a reap in case that helps us with
1582 		 * later attempts ..
1583 		 */
1584 		kmem_reap();
1585 		return (ENOMEM);
1586 	}
1587 
1588 	cp = mp_cpu_configure_common(cpuid, B_FALSE);
1589 	ASSERT(cp != NULL && cpu_get(cpuid) == cp);
1590 
1591 	return (cp != NULL ? 0 : EAGAIN);
1592 }
1593 
1594 int
1595 mp_cpu_unconfigure(int cpuid)
1596 {
1597 	cpu_t *cp;
1598 
1599 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1600 		return (ENOTSUP);
1601 	} else if (cpuid < 0 || cpuid >= max_ncpus) {
1602 		return (EINVAL);
1603 	}
1604 
1605 	cp = cpu_get(cpuid);
1606 	if (cp == NULL) {
1607 		return (ENODEV);
1608 	}
1609 	mp_cpu_unconfigure_common(cp, 0);
1610 
1611 	return (0);
1612 }
1613 
1614 /*
1615  * Startup function for 'other' CPUs (besides boot cpu).
1616  * Called from real_mode_start.
1617  *
1618  * WARNING: until CPU_READY is set, mp_startup_common and routines called by
1619  * mp_startup_common should not call routines (e.g. kmem_free) that could call
1620  * hat_unload which requires CPU_READY to be set.
1621  */
1622 static void
1623 mp_startup_common(boolean_t boot)
1624 {
1625 	cpu_t *cp = CPU;
1626 	uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
1627 	extern void cpu_event_init_cpu(cpu_t *);
1628 
1629 	/*
1630 	 * We need to get TSC on this proc synced (i.e., any delta
1631 	 * from cpu0 accounted for) as soon as we can, because many
1632 	 * many things use gethrtime/pc_gethrestime, including
1633 	 * interrupts, cmn_err, etc.
1634 	 */
1635 
1636 	/* Let the control CPU continue into tsc_sync_master() */
1637 	mp_startup_signal(&procset_slave, cp->cpu_id);
1638 
1639 #ifndef __xpv
1640 	if (tsc_gethrtime_enable)
1641 		tsc_sync_slave();
1642 #endif
1643 
1644 	/*
1645 	 * Once this was done from assembly, but it's safer here; if
1646 	 * it blocks, we need to be able to swtch() to and from, and
1647 	 * since we get here by calling t_pc, we need to do that call
1648 	 * before swtch() overwrites it.
1649 	 */
1650 	(void) (*ap_mlsetup)();
1651 
1652 	bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
1653 	cpuid_pass1(cp, new_x86_featureset);
1654 
1655 #ifndef __xpv
1656 	/*
1657 	 * Program this cpu's PAT
1658 	 */
1659 	if (is_x86_feature(x86_featureset, X86FSET_PAT))
1660 		pat_sync();
1661 #endif
1662 
1663 	/*
1664 	 * Set up TSC_AUX to contain the cpuid for this processor
1665 	 * for the rdtscp instruction.
1666 	 */
1667 	if (is_x86_feature(x86_featureset, X86FSET_TSCP))
1668 		(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1669 
1670 	/*
1671 	 * Initialize this CPU's syscall handlers
1672 	 */
1673 	init_cpu_syscall(cp);
1674 
1675 	/*
1676 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1677 	 * highest level at which a routine is permitted to block on
1678 	 * an adaptive mutex (allows for cpu poke interrupt in case
1679 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1680 	 * device interrupts that may end up in the hat layer issuing cross
1681 	 * calls before CPU_READY is set.
1682 	 */
1683 	splx(ipltospl(LOCK_LEVEL));
1684 	sti();
1685 
1686 	/*
1687 	 * Do a sanity check to make sure this new CPU is a sane thing
1688 	 * to add to the collection of processors running this system.
1689 	 *
1690 	 * XXX	Clearly this needs to get more sophisticated, if x86
1691 	 * systems start to get built out of heterogenous CPUs; as is
1692 	 * likely to happen once the number of processors in a configuration
1693 	 * gets large enough.
1694 	 */
1695 	if (compare_x86_featureset(x86_featureset, new_x86_featureset) ==
1696 	    B_FALSE) {
1697 		cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id);
1698 		print_x86_featureset(new_x86_featureset);
1699 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1700 	}
1701 
1702 	/*
1703 	 * We do not support cpus with mixed monitor/mwait support if the
1704 	 * boot cpu supports monitor/mwait.
1705 	 */
1706 	if (is_x86_feature(x86_featureset, X86FSET_MWAIT) !=
1707 	    is_x86_feature(new_x86_featureset, X86FSET_MWAIT))
1708 		panic("unsupported mixed cpu monitor/mwait support detected");
1709 
1710 	/*
1711 	 * We could be more sophisticated here, and just mark the CPU
1712 	 * as "faulted" but at this point we'll opt for the easier
1713 	 * answer of dying horribly.  Provided the boot cpu is ok,
1714 	 * the system can be recovered by booting with use_mp set to zero.
1715 	 */
1716 	if (workaround_errata(cp) != 0)
1717 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1718 
1719 	/*
1720 	 * We can touch cpu_flags here without acquiring the cpu_lock here
1721 	 * because the cpu_lock is held by the control CPU which is running
1722 	 * mp_start_cpu_common().
1723 	 * Need to clear CPU_QUIESCED flag before calling any function which
1724 	 * may cause thread context switching, such as kmem_alloc() etc.
1725 	 * The idle thread checks for CPU_QUIESCED flag and loops for ever if
1726 	 * it's set. So the startup thread may have no chance to switch back
1727 	 * again if it's switched away with CPU_QUIESCED set.
1728 	 */
1729 	cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED);
1730 
1731 	/*
1732 	 * Setup this processor for XSAVE.
1733 	 */
1734 	if (fp_save_mech == FP_XSAVE) {
1735 		xsave_setup_msr(cp);
1736 	}
1737 
1738 	cpuid_pass2(cp);
1739 	cpuid_pass3(cp);
1740 	(void) cpuid_pass4(cp);
1741 
1742 	/*
1743 	 * Correct cpu_idstr and cpu_brandstr on target CPU after
1744 	 * cpuid_pass1() is done.
1745 	 */
1746 	(void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN);
1747 	(void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN);
1748 
1749 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1750 
1751 	post_startup_cpu_fixups();
1752 
1753 	cpu_event_init_cpu(cp);
1754 
1755 	/*
1756 	 * Enable preemption here so that contention for any locks acquired
1757 	 * later in mp_startup_common may be preempted if the thread owning
1758 	 * those locks is continuously executing on other CPUs (for example,
1759 	 * this CPU must be preemptible to allow other CPUs to pause it during
1760 	 * their startup phases).  It's safe to enable preemption here because
1761 	 * the CPU state is pretty-much fully constructed.
1762 	 */
1763 	curthread->t_preempt = 0;
1764 
1765 	/* The base spl should still be at LOCK LEVEL here */
1766 	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1767 	set_base_spl();		/* Restore the spl to its proper value */
1768 
1769 	pghw_physid_create(cp);
1770 	/*
1771 	 * Delegate initialization tasks, which need to access the cpu_lock,
1772 	 * to mp_start_cpu_common() because we can't acquire the cpu_lock here
1773 	 * during CPU DR operations.
1774 	 */
1775 	mp_startup_signal(&procset_slave, cp->cpu_id);
1776 	mp_startup_wait(&procset_master, cp->cpu_id);
1777 	pg_cmt_cpu_startup(cp);
1778 
1779 	if (boot) {
1780 		mutex_enter(&cpu_lock);
1781 		cp->cpu_flags &= ~CPU_OFFLINE;
1782 		cpu_enable_intr(cp);
1783 		cpu_add_active(cp);
1784 		mutex_exit(&cpu_lock);
1785 	}
1786 
1787 	/* Enable interrupts */
1788 	(void) spl0();
1789 
1790 	/*
1791 	 * Fill out cpu_ucode_info.  Update microcode if necessary.
1792 	 */
1793 	ucode_check(cp);
1794 
1795 #ifndef __xpv
1796 	{
1797 		/*
1798 		 * Set up the CPU module for this CPU.  This can't be done
1799 		 * before this CPU is made CPU_READY, because we may (in
1800 		 * heterogeneous systems) need to go load another CPU module.
1801 		 * The act of attempting to load a module may trigger a
1802 		 * cross-call, which will ASSERT unless this cpu is CPU_READY.
1803 		 */
1804 		cmi_hdl_t hdl;
1805 
1806 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1807 		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1808 			if (is_x86_feature(x86_featureset, X86FSET_MCA))
1809 				cmi_mca_init(hdl);
1810 			cp->cpu_m.mcpu_cmi_hdl = hdl;
1811 		}
1812 	}
1813 #endif /* __xpv */
1814 
1815 	if (boothowto & RB_DEBUG)
1816 		kdi_cpu_init();
1817 
1818 	/*
1819 	 * Setting the bit in cpu_ready_set must be the last operation in
1820 	 * processor initialization; the boot CPU will continue to boot once
1821 	 * it sees this bit set for all active CPUs.
1822 	 */
1823 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1824 
1825 	(void) mach_cpu_create_device_node(cp, NULL);
1826 
1827 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1828 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1829 	cmn_err(CE_CONT, "?cpu%d initialization complete - online\n",
1830 	    cp->cpu_id);
1831 
1832 	/*
1833 	 * Now we are done with the startup thread, so free it up.
1834 	 */
1835 	thread_exit();
1836 	panic("mp_startup: cannot return");
1837 	/*NOTREACHED*/
1838 }
1839 
1840 /*
1841  * Startup function for 'other' CPUs at boot time (besides boot cpu).
1842  */
1843 static void
1844 mp_startup_boot(void)
1845 {
1846 	mp_startup_common(B_TRUE);
1847 }
1848 
1849 /*
1850  * Startup function for hotplug CPUs at runtime.
1851  */
1852 void
1853 mp_startup_hotplug(void)
1854 {
1855 	mp_startup_common(B_FALSE);
1856 }
1857 
1858 /*
1859  * Start CPU on user request.
1860  */
1861 /* ARGSUSED */
1862 int
1863 mp_cpu_start(struct cpu *cp)
1864 {
1865 	ASSERT(MUTEX_HELD(&cpu_lock));
1866 	return (0);
1867 }
1868 
1869 /*
1870  * Stop CPU on user request.
1871  */
1872 int
1873 mp_cpu_stop(struct cpu *cp)
1874 {
1875 	extern int cbe_psm_timer_mode;
1876 	ASSERT(MUTEX_HELD(&cpu_lock));
1877 
1878 #ifdef __xpv
1879 	/*
1880 	 * We can't offline vcpu0.
1881 	 */
1882 	if (cp->cpu_id == 0)
1883 		return (EBUSY);
1884 #endif
1885 
1886 	/*
1887 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1888 	 * can't stop it.  (This is true only for machines with no TSC.)
1889 	 */
1890 
1891 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1892 		return (EBUSY);
1893 
1894 	return (0);
1895 }
1896 
1897 /*
1898  * Take the specified CPU out of participation in interrupts.
1899  */
1900 int
1901 cpu_disable_intr(struct cpu *cp)
1902 {
1903 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1904 		return (EBUSY);
1905 
1906 	cp->cpu_flags &= ~CPU_ENABLE;
1907 	return (0);
1908 }
1909 
1910 /*
1911  * Allow the specified CPU to participate in interrupts.
1912  */
1913 void
1914 cpu_enable_intr(struct cpu *cp)
1915 {
1916 	ASSERT(MUTEX_HELD(&cpu_lock));
1917 	cp->cpu_flags |= CPU_ENABLE;
1918 	psm_enable_intr(cp->cpu_id);
1919 }
1920 
1921 void
1922 mp_cpu_faulted_enter(struct cpu *cp)
1923 {
1924 #ifdef __xpv
1925 	_NOTE(ARGUNUSED(cp));
1926 #else
1927 	cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1928 
1929 	if (hdl != NULL) {
1930 		cmi_hdl_hold(hdl);
1931 	} else {
1932 		hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1933 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1934 	}
1935 	if (hdl != NULL) {
1936 		cmi_faulted_enter(hdl);
1937 		cmi_hdl_rele(hdl);
1938 	}
1939 #endif
1940 }
1941 
1942 void
1943 mp_cpu_faulted_exit(struct cpu *cp)
1944 {
1945 #ifdef __xpv
1946 	_NOTE(ARGUNUSED(cp));
1947 #else
1948 	cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1949 
1950 	if (hdl != NULL) {
1951 		cmi_hdl_hold(hdl);
1952 	} else {
1953 		hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1954 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1955 	}
1956 	if (hdl != NULL) {
1957 		cmi_faulted_exit(hdl);
1958 		cmi_hdl_rele(hdl);
1959 	}
1960 #endif
1961 }
1962 
1963 /*
1964  * The following two routines are used as context operators on threads belonging
1965  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1966  * processes, these routines are currently written for best code readability and
1967  * organization rather than speed.  We could avoid checking x86_featureset at
1968  * every context switch by installing different context ops, depending on
1969  * x86_featureset, at LDT creation time -- one for each combination of fast
1970  * syscall features.
1971  */
1972 
1973 /*ARGSUSED*/
1974 void
1975 cpu_fast_syscall_disable(void *arg)
1976 {
1977 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1978 	    is_x86_feature(x86_featureset, X86FSET_SEP))
1979 		cpu_sep_disable();
1980 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1981 	    is_x86_feature(x86_featureset, X86FSET_ASYSC))
1982 		cpu_asysc_disable();
1983 }
1984 
1985 /*ARGSUSED*/
1986 void
1987 cpu_fast_syscall_enable(void *arg)
1988 {
1989 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1990 	    is_x86_feature(x86_featureset, X86FSET_SEP))
1991 		cpu_sep_enable();
1992 	if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
1993 	    is_x86_feature(x86_featureset, X86FSET_ASYSC))
1994 		cpu_asysc_enable();
1995 }
1996 
1997 static void
1998 cpu_sep_enable(void)
1999 {
2000 	ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2001 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2002 
2003 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
2004 }
2005 
2006 static void
2007 cpu_sep_disable(void)
2008 {
2009 	ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2010 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2011 
2012 	/*
2013 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
2014 	 * the sysenter or sysexit instruction to trigger a #gp fault.
2015 	 */
2016 	wrmsr(MSR_INTC_SEP_CS, 0);
2017 }
2018 
2019 static void
2020 cpu_asysc_enable(void)
2021 {
2022 	ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2023 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2024 
2025 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
2026 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
2027 }
2028 
2029 static void
2030 cpu_asysc_disable(void)
2031 {
2032 	ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2033 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2034 
2035 	/*
2036 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
2037 	 * executing syscall or sysret with this bit off will incur a #ud trap.
2038 	 */
2039 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
2040 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
2041 }
2042