1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Garrett D'Amore <garrett@damore.org>
25 * Copyright 2014 Pluribus Networks, Inc.
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright 2018 Joyent, Inc.
28 */
29
30 /*
31 * PC specific DDI implementation
32 */
33 #include <sys/types.h>
34 #include <sys/autoconf.h>
35 #include <sys/avintr.h>
36 #include <sys/bootconf.h>
37 #include <sys/conf.h>
38 #include <sys/cpuvar.h>
39 #include <sys/ddi_impldefs.h>
40 #include <sys/ddi_subrdefs.h>
41 #include <sys/ethernet.h>
42 #include <sys/fp.h>
43 #include <sys/instance.h>
44 #include <sys/kmem.h>
45 #include <sys/machsystm.h>
46 #include <sys/modctl.h>
47 #include <sys/promif.h>
48 #include <sys/prom_plat.h>
49 #include <sys/sunndi.h>
50 #include <sys/ndi_impldefs.h>
51 #include <sys/ddi_impldefs.h>
52 #include <sys/sysmacros.h>
53 #include <sys/systeminfo.h>
54 #include <sys/utsname.h>
55 #include <sys/atomic.h>
56 #include <sys/spl.h>
57 #include <sys/archsystm.h>
58 #include <vm/seg_kmem.h>
59 #include <sys/ontrap.h>
60 #include <sys/fm/protocol.h>
61 #include <sys/ramdisk.h>
62 #include <sys/sunndi.h>
63 #include <sys/vmem.h>
64 #include <sys/pci_impl.h>
65 #if defined(__xpv)
66 #include <sys/hypervisor.h>
67 #endif
68 #include <sys/mach_intr.h>
69 #include <vm/hat_i86.h>
70 #include <sys/x86_archext.h>
71 #include <sys/avl.h>
72 #include <sys/font.h>
73
74 /*
75 * DDI Boot Configuration
76 */
77
78 /*
79 * Platform drivers on this platform
80 */
81 char *platform_module_list[] = {
82 "acpippm",
83 "ppm",
84 (char *)0
85 };
86
87 /* pci bus resource maps */
88 struct pci_bus_resource *pci_bus_res;
89
90 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */
91
92 uint64_t ramdisk_start, ramdisk_end;
93
94 int pseudo_isa = 0;
95
96 /*
97 * Forward declarations
98 */
99 static int getlongprop_buf();
100 static void get_boot_properties(void);
101 static void impl_bus_initialprobe(void);
102 static void impl_bus_reprobe(void);
103
104 static int poke_mem(peekpoke_ctlops_t *in_args);
105 static int peek_mem(peekpoke_ctlops_t *in_args);
106
107 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
108
109 #if !defined(__xpv)
110 extern void immu_init(void);
111 #endif
112
113 /*
114 * We use an AVL tree to store contiguous address allocations made with the
115 * kalloca() routine, so that we can return the size to free with kfreea().
116 * Note that in the future it would be vastly faster if we could eliminate
117 * this lookup by insisting that all callers keep track of their own sizes,
118 * just as for kmem_alloc().
119 */
120 struct ctgas {
121 avl_node_t ctg_link;
122 void *ctg_addr;
123 size_t ctg_size;
124 };
125
126 static avl_tree_t ctgtree;
127
128 static kmutex_t ctgmutex;
129 #define CTGLOCK() mutex_enter(&ctgmutex)
130 #define CTGUNLOCK() mutex_exit(&ctgmutex)
131
132 /*
133 * Minimum pfn value of page_t's put on the free list. This is to simplify
134 * support of ddi dma memory requests which specify small, non-zero addr_lo
135 * values.
136 *
137 * The default value of 2, which corresponds to the only known non-zero addr_lo
138 * value used, means a single page will be sacrificed (pfn typically starts
139 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
140 * otherwise mp startup panics.
141 */
142 pfn_t ddiphysmin = 2;
143
144 static void
check_driver_disable(void)145 check_driver_disable(void)
146 {
147 int proplen = 128;
148 char *prop_name;
149 char *drv_name, *propval;
150 major_t major;
151
152 prop_name = kmem_alloc(proplen, KM_SLEEP);
153 for (major = 0; major < devcnt; major++) {
154 drv_name = ddi_major_to_name(major);
155 if (drv_name == NULL)
156 continue;
157 (void) snprintf(prop_name, proplen, "disable-%s", drv_name);
158 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
159 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
160 if (strcmp(propval, "true") == 0) {
161 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
162 cmn_err(CE_NOTE, "driver %s disabled",
163 drv_name);
164 }
165 ddi_prop_free(propval);
166 }
167 }
168 kmem_free(prop_name, proplen);
169 }
170
171
172 /*
173 * Configure the hardware on the system.
174 * Called before the rootfs is mounted
175 */
176 void
configure(void)177 configure(void)
178 {
179 extern void i_ddi_init_root();
180
181 extern int fpu_ignored;
182
183 /*
184 * Determine if an FPU is attached
185 */
186
187 fpu_probe();
188
189
190 if (fpu_ignored) {
191 printf("FP hardware will not be used\n");
192 } else if (!fpu_exists) {
193 printf("No FPU in configuration\n");
194 }
195
196 /*
197 * Initialize devices on the machine.
198 * Uses configuration tree built by the PROMs to determine what
199 * is present, and builds a tree of prototype dev_info nodes
200 * corresponding to the hardware which identified itself.
201 */
202
203 /*
204 * Initialize root node.
205 */
206 i_ddi_init_root();
207
208 /* reprogram devices not set up by firmware (BIOS) */
209 impl_bus_reprobe();
210
211 #if !defined(__xpv)
212 /*
213 * Setup but don't startup the IOMMU
214 * Startup happens later via a direct call
215 * to IOMMU code by boot code.
216 * At this point, all PCI bus renumbering
217 * is done, so safe to init the IMMU
218 * AKA Intel IOMMU.
219 */
220 immu_init();
221 #endif
222
223 /*
224 * attach the isa nexus to get ACPI resource usage
225 * isa is "kind of" a pseudo node
226 */
227 #if defined(__xpv)
228 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
229 if (pseudo_isa)
230 (void) i_ddi_attach_pseudo_node("isa");
231 else
232 (void) i_ddi_attach_hw_nodes("isa");
233 }
234 #else
235 if (pseudo_isa)
236 (void) i_ddi_attach_pseudo_node("isa");
237 else
238 (void) i_ddi_attach_hw_nodes("isa");
239 #endif
240 }
241
242 /*
243 * The "status" property indicates the operational status of a device.
244 * If this property is present, the value is a string indicating the
245 * status of the device as follows:
246 *
247 * "okay" operational.
248 * "disabled" not operational, but might become operational.
249 * "fail" not operational because a fault has been detected,
250 * and it is unlikely that the device will become
251 * operational without repair. no additional details
252 * are available.
253 * "fail-xxx" not operational because a fault has been detected,
254 * and it is unlikely that the device will become
255 * operational without repair. "xxx" is additional
256 * human-readable information about the particular
257 * fault condition that was detected.
258 *
259 * The absence of this property means that the operational status is
260 * unknown or okay.
261 *
262 * This routine checks the status property of the specified device node
263 * and returns 0 if the operational status indicates failure, and 1 otherwise.
264 *
265 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
266 * And, in that case, the property may not even be a string. So we carefully
267 * check for the value "fail", in the beginning of the string, noting
268 * the property length.
269 */
270 int
status_okay(int id,char * buf,int buflen)271 status_okay(int id, char *buf, int buflen)
272 {
273 char status_buf[OBP_MAXPROPNAME];
274 char *bufp = buf;
275 int len = buflen;
276 int proplen;
277 static const char *status = "status";
278 static const char *fail = "fail";
279 int fail_len = (int)strlen(fail);
280
281 /*
282 * Get the proplen ... if it's smaller than "fail",
283 * or doesn't exist ... then we don't care, since
284 * the value can't begin with the char string "fail".
285 *
286 * NB: proplen, if it's a string, includes the NULL in the
287 * the size of the property, and fail_len does not.
288 */
289 proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
290 if (proplen <= fail_len) /* nonexistant or uninteresting len */
291 return (1);
292
293 /*
294 * if a buffer was provided, use it
295 */
296 if ((buf == (char *)NULL) || (buflen <= 0)) {
297 bufp = status_buf;
298 len = sizeof (status_buf);
299 }
300 *bufp = (char)0;
301
302 /*
303 * Get the property into the buffer, to the extent of the buffer,
304 * and in case the buffer is smaller than the property size,
305 * NULL terminate the buffer. (This handles the case where
306 * a buffer was passed in and the caller wants to print the
307 * value, but the buffer was too small).
308 */
309 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
310 (caddr_t)bufp, len);
311 *(bufp + len - 1) = (char)0;
312
313 /*
314 * If the value begins with the char string "fail",
315 * then it means the node is failed. We don't care
316 * about any other values. We assume the node is ok
317 * although it might be 'disabled'.
318 */
319 if (strncmp(bufp, fail, fail_len) == 0)
320 return (0);
321
322 return (1);
323 }
324
325 /*
326 * Check the status of the device node passed as an argument.
327 *
328 * if ((status is OKAY) || (status is DISABLED))
329 * return DDI_SUCCESS
330 * else
331 * print a warning and return DDI_FAILURE
332 */
333 /*ARGSUSED1*/
334 int
check_status(int id,char * name,dev_info_t * parent)335 check_status(int id, char *name, dev_info_t *parent)
336 {
337 char status_buf[64];
338 char devtype_buf[OBP_MAXPROPNAME];
339 int retval = DDI_FAILURE;
340
341 /*
342 * is the status okay?
343 */
344 if (status_okay(id, status_buf, sizeof (status_buf)))
345 return (DDI_SUCCESS);
346
347 /*
348 * a status property indicating bad memory will be associated
349 * with a node which has a "device_type" property with a value of
350 * "memory-controller". in this situation, return DDI_SUCCESS
351 */
352 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
353 sizeof (devtype_buf)) > 0) {
354 if (strcmp(devtype_buf, "memory-controller") == 0)
355 retval = DDI_SUCCESS;
356 }
357
358 /*
359 * print the status property information
360 */
361 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
362 return (retval);
363 }
364
365 /*ARGSUSED*/
366 uint_t
softlevel1(caddr_t arg1,caddr_t arg2)367 softlevel1(caddr_t arg1, caddr_t arg2)
368 {
369 softint();
370 return (1);
371 }
372
373 /*
374 * Allow for implementation specific correction of PROM property values.
375 */
376
377 /*ARGSUSED*/
378 void
impl_fix_props(dev_info_t * dip,dev_info_t * ch_dip,char * name,int len,caddr_t buffer)379 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
380 caddr_t buffer)
381 {
382 /*
383 * There are no adjustments needed in this implementation.
384 */
385 }
386
387 static int
getlongprop_buf(int id,char * name,char * buf,int maxlen)388 getlongprop_buf(int id, char *name, char *buf, int maxlen)
389 {
390 int size;
391
392 size = prom_getproplen((pnode_t)id, name);
393 if (size <= 0 || (size > maxlen - 1))
394 return (-1);
395
396 if (-1 == prom_getprop((pnode_t)id, name, buf))
397 return (-1);
398
399 if (strcmp("name", name) == 0) {
400 if (buf[size - 1] != '\0') {
401 buf[size] = '\0';
402 size += 1;
403 }
404 }
405
406 return (size);
407 }
408
409 static int
get_prop_int_array(dev_info_t * di,char * pname,int ** pval,uint_t * plen)410 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
411 {
412 int ret;
413
414 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
415 DDI_PROP_DONTPASS, pname, pval, plen))
416 == DDI_PROP_SUCCESS) {
417 *plen = (*plen) * (sizeof (int));
418 }
419 return (ret);
420 }
421
422
423 /*
424 * Node Configuration
425 */
426
427 struct prop_ispec {
428 uint_t pri, vec;
429 };
430
431 /*
432 * For the x86, we're prepared to claim that the interrupt string
433 * is in the form of a list of <ipl,vec> specifications.
434 */
435
436 #define VEC_MIN 1
437 #define VEC_MAX 255
438
439 static int
impl_xlate_intrs(dev_info_t * child,int * in,struct ddi_parent_private_data * pdptr)440 impl_xlate_intrs(dev_info_t *child, int *in,
441 struct ddi_parent_private_data *pdptr)
442 {
443 size_t size;
444 int n;
445 struct intrspec *new;
446 caddr_t got_prop;
447 int *inpri;
448 int got_len;
449 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */
450
451 static char bad_intr_fmt[] =
452 "bad interrupt spec from %s%d - ipl %d, irq %d\n";
453
454 /*
455 * determine if the driver is expecting the new style "interrupts"
456 * property which just contains the IRQ, or the old style which
457 * contains pairs of <IPL,IRQ>. if it is the new style, we always
458 * assign IPL 5 unless an "interrupt-priorities" property exists.
459 * in that case, the "interrupt-priorities" property contains the
460 * IPL values that match, one for one, the IRQ values in the
461 * "interrupts" property.
462 */
463 inpri = NULL;
464 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
465 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
466 /* the old style "interrupts" property... */
467
468 /*
469 * The list consists of <ipl,vec> elements
470 */
471 if ((n = (*in++ >> 1)) < 1)
472 return (DDI_FAILURE);
473
474 pdptr->par_nintr = n;
475 size = n * sizeof (struct intrspec);
476 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
477
478 while (n--) {
479 int level = *in++;
480 int vec = *in++;
481
482 if (level < 1 || level > MAXIPL ||
483 vec < VEC_MIN || vec > VEC_MAX) {
484 cmn_err(CE_CONT, bad_intr_fmt,
485 DEVI(child)->devi_name,
486 DEVI(child)->devi_instance, level, vec);
487 goto broken;
488 }
489 new->intrspec_pri = level;
490 if (vec != 2)
491 new->intrspec_vec = vec;
492 else
493 /*
494 * irq 2 on the PC bus is tied to irq 9
495 * on ISA, EISA and MicroChannel
496 */
497 new->intrspec_vec = 9;
498 new++;
499 }
500
501 return (DDI_SUCCESS);
502 } else {
503 /* the new style "interrupts" property... */
504
505 /*
506 * The list consists of <vec> elements
507 */
508 if ((n = (*in++)) < 1)
509 return (DDI_FAILURE);
510
511 pdptr->par_nintr = n;
512 size = n * sizeof (struct intrspec);
513 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
514
515 /* XXX check for "interrupt-priorities" property... */
516 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
517 "interrupt-priorities", (caddr_t)&got_prop, &got_len)
518 == DDI_PROP_SUCCESS) {
519 if (n != (got_len / sizeof (int))) {
520 cmn_err(CE_CONT,
521 "bad interrupt-priorities length"
522 " from %s%d: expected %d, got %d\n",
523 DEVI(child)->devi_name,
524 DEVI(child)->devi_instance, n,
525 (int)(got_len / sizeof (int)));
526 goto broken;
527 }
528 inpri = (int *)got_prop;
529 }
530
531 while (n--) {
532 int level;
533 int vec = *in++;
534
535 if (inpri == NULL)
536 level = 5;
537 else
538 level = *inpri++;
539
540 if (level < 1 || level > MAXIPL ||
541 vec < VEC_MIN || vec > VEC_MAX) {
542 cmn_err(CE_CONT, bad_intr_fmt,
543 DEVI(child)->devi_name,
544 DEVI(child)->devi_instance, level, vec);
545 goto broken;
546 }
547 new->intrspec_pri = level;
548 if (vec != 2)
549 new->intrspec_vec = vec;
550 else
551 /*
552 * irq 2 on the PC bus is tied to irq 9
553 * on ISA, EISA and MicroChannel
554 */
555 new->intrspec_vec = 9;
556 new++;
557 }
558
559 if (inpri != NULL)
560 kmem_free(got_prop, got_len);
561 return (DDI_SUCCESS);
562 }
563
564 broken:
565 kmem_free(pdptr->par_intr, size);
566 pdptr->par_intr = NULL;
567 pdptr->par_nintr = 0;
568 if (inpri != NULL)
569 kmem_free(got_prop, got_len);
570
571 return (DDI_FAILURE);
572 }
573
574 /*
575 * Create a ddi_parent_private_data structure from the ddi properties of
576 * the dev_info node.
577 *
578 * The "reg" and either an "intr" or "interrupts" properties are required
579 * if the driver wishes to create mappings or field interrupts on behalf
580 * of the device.
581 *
582 * The "reg" property is assumed to be a list of at least one triple
583 *
584 * <bustype, address, size>*1
585 *
586 * The "intr" property is assumed to be a list of at least one duple
587 *
588 * <SPARC ipl, vector#>*1
589 *
590 * The "interrupts" property is assumed to be a list of at least one
591 * n-tuples that describes the interrupt capabilities of the bus the device
592 * is connected to. For SBus, this looks like
593 *
594 * <SBus-level>*1
595 *
596 * (This property obsoletes the 'intr' property).
597 *
598 * The "ranges" property is optional.
599 */
600 void
make_ddi_ppd(dev_info_t * child,struct ddi_parent_private_data ** ppd)601 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
602 {
603 struct ddi_parent_private_data *pdptr;
604 int n;
605 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
606 uint_t reg_len, rng_len, intr_len, irupts_len;
607
608 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
609
610 /*
611 * Handle the 'reg' property.
612 */
613 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) ==
614 DDI_PROP_SUCCESS) && (reg_len != 0)) {
615 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
616 pdptr->par_reg = (struct regspec *)reg_prop;
617 }
618
619 /*
620 * See if I have a range (adding one where needed - this
621 * means to add one for sbus node in sun4c, when romvec > 0,
622 * if no range is already defined in the PROM node.
623 * (Currently no sun4c PROMS define range properties,
624 * but they should and may in the future.) For the SBus
625 * node, the range is defined by the SBus reg property.
626 */
627 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
628 == DDI_PROP_SUCCESS) {
629 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
630 pdptr->par_rng = (struct rangespec *)rng_prop;
631 }
632
633 /*
634 * Handle the 'intr' and 'interrupts' properties
635 */
636
637 /*
638 * For backwards compatibility
639 * we first look for the 'intr' property for the device.
640 */
641 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
642 != DDI_PROP_SUCCESS) {
643 intr_len = 0;
644 }
645
646 /*
647 * If we're to support bus adapters and future platforms cleanly,
648 * we need to support the generalized 'interrupts' property.
649 */
650 if (get_prop_int_array(child, "interrupts", &irupts_prop,
651 &irupts_len) != DDI_PROP_SUCCESS) {
652 irupts_len = 0;
653 } else if (intr_len != 0) {
654 /*
655 * If both 'intr' and 'interrupts' are defined,
656 * then 'interrupts' wins and we toss the 'intr' away.
657 */
658 ddi_prop_free((void *)intr_prop);
659 intr_len = 0;
660 }
661
662 if (intr_len != 0) {
663
664 /*
665 * Translate the 'intr' property into an array
666 * an array of struct intrspec's. There's not really
667 * very much to do here except copy what's out there.
668 */
669
670 struct intrspec *new;
671 struct prop_ispec *l;
672
673 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
674 l = (struct prop_ispec *)intr_prop;
675 pdptr->par_intr =
676 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
677 while (n--) {
678 new->intrspec_pri = l->pri;
679 new->intrspec_vec = l->vec;
680 new++;
681 l++;
682 }
683 ddi_prop_free((void *)intr_prop);
684
685 } else if ((n = irupts_len) != 0) {
686 size_t size;
687 int *out;
688
689 /*
690 * Translate the 'interrupts' property into an array
691 * of intrspecs for the rest of the DDI framework to
692 * toy with. Only our ancestors really know how to
693 * do this, so ask 'em. We massage the 'interrupts'
694 * property so that it is pre-pended by a count of
695 * the number of integers in the argument.
696 */
697 size = sizeof (int) + n;
698 out = kmem_alloc(size, KM_SLEEP);
699 *out = n / sizeof (int);
700 bcopy(irupts_prop, out + 1, (size_t)n);
701 ddi_prop_free((void *)irupts_prop);
702 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
703 cmn_err(CE_CONT,
704 "Unable to translate 'interrupts' for %s%d\n",
705 DEVI(child)->devi_binding_name,
706 DEVI(child)->devi_instance);
707 }
708 kmem_free(out, size);
709 }
710 }
711
712 /*
713 * Name a child
714 */
715 static int
impl_sunbus_name_child(dev_info_t * child,char * name,int namelen)716 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
717 {
718 /*
719 * Fill in parent-private data and this function returns to us
720 * an indication if it used "registers" to fill in the data.
721 */
722 if (ddi_get_parent_data(child) == NULL) {
723 struct ddi_parent_private_data *pdptr;
724 make_ddi_ppd(child, &pdptr);
725 ddi_set_parent_data(child, pdptr);
726 }
727
728 name[0] = '\0';
729 if (sparc_pd_getnreg(child) > 0) {
730 (void) snprintf(name, namelen, "%x,%x",
731 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
732 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
733 }
734
735 return (DDI_SUCCESS);
736 }
737
738 /*
739 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
740 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names
741 * the children of sun busses based on the reg spec.
742 *
743 * Handles the following properties (in make_ddi_ppd):
744 * Property value
745 * Name type
746 * reg register spec
747 * intr old-form interrupt spec
748 * interrupts new (bus-oriented) interrupt spec
749 * ranges range spec
750 */
751 int
impl_ddi_sunbus_initchild(dev_info_t * child)752 impl_ddi_sunbus_initchild(dev_info_t *child)
753 {
754 char name[MAXNAMELEN];
755 void impl_ddi_sunbus_removechild(dev_info_t *);
756
757 /*
758 * Name the child, also makes parent private data
759 */
760 (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
761 ddi_set_name_addr(child, name);
762
763 /*
764 * Attempt to merge a .conf node; if successful, remove the
765 * .conf node.
766 */
767 if ((ndi_dev_is_persistent_node(child) == 0) &&
768 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
769 /*
770 * Return failure to remove node
771 */
772 impl_ddi_sunbus_removechild(child);
773 return (DDI_FAILURE);
774 }
775 return (DDI_SUCCESS);
776 }
777
778 void
impl_free_ddi_ppd(dev_info_t * dip)779 impl_free_ddi_ppd(dev_info_t *dip)
780 {
781 struct ddi_parent_private_data *pdptr;
782 size_t n;
783
784 if ((pdptr = ddi_get_parent_data(dip)) == NULL)
785 return;
786
787 if ((n = (size_t)pdptr->par_nintr) != 0)
788 /*
789 * Note that kmem_free is used here (instead of
790 * ddi_prop_free) because the contents of the
791 * property were placed into a separate buffer and
792 * mucked with a bit before being stored in par_intr.
793 * The actual return value from the prop lookup
794 * was freed with ddi_prop_free previously.
795 */
796 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
797
798 if ((n = (size_t)pdptr->par_nrng) != 0)
799 ddi_prop_free((void *)pdptr->par_rng);
800
801 if ((n = pdptr->par_nreg) != 0)
802 ddi_prop_free((void *)pdptr->par_reg);
803
804 kmem_free(pdptr, sizeof (*pdptr));
805 ddi_set_parent_data(dip, NULL);
806 }
807
808 void
impl_ddi_sunbus_removechild(dev_info_t * dip)809 impl_ddi_sunbus_removechild(dev_info_t *dip)
810 {
811 impl_free_ddi_ppd(dip);
812 ddi_set_name_addr(dip, NULL);
813 /*
814 * Strip the node to properly convert it back to prototype form
815 */
816 impl_rem_dev_props(dip);
817 }
818
819 /*
820 * DDI Interrupt
821 */
822
823 /*
824 * turn this on to force isa, eisa, and mca device to ignore the new
825 * hardware nodes in the device tree (normally turned on only for
826 * drivers that need it by setting the property "ignore-hardware-nodes"
827 * in their driver.conf file).
828 *
829 * 7/31/96 -- Turned off globally. Leaving variable in for the moment
830 * as safety valve.
831 */
832 int ignore_hardware_nodes = 0;
833
834 /*
835 * Local data
836 */
837 static struct impl_bus_promops *impl_busp;
838
839
840 /*
841 * New DDI interrupt framework
842 */
843
844 /*
845 * i_ddi_intr_ops:
846 *
847 * This is the interrupt operator function wrapper for the bus function
848 * bus_intr_op.
849 */
850 int
i_ddi_intr_ops(dev_info_t * dip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)851 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
852 ddi_intr_handle_impl_t *hdlp, void * result)
853 {
854 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
855 int ret = DDI_FAILURE;
856
857 /* request parent to process this interrupt op */
858 if (NEXUS_HAS_INTR_OP(pdip))
859 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
860 pdip, rdip, op, hdlp, result);
861 else
862 cmn_err(CE_WARN, "Failed to process interrupt "
863 "for %s%d due to down-rev nexus driver %s%d",
864 ddi_get_name(rdip), ddi_get_instance(rdip),
865 ddi_get_name(pdip), ddi_get_instance(pdip));
866 return (ret);
867 }
868
869 /*
870 * i_ddi_add_softint - allocate and add a soft interrupt to the system
871 */
872 int
i_ddi_add_softint(ddi_softint_hdl_impl_t * hdlp)873 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
874 {
875 int ret;
876
877 /* add soft interrupt handler */
878 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
879 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
880 return (ret ? DDI_SUCCESS : DDI_FAILURE);
881 }
882
883
884 void
i_ddi_remove_softint(ddi_softint_hdl_impl_t * hdlp)885 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
886 {
887 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
888 }
889
890
891 extern void (*setsoftint)(int, struct av_softinfo *);
892 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
893
894 int
i_ddi_trigger_softint(ddi_softint_hdl_impl_t * hdlp,void * arg2)895 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
896 {
897 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
898 return (DDI_EPENDING);
899
900 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
901
902 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
903 return (DDI_SUCCESS);
904 }
905
906 /*
907 * i_ddi_set_softint_pri:
908 *
909 * The way this works is that it first tries to add a softint vector
910 * at the new priority in hdlp. If that succeeds; then it removes the
911 * existing softint vector at the old priority.
912 */
913 int
i_ddi_set_softint_pri(ddi_softint_hdl_impl_t * hdlp,uint_t old_pri)914 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
915 {
916 int ret;
917
918 /*
919 * If a softint is pending at the old priority then fail the request.
920 */
921 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
922 return (DDI_FAILURE);
923
924 ret = av_softint_movepri((void *)hdlp, old_pri);
925 return (ret ? DDI_SUCCESS : DDI_FAILURE);
926 }
927
928 void
i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t * hdlp)929 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
930 {
931 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
932 }
933
934 void
i_ddi_free_intr_phdl(ddi_intr_handle_impl_t * hdlp)935 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
936 {
937 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
938 hdlp->ih_private = NULL;
939 }
940
941 int
i_ddi_get_intx_nintrs(dev_info_t * dip)942 i_ddi_get_intx_nintrs(dev_info_t *dip)
943 {
944 struct ddi_parent_private_data *pdp;
945
946 if ((pdp = ddi_get_parent_data(dip)) == NULL)
947 return (0);
948
949 return (pdp->par_nintr);
950 }
951
952 /*
953 * DDI Memory/DMA
954 */
955
956 /*
957 * Support for allocating DMAable memory to implement
958 * ddi_dma_mem_alloc(9F) interface.
959 */
960
961 #define KA_ALIGN_SHIFT 7
962 #define KA_ALIGN (1 << KA_ALIGN_SHIFT)
963 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT)
964
965 /*
966 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only
967 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set.
968 */
969
970 static ddi_dma_attr_t kmem_io_attr = {
971 DMA_ATTR_V0,
972 0x0000000000000000ULL, /* dma_attr_addr_lo */
973 0x0000000000000000ULL, /* dma_attr_addr_hi */
974 0x00ffffff,
975 0x1000, /* dma_attr_align */
976 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
977 };
978
979 /* kmem io memory ranges and indices */
980 enum {
981 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
982 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
983 };
984
985 static struct {
986 vmem_t *kmem_io_arena;
987 kmem_cache_t *kmem_io_cache[KA_NCACHE];
988 ddi_dma_attr_t kmem_io_attr;
989 } kmem_io[MAX_MEM_RANGES];
990
991 static int kmem_io_idx; /* index of first populated kmem_io[] */
992
993 static page_t *
page_create_io_wrapper(void * addr,size_t len,int vmflag,void * arg)994 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
995 {
996 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
997 uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
998
999 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
1000 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
1001 }
1002
1003 #ifdef __xpv
1004 static void
segkmem_free_io(vmem_t * vmp,void * ptr,size_t size)1005 segkmem_free_io(vmem_t *vmp, void *ptr, size_t size)
1006 {
1007 extern void page_destroy_io(page_t *);
1008 segkmem_xfree(vmp, ptr, size, &kvp, page_destroy_io);
1009 }
1010 #endif
1011
1012 static void *
segkmem_alloc_io_4P(vmem_t * vmp,size_t size,int vmflag)1013 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1014 {
1015 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1016 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1017 }
1018
1019 static void *
segkmem_alloc_io_64G(vmem_t * vmp,size_t size,int vmflag)1020 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1021 {
1022 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1023 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1024 }
1025
1026 static void *
segkmem_alloc_io_4G(vmem_t * vmp,size_t size,int vmflag)1027 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1028 {
1029 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1030 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1031 }
1032
1033 static void *
segkmem_alloc_io_2G(vmem_t * vmp,size_t size,int vmflag)1034 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1035 {
1036 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1037 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1038 }
1039
1040 static void *
segkmem_alloc_io_1G(vmem_t * vmp,size_t size,int vmflag)1041 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1042 {
1043 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1044 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1045 }
1046
1047 static void *
segkmem_alloc_io_512M(vmem_t * vmp,size_t size,int vmflag)1048 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1049 {
1050 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1051 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1052 }
1053
1054 static void *
segkmem_alloc_io_256M(vmem_t * vmp,size_t size,int vmflag)1055 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1056 {
1057 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1058 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1059 }
1060
1061 static void *
segkmem_alloc_io_128M(vmem_t * vmp,size_t size,int vmflag)1062 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1063 {
1064 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1065 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1066 }
1067
1068 static void *
segkmem_alloc_io_64M(vmem_t * vmp,size_t size,int vmflag)1069 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1070 {
1071 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1072 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1073 }
1074
1075 static void *
segkmem_alloc_io_32M(vmem_t * vmp,size_t size,int vmflag)1076 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1077 {
1078 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1079 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1080 }
1081
1082 static void *
segkmem_alloc_io_16M(vmem_t * vmp,size_t size,int vmflag)1083 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1084 {
1085 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1086 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1087 }
1088
1089 struct {
1090 uint64_t io_limit;
1091 char *io_name;
1092 void *(*io_alloc)(vmem_t *, size_t, int);
1093 int io_initial; /* kmem_io_init during startup */
1094 } io_arena_params[MAX_MEM_RANGES] = {
1095 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1},
1096 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0},
1097 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1},
1098 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1},
1099 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0},
1100 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0},
1101 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0},
1102 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0},
1103 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0},
1104 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0},
1105 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1}
1106 };
1107
1108 void
kmem_io_init(int a)1109 kmem_io_init(int a)
1110 {
1111 int c;
1112 char name[40];
1113
1114 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1115 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1116 #ifdef __xpv
1117 segkmem_free_io,
1118 #else
1119 segkmem_free,
1120 #endif
1121 heap_arena, 0, VM_SLEEP);
1122
1123 for (c = 0; c < KA_NCACHE; c++) {
1124 size_t size = KA_ALIGN << c;
1125 (void) sprintf(name, "%s_%lu",
1126 io_arena_params[a].io_name, size);
1127 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1128 size, size, NULL, NULL, NULL, NULL,
1129 kmem_io[a].kmem_io_arena, 0);
1130 }
1131 }
1132
1133 /*
1134 * Return the index of the highest memory range for addr.
1135 */
1136 static int
kmem_io_index(uint64_t addr)1137 kmem_io_index(uint64_t addr)
1138 {
1139 int n;
1140
1141 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1142 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1143 if (kmem_io[n].kmem_io_arena == NULL)
1144 kmem_io_init(n);
1145 return (n);
1146 }
1147 }
1148 panic("kmem_io_index: invalid addr - must be at least 16m");
1149
1150 /*NOTREACHED*/
1151 }
1152
1153 /*
1154 * Return the index of the next kmem_io populated memory range
1155 * after curindex.
1156 */
1157 static int
kmem_io_index_next(int curindex)1158 kmem_io_index_next(int curindex)
1159 {
1160 int n;
1161
1162 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1163 if (kmem_io[n].kmem_io_arena)
1164 return (n);
1165 }
1166 return (-1);
1167 }
1168
1169 /*
1170 * allow kmem to be mapped in with different PTE cache attribute settings.
1171 * Used by i_ddi_mem_alloc()
1172 */
1173 int
kmem_override_cache_attrs(caddr_t kva,size_t size,uint_t order)1174 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1175 {
1176 uint_t hat_flags;
1177 caddr_t kva_end;
1178 uint_t hat_attr;
1179 pfn_t pfn;
1180
1181 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1182 return (-1);
1183 }
1184
1185 hat_attr &= ~HAT_ORDER_MASK;
1186 hat_attr |= order | HAT_NOSYNC;
1187 hat_flags = HAT_LOAD_LOCK;
1188
1189 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1190 (uintptr_t)PAGEMASK);
1191 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1192
1193 while (kva < kva_end) {
1194 pfn = hat_getpfnum(kas.a_hat, kva);
1195 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1196 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1197 kva += MMU_PAGESIZE;
1198 }
1199
1200 return (0);
1201 }
1202
1203 static int
ctgcompare(const void * a1,const void * a2)1204 ctgcompare(const void *a1, const void *a2)
1205 {
1206 /* we just want to compare virtual addresses */
1207 a1 = ((struct ctgas *)a1)->ctg_addr;
1208 a2 = ((struct ctgas *)a2)->ctg_addr;
1209 return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
1210 }
1211
1212 void
ka_init(void)1213 ka_init(void)
1214 {
1215 int a;
1216 paddr_t maxphysaddr;
1217 #if !defined(__xpv)
1218 extern pfn_t physmax;
1219
1220 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1221 #else
1222 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1223 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1224 #endif
1225
1226 ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1227
1228 for (a = 0; a < MAX_MEM_RANGES; a++) {
1229 if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1230 if (maxphysaddr > io_arena_params[a + 1].io_limit)
1231 io_arena_params[a].io_limit = maxphysaddr;
1232 else
1233 a++;
1234 break;
1235 }
1236 }
1237 kmem_io_idx = a;
1238
1239 for (; a < MAX_MEM_RANGES; a++) {
1240 kmem_io[a].kmem_io_attr = kmem_io_attr;
1241 kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1242 io_arena_params[a].io_limit;
1243 /*
1244 * initialize kmem_io[] arena/cache corresponding to
1245 * maxphysaddr and to the "common" io memory ranges that
1246 * have io_initial set to a non-zero value.
1247 */
1248 if (io_arena_params[a].io_initial || a == kmem_io_idx)
1249 kmem_io_init(a);
1250 }
1251
1252 /* initialize ctgtree */
1253 avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
1254 offsetof(struct ctgas, ctg_link));
1255 }
1256
1257 /*
1258 * put contig address/size
1259 */
1260 static void *
putctgas(void * addr,size_t size)1261 putctgas(void *addr, size_t size)
1262 {
1263 struct ctgas *ctgp;
1264 if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
1265 ctgp->ctg_addr = addr;
1266 ctgp->ctg_size = size;
1267 CTGLOCK();
1268 avl_add(&ctgtree, ctgp);
1269 CTGUNLOCK();
1270 }
1271 return (ctgp);
1272 }
1273
1274 /*
1275 * get contig size by addr
1276 */
1277 static size_t
getctgsz(void * addr)1278 getctgsz(void *addr)
1279 {
1280 struct ctgas *ctgp;
1281 struct ctgas find;
1282 size_t sz = 0;
1283
1284 find.ctg_addr = addr;
1285 CTGLOCK();
1286 if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
1287 avl_remove(&ctgtree, ctgp);
1288 }
1289 CTGUNLOCK();
1290
1291 if (ctgp != NULL) {
1292 sz = ctgp->ctg_size;
1293 kmem_free(ctgp, sizeof (*ctgp));
1294 }
1295
1296 return (sz);
1297 }
1298
1299 /*
1300 * contig_alloc:
1301 *
1302 * allocates contiguous memory to satisfy the 'size' and dma attributes
1303 * specified in 'attr'.
1304 *
1305 * Not all of memory need to be physically contiguous if the
1306 * scatter-gather list length is greater than 1.
1307 */
1308
1309 /*ARGSUSED*/
1310 void *
contig_alloc(size_t size,ddi_dma_attr_t * attr,uintptr_t align,int cansleep)1311 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1312 {
1313 pgcnt_t pgcnt = btopr(size);
1314 size_t asize = pgcnt * PAGESIZE;
1315 page_t *ppl;
1316 int pflag;
1317 void *addr;
1318
1319 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1320 uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1321
1322 /* segkmem_xalloc */
1323
1324 if (align <= PAGESIZE)
1325 addr = vmem_alloc(heap_arena, asize,
1326 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1327 else
1328 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1329 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1330 if (addr) {
1331 ASSERT(!((uintptr_t)addr & (align - 1)));
1332
1333 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1334 vmem_free(heap_arena, addr, asize);
1335 return (NULL);
1336 }
1337 pflag = PG_EXCL;
1338
1339 if (cansleep)
1340 pflag |= PG_WAIT;
1341
1342 /* 4k req gets from freelists rather than pfn search */
1343 if (pgcnt > 1 || align > PAGESIZE)
1344 pflag |= PG_PHYSCONTIG;
1345
1346 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1347 asize, pflag, &kas, (caddr_t)addr, attr);
1348
1349 if (!ppl) {
1350 vmem_free(heap_arena, addr, asize);
1351 page_unresv(pgcnt);
1352 return (NULL);
1353 }
1354
1355 while (ppl != NULL) {
1356 page_t *pp = ppl;
1357 page_sub(&ppl, pp);
1358 ASSERT(page_iolock_assert(pp));
1359 page_io_unlock(pp);
1360 page_downgrade(pp);
1361 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1362 pp, (PROT_ALL & ~PROT_USER) |
1363 HAT_NOSYNC, HAT_LOAD_LOCK);
1364 }
1365 }
1366 return (addr);
1367 }
1368
1369 void
contig_free(void * addr,size_t size)1370 contig_free(void *addr, size_t size)
1371 {
1372 pgcnt_t pgcnt = btopr(size);
1373 size_t asize = pgcnt * PAGESIZE;
1374 caddr_t a, ea;
1375 page_t *pp;
1376
1377 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1378
1379 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1380 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1381 if (!pp)
1382 panic("contig_free: contig pp not found");
1383
1384 if (!page_tryupgrade(pp)) {
1385 page_unlock(pp);
1386 pp = page_lookup(&kvp,
1387 (u_offset_t)(uintptr_t)a, SE_EXCL);
1388 if (pp == NULL)
1389 panic("contig_free: page freed");
1390 }
1391 page_destroy(pp, 0);
1392 }
1393
1394 page_unresv(pgcnt);
1395 vmem_free(heap_arena, addr, asize);
1396 }
1397
1398 /*
1399 * Allocate from the system, aligned on a specific boundary.
1400 * The alignment, if non-zero, must be a power of 2.
1401 */
1402 static void *
kalloca(size_t size,size_t align,int cansleep,int physcontig,ddi_dma_attr_t * attr)1403 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1404 ddi_dma_attr_t *attr)
1405 {
1406 size_t *addr, *raddr, rsize;
1407 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
1408 int a, i, c;
1409 vmem_t *vmp = NULL;
1410 kmem_cache_t *cp = NULL;
1411
1412 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1413 return (NULL);
1414
1415 align = MAX(align, hdrsize);
1416 ASSERT((align & (align - 1)) == 0);
1417
1418 /*
1419 * All of our allocators guarantee 16-byte alignment, so we don't
1420 * need to reserve additional space for the header.
1421 * To simplify picking the correct kmem_io_cache, we round up to
1422 * a multiple of KA_ALIGN.
1423 */
1424 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1425
1426 if (physcontig && rsize > PAGESIZE) {
1427 if (addr = contig_alloc(size, attr, align, cansleep)) {
1428 if (!putctgas(addr, size))
1429 contig_free(addr, size);
1430 else
1431 return (addr);
1432 }
1433 return (NULL);
1434 }
1435
1436 a = kmem_io_index(attr->dma_attr_addr_hi);
1437
1438 if (rsize > PAGESIZE) {
1439 vmp = kmem_io[a].kmem_io_arena;
1440 raddr = vmem_alloc(vmp, rsize,
1441 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1442 } else {
1443 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1444 cp = kmem_io[a].kmem_io_cache[c];
1445 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1446 KM_NOSLEEP);
1447 }
1448
1449 if (raddr == NULL) {
1450 int na;
1451
1452 ASSERT(cansleep == 0);
1453 if (rsize > PAGESIZE)
1454 return (NULL);
1455 /*
1456 * System does not have memory in the requested range.
1457 * Try smaller kmem io ranges and larger cache sizes
1458 * to see if there might be memory available in
1459 * these other caches.
1460 */
1461
1462 for (na = kmem_io_index_next(a); na >= 0;
1463 na = kmem_io_index_next(na)) {
1464 ASSERT(kmem_io[na].kmem_io_arena);
1465 cp = kmem_io[na].kmem_io_cache[c];
1466 raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1467 if (raddr)
1468 goto kallocdone;
1469 }
1470 /* now try the larger kmem io cache sizes */
1471 for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1472 for (i = c + 1; i < KA_NCACHE; i++) {
1473 cp = kmem_io[na].kmem_io_cache[i];
1474 raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1475 if (raddr)
1476 goto kallocdone;
1477 }
1478 }
1479 return (NULL);
1480 }
1481
1482 kallocdone:
1483 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1484 rsize > PAGESIZE);
1485
1486 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1487 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1488
1489 addr[-4] = (size_t)cp;
1490 addr[-3] = (size_t)vmp;
1491 addr[-2] = (size_t)raddr;
1492 addr[-1] = rsize;
1493
1494 return (addr);
1495 }
1496
1497 static void
kfreea(void * addr)1498 kfreea(void *addr)
1499 {
1500 size_t size;
1501
1502 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1503 contig_free(addr, size);
1504 } else {
1505 size_t *saddr = addr;
1506 if (saddr[-4] == 0)
1507 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1508 saddr[-1]);
1509 else
1510 kmem_cache_free((kmem_cache_t *)saddr[-4],
1511 (void *)saddr[-2]);
1512 }
1513 }
1514
1515 /*ARGSUSED*/
1516 void
i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t * devaccp,uint_t * hataccp)1517 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1518 {
1519 }
1520
1521 /*
1522 * Check if the specified cache attribute is supported on the platform.
1523 * This function must be called before i_ddi_cacheattr_to_hatacc().
1524 */
1525 boolean_t
i_ddi_check_cache_attr(uint_t flags)1526 i_ddi_check_cache_attr(uint_t flags)
1527 {
1528 /*
1529 * The cache attributes are mutually exclusive. Any combination of
1530 * the attributes leads to a failure.
1531 */
1532 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1533 if ((cache_attr != 0) && !ISP2(cache_attr))
1534 return (B_FALSE);
1535
1536 /* All cache attributes are supported on X86/X64 */
1537 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1538 IOMEM_DATA_UC_WR_COMBINE))
1539 return (B_TRUE);
1540
1541 /* undefined attributes */
1542 return (B_FALSE);
1543 }
1544
1545 /* set HAT cache attributes from the cache attributes */
1546 void
i_ddi_cacheattr_to_hatacc(uint_t flags,uint_t * hataccp)1547 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1548 {
1549 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1550 static char *fname = "i_ddi_cacheattr_to_hatacc";
1551
1552 /*
1553 * If write-combining is not supported, then it falls back
1554 * to uncacheable.
1555 */
1556 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1557 !is_x86_feature(x86_featureset, X86FSET_PAT))
1558 cache_attr = IOMEM_DATA_UNCACHED;
1559
1560 /*
1561 * set HAT attrs according to the cache attrs.
1562 */
1563 switch (cache_attr) {
1564 case IOMEM_DATA_UNCACHED:
1565 *hataccp &= ~HAT_ORDER_MASK;
1566 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1567 break;
1568 case IOMEM_DATA_UC_WR_COMBINE:
1569 *hataccp &= ~HAT_ORDER_MASK;
1570 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1571 break;
1572 case IOMEM_DATA_CACHED:
1573 *hataccp &= ~HAT_ORDER_MASK;
1574 *hataccp |= HAT_UNORDERED_OK;
1575 break;
1576 /*
1577 * This case must not occur because the cache attribute is scrutinized
1578 * before this function is called.
1579 */
1580 default:
1581 /*
1582 * set cacheable to hat attrs.
1583 */
1584 *hataccp &= ~HAT_ORDER_MASK;
1585 *hataccp |= HAT_UNORDERED_OK;
1586 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1587 fname, cache_attr);
1588 }
1589 }
1590
1591 /*
1592 * This should actually be called i_ddi_dma_mem_alloc. There should
1593 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1594 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1595 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1596 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1597 * so far which is used for both, DMA and PIO, we have to use the DMA
1598 * ctl ops to make everybody happy.
1599 */
1600 /*ARGSUSED*/
1601 int
i_ddi_mem_alloc(dev_info_t * dip,ddi_dma_attr_t * attr,size_t length,int cansleep,int flags,ddi_device_acc_attr_t * accattrp,caddr_t * kaddrp,size_t * real_length,ddi_acc_hdl_t * ap)1602 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1603 size_t length, int cansleep, int flags,
1604 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1605 size_t *real_length, ddi_acc_hdl_t *ap)
1606 {
1607 caddr_t a;
1608 int iomin;
1609 ddi_acc_impl_t *iap;
1610 int physcontig = 0;
1611 pgcnt_t npages;
1612 pgcnt_t minctg;
1613 uint_t order;
1614 int e;
1615
1616 /*
1617 * Check legality of arguments
1618 */
1619 if (length == 0 || kaddrp == NULL || attr == NULL) {
1620 return (DDI_FAILURE);
1621 }
1622
1623 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1624 !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
1625 return (DDI_FAILURE);
1626 }
1627
1628 /*
1629 * figure out most restrictive alignment requirement
1630 */
1631 iomin = attr->dma_attr_minxfer;
1632 iomin = maxbit(iomin, attr->dma_attr_align);
1633 if (iomin == 0)
1634 return (DDI_FAILURE);
1635
1636 ASSERT((iomin & (iomin - 1)) == 0);
1637
1638 /*
1639 * if we allocate memory with IOMEM_DATA_UNCACHED or
1640 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1641 * memory that ends on a page boundry.
1642 * Don't want to have to different cache mappings to the same
1643 * physical page.
1644 */
1645 if (OVERRIDE_CACHE_ATTR(flags)) {
1646 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1647 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1648 }
1649
1650 /*
1651 * Determine if we need to satisfy the request for physically
1652 * contiguous memory or alignments larger than pagesize.
1653 */
1654 npages = btopr(length + attr->dma_attr_align);
1655 minctg = howmany(npages, attr->dma_attr_sgllen);
1656
1657 if (minctg > 1) {
1658 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1659 /*
1660 * verify that the minimum contig requirement for the
1661 * actual length does not cross segment boundary.
1662 */
1663 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1664 size_t);
1665 npages = btopr(length);
1666 minctg = howmany(npages, attr->dma_attr_sgllen);
1667 if (minctg > pfnseg + 1)
1668 return (DDI_FAILURE);
1669 physcontig = 1;
1670 } else {
1671 length = P2ROUNDUP_TYPED(length, iomin, size_t);
1672 }
1673
1674 /*
1675 * Allocate the requested amount from the system.
1676 */
1677 a = kalloca(length, iomin, cansleep, physcontig, attr);
1678
1679 if ((*kaddrp = a) == NULL)
1680 return (DDI_FAILURE);
1681
1682 /*
1683 * if we to modify the cache attributes, go back and muck with the
1684 * mappings.
1685 */
1686 if (OVERRIDE_CACHE_ATTR(flags)) {
1687 order = 0;
1688 i_ddi_cacheattr_to_hatacc(flags, &order);
1689 e = kmem_override_cache_attrs(a, length, order);
1690 if (e != 0) {
1691 kfreea(a);
1692 return (DDI_FAILURE);
1693 }
1694 }
1695
1696 if (real_length) {
1697 *real_length = length;
1698 }
1699 if (ap) {
1700 /*
1701 * initialize access handle
1702 */
1703 iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1704 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1705 impl_acc_hdl_init(ap);
1706 }
1707
1708 return (DDI_SUCCESS);
1709 }
1710
1711 /* ARGSUSED */
1712 void
i_ddi_mem_free(caddr_t kaddr,ddi_acc_hdl_t * ap)1713 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1714 {
1715 if (ap != NULL) {
1716 /*
1717 * if we modified the cache attributes on alloc, go back and
1718 * fix them since this memory could be returned to the
1719 * general pool.
1720 */
1721 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1722 uint_t order = 0;
1723 int e;
1724 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1725 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1726 if (e != 0) {
1727 cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1728 "override cache attrs, memory leaked\n");
1729 return;
1730 }
1731 }
1732 }
1733 kfreea(kaddr);
1734 }
1735
1736 /*
1737 * Access Barriers
1738 *
1739 */
1740 /*ARGSUSED*/
1741 int
i_ddi_ontrap(ddi_acc_handle_t hp)1742 i_ddi_ontrap(ddi_acc_handle_t hp)
1743 {
1744 return (DDI_FAILURE);
1745 }
1746
1747 /*ARGSUSED*/
1748 void
i_ddi_notrap(ddi_acc_handle_t hp)1749 i_ddi_notrap(ddi_acc_handle_t hp)
1750 {
1751 }
1752
1753
1754 /*
1755 * Misc Functions
1756 */
1757
1758 /*
1759 * Implementation instance override functions
1760 *
1761 * No override on i86pc
1762 */
1763 /*ARGSUSED*/
1764 uint_t
impl_assign_instance(dev_info_t * dip)1765 impl_assign_instance(dev_info_t *dip)
1766 {
1767 return ((uint_t)-1);
1768 }
1769
1770 /*ARGSUSED*/
1771 int
impl_keep_instance(dev_info_t * dip)1772 impl_keep_instance(dev_info_t *dip)
1773 {
1774
1775 #if defined(__xpv)
1776 /*
1777 * Do not persist instance numbers assigned to devices in dom0
1778 */
1779 dev_info_t *pdip;
1780 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1781 if (((pdip = ddi_get_parent(dip)) != NULL) &&
1782 (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1783 return (DDI_SUCCESS);
1784 }
1785 #endif
1786 return (DDI_FAILURE);
1787 }
1788
1789 /*ARGSUSED*/
1790 int
impl_free_instance(dev_info_t * dip)1791 impl_free_instance(dev_info_t *dip)
1792 {
1793 return (DDI_FAILURE);
1794 }
1795
1796 /*ARGSUSED*/
1797 int
impl_check_cpu(dev_info_t * devi)1798 impl_check_cpu(dev_info_t *devi)
1799 {
1800 return (DDI_SUCCESS);
1801 }
1802
1803 /*
1804 * Referenced in common/cpr_driver.c: Power off machine.
1805 * Don't know how to power off i86pc.
1806 */
1807 void
arch_power_down()1808 arch_power_down()
1809 {}
1810
1811 /*
1812 * Copy name to property_name, since name
1813 * is in the low address range below kernelbase.
1814 */
1815 static void
copy_boot_str(const char * boot_str,char * kern_str,int len)1816 copy_boot_str(const char *boot_str, char *kern_str, int len)
1817 {
1818 int i = 0;
1819
1820 while (i < len - 1 && boot_str[i] != '\0') {
1821 kern_str[i] = boot_str[i];
1822 i++;
1823 }
1824
1825 kern_str[i] = 0; /* null terminate */
1826 if (boot_str[i] != '\0')
1827 cmn_err(CE_WARN,
1828 "boot property string is truncated to %s", kern_str);
1829 }
1830
1831 static void
get_boot_properties(void)1832 get_boot_properties(void)
1833 {
1834 extern char hw_provider[];
1835 dev_info_t *devi;
1836 char *name;
1837 int length, flags;
1838 char property_name[50], property_val[50];
1839 void *bop_staging_area;
1840
1841 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1842
1843 /*
1844 * Import "root" properties from the boot.
1845 *
1846 * We do this by invoking BOP_NEXTPROP until the list
1847 * is completely copied in.
1848 */
1849
1850 devi = ddi_root_node();
1851 for (name = BOP_NEXTPROP(bootops, ""); /* get first */
1852 name; /* NULL => DONE */
1853 name = BOP_NEXTPROP(bootops, name)) { /* get next */
1854
1855 /* copy string to memory above kernelbase */
1856 copy_boot_str(name, property_name, 50);
1857
1858 /*
1859 * Skip vga properties. They will be picked up later
1860 * by get_vga_properties.
1861 */
1862 if (strcmp(property_name, "display-edif-block") == 0 ||
1863 strcmp(property_name, "display-edif-id") == 0) {
1864 continue;
1865 }
1866
1867 length = BOP_GETPROPLEN(bootops, property_name);
1868 if (length < 0)
1869 continue;
1870 if (length > MMU_PAGESIZE) {
1871 cmn_err(CE_NOTE,
1872 "boot property %s longer than 0x%x, ignored\n",
1873 property_name, MMU_PAGESIZE);
1874 continue;
1875 }
1876 BOP_GETPROP(bootops, property_name, bop_staging_area);
1877 flags = do_bsys_getproptype(bootops, property_name);
1878
1879 /*
1880 * special properties:
1881 * si-machine, si-hw-provider
1882 * goes to kernel data structures.
1883 * bios-boot-device and stdout
1884 * goes to hardware property list so it may show up
1885 * in the prtconf -vp output. This is needed by
1886 * Install/Upgrade. Once we fix install upgrade,
1887 * this can be taken out.
1888 */
1889 if (strcmp(name, "si-machine") == 0) {
1890 (void) strncpy(utsname.machine, bop_staging_area,
1891 SYS_NMLN);
1892 utsname.machine[SYS_NMLN - 1] = '\0';
1893 continue;
1894 }
1895 if (strcmp(name, "si-hw-provider") == 0) {
1896 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1897 hw_provider[SYS_NMLN - 1] = '\0';
1898 continue;
1899 }
1900 if (strcmp(name, "bios-boot-device") == 0) {
1901 copy_boot_str(bop_staging_area, property_val, 50);
1902 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1903 property_name, property_val);
1904 continue;
1905 }
1906 if (strcmp(name, "stdout") == 0) {
1907 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1908 property_name, *((int *)bop_staging_area));
1909 continue;
1910 }
1911
1912 /* Boolean property */
1913 if (length == 0) {
1914 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1915 DDI_PROP_CANSLEEP, property_name, NULL, 0);
1916 continue;
1917 }
1918
1919 /* Now anything else based on type. */
1920 switch (flags) {
1921 case DDI_PROP_TYPE_INT:
1922 if (length == sizeof (int)) {
1923 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE,
1924 devi, property_name,
1925 *((int *)bop_staging_area));
1926 } else {
1927 (void) e_ddi_prop_update_int_array(
1928 DDI_DEV_T_NONE, devi, property_name,
1929 bop_staging_area, length / sizeof (int));
1930 }
1931 break;
1932 case DDI_PROP_TYPE_STRING:
1933 (void) e_ddi_prop_update_string(DDI_DEV_T_NONE, devi,
1934 property_name, bop_staging_area);
1935 break;
1936 case DDI_PROP_TYPE_BYTE:
1937 (void) e_ddi_prop_update_byte_array(DDI_DEV_T_NONE,
1938 devi, property_name, bop_staging_area, length);
1939 break;
1940 case DDI_PROP_TYPE_INT64:
1941 if (length == sizeof (int64_t)) {
1942 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE,
1943 devi, property_name,
1944 *((int64_t *)bop_staging_area));
1945 } else {
1946 (void) e_ddi_prop_update_int64_array(
1947 DDI_DEV_T_NONE, devi, property_name,
1948 bop_staging_area,
1949 length / sizeof (int64_t));
1950 }
1951 break;
1952 default:
1953 /* Property type unknown, use old prop interface */
1954 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1955 DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1956 length);
1957 }
1958 }
1959
1960 kmem_free(bop_staging_area, MMU_PAGESIZE);
1961 }
1962
1963 static void
get_vga_properties(void)1964 get_vga_properties(void)
1965 {
1966 dev_info_t *devi;
1967 major_t major;
1968 char *name;
1969 int length;
1970 char property_val[50];
1971 void *bop_staging_area;
1972
1973 /*
1974 * XXXX Hack Allert!
1975 * There really needs to be a better way for identifying various
1976 * console framebuffers and their related issues. Till then,
1977 * check for this one as a replacement to vgatext.
1978 */
1979 major = ddi_name_to_major("ragexl");
1980 if (major == (major_t)-1) {
1981 major = ddi_name_to_major("vgatext");
1982 if (major == (major_t)-1)
1983 return;
1984 }
1985 devi = devnamesp[major].dn_head;
1986 if (devi == NULL)
1987 return;
1988
1989 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1990
1991 /*
1992 * Import "vga" properties from the boot.
1993 */
1994 name = "display-edif-block";
1995 length = BOP_GETPROPLEN(bootops, name);
1996 if (length > 0 && length < MMU_PAGESIZE) {
1997 BOP_GETPROP(bootops, name, bop_staging_area);
1998 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1999 devi, name, bop_staging_area, length);
2000 }
2001
2002 /*
2003 * kdmconfig is also looking for display-type and
2004 * video-adapter-type. We default to color and svga.
2005 *
2006 * Could it be "monochrome", "vga"?
2007 * Nah, you've got to come to the 21st century...
2008 * And you can set monitor type manually in kdmconfig
2009 * if you are really an old junky.
2010 */
2011 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2012 devi, "display-type", "color");
2013 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2014 devi, "video-adapter-type", "svga");
2015
2016 name = "display-edif-id";
2017 length = BOP_GETPROPLEN(bootops, name);
2018 if (length > 0 && length < MMU_PAGESIZE) {
2019 BOP_GETPROP(bootops, name, bop_staging_area);
2020 copy_boot_str(bop_staging_area, property_val, length);
2021 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2022 devi, name, property_val);
2023 }
2024
2025 kmem_free(bop_staging_area, MMU_PAGESIZE);
2026 }
2027
2028 /*
2029 * Copy console font to kernel memory. The temporary font setup
2030 * to use font module was done in early console setup, using low
2031 * memory and data from font module. Now we need to allocate
2032 * kernel memory and copy data over, so the low memory can be freed.
2033 * We can have at most one entry in font list from early boot.
2034 */
2035 static void
get_console_font(void)2036 get_console_font(void)
2037 {
2038 struct fontlist *fp, *fl;
2039 bitmap_data_t *bd;
2040 struct font *fd, *tmp;
2041 int i;
2042
2043 if (STAILQ_EMPTY(&fonts))
2044 return;
2045
2046 fl = STAILQ_FIRST(&fonts);
2047 STAILQ_REMOVE_HEAD(&fonts, font_next);
2048 fp = kmem_zalloc(sizeof (*fp), KM_SLEEP);
2049 bd = kmem_zalloc(sizeof (*bd), KM_SLEEP);
2050 fd = kmem_zalloc(sizeof (*fd), KM_SLEEP);
2051
2052 fp->font_name = NULL;
2053 fp->font_flags = FONT_BOOT;
2054 fp->font_data = bd;
2055
2056 bd->width = fl->font_data->width;
2057 bd->height = fl->font_data->height;
2058 bd->uncompressed_size = fl->font_data->uncompressed_size;
2059 bd->font = fd;
2060
2061 tmp = fl->font_data->font;
2062 fd->vf_width = tmp->vf_width;
2063 fd->vf_height = tmp->vf_height;
2064 for (i = 0; i < VFNT_MAPS; i++) {
2065 if (tmp->vf_map_count[i] == 0)
2066 continue;
2067 fd->vf_map_count[i] = tmp->vf_map_count[i];
2068 fd->vf_map[i] = kmem_alloc(fd->vf_map_count[i] *
2069 sizeof (*fd->vf_map[i]), KM_SLEEP);
2070 bcopy(tmp->vf_map[i], fd->vf_map[i], fd->vf_map_count[i] *
2071 sizeof (*fd->vf_map[i]));
2072 }
2073 fd->vf_bytes = kmem_alloc(bd->uncompressed_size, KM_SLEEP);
2074 bcopy(tmp->vf_bytes, fd->vf_bytes, bd->uncompressed_size);
2075 STAILQ_INSERT_HEAD(&fonts, fp, font_next);
2076 }
2077
2078 /*
2079 * This is temporary, but absolutely necessary. If we are being
2080 * booted with a device tree created by the DevConf project's bootconf
2081 * program, then we have device information nodes that reflect
2082 * reality. At this point in time in the Solaris release schedule, the
2083 * kernel drivers aren't prepared for reality. They still depend on their
2084 * own ad-hoc interpretations of the properties created when their .conf
2085 * files were interpreted. These drivers use an "ignore-hardware-nodes"
2086 * property to prevent them from using the nodes passed up from the bootconf
2087 * device tree.
2088 *
2089 * Trying to assemble root file system drivers as we are booting from
2090 * devconf will fail if the kernel driver is basing its name_addr's on the
2091 * psuedo-node device info while the bootpath passed up from bootconf is using
2092 * reality-based name_addrs. We help the boot along in this case by
2093 * looking at the pre-bootconf bootpath and determining if we would have
2094 * successfully matched if that had been the bootpath we had chosen.
2095 *
2096 * Note that we only even perform this extra check if we've booted
2097 * using bootconf's 1275 compliant bootpath, this is the boot device, and
2098 * we're trying to match the name_addr specified in the 1275 bootpath.
2099 */
2100
2101 #define MAXCOMPONENTLEN 32
2102
2103 int
x86_old_bootpath_name_addr_match(dev_info_t * cdip,char * caddr,char * naddr)2104 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2105 {
2106 /*
2107 * There are multiple criteria to be met before we can even
2108 * consider allowing a name_addr match here.
2109 *
2110 * 1) We must have been booted such that the bootconf program
2111 * created device tree nodes and properties. This can be
2112 * determined by examining the 'bootpath' property. This
2113 * property will be a non-null string iff bootconf was
2114 * involved in the boot.
2115 *
2116 * 2) The module that we want to match must be the boot device.
2117 *
2118 * 3) The instance of the module we are thinking of letting be
2119 * our match must be ignoring hardware nodes.
2120 *
2121 * 4) The name_addr we want to match must be the name_addr
2122 * specified in the 1275 bootpath.
2123 */
2124 static char bootdev_module[MAXCOMPONENTLEN];
2125 static char bootdev_oldmod[MAXCOMPONENTLEN];
2126 static char bootdev_newaddr[MAXCOMPONENTLEN];
2127 static char bootdev_oldaddr[MAXCOMPONENTLEN];
2128 static int quickexit;
2129
2130 char *daddr;
2131 int dlen;
2132
2133 char *lkupname;
2134 int rv = DDI_FAILURE;
2135
2136 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2137 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2138 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2139 "ignore-hardware-nodes", -1) != -1)) {
2140 if (strcmp(daddr, caddr) == 0) {
2141 return (DDI_SUCCESS);
2142 }
2143 }
2144
2145 if (quickexit)
2146 return (rv);
2147
2148 if (bootdev_module[0] == '\0') {
2149 char *addrp, *eoaddrp;
2150 char *busp, *modp, *atp;
2151 char *bp1275, *bp;
2152 int bp1275len, bplen;
2153
2154 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2155
2156 if (ddi_getlongprop(DDI_DEV_T_ANY,
2157 ddi_root_node(), 0, "bootpath",
2158 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2159 bp1275len <= 1) {
2160 /*
2161 * We didn't boot from bootconf so we never need to
2162 * do any special matches.
2163 */
2164 quickexit = 1;
2165 if (bp1275)
2166 kmem_free(bp1275, bp1275len);
2167 return (rv);
2168 }
2169
2170 if (ddi_getlongprop(DDI_DEV_T_ANY,
2171 ddi_root_node(), 0, "boot-path",
2172 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2173 /*
2174 * No fallback position for matching. This is
2175 * certainly unexpected, but we'll handle it
2176 * just in case.
2177 */
2178 quickexit = 1;
2179 kmem_free(bp1275, bp1275len);
2180 if (bp)
2181 kmem_free(bp, bplen);
2182 return (rv);
2183 }
2184
2185 /*
2186 * Determine boot device module and 1275 name_addr
2187 *
2188 * bootpath assumed to be of the form /bus/module@name_addr
2189 */
2190 if (busp = strchr(bp1275, '/')) {
2191 if (modp = strchr(busp + 1, '/')) {
2192 if (atp = strchr(modp + 1, '@')) {
2193 *atp = '\0';
2194 addrp = atp + 1;
2195 if (eoaddrp = strchr(addrp, '/'))
2196 *eoaddrp = '\0';
2197 }
2198 }
2199 }
2200
2201 if (modp && addrp) {
2202 (void) strncpy(bootdev_module, modp + 1,
2203 MAXCOMPONENTLEN);
2204 bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2205
2206 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2207 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2208 } else {
2209 quickexit = 1;
2210 kmem_free(bp1275, bp1275len);
2211 kmem_free(bp, bplen);
2212 return (rv);
2213 }
2214
2215 /*
2216 * Determine fallback name_addr
2217 *
2218 * 10/3/96 - Also save fallback module name because it
2219 * might actually be different than the current module
2220 * name. E.G., ISA pnp drivers have new names.
2221 *
2222 * bootpath assumed to be of the form /bus/module@name_addr
2223 */
2224 addrp = NULL;
2225 if (busp = strchr(bp, '/')) {
2226 if (modp = strchr(busp + 1, '/')) {
2227 if (atp = strchr(modp + 1, '@')) {
2228 *atp = '\0';
2229 addrp = atp + 1;
2230 if (eoaddrp = strchr(addrp, '/'))
2231 *eoaddrp = '\0';
2232 }
2233 }
2234 }
2235
2236 if (modp && addrp) {
2237 (void) strncpy(bootdev_oldmod, modp + 1,
2238 MAXCOMPONENTLEN);
2239 bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2240
2241 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2242 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2243 }
2244
2245 /* Free up the bootpath storage now that we're done with it. */
2246 kmem_free(bp1275, bp1275len);
2247 kmem_free(bp, bplen);
2248
2249 if (bootdev_oldaddr[0] == '\0') {
2250 quickexit = 1;
2251 return (rv);
2252 }
2253 }
2254
2255 if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2256 (strcmp(bootdev_module, lkupname) == 0 ||
2257 strcmp(bootdev_oldmod, lkupname) == 0) &&
2258 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2259 "ignore-hardware-nodes", -1) != -1) ||
2260 ignore_hardware_nodes) &&
2261 strcmp(bootdev_newaddr, caddr) == 0 &&
2262 strcmp(bootdev_oldaddr, naddr) == 0) {
2263 rv = DDI_SUCCESS;
2264 }
2265
2266 return (rv);
2267 }
2268
2269 /*
2270 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2271 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2272 */
2273 /*ARGSUSED*/
2274 int
e_ddi_copyfromdev(dev_info_t * devi,off_t off,const void * devaddr,void * kaddr,size_t len)2275 e_ddi_copyfromdev(dev_info_t *devi,
2276 off_t off, const void *devaddr, void *kaddr, size_t len)
2277 {
2278 bcopy(devaddr, kaddr, len);
2279 return (0);
2280 }
2281
2282 /*
2283 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2284 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2285 */
2286 /*ARGSUSED*/
2287 int
e_ddi_copytodev(dev_info_t * devi,off_t off,const void * kaddr,void * devaddr,size_t len)2288 e_ddi_copytodev(dev_info_t *devi,
2289 off_t off, const void *kaddr, void *devaddr, size_t len)
2290 {
2291 bcopy(kaddr, devaddr, len);
2292 return (0);
2293 }
2294
2295
2296 static int
poke_mem(peekpoke_ctlops_t * in_args)2297 poke_mem(peekpoke_ctlops_t *in_args)
2298 {
2299 int err = DDI_SUCCESS;
2300 on_trap_data_t otd;
2301
2302 /* Set up protected environment. */
2303 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2304 switch (in_args->size) {
2305 case sizeof (uint8_t):
2306 *(uint8_t *)(in_args->dev_addr) =
2307 *(uint8_t *)in_args->host_addr;
2308 break;
2309
2310 case sizeof (uint16_t):
2311 *(uint16_t *)(in_args->dev_addr) =
2312 *(uint16_t *)in_args->host_addr;
2313 break;
2314
2315 case sizeof (uint32_t):
2316 *(uint32_t *)(in_args->dev_addr) =
2317 *(uint32_t *)in_args->host_addr;
2318 break;
2319
2320 case sizeof (uint64_t):
2321 *(uint64_t *)(in_args->dev_addr) =
2322 *(uint64_t *)in_args->host_addr;
2323 break;
2324
2325 default:
2326 err = DDI_FAILURE;
2327 break;
2328 }
2329 } else
2330 err = DDI_FAILURE;
2331
2332 /* Take down protected environment. */
2333 no_trap();
2334
2335 return (err);
2336 }
2337
2338
2339 static int
peek_mem(peekpoke_ctlops_t * in_args)2340 peek_mem(peekpoke_ctlops_t *in_args)
2341 {
2342 int err = DDI_SUCCESS;
2343 on_trap_data_t otd;
2344
2345 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2346 switch (in_args->size) {
2347 case sizeof (uint8_t):
2348 *(uint8_t *)in_args->host_addr =
2349 *(uint8_t *)in_args->dev_addr;
2350 break;
2351
2352 case sizeof (uint16_t):
2353 *(uint16_t *)in_args->host_addr =
2354 *(uint16_t *)in_args->dev_addr;
2355 break;
2356
2357 case sizeof (uint32_t):
2358 *(uint32_t *)in_args->host_addr =
2359 *(uint32_t *)in_args->dev_addr;
2360 break;
2361
2362 case sizeof (uint64_t):
2363 *(uint64_t *)in_args->host_addr =
2364 *(uint64_t *)in_args->dev_addr;
2365 break;
2366
2367 default:
2368 err = DDI_FAILURE;
2369 break;
2370 }
2371 } else
2372 err = DDI_FAILURE;
2373
2374 no_trap();
2375 return (err);
2376 }
2377
2378
2379 /*
2380 * This is called only to process peek/poke when the DIP is NULL.
2381 * Assume that this is for memory, as nexi take care of device safe accesses.
2382 */
2383 int
peekpoke_mem(ddi_ctl_enum_t cmd,peekpoke_ctlops_t * in_args)2384 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2385 {
2386 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2387 }
2388
2389 /*
2390 * we've just done a cautious put/get. Check if it was successful by
2391 * calling pci_ereport_post() on all puts and for any gets that return -1
2392 */
2393 static int
pci_peekpoke_check_fma(dev_info_t * dip,void * arg,ddi_ctl_enum_t ctlop,void (* scan)(dev_info_t *,ddi_fm_error_t *))2394 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2395 void (*scan)(dev_info_t *, ddi_fm_error_t *))
2396 {
2397 int rval = DDI_SUCCESS;
2398 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2399 ddi_fm_error_t de;
2400 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2401 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2402 int check_err = 0;
2403 int repcount = in_args->repcount;
2404
2405 if (ctlop == DDI_CTLOPS_POKE &&
2406 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2407 return (DDI_SUCCESS);
2408
2409 if (ctlop == DDI_CTLOPS_PEEK &&
2410 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2411 for (; repcount; repcount--) {
2412 switch (in_args->size) {
2413 case sizeof (uint8_t):
2414 if (*(uint8_t *)in_args->host_addr == 0xff)
2415 check_err = 1;
2416 break;
2417 case sizeof (uint16_t):
2418 if (*(uint16_t *)in_args->host_addr == 0xffff)
2419 check_err = 1;
2420 break;
2421 case sizeof (uint32_t):
2422 if (*(uint32_t *)in_args->host_addr ==
2423 0xffffffff)
2424 check_err = 1;
2425 break;
2426 case sizeof (uint64_t):
2427 if (*(uint64_t *)in_args->host_addr ==
2428 0xffffffffffffffff)
2429 check_err = 1;
2430 break;
2431 }
2432 }
2433 if (check_err == 0)
2434 return (DDI_SUCCESS);
2435 }
2436 /*
2437 * for a cautious put or get or a non-cautious get that returned -1 call
2438 * io framework to see if there really was an error
2439 */
2440 bzero(&de, sizeof (ddi_fm_error_t));
2441 de.fme_version = DDI_FME_VERSION;
2442 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2443 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2444 de.fme_flag = DDI_FM_ERR_EXPECTED;
2445 de.fme_acc_handle = in_args->handle;
2446 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2447 /*
2448 * We only get here with DDI_DEFAULT_ACC for config space gets.
2449 * Non-hardened drivers may be probing the hardware and
2450 * expecting -1 returned. So need to treat errors on
2451 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2452 */
2453 de.fme_flag = DDI_FM_ERR_EXPECTED;
2454 de.fme_acc_handle = in_args->handle;
2455 } else {
2456 /*
2457 * Hardened driver doing protected accesses shouldn't
2458 * get errors unless there's a hardware problem. Treat
2459 * as nonfatal if there's an error, but set UNEXPECTED
2460 * so we raise ereports on any errors and potentially
2461 * fault the device
2462 */
2463 de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2464 }
2465 (void) scan(dip, &de);
2466 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2467 de.fme_status != DDI_FM_OK) {
2468 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2469 rval = DDI_FAILURE;
2470 errp->err_ena = de.fme_ena;
2471 errp->err_expected = de.fme_flag;
2472 errp->err_status = DDI_FM_NONFATAL;
2473 }
2474 return (rval);
2475 }
2476
2477 /*
2478 * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2479 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2480 * recurse, so assume all puts are OK and gets have failed if they return -1
2481 */
2482 static int
pci_peekpoke_check_nofma(void * arg,ddi_ctl_enum_t ctlop)2483 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2484 {
2485 int rval = DDI_SUCCESS;
2486 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2487 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2488 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2489 int repcount = in_args->repcount;
2490
2491 if (ctlop == DDI_CTLOPS_POKE)
2492 return (rval);
2493
2494 for (; repcount; repcount--) {
2495 switch (in_args->size) {
2496 case sizeof (uint8_t):
2497 if (*(uint8_t *)in_args->host_addr == 0xff)
2498 rval = DDI_FAILURE;
2499 break;
2500 case sizeof (uint16_t):
2501 if (*(uint16_t *)in_args->host_addr == 0xffff)
2502 rval = DDI_FAILURE;
2503 break;
2504 case sizeof (uint32_t):
2505 if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2506 rval = DDI_FAILURE;
2507 break;
2508 case sizeof (uint64_t):
2509 if (*(uint64_t *)in_args->host_addr ==
2510 0xffffffffffffffff)
2511 rval = DDI_FAILURE;
2512 break;
2513 }
2514 }
2515 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2516 rval == DDI_FAILURE) {
2517 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2518 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2519 errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2520 errp->err_status = DDI_FM_NONFATAL;
2521 }
2522 return (rval);
2523 }
2524
2525 int
pci_peekpoke_check(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t ctlop,void * arg,void * result,int (* handler)(dev_info_t *,dev_info_t *,ddi_ctl_enum_t,void *,void *),kmutex_t * err_mutexp,kmutex_t * peek_poke_mutexp,void (* scan)(dev_info_t *,ddi_fm_error_t *))2526 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2527 ddi_ctl_enum_t ctlop, void *arg, void *result,
2528 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2529 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2530 void (*scan)(dev_info_t *, ddi_fm_error_t *))
2531 {
2532 int rval;
2533 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2534 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2535
2536 /*
2537 * this function only supports cautious accesses, not peeks/pokes
2538 * which don't have a handle
2539 */
2540 if (hp == NULL)
2541 return (DDI_FAILURE);
2542
2543 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2544 if (!mutex_tryenter(err_mutexp)) {
2545 /*
2546 * As this may be a recursive call from within
2547 * pci_ereport_post() we can't wait for the mutexes.
2548 * Fortunately we know someone is already calling
2549 * pci_ereport_post() which will handle the error bits
2550 * for us, and as this is a config space access we can
2551 * just do the access and check return value for -1
2552 * using pci_peekpoke_check_nofma().
2553 */
2554 rval = handler(dip, rdip, ctlop, arg, result);
2555 if (rval == DDI_SUCCESS)
2556 rval = pci_peekpoke_check_nofma(arg, ctlop);
2557 return (rval);
2558 }
2559 /*
2560 * This can't be a recursive call. Drop the err_mutex and get
2561 * both mutexes in the right order. If an error hasn't already
2562 * been detected by the ontrap code, use pci_peekpoke_check_fma
2563 * which will call pci_ereport_post() to check error status.
2564 */
2565 mutex_exit(err_mutexp);
2566 }
2567 mutex_enter(peek_poke_mutexp);
2568 rval = handler(dip, rdip, ctlop, arg, result);
2569 if (rval == DDI_SUCCESS) {
2570 mutex_enter(err_mutexp);
2571 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2572 mutex_exit(err_mutexp);
2573 }
2574 mutex_exit(peek_poke_mutexp);
2575 return (rval);
2576 }
2577
2578 void
impl_setup_ddi(void)2579 impl_setup_ddi(void)
2580 {
2581 #if !defined(__xpv)
2582 extern void startup_bios_disk(void);
2583 extern int post_fastreboot;
2584 #endif
2585 dev_info_t *xdip, *isa_dip;
2586 rd_existing_t rd_mem_prop;
2587 int err;
2588
2589 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2590 (pnode_t)DEVI_SID_NODEID, &xdip);
2591
2592 (void) BOP_GETPROP(bootops,
2593 "ramdisk_start", (void *)&ramdisk_start);
2594 (void) BOP_GETPROP(bootops,
2595 "ramdisk_end", (void *)&ramdisk_end);
2596
2597 #ifdef __xpv
2598 ramdisk_start -= ONE_GIG;
2599 ramdisk_end -= ONE_GIG;
2600 #endif
2601 rd_mem_prop.phys = ramdisk_start;
2602 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2603
2604 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2605 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2606 sizeof (rd_mem_prop));
2607 err = ndi_devi_bind_driver(xdip, 0);
2608 ASSERT(err == 0);
2609
2610 /* isa node */
2611 if (pseudo_isa) {
2612 ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2613 (pnode_t)DEVI_SID_NODEID, &isa_dip);
2614 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2615 "device_type", "isa");
2616 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2617 "bus-type", "isa");
2618 (void) ndi_devi_bind_driver(isa_dip, 0);
2619 }
2620
2621 /*
2622 * Read in the properties from the boot.
2623 */
2624 get_boot_properties();
2625
2626 /* not framebuffer should be enumerated, if present */
2627 get_vga_properties();
2628
2629 /* Copy console font if provided by boot. */
2630 get_console_font();
2631
2632 /*
2633 * Check for administratively disabled drivers.
2634 */
2635 check_driver_disable();
2636
2637 #if !defined(__xpv)
2638 if (!post_fastreboot && BOP_GETPROPLEN(bootops, "efi-systab") < 0)
2639 startup_bios_disk();
2640 #endif
2641 /* do bus dependent probes. */
2642 impl_bus_initialprobe();
2643 }
2644
2645 dev_t
getrootdev(void)2646 getrootdev(void)
2647 {
2648 /*
2649 * Usually rootfs.bo_name is initialized by the
2650 * the bootpath property from bootenv.rc, but
2651 * defaults to "/ramdisk:a" otherwise.
2652 */
2653 return (ddi_pathname_to_dev_t(rootfs.bo_name));
2654 }
2655
2656 static struct bus_probe {
2657 struct bus_probe *next;
2658 void (*probe)(int);
2659 } *bus_probes;
2660
2661 void
impl_bus_add_probe(void (* func)(int))2662 impl_bus_add_probe(void (*func)(int))
2663 {
2664 struct bus_probe *probe;
2665 struct bus_probe *lastprobe = NULL;
2666
2667 probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2668 probe->probe = func;
2669 probe->next = NULL;
2670
2671 if (!bus_probes) {
2672 bus_probes = probe;
2673 return;
2674 }
2675
2676 lastprobe = bus_probes;
2677 while (lastprobe->next)
2678 lastprobe = lastprobe->next;
2679 lastprobe->next = probe;
2680 }
2681
2682 /*ARGSUSED*/
2683 void
impl_bus_delete_probe(void (* func)(int))2684 impl_bus_delete_probe(void (*func)(int))
2685 {
2686 struct bus_probe *prev = NULL;
2687 struct bus_probe *probe = bus_probes;
2688
2689 while (probe) {
2690 if (probe->probe == func)
2691 break;
2692 prev = probe;
2693 probe = probe->next;
2694 }
2695
2696 if (probe == NULL)
2697 return;
2698
2699 if (prev)
2700 prev->next = probe->next;
2701 else
2702 bus_probes = probe->next;
2703
2704 kmem_free(probe, sizeof (struct bus_probe));
2705 }
2706
2707 /*
2708 * impl_bus_initialprobe
2709 * Modload the prom simulator, then let it probe to verify existence
2710 * and type of PCI support.
2711 */
2712 static void
impl_bus_initialprobe(void)2713 impl_bus_initialprobe(void)
2714 {
2715 struct bus_probe *probe;
2716
2717 /* load modules to install bus probes */
2718 #if defined(__xpv)
2719 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2720 if (modload("misc", "pci_autoconfig") < 0) {
2721 panic("failed to load misc/pci_autoconfig");
2722 }
2723
2724 if (modload("drv", "isa") < 0)
2725 panic("failed to load drv/isa");
2726 }
2727
2728 (void) modload("misc", "xpv_autoconfig");
2729 #else
2730 if (modload("misc", "pci_autoconfig") < 0) {
2731 panic("failed to load misc/pci_autoconfig");
2732 }
2733
2734 (void) modload("misc", "acpidev");
2735
2736 if (modload("drv", "isa") < 0)
2737 panic("failed to load drv/isa");
2738 #endif
2739
2740 probe = bus_probes;
2741 while (probe) {
2742 /* run the probe functions */
2743 (*probe->probe)(0);
2744 probe = probe->next;
2745 }
2746 }
2747
2748 /*
2749 * impl_bus_reprobe
2750 * Reprogram devices not set up by firmware.
2751 */
2752 static void
impl_bus_reprobe(void)2753 impl_bus_reprobe(void)
2754 {
2755 struct bus_probe *probe;
2756
2757 probe = bus_probes;
2758 while (probe) {
2759 /* run the probe function */
2760 (*probe->probe)(1);
2761 probe = probe->next;
2762 }
2763 }
2764
2765
2766 /*
2767 * The following functions ready a cautious request to go up to the nexus
2768 * driver. It is up to the nexus driver to decide how to process the request.
2769 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2770 * differently.
2771 */
2772
2773 static void
i_ddi_caut_getput_ctlops(ddi_acc_impl_t * hp,uint64_t host_addr,uint64_t dev_addr,size_t size,size_t repcount,uint_t flags,ddi_ctl_enum_t cmd)2774 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2775 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2776 ddi_ctl_enum_t cmd)
2777 {
2778 peekpoke_ctlops_t cautacc_ctlops_arg;
2779
2780 cautacc_ctlops_arg.size = size;
2781 cautacc_ctlops_arg.dev_addr = dev_addr;
2782 cautacc_ctlops_arg.host_addr = host_addr;
2783 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2784 cautacc_ctlops_arg.repcount = repcount;
2785 cautacc_ctlops_arg.flags = flags;
2786
2787 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2788 &cautacc_ctlops_arg, NULL);
2789 }
2790
2791 uint8_t
i_ddi_caut_get8(ddi_acc_impl_t * hp,uint8_t * addr)2792 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2793 {
2794 uint8_t value;
2795 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2796 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2797
2798 return (value);
2799 }
2800
2801 uint16_t
i_ddi_caut_get16(ddi_acc_impl_t * hp,uint16_t * addr)2802 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2803 {
2804 uint16_t value;
2805 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2806 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2807
2808 return (value);
2809 }
2810
2811 uint32_t
i_ddi_caut_get32(ddi_acc_impl_t * hp,uint32_t * addr)2812 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2813 {
2814 uint32_t value;
2815 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2816 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2817
2818 return (value);
2819 }
2820
2821 uint64_t
i_ddi_caut_get64(ddi_acc_impl_t * hp,uint64_t * addr)2822 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2823 {
2824 uint64_t value;
2825 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2826 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2827
2828 return (value);
2829 }
2830
2831 void
i_ddi_caut_put8(ddi_acc_impl_t * hp,uint8_t * addr,uint8_t value)2832 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2833 {
2834 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2835 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2836 }
2837
2838 void
i_ddi_caut_put16(ddi_acc_impl_t * hp,uint16_t * addr,uint16_t value)2839 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2840 {
2841 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2842 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2843 }
2844
2845 void
i_ddi_caut_put32(ddi_acc_impl_t * hp,uint32_t * addr,uint32_t value)2846 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2847 {
2848 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2849 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2850 }
2851
2852 void
i_ddi_caut_put64(ddi_acc_impl_t * hp,uint64_t * addr,uint64_t value)2853 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2854 {
2855 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2856 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2857 }
2858
2859 void
i_ddi_caut_rep_get8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)2860 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2861 size_t repcount, uint_t flags)
2862 {
2863 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2864 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2865 }
2866
2867 void
i_ddi_caut_rep_get16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)2868 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2869 uint16_t *dev_addr, size_t repcount, uint_t flags)
2870 {
2871 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2872 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2873 }
2874
2875 void
i_ddi_caut_rep_get32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)2876 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2877 uint32_t *dev_addr, size_t repcount, uint_t flags)
2878 {
2879 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2880 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2881 }
2882
2883 void
i_ddi_caut_rep_get64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)2884 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2885 uint64_t *dev_addr, size_t repcount, uint_t flags)
2886 {
2887 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2888 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2889 }
2890
2891 void
i_ddi_caut_rep_put8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)2892 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2893 size_t repcount, uint_t flags)
2894 {
2895 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2896 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2897 }
2898
2899 void
i_ddi_caut_rep_put16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)2900 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2901 uint16_t *dev_addr, size_t repcount, uint_t flags)
2902 {
2903 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2904 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2905 }
2906
2907 void
i_ddi_caut_rep_put32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)2908 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2909 uint32_t *dev_addr, size_t repcount, uint_t flags)
2910 {
2911 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2912 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2913 }
2914
2915 void
i_ddi_caut_rep_put64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)2916 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2917 uint64_t *dev_addr, size_t repcount, uint_t flags)
2918 {
2919 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2920 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2921 }
2922
2923 boolean_t
i_ddi_copybuf_required(ddi_dma_attr_t * attrp)2924 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2925 {
2926 uint64_t hi_pa;
2927
2928 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2929 if (attrp->dma_attr_addr_hi < hi_pa) {
2930 return (B_TRUE);
2931 }
2932
2933 return (B_FALSE);
2934 }
2935
2936 size_t
i_ddi_copybuf_size()2937 i_ddi_copybuf_size()
2938 {
2939 return (dma_max_copybuf_size);
2940 }
2941
2942 /*
2943 * i_ddi_dma_max()
2944 * returns the maximum DMA size which can be performed in a single DMA
2945 * window taking into account the devices DMA contraints (attrp), the
2946 * maximum copy buffer size (if applicable), and the worse case buffer
2947 * fragmentation.
2948 */
2949 /*ARGSUSED*/
2950 uint32_t
i_ddi_dma_max(dev_info_t * dip,ddi_dma_attr_t * attrp)2951 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2952 {
2953 uint64_t maxxfer;
2954
2955
2956 /*
2957 * take the min of maxxfer and the the worse case fragementation
2958 * (e.g. every cookie <= 1 page)
2959 */
2960 maxxfer = MIN(attrp->dma_attr_maxxfer,
2961 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2962
2963 /*
2964 * If the DMA engine can't reach all off memory, we also need to take
2965 * the max size of the copybuf into consideration.
2966 */
2967 if (i_ddi_copybuf_required(attrp)) {
2968 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2969 }
2970
2971 /*
2972 * we only return a 32-bit value. Make sure it's not -1. Round to a
2973 * page so it won't be mistaken for an error value during debug.
2974 */
2975 if (maxxfer >= 0xFFFFFFFF) {
2976 maxxfer = 0xFFFFF000;
2977 }
2978
2979 /*
2980 * make sure the value we return is a whole multiple of the
2981 * granlarity.
2982 */
2983 if (attrp->dma_attr_granular > 1) {
2984 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2985 }
2986
2987 return ((uint32_t)maxxfer);
2988 }
2989
2990 /*ARGSUSED*/
2991 void
translate_devid(dev_info_t * dip)2992 translate_devid(dev_info_t *dip)
2993 {
2994 }
2995
2996 pfn_t
i_ddi_paddr_to_pfn(paddr_t paddr)2997 i_ddi_paddr_to_pfn(paddr_t paddr)
2998 {
2999 pfn_t pfn;
3000
3001 #ifdef __xpv
3002 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
3003 pfn = xen_assign_pfn(mmu_btop(paddr));
3004 } else {
3005 pfn = mmu_btop(paddr);
3006 }
3007 #else
3008 pfn = mmu_btop(paddr);
3009 #endif
3010
3011 return (pfn);
3012 }
3013