xref: /illumos-gate/usr/src/uts/i86pc/os/fakebop.c (revision 95bb2cef100e6d3ce201012b6e4b677106e44751)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  *
29  * Copyright 2020 Joyent, Inc.
30  */
31 
32 /*
33  * This file contains the functionality that mimics the boot operations
34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35  * The x86 kernel now does everything on its own.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/framebuffer.h>
54 #include <sys/cmn_err.h>
55 #include <sys/systm.h>
56 #include <sys/promif.h>
57 #include <sys/archsystm.h>
58 #include <sys/x86_archext.h>
59 #include <sys/kobj.h>
60 #include <sys/privregs.h>
61 #include <sys/sysmacros.h>
62 #include <sys/ctype.h>
63 #include <sys/fastboot.h>
64 #ifdef __xpv
65 #include <sys/hypervisor.h>
66 #include <net/if.h>
67 #endif
68 #include <vm/kboot_mmu.h>
69 #include <vm/hat_pte.h>
70 #include <sys/kobj.h>
71 #include <sys/kobj_lex.h>
72 #include <sys/pci_cfgspace_impl.h>
73 #include <sys/fastboot_impl.h>
74 #include <sys/acpi/acconfig.h>
75 #include <sys/acpi/acpi.h>
76 #include <sys/ddipropdefs.h>	/* For DDI prop types */
77 
78 static int have_console = 0;	/* set once primitive console is initialized */
79 static char *boot_args = "";
80 
81 /*
82  * Debugging macros
83  */
84 static uint_t kbm_debug = 0;
85 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
86 #define	DBG(x)		{ if (kbm_debug)			\
87 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
88 	}
89 
90 #define	PUT_STRING(s) {				\
91 	char *cp;				\
92 	for (cp = (s); *cp; ++cp)		\
93 		bcons_putchar(*cp);		\
94 	}
95 
96 /* callback to boot_fb to set shadow frame buffer */
97 extern void boot_fb_shadow_init(bootops_t *);
98 
99 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
100 struct bsys_mem bm;
101 
102 /*
103  * Boot info from "glue" code in low memory. xbootp is used by:
104  *	do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc().
105  */
106 static struct xboot_info *xbootp;
107 static uintptr_t next_virt;	/* next available virtual address */
108 static paddr_t next_phys;	/* next available physical address from dboot */
109 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
110 
111 /*
112  * buffer for vsnprintf for console I/O
113  */
114 #define	BUFFERSIZE	512
115 static char buffer[BUFFERSIZE];
116 
117 /*
118  * stuff to store/report/manipulate boot property settings.
119  */
120 typedef struct bootprop {
121 	struct bootprop *bp_next;
122 	char *bp_name;
123 	int bp_flags;			/* DDI prop type */
124 	uint_t bp_vlen;			/* 0 for boolean */
125 	char *bp_value;
126 } bootprop_t;
127 
128 static bootprop_t *bprops = NULL;
129 static char *curr_page = NULL;		/* ptr to avail bprop memory */
130 static int curr_space = 0;		/* amount of memory at curr_page */
131 
132 #ifdef __xpv
133 start_info_t *xen_info;
134 shared_info_t *HYPERVISOR_shared_info;
135 #endif
136 
137 /*
138  * some allocator statistics
139  */
140 static ulong_t total_bop_alloc_scratch = 0;
141 static ulong_t total_bop_alloc_kernel = 0;
142 
143 static void build_firmware_properties(struct xboot_info *);
144 
145 static int early_allocation = 1;
146 
147 int force_fastreboot = 0;
148 volatile int fastreboot_onpanic = 0;
149 int post_fastreboot = 0;
150 #ifdef	__xpv
151 volatile int fastreboot_capable = 0;
152 #else
153 volatile int fastreboot_capable = 1;
154 #endif
155 
156 /*
157  * Information saved from current boot for fast reboot.
158  * If the information size exceeds what we have allocated, fast reboot
159  * will not be supported.
160  */
161 multiboot_info_t saved_mbi;
162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 int saved_cmdline_len = 0;
166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167 
168 /*
169  * Turn off fastreboot_onpanic to avoid panic loop.
170  */
171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173 
174 /*
175  * Pointers to where System Resource Affinity Table (SRAT), System Locality
176  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177  * are mapped into virtual memory
178  */
179 ACPI_TABLE_SRAT	*srat_ptr = NULL;
180 ACPI_TABLE_SLIT	*slit_ptr = NULL;
181 ACPI_TABLE_MSCT	*msct_ptr = NULL;
182 
183 /*
184  * Arbitrary limit on number of localities we handle; if
185  * this limit is raised to more than UINT16_MAX, make sure
186  * process_slit() knows how to handle it.
187  */
188 #define	SLIT_LOCALITIES_MAX	(4096)
189 
190 #define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
191 #define	SLIT_PROPNAME		"acpi-slit"
192 
193 /*
194  * Allocate aligned physical memory at boot time. This allocator allocates
195  * from the highest possible addresses. This avoids exhausting memory that
196  * would be useful for DMA buffers.
197  */
198 paddr_t
199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 {
201 	paddr_t	pa = 0;
202 	paddr_t	start;
203 	paddr_t	end;
204 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
205 
206 	/*
207 	 * Be careful if high memory usage is limited in startup.c
208 	 * Since there are holes in the low part of the physical address
209 	 * space we can treat physmem as a pfn (not just a pgcnt) and
210 	 * get a conservative upper limit.
211 	 */
212 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 		high_phys = pfn_to_pa(physmem);
214 
215 	/*
216 	 * find the highest available memory in physinstalled
217 	 */
218 	size = P2ROUNDUP(size, align);
219 	for (; ml; ml = ml->ml_next) {
220 		start = P2ROUNDUP(ml->ml_address, align);
221 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 		if (start < next_phys)
223 			start = P2ROUNDUP(next_phys, align);
224 		if (end > high_phys)
225 			end = P2ALIGN(high_phys, align);
226 
227 		if (end <= start)
228 			continue;
229 		if (end - start < size)
230 			continue;
231 
232 		/*
233 		 * Early allocations need to use low memory, since
234 		 * physmem might be further limited by bootenv.rc
235 		 */
236 		if (early_allocation) {
237 			if (pa == 0 || start < pa)
238 				pa = start;
239 		} else {
240 			if (end - size > pa)
241 				pa = end - size;
242 		}
243 	}
244 	if (pa != 0) {
245 		if (early_allocation)
246 			next_phys = pa + size;
247 		else
248 			high_phys = pa;
249 		return (pa);
250 	}
251 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 	    ") Out of memory\n", size, align);
253 	/*NOTREACHED*/
254 }
255 
256 uintptr_t
257 alloc_vaddr(size_t size, paddr_t align)
258 {
259 	uintptr_t rv;
260 
261 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 	rv = (uintptr_t)next_virt;
263 	next_virt += size;
264 	return (rv);
265 }
266 
267 /*
268  * Allocate virtual memory. The size is always rounded up to a multiple
269  * of base pagesize.
270  */
271 
272 /*ARGSUSED*/
273 static caddr_t
274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 {
276 	paddr_t a = align;	/* same type as pa for masking */
277 	uint_t pgsize;
278 	paddr_t pa;
279 	uintptr_t va;
280 	ssize_t s;		/* the aligned size */
281 	uint_t level;
282 	uint_t is_kernel = (virthint != 0);
283 
284 	if (a < MMU_PAGESIZE)
285 		a = MMU_PAGESIZE;
286 	else if (!ISP2(a))
287 		prom_panic("do_bsys_alloc() incorrect alignment");
288 	size = P2ROUNDUP(size, MMU_PAGESIZE);
289 
290 	/*
291 	 * Use the next aligned virtual address if we weren't given one.
292 	 */
293 	if (virthint == NULL) {
294 		virthint = (caddr_t)alloc_vaddr(size, a);
295 		total_bop_alloc_scratch += size;
296 	} else {
297 		total_bop_alloc_kernel += size;
298 	}
299 
300 	/*
301 	 * allocate the physical memory
302 	 */
303 	pa = do_bop_phys_alloc(size, a);
304 
305 	/*
306 	 * Add the mappings to the page tables, try large pages first.
307 	 */
308 	va = (uintptr_t)virthint;
309 	s = size;
310 	level = 1;
311 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 	if (xbootp->bi_use_largepage && a == pgsize) {
313 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 		    s >= pgsize) {
315 			kbm_map(va, pa, level, is_kernel);
316 			va += pgsize;
317 			pa += pgsize;
318 			s -= pgsize;
319 		}
320 	}
321 
322 	/*
323 	 * Map remaining pages use small mappings
324 	 */
325 	level = 0;
326 	pgsize = MMU_PAGESIZE;
327 	while (s > 0) {
328 		kbm_map(va, pa, level, is_kernel);
329 		va += pgsize;
330 		pa += pgsize;
331 		s -= pgsize;
332 	}
333 	return (virthint);
334 }
335 
336 /*
337  * Free virtual memory - we'll just ignore these.
338  */
339 /*ARGSUSED*/
340 static void
341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 {
343 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 	    (void *)virt, size);
345 }
346 
347 /*
348  * Old interface
349  */
350 /*ARGSUSED*/
351 static caddr_t
352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353     int align, int flags)
354 {
355 	prom_panic("unsupported call to BOP_EALLOC()\n");
356 	return (0);
357 }
358 
359 
360 static void
361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 {
363 	uint_t size;
364 	uint_t need_size;
365 	bootprop_t *b;
366 
367 	/*
368 	 * align the size to 16 byte boundary
369 	 */
370 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 	size = (size + 0xf) & ~0xf;
372 	if (size > curr_space) {
373 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 		curr_space = need_size;
376 	}
377 
378 	/*
379 	 * use a bootprop_t at curr_page and link into list
380 	 */
381 	b = (bootprop_t *)curr_page;
382 	curr_page += sizeof (bootprop_t);
383 	curr_space -=  sizeof (bootprop_t);
384 	b->bp_next = bprops;
385 	bprops = b;
386 
387 	/*
388 	 * follow by name and ending zero byte
389 	 */
390 	b->bp_name = curr_page;
391 	bcopy(name, curr_page, nlen);
392 	curr_page += nlen;
393 	*curr_page++ = 0;
394 	curr_space -= nlen + 1;
395 
396 	/*
397 	 * set the property type
398 	 */
399 	b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400 
401 	/*
402 	 * copy in value, but no ending zero byte
403 	 */
404 	b->bp_value = curr_page;
405 	b->bp_vlen = vlen;
406 	if (vlen > 0) {
407 		bcopy(value, curr_page, vlen);
408 		curr_page += vlen;
409 		curr_space -= vlen;
410 	}
411 
412 	/*
413 	 * align new values of curr_page, curr_space
414 	 */
415 	while (curr_space & 0xf) {
416 		++curr_page;
417 		--curr_space;
418 	}
419 }
420 
421 static void
422 bsetprops(char *name, char *value)
423 {
424 	bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 	    value, strlen(value) + 1);
426 }
427 
428 static void
429 bsetprop32(char *name, uint32_t value)
430 {
431 	bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 	    (void *)&value, sizeof (value));
433 }
434 
435 static void
436 bsetprop64(char *name, uint64_t value)
437 {
438 	bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 	    (void *)&value, sizeof (value));
440 }
441 
442 static void
443 bsetpropsi(char *name, int value)
444 {
445 	char prop_val[32];
446 
447 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 	bsetprops(name, prop_val);
449 }
450 
451 /*
452  * to find the type of the value associated with this name
453  */
454 /*ARGSUSED*/
455 int
456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 {
458 	bootprop_t *b;
459 
460 	for (b = bprops; b != NULL; b = b->bp_next) {
461 		if (strcmp(name, b->bp_name) != 0)
462 			continue;
463 		return (b->bp_flags);
464 	}
465 	return (-1);
466 }
467 
468 /*
469  * to find the size of the buffer to allocate
470  */
471 /*ARGSUSED*/
472 int
473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 {
475 	bootprop_t *b;
476 
477 	for (b = bprops; b; b = b->bp_next) {
478 		if (strcmp(name, b->bp_name) != 0)
479 			continue;
480 		return (b->bp_vlen);
481 	}
482 	return (-1);
483 }
484 
485 /*
486  * get the value associated with this name
487  */
488 /*ARGSUSED*/
489 int
490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 {
492 	bootprop_t *b;
493 
494 	for (b = bprops; b; b = b->bp_next) {
495 		if (strcmp(name, b->bp_name) != 0)
496 			continue;
497 		bcopy(b->bp_value, value, b->bp_vlen);
498 		return (0);
499 	}
500 	return (-1);
501 }
502 
503 /*
504  * get the name of the next property in succession from the standalone
505  */
506 /*ARGSUSED*/
507 static char *
508 do_bsys_nextprop(bootops_t *bop, char *name)
509 {
510 	bootprop_t *b;
511 
512 	/*
513 	 * A null name is a special signal for the 1st boot property
514 	 */
515 	if (name == NULL || strlen(name) == 0) {
516 		if (bprops == NULL)
517 			return (NULL);
518 		return (bprops->bp_name);
519 	}
520 
521 	for (b = bprops; b; b = b->bp_next) {
522 		if (name != b->bp_name)
523 			continue;
524 		b = b->bp_next;
525 		if (b == NULL)
526 			return (NULL);
527 		return (b->bp_name);
528 	}
529 	return (NULL);
530 }
531 
532 /*
533  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534  */
535 static int
536 parse_value(char *p, uint64_t *retval)
537 {
538 	int adjust = 0;
539 	uint64_t tmp = 0;
540 	int digit;
541 	int radix = 10;
542 
543 	*retval = 0;
544 	if (*p == '-' || *p == '~')
545 		adjust = *p++;
546 
547 	if (*p == '0') {
548 		++p;
549 		if (*p == 0)
550 			return (0);
551 		if (*p == 'x' || *p == 'X') {
552 			radix = 16;
553 			++p;
554 		} else {
555 			radix = 8;
556 			++p;
557 		}
558 	}
559 	while (*p) {
560 		if ('0' <= *p && *p <= '9')
561 			digit = *p - '0';
562 		else if ('a' <= *p && *p <= 'f')
563 			digit = 10 + *p - 'a';
564 		else if ('A' <= *p && *p <= 'F')
565 			digit = 10 + *p - 'A';
566 		else
567 			return (-1);
568 		if (digit >= radix)
569 			return (-1);
570 		tmp = tmp * radix + digit;
571 		++p;
572 	}
573 	if (adjust == '-')
574 		tmp = -tmp;
575 	else if (adjust == '~')
576 		tmp = ~tmp;
577 	*retval = tmp;
578 	return (0);
579 }
580 
581 static boolean_t
582 unprintable(char *value, int size)
583 {
584 	int i;
585 
586 	if (size <= 0 || value[0] == '\0')
587 		return (B_TRUE);
588 
589 	for (i = 0; i < size; i++) {
590 		if (value[i] == '\0')
591 			return (i != (size - 1));
592 
593 		if (!isprint(value[i]))
594 			return (B_TRUE);
595 	}
596 	return (B_FALSE);
597 }
598 
599 /*
600  * Print out information about all boot properties.
601  * buffer is pointer to pre-allocated space to be used as temporary
602  * space for property values.
603  */
604 static void
605 boot_prop_display(char *buffer)
606 {
607 	char *name = "";
608 	int i, len, flags, *buf32;
609 	int64_t *buf64;
610 
611 	bop_printf(NULL, "\nBoot properties:\n");
612 
613 	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 		(void) do_bsys_getprop(NULL, name, buffer);
616 		len = do_bsys_getproplen(NULL, name);
617 		flags = do_bsys_getproptype(NULL, name);
618 		bop_printf(NULL, "len=%d ", len);
619 
620 		switch (flags) {
621 		case DDI_PROP_TYPE_INT:
622 			len = len / sizeof (int);
623 			buf32 = (int *)buffer;
624 			for (i = 0; i < len; i++) {
625 				bop_printf(NULL, "%08x", buf32[i]);
626 				if (i < len - 1)
627 					bop_printf(NULL, ".");
628 			}
629 			break;
630 		case DDI_PROP_TYPE_STRING:
631 			bop_printf(NULL, "%s", buffer);
632 			break;
633 		case DDI_PROP_TYPE_INT64:
634 			len = len / sizeof (int64_t);
635 			buf64 = (int64_t *)buffer;
636 			for (i = 0; i < len; i++) {
637 				bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 				if (i < len - 1)
639 					bop_printf(NULL, ".");
640 			}
641 			break;
642 		default:
643 			if (!unprintable(buffer, len)) {
644 				buffer[len] = 0;
645 				bop_printf(NULL, "%s", buffer);
646 				break;
647 			}
648 			for (i = 0; i < len; i++) {
649 				bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 				if (i < len - 1)
651 					bop_printf(NULL, ".");
652 			}
653 			break;
654 		}
655 		bop_printf(NULL, "\n");
656 	}
657 }
658 
659 /*
660  * 2nd part of building the table of boot properties. This includes:
661  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662  *
663  * lines look like one of:
664  * ^$
665  * ^# comment till end of line
666  * setprop name 'value'
667  * setprop name value
668  * setprop name "value"
669  *
670  * we do single character I/O since this is really just looking at memory
671  */
672 void
673 read_bootenvrc(void)
674 {
675 	int fd;
676 	char *line;
677 	int c;
678 	int bytes_read;
679 	char *name;
680 	int n_len;
681 	char *value;
682 	int v_len;
683 	char *inputdev;	/* these override the command line if serial ports */
684 	char *outputdev;
685 	char *consoledev;
686 	uint64_t lvalue;
687 	int use_xencons = 0;
688 	extern int bootrd_debug;
689 
690 #ifdef __xpv
691 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
692 		use_xencons = 1;
693 #endif /* __xpv */
694 
695 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
696 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
697 	DBG(fd);
698 
699 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
700 	while (fd >= 0) {
701 
702 		/*
703 		 * get a line
704 		 */
705 		for (c = 0; ; ++c) {
706 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
707 			if (bytes_read == 0) {
708 				if (c == 0)
709 					goto done;
710 				break;
711 			}
712 			if (line[c] == '\n')
713 				break;
714 		}
715 		line[c] = 0;
716 
717 		/*
718 		 * ignore comment lines
719 		 */
720 		c = 0;
721 		while (ISSPACE(line[c]))
722 			++c;
723 		if (line[c] == '#' || line[c] == 0)
724 			continue;
725 
726 		/*
727 		 * must have "setprop " or "setprop\t"
728 		 */
729 		if (strncmp(line + c, "setprop ", 8) != 0 &&
730 		    strncmp(line + c, "setprop\t", 8) != 0)
731 			continue;
732 		c += 8;
733 		while (ISSPACE(line[c]))
734 			++c;
735 		if (line[c] == 0)
736 			continue;
737 
738 		/*
739 		 * gather up the property name
740 		 */
741 		name = line + c;
742 		n_len = 0;
743 		while (line[c] && !ISSPACE(line[c]))
744 			++n_len, ++c;
745 
746 		/*
747 		 * gather up the value, if any
748 		 */
749 		value = "";
750 		v_len = 0;
751 		while (ISSPACE(line[c]))
752 			++c;
753 		if (line[c] != 0) {
754 			value = line + c;
755 			while (line[c] && !ISSPACE(line[c]))
756 				++v_len, ++c;
757 		}
758 
759 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
760 		    (value[0] == '\'' || value[0] == '"')) {
761 			++value;
762 			v_len -= 2;
763 		}
764 		name[n_len] = 0;
765 		if (v_len > 0)
766 			value[v_len] = 0;
767 		else
768 			continue;
769 
770 		/*
771 		 * ignore "boot-file" property, it's now meaningless
772 		 */
773 		if (strcmp(name, "boot-file") == 0)
774 			continue;
775 		if (strcmp(name, "boot-args") == 0 &&
776 		    strlen(boot_args) > 0)
777 			continue;
778 
779 		/*
780 		 * If a property was explicitly set on the command line
781 		 * it will override a setting in bootenv.rc. We make an
782 		 * exception for a property from the bootloader such as:
783 		 *
784 		 * console="text,ttya,ttyb,ttyc,ttyd"
785 		 *
786 		 * In such a case, picking the first value here (as
787 		 * lookup_console_devices() does) is at best a guess; if
788 		 * bootenv.rc has a value, it's probably better.
789 		 */
790 		if (strcmp(name, "console") == 0) {
791 			char propval[BP_MAX_STRLEN] = "";
792 
793 			if (do_bsys_getprop(NULL, name, propval) == -1 ||
794 			    strchr(propval, ',') != NULL)
795 				bsetprops(name, value);
796 			continue;
797 		}
798 
799 		if (do_bsys_getproplen(NULL, name) == -1)
800 			bsetprops(name, value);
801 	}
802 done:
803 	if (fd >= 0)
804 		(void) BRD_CLOSE(bfs_ops, fd);
805 
806 
807 	/*
808 	 * Check if we have to limit the boot time allocator
809 	 */
810 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
811 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
812 	    parse_value(line, &lvalue) != -1) {
813 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
814 			physmem = (pgcnt_t)lvalue;
815 			DBG(physmem);
816 		}
817 	}
818 	early_allocation = 0;
819 
820 	/*
821 	 * Check for bootrd_debug.
822 	 */
823 	if (find_boot_prop("bootrd_debug"))
824 		bootrd_debug = 1;
825 
826 	/*
827 	 * check to see if we have to override the default value of the console
828 	 */
829 	if (!use_xencons) {
830 		inputdev = line;
831 		v_len = do_bsys_getproplen(NULL, "input-device");
832 		if (v_len > 0)
833 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
834 		else
835 			v_len = 0;
836 		inputdev[v_len] = 0;
837 
838 		outputdev = inputdev + v_len + 1;
839 		v_len = do_bsys_getproplen(NULL, "output-device");
840 		if (v_len > 0)
841 			(void) do_bsys_getprop(NULL, "output-device",
842 			    outputdev);
843 		else
844 			v_len = 0;
845 		outputdev[v_len] = 0;
846 
847 		consoledev = outputdev + v_len + 1;
848 		v_len = do_bsys_getproplen(NULL, "console");
849 		if (v_len > 0) {
850 			(void) do_bsys_getprop(NULL, "console", consoledev);
851 			if (post_fastreboot &&
852 			    strcmp(consoledev, "graphics") == 0) {
853 				bsetprops("console", "text");
854 				v_len = strlen("text");
855 				bcopy("text", consoledev, v_len);
856 			}
857 		} else {
858 			v_len = 0;
859 		}
860 		consoledev[v_len] = 0;
861 		bcons_post_bootenvrc(inputdev, outputdev, consoledev);
862 	} else {
863 		/*
864 		 * Ensure console property exists
865 		 * If not create it as "hypervisor"
866 		 */
867 		v_len = do_bsys_getproplen(NULL, "console");
868 		if (v_len < 0)
869 			bsetprops("console", "hypervisor");
870 		inputdev = outputdev = consoledev = "hypervisor";
871 		bcons_post_bootenvrc(inputdev, outputdev, consoledev);
872 	}
873 
874 	if (find_boot_prop("prom_debug") || kbm_debug)
875 		boot_prop_display(line);
876 }
877 
878 /*
879  * print formatted output
880  */
881 /*ARGSUSED*/
882 void
883 vbop_printf(void *ptr, const char *fmt, va_list ap)
884 {
885 	if (have_console == 0)
886 		return;
887 
888 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
889 	PUT_STRING(buffer);
890 }
891 
892 /*PRINTFLIKE2*/
893 void
894 bop_printf(void *bop, const char *fmt, ...)
895 {
896 	va_list	ap;
897 
898 	va_start(ap, fmt);
899 	vbop_printf(bop, fmt, ap);
900 	va_end(ap);
901 }
902 
903 /*
904  * Another panic() variant; this one can be used even earlier during boot than
905  * prom_panic().
906  */
907 /*PRINTFLIKE1*/
908 void
909 bop_panic(const char *fmt, ...)
910 {
911 	va_list ap;
912 
913 	va_start(ap, fmt);
914 	bop_printf(NULL, fmt, ap);
915 	va_end(ap);
916 
917 	bop_printf(NULL, "\nPress any key to reboot.\n");
918 	(void) bcons_getchar();
919 	bop_printf(NULL, "Resetting...\n");
920 	pc_reset();
921 }
922 
923 /*
924  * Do a real mode interrupt BIOS call
925  */
926 typedef struct bios_regs {
927 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
928 } bios_regs_t;
929 typedef int (*bios_func_t)(int, bios_regs_t *);
930 
931 /*ARGSUSED*/
932 static void
933 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
934 {
935 #if defined(__xpv)
936 	prom_panic("unsupported call to BOP_DOINT()\n");
937 #else	/* __xpv */
938 	static int firsttime = 1;
939 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
940 	bios_regs_t br;
941 
942 	/*
943 	 * We're about to disable paging; we shouldn't be PCID enabled.
944 	 */
945 	if (getcr4() & CR4_PCIDE)
946 		prom_panic("do_bsys_doint() with PCID enabled\n");
947 
948 	/*
949 	 * The first time we do this, we have to copy the pre-packaged
950 	 * low memory bios call code image into place.
951 	 */
952 	if (firsttime) {
953 		extern char bios_image[];
954 		extern uint32_t bios_size;
955 
956 		bcopy(bios_image, (void *)bios_func, bios_size);
957 		firsttime = 0;
958 	}
959 
960 	br.ax = rp->eax.word.ax;
961 	br.bx = rp->ebx.word.bx;
962 	br.cx = rp->ecx.word.cx;
963 	br.dx = rp->edx.word.dx;
964 	br.bp = rp->ebp.word.bp;
965 	br.si = rp->esi.word.si;
966 	br.di = rp->edi.word.di;
967 	br.ds = rp->ds;
968 	br.es = rp->es;
969 
970 	DBG_MSG("Doing BIOS call...");
971 	DBG(br.ax);
972 	DBG(br.bx);
973 	DBG(br.dx);
974 	rp->eflags = bios_func(intnum, &br);
975 	DBG_MSG("done\n");
976 
977 	rp->eax.word.ax = br.ax;
978 	rp->ebx.word.bx = br.bx;
979 	rp->ecx.word.cx = br.cx;
980 	rp->edx.word.dx = br.dx;
981 	rp->ebp.word.bp = br.bp;
982 	rp->esi.word.si = br.si;
983 	rp->edi.word.di = br.di;
984 	rp->ds = br.ds;
985 	rp->es = br.es;
986 #endif /* __xpv */
987 }
988 
989 static struct boot_syscalls bop_sysp = {
990 	bcons_getchar,
991 	bcons_putchar,
992 	bcons_ischar,
993 };
994 
995 static char *whoami;
996 
997 #define	BUFLEN	64
998 
999 #if defined(__xpv)
1000 
1001 static char namebuf[32];
1002 
1003 static void
1004 xen_parse_props(char *s, char *prop_map[], int n_prop)
1005 {
1006 	char **prop_name = prop_map;
1007 	char *cp = s, *scp;
1008 
1009 	do {
1010 		scp = cp;
1011 		while ((*cp != '\0') && (*cp != ':'))
1012 			cp++;
1013 
1014 		if ((scp != cp) && (*prop_name != NULL)) {
1015 			*cp = '\0';
1016 			bsetprops(*prop_name, scp);
1017 		}
1018 
1019 		cp++;
1020 		prop_name++;
1021 		n_prop--;
1022 	} while (n_prop > 0);
1023 }
1024 
1025 #define	VBDPATHLEN	64
1026 
1027 /*
1028  * parse the 'xpv-root' property to create properties used by
1029  * ufs_mountroot.
1030  */
1031 static void
1032 xen_vbdroot_props(char *s)
1033 {
1034 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1035 	const char lnamefix[] = "/dev/dsk/c0d";
1036 	char *pnp;
1037 	char *prop_p;
1038 	char mi;
1039 	short minor;
1040 	long addr = 0;
1041 
1042 	pnp = vbdpath + strlen(vbdpath);
1043 	prop_p = s + strlen(lnamefix);
1044 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1045 		addr = addr * 10 + *prop_p++ - '0';
1046 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1047 	pnp = vbdpath + strlen(vbdpath);
1048 	if (*prop_p == 's')
1049 		mi = 'a';
1050 	else if (*prop_p == 'p')
1051 		mi = 'q';
1052 	else
1053 		ASSERT(0); /* shouldn't be here */
1054 	prop_p++;
1055 	ASSERT(*prop_p != '\0');
1056 	if (ISDIGIT(*prop_p)) {
1057 		minor = *prop_p - '0';
1058 		prop_p++;
1059 		if (ISDIGIT(*prop_p)) {
1060 			minor = minor * 10 + *prop_p - '0';
1061 		}
1062 	} else {
1063 		/* malformed root path, use 0 as default */
1064 		minor = 0;
1065 	}
1066 	ASSERT(minor < 16); /* at most 16 partitions */
1067 	mi += minor;
1068 	*pnp++ = ':';
1069 	*pnp++ = mi;
1070 	*pnp++ = '\0';
1071 	bsetprops("fstype", "ufs");
1072 	bsetprops("bootpath", vbdpath);
1073 
1074 	DBG_MSG("VBD bootpath set to ");
1075 	DBG_MSG(vbdpath);
1076 	DBG_MSG("\n");
1077 }
1078 
1079 /*
1080  * parse the xpv-nfsroot property to create properties used by
1081  * nfs_mountroot.
1082  */
1083 static void
1084 xen_nfsroot_props(char *s)
1085 {
1086 	char *prop_map[] = {
1087 		BP_SERVER_IP,	/* server IP address */
1088 		BP_SERVER_NAME,	/* server hostname */
1089 		BP_SERVER_PATH,	/* root path */
1090 	};
1091 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1092 
1093 	bsetprops("fstype", "nfs");
1094 
1095 	xen_parse_props(s, prop_map, n_prop);
1096 
1097 	/*
1098 	 * If a server name wasn't specified, use a default.
1099 	 */
1100 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1101 		bsetprops(BP_SERVER_NAME, "unknown");
1102 }
1103 
1104 /*
1105  * Extract our IP address, etc. from the "xpv-ip" property.
1106  */
1107 static void
1108 xen_ip_props(char *s)
1109 {
1110 	char *prop_map[] = {
1111 		BP_HOST_IP,		/* IP address */
1112 		NULL,			/* NFS server IP address (ignored in */
1113 					/* favour of xpv-nfsroot) */
1114 		BP_ROUTER_IP,		/* IP gateway */
1115 		BP_SUBNET_MASK,		/* IP subnet mask */
1116 		"xpv-hostname",		/* hostname (ignored) */
1117 		BP_NETWORK_INTERFACE,	/* interface name */
1118 		"xpv-hcp",		/* host configuration protocol */
1119 	};
1120 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1121 	char ifname[IFNAMSIZ];
1122 
1123 	xen_parse_props(s, prop_map, n_prop);
1124 
1125 	/*
1126 	 * A Linux dom0 administrator expects all interfaces to be
1127 	 * called "ethX", which is not the case here.
1128 	 *
1129 	 * If the interface name specified is "eth0", presume that
1130 	 * this is really intended to be "xnf0" (the first domU ->
1131 	 * dom0 interface for this domain).
1132 	 */
1133 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1134 	    (strcmp("eth0", ifname) == 0)) {
1135 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1136 		bop_printf(NULL,
1137 		    "network interface name 'eth0' replaced with 'xnf0'\n");
1138 	}
1139 }
1140 
1141 #else	/* __xpv */
1142 
1143 static void
1144 setup_rarp_props(struct sol_netinfo *sip)
1145 {
1146 	char buf[BUFLEN];	/* to hold ip/mac addrs */
1147 	uint8_t *val;
1148 
1149 	val = (uint8_t *)&sip->sn_ciaddr;
1150 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1151 	    val[0], val[1], val[2], val[3]);
1152 	bsetprops(BP_HOST_IP, buf);
1153 
1154 	val = (uint8_t *)&sip->sn_siaddr;
1155 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1156 	    val[0], val[1], val[2], val[3]);
1157 	bsetprops(BP_SERVER_IP, buf);
1158 
1159 	if (sip->sn_giaddr != 0) {
1160 		val = (uint8_t *)&sip->sn_giaddr;
1161 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1162 		    val[0], val[1], val[2], val[3]);
1163 		bsetprops(BP_ROUTER_IP, buf);
1164 	}
1165 
1166 	if (sip->sn_netmask != 0) {
1167 		val = (uint8_t *)&sip->sn_netmask;
1168 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1169 		    val[0], val[1], val[2], val[3]);
1170 		bsetprops(BP_SUBNET_MASK, buf);
1171 	}
1172 
1173 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1174 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1175 		    sip->sn_mactype, sip->sn_maclen);
1176 	} else {
1177 		val = sip->sn_macaddr;
1178 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1179 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1180 		bsetprops(BP_BOOT_MAC, buf);
1181 	}
1182 }
1183 
1184 #endif	/* __xpv */
1185 
1186 static void
1187 build_panic_cmdline(const char *cmd, int cmdlen)
1188 {
1189 	int proplen;
1190 	size_t arglen;
1191 
1192 	arglen = sizeof (fastreboot_onpanic_args);
1193 	/*
1194 	 * If we allready have fastreboot-onpanic set to zero,
1195 	 * don't add them again.
1196 	 */
1197 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1198 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1199 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1200 		    fastreboot_onpanic_cmdline);
1201 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1202 			arglen = 1;
1203 	}
1204 
1205 	/*
1206 	 * construct fastreboot_onpanic_cmdline
1207 	 */
1208 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1209 		DBG_MSG("Command line too long: clearing "
1210 		    FASTREBOOT_ONPANIC "\n");
1211 		fastreboot_onpanic = 0;
1212 	} else {
1213 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1214 		if (arglen != 1)
1215 			bcopy(fastreboot_onpanic_args,
1216 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1217 		else
1218 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1219 	}
1220 }
1221 
1222 
1223 #ifndef	__xpv
1224 /*
1225  * Construct boot command line for Fast Reboot. The saved_cmdline
1226  * is also reported by "eeprom bootcmd".
1227  */
1228 static void
1229 build_fastboot_cmdline(struct xboot_info *xbp)
1230 {
1231 	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1232 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1233 		DBG(saved_cmdline_len);
1234 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1235 		fastreboot_capable = 0;
1236 	} else {
1237 		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1238 		    saved_cmdline_len);
1239 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1240 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1241 	}
1242 }
1243 
1244 /*
1245  * Save memory layout, disk drive information, unix and boot archive sizes for
1246  * Fast Reboot.
1247  */
1248 static void
1249 save_boot_info(struct xboot_info *xbi)
1250 {
1251 	multiboot_info_t *mbi = xbi->bi_mb_info;
1252 	struct boot_modules *modp;
1253 	int i;
1254 
1255 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1256 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1257 		DBG_MSG("mbi->mmap_length too big: clearing "
1258 		    "fastreboot_capable\n");
1259 		fastreboot_capable = 0;
1260 	} else {
1261 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1262 		    mbi->mmap_length);
1263 	}
1264 
1265 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1266 		if (mbi->drives_length > sizeof (saved_drives)) {
1267 			DBG(mbi->drives_length);
1268 			DBG_MSG("mbi->drives_length too big: clearing "
1269 			    "fastreboot_capable\n");
1270 			fastreboot_capable = 0;
1271 		} else {
1272 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1273 			    (void *)saved_drives, mbi->drives_length);
1274 		}
1275 	} else {
1276 		saved_mbi.drives_length = 0;
1277 		saved_mbi.drives_addr = 0;
1278 	}
1279 
1280 	/*
1281 	 * Current file sizes.  Used by fastboot.c to figure out how much
1282 	 * memory to reserve for panic reboot.
1283 	 * Use the module list from the dboot-constructed xboot_info
1284 	 * instead of the list referenced by the multiboot structure
1285 	 * because that structure may not be addressable now.
1286 	 */
1287 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1288 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1289 	    i < xbi->bi_module_cnt; i++, modp++) {
1290 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1291 	}
1292 }
1293 #endif	/* __xpv */
1294 
1295 /*
1296  * Import boot environment module variables as properties, applying
1297  * blacklist filter for variables we know we will not use.
1298  *
1299  * Since the environment can be relatively large, containing many variables
1300  * used only for boot loader purposes, we will use a blacklist based filter.
1301  * To keep the blacklist from growing too large, we use prefix based filtering.
1302  * This is possible because in many cases, the loader variable names are
1303  * using a structured layout.
1304  *
1305  * We will not overwrite already set properties.
1306  *
1307  * Note that the menu items in particular can contain characters not
1308  * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1309  * another reason.
1310  */
1311 static struct bop_blacklist {
1312 	const char *bl_name;
1313 	int bl_name_len;
1314 } bop_prop_blacklist[] = {
1315 	{ "ISADIR", sizeof ("ISADIR") },
1316 	{ "acpi", sizeof ("acpi") },
1317 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1318 	{ "beansi_", sizeof ("beansi_") },
1319 	{ "beastie", sizeof ("beastie") },
1320 	{ "bemenu", sizeof ("bemenu") },
1321 	{ "boot.", sizeof ("boot.") },
1322 	{ "bootenv", sizeof ("bootenv") },
1323 	{ "currdev", sizeof ("currdev") },
1324 	{ "dhcp.", sizeof ("dhcp.") },
1325 	{ "interpret", sizeof ("interpret") },
1326 	{ "kernel", sizeof ("kernel") },
1327 	{ "loaddev", sizeof ("loaddev") },
1328 	{ "loader_", sizeof ("loader_") },
1329 	{ "mainansi_", sizeof ("mainansi_") },
1330 	{ "mainmenu_", sizeof ("mainmenu_") },
1331 	{ "maintoggled_", sizeof ("maintoggled_") },
1332 	{ "menu_timeout_command", sizeof ("menu_timeout_command") },
1333 	{ "menuset_", sizeof ("menuset_") },
1334 	{ "module_path", sizeof ("module_path") },
1335 	{ "nfs.", sizeof ("nfs.") },
1336 	{ "optionsansi_", sizeof ("optionsansi_") },
1337 	{ "optionsmenu_", sizeof ("optionsmenu_") },
1338 	{ "optionstoggled_", sizeof ("optionstoggled_") },
1339 	{ "pcibios", sizeof ("pcibios") },
1340 	{ "prompt", sizeof ("prompt") },
1341 	{ "smbios", sizeof ("smbios") },
1342 	{ "tem", sizeof ("tem") },
1343 	{ "twiddle_divisor", sizeof ("twiddle_divisor") },
1344 	{ "zfs_be", sizeof ("zfs_be") },
1345 };
1346 
1347 /*
1348  * Match the name against prefixes in above blacklist. If the match was
1349  * found, this name is blacklisted.
1350  */
1351 static boolean_t
1352 name_is_blacklisted(const char *name)
1353 {
1354 	int i, n;
1355 
1356 	n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1357 	for (i = 0; i < n; i++) {
1358 		if (strncmp(bop_prop_blacklist[i].bl_name, name,
1359 		    bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1360 			return (B_TRUE);
1361 		}
1362 	}
1363 	return (B_FALSE);
1364 }
1365 
1366 static void
1367 process_boot_environment(struct boot_modules *benv)
1368 {
1369 	char *env, *ptr, *name, *value;
1370 	uint32_t size, name_len, value_len;
1371 
1372 	if (benv == NULL || benv->bm_type != BMT_ENV)
1373 		return;
1374 	ptr = env = benv->bm_addr;
1375 	size = benv->bm_size;
1376 	do {
1377 		name = ptr;
1378 		/* find '=' */
1379 		while (*ptr != '=') {
1380 			ptr++;
1381 			if (ptr > env + size) /* Something is very wrong. */
1382 				return;
1383 		}
1384 		name_len = ptr - name;
1385 		if (sizeof (buffer) <= name_len)
1386 			continue;
1387 
1388 		(void) strncpy(buffer, name, sizeof (buffer));
1389 		buffer[name_len] = '\0';
1390 		name = buffer;
1391 
1392 		value_len = 0;
1393 		value = ++ptr;
1394 		while ((uintptr_t)ptr - (uintptr_t)env < size) {
1395 			if (*ptr == '\0') {
1396 				ptr++;
1397 				value_len = (uintptr_t)ptr - (uintptr_t)env;
1398 				break;
1399 			}
1400 			ptr++;
1401 		}
1402 
1403 		/* Did we reach the end of the module? */
1404 		if (value_len == 0)
1405 			return;
1406 
1407 		if (*value == '\0')
1408 			continue;
1409 
1410 		/* Is this property already set? */
1411 		if (do_bsys_getproplen(NULL, name) >= 0)
1412 			continue;
1413 
1414 		/* Translate netboot variables */
1415 		if (strcmp(name, "boot.netif.gateway") == 0) {
1416 			bsetprops(BP_ROUTER_IP, value);
1417 			continue;
1418 		}
1419 		if (strcmp(name, "boot.netif.hwaddr") == 0) {
1420 			bsetprops(BP_BOOT_MAC, value);
1421 			continue;
1422 		}
1423 		if (strcmp(name, "boot.netif.ip") == 0) {
1424 			bsetprops(BP_HOST_IP, value);
1425 			continue;
1426 		}
1427 		if (strcmp(name, "boot.netif.netmask") == 0) {
1428 			bsetprops(BP_SUBNET_MASK, value);
1429 			continue;
1430 		}
1431 		if (strcmp(name, "boot.netif.server") == 0) {
1432 			bsetprops(BP_SERVER_IP, value);
1433 			continue;
1434 		}
1435 		if (strcmp(name, "boot.netif.server") == 0) {
1436 			if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1437 				bsetprops(BP_SERVER_IP, value);
1438 			continue;
1439 		}
1440 		if (strcmp(name, "boot.nfsroot.server") == 0) {
1441 			if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1442 				bsetprops(BP_SERVER_IP, value);
1443 			continue;
1444 		}
1445 		if (strcmp(name, "boot.nfsroot.path") == 0) {
1446 			bsetprops(BP_SERVER_PATH, value);
1447 			continue;
1448 		}
1449 
1450 		if (name_is_blacklisted(name) == B_TRUE)
1451 			continue;
1452 
1453 		/* Create new property. */
1454 		bsetprops(name, value);
1455 
1456 		/* Avoid reading past the module end. */
1457 		if (size <= (uintptr_t)ptr - (uintptr_t)env)
1458 			return;
1459 	} while (*ptr != '\0');
1460 }
1461 
1462 /*
1463  * 1st pass at building the table of boot properties. This includes:
1464  * - values set on the command line: -B a=x,b=y,c=z ....
1465  * - known values we just compute (ie. from xbp)
1466  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1467  *
1468  * the grub command line looked like:
1469  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1470  *
1471  * whoami is the same as boot-file
1472  */
1473 static void
1474 build_boot_properties(struct xboot_info *xbp)
1475 {
1476 	char *name;
1477 	int name_len;
1478 	char *value;
1479 	int value_len;
1480 	struct boot_modules *bm, *rdbm, *benv = NULL;
1481 	char *propbuf;
1482 	int quoted = 0;
1483 	int boot_arg_len;
1484 	uint_t i, midx;
1485 	char modid[32];
1486 #ifndef __xpv
1487 	static int stdout_val = 0;
1488 	uchar_t boot_device;
1489 	char str[3];
1490 #endif
1491 
1492 	/*
1493 	 * These have to be done first, so that kobj_mount_root() works
1494 	 */
1495 	DBG_MSG("Building boot properties\n");
1496 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1497 	DBG((uintptr_t)propbuf);
1498 	if (xbp->bi_module_cnt > 0) {
1499 		bm = xbp->bi_modules;
1500 		rdbm = NULL;
1501 		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1502 			if (bm[i].bm_type == BMT_ROOTFS) {
1503 				rdbm = &bm[i];
1504 				continue;
1505 			}
1506 			if (bm[i].bm_type == BMT_HASH ||
1507 			    bm[i].bm_type == BMT_FONT ||
1508 			    bm[i].bm_name == NULL)
1509 				continue;
1510 
1511 			if (bm[i].bm_type == BMT_ENV) {
1512 				if (benv == NULL)
1513 					benv = &bm[i];
1514 				else
1515 					continue;
1516 			}
1517 
1518 			(void) snprintf(modid, sizeof (modid),
1519 			    "module-name-%u", midx);
1520 			bsetprops(modid, (char *)bm[i].bm_name);
1521 			(void) snprintf(modid, sizeof (modid),
1522 			    "module-addr-%u", midx);
1523 			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1524 			(void) snprintf(modid, sizeof (modid),
1525 			    "module-size-%u", midx);
1526 			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1527 			++midx;
1528 		}
1529 		if (rdbm != NULL) {
1530 			bsetprop64("ramdisk_start",
1531 			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1532 			bsetprop64("ramdisk_end",
1533 			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * If there are any boot time modules or hashes present, then disable
1539 	 * fast reboot.
1540 	 */
1541 	if (xbp->bi_module_cnt > 1) {
1542 		fastreboot_disable(FBNS_BOOTMOD);
1543 	}
1544 
1545 #ifndef __xpv
1546 	/*
1547 	 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1548 	 * since we don't currently support MB2 info and module relocation.
1549 	 * Note that fast reboot will have already been disabled if multiple
1550 	 * modules are present, since the current implementation assumes that
1551 	 * we only have a single module, the boot_archive.
1552 	 */
1553 	if (xbp->bi_mb_version != 1) {
1554 		fastreboot_disable(FBNS_MULTIBOOT2);
1555 	}
1556 #endif
1557 
1558 	DBG_MSG("Parsing command line for boot properties\n");
1559 	value = xbp->bi_cmdline;
1560 
1561 	/*
1562 	 * allocate memory to collect boot_args into
1563 	 */
1564 	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1565 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1566 	boot_args[0] = 0;
1567 	boot_arg_len = 0;
1568 
1569 #ifdef __xpv
1570 	/*
1571 	 * Xen puts a lot of device information in front of the kernel name
1572 	 * let's grab them and make them boot properties.  The first
1573 	 * string w/o an "=" in it will be the boot-file property.
1574 	 */
1575 	(void) strcpy(namebuf, "xpv-");
1576 	for (;;) {
1577 		/*
1578 		 * get to next property
1579 		 */
1580 		while (ISSPACE(*value))
1581 			++value;
1582 		name = value;
1583 		/*
1584 		 * look for an "="
1585 		 */
1586 		while (*value && !ISSPACE(*value) && *value != '=') {
1587 			value++;
1588 		}
1589 		if (*value != '=') { /* no "=" in the property */
1590 			value = name;
1591 			break;
1592 		}
1593 		name_len = value - name;
1594 		value_len = 0;
1595 		/*
1596 		 * skip over the "="
1597 		 */
1598 		value++;
1599 		while (value[value_len] && !ISSPACE(value[value_len])) {
1600 			++value_len;
1601 		}
1602 		/*
1603 		 * build property name with "xpv-" prefix
1604 		 */
1605 		if (name_len + 4 > 32) { /* skip if name too long */
1606 			value += value_len;
1607 			continue;
1608 		}
1609 		bcopy(name, &namebuf[4], name_len);
1610 		name_len += 4;
1611 		namebuf[name_len] = 0;
1612 		bcopy(value, propbuf, value_len);
1613 		propbuf[value_len] = 0;
1614 		bsetprops(namebuf, propbuf);
1615 
1616 		/*
1617 		 * xpv-root is set to the logical disk name of the xen
1618 		 * VBD when booting from a disk-based filesystem.
1619 		 */
1620 		if (strcmp(namebuf, "xpv-root") == 0)
1621 			xen_vbdroot_props(propbuf);
1622 		/*
1623 		 * While we're here, if we have a "xpv-nfsroot" property
1624 		 * then we need to set "fstype" to "nfs" so we mount
1625 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1626 		 * property to create the properties that nfs_mountroot will
1627 		 * need to find the root and mount it.
1628 		 */
1629 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1630 			xen_nfsroot_props(propbuf);
1631 
1632 		if (strcmp(namebuf, "xpv-ip") == 0)
1633 			xen_ip_props(propbuf);
1634 		value += value_len;
1635 	}
1636 #endif
1637 
1638 	while (ISSPACE(*value))
1639 		++value;
1640 	/*
1641 	 * value now points at the boot-file
1642 	 */
1643 	value_len = 0;
1644 	while (value[value_len] && !ISSPACE(value[value_len]))
1645 		++value_len;
1646 	if (value_len > 0) {
1647 		whoami = propbuf;
1648 		bcopy(value, whoami, value_len);
1649 		whoami[value_len] = 0;
1650 		bsetprops("boot-file", whoami);
1651 		/*
1652 		 * strip leading path stuff from whoami, so running from
1653 		 * PXE/miniroot makes sense.
1654 		 */
1655 		if (strstr(whoami, "/platform/") != NULL)
1656 			whoami = strstr(whoami, "/platform/");
1657 		bsetprops("whoami", whoami);
1658 	}
1659 
1660 	/*
1661 	 * Values forcibly set boot properties on the command line via -B.
1662 	 * Allow use of quotes in values. Other stuff goes on kernel
1663 	 * command line.
1664 	 */
1665 	name = value + value_len;
1666 	while (*name != 0) {
1667 		/*
1668 		 * anything not " -B" is copied to the command line
1669 		 */
1670 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1671 			boot_args[boot_arg_len++] = *name;
1672 			boot_args[boot_arg_len] = 0;
1673 			++name;
1674 			continue;
1675 		}
1676 
1677 		/*
1678 		 * skip the " -B" and following white space
1679 		 */
1680 		name += 3;
1681 		while (ISSPACE(*name))
1682 			++name;
1683 		while (*name && !ISSPACE(*name)) {
1684 			value = strstr(name, "=");
1685 			if (value == NULL)
1686 				break;
1687 			name_len = value - name;
1688 			++value;
1689 			value_len = 0;
1690 			quoted = 0;
1691 			for (; ; ++value_len) {
1692 				if (!value[value_len])
1693 					break;
1694 
1695 				/*
1696 				 * is this value quoted?
1697 				 */
1698 				if (value_len == 0 &&
1699 				    (value[0] == '\'' || value[0] == '"')) {
1700 					quoted = value[0];
1701 					++value_len;
1702 				}
1703 
1704 				/*
1705 				 * In the quote accept any character,
1706 				 * but look for ending quote.
1707 				 */
1708 				if (quoted) {
1709 					if (value[value_len] == quoted)
1710 						quoted = 0;
1711 					continue;
1712 				}
1713 
1714 				/*
1715 				 * a comma or white space ends the value
1716 				 */
1717 				if (value[value_len] == ',' ||
1718 				    ISSPACE(value[value_len]))
1719 					break;
1720 			}
1721 
1722 			if (value_len == 0) {
1723 				bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1724 				    NULL, 0);
1725 			} else {
1726 				char *v = value;
1727 				int l = value_len;
1728 				if (v[0] == v[l - 1] &&
1729 				    (v[0] == '\'' || v[0] == '"')) {
1730 					++v;
1731 					l -= 2;
1732 				}
1733 				bcopy(v, propbuf, l);
1734 				propbuf[l] = '\0';
1735 				bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1736 				    propbuf, l + 1);
1737 			}
1738 			name = value + value_len;
1739 			while (*name == ',')
1740 				++name;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * set boot-args property
1746 	 * 1275 name is bootargs, so set
1747 	 * that too
1748 	 */
1749 	bsetprops("boot-args", boot_args);
1750 	bsetprops("bootargs", boot_args);
1751 
1752 	process_boot_environment(benv);
1753 
1754 #ifndef __xpv
1755 	/*
1756 	 * Build boot command line for Fast Reboot
1757 	 */
1758 	build_fastboot_cmdline(xbp);
1759 
1760 	if (xbp->bi_mb_version == 1) {
1761 		multiboot_info_t *mbi = xbp->bi_mb_info;
1762 		int netboot;
1763 		struct sol_netinfo *sip;
1764 
1765 		/*
1766 		 * set the BIOS boot device from GRUB
1767 		 */
1768 		netboot = 0;
1769 
1770 		/*
1771 		 * Save various boot information for Fast Reboot
1772 		 */
1773 		save_boot_info(xbp);
1774 
1775 		if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1776 			boot_device = mbi->boot_device >> 24;
1777 			if (boot_device == 0x20)
1778 				netboot++;
1779 			str[0] = (boot_device >> 4) + '0';
1780 			str[1] = (boot_device & 0xf) + '0';
1781 			str[2] = 0;
1782 			bsetprops("bios-boot-device", str);
1783 		} else {
1784 			netboot = 1;
1785 		}
1786 
1787 		/*
1788 		 * In the netboot case, drives_info is overloaded with the
1789 		 * dhcp ack. This is not multiboot compliant and requires
1790 		 * special pxegrub!
1791 		 */
1792 		if (netboot && mbi->drives_length != 0) {
1793 			sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1794 			if (sip->sn_infotype == SN_TYPE_BOOTP)
1795 				bsetprop(DDI_PROP_TYPE_BYTE,
1796 				    "bootp-response",
1797 				    sizeof ("bootp-response"),
1798 				    (void *)(uintptr_t)mbi->drives_addr,
1799 				    mbi->drives_length);
1800 			else if (sip->sn_infotype == SN_TYPE_RARP)
1801 				setup_rarp_props(sip);
1802 		}
1803 	} else {
1804 		multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1805 		multiboot_tag_bootdev_t *bootdev = NULL;
1806 		multiboot_tag_network_t *netdev = NULL;
1807 
1808 		if (mbi != NULL) {
1809 			bootdev = dboot_multiboot2_find_tag(mbi,
1810 			    MULTIBOOT_TAG_TYPE_BOOTDEV);
1811 			netdev = dboot_multiboot2_find_tag(mbi,
1812 			    MULTIBOOT_TAG_TYPE_NETWORK);
1813 		}
1814 		if (bootdev != NULL) {
1815 			DBG(bootdev->mb_biosdev);
1816 			boot_device = bootdev->mb_biosdev;
1817 			str[0] = (boot_device >> 4) + '0';
1818 			str[1] = (boot_device & 0xf) + '0';
1819 			str[2] = 0;
1820 			bsetprops("bios-boot-device", str);
1821 		}
1822 		if (netdev != NULL) {
1823 			bsetprop(DDI_PROP_TYPE_BYTE,
1824 			    "bootp-response", sizeof ("bootp-response"),
1825 			    (void *)(uintptr_t)netdev->mb_dhcpack,
1826 			    netdev->mb_size -
1827 			    sizeof (multiboot_tag_network_t));
1828 		}
1829 	}
1830 
1831 	bsetprop32("stdout", stdout_val);
1832 #endif /* __xpv */
1833 
1834 	/*
1835 	 * more conjured up values for made up things....
1836 	 */
1837 #if defined(__xpv)
1838 	bsetprops("mfg-name", "i86xpv");
1839 	bsetprops("impl-arch-name", "i86xpv");
1840 #else
1841 	bsetprops("mfg-name", "i86pc");
1842 	bsetprops("impl-arch-name", "i86pc");
1843 #endif
1844 
1845 	/*
1846 	 * Build firmware-provided system properties
1847 	 */
1848 	build_firmware_properties(xbp);
1849 
1850 	/*
1851 	 * XXPV
1852 	 *
1853 	 * Find out what these are:
1854 	 * - cpuid_feature_ecx_include
1855 	 * - cpuid_feature_ecx_exclude
1856 	 * - cpuid_feature_edx_include
1857 	 * - cpuid_feature_edx_exclude
1858 	 *
1859 	 * Find out what these are in multiboot:
1860 	 * - netdev-path
1861 	 * - fstype
1862 	 */
1863 }
1864 
1865 #ifdef __xpv
1866 /*
1867  * Under the Hypervisor, memory usable for DMA may be scarce. One
1868  * very likely large pool of DMA friendly memory is occupied by
1869  * the boot_archive, as it was loaded by grub into low MFNs.
1870  *
1871  * Here we free up that memory by copying the boot archive to what are
1872  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1873  */
1874 #define	PFN_2GIG	0x80000
1875 static void
1876 relocate_boot_archive(struct xboot_info *xbp)
1877 {
1878 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1879 	struct boot_modules *bm = xbp->bi_modules;
1880 	uintptr_t va;
1881 	pfn_t va_pfn;
1882 	mfn_t va_mfn;
1883 	caddr_t copy;
1884 	pfn_t copy_pfn;
1885 	mfn_t copy_mfn;
1886 	size_t	len;
1887 	int slop;
1888 	int total = 0;
1889 	int relocated = 0;
1890 	int mmu_update_return;
1891 	mmu_update_t t[2];
1892 	x86pte_t pte;
1893 
1894 	/*
1895 	 * If all MFN's are below 2Gig, don't bother doing this.
1896 	 */
1897 	if (max_mfn < PFN_2GIG)
1898 		return;
1899 	if (xbp->bi_module_cnt < 1) {
1900 		DBG_MSG("no boot_archive!");
1901 		return;
1902 	}
1903 
1904 	DBG_MSG("moving boot_archive to high MFN memory\n");
1905 	va = (uintptr_t)bm->bm_addr;
1906 	len = bm->bm_size;
1907 	slop = va & MMU_PAGEOFFSET;
1908 	if (slop) {
1909 		va += MMU_PAGESIZE - slop;
1910 		len -= MMU_PAGESIZE - slop;
1911 	}
1912 	len = P2ALIGN(len, MMU_PAGESIZE);
1913 
1914 	/*
1915 	 * Go through all boot_archive pages, swapping any low MFN pages
1916 	 * with memory at next_phys.
1917 	 */
1918 	while (len != 0) {
1919 		++total;
1920 		va_pfn = mmu_btop(va - ONE_GIG);
1921 		va_mfn = mfn_list[va_pfn];
1922 		if (mfn_list[va_pfn] < PFN_2GIG) {
1923 			copy = kbm_remap_window(next_phys, 1);
1924 			bcopy((void *)va, copy, MMU_PAGESIZE);
1925 			copy_pfn = mmu_btop(next_phys);
1926 			copy_mfn = mfn_list[copy_pfn];
1927 
1928 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1929 			if (HYPERVISOR_update_va_mapping(va, pte,
1930 			    UVMF_INVLPG | UVMF_LOCAL))
1931 				bop_panic("relocate_boot_archive():  "
1932 				    "HYPERVISOR_update_va_mapping() failed");
1933 
1934 			mfn_list[va_pfn] = copy_mfn;
1935 			mfn_list[copy_pfn] = va_mfn;
1936 
1937 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1938 			t[0].val = va_pfn;
1939 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1940 			t[1].val = copy_pfn;
1941 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1942 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1943 				bop_panic("relocate_boot_archive():  "
1944 				    "HYPERVISOR_mmu_update() failed");
1945 
1946 			next_phys += MMU_PAGESIZE;
1947 			++relocated;
1948 		}
1949 		len -= MMU_PAGESIZE;
1950 		va += MMU_PAGESIZE;
1951 	}
1952 	DBG_MSG("Relocated pages:\n");
1953 	DBG(relocated);
1954 	DBG_MSG("Out of total pages:\n");
1955 	DBG(total);
1956 }
1957 #endif /* __xpv */
1958 
1959 #if !defined(__xpv)
1960 /*
1961  * simple description of a stack frame (args are 32 bit only currently)
1962  */
1963 typedef struct bop_frame {
1964 	struct bop_frame *old_frame;
1965 	pc_t retaddr;
1966 	long arg[1];
1967 } bop_frame_t;
1968 
1969 void
1970 bop_traceback(bop_frame_t *frame)
1971 {
1972 	pc_t pc;
1973 	int cnt;
1974 	char *ksym;
1975 	ulong_t off;
1976 
1977 	bop_printf(NULL, "Stack traceback:\n");
1978 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1979 		pc = frame->retaddr;
1980 		if (pc == 0)
1981 			break;
1982 		ksym = kobj_getsymname(pc, &off);
1983 		if (ksym)
1984 			bop_printf(NULL, "  %s+%lx", ksym, off);
1985 		else
1986 			bop_printf(NULL, "  0x%lx", pc);
1987 
1988 		frame = frame->old_frame;
1989 		if (frame == 0) {
1990 			bop_printf(NULL, "\n");
1991 			break;
1992 		}
1993 		bop_printf(NULL, "\n");
1994 	}
1995 }
1996 
1997 struct trapframe {
1998 	ulong_t error_code;	/* optional */
1999 	ulong_t inst_ptr;
2000 	ulong_t code_seg;
2001 	ulong_t flags_reg;
2002 	ulong_t stk_ptr;
2003 	ulong_t stk_seg;
2004 };
2005 
2006 void
2007 bop_trap(ulong_t *tfp)
2008 {
2009 	struct trapframe *tf = (struct trapframe *)tfp;
2010 	bop_frame_t fakeframe;
2011 	static int depth = 0;
2012 
2013 	/*
2014 	 * Check for an infinite loop of traps.
2015 	 */
2016 	if (++depth > 2)
2017 		bop_panic("Nested trap");
2018 
2019 	bop_printf(NULL, "Unexpected trap\n");
2020 
2021 	/*
2022 	 * adjust the tf for optional error_code by detecting the code selector
2023 	 */
2024 	if (tf->code_seg != B64CODE_SEL)
2025 		tf = (struct trapframe *)(tfp - 1);
2026 	else
2027 		bop_printf(NULL, "error code           0x%lx\n",
2028 		    tf->error_code & 0xffffffff);
2029 
2030 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
2031 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
2032 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
2033 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
2034 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
2035 	bop_printf(NULL, "%%cr2			0x%lx\n", getcr2());
2036 
2037 	/* grab %[er]bp pushed by our code from the stack */
2038 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2039 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
2040 	bop_printf(NULL, "Attempting stack backtrace:\n");
2041 	bop_traceback(&fakeframe);
2042 	bop_panic("unexpected trap in early boot");
2043 }
2044 
2045 extern void bop_trap_handler(void);
2046 
2047 static gate_desc_t *bop_idt;
2048 
2049 static desctbr_t bop_idt_info;
2050 
2051 /*
2052  * Install a temporary IDT that lets us catch errors in the boot time code.
2053  * We shouldn't get any faults at all while this is installed, so we'll
2054  * just generate a traceback and exit.
2055  */
2056 static void
2057 bop_idt_init(void)
2058 {
2059 	int t;
2060 
2061 	bop_idt = (gate_desc_t *)
2062 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2063 	bzero(bop_idt, MMU_PAGESIZE);
2064 	for (t = 0; t < NIDT; ++t) {
2065 		/*
2066 		 * Note that since boot runs without a TSS, the
2067 		 * double fault handler cannot use an alternate stack (64-bit).
2068 		 */
2069 		set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2070 		    SDT_SYSIGT, TRP_KPL, 0);
2071 	}
2072 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2073 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2074 	wr_idtr(&bop_idt_info);
2075 }
2076 #endif	/* !defined(__xpv) */
2077 
2078 /*
2079  * This is where we enter the kernel. It dummies up the boot_ops and
2080  * boot_syscalls vectors and jumps off to _kobj_boot()
2081  */
2082 void
2083 _start(struct xboot_info *xbp)
2084 {
2085 	bootops_t *bops = &bootop;
2086 	extern void _kobj_boot();
2087 
2088 	/*
2089 	 * 1st off - initialize the console for any error messages
2090 	 */
2091 	xbootp = xbp;
2092 #ifdef __xpv
2093 	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2094 	xen_info = xbp->bi_xen_start_info;
2095 #endif
2096 
2097 #ifndef __xpv
2098 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2099 	    FASTBOOT_MAGIC) {
2100 		post_fastreboot = 1;
2101 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2102 	}
2103 #endif
2104 
2105 	bcons_init(xbp);
2106 	have_console = 1;
2107 
2108 	/*
2109 	 * enable debugging
2110 	 */
2111 	if (find_boot_prop("kbm_debug") != NULL)
2112 		kbm_debug = 1;
2113 
2114 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2115 	DBG_MSG((char *)xbp->bi_cmdline);
2116 	DBG_MSG("\n\n\n");
2117 
2118 	/*
2119 	 * physavail is no longer used by startup
2120 	 */
2121 	bm.physinstalled = xbp->bi_phys_install;
2122 	bm.pcimem = xbp->bi_pcimem;
2123 	bm.rsvdmem = xbp->bi_rsvdmem;
2124 	bm.physavail = NULL;
2125 
2126 	/*
2127 	 * initialize the boot time allocator
2128 	 */
2129 	next_phys = xbp->bi_next_paddr;
2130 	DBG(next_phys);
2131 	next_virt = (uintptr_t)xbp->bi_next_vaddr;
2132 	DBG(next_virt);
2133 	DBG_MSG("Initializing boot time memory management...");
2134 #ifdef __xpv
2135 	{
2136 		xen_platform_parameters_t p;
2137 
2138 		/* This call shouldn't fail, dboot already did it once. */
2139 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2140 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2141 		DBG(xen_virt_start);
2142 	}
2143 #endif
2144 	kbm_init(xbp);
2145 	DBG_MSG("done\n");
2146 
2147 	/*
2148 	 * Fill in the bootops vector
2149 	 */
2150 	bops->bsys_version = BO_VERSION;
2151 	bops->boot_mem = &bm;
2152 	bops->bsys_alloc = do_bsys_alloc;
2153 	bops->bsys_free = do_bsys_free;
2154 	bops->bsys_getproplen = do_bsys_getproplen;
2155 	bops->bsys_getprop = do_bsys_getprop;
2156 	bops->bsys_nextprop = do_bsys_nextprop;
2157 	bops->bsys_printf = bop_printf;
2158 	bops->bsys_doint = do_bsys_doint;
2159 
2160 	/*
2161 	 * BOP_EALLOC() is no longer needed
2162 	 */
2163 	bops->bsys_ealloc = do_bsys_ealloc;
2164 
2165 #ifdef __xpv
2166 	/*
2167 	 * On domain 0 we need to free up some physical memory that is
2168 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
2169 	 * sitting in low MFN memory. We'll relocated the boot archive
2170 	 * pages to high PFN memory.
2171 	 */
2172 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2173 		relocate_boot_archive(xbp);
2174 #endif
2175 
2176 #ifndef __xpv
2177 	/*
2178 	 * Install an IDT to catch early pagefaults (shouldn't have any).
2179 	 * Also needed for kmdb.
2180 	 */
2181 	bop_idt_init();
2182 #endif
2183 	/* Set up the shadow fb for framebuffer console */
2184 	boot_fb_shadow_init(bops);
2185 
2186 	/*
2187 	 * Start building the boot properties from the command line
2188 	 */
2189 	DBG_MSG("Initializing boot properties:\n");
2190 	build_boot_properties(xbp);
2191 
2192 	if (find_boot_prop("prom_debug") || kbm_debug) {
2193 		char *value;
2194 
2195 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2196 		boot_prop_display(value);
2197 	}
2198 
2199 	/*
2200 	 * jump into krtld...
2201 	 */
2202 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
2203 }
2204 
2205 
2206 /*ARGSUSED*/
2207 static caddr_t
2208 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2209 {
2210 	panic("Attempt to bsys_alloc() too late\n");
2211 	return (NULL);
2212 }
2213 
2214 /*ARGSUSED*/
2215 static void
2216 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2217 {
2218 	panic("Attempt to bsys_free() too late\n");
2219 }
2220 
2221 void
2222 bop_no_more_mem(void)
2223 {
2224 	DBG(total_bop_alloc_scratch);
2225 	DBG(total_bop_alloc_kernel);
2226 	bootops->bsys_alloc = no_more_alloc;
2227 	bootops->bsys_free = no_more_free;
2228 }
2229 
2230 
2231 /*
2232  * Set ACPI firmware properties
2233  */
2234 
2235 static caddr_t
2236 vmap_phys(size_t length, paddr_t pa)
2237 {
2238 	paddr_t	start, end;
2239 	caddr_t	va;
2240 	size_t	len, page;
2241 
2242 #ifdef __xpv
2243 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2244 #endif
2245 	start = P2ALIGN(pa, MMU_PAGESIZE);
2246 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2247 	len = end - start;
2248 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2249 	for (page = 0; page < len; page += MMU_PAGESIZE)
2250 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
2251 	return (va + (pa & MMU_PAGEOFFSET));
2252 }
2253 
2254 static uint8_t
2255 checksum_table(uint8_t *tp, size_t len)
2256 {
2257 	uint8_t sum = 0;
2258 
2259 	while (len-- > 0)
2260 		sum += *tp++;
2261 
2262 	return (sum);
2263 }
2264 
2265 static int
2266 valid_rsdp(ACPI_TABLE_RSDP *rp)
2267 {
2268 
2269 	/* validate the V1.x checksum */
2270 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2271 		return (0);
2272 
2273 	/* If pre-ACPI 2.0, this is a valid RSDP */
2274 	if (rp->Revision < 2)
2275 		return (1);
2276 
2277 	/* validate the V2.x checksum */
2278 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2279 		return (0);
2280 
2281 	return (1);
2282 }
2283 
2284 /*
2285  * Scan memory range for an RSDP;
2286  * see ACPI 3.0 Spec, 5.2.5.1
2287  */
2288 static ACPI_TABLE_RSDP *
2289 scan_rsdp(paddr_t *paddrp, size_t len)
2290 {
2291 	paddr_t paddr = *paddrp;
2292 	caddr_t ptr;
2293 
2294 	ptr = vmap_phys(len, paddr);
2295 
2296 	while (len > 0) {
2297 		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2298 		    valid_rsdp((ACPI_TABLE_RSDP *)ptr)) {
2299 			*paddrp = paddr;
2300 			return ((ACPI_TABLE_RSDP *)ptr);
2301 		}
2302 
2303 		ptr += ACPI_RSDP_SCAN_STEP;
2304 		paddr += ACPI_RSDP_SCAN_STEP;
2305 		len -= ACPI_RSDP_SCAN_STEP;
2306 	}
2307 
2308 	return (NULL);
2309 }
2310 
2311 /*
2312  * Locate the ACPI RSDP.  We search in a particular order:
2313  *
2314  * - If the bootloader told us the location of the RSDP (via the EFI system
2315  *   table), try that first.
2316  * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy
2317  *   case).
2318  * - Finally, our bootloader may have a copy of the RSDP in its info: this might
2319  *   get freed after boot, so we always prefer to find the original RSDP first.
2320  *
2321  * Once found, we set acpi-root-tab property (a physical address) for the
2322  * benefit of acpica, acpidump etc.
2323  */
2324 
2325 static ACPI_TABLE_RSDP *
2326 find_rsdp(struct xboot_info *xbp)
2327 {
2328 	ACPI_TABLE_RSDP *rsdp = NULL;
2329 	paddr_t paddr = 0;
2330 
2331 	if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2332 		(void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr);
2333 		rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2334 	}
2335 
2336 #ifndef __xpv
2337 	if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) {
2338 		paddr = (uintptr_t)xbp->bi_acpi_rsdp;
2339 		rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2340 	}
2341 #endif
2342 
2343 	if (rsdp == NULL) {
2344 		uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2345 		    ACPI_EBDA_PTR_LOCATION);
2346 		paddr = *ebda_seg << 4;
2347 		rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE);
2348 	}
2349 
2350 	if (rsdp == NULL) {
2351 		paddr = ACPI_HI_RSDP_WINDOW_BASE;
2352 		rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE);
2353 	}
2354 
2355 #ifndef __xpv
2356 	if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) {
2357 		paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy;
2358 		rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2359 	}
2360 #endif
2361 
2362 	if (rsdp == NULL) {
2363 		bop_printf(NULL, "no RSDP found!\n");
2364 		return (NULL);
2365 	}
2366 
2367 	if (kbm_debug)
2368 		bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr);
2369 
2370 	if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t))
2371 		bsetprop64("acpi-root-tab", paddr);
2372 
2373 	return (rsdp);
2374 }
2375 
2376 static ACPI_TABLE_HEADER *
2377 map_fw_table(paddr_t table_addr)
2378 {
2379 	ACPI_TABLE_HEADER *tp;
2380 	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2381 
2382 	/*
2383 	 * Map at least a page; if the table is larger than this, remap it
2384 	 */
2385 	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2386 	if (tp->Length > len)
2387 		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2388 	return (tp);
2389 }
2390 
2391 static ACPI_TABLE_HEADER *
2392 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature)
2393 {
2394 	static int revision = 0;
2395 	static ACPI_TABLE_XSDT *xsdt;
2396 	static int len;
2397 	paddr_t xsdt_addr;
2398 	ACPI_TABLE_HEADER *tp;
2399 	paddr_t table_addr;
2400 	int	n;
2401 
2402 	if (strlen(signature) != ACPI_NAME_SIZE)
2403 		return (NULL);
2404 
2405 	/*
2406 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2407 	 * understand this code.  If we haven't already found the RSDT/XSDT,
2408 	 * revision will be 0. Find the RSDP and check the revision
2409 	 * to find out whether to use the RSDT or XSDT.  If revision is
2410 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2411 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2412 	 * revision 1 and use the RSDT.
2413 	 */
2414 	if (revision == 0) {
2415 		if (rsdp == NULL)
2416 			return (NULL);
2417 
2418 		revision = rsdp->Revision;
2419 		/*
2420 		 * ACPI 6.0 states that current revision is 2
2421 		 * from acpi_table_rsdp definition:
2422 		 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2423 		 */
2424 		if (revision > 2)
2425 			revision = 2;
2426 		switch (revision) {
2427 		case 2:
2428 			/*
2429 			 * Use the XSDT unless BIOS is buggy and
2430 			 * claims to be rev 2 but has a null XSDT
2431 			 * address
2432 			 */
2433 			xsdt_addr = rsdp->XsdtPhysicalAddress;
2434 			if (xsdt_addr != 0)
2435 				break;
2436 			/* FALLTHROUGH */
2437 		case 0:
2438 			/* treat RSDP rev 0 as revision 1 internally */
2439 			revision = 1;
2440 			/* FALLTHROUGH */
2441 		case 1:
2442 			/* use the RSDT for rev 0/1 */
2443 			xsdt_addr = rsdp->RsdtPhysicalAddress;
2444 			break;
2445 		default:
2446 			/* unknown revision */
2447 			revision = 0;
2448 			break;
2449 		}
2450 
2451 		if (revision == 0)
2452 			return (NULL);
2453 
2454 		/* cache the XSDT info */
2455 		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2456 		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2457 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2458 	}
2459 
2460 	/*
2461 	 * Scan the table headers looking for a signature match
2462 	 */
2463 	for (n = 0; n < len; n++) {
2464 		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2465 		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2466 		    xsdt->TableOffsetEntry[n];
2467 
2468 		if (table_addr == 0)
2469 			continue;
2470 		tp = map_fw_table(table_addr);
2471 		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2472 			return (tp);
2473 		}
2474 	}
2475 	return (NULL);
2476 }
2477 
2478 static void
2479 process_mcfg(ACPI_TABLE_MCFG *tp)
2480 {
2481 	ACPI_MCFG_ALLOCATION *cfg_baap;
2482 	char *cfg_baa_endp;
2483 	int64_t ecfginfo[4];
2484 
2485 	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2486 	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2487 	while ((char *)cfg_baap < cfg_baa_endp) {
2488 		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2489 			ecfginfo[0] = cfg_baap->Address;
2490 			ecfginfo[1] = cfg_baap->PciSegment;
2491 			ecfginfo[2] = cfg_baap->StartBusNumber;
2492 			ecfginfo[3] = cfg_baap->EndBusNumber;
2493 			bsetprop(DDI_PROP_TYPE_INT64,
2494 			    MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2495 			    ecfginfo, sizeof (ecfginfo));
2496 			break;
2497 		}
2498 		cfg_baap++;
2499 	}
2500 }
2501 
2502 #ifndef __xpv
2503 static void
2504 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2505     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2506 {
2507 	ACPI_SUBTABLE_HEADER *item, *end;
2508 	uint32_t cpu_count = 0;
2509 	uint32_t cpu_possible_count = 0;
2510 
2511 	/*
2512 	 * Determine number of CPUs and keep track of "final" APIC ID
2513 	 * for each CPU by walking through ACPI MADT processor list
2514 	 */
2515 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2516 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2517 
2518 	while (item < end) {
2519 		switch (item->Type) {
2520 		case ACPI_MADT_TYPE_LOCAL_APIC: {
2521 			ACPI_MADT_LOCAL_APIC *cpu =
2522 			    (ACPI_MADT_LOCAL_APIC *) item;
2523 
2524 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2525 				if (cpu_apicid_array != NULL)
2526 					cpu_apicid_array[cpu_count] = cpu->Id;
2527 				cpu_count++;
2528 			}
2529 			cpu_possible_count++;
2530 			break;
2531 		}
2532 		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2533 			ACPI_MADT_LOCAL_X2APIC *cpu =
2534 			    (ACPI_MADT_LOCAL_X2APIC *) item;
2535 
2536 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2537 				if (cpu_apicid_array != NULL)
2538 					cpu_apicid_array[cpu_count] =
2539 					    cpu->LocalApicId;
2540 				cpu_count++;
2541 			}
2542 			cpu_possible_count++;
2543 			break;
2544 		}
2545 		default:
2546 			if (kbm_debug)
2547 				bop_printf(NULL, "MADT type %d\n", item->Type);
2548 			break;
2549 		}
2550 
2551 		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2552 	}
2553 	if (cpu_countp)
2554 		*cpu_countp = cpu_count;
2555 	if (cpu_possible_countp)
2556 		*cpu_possible_countp = cpu_possible_count;
2557 }
2558 
2559 static void
2560 process_madt(ACPI_TABLE_MADT *tp)
2561 {
2562 	uint32_t cpu_count = 0;
2563 	uint32_t cpu_possible_count = 0;
2564 	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2565 
2566 	if (tp != NULL) {
2567 		/* count cpu's */
2568 		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2569 
2570 		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2571 		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2572 		if (cpu_apicid_array == NULL)
2573 			bop_panic("Not enough memory for APIC ID array");
2574 
2575 		/* copy IDs */
2576 		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2577 
2578 		/*
2579 		 * Make boot property for array of "final" APIC IDs for each
2580 		 * CPU
2581 		 */
2582 		bsetprop(DDI_PROP_TYPE_INT,
2583 		    BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2584 		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2585 	}
2586 
2587 	/*
2588 	 * Check whether property plat-max-ncpus is already set.
2589 	 */
2590 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2591 		/*
2592 		 * Set plat-max-ncpus to number of maximum possible CPUs given
2593 		 * in MADT if it hasn't been set.
2594 		 * There's no formal way to detect max possible CPUs supported
2595 		 * by platform according to ACPI spec3.0b. So current CPU
2596 		 * hotplug implementation expects that all possible CPUs will
2597 		 * have an entry in MADT table and set plat-max-ncpus to number
2598 		 * of entries in MADT.
2599 		 * With introducing of ACPI4.0, Maximum System Capability Table
2600 		 * (MSCT) provides maximum number of CPUs supported by platform.
2601 		 * If MSCT is unavailable, fall back to old way.
2602 		 */
2603 		if (tp != NULL)
2604 			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2605 	}
2606 
2607 	/*
2608 	 * Set boot property boot-max-ncpus to number of CPUs existing at
2609 	 * boot time. boot-max-ncpus is mainly used for optimization.
2610 	 */
2611 	if (tp != NULL)
2612 		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2613 
2614 	/*
2615 	 * User-set boot-ncpus overrides firmware count
2616 	 */
2617 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2618 		return;
2619 
2620 	/*
2621 	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2622 	 * if it hasn't been set yet.
2623 	 */
2624 	if (tp != NULL)
2625 		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2626 }
2627 
2628 static void
2629 process_srat(ACPI_TABLE_SRAT *tp)
2630 {
2631 	ACPI_SUBTABLE_HEADER *item, *end;
2632 	int i;
2633 	int proc_num, mem_num;
2634 #pragma pack(1)
2635 	struct {
2636 		uint32_t domain;
2637 		uint32_t apic_id;
2638 		uint32_t sapic_id;
2639 	} processor;
2640 	struct {
2641 		uint32_t domain;
2642 		uint32_t x2apic_id;
2643 	} x2apic;
2644 	struct {
2645 		uint32_t domain;
2646 		uint64_t addr;
2647 		uint64_t length;
2648 		uint32_t flags;
2649 	} memory;
2650 #pragma pack()
2651 	char prop_name[30];
2652 	uint64_t maxmem = 0;
2653 
2654 	if (tp == NULL)
2655 		return;
2656 
2657 	proc_num = mem_num = 0;
2658 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2659 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2660 	while (item < end) {
2661 		switch (item->Type) {
2662 		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2663 			ACPI_SRAT_CPU_AFFINITY *cpu =
2664 			    (ACPI_SRAT_CPU_AFFINITY *) item;
2665 
2666 			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2667 				break;
2668 			processor.domain = cpu->ProximityDomainLo;
2669 			for (i = 0; i < 3; i++)
2670 				processor.domain +=
2671 				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2672 			processor.apic_id = cpu->ApicId;
2673 			processor.sapic_id = cpu->LocalSapicEid;
2674 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2675 			    proc_num);
2676 			bsetprop(DDI_PROP_TYPE_INT,
2677 			    prop_name, strlen(prop_name), &processor,
2678 			    sizeof (processor));
2679 			proc_num++;
2680 			break;
2681 		}
2682 		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2683 			ACPI_SRAT_MEM_AFFINITY *mem =
2684 			    (ACPI_SRAT_MEM_AFFINITY *)item;
2685 
2686 			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2687 				break;
2688 			memory.domain = mem->ProximityDomain;
2689 			memory.addr = mem->BaseAddress;
2690 			memory.length = mem->Length;
2691 			memory.flags = mem->Flags;
2692 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2693 			    mem_num);
2694 			bsetprop(DDI_PROP_TYPE_INT,
2695 			    prop_name, strlen(prop_name), &memory,
2696 			    sizeof (memory));
2697 			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2698 			    (memory.addr + memory.length > maxmem)) {
2699 				maxmem = memory.addr + memory.length;
2700 			}
2701 			mem_num++;
2702 			break;
2703 		}
2704 		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2705 			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2706 			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2707 
2708 			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2709 				break;
2710 			x2apic.domain = x2cpu->ProximityDomain;
2711 			x2apic.x2apic_id = x2cpu->ApicId;
2712 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2713 			    proc_num);
2714 			bsetprop(DDI_PROP_TYPE_INT,
2715 			    prop_name, strlen(prop_name), &x2apic,
2716 			    sizeof (x2apic));
2717 			proc_num++;
2718 			break;
2719 		}
2720 		default:
2721 			if (kbm_debug)
2722 				bop_printf(NULL, "SRAT type %d\n", item->Type);
2723 			break;
2724 		}
2725 
2726 		item = (ACPI_SUBTABLE_HEADER *)
2727 		    (item->Length + (uintptr_t)item);
2728 	}
2729 
2730 	/*
2731 	 * The maximum physical address calculated from the SRAT table is more
2732 	 * accurate than that calculated from the MSCT table.
2733 	 */
2734 	if (maxmem != 0) {
2735 		plat_dr_physmax = btop(maxmem);
2736 	}
2737 }
2738 
2739 static void
2740 process_slit(ACPI_TABLE_SLIT *tp)
2741 {
2742 
2743 	/*
2744 	 * Check the number of localities; if it's too huge, we just
2745 	 * return and locality enumeration code will handle this later,
2746 	 * if possible.
2747 	 *
2748 	 * Note that the size of the table is the square of the
2749 	 * number of localities; if the number of localities exceeds
2750 	 * UINT16_MAX, the table size may overflow an int when being
2751 	 * passed to bsetprop() below.
2752 	 */
2753 	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2754 		return;
2755 
2756 	bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2757 	bsetprop(DDI_PROP_TYPE_BYTE,
2758 	    SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2759 	    tp->LocalityCount * tp->LocalityCount);
2760 }
2761 
2762 static ACPI_TABLE_MSCT *
2763 process_msct(ACPI_TABLE_MSCT *tp)
2764 {
2765 	int last_seen = 0;
2766 	int proc_num = 0;
2767 	ACPI_MSCT_PROXIMITY *item, *end;
2768 	extern uint64_t plat_dr_options;
2769 
2770 	ASSERT(tp != NULL);
2771 
2772 	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2773 	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2774 	    item < end;
2775 	    item = (void *)(item->Length + (uintptr_t)item)) {
2776 		/*
2777 		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2778 		 * Revision	1
2779 		 * Length	22
2780 		 */
2781 		if (item->Revision != 1 || item->Length != 22) {
2782 			cmn_err(CE_CONT,
2783 			    "?boot: unknown proximity domain structure in MSCT "
2784 			    "with Revision(%d), Length(%d).\n",
2785 			    (int)item->Revision, (int)item->Length);
2786 			return (NULL);
2787 		} else if (item->RangeStart > item->RangeEnd) {
2788 			cmn_err(CE_CONT,
2789 			    "?boot: invalid proximity domain structure in MSCT "
2790 			    "with RangeStart(%u), RangeEnd(%u).\n",
2791 			    item->RangeStart, item->RangeEnd);
2792 			return (NULL);
2793 		} else if (item->RangeStart != last_seen) {
2794 			/*
2795 			 * Items must be organized in ascending order of the
2796 			 * proximity domain enumerations.
2797 			 */
2798 			cmn_err(CE_CONT,
2799 			    "?boot: invalid proximity domain structure in MSCT,"
2800 			    " items are not orginized in ascending order.\n");
2801 			return (NULL);
2802 		}
2803 
2804 		/*
2805 		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2806 		 * domain.
2807 		 */
2808 		if (item->ProcessorCapacity != 0) {
2809 			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2810 			    item->ProcessorCapacity;
2811 		}
2812 
2813 		last_seen = item->RangeEnd - item->RangeStart + 1;
2814 		/*
2815 		 * Break out if all proximity domains have been processed.
2816 		 * Some BIOSes may have unused items at the end of MSCT table.
2817 		 */
2818 		if (last_seen > tp->MaxProximityDomains) {
2819 			break;
2820 		}
2821 	}
2822 	if (last_seen != tp->MaxProximityDomains + 1) {
2823 		cmn_err(CE_CONT,
2824 		    "?boot: invalid proximity domain structure in MSCT, "
2825 		    "proximity domain count doesn't match.\n");
2826 		return (NULL);
2827 	}
2828 
2829 	/*
2830 	 * Set plat-max-ncpus property if it hasn't been set yet.
2831 	 */
2832 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2833 		if (proc_num != 0) {
2834 			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2835 		}
2836 	}
2837 
2838 	/*
2839 	 * Use Maximum Physical Address from the MSCT table as upper limit for
2840 	 * memory hot-adding by default. It may be overridden by value from
2841 	 * the SRAT table or the "plat-dr-physmax" boot option.
2842 	 */
2843 	plat_dr_physmax = btop(tp->MaxAddress + 1);
2844 
2845 	/*
2846 	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2847 	 * platform.
2848 	 */
2849 	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2850 	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2851 
2852 	return (tp);
2853 }
2854 
2855 #else /* __xpv */
2856 static void
2857 enumerate_xen_cpus()
2858 {
2859 	processorid_t	id, max_id;
2860 
2861 	/*
2862 	 * User-set boot-ncpus overrides enumeration
2863 	 */
2864 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2865 		return;
2866 
2867 	/*
2868 	 * Probe every possible virtual CPU id and remember the
2869 	 * highest id present; the count of CPUs is one greater
2870 	 * than this.  This tacitly assumes at least cpu 0 is present.
2871 	 */
2872 	max_id = 0;
2873 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2874 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2875 			max_id = id;
2876 
2877 	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2878 
2879 }
2880 #endif /* __xpv */
2881 
2882 /*ARGSUSED*/
2883 static void
2884 build_firmware_properties(struct xboot_info *xbp)
2885 {
2886 	ACPI_TABLE_HEADER *tp = NULL;
2887 	ACPI_TABLE_RSDP *rsdp;
2888 
2889 #ifndef __xpv
2890 	if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2891 		bsetprops("efi-systype", "64");
2892 		bsetprop64("efi-systab",
2893 		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2894 		if (kbm_debug)
2895 			bop_printf(NULL, "64-bit UEFI detected.\n");
2896 	} else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2897 		bsetprops("efi-systype", "32");
2898 		bsetprop64("efi-systab",
2899 		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2900 		if (kbm_debug)
2901 			bop_printf(NULL, "32-bit UEFI detected.\n");
2902 	}
2903 
2904 	if (xbp->bi_smbios != NULL) {
2905 		bsetprop64("smbios-address",
2906 		    (uint64_t)(uintptr_t)xbp->bi_smbios);
2907 	}
2908 
2909 	rsdp = find_rsdp(xbp);
2910 
2911 	if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL)
2912 		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2913 	else
2914 		msct_ptr = NULL;
2915 
2916 	if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL)
2917 		process_madt((ACPI_TABLE_MADT *)tp);
2918 
2919 	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2920 	    find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL)
2921 		process_srat(srat_ptr);
2922 
2923 	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT))
2924 		process_slit(slit_ptr);
2925 
2926 	tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2927 #else /* __xpv */
2928 	enumerate_xen_cpus();
2929 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2930 		rsdp = find_rsdp(xbp);
2931 		tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2932 	}
2933 #endif /* __xpv */
2934 	if (tp != NULL)
2935 		process_mcfg((ACPI_TABLE_MCFG *)tp);
2936 }
2937 
2938 /*
2939  * fake up a boot property for deferred early console output
2940  * this is used by both graphical boot and the (developer only)
2941  * USB serial console
2942  */
2943 void *
2944 defcons_init(size_t size)
2945 {
2946 	static char *p = NULL;
2947 
2948 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2949 	*p = 0;
2950 	bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2951 	return (p);
2952 }
2953 
2954 /*ARGSUSED*/
2955 int
2956 boot_compinfo(int fd, struct compinfo *cbp)
2957 {
2958 	cbp->iscmp = 0;
2959 	cbp->blksize = MAXBSIZE;
2960 	return (0);
2961 }
2962 
2963 /*
2964  * Get an integer value for given boot property
2965  */
2966 int
2967 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2968 {
2969 	int		boot_prop_len;
2970 	char		str[BP_MAX_STRLEN];
2971 	u_longlong_t	value;
2972 
2973 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2974 	if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) ||
2975 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2976 	    kobj_getvalue(str, &value) == -1)
2977 		return (-1);
2978 
2979 	if (prop_value)
2980 		*prop_value = value;
2981 
2982 	return (0);
2983 }
2984 
2985 int
2986 bootprop_getstr(const char *prop_name, char *buf, size_t buflen)
2987 {
2988 	int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2989 
2990 	if (boot_prop_len < 0 || boot_prop_len >= buflen ||
2991 	    BOP_GETPROP(bootops, prop_name, buf) < 0)
2992 		return (-1);
2993 
2994 	return (0);
2995 }
2996