1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright 2020 Joyent, Inc.
30 */
31
32 /*
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
36 */
37
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/framebuffer.h>
54 #include <sys/cmn_err.h>
55 #include <sys/systm.h>
56 #include <sys/promif.h>
57 #include <sys/archsystm.h>
58 #include <sys/x86_archext.h>
59 #include <sys/kobj.h>
60 #include <sys/privregs.h>
61 #include <sys/sysmacros.h>
62 #include <sys/ctype.h>
63 #include <sys/fastboot.h>
64 #ifdef __xpv
65 #include <sys/hypervisor.h>
66 #include <net/if.h>
67 #endif
68 #include <vm/kboot_mmu.h>
69 #include <vm/hat_pte.h>
70 #include <sys/kobj.h>
71 #include <sys/kobj_lex.h>
72 #include <sys/pci_cfgspace_impl.h>
73 #include <sys/fastboot_impl.h>
74 #include <sys/acpi/acconfig.h>
75 #include <sys/acpi/acpi.h>
76 #include <sys/ddipropdefs.h> /* For DDI prop types */
77
78 static int have_console = 0; /* set once primitive console is initialized */
79 static char *boot_args = "";
80
81 /*
82 * Debugging macros
83 */
84 static uint_t kbm_debug = 0;
85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
86 #define DBG(x) { if (kbm_debug) \
87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
88 }
89
90 #define PUT_STRING(s) { \
91 char *cp; \
92 for (cp = (s); *cp; ++cp) \
93 bcons_putchar(*cp); \
94 }
95
96 /* callback to boot_fb to set shadow frame buffer */
97 extern void boot_fb_shadow_init(bootops_t *);
98
99 bootops_t bootop; /* simple bootops we'll pass on to kernel */
100 struct bsys_mem bm;
101
102 /*
103 * Boot info from "glue" code in low memory. xbootp is used by:
104 * do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc().
105 */
106 static struct xboot_info *xbootp;
107 static uintptr_t next_virt; /* next available virtual address */
108 static paddr_t next_phys; /* next available physical address from dboot */
109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
110
111 /*
112 * buffer for vsnprintf for console I/O
113 */
114 #define BUFFERSIZE 512
115 static char buffer[BUFFERSIZE];
116
117 /*
118 * stuff to store/report/manipulate boot property settings.
119 */
120 typedef struct bootprop {
121 struct bootprop *bp_next;
122 char *bp_name;
123 int bp_flags; /* DDI prop type */
124 uint_t bp_vlen; /* 0 for boolean */
125 char *bp_value;
126 } bootprop_t;
127
128 static bootprop_t *bprops = NULL;
129 static char *curr_page = NULL; /* ptr to avail bprop memory */
130 static int curr_space = 0; /* amount of memory at curr_page */
131
132 #ifdef __xpv
133 extern start_info_t *xen_info;
134 extern shared_info_t *HYPERVISOR_shared_info;
135 #endif
136
137 /*
138 * some allocator statistics
139 */
140 static ulong_t total_bop_alloc_scratch = 0;
141 static ulong_t total_bop_alloc_kernel = 0;
142
143 static void build_firmware_properties(struct xboot_info *);
144
145 static int early_allocation = 1;
146
147 int force_fastreboot = 0;
148 volatile int fastreboot_onpanic = 0;
149 int post_fastreboot = 0;
150 #ifdef __xpv
151 volatile int fastreboot_capable = 0;
152 #else
153 volatile int fastreboot_capable = 1;
154 #endif
155
156 /*
157 * Information saved from current boot for fast reboot.
158 * If the information size exceeds what we have allocated, fast reboot
159 * will not be supported.
160 */
161 multiboot_info_t saved_mbi;
162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 int saved_cmdline_len = 0;
166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167
168 /*
169 * Turn off fastreboot_onpanic to avoid panic loop.
170 */
171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173
174 /*
175 * Pointers to where System Resource Affinity Table (SRAT), System Locality
176 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177 * are mapped into virtual memory
178 */
179 ACPI_TABLE_SRAT *srat_ptr = NULL;
180 ACPI_TABLE_SLIT *slit_ptr = NULL;
181 ACPI_TABLE_MSCT *msct_ptr = NULL;
182
183 /*
184 * Arbitrary limit on number of localities we handle; if
185 * this limit is raised to more than UINT16_MAX, make sure
186 * process_slit() knows how to handle it.
187 */
188 #define SLIT_LOCALITIES_MAX (4096)
189
190 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
191 #define SLIT_PROPNAME "acpi-slit"
192
193 /*
194 * Allocate aligned physical memory at boot time. This allocator allocates
195 * from the highest possible addresses. This avoids exhausting memory that
196 * would be useful for DMA buffers.
197 */
198 paddr_t
do_bop_phys_alloc(uint64_t size,uint64_t align)199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 {
201 paddr_t pa = 0;
202 paddr_t start;
203 paddr_t end;
204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
205
206 /*
207 * Be careful if high memory usage is limited in startup.c
208 * Since there are holes in the low part of the physical address
209 * space we can treat physmem as a pfn (not just a pgcnt) and
210 * get a conservative upper limit.
211 */
212 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 high_phys = pfn_to_pa(physmem);
214
215 /*
216 * find the highest available memory in physinstalled
217 */
218 size = P2ROUNDUP(size, align);
219 for (; ml; ml = ml->ml_next) {
220 start = P2ROUNDUP(ml->ml_address, align);
221 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 if (start < next_phys)
223 start = P2ROUNDUP(next_phys, align);
224 if (end > high_phys)
225 end = P2ALIGN(high_phys, align);
226
227 if (end <= start)
228 continue;
229 if (end - start < size)
230 continue;
231
232 /*
233 * Early allocations need to use low memory, since
234 * physmem might be further limited by bootenv.rc
235 */
236 if (early_allocation) {
237 if (pa == 0 || start < pa)
238 pa = start;
239 } else {
240 if (end - size > pa)
241 pa = end - size;
242 }
243 }
244 if (pa != 0) {
245 if (early_allocation)
246 next_phys = pa + size;
247 else
248 high_phys = pa;
249 return (pa);
250 }
251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 ") Out of memory\n", size, align);
253 /*NOTREACHED*/
254 }
255
256 uintptr_t
alloc_vaddr(size_t size,paddr_t align)257 alloc_vaddr(size_t size, paddr_t align)
258 {
259 uintptr_t rv;
260
261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 rv = (uintptr_t)next_virt;
263 next_virt += size;
264 return (rv);
265 }
266
267 /*
268 * Allocate virtual memory. The size is always rounded up to a multiple
269 * of base pagesize.
270 */
271
272 /*ARGSUSED*/
273 static caddr_t
do_bsys_alloc(bootops_t * bop,caddr_t virthint,size_t size,int align)274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 {
276 paddr_t a = align; /* same type as pa for masking */
277 uint_t pgsize;
278 paddr_t pa;
279 uintptr_t va;
280 ssize_t s; /* the aligned size */
281 uint_t level;
282 uint_t is_kernel = (virthint != 0);
283
284 if (a < MMU_PAGESIZE)
285 a = MMU_PAGESIZE;
286 else if (!ISP2(a))
287 prom_panic("do_bsys_alloc() incorrect alignment");
288 size = P2ROUNDUP(size, MMU_PAGESIZE);
289
290 /*
291 * Use the next aligned virtual address if we weren't given one.
292 */
293 if (virthint == NULL) {
294 virthint = (caddr_t)alloc_vaddr(size, a);
295 total_bop_alloc_scratch += size;
296 } else {
297 total_bop_alloc_kernel += size;
298 }
299
300 /*
301 * allocate the physical memory
302 */
303 pa = do_bop_phys_alloc(size, a);
304
305 /*
306 * Add the mappings to the page tables, try large pages first.
307 */
308 va = (uintptr_t)virthint;
309 s = size;
310 level = 1;
311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 if (xbootp->bi_use_largepage && a == pgsize) {
313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 s >= pgsize) {
315 kbm_map(va, pa, level, is_kernel);
316 va += pgsize;
317 pa += pgsize;
318 s -= pgsize;
319 }
320 }
321
322 /*
323 * Map remaining pages use small mappings
324 */
325 level = 0;
326 pgsize = MMU_PAGESIZE;
327 while (s > 0) {
328 kbm_map(va, pa, level, is_kernel);
329 va += pgsize;
330 pa += pgsize;
331 s -= pgsize;
332 }
333 return (virthint);
334 }
335
336 /*
337 * Free virtual memory - we'll just ignore these.
338 */
339 /*ARGSUSED*/
340 static void
do_bsys_free(bootops_t * bop,caddr_t virt,size_t size)341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 {
343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 (void *)virt, size);
345 }
346
347 /*
348 * Old interface
349 */
350 /*ARGSUSED*/
351 static caddr_t
do_bsys_ealloc(bootops_t * bop,caddr_t virthint,size_t size,int align,int flags)352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353 int align, int flags)
354 {
355 prom_panic("unsupported call to BOP_EALLOC()\n");
356 return (0);
357 }
358
359
360 static void
bsetprop(int flags,char * name,int nlen,void * value,int vlen)361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 {
363 uint_t size;
364 uint_t need_size;
365 bootprop_t *b;
366
367 /*
368 * align the size to 16 byte boundary
369 */
370 size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 size = (size + 0xf) & ~0xf;
372 if (size > curr_space) {
373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 curr_space = need_size;
376 }
377
378 /*
379 * use a bootprop_t at curr_page and link into list
380 */
381 b = (bootprop_t *)curr_page;
382 curr_page += sizeof (bootprop_t);
383 curr_space -= sizeof (bootprop_t);
384 b->bp_next = bprops;
385 bprops = b;
386
387 /*
388 * follow by name and ending zero byte
389 */
390 b->bp_name = curr_page;
391 bcopy(name, curr_page, nlen);
392 curr_page += nlen;
393 *curr_page++ = 0;
394 curr_space -= nlen + 1;
395
396 /*
397 * set the property type
398 */
399 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400
401 /*
402 * copy in value, but no ending zero byte
403 */
404 b->bp_value = curr_page;
405 b->bp_vlen = vlen;
406 if (vlen > 0) {
407 bcopy(value, curr_page, vlen);
408 curr_page += vlen;
409 curr_space -= vlen;
410 }
411
412 /*
413 * align new values of curr_page, curr_space
414 */
415 while (curr_space & 0xf) {
416 ++curr_page;
417 --curr_space;
418 }
419 }
420
421 static void
bsetprops(char * name,char * value)422 bsetprops(char *name, char *value)
423 {
424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 value, strlen(value) + 1);
426 }
427
428 static void
bsetprop32(char * name,uint32_t value)429 bsetprop32(char *name, uint32_t value)
430 {
431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 (void *)&value, sizeof (value));
433 }
434
435 static void
bsetprop64(char * name,uint64_t value)436 bsetprop64(char *name, uint64_t value)
437 {
438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 (void *)&value, sizeof (value));
440 }
441
442 static void
bsetpropsi(char * name,int value)443 bsetpropsi(char *name, int value)
444 {
445 char prop_val[32];
446
447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 bsetprops(name, prop_val);
449 }
450
451 /*
452 * to find the type of the value associated with this name
453 */
454 /*ARGSUSED*/
455 int
do_bsys_getproptype(bootops_t * bop,const char * name)456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 {
458 bootprop_t *b;
459
460 for (b = bprops; b != NULL; b = b->bp_next) {
461 if (strcmp(name, b->bp_name) != 0)
462 continue;
463 return (b->bp_flags);
464 }
465 return (-1);
466 }
467
468 /*
469 * to find the size of the buffer to allocate
470 */
471 /*ARGSUSED*/
472 int
do_bsys_getproplen(bootops_t * bop,const char * name)473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 {
475 bootprop_t *b;
476
477 for (b = bprops; b; b = b->bp_next) {
478 if (strcmp(name, b->bp_name) != 0)
479 continue;
480 return (b->bp_vlen);
481 }
482 return (-1);
483 }
484
485 /*
486 * get the value associated with this name
487 */
488 /*ARGSUSED*/
489 int
do_bsys_getprop(bootops_t * bop,const char * name,void * value)490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 {
492 bootprop_t *b;
493
494 for (b = bprops; b; b = b->bp_next) {
495 if (strcmp(name, b->bp_name) != 0)
496 continue;
497 bcopy(b->bp_value, value, b->bp_vlen);
498 return (0);
499 }
500 return (-1);
501 }
502
503 /*
504 * get the name of the next property in succession from the standalone
505 */
506 /*ARGSUSED*/
507 static char *
do_bsys_nextprop(bootops_t * bop,char * name)508 do_bsys_nextprop(bootops_t *bop, char *name)
509 {
510 bootprop_t *b;
511
512 /*
513 * A null name is a special signal for the 1st boot property
514 */
515 if (name == NULL || strlen(name) == 0) {
516 if (bprops == NULL)
517 return (NULL);
518 return (bprops->bp_name);
519 }
520
521 for (b = bprops; b; b = b->bp_next) {
522 if (name != b->bp_name)
523 continue;
524 b = b->bp_next;
525 if (b == NULL)
526 return (NULL);
527 return (b->bp_name);
528 }
529 return (NULL);
530 }
531
532 /*
533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534 */
535 static int
parse_value(char * p,uint64_t * retval)536 parse_value(char *p, uint64_t *retval)
537 {
538 int adjust = 0;
539 uint64_t tmp = 0;
540 int digit;
541 int radix = 10;
542
543 *retval = 0;
544 if (*p == '-' || *p == '~')
545 adjust = *p++;
546
547 if (*p == '0') {
548 ++p;
549 if (*p == 0)
550 return (0);
551 if (*p == 'x' || *p == 'X') {
552 radix = 16;
553 ++p;
554 } else {
555 radix = 8;
556 ++p;
557 }
558 }
559 while (*p) {
560 if ('0' <= *p && *p <= '9')
561 digit = *p - '0';
562 else if ('a' <= *p && *p <= 'f')
563 digit = 10 + *p - 'a';
564 else if ('A' <= *p && *p <= 'F')
565 digit = 10 + *p - 'A';
566 else
567 return (-1);
568 if (digit >= radix)
569 return (-1);
570 tmp = tmp * radix + digit;
571 ++p;
572 }
573 if (adjust == '-')
574 tmp = -tmp;
575 else if (adjust == '~')
576 tmp = ~tmp;
577 *retval = tmp;
578 return (0);
579 }
580
581 static boolean_t
unprintable(char * value,int size)582 unprintable(char *value, int size)
583 {
584 int i;
585
586 if (size <= 0 || value[0] == '\0')
587 return (B_TRUE);
588
589 for (i = 0; i < size; i++) {
590 if (value[i] == '\0')
591 return (i != (size - 1));
592
593 if (!isprint(value[i]))
594 return (B_TRUE);
595 }
596 return (B_FALSE);
597 }
598
599 /*
600 * Print out information about all boot properties.
601 * buffer is pointer to pre-allocated space to be used as temporary
602 * space for property values.
603 */
604 static void
boot_prop_display(char * buffer)605 boot_prop_display(char *buffer)
606 {
607 char *name = "";
608 int i, len, flags, *buf32;
609 int64_t *buf64;
610
611 bop_printf(NULL, "\nBoot properties:\n");
612
613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 (void) do_bsys_getprop(NULL, name, buffer);
616 len = do_bsys_getproplen(NULL, name);
617 flags = do_bsys_getproptype(NULL, name);
618 bop_printf(NULL, "len=%d ", len);
619
620 switch (flags) {
621 case DDI_PROP_TYPE_INT:
622 len = len / sizeof (int);
623 buf32 = (int *)buffer;
624 for (i = 0; i < len; i++) {
625 bop_printf(NULL, "%08x", buf32[i]);
626 if (i < len - 1)
627 bop_printf(NULL, ".");
628 }
629 break;
630 case DDI_PROP_TYPE_STRING:
631 bop_printf(NULL, "%s", buffer);
632 break;
633 case DDI_PROP_TYPE_INT64:
634 len = len / sizeof (int64_t);
635 buf64 = (int64_t *)buffer;
636 for (i = 0; i < len; i++) {
637 bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 if (i < len - 1)
639 bop_printf(NULL, ".");
640 }
641 break;
642 default:
643 if (!unprintable(buffer, len)) {
644 buffer[len] = 0;
645 bop_printf(NULL, "%s", buffer);
646 break;
647 }
648 for (i = 0; i < len; i++) {
649 bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 if (i < len - 1)
651 bop_printf(NULL, ".");
652 }
653 break;
654 }
655 bop_printf(NULL, "\n");
656 }
657 }
658
659 /*
660 * 2nd part of building the table of boot properties. This includes:
661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662 *
663 * lines look like one of:
664 * ^$
665 * ^# comment till end of line
666 * setprop name 'value'
667 * setprop name value
668 * setprop name "value"
669 *
670 * we do single character I/O since this is really just looking at memory
671 */
672 void
read_bootenvrc(void)673 read_bootenvrc(void)
674 {
675 int fd;
676 char *line;
677 int c;
678 int bytes_read;
679 char *name;
680 int n_len;
681 char *value;
682 int v_len;
683 char *inputdev; /* these override the command line if serial ports */
684 char *outputdev;
685 char *consoledev;
686 uint64_t lvalue;
687 int use_xencons = 0;
688 extern int bootrd_debug;
689
690 #ifdef __xpv
691 if (!DOMAIN_IS_INITDOMAIN(xen_info))
692 use_xencons = 1;
693 #endif /* __xpv */
694
695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
697 DBG(fd);
698
699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
700 while (fd >= 0) {
701
702 /*
703 * get a line
704 */
705 for (c = 0; ; ++c) {
706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
707 if (bytes_read == 0) {
708 if (c == 0)
709 goto done;
710 break;
711 }
712 if (line[c] == '\n')
713 break;
714 }
715 line[c] = 0;
716
717 /*
718 * ignore comment lines
719 */
720 c = 0;
721 while (ISSPACE(line[c]))
722 ++c;
723 if (line[c] == '#' || line[c] == 0)
724 continue;
725
726 /*
727 * must have "setprop " or "setprop\t"
728 */
729 if (strncmp(line + c, "setprop ", 8) != 0 &&
730 strncmp(line + c, "setprop\t", 8) != 0)
731 continue;
732 c += 8;
733 while (ISSPACE(line[c]))
734 ++c;
735 if (line[c] == 0)
736 continue;
737
738 /*
739 * gather up the property name
740 */
741 name = line + c;
742 n_len = 0;
743 while (line[c] && !ISSPACE(line[c]))
744 ++n_len, ++c;
745
746 /*
747 * gather up the value, if any
748 */
749 value = "";
750 v_len = 0;
751 while (ISSPACE(line[c]))
752 ++c;
753 if (line[c] != 0) {
754 value = line + c;
755 while (line[c] && !ISSPACE(line[c]))
756 ++v_len, ++c;
757 }
758
759 if (v_len >= 2 && value[0] == value[v_len - 1] &&
760 (value[0] == '\'' || value[0] == '"')) {
761 ++value;
762 v_len -= 2;
763 }
764 name[n_len] = 0;
765 if (v_len > 0)
766 value[v_len] = 0;
767 else
768 continue;
769
770 /*
771 * ignore "boot-file" property, it's now meaningless
772 */
773 if (strcmp(name, "boot-file") == 0)
774 continue;
775 if (strcmp(name, "boot-args") == 0 &&
776 strlen(boot_args) > 0)
777 continue;
778
779 /*
780 * If a property was explicitly set on the command line
781 * it will override a setting in bootenv.rc. We make an
782 * exception for a property from the bootloader such as:
783 *
784 * console="text,ttya,ttyb,ttyc,ttyd"
785 *
786 * In such a case, picking the first value here (as
787 * lookup_console_devices() does) is at best a guess; if
788 * bootenv.rc has a value, it's probably better.
789 */
790 if (strcmp(name, "console") == 0) {
791 char propval[BP_MAX_STRLEN] = "";
792
793 if (do_bsys_getprop(NULL, name, propval) == -1 ||
794 strchr(propval, ',') != NULL)
795 bsetprops(name, value);
796 continue;
797 }
798
799 if (do_bsys_getproplen(NULL, name) == -1)
800 bsetprops(name, value);
801 }
802 done:
803 if (fd >= 0)
804 (void) BRD_CLOSE(bfs_ops, fd);
805
806
807 /*
808 * Check if we have to limit the boot time allocator
809 */
810 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
811 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
812 parse_value(line, &lvalue) != -1) {
813 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
814 physmem = (pgcnt_t)lvalue;
815 DBG(physmem);
816 }
817 }
818 early_allocation = 0;
819
820 /*
821 * Check for bootrd_debug.
822 */
823 if (find_boot_prop("bootrd_debug"))
824 bootrd_debug = 1;
825
826 /*
827 * check to see if we have to override the default value of the console
828 */
829 if (!use_xencons) {
830 inputdev = line;
831 v_len = do_bsys_getproplen(NULL, "input-device");
832 if (v_len > 0)
833 (void) do_bsys_getprop(NULL, "input-device", inputdev);
834 else
835 v_len = 0;
836 inputdev[v_len] = 0;
837
838 outputdev = inputdev + v_len + 1;
839 v_len = do_bsys_getproplen(NULL, "output-device");
840 if (v_len > 0)
841 (void) do_bsys_getprop(NULL, "output-device",
842 outputdev);
843 else
844 v_len = 0;
845 outputdev[v_len] = 0;
846
847 consoledev = outputdev + v_len + 1;
848 v_len = do_bsys_getproplen(NULL, "console");
849 if (v_len > 0) {
850 (void) do_bsys_getprop(NULL, "console", consoledev);
851 if (post_fastreboot &&
852 strcmp(consoledev, "graphics") == 0) {
853 bsetprops("console", "text");
854 v_len = strlen("text");
855 bcopy("text", consoledev, v_len);
856 }
857 } else {
858 v_len = 0;
859 }
860 consoledev[v_len] = 0;
861 bcons_post_bootenvrc(inputdev, outputdev, consoledev);
862 } else {
863 /*
864 * Ensure console property exists
865 * If not create it as "hypervisor"
866 */
867 v_len = do_bsys_getproplen(NULL, "console");
868 if (v_len < 0)
869 bsetprops("console", "hypervisor");
870 inputdev = outputdev = consoledev = "hypervisor";
871 bcons_post_bootenvrc(inputdev, outputdev, consoledev);
872 }
873
874 if (find_boot_prop("prom_debug") || kbm_debug)
875 boot_prop_display(line);
876 }
877
878 /*
879 * print formatted output
880 */
881 /*ARGSUSED*/
882 void
vbop_printf(void * ptr,const char * fmt,va_list ap)883 vbop_printf(void *ptr, const char *fmt, va_list ap)
884 {
885 if (have_console == 0)
886 return;
887
888 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
889 PUT_STRING(buffer);
890 }
891
892 /*PRINTFLIKE2*/
893 void
bop_printf(void * bop,const char * fmt,...)894 bop_printf(void *bop, const char *fmt, ...)
895 {
896 va_list ap;
897
898 va_start(ap, fmt);
899 vbop_printf(bop, fmt, ap);
900 va_end(ap);
901 }
902
903 /*
904 * Another panic() variant; this one can be used even earlier during boot than
905 * prom_panic().
906 */
907 /*PRINTFLIKE1*/
908 void
bop_panic(const char * fmt,...)909 bop_panic(const char *fmt, ...)
910 {
911 va_list ap;
912
913 va_start(ap, fmt);
914 vbop_printf(NULL, fmt, ap);
915 va_end(ap);
916
917 bop_printf(NULL, "\nPress any key to reboot.\n");
918 (void) bcons_getchar();
919 bop_printf(NULL, "Resetting...\n");
920 pc_reset();
921 }
922
923 /*
924 * Do a real mode interrupt BIOS call
925 */
926 typedef struct bios_regs {
927 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
928 } bios_regs_t;
929 typedef int (*bios_func_t)(int, bios_regs_t *);
930
931 /*ARGSUSED*/
932 static void
do_bsys_doint(bootops_t * bop,int intnum,struct bop_regs * rp)933 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
934 {
935 #if defined(__xpv)
936 prom_panic("unsupported call to BOP_DOINT()\n");
937 #else /* __xpv */
938 static int firsttime = 1;
939 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
940 bios_regs_t br;
941
942 /*
943 * We're about to disable paging; we shouldn't be PCID enabled.
944 */
945 if (getcr4() & CR4_PCIDE)
946 prom_panic("do_bsys_doint() with PCID enabled\n");
947
948 /*
949 * The first time we do this, we have to copy the pre-packaged
950 * low memory bios call code image into place.
951 */
952 if (firsttime) {
953 extern char bios_image[];
954 extern uint32_t bios_size;
955
956 bcopy(bios_image, (void *)bios_func, bios_size);
957 firsttime = 0;
958 }
959
960 br.ax = rp->eax.word.ax;
961 br.bx = rp->ebx.word.bx;
962 br.cx = rp->ecx.word.cx;
963 br.dx = rp->edx.word.dx;
964 br.bp = rp->ebp.word.bp;
965 br.si = rp->esi.word.si;
966 br.di = rp->edi.word.di;
967 br.ds = rp->ds;
968 br.es = rp->es;
969
970 DBG_MSG("Doing BIOS call...");
971 DBG(br.ax);
972 DBG(br.bx);
973 DBG(br.dx);
974 rp->eflags = bios_func(intnum, &br);
975 DBG_MSG("done\n");
976
977 rp->eax.word.ax = br.ax;
978 rp->ebx.word.bx = br.bx;
979 rp->ecx.word.cx = br.cx;
980 rp->edx.word.dx = br.dx;
981 rp->ebp.word.bp = br.bp;
982 rp->esi.word.si = br.si;
983 rp->edi.word.di = br.di;
984 rp->ds = br.ds;
985 rp->es = br.es;
986 #endif /* __xpv */
987 }
988
989 static struct boot_syscalls bop_sysp = {
990 bcons_getchar,
991 bcons_putchar,
992 bcons_ischar,
993 };
994
995 static char *whoami;
996
997 #define BUFLEN 64
998
999 #if defined(__xpv)
1000
1001 static char namebuf[32];
1002
1003 static void
xen_parse_props(char * s,char * prop_map[],int n_prop)1004 xen_parse_props(char *s, char *prop_map[], int n_prop)
1005 {
1006 char **prop_name = prop_map;
1007 char *cp = s, *scp;
1008
1009 do {
1010 scp = cp;
1011 while ((*cp != '\0') && (*cp != ':'))
1012 cp++;
1013
1014 if ((scp != cp) && (*prop_name != NULL)) {
1015 *cp = '\0';
1016 bsetprops(*prop_name, scp);
1017 }
1018
1019 cp++;
1020 prop_name++;
1021 n_prop--;
1022 } while (n_prop > 0);
1023 }
1024
1025 #define VBDPATHLEN 64
1026
1027 /*
1028 * parse the 'xpv-root' property to create properties used by
1029 * ufs_mountroot.
1030 */
1031 static void
xen_vbdroot_props(char * s)1032 xen_vbdroot_props(char *s)
1033 {
1034 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1035 const char lnamefix[] = "/dev/dsk/c0d";
1036 char *pnp;
1037 char *prop_p;
1038 char mi;
1039 short minor;
1040 long addr = 0;
1041
1042 mi = '\0';
1043 pnp = vbdpath + strlen(vbdpath);
1044 prop_p = s + strlen(lnamefix);
1045 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1046 addr = addr * 10 + *prop_p++ - '0';
1047 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1048 pnp = vbdpath + strlen(vbdpath);
1049 if (*prop_p == 's')
1050 mi = 'a';
1051 else if (*prop_p == 'p')
1052 mi = 'q';
1053 else
1054 ASSERT(0); /* shouldn't be here */
1055 prop_p++;
1056 ASSERT(*prop_p != '\0');
1057 if (ISDIGIT(*prop_p)) {
1058 minor = *prop_p - '0';
1059 prop_p++;
1060 if (ISDIGIT(*prop_p)) {
1061 minor = minor * 10 + *prop_p - '0';
1062 }
1063 } else {
1064 /* malformed root path, use 0 as default */
1065 minor = 0;
1066 }
1067 ASSERT(minor < 16); /* at most 16 partitions */
1068 mi += minor;
1069 *pnp++ = ':';
1070 *pnp++ = mi;
1071 *pnp++ = '\0';
1072 bsetprops("fstype", "ufs");
1073 bsetprops("bootpath", vbdpath);
1074
1075 DBG_MSG("VBD bootpath set to ");
1076 DBG_MSG(vbdpath);
1077 DBG_MSG("\n");
1078 }
1079
1080 /*
1081 * parse the xpv-nfsroot property to create properties used by
1082 * nfs_mountroot.
1083 */
1084 static void
xen_nfsroot_props(char * s)1085 xen_nfsroot_props(char *s)
1086 {
1087 char *prop_map[] = {
1088 BP_SERVER_IP, /* server IP address */
1089 BP_SERVER_NAME, /* server hostname */
1090 BP_SERVER_PATH, /* root path */
1091 };
1092 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1093
1094 bsetprops("fstype", "nfs");
1095
1096 xen_parse_props(s, prop_map, n_prop);
1097
1098 /*
1099 * If a server name wasn't specified, use a default.
1100 */
1101 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1102 bsetprops(BP_SERVER_NAME, "unknown");
1103 }
1104
1105 /*
1106 * Extract our IP address, etc. from the "xpv-ip" property.
1107 */
1108 static void
xen_ip_props(char * s)1109 xen_ip_props(char *s)
1110 {
1111 char *prop_map[] = {
1112 BP_HOST_IP, /* IP address */
1113 NULL, /* NFS server IP address (ignored in */
1114 /* favour of xpv-nfsroot) */
1115 BP_ROUTER_IP, /* IP gateway */
1116 BP_SUBNET_MASK, /* IP subnet mask */
1117 "xpv-hostname", /* hostname (ignored) */
1118 BP_NETWORK_INTERFACE, /* interface name */
1119 "xpv-hcp", /* host configuration protocol */
1120 };
1121 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1122 char ifname[IFNAMSIZ];
1123
1124 xen_parse_props(s, prop_map, n_prop);
1125
1126 /*
1127 * A Linux dom0 administrator expects all interfaces to be
1128 * called "ethX", which is not the case here.
1129 *
1130 * If the interface name specified is "eth0", presume that
1131 * this is really intended to be "xnf0" (the first domU ->
1132 * dom0 interface for this domain).
1133 */
1134 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1135 (strcmp("eth0", ifname) == 0)) {
1136 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1137 bop_printf(NULL,
1138 "network interface name 'eth0' replaced with 'xnf0'\n");
1139 }
1140 }
1141
1142 #else /* __xpv */
1143
1144 static void
setup_rarp_props(struct sol_netinfo * sip)1145 setup_rarp_props(struct sol_netinfo *sip)
1146 {
1147 char buf[BUFLEN]; /* to hold ip/mac addrs */
1148 uint8_t *val;
1149
1150 val = (uint8_t *)&sip->sn_ciaddr;
1151 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1152 val[0], val[1], val[2], val[3]);
1153 bsetprops(BP_HOST_IP, buf);
1154
1155 val = (uint8_t *)&sip->sn_siaddr;
1156 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1157 val[0], val[1], val[2], val[3]);
1158 bsetprops(BP_SERVER_IP, buf);
1159
1160 if (sip->sn_giaddr != 0) {
1161 val = (uint8_t *)&sip->sn_giaddr;
1162 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1163 val[0], val[1], val[2], val[3]);
1164 bsetprops(BP_ROUTER_IP, buf);
1165 }
1166
1167 if (sip->sn_netmask != 0) {
1168 val = (uint8_t *)&sip->sn_netmask;
1169 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1170 val[0], val[1], val[2], val[3]);
1171 bsetprops(BP_SUBNET_MASK, buf);
1172 }
1173
1174 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1175 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1176 sip->sn_mactype, sip->sn_maclen);
1177 } else {
1178 val = sip->sn_macaddr;
1179 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1180 val[0], val[1], val[2], val[3], val[4], val[5]);
1181 bsetprops(BP_BOOT_MAC, buf);
1182 }
1183 }
1184
1185 #endif /* __xpv */
1186
1187 static void
build_panic_cmdline(const char * cmd,int cmdlen)1188 build_panic_cmdline(const char *cmd, int cmdlen)
1189 {
1190 int proplen;
1191 size_t arglen;
1192
1193 arglen = sizeof (fastreboot_onpanic_args);
1194 /*
1195 * If we allready have fastreboot-onpanic set to zero,
1196 * don't add them again.
1197 */
1198 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1199 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1200 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1201 fastreboot_onpanic_cmdline);
1202 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1203 arglen = 1;
1204 }
1205
1206 /*
1207 * construct fastreboot_onpanic_cmdline
1208 */
1209 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1210 DBG_MSG("Command line too long: clearing "
1211 FASTREBOOT_ONPANIC "\n");
1212 fastreboot_onpanic = 0;
1213 } else {
1214 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1215 if (arglen != 1)
1216 bcopy(fastreboot_onpanic_args,
1217 fastreboot_onpanic_cmdline + cmdlen, arglen);
1218 else
1219 fastreboot_onpanic_cmdline[cmdlen] = 0;
1220 }
1221 }
1222
1223
1224 #ifndef __xpv
1225 /*
1226 * Construct boot command line for Fast Reboot. The saved_cmdline
1227 * is also reported by "eeprom bootcmd".
1228 */
1229 static void
build_fastboot_cmdline(struct xboot_info * xbp)1230 build_fastboot_cmdline(struct xboot_info *xbp)
1231 {
1232 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1233 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1234 DBG(saved_cmdline_len);
1235 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1236 fastreboot_capable = 0;
1237 } else {
1238 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1239 saved_cmdline_len);
1240 saved_cmdline[saved_cmdline_len - 1] = '\0';
1241 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1242 }
1243 }
1244
1245 /*
1246 * Save memory layout, disk drive information, unix and boot archive sizes for
1247 * Fast Reboot.
1248 */
1249 static void
save_boot_info(struct xboot_info * xbi)1250 save_boot_info(struct xboot_info *xbi)
1251 {
1252 multiboot_info_t *mbi = xbi->bi_mb_info;
1253 struct boot_modules *modp;
1254 int i;
1255
1256 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1257 if (mbi->mmap_length > sizeof (saved_mmap)) {
1258 DBG_MSG("mbi->mmap_length too big: clearing "
1259 "fastreboot_capable\n");
1260 fastreboot_capable = 0;
1261 } else {
1262 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1263 mbi->mmap_length);
1264 }
1265
1266 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1267 if (mbi->drives_length > sizeof (saved_drives)) {
1268 DBG(mbi->drives_length);
1269 DBG_MSG("mbi->drives_length too big: clearing "
1270 "fastreboot_capable\n");
1271 fastreboot_capable = 0;
1272 } else {
1273 bcopy((void *)(uintptr_t)mbi->drives_addr,
1274 (void *)saved_drives, mbi->drives_length);
1275 }
1276 } else {
1277 saved_mbi.drives_length = 0;
1278 saved_mbi.drives_addr = 0;
1279 }
1280
1281 /*
1282 * Current file sizes. Used by fastboot.c to figure out how much
1283 * memory to reserve for panic reboot.
1284 * Use the module list from the dboot-constructed xboot_info
1285 * instead of the list referenced by the multiboot structure
1286 * because that structure may not be addressable now.
1287 */
1288 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1289 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1290 i < xbi->bi_module_cnt; i++, modp++) {
1291 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1292 }
1293 }
1294 #endif /* __xpv */
1295
1296 /*
1297 * Import boot environment module variables as properties, applying
1298 * blacklist filter for variables we know we will not use.
1299 *
1300 * Since the environment can be relatively large, containing many variables
1301 * used only for boot loader purposes, we will use a blacklist based filter.
1302 * To keep the blacklist from growing too large, we use prefix based filtering.
1303 * This is possible because in many cases, the loader variable names are
1304 * using a structured layout.
1305 *
1306 * We will not overwrite already set properties.
1307 *
1308 * Note that the menu items in particular can contain characters not
1309 * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1310 * another reason.
1311 */
1312 static struct bop_blacklist {
1313 const char *bl_name;
1314 int bl_name_len;
1315 } bop_prop_blacklist[] = {
1316 { "ISADIR", sizeof ("ISADIR") },
1317 { "acpi", sizeof ("acpi") },
1318 { "autoboot_delay", sizeof ("autoboot_delay") },
1319 { "beansi_", sizeof ("beansi_") },
1320 { "beastie", sizeof ("beastie") },
1321 { "bemenu", sizeof ("bemenu") },
1322 { "boot.", sizeof ("boot.") },
1323 { "bootenv", sizeof ("bootenv") },
1324 { "currdev", sizeof ("currdev") },
1325 { "dhcp.", sizeof ("dhcp.") },
1326 { "interpret", sizeof ("interpret") },
1327 { "kernel", sizeof ("kernel") },
1328 { "loaddev", sizeof ("loaddev") },
1329 { "loader_", sizeof ("loader_") },
1330 { "mainansi_", sizeof ("mainansi_") },
1331 { "mainmenu_", sizeof ("mainmenu_") },
1332 { "maintoggled_", sizeof ("maintoggled_") },
1333 { "menu_timeout_command", sizeof ("menu_timeout_command") },
1334 { "menuset_", sizeof ("menuset_") },
1335 { "module_path", sizeof ("module_path") },
1336 { "nfs.", sizeof ("nfs.") },
1337 { "optionsansi_", sizeof ("optionsansi_") },
1338 { "optionsmenu_", sizeof ("optionsmenu_") },
1339 { "optionstoggled_", sizeof ("optionstoggled_") },
1340 { "pcibios", sizeof ("pcibios") },
1341 { "prompt", sizeof ("prompt") },
1342 { "smbios", sizeof ("smbios") },
1343 { "tem", sizeof ("tem") },
1344 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1345 { "zfs_be", sizeof ("zfs_be") },
1346 };
1347
1348 /*
1349 * Match the name against prefixes in above blacklist. If the match was
1350 * found, this name is blacklisted.
1351 */
1352 static boolean_t
name_is_blacklisted(const char * name)1353 name_is_blacklisted(const char *name)
1354 {
1355 int i, n;
1356
1357 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1358 for (i = 0; i < n; i++) {
1359 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1360 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1361 return (B_TRUE);
1362 }
1363 }
1364 return (B_FALSE);
1365 }
1366
1367 static void
process_boot_environment(struct boot_modules * benv)1368 process_boot_environment(struct boot_modules *benv)
1369 {
1370 char *env, *ptr, *name, *value;
1371 uint32_t size, name_len, value_len;
1372
1373 if (benv == NULL || benv->bm_type != BMT_ENV)
1374 return;
1375 ptr = env = benv->bm_addr;
1376 size = benv->bm_size;
1377 do {
1378 name = ptr;
1379 /* find '=' */
1380 while (*ptr != '=') {
1381 ptr++;
1382 if (ptr > env + size) /* Something is very wrong. */
1383 return;
1384 }
1385 name_len = ptr - name;
1386 if (sizeof (buffer) <= name_len)
1387 continue;
1388
1389 (void) strncpy(buffer, name, sizeof (buffer));
1390 buffer[name_len] = '\0';
1391 name = buffer;
1392
1393 value_len = 0;
1394 value = ++ptr;
1395 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1396 if (*ptr == '\0') {
1397 ptr++;
1398 value_len = (uintptr_t)ptr - (uintptr_t)env;
1399 break;
1400 }
1401 ptr++;
1402 }
1403
1404 /* Did we reach the end of the module? */
1405 if (value_len == 0)
1406 return;
1407
1408 if (*value == '\0')
1409 continue;
1410
1411 /* Is this property already set? */
1412 if (do_bsys_getproplen(NULL, name) >= 0)
1413 continue;
1414
1415 /* Translate netboot variables */
1416 if (strcmp(name, "boot.netif.gateway") == 0) {
1417 bsetprops(BP_ROUTER_IP, value);
1418 continue;
1419 }
1420 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1421 bsetprops(BP_BOOT_MAC, value);
1422 continue;
1423 }
1424 if (strcmp(name, "boot.netif.ip") == 0) {
1425 bsetprops(BP_HOST_IP, value);
1426 continue;
1427 }
1428 if (strcmp(name, "boot.netif.netmask") == 0) {
1429 bsetprops(BP_SUBNET_MASK, value);
1430 continue;
1431 }
1432 if (strcmp(name, "boot.netif.server") == 0) {
1433 bsetprops(BP_SERVER_IP, value);
1434 continue;
1435 }
1436 if (strcmp(name, "boot.netif.server") == 0) {
1437 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1438 bsetprops(BP_SERVER_IP, value);
1439 continue;
1440 }
1441 if (strcmp(name, "boot.nfsroot.server") == 0) {
1442 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1443 bsetprops(BP_SERVER_IP, value);
1444 continue;
1445 }
1446 if (strcmp(name, "boot.nfsroot.path") == 0) {
1447 bsetprops(BP_SERVER_PATH, value);
1448 continue;
1449 }
1450
1451 if (name_is_blacklisted(name) == B_TRUE)
1452 continue;
1453
1454 /* Create new property. */
1455 bsetprops(name, value);
1456
1457 /* Avoid reading past the module end. */
1458 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1459 return;
1460 } while (*ptr != '\0');
1461 }
1462
1463 /*
1464 * 1st pass at building the table of boot properties. This includes:
1465 * - values set on the command line: -B a=x,b=y,c=z ....
1466 * - known values we just compute (ie. from xbp)
1467 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1468 *
1469 * the grub command line looked like:
1470 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1471 *
1472 * whoami is the same as boot-file
1473 */
1474 static void
build_boot_properties(struct xboot_info * xbp)1475 build_boot_properties(struct xboot_info *xbp)
1476 {
1477 char *name;
1478 int name_len;
1479 char *value;
1480 int value_len;
1481 struct boot_modules *bm, *rdbm, *benv = NULL;
1482 char *propbuf;
1483 int quoted = 0;
1484 int boot_arg_len;
1485 uint_t i, midx;
1486 char modid[32];
1487 #ifndef __xpv
1488 static int stdout_val = 0;
1489 uchar_t boot_device;
1490 char str[3];
1491 #endif
1492
1493 /*
1494 * These have to be done first, so that kobj_mount_root() works
1495 */
1496 DBG_MSG("Building boot properties\n");
1497 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1498 DBG((uintptr_t)propbuf);
1499 if (xbp->bi_module_cnt > 0) {
1500 bm = xbp->bi_modules;
1501 rdbm = NULL;
1502 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1503 if (bm[i].bm_type == BMT_ROOTFS) {
1504 rdbm = &bm[i];
1505 continue;
1506 }
1507 if (bm[i].bm_type == BMT_HASH ||
1508 bm[i].bm_type == BMT_FONT ||
1509 bm[i].bm_name == NULL)
1510 continue;
1511
1512 if (bm[i].bm_type == BMT_ENV) {
1513 if (benv == NULL)
1514 benv = &bm[i];
1515 else
1516 continue;
1517 }
1518
1519 (void) snprintf(modid, sizeof (modid),
1520 "module-name-%u", midx);
1521 bsetprops(modid, (char *)bm[i].bm_name);
1522 (void) snprintf(modid, sizeof (modid),
1523 "module-addr-%u", midx);
1524 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1525 (void) snprintf(modid, sizeof (modid),
1526 "module-size-%u", midx);
1527 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1528 ++midx;
1529 }
1530 if (rdbm != NULL) {
1531 bsetprop64("ramdisk_start",
1532 (uint64_t)(uintptr_t)rdbm->bm_addr);
1533 bsetprop64("ramdisk_end",
1534 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1535 }
1536 }
1537
1538 /*
1539 * If there are any boot time modules or hashes present, then disable
1540 * fast reboot.
1541 */
1542 if (xbp->bi_module_cnt > 1) {
1543 fastreboot_disable(FBNS_BOOTMOD);
1544 }
1545
1546 #ifndef __xpv
1547 /*
1548 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1549 * since we don't currently support MB2 info and module relocation.
1550 * Note that fast reboot will have already been disabled if multiple
1551 * modules are present, since the current implementation assumes that
1552 * we only have a single module, the boot_archive.
1553 */
1554 if (xbp->bi_mb_version != 1) {
1555 fastreboot_disable(FBNS_MULTIBOOT2);
1556 }
1557 #endif
1558
1559 DBG_MSG("Parsing command line for boot properties\n");
1560 value = xbp->bi_cmdline;
1561
1562 /*
1563 * allocate memory to collect boot_args into
1564 */
1565 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1566 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1567 boot_args[0] = 0;
1568 boot_arg_len = 0;
1569
1570 #ifdef __xpv
1571 /*
1572 * Xen puts a lot of device information in front of the kernel name
1573 * let's grab them and make them boot properties. The first
1574 * string w/o an "=" in it will be the boot-file property.
1575 */
1576 (void) strcpy(namebuf, "xpv-");
1577 for (;;) {
1578 /*
1579 * get to next property
1580 */
1581 while (ISSPACE(*value))
1582 ++value;
1583 name = value;
1584 /*
1585 * look for an "="
1586 */
1587 while (*value && !ISSPACE(*value) && *value != '=') {
1588 value++;
1589 }
1590 if (*value != '=') { /* no "=" in the property */
1591 value = name;
1592 break;
1593 }
1594 name_len = value - name;
1595 value_len = 0;
1596 /*
1597 * skip over the "="
1598 */
1599 value++;
1600 while (value[value_len] && !ISSPACE(value[value_len])) {
1601 ++value_len;
1602 }
1603 /*
1604 * build property name with "xpv-" prefix
1605 */
1606 if (name_len + 4 > 32) { /* skip if name too long */
1607 value += value_len;
1608 continue;
1609 }
1610 bcopy(name, &namebuf[4], name_len);
1611 name_len += 4;
1612 namebuf[name_len] = 0;
1613 bcopy(value, propbuf, value_len);
1614 propbuf[value_len] = 0;
1615 bsetprops(namebuf, propbuf);
1616
1617 /*
1618 * xpv-root is set to the logical disk name of the xen
1619 * VBD when booting from a disk-based filesystem.
1620 */
1621 if (strcmp(namebuf, "xpv-root") == 0)
1622 xen_vbdroot_props(propbuf);
1623 /*
1624 * While we're here, if we have a "xpv-nfsroot" property
1625 * then we need to set "fstype" to "nfs" so we mount
1626 * our root from the nfs server. Also parse the xpv-nfsroot
1627 * property to create the properties that nfs_mountroot will
1628 * need to find the root and mount it.
1629 */
1630 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1631 xen_nfsroot_props(propbuf);
1632
1633 if (strcmp(namebuf, "xpv-ip") == 0)
1634 xen_ip_props(propbuf);
1635 value += value_len;
1636 }
1637 #endif
1638
1639 while (ISSPACE(*value))
1640 ++value;
1641 /*
1642 * value now points at the boot-file
1643 */
1644 value_len = 0;
1645 while (value[value_len] && !ISSPACE(value[value_len]))
1646 ++value_len;
1647 if (value_len > 0) {
1648 whoami = propbuf;
1649 bcopy(value, whoami, value_len);
1650 whoami[value_len] = 0;
1651 bsetprops("boot-file", whoami);
1652 /*
1653 * strip leading path stuff from whoami, so running from
1654 * PXE/miniroot makes sense.
1655 */
1656 if (strstr(whoami, "/platform/") != NULL)
1657 whoami = strstr(whoami, "/platform/");
1658 bsetprops("whoami", whoami);
1659 }
1660
1661 /*
1662 * Values forcibly set boot properties on the command line via -B.
1663 * Allow use of quotes in values. Other stuff goes on kernel
1664 * command line.
1665 */
1666 name = value + value_len;
1667 while (*name != 0) {
1668 /*
1669 * anything not " -B" is copied to the command line
1670 */
1671 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1672 boot_args[boot_arg_len++] = *name;
1673 boot_args[boot_arg_len] = 0;
1674 ++name;
1675 continue;
1676 }
1677
1678 /*
1679 * skip the " -B" and following white space
1680 */
1681 name += 3;
1682 while (ISSPACE(*name))
1683 ++name;
1684 while (*name && !ISSPACE(*name)) {
1685 value = strstr(name, "=");
1686 if (value == NULL)
1687 break;
1688 name_len = value - name;
1689 ++value;
1690 value_len = 0;
1691 quoted = 0;
1692 for (; ; ++value_len) {
1693 if (!value[value_len])
1694 break;
1695
1696 /*
1697 * is this value quoted?
1698 */
1699 if (value_len == 0 &&
1700 (value[0] == '\'' || value[0] == '"')) {
1701 quoted = value[0];
1702 ++value_len;
1703 }
1704
1705 /*
1706 * In the quote accept any character,
1707 * but look for ending quote.
1708 */
1709 if (quoted) {
1710 if (value[value_len] == quoted)
1711 quoted = 0;
1712 continue;
1713 }
1714
1715 /*
1716 * a comma or white space ends the value
1717 */
1718 if (value[value_len] == ',' ||
1719 ISSPACE(value[value_len]))
1720 break;
1721 }
1722
1723 if (value_len == 0) {
1724 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1725 NULL, 0);
1726 } else {
1727 char *v = value;
1728 int l = value_len;
1729 if (v[0] == v[l - 1] &&
1730 (v[0] == '\'' || v[0] == '"')) {
1731 ++v;
1732 l -= 2;
1733 }
1734 bcopy(v, propbuf, l);
1735 propbuf[l] = '\0';
1736 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1737 propbuf, l + 1);
1738 }
1739 name = value + value_len;
1740 while (*name == ',')
1741 ++name;
1742 }
1743 }
1744
1745 /*
1746 * set boot-args property
1747 * 1275 name is bootargs, so set
1748 * that too
1749 */
1750 bsetprops("boot-args", boot_args);
1751 bsetprops("bootargs", boot_args);
1752
1753 process_boot_environment(benv);
1754
1755 #ifndef __xpv
1756 /*
1757 * Build boot command line for Fast Reboot
1758 */
1759 build_fastboot_cmdline(xbp);
1760
1761 if (xbp->bi_mb_version == 1) {
1762 multiboot_info_t *mbi = xbp->bi_mb_info;
1763 int netboot;
1764 struct sol_netinfo *sip;
1765
1766 /*
1767 * set the BIOS boot device from GRUB
1768 */
1769 netboot = 0;
1770
1771 /*
1772 * Save various boot information for Fast Reboot
1773 */
1774 save_boot_info(xbp);
1775
1776 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1777 boot_device = mbi->boot_device >> 24;
1778 if (boot_device == 0x20)
1779 netboot++;
1780 str[0] = (boot_device >> 4) + '0';
1781 str[1] = (boot_device & 0xf) + '0';
1782 str[2] = 0;
1783 bsetprops("bios-boot-device", str);
1784 } else {
1785 netboot = 1;
1786 }
1787
1788 /*
1789 * In the netboot case, drives_info is overloaded with the
1790 * dhcp ack. This is not multiboot compliant and requires
1791 * special pxegrub!
1792 */
1793 if (netboot && mbi->drives_length != 0) {
1794 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1795 if (sip->sn_infotype == SN_TYPE_BOOTP)
1796 bsetprop(DDI_PROP_TYPE_BYTE,
1797 "bootp-response",
1798 sizeof ("bootp-response"),
1799 (void *)(uintptr_t)mbi->drives_addr,
1800 mbi->drives_length);
1801 else if (sip->sn_infotype == SN_TYPE_RARP)
1802 setup_rarp_props(sip);
1803 }
1804 } else {
1805 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1806 multiboot_tag_bootdev_t *bootdev = NULL;
1807 multiboot_tag_network_t *netdev = NULL;
1808
1809 if (mbi != NULL) {
1810 bootdev = dboot_multiboot2_find_tag(mbi,
1811 MULTIBOOT_TAG_TYPE_BOOTDEV);
1812 netdev = dboot_multiboot2_find_tag(mbi,
1813 MULTIBOOT_TAG_TYPE_NETWORK);
1814 }
1815 if (bootdev != NULL) {
1816 DBG(bootdev->mb_biosdev);
1817 boot_device = bootdev->mb_biosdev;
1818 str[0] = (boot_device >> 4) + '0';
1819 str[1] = (boot_device & 0xf) + '0';
1820 str[2] = 0;
1821 bsetprops("bios-boot-device", str);
1822 }
1823 if (netdev != NULL) {
1824 bsetprop(DDI_PROP_TYPE_BYTE,
1825 "bootp-response", sizeof ("bootp-response"),
1826 (void *)(uintptr_t)netdev->mb_dhcpack,
1827 netdev->mb_size -
1828 sizeof (multiboot_tag_network_t));
1829 }
1830 }
1831
1832 bsetprop32("stdout", stdout_val);
1833 #endif /* __xpv */
1834
1835 /*
1836 * more conjured up values for made up things....
1837 */
1838 #if defined(__xpv)
1839 bsetprops("mfg-name", "i86xpv");
1840 bsetprops("impl-arch-name", "i86xpv");
1841 #else
1842 bsetprops("mfg-name", "i86pc");
1843 bsetprops("impl-arch-name", "i86pc");
1844 #endif
1845
1846 /*
1847 * Build firmware-provided system properties
1848 */
1849 build_firmware_properties(xbp);
1850
1851 /*
1852 * XXPV
1853 *
1854 * Find out what these are:
1855 * - cpuid_feature_ecx_include
1856 * - cpuid_feature_ecx_exclude
1857 * - cpuid_feature_edx_include
1858 * - cpuid_feature_edx_exclude
1859 *
1860 * Find out what these are in multiboot:
1861 * - netdev-path
1862 * - fstype
1863 */
1864 }
1865
1866 #ifdef __xpv
1867 /*
1868 * Under the Hypervisor, memory usable for DMA may be scarce. One
1869 * very likely large pool of DMA friendly memory is occupied by
1870 * the boot_archive, as it was loaded by grub into low MFNs.
1871 *
1872 * Here we free up that memory by copying the boot archive to what are
1873 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1874 */
1875 #define PFN_2GIG 0x80000
1876 static void
relocate_boot_archive(struct xboot_info * xbp)1877 relocate_boot_archive(struct xboot_info *xbp)
1878 {
1879 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1880 struct boot_modules *bm = xbp->bi_modules;
1881 uintptr_t va;
1882 pfn_t va_pfn;
1883 mfn_t va_mfn;
1884 caddr_t copy;
1885 pfn_t copy_pfn;
1886 mfn_t copy_mfn;
1887 size_t len;
1888 int slop;
1889 int total = 0;
1890 int relocated = 0;
1891 int mmu_update_return;
1892 mmu_update_t t[2];
1893 x86pte_t pte;
1894
1895 /*
1896 * If all MFN's are below 2Gig, don't bother doing this.
1897 */
1898 if (max_mfn < PFN_2GIG)
1899 return;
1900 if (xbp->bi_module_cnt < 1) {
1901 DBG_MSG("no boot_archive!");
1902 return;
1903 }
1904
1905 DBG_MSG("moving boot_archive to high MFN memory\n");
1906 va = (uintptr_t)bm->bm_addr;
1907 len = bm->bm_size;
1908 slop = va & MMU_PAGEOFFSET;
1909 if (slop) {
1910 va += MMU_PAGESIZE - slop;
1911 len -= MMU_PAGESIZE - slop;
1912 }
1913 len = P2ALIGN(len, MMU_PAGESIZE);
1914
1915 /*
1916 * Go through all boot_archive pages, swapping any low MFN pages
1917 * with memory at next_phys.
1918 */
1919 while (len != 0) {
1920 ++total;
1921 va_pfn = mmu_btop(va - ONE_GIG);
1922 va_mfn = mfn_list[va_pfn];
1923 if (mfn_list[va_pfn] < PFN_2GIG) {
1924 copy = kbm_remap_window(next_phys, 1);
1925 bcopy((void *)va, copy, MMU_PAGESIZE);
1926 copy_pfn = mmu_btop(next_phys);
1927 copy_mfn = mfn_list[copy_pfn];
1928
1929 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1930 if (HYPERVISOR_update_va_mapping(va, pte,
1931 UVMF_INVLPG | UVMF_LOCAL))
1932 bop_panic("relocate_boot_archive(): "
1933 "HYPERVISOR_update_va_mapping() failed");
1934
1935 mfn_list[va_pfn] = copy_mfn;
1936 mfn_list[copy_pfn] = va_mfn;
1937
1938 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1939 t[0].val = va_pfn;
1940 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1941 t[1].val = copy_pfn;
1942 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1943 DOMID_SELF) != 0 || mmu_update_return != 2)
1944 bop_panic("relocate_boot_archive(): "
1945 "HYPERVISOR_mmu_update() failed");
1946
1947 next_phys += MMU_PAGESIZE;
1948 ++relocated;
1949 }
1950 len -= MMU_PAGESIZE;
1951 va += MMU_PAGESIZE;
1952 }
1953 DBG_MSG("Relocated pages:\n");
1954 DBG(relocated);
1955 DBG_MSG("Out of total pages:\n");
1956 DBG(total);
1957 }
1958 #endif /* __xpv */
1959
1960 #if !defined(__xpv)
1961 /*
1962 * simple description of a stack frame (args are 32 bit only currently)
1963 */
1964 typedef struct bop_frame {
1965 struct bop_frame *old_frame;
1966 pc_t retaddr;
1967 long arg[1];
1968 } bop_frame_t;
1969
1970 void
bop_traceback(bop_frame_t * frame)1971 bop_traceback(bop_frame_t *frame)
1972 {
1973 pc_t pc;
1974 int cnt;
1975 char *ksym;
1976 ulong_t off;
1977
1978 bop_printf(NULL, "Stack traceback:\n");
1979 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1980 pc = frame->retaddr;
1981 if (pc == 0)
1982 break;
1983 ksym = kobj_getsymname(pc, &off);
1984 if (ksym)
1985 bop_printf(NULL, " %s+%lx", ksym, off);
1986 else
1987 bop_printf(NULL, " 0x%lx", pc);
1988
1989 frame = frame->old_frame;
1990 if (frame == 0) {
1991 bop_printf(NULL, "\n");
1992 break;
1993 }
1994 bop_printf(NULL, "\n");
1995 }
1996 }
1997
1998 struct trapframe {
1999 ulong_t error_code; /* optional */
2000 ulong_t inst_ptr;
2001 ulong_t code_seg;
2002 ulong_t flags_reg;
2003 ulong_t stk_ptr;
2004 ulong_t stk_seg;
2005 };
2006
2007 void
bop_trap(ulong_t * tfp)2008 bop_trap(ulong_t *tfp)
2009 {
2010 struct trapframe *tf = (struct trapframe *)tfp;
2011 bop_frame_t fakeframe;
2012 static int depth = 0;
2013
2014 /*
2015 * Check for an infinite loop of traps.
2016 */
2017 if (++depth > 2)
2018 bop_panic("Nested trap");
2019
2020 bop_printf(NULL, "Unexpected trap\n");
2021
2022 /*
2023 * adjust the tf for optional error_code by detecting the code selector
2024 */
2025 if (tf->code_seg != B64CODE_SEL)
2026 tf = (struct trapframe *)(tfp - 1);
2027 else
2028 bop_printf(NULL, "error code 0x%lx\n",
2029 tf->error_code & 0xffffffff);
2030
2031 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
2032 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
2033 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
2034 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
2035 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
2036 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2());
2037
2038 /* grab %[er]bp pushed by our code from the stack */
2039 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2040 fakeframe.retaddr = (pc_t)tf->inst_ptr;
2041 bop_printf(NULL, "Attempting stack backtrace:\n");
2042 bop_traceback(&fakeframe);
2043 bop_panic("unexpected trap in early boot");
2044 }
2045
2046 extern void bop_trap_handler(void);
2047
2048 static gate_desc_t *bop_idt;
2049
2050 static desctbr_t bop_idt_info;
2051
2052 /*
2053 * Install a temporary IDT that lets us catch errors in the boot time code.
2054 * We shouldn't get any faults at all while this is installed, so we'll
2055 * just generate a traceback and exit.
2056 */
2057 static void
bop_idt_init(void)2058 bop_idt_init(void)
2059 {
2060 int t;
2061
2062 bop_idt = (gate_desc_t *)
2063 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2064 bzero(bop_idt, MMU_PAGESIZE);
2065 for (t = 0; t < NIDT; ++t) {
2066 /*
2067 * Note that since boot runs without a TSS, the
2068 * double fault handler cannot use an alternate stack (64-bit).
2069 */
2070 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2071 SDT_SYSIGT, TRP_KPL, 0);
2072 }
2073 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2074 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2075 wr_idtr(&bop_idt_info);
2076 }
2077 #endif /* !defined(__xpv) */
2078
2079 /*
2080 * This is where we enter the kernel. It dummies up the boot_ops and
2081 * boot_syscalls vectors and jumps off to _kobj_boot()
2082 */
2083 void
_start(struct xboot_info * xbp)2084 _start(struct xboot_info *xbp)
2085 {
2086 bootops_t *bops = &bootop;
2087 extern void _kobj_boot();
2088
2089 /*
2090 * 1st off - initialize the console for any error messages
2091 */
2092 xbootp = xbp;
2093 #ifdef __xpv
2094 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2095 xen_info = xbp->bi_xen_start_info;
2096 #endif
2097
2098 #ifndef __xpv
2099 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2100 FASTBOOT_MAGIC) {
2101 post_fastreboot = 1;
2102 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2103 }
2104 #endif
2105
2106 bcons_init(xbp);
2107 have_console = 1;
2108
2109 /*
2110 * enable debugging
2111 */
2112 if (find_boot_prop("kbm_debug") != NULL)
2113 kbm_debug = 1;
2114
2115 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2116 DBG_MSG((char *)xbp->bi_cmdline);
2117 DBG_MSG("\n\n\n");
2118
2119 /*
2120 * physavail is no longer used by startup
2121 */
2122 bm.physinstalled = xbp->bi_phys_install;
2123 bm.pcimem = xbp->bi_pcimem;
2124 bm.rsvdmem = xbp->bi_rsvdmem;
2125 bm.physavail = NULL;
2126
2127 /*
2128 * initialize the boot time allocator
2129 */
2130 next_phys = xbp->bi_next_paddr;
2131 DBG(next_phys);
2132 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2133 DBG(next_virt);
2134 DBG_MSG("Initializing boot time memory management...");
2135 #ifdef __xpv
2136 {
2137 xen_platform_parameters_t p;
2138
2139 /* This call shouldn't fail, dboot already did it once. */
2140 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2141 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2142 DBG(xen_virt_start);
2143 }
2144 #endif
2145 kbm_init(xbp);
2146 DBG_MSG("done\n");
2147
2148 /*
2149 * Fill in the bootops vector
2150 */
2151 bops->bsys_version = BO_VERSION;
2152 bops->boot_mem = &bm;
2153 bops->bsys_alloc = do_bsys_alloc;
2154 bops->bsys_free = do_bsys_free;
2155 bops->bsys_getproplen = do_bsys_getproplen;
2156 bops->bsys_getprop = do_bsys_getprop;
2157 bops->bsys_nextprop = do_bsys_nextprop;
2158 bops->bsys_printf = bop_printf;
2159 bops->bsys_doint = do_bsys_doint;
2160
2161 /*
2162 * BOP_EALLOC() is no longer needed
2163 */
2164 bops->bsys_ealloc = do_bsys_ealloc;
2165
2166 #ifdef __xpv
2167 /*
2168 * On domain 0 we need to free up some physical memory that is
2169 * usable for DMA. Since GRUB loaded the boot_archive, it is
2170 * sitting in low MFN memory. We'll relocated the boot archive
2171 * pages to high PFN memory.
2172 */
2173 if (DOMAIN_IS_INITDOMAIN(xen_info))
2174 relocate_boot_archive(xbp);
2175 #endif
2176
2177 #ifndef __xpv
2178 /*
2179 * Install an IDT to catch early pagefaults (shouldn't have any).
2180 * Also needed for kmdb.
2181 */
2182 bop_idt_init();
2183 #endif
2184 /* Set up the shadow fb for framebuffer console */
2185 boot_fb_shadow_init(bops);
2186
2187 /*
2188 * Start building the boot properties from the command line
2189 */
2190 DBG_MSG("Initializing boot properties:\n");
2191 build_boot_properties(xbp);
2192
2193 if (find_boot_prop("prom_debug") || kbm_debug) {
2194 char *value;
2195
2196 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2197 boot_prop_display(value);
2198 }
2199
2200 /*
2201 * jump into krtld...
2202 */
2203 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2204 }
2205
2206
2207 /*ARGSUSED*/
2208 static caddr_t
no_more_alloc(bootops_t * bop,caddr_t virthint,size_t size,int align)2209 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2210 {
2211 panic("Attempt to bsys_alloc() too late\n");
2212 return (NULL);
2213 }
2214
2215 /*ARGSUSED*/
2216 static void
no_more_free(bootops_t * bop,caddr_t virt,size_t size)2217 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2218 {
2219 panic("Attempt to bsys_free() too late\n");
2220 }
2221
2222 void
bop_no_more_mem(void)2223 bop_no_more_mem(void)
2224 {
2225 DBG(total_bop_alloc_scratch);
2226 DBG(total_bop_alloc_kernel);
2227 bootops->bsys_alloc = no_more_alloc;
2228 bootops->bsys_free = no_more_free;
2229 }
2230
2231
2232 /*
2233 * Set ACPI firmware properties
2234 */
2235
2236 static caddr_t
vmap_phys(size_t length,paddr_t pa)2237 vmap_phys(size_t length, paddr_t pa)
2238 {
2239 paddr_t start, end;
2240 caddr_t va;
2241 size_t len, page;
2242
2243 #ifdef __xpv
2244 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2245 #endif
2246 start = P2ALIGN(pa, MMU_PAGESIZE);
2247 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2248 len = end - start;
2249 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2250 for (page = 0; page < len; page += MMU_PAGESIZE)
2251 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2252 return (va + (pa & MMU_PAGEOFFSET));
2253 }
2254
2255 static uint8_t
checksum_table(uint8_t * tp,size_t len)2256 checksum_table(uint8_t *tp, size_t len)
2257 {
2258 uint8_t sum = 0;
2259
2260 while (len-- > 0)
2261 sum += *tp++;
2262
2263 return (sum);
2264 }
2265
2266 static int
valid_rsdp(ACPI_TABLE_RSDP * rp)2267 valid_rsdp(ACPI_TABLE_RSDP *rp)
2268 {
2269
2270 /* validate the V1.x checksum */
2271 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2272 return (0);
2273
2274 /* If pre-ACPI 2.0, this is a valid RSDP */
2275 if (rp->Revision < 2)
2276 return (1);
2277
2278 /* validate the V2.x checksum */
2279 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2280 return (0);
2281
2282 return (1);
2283 }
2284
2285 /*
2286 * Scan memory range for an RSDP;
2287 * see ACPI 3.0 Spec, 5.2.5.1
2288 */
2289 static ACPI_TABLE_RSDP *
scan_rsdp(paddr_t * paddrp,size_t len)2290 scan_rsdp(paddr_t *paddrp, size_t len)
2291 {
2292 paddr_t paddr = *paddrp;
2293 caddr_t ptr;
2294
2295 ptr = vmap_phys(len, paddr);
2296
2297 while (len > 0) {
2298 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2299 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) {
2300 *paddrp = paddr;
2301 return ((ACPI_TABLE_RSDP *)ptr);
2302 }
2303
2304 ptr += ACPI_RSDP_SCAN_STEP;
2305 paddr += ACPI_RSDP_SCAN_STEP;
2306 len -= ACPI_RSDP_SCAN_STEP;
2307 }
2308
2309 return (NULL);
2310 }
2311
2312 /*
2313 * Locate the ACPI RSDP. We search in a particular order:
2314 *
2315 * - If the bootloader told us the location of the RSDP (via the EFI system
2316 * table), try that first.
2317 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy
2318 * case).
2319 * - Finally, our bootloader may have a copy of the RSDP in its info: this might
2320 * get freed after boot, so we always prefer to find the original RSDP first.
2321 *
2322 * Once found, we set acpi-root-tab property (a physical address) for the
2323 * benefit of acpica, acpidump etc.
2324 */
2325
2326 static ACPI_TABLE_RSDP *
find_rsdp(struct xboot_info * xbp)2327 find_rsdp(struct xboot_info *xbp)
2328 {
2329 ACPI_TABLE_RSDP *rsdp = NULL;
2330 paddr_t paddr = 0;
2331
2332 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2333 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr);
2334 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2335 }
2336
2337 #ifndef __xpv
2338 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) {
2339 paddr = (uintptr_t)xbp->bi_acpi_rsdp;
2340 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2341 }
2342 #endif
2343
2344 if (rsdp == NULL) {
2345 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2346 ACPI_EBDA_PTR_LOCATION);
2347 paddr = *ebda_seg << 4;
2348 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE);
2349 }
2350
2351 if (rsdp == NULL) {
2352 paddr = ACPI_HI_RSDP_WINDOW_BASE;
2353 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE);
2354 }
2355
2356 #ifndef __xpv
2357 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) {
2358 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy;
2359 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2360 }
2361 #endif
2362
2363 if (rsdp == NULL) {
2364 bop_printf(NULL, "no RSDP found!\n");
2365 return (NULL);
2366 }
2367
2368 if (kbm_debug)
2369 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr);
2370
2371 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t))
2372 bsetprop64("acpi-root-tab", paddr);
2373
2374 return (rsdp);
2375 }
2376
2377 static ACPI_TABLE_HEADER *
map_fw_table(paddr_t table_addr)2378 map_fw_table(paddr_t table_addr)
2379 {
2380 ACPI_TABLE_HEADER *tp;
2381 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2382
2383 /*
2384 * Map at least a page; if the table is larger than this, remap it
2385 */
2386 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2387 if (tp->Length > len)
2388 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2389 return (tp);
2390 }
2391
2392 static ACPI_TABLE_HEADER *
find_fw_table(ACPI_TABLE_RSDP * rsdp,char * signature)2393 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature)
2394 {
2395 static int revision = 0;
2396 static ACPI_TABLE_XSDT *xsdt;
2397 static int len;
2398 paddr_t xsdt_addr;
2399 ACPI_TABLE_HEADER *tp;
2400 paddr_t table_addr;
2401 int n;
2402
2403 if (strlen(signature) != ACPI_NAME_SIZE)
2404 return (NULL);
2405
2406 /*
2407 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2408 * understand this code. If we haven't already found the RSDT/XSDT,
2409 * revision will be 0. Find the RSDP and check the revision
2410 * to find out whether to use the RSDT or XSDT. If revision is
2411 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2412 * use the XSDT. If the XSDT address is 0, though, fall back to
2413 * revision 1 and use the RSDT.
2414 */
2415 xsdt_addr = 0;
2416 if (revision == 0) {
2417 if (rsdp == NULL)
2418 return (NULL);
2419
2420 revision = rsdp->Revision;
2421 /*
2422 * ACPI 6.0 states that current revision is 2
2423 * from acpi_table_rsdp definition:
2424 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2425 */
2426 if (revision > 2)
2427 revision = 2;
2428 switch (revision) {
2429 case 2:
2430 /*
2431 * Use the XSDT unless BIOS is buggy and
2432 * claims to be rev 2 but has a null XSDT
2433 * address
2434 */
2435 xsdt_addr = rsdp->XsdtPhysicalAddress;
2436 if (xsdt_addr != 0)
2437 break;
2438 /* FALLTHROUGH */
2439 case 0:
2440 /* treat RSDP rev 0 as revision 1 internally */
2441 revision = 1;
2442 /* FALLTHROUGH */
2443 case 1:
2444 /* use the RSDT for rev 0/1 */
2445 xsdt_addr = rsdp->RsdtPhysicalAddress;
2446 break;
2447 default:
2448 /* unknown revision */
2449 revision = 0;
2450 break;
2451 }
2452
2453 if (revision == 0)
2454 return (NULL);
2455
2456 /* cache the XSDT info */
2457 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2458 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2459 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2460 }
2461
2462 /*
2463 * Scan the table headers looking for a signature match
2464 */
2465 for (n = 0; n < len; n++) {
2466 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2467 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2468 xsdt->TableOffsetEntry[n];
2469
2470 if (table_addr == 0)
2471 continue;
2472 tp = map_fw_table(table_addr);
2473 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2474 return (tp);
2475 }
2476 }
2477 return (NULL);
2478 }
2479
2480 static void
process_mcfg(ACPI_TABLE_MCFG * tp)2481 process_mcfg(ACPI_TABLE_MCFG *tp)
2482 {
2483 ACPI_MCFG_ALLOCATION *cfg_baap;
2484 char *cfg_baa_endp;
2485 int64_t ecfginfo[4];
2486
2487 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2488 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2489 while ((char *)cfg_baap < cfg_baa_endp) {
2490 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2491 ecfginfo[0] = cfg_baap->Address;
2492 ecfginfo[1] = cfg_baap->PciSegment;
2493 ecfginfo[2] = cfg_baap->StartBusNumber;
2494 ecfginfo[3] = cfg_baap->EndBusNumber;
2495 bsetprop(DDI_PROP_TYPE_INT64,
2496 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2497 ecfginfo, sizeof (ecfginfo));
2498 break;
2499 }
2500 cfg_baap++;
2501 }
2502 }
2503
2504 #ifndef __xpv
2505 static void
process_madt_entries(ACPI_TABLE_MADT * tp,uint32_t * cpu_countp,uint32_t * cpu_possible_countp,uint32_t * cpu_apicid_array)2506 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2507 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2508 {
2509 ACPI_SUBTABLE_HEADER *item, *end;
2510 uint32_t cpu_count = 0;
2511 uint32_t cpu_possible_count = 0;
2512
2513 /*
2514 * Determine number of CPUs and keep track of "final" APIC ID
2515 * for each CPU by walking through ACPI MADT processor list
2516 */
2517 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2518 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2519
2520 while (item < end) {
2521 switch (item->Type) {
2522 case ACPI_MADT_TYPE_LOCAL_APIC: {
2523 ACPI_MADT_LOCAL_APIC *cpu =
2524 (ACPI_MADT_LOCAL_APIC *) item;
2525
2526 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2527 if (cpu_apicid_array != NULL)
2528 cpu_apicid_array[cpu_count] = cpu->Id;
2529 cpu_count++;
2530 }
2531 cpu_possible_count++;
2532 break;
2533 }
2534 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2535 ACPI_MADT_LOCAL_X2APIC *cpu =
2536 (ACPI_MADT_LOCAL_X2APIC *) item;
2537
2538 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2539 if (cpu_apicid_array != NULL)
2540 cpu_apicid_array[cpu_count] =
2541 cpu->LocalApicId;
2542 cpu_count++;
2543 }
2544 cpu_possible_count++;
2545 break;
2546 }
2547 default:
2548 if (kbm_debug)
2549 bop_printf(NULL, "MADT type %d\n", item->Type);
2550 break;
2551 }
2552
2553 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2554 }
2555 if (cpu_countp)
2556 *cpu_countp = cpu_count;
2557 if (cpu_possible_countp)
2558 *cpu_possible_countp = cpu_possible_count;
2559 }
2560
2561 static void
process_madt(ACPI_TABLE_MADT * tp)2562 process_madt(ACPI_TABLE_MADT *tp)
2563 {
2564 uint32_t cpu_count = 0;
2565 uint32_t cpu_possible_count = 0;
2566 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2567
2568 if (tp != NULL) {
2569 /* count cpu's */
2570 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2571
2572 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2573 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2574 if (cpu_apicid_array == NULL)
2575 bop_panic("Not enough memory for APIC ID array");
2576
2577 /* copy IDs */
2578 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2579
2580 /*
2581 * Make boot property for array of "final" APIC IDs for each
2582 * CPU
2583 */
2584 bsetprop(DDI_PROP_TYPE_INT,
2585 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2586 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2587 }
2588
2589 /*
2590 * Check whether property plat-max-ncpus is already set.
2591 */
2592 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2593 /*
2594 * Set plat-max-ncpus to number of maximum possible CPUs given
2595 * in MADT if it hasn't been set.
2596 * There's no formal way to detect max possible CPUs supported
2597 * by platform according to ACPI spec3.0b. So current CPU
2598 * hotplug implementation expects that all possible CPUs will
2599 * have an entry in MADT table and set plat-max-ncpus to number
2600 * of entries in MADT.
2601 * With introducing of ACPI4.0, Maximum System Capability Table
2602 * (MSCT) provides maximum number of CPUs supported by platform.
2603 * If MSCT is unavailable, fall back to old way.
2604 */
2605 if (tp != NULL)
2606 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2607 }
2608
2609 /*
2610 * Set boot property boot-max-ncpus to number of CPUs existing at
2611 * boot time. boot-max-ncpus is mainly used for optimization.
2612 */
2613 if (tp != NULL)
2614 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2615
2616 /*
2617 * User-set boot-ncpus overrides firmware count
2618 */
2619 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2620 return;
2621
2622 /*
2623 * Set boot property boot-ncpus to number of active CPUs given in MADT
2624 * if it hasn't been set yet.
2625 */
2626 if (tp != NULL)
2627 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2628 }
2629
2630 static void
process_srat(ACPI_TABLE_SRAT * tp)2631 process_srat(ACPI_TABLE_SRAT *tp)
2632 {
2633 ACPI_SUBTABLE_HEADER *item, *end;
2634 int i;
2635 int proc_num, mem_num;
2636 #pragma pack(1)
2637 struct {
2638 uint32_t domain;
2639 uint32_t apic_id;
2640 uint32_t sapic_id;
2641 } processor;
2642 struct {
2643 uint32_t domain;
2644 uint32_t x2apic_id;
2645 } x2apic;
2646 struct {
2647 uint32_t domain;
2648 uint64_t addr;
2649 uint64_t length;
2650 uint32_t flags;
2651 } memory;
2652 #pragma pack()
2653 char prop_name[30];
2654 uint64_t maxmem = 0;
2655
2656 if (tp == NULL)
2657 return;
2658
2659 proc_num = mem_num = 0;
2660 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2661 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2662 while (item < end) {
2663 switch (item->Type) {
2664 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2665 ACPI_SRAT_CPU_AFFINITY *cpu =
2666 (ACPI_SRAT_CPU_AFFINITY *) item;
2667
2668 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2669 break;
2670 processor.domain = cpu->ProximityDomainLo;
2671 for (i = 0; i < 3; i++)
2672 processor.domain +=
2673 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2674 processor.apic_id = cpu->ApicId;
2675 processor.sapic_id = cpu->LocalSapicEid;
2676 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2677 proc_num);
2678 bsetprop(DDI_PROP_TYPE_INT,
2679 prop_name, strlen(prop_name), &processor,
2680 sizeof (processor));
2681 proc_num++;
2682 break;
2683 }
2684 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2685 ACPI_SRAT_MEM_AFFINITY *mem =
2686 (ACPI_SRAT_MEM_AFFINITY *)item;
2687
2688 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2689 break;
2690 memory.domain = mem->ProximityDomain;
2691 memory.addr = mem->BaseAddress;
2692 memory.length = mem->Length;
2693 memory.flags = mem->Flags;
2694 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2695 mem_num);
2696 bsetprop(DDI_PROP_TYPE_INT,
2697 prop_name, strlen(prop_name), &memory,
2698 sizeof (memory));
2699 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2700 (memory.addr + memory.length > maxmem)) {
2701 maxmem = memory.addr + memory.length;
2702 }
2703 mem_num++;
2704 break;
2705 }
2706 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2707 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2708 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2709
2710 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2711 break;
2712 x2apic.domain = x2cpu->ProximityDomain;
2713 x2apic.x2apic_id = x2cpu->ApicId;
2714 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2715 proc_num);
2716 bsetprop(DDI_PROP_TYPE_INT,
2717 prop_name, strlen(prop_name), &x2apic,
2718 sizeof (x2apic));
2719 proc_num++;
2720 break;
2721 }
2722 default:
2723 if (kbm_debug)
2724 bop_printf(NULL, "SRAT type %d\n", item->Type);
2725 break;
2726 }
2727
2728 item = (ACPI_SUBTABLE_HEADER *)
2729 (item->Length + (uintptr_t)item);
2730 }
2731
2732 /*
2733 * The maximum physical address calculated from the SRAT table is more
2734 * accurate than that calculated from the MSCT table.
2735 */
2736 if (maxmem != 0) {
2737 plat_dr_physmax = btop(maxmem);
2738 }
2739 }
2740
2741 static void
process_slit(ACPI_TABLE_SLIT * tp)2742 process_slit(ACPI_TABLE_SLIT *tp)
2743 {
2744
2745 /*
2746 * Check the number of localities; if it's too huge, we just
2747 * return and locality enumeration code will handle this later,
2748 * if possible.
2749 *
2750 * Note that the size of the table is the square of the
2751 * number of localities; if the number of localities exceeds
2752 * UINT16_MAX, the table size may overflow an int when being
2753 * passed to bsetprop() below.
2754 */
2755 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2756 return;
2757
2758 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2759 bsetprop(DDI_PROP_TYPE_BYTE,
2760 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2761 tp->LocalityCount * tp->LocalityCount);
2762 }
2763
2764 static ACPI_TABLE_MSCT *
process_msct(ACPI_TABLE_MSCT * tp)2765 process_msct(ACPI_TABLE_MSCT *tp)
2766 {
2767 int last_seen = 0;
2768 int proc_num = 0;
2769 ACPI_MSCT_PROXIMITY *item, *end;
2770 extern uint64_t plat_dr_options;
2771
2772 ASSERT(tp != NULL);
2773
2774 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2775 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2776 item < end;
2777 item = (void *)(item->Length + (uintptr_t)item)) {
2778 /*
2779 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2780 * Revision 1
2781 * Length 22
2782 */
2783 if (item->Revision != 1 || item->Length != 22) {
2784 cmn_err(CE_CONT,
2785 "?boot: unknown proximity domain structure in MSCT "
2786 "with Revision(%d), Length(%d).\n",
2787 (int)item->Revision, (int)item->Length);
2788 return (NULL);
2789 } else if (item->RangeStart > item->RangeEnd) {
2790 cmn_err(CE_CONT,
2791 "?boot: invalid proximity domain structure in MSCT "
2792 "with RangeStart(%u), RangeEnd(%u).\n",
2793 item->RangeStart, item->RangeEnd);
2794 return (NULL);
2795 } else if (item->RangeStart != last_seen) {
2796 /*
2797 * Items must be organized in ascending order of the
2798 * proximity domain enumerations.
2799 */
2800 cmn_err(CE_CONT,
2801 "?boot: invalid proximity domain structure in MSCT,"
2802 " items are not orginized in ascending order.\n");
2803 return (NULL);
2804 }
2805
2806 /*
2807 * If ProcessorCapacity is 0 then there would be no CPUs in this
2808 * domain.
2809 */
2810 if (item->ProcessorCapacity != 0) {
2811 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2812 item->ProcessorCapacity;
2813 }
2814
2815 last_seen = item->RangeEnd - item->RangeStart + 1;
2816 /*
2817 * Break out if all proximity domains have been processed.
2818 * Some BIOSes may have unused items at the end of MSCT table.
2819 */
2820 if (last_seen > tp->MaxProximityDomains) {
2821 break;
2822 }
2823 }
2824 if (last_seen != tp->MaxProximityDomains + 1) {
2825 cmn_err(CE_CONT,
2826 "?boot: invalid proximity domain structure in MSCT, "
2827 "proximity domain count doesn't match.\n");
2828 return (NULL);
2829 }
2830
2831 /*
2832 * Set plat-max-ncpus property if it hasn't been set yet.
2833 */
2834 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2835 if (proc_num != 0) {
2836 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2837 }
2838 }
2839
2840 /*
2841 * Use Maximum Physical Address from the MSCT table as upper limit for
2842 * memory hot-adding by default. It may be overridden by value from
2843 * the SRAT table or the "plat-dr-physmax" boot option.
2844 */
2845 plat_dr_physmax = btop(tp->MaxAddress + 1);
2846
2847 /*
2848 * Existence of MSCT implies CPU/memory hotplug-capability for the
2849 * platform.
2850 */
2851 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2852 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2853
2854 return (tp);
2855 }
2856
2857 #else /* __xpv */
2858 static void
enumerate_xen_cpus()2859 enumerate_xen_cpus()
2860 {
2861 processorid_t id, max_id;
2862
2863 /*
2864 * User-set boot-ncpus overrides enumeration
2865 */
2866 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2867 return;
2868
2869 /*
2870 * Probe every possible virtual CPU id and remember the
2871 * highest id present; the count of CPUs is one greater
2872 * than this. This tacitly assumes at least cpu 0 is present.
2873 */
2874 max_id = 0;
2875 for (id = 0; id < MAX_VIRT_CPUS; id++)
2876 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2877 max_id = id;
2878
2879 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2880
2881 }
2882 #endif /* __xpv */
2883
2884 /*ARGSUSED*/
2885 static void
build_firmware_properties(struct xboot_info * xbp)2886 build_firmware_properties(struct xboot_info *xbp)
2887 {
2888 ACPI_TABLE_HEADER *tp = NULL;
2889 ACPI_TABLE_RSDP *rsdp;
2890
2891 #ifndef __xpv
2892 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2893 bsetprops("efi-systype", "64");
2894 bsetprop64("efi-systab",
2895 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2896 if (kbm_debug)
2897 bop_printf(NULL, "64-bit UEFI detected.\n");
2898 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2899 bsetprops("efi-systype", "32");
2900 bsetprop64("efi-systab",
2901 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2902 if (kbm_debug)
2903 bop_printf(NULL, "32-bit UEFI detected.\n");
2904 }
2905
2906 if (xbp->bi_smbios != NULL) {
2907 bsetprop64("smbios-address",
2908 (uint64_t)(uintptr_t)xbp->bi_smbios);
2909 }
2910
2911 rsdp = find_rsdp(xbp);
2912
2913 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL)
2914 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2915 else
2916 msct_ptr = NULL;
2917
2918 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL)
2919 process_madt((ACPI_TABLE_MADT *)tp);
2920
2921 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2922 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL)
2923 process_srat(srat_ptr);
2924
2925 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT))
2926 process_slit(slit_ptr);
2927
2928 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2929 #else /* __xpv */
2930 enumerate_xen_cpus();
2931 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2932 rsdp = find_rsdp(xbp);
2933 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2934 }
2935 #endif /* __xpv */
2936 if (tp != NULL)
2937 process_mcfg((ACPI_TABLE_MCFG *)tp);
2938
2939 /*
2940 * Map the first HPET table (if it exists) and save the address.
2941 * If the HPET is required to calibrate the TSC, we require the
2942 * HPET table prior to being able to load modules, so we cannot use
2943 * the acpica module (and thus AcpiGetTable()) to locate it.
2944 */
2945 if ((tp = find_fw_table(rsdp, ACPI_SIG_HPET)) != NULL)
2946 bsetprop64("hpet-table", (uint64_t)(uintptr_t)tp);
2947 }
2948
2949 /*
2950 * fake up a boot property for deferred early console output
2951 * this is used by both graphical boot and the (developer only)
2952 * USB serial console
2953 */
2954 void *
defcons_init(size_t size)2955 defcons_init(size_t size)
2956 {
2957 static char *p = NULL;
2958
2959 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2960 *p = 0;
2961 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2962 return (p);
2963 }
2964
2965 /*ARGSUSED*/
2966 int
boot_compinfo(int fd,struct compinfo * cbp)2967 boot_compinfo(int fd, struct compinfo *cbp)
2968 {
2969 cbp->iscmp = 0;
2970 cbp->blksize = MAXBSIZE;
2971 return (0);
2972 }
2973
2974 /*
2975 * Get an integer value for given boot property
2976 */
2977 int
bootprop_getval(const char * prop_name,u_longlong_t * prop_value)2978 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2979 {
2980 int boot_prop_len;
2981 char str[BP_MAX_STRLEN];
2982 u_longlong_t value;
2983
2984 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2985 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) ||
2986 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2987 kobj_getvalue(str, &value) == -1)
2988 return (-1);
2989
2990 if (prop_value)
2991 *prop_value = value;
2992
2993 return (0);
2994 }
2995
2996 int
bootprop_getstr(const char * prop_name,char * buf,size_t buflen)2997 bootprop_getstr(const char *prop_name, char *buf, size_t buflen)
2998 {
2999 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
3000
3001 if (boot_prop_len < 0 || boot_prop_len >= buflen ||
3002 BOP_GETPROP(bootops, prop_name, buf) < 0)
3003 return (-1);
3004
3005 return (0);
3006 }
3007