xref: /illumos-gate/usr/src/uts/i86pc/cpu/amd_opteron/ao_mca.c (revision 3ddd2818ac8897094b3a1e147b4788ccbe199a0f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/types.h>
31 #include <sys/regset.h>
32 #include <sys/privregs.h>
33 #include <sys/pci_impl.h>
34 #include <sys/cpuvar.h>
35 #include <sys/x86_archext.h>
36 #include <sys/cmn_err.h>
37 #include <sys/systm.h>
38 #include <sys/sysmacros.h>
39 #include <sys/chip.h>
40 #include <sys/cyclic.h>
41 #include <sys/cpu_module_impl.h>
42 #include <sys/pci_cfgspace_impl.h>
43 #include <sys/sysevent.h>
44 #include <sys/smbios.h>
45 #include <sys/mca_x86.h>
46 #include <sys/mca_amd.h>
47 #include <sys/mc.h>
48 #include <sys/psw.h>
49 #include <sys/ddi.h>
50 #include <sys/sunddi.h>
51 #include <sys/sdt.h>
52 #include <sys/fm/util.h>
53 #include <sys/fm/protocol.h>
54 #include <sys/fm/cpu/AMD.h>
55 
56 #include "ao.h"
57 #include "ao_mca_disp.h"
58 
59 errorq_t *ao_mca_queue;			/* machine-check ereport queue */
60 int ao_mca_stack_flag = 0;		/* record stack trace in ereports */
61 int ao_mca_smi_disable = 1;		/* attempt to disable SMI polling */
62 
63 ao_bank_regs_t ao_bank_regs[AMD_MCA_BANK_COUNT] = {
64 	{ AMD_MSR_DC_STATUS, AMD_MSR_DC_ADDR },
65 	{ AMD_MSR_IC_STATUS, AMD_MSR_IC_ADDR },
66 	{ AMD_MSR_BU_STATUS, AMD_MSR_BU_ADDR },
67 	{ AMD_MSR_LS_STATUS, AMD_MSR_LS_ADDR },
68 	{ AMD_MSR_NB_STATUS, AMD_MSR_NB_ADDR }
69 };
70 
71 typedef struct ao_bank_cfg {
72 	uint_t bank_ctl;
73 	uint_t bank_ctl_mask;
74 	uint64_t bank_ctl_init;
75 	uint_t bank_status;
76 	uint_t bank_addr;
77 } ao_bank_cfg_t;
78 
79 static const ao_bank_cfg_t ao_bank_cfgs[] = {
80 	{ AMD_MSR_DC_CTL, AMD_MSR_DC_MASK, AMD_DC_CTL_INIT, AMD_MSR_DC_STATUS,
81 	    AMD_MSR_DC_ADDR },
82 	{ AMD_MSR_IC_CTL, AMD_MSR_IC_MASK, AMD_IC_CTL_INIT, AMD_MSR_IC_STATUS,
83 	    AMD_MSR_IC_ADDR },
84 	{ AMD_MSR_BU_CTL, AMD_MSR_BU_MASK, AMD_BU_CTL_INIT, AMD_MSR_BU_STATUS,
85 	    AMD_MSR_BU_ADDR },
86 	{ AMD_MSR_LS_CTL, AMD_MSR_LS_MASK, AMD_LS_CTL_INIT, AMD_MSR_LS_STATUS,
87 	    AMD_MSR_LS_ADDR },
88 	{ AMD_MSR_NB_CTL, AMD_MSR_NB_MASK, AMD_NB_CTL_INIT, AMD_MSR_NB_STATUS,
89 	    AMD_MSR_NB_ADDR }
90 };
91 
92 static const ao_error_disp_t ao_disp_unknown = {
93 	FM_EREPORT_CPU_AMD_UNKNOWN,
94 	FM_EREPORT_PAYLOAD_FLAGS_CPU_AMD_UNKNOWN
95 };
96 
97 /*
98  * This is quite awful but necessary to work around x86 system vendor's view of
99  * the world.  Other operating systems (you know who you are) don't understand
100  * Opteron-specific error handling, so BIOS and system vendors often hide these
101  * conditions from them by using SMI polling to copy out any errors from the
102  * machine-check registers.  When Solaris runs on a system with this feature,
103  * we want to disable the SMI polling so we can use FMA instead.  Sadly, there
104  * isn't even a standard self-describing way to express the whole situation,
105  * so we have to resort to hard-coded values.  This should all be changed to
106  * be a self-describing vendor-specific SMBIOS structure in the future.
107  */
108 static const struct ao_smi_disable {
109 	const char *asd_sys_vendor;	/* SMB_TYPE_SYSTEM vendor prefix */
110 	const char *asd_bios_vendor;	/* SMB_TYPE_BIOS vendor prefix */
111 	uint32_t asd_port;		/* output port for SMI disable */
112 	uint32_t asd_code;		/* output code for SMI disable */
113 } ao_smi_disable[] = {
114 	{ "Sun Microsystems", "American Megatrends", 0x502F, 0x59 },
115 	{ NULL, NULL, 0, 0 }
116 };
117 
118 static int
119 ao_disp_match_r4(uint16_t ref, uint8_t r4)
120 {
121 	static const uint16_t ao_r4_map[] = {
122 		AO_MCA_R4_BIT_GEN,	/* AMD_ERRCODE_R4_GEN */
123 		AO_MCA_R4_BIT_RD,	/* AMD_ERRCODE_R4_RD */
124 		AO_MCA_R4_BIT_WR,	/* AMD_ERRCODE_R4_WR */
125 		AO_MCA_R4_BIT_DRD,	/* AMD_ERRCODE_R4_DRD */
126 		AO_MCA_R4_BIT_DWR,	/* AMD_ERRCODE_R4_DWR */
127 		AO_MCA_R4_BIT_IRD,	/* AMD_ERRCODE_R4_IRD */
128 		AO_MCA_R4_BIT_PREFETCH,	/* AMD_ERRCODE_R4_PREFETCH */
129 		AO_MCA_R4_BIT_EVICT,	/* AMD_ERRCODE_R4_EVICT */
130 		AO_MCA_R4_BIT_SNOOP	/* AMD_ERRCODE_R4_SNOOP */
131 	};
132 
133 	ASSERT(r4 < sizeof (ao_r4_map) / sizeof (uint16_t));
134 
135 	return ((ref & ao_r4_map[r4]) != 0);
136 }
137 
138 static int
139 ao_disp_match_pp(uint8_t ref, uint8_t pp)
140 {
141 	static const uint8_t ao_pp_map[] = {
142 		AO_MCA_PP_BIT_SRC,	/* AMD_ERRCODE_PP_SRC */
143 		AO_MCA_PP_BIT_RSP,	/* AMD_ERRCODE_PP_RSP */
144 		AO_MCA_PP_BIT_OBS,	/* AMD_ERRCODE_PP_OBS */
145 		AO_MCA_PP_BIT_GEN	/* AMD_ERRCODE_PP_GEN */
146 	};
147 
148 	ASSERT(pp < sizeof (ao_pp_map) / sizeof (uint8_t));
149 
150 	return ((ref & ao_pp_map[pp]) != 0);
151 }
152 
153 static int
154 ao_disp_match_ii(uint8_t ref, uint8_t ii)
155 {
156 	static const uint8_t ao_ii_map[] = {
157 		AO_MCA_II_BIT_MEM,	/* AMD_ERRCODE_II_MEM */
158 		0,
159 		AO_MCA_II_BIT_IO,	/* AMD_ERRCODE_II_IO */
160 		AO_MCA_II_BIT_GEN	/* AMD_ERRCODE_II_GEN */
161 	};
162 
163 	ASSERT(ii < sizeof (ao_ii_map) / sizeof (uint8_t));
164 
165 	return ((ref & ao_ii_map[ii]) != 0);
166 }
167 
168 static uint8_t
169 bit_strip(uint16_t *codep, uint16_t mask, uint16_t shift)
170 {
171 	uint8_t val = (*codep & mask) >> shift;
172 	*codep &= ~mask;
173 	return (val);
174 }
175 
176 #define	BIT_STRIP(codep, name) \
177 	bit_strip(codep, AMD_ERRCODE_##name##_MASK, AMD_ERRCODE_##name##_SHIFT)
178 
179 static int
180 ao_disp_match_one(const ao_error_disp_t *aed, uint64_t status)
181 {
182 	uint16_t code = status & AMD_ERRCODE_MASK;
183 	uint8_t extcode = (status & AMD_ERREXT_MASK) >> AMD_ERREXT_SHIFT;
184 	uint64_t stat_mask = aed->aed_stat_mask;
185 	uint64_t stat_mask_res = aed->aed_stat_mask_res;
186 
187 	/*
188 	 * If the bank's status register indicates overflow, then we can no
189 	 * longer rely on the value of CECC: our experience with actual fault
190 	 * injection has shown that multiple CE's overwriting each other shows
191 	 * AMD_BANK_STAT_CECC and AMD_BANK_STAT_UECC both set to zero.  This
192 	 * should be clarified in a future BKDG or by the Revision Guide.
193 	 */
194 	if (status & AMD_BANK_STAT_OVER) {
195 		stat_mask &= ~AMD_BANK_STAT_CECC;
196 		stat_mask_res &= ~AMD_BANK_STAT_CECC;
197 	}
198 
199 	if ((status & stat_mask) != stat_mask_res)
200 		return (0);
201 
202 	/*
203 	 * r4 and pp bits are stored separately, so we mask off and compare them
204 	 * for the code types that use them.  Once we've taken the r4 and pp
205 	 * bits out of the equation, we can directly compare the resulting code
206 	 * with the one stored in the ao_error_disp_t.
207 	 */
208 	if (AMD_ERRCODE_ISMEM(code)) {
209 		uint8_t r4 = BIT_STRIP(&code, R4);
210 
211 		if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4))
212 			return (0);
213 
214 	} else if (AMD_ERRCODE_ISBUS(code)) {
215 		uint8_t r4 = BIT_STRIP(&code, R4);
216 		uint8_t pp = BIT_STRIP(&code, PP);
217 		uint8_t ii = BIT_STRIP(&code, II);
218 
219 		if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4) ||
220 		    !ao_disp_match_pp(aed->aed_stat_pp_bits, pp) ||
221 		    !ao_disp_match_ii(aed->aed_stat_ii_bits, ii))
222 			return (0);
223 	}
224 
225 	return (code == aed->aed_stat_code && extcode == aed->aed_stat_extcode);
226 }
227 
228 static const ao_error_disp_t *
229 ao_disp_match(uint_t bankno, uint64_t status)
230 {
231 	const ao_error_disp_t *aed;
232 
233 	for (aed = ao_error_disp[bankno]; aed->aed_stat_mask != 0; aed++) {
234 		if (ao_disp_match_one(aed, status))
235 			return (aed);
236 	}
237 
238 	return (&ao_disp_unknown);
239 }
240 
241 void
242 ao_pcicfg_write(uint_t chipid, uint_t func, uint_t reg, uint32_t val)
243 {
244 	ASSERT(chipid + 24 <= 31);
245 	ASSERT((func & 7) == func);
246 	ASSERT((reg & 3) == 0 && reg < 256);
247 
248 	pci_mech1_putl(0, chipid + 24, func, reg, val);
249 }
250 
251 uint32_t
252 ao_pcicfg_read(uint_t chipid, uint_t func, uint_t reg)
253 {
254 	ASSERT(chipid + 24 <= 31);
255 	ASSERT((func & 7) == func);
256 	ASSERT((reg & 3) == 0 && reg < 256);
257 
258 	return (pci_mech1_getl(0, chipid + 24, func, reg));
259 }
260 
261 /*
262  * Setup individual bank detectors after stashing their bios settings.
263  */
264 static void
265 ao_bank_cfg(ao_mca_t *mca)
266 {
267 	ao_bios_cfg_t *bioscfg = &mca->ao_mca_bios_cfg;
268 	const ao_bank_cfg_t *bankcfg = ao_bank_cfgs;
269 	int i;
270 
271 	for (i = 0; i < AMD_MCA_BANK_COUNT; i++, bankcfg++) {
272 		bioscfg->bcfg_bank_ctl[i] = rdmsr(bankcfg->bank_ctl);
273 		bioscfg->bcfg_bank_mask[i] = rdmsr(bankcfg->bank_ctl_mask);
274 		wrmsr(bankcfg->bank_ctl, bankcfg->bank_ctl_init);
275 	}
276 }
277 
278 /*
279  * Bits to be added to the NorthBridge (NB) configuration register.
280  * See BKDG 3.29 Section 3.6.4.2 for more information.
281  */
282 uint32_t ao_nb_cfg_add =
283     AMD_NB_CFG_NBMCATOMSTCPUEN |
284     AMD_NB_CFG_DISPCICFGCPUERRRSP |
285     AMD_NB_CFG_SYNCONUCECCEN |
286     AMD_NB_CFG_CPUECCERREN;
287 
288 /*
289  * Bits to be cleared from the NorthBridge (NB) configuration register.
290  * See BKDG 3.29 Section 3.6.4.2 for more information.
291  */
292 uint32_t ao_nb_cfg_remove =
293     AMD_NB_CFG_IORDDATERREN |
294     AMD_NB_CFG_SYNCONANYERREN |
295     AMD_NB_CFG_SYNCONWDOGEN |
296     AMD_NB_CFG_IOERRDIS |
297     AMD_NB_CFG_IOMSTABORTDIS |
298     AMD_NB_CFG_SYNCPKTPROPDIS |
299     AMD_NB_CFG_SYNCPKTGENDIS;
300 
301 /*
302  * Bits to be used if we configure the NorthBridge (NB) Watchdog.  The watchdog
303  * triggers a machine check exception when no response to an NB system access
304  * occurs within a specified time interval.  If the BIOS (i.e. platform design)
305  * has enabled the watchdog, we leave its rate alone.  If the BIOS has not
306  * enabled the watchdog, we enable it and set the rate to one specified below.
307  * To disable the watchdog, add the AMD_NB_CFG_WDOGTMRDIS bit to ao_nb_cfg_add.
308  */
309 uint32_t ao_nb_cfg_wdog =
310     AMD_NB_CFG_WDOGTMRCNTSEL_4095 |
311     AMD_NB_CFG_WDOGTMRBASESEL_1MS;
312 
313 static void
314 ao_nb_cfg(ao_mca_t *mca)
315 {
316 	uint_t chipid = chip_plat_get_chipid(CPU);
317 	uint32_t val;
318 
319 	if (chip_plat_get_clogid(CPU) != 0)
320 		return; /* only configure NB once per CPU */
321 
322 	/*
323 	 * Read the NorthBridge (NB) configuration register in PCI space,
324 	 * modify the settings accordingly, and store the new value back.
325 	 */
326 	mca->ao_mca_bios_cfg.bcfg_nb_cfg = val =
327 	    ao_pcicfg_read(chipid, AMD_NB_FUNC, AMD_NB_REG_CFG);
328 
329 	/*
330 	 * If the watchdog was disabled, enable it according to the policy
331 	 * described above.  Then apply the ao_nb_cfg_[add|remove] masks.
332 	 */
333 	if (val & AMD_NB_CFG_WDOGTMRDIS) {
334 		val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK;
335 		val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK;
336 		val &= ~AMD_NB_CFG_WDOGTMRDIS;
337 		val |= ao_nb_cfg_wdog;
338 	}
339 
340 	val &= ~ao_nb_cfg_remove;
341 	val |= ao_nb_cfg_add;
342 
343 	ao_pcicfg_write(chipid, AMD_NB_FUNC, AMD_NB_REG_CFG, val);
344 }
345 
346 /*
347  * Capture the machine-check exception state into our per-CPU logout area, and
348  * dispatch a copy of the logout area to our error queue for ereport creation.
349  * If 'rp' is non-NULL, we're being called from trap context; otherwise we're
350  * being polled or poked by the injector.  We return the number of errors
351  * found through 'np', and a boolean indicating whether the error is fatal.
352  * The caller is expected to call fm_panic() if we return fatal (non-zero).
353  */
354 int
355 ao_mca_logout(ao_cpu_logout_t *acl, struct regs *rp, int *np)
356 {
357 	int i, fatal, n = 0;
358 
359 	acl->acl_timestamp = gethrtime_waitfree();
360 	acl->acl_mcg_status = rdmsr(IA32_MSR_MCG_STATUS);
361 	acl->acl_ip = rp ? rp->r_pc : 0;
362 	acl->acl_flags = 0;
363 
364 	/*
365 	 * Iterate over the banks of machine-check registers, read the address
366 	 * and status registers into the logout area, and clear them as we go.
367 	 */
368 	for (i = 0; i < AMD_MCA_BANK_COUNT; i++) {
369 		ao_bank_logout_t *abl = &acl->acl_banks[i];
370 
371 		abl->abl_addr = rdmsr(ao_bank_regs[i].abr_addr);
372 		abl->abl_status = rdmsr(ao_bank_regs[i].abr_status);
373 
374 		if (abl->abl_status & AMD_BANK_STAT_VALID)
375 			wrmsr(ao_bank_regs[i].abr_status, 0);
376 	}
377 
378 	if (rp == NULL || !USERMODE(rp->r_cs))
379 		acl->acl_flags |= AO_ACL_F_PRIV;
380 
381 	if (ao_mca_stack_flag)
382 		acl->acl_stackdepth = getpcstack(acl->acl_stack, FM_STK_DEPTH);
383 	else
384 		acl->acl_stackdepth = 0;
385 
386 	/*
387 	 * Clear MCG_STATUS, indicating that machine-check trap processing is
388 	 * complete.  Once we do this, another machine-check trap can occur.
389 	 */
390 	wrmsr(IA32_MSR_MCG_STATUS, 0);
391 
392 	/*
393 	 * If we took a machine-check trap, then the error is fatal if the
394 	 * return instruction pointer is not valid in the global register.
395 	 */
396 	fatal = rp != NULL && !(acl->acl_mcg_status & MCG_STATUS_RIPV);
397 
398 	/*
399 	 * Now iterate over the saved logout area, determining whether the
400 	 * error that we saw is fatal or not based upon our dispositions
401 	 * and the hardware's indicators of whether or not we can resume.
402 	 */
403 	for (i = 0; i < AMD_MCA_BANK_COUNT; i++) {
404 		ao_bank_logout_t *abl = &acl->acl_banks[i];
405 		const ao_error_disp_t *aed;
406 
407 		if (!(abl->abl_status & AMD_BANK_STAT_VALID))
408 			continue;
409 
410 		aed = ao_disp_match(i, abl->abl_status);
411 		fatal |= (aed->aed_panic_when != AO_AED_PANIC_NEVER);
412 
413 		/*
414 		 * If we are taking a machine-check exception and the overflow
415 		 * bit is set or our context is corrupt, then we must die.
416 		 * NOTE: This code assumes that if the overflow bit is set and
417 		 * we didn't take a #mc exception (i.e. the poller found it),
418 		 * then multiple correctable errors overwrote each other.
419 		 * This will need to change if we eventually use the Opteron
420 		 * Rev E exception mechanism for detecting correctable errors.
421 		 */
422 		if (rp != NULL && (abl->abl_status &
423 		    (AMD_BANK_STAT_OVER | AMD_BANK_STAT_PCC)))
424 			fatal = 1;
425 
426 		/*
427 		 * If we are taking a machine-check exception and we don't
428 		 * recognize the error case at all, then assume it's fatal.
429 		 * This will need to change if we eventually use the Opteron
430 		 * Rev E exception mechanism for detecting correctable errors.
431 		 */
432 		if (rp != NULL && aed == &ao_disp_unknown)
433 			fatal = 1;
434 
435 		n++;
436 	}
437 
438 	if (n > 0) {
439 		errorq_dispatch(ao_mca_queue, acl, sizeof (ao_cpu_logout_t),
440 		    fatal && cmi_panic_on_uncorrectable_error ?
441 		    ERRORQ_SYNC : ERRORQ_ASYNC);
442 	}
443 
444 	if (np != NULL)
445 		*np = n; /* return number of errors found to caller */
446 
447 	return (fatal);
448 }
449 
450 static uint_t
451 ao_ereport_synd(ao_mca_t *mca,
452     const ao_bank_logout_t *abl, uint_t *typep, int is_nb)
453 {
454 	if (is_nb) {
455 		if ((mca->ao_mca_bios_cfg.bcfg_nb_cfg &
456 		    AMD_NB_CFG_CHIPKILLECCEN) != 0) {
457 			*typep = AMD_SYNDTYPE_CHIPKILL;
458 			return (AMD_NB_STAT_CKSYND(abl->abl_status));
459 		} else {
460 			*typep = AMD_SYNDTYPE_ECC;
461 			return (AMD_BANK_SYND(abl->abl_status));
462 		}
463 	} else {
464 		*typep = AMD_SYNDTYPE_ECC;
465 		return (AMD_BANK_SYND(abl->abl_status));
466 	}
467 }
468 
469 static void
470 ao_ereport_create_resource_elem(nvlist_t **nvlp, nv_alloc_t *nva,
471     mc_unum_t *unump, int dimmnum)
472 {
473 	nvlist_t *snvl;
474 	*nvlp = fm_nvlist_create(nva);		/* freed by caller */
475 
476 	snvl = fm_nvlist_create(nva);
477 
478 	(void) nvlist_add_uint64(snvl, FM_FMRI_HC_SPECIFIC_OFFSET,
479 	    unump->unum_offset);
480 
481 	fm_fmri_hc_set(*nvlp, FM_HC_SCHEME_VERSION, NULL, snvl, 4,
482 	    "motherboard", unump->unum_board,
483 	    "chip", unump->unum_chip,
484 	    "memory-controller", unump->unum_mc,
485 	    "dimm", unump->unum_dimms[dimmnum]);
486 
487 	fm_nvlist_destroy(snvl, FM_NVA_FREE);
488 }
489 
490 static void
491 ao_ereport_add_resource(nvlist_t *payload, nv_alloc_t *nva, mc_unum_t *unump)
492 {
493 
494 	nvlist_t *elems[MC_UNUM_NDIMM];
495 	int nelems = 0;
496 	int i;
497 
498 	for (i = 0; i < MC_UNUM_NDIMM; i++) {
499 		if (unump->unum_dimms[i] == -1)
500 			break;
501 		ao_ereport_create_resource_elem(&elems[nelems++], nva,
502 		    unump, i);
503 	}
504 
505 	fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
506 	    DATA_TYPE_NVLIST_ARRAY, nelems, elems);
507 
508 	for (i = 0; i < nelems; i++)
509 		fm_nvlist_destroy(elems[i], FM_NVA_FREE);
510 }
511 
512 static void
513 ao_ereport_add_logout(ao_data_t *ao, nvlist_t *payload, nv_alloc_t *nva,
514     const ao_cpu_logout_t *acl, uint_t bankno, const ao_error_disp_t *aed)
515 {
516 	uint64_t members = aed->aed_ereport_members;
517 	ao_mca_t *mca = &ao->ao_mca;
518 	const ao_bank_logout_t *abl = &acl->acl_banks[bankno];
519 	uint_t synd, syndtype;
520 
521 	synd = ao_ereport_synd(mca, abl, &syndtype, bankno == AMD_MCA_BANK_NB);
522 
523 	if (members & FM_EREPORT_PAYLOAD_FLAG_BANK_STAT) {
524 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_BANK_STAT,
525 		    DATA_TYPE_UINT64, abl->abl_status, NULL);
526 	}
527 
528 	if (members & FM_EREPORT_PAYLOAD_FLAG_BANK_NUM) {
529 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_BANK_NUM,
530 		    DATA_TYPE_UINT8, bankno, NULL);
531 	}
532 
533 	if (members & FM_EREPORT_PAYLOAD_FLAG_ADDR) {
534 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ADDR,
535 		    DATA_TYPE_UINT64, abl->abl_addr, NULL);
536 	}
537 
538 	if (members & FM_EREPORT_PAYLOAD_FLAG_ADDR_VALID) {
539 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ADDR_VALID,
540 		    DATA_TYPE_BOOLEAN_VALUE, (abl->abl_status &
541 		    AMD_BANK_STAT_ADDRV) ? B_TRUE : B_FALSE);
542 	}
543 
544 	if (members & FM_EREPORT_PAYLOAD_FLAG_SYND) {
545 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND,
546 		    DATA_TYPE_UINT16, synd, NULL);
547 	}
548 
549 	if (members & FM_EREPORT_PAYLOAD_FLAG_SYND_TYPE) {
550 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND_TYPE,
551 		    DATA_TYPE_STRING, (syndtype == AMD_SYNDTYPE_CHIPKILL ?
552 		    "C" : "E"), NULL);
553 	}
554 
555 	if (members & FM_EREPORT_PAYLOAD_FLAG_IP) {
556 		uint64_t ip = (acl->acl_mcg_status & MCG_STATUS_EIPV) ?
557 		    acl->acl_ip : 0;
558 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_IP,
559 		    DATA_TYPE_UINT64, ip, NULL);
560 	}
561 
562 	if (members & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
563 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
564 		    DATA_TYPE_BOOLEAN_VALUE, (acl->acl_flags & AO_ACL_F_PRIV) ?
565 		    B_TRUE : B_FALSE, NULL);
566 	}
567 
568 	if (members & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) {
569 		mc_unum_t unum;
570 		int addrvalid;
571 
572 		addrvalid = (members & FM_EREPORT_PAYLOAD_FLAG_ADDR) &&
573 		    (members & FM_EREPORT_PAYLOAD_FLAG_ADDR_VALID) &&
574 		    (abl->abl_status & AMD_BANK_STAT_ADDRV);
575 
576 		if (addrvalid && ao_mc_patounum(ao, abl->abl_addr, synd,
577 		    syndtype, &unum))
578 			ao_ereport_add_resource(payload, nva, &unum);
579 	}
580 
581 	if (ao_mca_stack_flag && members & FM_EREPORT_PAYLOAD_FLAG_STACK) {
582 		fm_payload_stack_add(payload, acl->acl_stack,
583 		    acl->acl_stackdepth);
584 	}
585 }
586 
587 static void
588 ao_ereport_post(const ao_cpu_logout_t *acl,
589     int bankno, const ao_error_disp_t *aed)
590 {
591 	ao_data_t *ao = acl->acl_ao;
592 	errorq_elem_t *eqep;
593 	nvlist_t *ereport, *detector;
594 	nv_alloc_t *nva = NULL;
595 	char buf[FM_MAX_CLASS];
596 
597 	if (panicstr) {
598 		if ((eqep = errorq_reserve(ereport_errorq)) == NULL)
599 			return;
600 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
601 		nva = errorq_elem_nva(ereport_errorq, eqep);
602 	} else {
603 		ereport = fm_nvlist_create(nva);
604 	}
605 
606 	/*
607 	 * Create the scheme "cpu" FMRI
608 	 */
609 	detector = ao_fmri_create(ao, nva);
610 
611 	/*
612 	 * Encode all the common data into the ereport.
613 	 */
614 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
615 	    FM_ERROR_CPU, "amd", aed->aed_class);
616 
617 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
618 	    fm_ena_generate_cpu(acl->acl_timestamp, ao->ao_cpu->cpu_id,
619 	    FM_ENA_FMT1), detector, NULL);
620 
621 	/*
622 	 * Encode the error-specific data that was saved in the logout area.
623 	 */
624 	ao_ereport_add_logout(ao, ereport, nva, acl, bankno, aed);
625 
626 	if (panicstr) {
627 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
628 	} else {
629 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
630 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
631 		fm_nvlist_destroy(detector, FM_NVA_FREE);
632 	}
633 }
634 
635 /*ARGSUSED*/
636 void
637 ao_mca_drain(void *ignored, const void *data, const errorq_elem_t *eqe)
638 {
639 	const ao_cpu_logout_t *acl = data;
640 	int i;
641 
642 	for (i = 0; i < AMD_MCA_BANK_COUNT; i++) {
643 		const ao_bank_logout_t *abl = &acl->acl_banks[i];
644 		const ao_error_disp_t *aed;
645 
646 		if (abl->abl_status & AMD_BANK_STAT_VALID) {
647 			aed = ao_disp_match(i, abl->abl_status);
648 			ao_ereport_post(acl, i, aed);
649 		}
650 	}
651 }
652 
653 int
654 ao_mca_trap(void *data, struct regs *rp)
655 {
656 	ao_data_t *ao = data;
657 	ao_mca_t *mca = &ao->ao_mca;
658 	ao_cpu_logout_t *acl = &mca->ao_mca_logout[AO_MCA_LOGOUT_EXCEPTION];
659 	return (ao_mca_logout(acl, rp, NULL));
660 }
661 
662 /*ARGSUSED*/
663 int
664 ao_mca_inject(void *data, cmi_mca_regs_t *regs, uint_t nregs)
665 {
666 	uint64_t hwcr, oldhwcr;
667 	int i;
668 
669 	oldhwcr = rdmsr(MSR_AMD_HWCR);
670 	hwcr = oldhwcr | AMD_HWCR_MCI_STATUS_WREN;
671 	wrmsr(MSR_AMD_HWCR, hwcr);
672 
673 	for (i = 0; i < nregs; i++)
674 		wrmsr(regs[i].cmr_msrnum, regs[i].cmr_msrval);
675 
676 	wrmsr(MSR_AMD_HWCR, oldhwcr);
677 	return (0);
678 }
679 
680 void
681 ao_mca_init(void *data)
682 {
683 	ao_data_t *ao = data;
684 	ao_mca_t *mca = &ao->ao_mca;
685 	uint64_t cap;
686 	int i;
687 
688 	ao_mca_poll_init(mca);
689 
690 	ASSERT(x86_feature & X86_MCA);
691 	cap = rdmsr(IA32_MSR_MCG_CAP);
692 	ASSERT(cap & MCG_CAP_CTL_P);
693 
694 	/*
695 	 * If the hardware's bank count is different than what we expect, then
696 	 * we're running on some Opteron variant that we don't understand yet.
697 	 */
698 	if ((cap & MCG_CAP_COUNT_MASK) != AMD_MCA_BANK_COUNT) {
699 		cmn_err(CE_WARN, "CPU %d has %llu MCA banks; expected %u: "
700 		    "disabling MCA on this CPU", ao->ao_cpu->cpu_id,
701 		    (u_longlong_t)cap & MCG_CAP_COUNT_MASK, AMD_MCA_BANK_COUNT);
702 		return;
703 	}
704 
705 	/*
706 	 * Configure the logout areas.  We preset every logout area's acl_ao
707 	 * pointer to refer back to our per-CPU state for errorq drain usage.
708 	 */
709 	for (i = 0; i < AO_MCA_LOGOUT_NUM; i++)
710 		mca->ao_mca_logout[i].acl_ao = ao;
711 
712 	ao_bank_cfg(mca);
713 	ao_nb_cfg(mca);
714 
715 	wrmsr(IA32_MSR_MCG_CTL, AMD_MCG_EN_ALL);
716 
717 	/*
718 	 * Throw away all existing bank state.  We do this because some BIOSes,
719 	 * perhaps during POST, do things to the machine that cause MCA state
720 	 * to be updated.  If we interpret this state as an actual error, we
721 	 * may end up indicting something that's not actually broken.
722 	 */
723 	for (i = 0; i < sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfg_t); i++)
724 		wrmsr(ao_bank_cfgs[i].bank_status, 0ULL);
725 
726 	wrmsr(IA32_MSR_MCG_STATUS, 0ULL);
727 	membar_producer();
728 
729 	setcr4(getcr4() | CR4_MCE); /* enable #mc exceptions */
730 }
731 
732 /*ARGSUSED*/
733 void
734 ao_mca_post_init(void *data)
735 {
736 	const struct ao_smi_disable *asd;
737 	id_t id;
738 
739 	smbios_system_t sy;
740 	smbios_bios_t sb;
741 	smbios_info_t si;
742 
743 	/*
744 	 * Fetch the System and BIOS vendor strings from SMBIOS and see if they
745 	 * match a value in our table.  If so, disable SMI error polling.  This
746 	 * is grotesque and should be replaced by self-describing vendor-
747 	 * specific SMBIOS data or a specification enhancement instead.
748 	 */
749 	if (ao_mca_smi_disable && ksmbios != NULL &&
750 	    smbios_info_bios(ksmbios, &sb) != SMB_ERR &&
751 	    (id = smbios_info_system(ksmbios, &sy)) != SMB_ERR &&
752 	    smbios_info_common(ksmbios, id, &si) != SMB_ERR) {
753 
754 		for (asd = ao_smi_disable; asd->asd_sys_vendor != NULL; asd++) {
755 			if (strncmp(asd->asd_sys_vendor, si.smbi_manufacturer,
756 			    strlen(asd->asd_sys_vendor)) != 0 ||
757 			    strncmp(asd->asd_bios_vendor, sb.smbb_vendor,
758 			    strlen(asd->asd_bios_vendor)) != 0)
759 				continue;
760 
761 			cmn_err(CE_CONT, "?SMI polling disabled in favor of "
762 			    "Solaris Fault Management for AMD Processors");
763 
764 			outl(asd->asd_port, asd->asd_code);
765 			break;
766 		}
767 	}
768 
769 	ao_mca_poll_start();
770 }
771 
772 /*
773  * Called after a CPU has been marked with CPU_FAULTED.  Not called on the
774  * faulted CPU.  cpu_lock is held.
775  */
776 /*ARGSUSED*/
777 void
778 ao_faulted_enter(void *data)
779 {
780 	/*
781 	 * Nothing to do here.  We'd like to turn off the faulted CPU's
782 	 * correctable error detectors, but that can only be done by the
783 	 * faulted CPU itself.  cpu_get_state() will now return P_FAULTED,
784 	 * allowing the poller to skip this CPU until it is re-enabled.
785 	 */
786 }
787 
788 /*
789  * Called after the CPU_FAULTED bit has been cleared from a previously-faulted
790  * CPU.  Not called on the faulted CPU.  cpu_lock is held.
791  */
792 void
793 ao_faulted_exit(void *data)
794 {
795 	ao_data_t *ao = data;
796 
797 	/*
798 	 * We'd like to clear the faulted CPU's MCi_STATUS registers so as to
799 	 * avoid generating ereports for errors which occurred while the CPU was
800 	 * officially faulted.  Unfortunately, those registers can only be
801 	 * cleared by the CPU itself, so we can't do it here.
802 	 *
803 	 * We're going to set the UNFAULTING bit on the formerly-faulted CPU's
804 	 * MCA state.  This will tell the poller that the MCi_STATUS registers
805 	 * can't yet be trusted.  The poller, which is the first thing we
806 	 * control that'll execute on that CPU, will clear the registers, and
807 	 * will then clear the bit.
808 	 */
809 
810 	ao->ao_mca.ao_mca_flags |= AO_MCA_F_UNFAULTING;
811 }
812