xref: /illumos-gate/usr/src/uts/common/sys/dtrace.h (revision ae115bc77f6fcde83175c75b4206dc2e50747966)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef _SYS_DTRACE_H
28 #define	_SYS_DTRACE_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #ifdef	__cplusplus
33 extern "C" {
34 #endif
35 
36 /*
37  * DTrace Dynamic Tracing Software: Kernel Interfaces
38  *
39  * Note: The contents of this file are private to the implementation of the
40  * Solaris system and DTrace subsystem and are subject to change at any time
41  * without notice.  Applications and drivers using these interfaces will fail
42  * to run on future releases.  These interfaces should not be used for any
43  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45  */
46 
47 #ifndef _ASM
48 
49 #include <sys/types.h>
50 #include <sys/modctl.h>
51 #include <sys/processor.h>
52 #include <sys/systm.h>
53 #include <sys/ctf_api.h>
54 #include <sys/cyclic.h>
55 #include <sys/int_limits.h>
56 
57 /*
58  * DTrace Universal Constants and Typedefs
59  */
60 #define	DTRACE_CPUALL		-1	/* all CPUs */
61 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
62 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
63 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
64 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
65 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
66 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
67 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
68 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
69 
70 #define	DTRACE_PROVNAMELEN	64
71 #define	DTRACE_MODNAMELEN	64
72 #define	DTRACE_FUNCNAMELEN	128
73 #define	DTRACE_NAMELEN		64
74 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
75 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
76 #define	DTRACE_ARGTYPELEN	128
77 
78 typedef uint32_t dtrace_id_t;		/* probe identifier */
79 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
80 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
81 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
82 typedef uint16_t dtrace_actkind_t;	/* action kind */
83 typedef int64_t dtrace_optval_t;	/* option value */
84 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
85 
86 typedef enum dtrace_probespec {
87 	DTRACE_PROBESPEC_NONE = -1,
88 	DTRACE_PROBESPEC_PROVIDER = 0,
89 	DTRACE_PROBESPEC_MOD,
90 	DTRACE_PROBESPEC_FUNC,
91 	DTRACE_PROBESPEC_NAME
92 } dtrace_probespec_t;
93 
94 /*
95  * DTrace Intermediate Format (DIF)
96  *
97  * The following definitions describe the DTrace Intermediate Format (DIF), a
98  * a RISC-like instruction set and program encoding used to represent
99  * predicates and actions that can be bound to DTrace probes.  The constants
100  * below defining the number of available registers are suggested minimums; the
101  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
102  * registers provided by the current DTrace implementation.
103  */
104 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
105 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
106 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
107 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
108 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
109 
110 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
111 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
112 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
113 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
114 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
115 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
116 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
117 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
118 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
119 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
120 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
121 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
122 #define	DIF_OP_NOT	13		/* not	r1, rd */
123 #define	DIF_OP_MOV	14		/* mov	r1, rd */
124 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
125 #define	DIF_OP_TST	16		/* tst  r1 */
126 #define	DIF_OP_BA	17		/* ba	label */
127 #define	DIF_OP_BE	18		/* be	label */
128 #define	DIF_OP_BNE	19		/* bne	label */
129 #define	DIF_OP_BG	20		/* bg	label */
130 #define	DIF_OP_BGU	21		/* bgu	label */
131 #define	DIF_OP_BGE	22		/* bge	label */
132 #define	DIF_OP_BGEU	23		/* bgeu	label */
133 #define	DIF_OP_BL	24		/* bl	label */
134 #define	DIF_OP_BLU	25		/* blu	label */
135 #define	DIF_OP_BLE	26		/* ble	label */
136 #define	DIF_OP_BLEU	27		/* bleu	label */
137 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
138 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
139 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
140 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
141 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
142 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
143 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
144 #define	DIF_OP_RET	35		/* ret	rd */
145 #define	DIF_OP_NOP	36		/* nop */
146 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
147 #define	DIF_OP_SETS	38		/* sets strindex, rd */
148 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
149 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
150 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
151 #define	DIF_OP_STGS	42		/* stgs var, rs */
152 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
153 #define	DIF_OP_LDTS	44		/* ldts var, rd */
154 #define	DIF_OP_STTS	45		/* stts var, rs */
155 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
156 #define	DIF_OP_CALL	47		/* call	subr, rd */
157 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
158 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
159 #define	DIF_OP_POPTS	50		/* popts */
160 #define	DIF_OP_FLUSHTS	51		/* flushts */
161 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
162 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
163 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
164 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
165 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
166 #define	DIF_OP_STLS	57		/* stls	var, rs */
167 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
168 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
169 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
170 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
171 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
172 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
173 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
174 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
175 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
176 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
177 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
178 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
179 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
180 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
181 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
182 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
183 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
184 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
185 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
186 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
187 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
188 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
189 
190 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
191 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
192 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
193 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
194 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
195 
196 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
197 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
198 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
199 
200 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
201 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
202 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
203 
204 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
205 #define	DIF_VAR_REGS		0x0001	/* registers array */
206 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
207 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
208 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
209 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
210 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
211 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
212 #define	DIF_VAR_ID		0x0105	/* probe ID */
213 #define	DIF_VAR_ARG0		0x0106	/* first argument */
214 #define	DIF_VAR_ARG1		0x0107	/* second argument */
215 #define	DIF_VAR_ARG2		0x0108	/* third argument */
216 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
217 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
218 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
219 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
220 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
221 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
222 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
223 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
224 #define	DIF_VAR_CALLER		0x0111	/* caller */
225 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
226 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
227 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
228 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
229 #define	DIF_VAR_PID		0x0116	/* process ID */
230 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
231 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
232 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
233 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
234 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
235 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
236 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
237 #define	DIF_VAR_UID		0x011e	/* process user ID */
238 #define	DIF_VAR_GID		0x011f	/* process group ID */
239 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
240 
241 #define	DIF_SUBR_RAND			0
242 #define	DIF_SUBR_MUTEX_OWNED		1
243 #define	DIF_SUBR_MUTEX_OWNER		2
244 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
245 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
246 #define	DIF_SUBR_RW_READ_HELD		5
247 #define	DIF_SUBR_RW_WRITE_HELD		6
248 #define	DIF_SUBR_RW_ISWRITER		7
249 #define	DIF_SUBR_COPYIN			8
250 #define	DIF_SUBR_COPYINSTR		9
251 #define	DIF_SUBR_SPECULATION		10
252 #define	DIF_SUBR_PROGENYOF		11
253 #define	DIF_SUBR_STRLEN			12
254 #define	DIF_SUBR_COPYOUT		13
255 #define	DIF_SUBR_COPYOUTSTR		14
256 #define	DIF_SUBR_ALLOCA			15
257 #define	DIF_SUBR_BCOPY			16
258 #define	DIF_SUBR_COPYINTO		17
259 #define	DIF_SUBR_MSGDSIZE		18
260 #define	DIF_SUBR_MSGSIZE		19
261 #define	DIF_SUBR_GETMAJOR		20
262 #define	DIF_SUBR_GETMINOR		21
263 #define	DIF_SUBR_DDI_PATHNAME		22
264 #define	DIF_SUBR_STRJOIN		23
265 #define	DIF_SUBR_LLTOSTR		24
266 #define	DIF_SUBR_BASENAME		25
267 #define	DIF_SUBR_DIRNAME		26
268 #define	DIF_SUBR_CLEANPATH		27
269 #define	DIF_SUBR_STRCHR			28
270 #define	DIF_SUBR_STRRCHR		29
271 #define	DIF_SUBR_STRSTR			30
272 #define	DIF_SUBR_STRTOK			31
273 #define	DIF_SUBR_SUBSTR			32
274 #define	DIF_SUBR_INDEX			33
275 #define	DIF_SUBR_RINDEX			34
276 #define	DIF_SUBR_HTONS			35
277 #define	DIF_SUBR_HTONL			36
278 #define	DIF_SUBR_HTONLL			37
279 #define	DIF_SUBR_NTOHS			38
280 #define	DIF_SUBR_NTOHL			39
281 #define	DIF_SUBR_NTOHLL			40
282 
283 #define	DIF_SUBR_MAX			40	/* max subroutine value */
284 
285 typedef uint32_t dif_instr_t;
286 
287 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
288 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
289 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
290 #define	DIF_INSTR_RD(i)			((i) & 0xff)
291 #define	DIF_INSTR_RS(i)			((i) & 0xff)
292 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
293 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
294 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
295 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
296 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
297 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
298 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
299 
300 #define	DIF_INSTR_FMT(op, r1, r2, d) \
301 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
302 
303 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
304 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
305 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
306 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
307 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
308 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
309 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
310 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
311 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
312 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
313 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
314 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
315 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
316 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
317 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
318 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
319 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
320 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
321 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
322 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
323 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
324 
325 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
326 
327 /*
328  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
329  * of variables, function and associative array arguments, and the return type
330  * for each DIF object (shown below).  It contains a description of the type,
331  * its size in bytes, and a module identifier.
332  */
333 typedef struct dtrace_diftype {
334 	uint8_t dtdt_kind;		/* type kind (see below) */
335 	uint8_t dtdt_ckind;		/* type kind in CTF */
336 	uint8_t dtdt_flags;		/* type flags (see below) */
337 	uint8_t dtdt_pad;		/* reserved for future use */
338 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
339 } dtrace_diftype_t;
340 
341 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
342 #define	DIF_TYPE_STRING		1	/* type is a D string */
343 
344 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
345 
346 /*
347  * A DTrace Intermediate Format variable record is used to describe each of the
348  * variables referenced by a given DIF object.  It contains an integer variable
349  * identifier along with variable scope and properties, as shown below.  The
350  * size of this structure must be sizeof (int) aligned.
351  */
352 typedef struct dtrace_difv {
353 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
354 	uint32_t dtdv_id;		/* variable reference identifier */
355 	uint8_t dtdv_kind;		/* variable kind (see below) */
356 	uint8_t dtdv_scope;		/* variable scope (see below) */
357 	uint16_t dtdv_flags;		/* variable flags (see below) */
358 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
359 } dtrace_difv_t;
360 
361 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
362 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
363 
364 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
365 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
366 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
367 
368 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
369 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
370 
371 /*
372  * DTrace Actions
373  *
374  * The upper byte determines the class of the action; the low bytes determines
375  * the specific action within that class.  The classes of actions are as
376  * follows:
377  *
378  *   [ no class ]                  <= May record process- or kernel-related data
379  *   DTRACEACT_PROC                <= Only records process-related data
380  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
381  *   DTRACEACT_KERNEL              <= Only records kernel-related data
382  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
383  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
384  *   DTRACEACT_AGGREGATION         <= Aggregating action
385  */
386 #define	DTRACEACT_NONE			0	/* no action */
387 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
388 #define	DTRACEACT_EXIT			2	/* exit() action */
389 #define	DTRACEACT_PRINTF		3	/* printf() action */
390 #define	DTRACEACT_PRINTA		4	/* printa() action */
391 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
392 
393 #define	DTRACEACT_PROC			0x0100
394 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
395 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
396 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
397 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
398 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
399 
400 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
401 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
402 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
403 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
404 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
405 
406 #define	DTRACEACT_PROC_CONTROL		0x0300
407 
408 #define	DTRACEACT_KERNEL		0x0400
409 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
410 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
411 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
412 
413 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
414 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
415 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
416 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
417 
418 #define	DTRACEACT_SPECULATIVE		0x0600
419 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
420 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
421 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
422 
423 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
424 
425 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
426 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
427 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
428 
429 #define	DTRACEACT_ISSPECULATIVE(x)	\
430 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
431 
432 #define	DTRACEACT_ISPRINTFLIKE(x)	\
433 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
434 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
435 
436 /*
437  * DTrace Aggregating Actions
438  *
439  * These are functions f(x) for which the following is true:
440  *
441  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
442  *
443  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
444  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
445  * for easier processing of the aggregation argument and data payload for a few
446  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
447  */
448 #define	DTRACEACT_AGGREGATION		0x0700
449 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
450 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
451 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
452 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
453 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
454 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
455 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
456 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
457 
458 #define	DTRACEACT_ISAGG(x)		\
459 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
460 
461 #define	DTRACE_QUANTIZE_NBUCKETS	\
462 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
463 
464 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
465 
466 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
467 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
468 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
469 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
470 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
471 
472 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
473 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
474 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
475 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
476 #define	DTRACE_LQUANTIZE_BASESHIFT		0
477 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
478 
479 #define	DTRACE_LQUANTIZE_STEP(x)		\
480 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
481 	DTRACE_LQUANTIZE_STEPSHIFT)
482 
483 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
484 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
485 	DTRACE_LQUANTIZE_LEVELSHIFT)
486 
487 #define	DTRACE_LQUANTIZE_BASE(x)		\
488 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
489 	DTRACE_LQUANTIZE_BASESHIFT)
490 
491 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
492 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
493 #define	DTRACE_USTACK_ARG(x, y)		\
494 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
495 
496 #ifndef _LP64
497 #ifndef _LITTLE_ENDIAN
498 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
499 #else
500 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
501 #endif
502 #else
503 #define	DTRACE_PTR(type, name)	type *name
504 #endif
505 
506 /*
507  * DTrace Object Format (DOF)
508  *
509  * DTrace programs can be persistently encoded in the DOF format so that they
510  * may be embedded in other programs (for example, in an ELF file) or in the
511  * dtrace driver configuration file for use in anonymous tracing.  The DOF
512  * format is versioned and extensible so that it can be revised and so that
513  * internal data structures can be modified or extended compatibly.  All DOF
514  * structures use fixed-size types, so the 32-bit and 64-bit representations
515  * are identical and consumers can use either data model transparently.
516  *
517  * The file layout is structured as follows:
518  *
519  * +---------------+-------------------+----- ... ----+---- ... ------+
520  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
521  * | (file header) | (section headers) | section data | section data  |
522  * +---------------+-------------------+----- ... ----+---- ... ------+
523  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
524  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
525  *
526  * The file header stores meta-data including a magic number, data model for
527  * the instrumentation, data encoding, and properties of the DIF code within.
528  * The header describes its own size and the size of the section headers.  By
529  * convention, an array of section headers follows the file header, and then
530  * the data for all loadable sections and unloadable sections.  This permits
531  * consumer code to easily download the headers and all loadable data into the
532  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
533  *
534  * The section headers describe the size, offset, alignment, and section type
535  * for each section.  Sections are described using a set of #defines that tell
536  * the consumer what kind of data is expected.  Sections can contain links to
537  * other sections by storing a dof_secidx_t, an index into the section header
538  * array, inside of the section data structures.  The section header includes
539  * an entry size so that sections with data arrays can grow their structures.
540  *
541  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
542  * are represented themselves as a collection of related DOF sections.  This
543  * permits us to change the set of sections associated with a DIFO over time,
544  * and also permits us to encode DIFOs that contain different sets of sections.
545  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
546  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
547  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
548  *
549  * This loose coupling of the file structure (header and sections) to the
550  * structure of the DTrace program itself (ECB descriptions, action
551  * descriptions, and DIFOs) permits activities such as relocation processing
552  * to occur in a single pass without having to understand D program structure.
553  *
554  * Finally, strings are always stored in ELF-style string tables along with a
555  * string table section index and string table offset.  Therefore strings in
556  * DOF are always arbitrary-length and not bound to the current implementation.
557  */
558 
559 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
560 
561 typedef struct dof_hdr {
562 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
563 	uint32_t dofh_flags;		/* file attribute flags (if any) */
564 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
565 	uint32_t dofh_secsize;		/* size of section header in bytes */
566 	uint32_t dofh_secnum;		/* number of section headers */
567 	uint64_t dofh_secoff;		/* file offset of section headers */
568 	uint64_t dofh_loadsz;		/* file size of loadable portion */
569 	uint64_t dofh_filesz;		/* file size of entire DOF file */
570 	uint64_t dofh_pad;		/* reserved for future use */
571 } dof_hdr_t;
572 
573 #define	DOF_ID_MAG0	0	/* first byte of magic number */
574 #define	DOF_ID_MAG1	1	/* second byte of magic number */
575 #define	DOF_ID_MAG2	2	/* third byte of magic number */
576 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
577 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
578 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
579 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
580 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
581 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
582 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
583 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
584 
585 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
586 #define	DOF_MAG_MAG1	'D'
587 #define	DOF_MAG_MAG2	'O'
588 #define	DOF_MAG_MAG3	'F'
589 
590 #define	DOF_MAG_STRING	"\177DOF"
591 #define	DOF_MAG_STRLEN	4
592 
593 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
594 #define	DOF_MODEL_ILP32	1
595 #define	DOF_MODEL_LP64	2
596 
597 #ifdef _LP64
598 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
599 #else
600 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
601 #endif
602 
603 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
604 #define	DOF_ENCODE_LSB	1
605 #define	DOF_ENCODE_MSB	2
606 
607 #ifdef _BIG_ENDIAN
608 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
609 #else
610 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
611 #endif
612 
613 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
614 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
615 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
616 
617 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
618 
619 typedef uint32_t dof_secidx_t;	/* section header table index type */
620 typedef uint32_t dof_stridx_t;	/* string table index type */
621 
622 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
623 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
624 
625 typedef struct dof_sec {
626 	uint32_t dofs_type;	/* section type (see below) */
627 	uint32_t dofs_align;	/* section data memory alignment */
628 	uint32_t dofs_flags;	/* section flags (if any) */
629 	uint32_t dofs_entsize;	/* size of section entry (if table) */
630 	uint64_t dofs_offset;	/* offset of section data within file */
631 	uint64_t dofs_size;	/* size of section data in bytes */
632 } dof_sec_t;
633 
634 #define	DOF_SECT_NONE		0	/* null section */
635 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
636 #define	DOF_SECT_SOURCE		2	/* D program source code */
637 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
638 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
639 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
640 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
641 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
642 #define	DOF_SECT_STRTAB		8	/* string table */
643 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
644 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
645 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
646 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
647 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
648 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
649 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
650 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
651 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
652 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
653 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
654 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
655 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
656 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
657 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
658 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
659 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
660 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
661 
662 #define	DOF_SECF_LOAD		1	/* section should be loaded */
663 
664 typedef struct dof_ecbdesc {
665 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
666 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
667 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
668 	uint32_t dofe_pad;		/* reserved for future use */
669 	uint64_t dofe_uarg;		/* user-supplied library argument */
670 } dof_ecbdesc_t;
671 
672 typedef struct dof_probedesc {
673 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
674 	dof_stridx_t dofp_provider;	/* provider string */
675 	dof_stridx_t dofp_mod;		/* module string */
676 	dof_stridx_t dofp_func;		/* function string */
677 	dof_stridx_t dofp_name;		/* name string */
678 	uint32_t dofp_id;		/* probe identifier (or zero) */
679 } dof_probedesc_t;
680 
681 typedef struct dof_actdesc {
682 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
683 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
684 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
685 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
686 	uint64_t dofa_arg;		/* kind-specific argument */
687 	uint64_t dofa_uarg;		/* user-supplied argument */
688 } dof_actdesc_t;
689 
690 typedef struct dof_difohdr {
691 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
692 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
693 } dof_difohdr_t;
694 
695 typedef struct dof_relohdr {
696 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
697 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
698 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
699 } dof_relohdr_t;
700 
701 typedef struct dof_relodesc {
702 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
703 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
704 	uint64_t dofr_offset;		/* byte offset for relocation */
705 	uint64_t dofr_data;		/* additional type-specific data */
706 } dof_relodesc_t;
707 
708 #define	DOF_RELO_NONE	0		/* empty relocation entry */
709 #define	DOF_RELO_SETX	1		/* relocate setx value */
710 
711 typedef struct dof_optdesc {
712 	uint32_t dofo_option;		/* option identifier */
713 	dof_secidx_t dofo_strtab;	/* string table, if string option */
714 	uint64_t dofo_value;		/* option value or string index */
715 } dof_optdesc_t;
716 
717 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
718 
719 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
720 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
721 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
722 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
723 
724 typedef struct dof_provider {
725 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
726 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
727 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
728 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
729 	dof_stridx_t dofpv_name;	/* provider name string */
730 	dof_attr_t dofpv_provattr;	/* provider attributes */
731 	dof_attr_t dofpv_modattr;	/* module attributes */
732 	dof_attr_t dofpv_funcattr;	/* function attributes */
733 	dof_attr_t dofpv_nameattr;	/* name attributes */
734 	dof_attr_t dofpv_argsattr;	/* args attributes */
735 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
736 } dof_provider_t;
737 
738 typedef struct dof_probe {
739 	uint64_t dofpr_addr;		/* probe base address or offset */
740 	dof_stridx_t dofpr_func;	/* probe function string */
741 	dof_stridx_t dofpr_name;	/* probe name string */
742 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
743 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
744 	uint32_t dofpr_argidx;		/* index of first argument mapping */
745 	uint32_t dofpr_offidx;		/* index of first offset entry */
746 	uint8_t dofpr_nargc;		/* native argument count */
747 	uint8_t dofpr_xargc;		/* translated argument count */
748 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
749 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
750 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
751 	uint16_t dofpr_pad1;		/* reserved for future use */
752 	uint32_t dofpr_pad2;		/* reserved for future use */
753 } dof_probe_t;
754 
755 typedef struct dof_xlator {
756 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
757 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
758 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
759 	uint32_t dofxl_argc;		/* input parameter list length */
760 	dof_stridx_t dofxl_type;	/* output type string name */
761 	dof_attr_t dofxl_attr;		/* output stability attributes */
762 } dof_xlator_t;
763 
764 typedef struct dof_xlmember {
765 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
766 	dof_stridx_t dofxm_name;	/* member name */
767 	dtrace_diftype_t dofxm_type;	/* member type */
768 } dof_xlmember_t;
769 
770 typedef struct dof_xlref {
771 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
772 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
773 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
774 } dof_xlref_t;
775 
776 /*
777  * DTrace Intermediate Format Object (DIFO)
778  *
779  * A DIFO is used to store the compiled DIF for a D expression, its return
780  * type, and its string and variable tables.  The string table is a single
781  * buffer of character data into which sets instructions and variable
782  * references can reference strings using a byte offset.  The variable table
783  * is an array of dtrace_difv_t structures that describe the name and type of
784  * each variable and the id used in the DIF code.  This structure is described
785  * above in the DIF section of this header file.  The DIFO is used at both
786  * user-level (in the library) and in the kernel, but the structure is never
787  * passed between the two: the DOF structures form the only interface.  As a
788  * result, the definition can change depending on the presence of _KERNEL.
789  */
790 typedef struct dtrace_difo {
791 	dif_instr_t *dtdo_buf;		/* instruction buffer */
792 	uint64_t *dtdo_inttab;		/* integer table (optional) */
793 	char *dtdo_strtab;		/* string table (optional) */
794 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
795 	uint_t dtdo_len;		/* length of instruction buffer */
796 	uint_t dtdo_intlen;		/* length of integer table */
797 	uint_t dtdo_strlen;		/* length of string table */
798 	uint_t dtdo_varlen;		/* length of variable table */
799 	dtrace_diftype_t dtdo_rtype;	/* return type */
800 	uint_t dtdo_refcnt;		/* owner reference count */
801 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
802 #ifndef _KERNEL
803 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
804 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
805 	struct dt_node **dtdo_xlmtab;	/* translator references */
806 	uint_t dtdo_krelen;		/* length of krelo table */
807 	uint_t dtdo_urelen;		/* length of urelo table */
808 	uint_t dtdo_xlmlen;		/* length of translator table */
809 #endif
810 } dtrace_difo_t;
811 
812 /*
813  * DTrace Enabling Description Structures
814  *
815  * When DTrace is tracking the description of a DTrace enabling entity (probe,
816  * predicate, action, ECB, record, etc.), it does so in a description
817  * structure.  These structures all end in "desc", and are used at both
818  * user-level and in the kernel -- but (with the exception of
819  * dtrace_probedesc_t) they are never passed between them.  Typically,
820  * user-level will use the description structures when assembling an enabling.
821  * It will then distill those description structures into a DOF object (see
822  * above), and send it into the kernel.  The kernel will again use the
823  * description structures to create a description of the enabling as it reads
824  * the DOF.  When the description is complete, the enabling will be actually
825  * created -- turning it into the structures that represent the enabling
826  * instead of merely describing it.  Not surprisingly, the description
827  * structures bear a strong resemblance to the DOF structures that act as their
828  * conduit.
829  */
830 struct dtrace_predicate;
831 
832 typedef struct dtrace_probedesc {
833 	dtrace_id_t dtpd_id;			/* probe identifier */
834 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
835 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
836 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
837 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
838 } dtrace_probedesc_t;
839 
840 typedef struct dtrace_repldesc {
841 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
842 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
843 } dtrace_repldesc_t;
844 
845 typedef struct dtrace_preddesc {
846 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
847 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
848 } dtrace_preddesc_t;
849 
850 typedef struct dtrace_actdesc {
851 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
852 	struct dtrace_actdesc *dtad_next;	/* next action */
853 	dtrace_actkind_t dtad_kind;		/* kind of action */
854 	uint32_t dtad_ntuple;			/* number in tuple */
855 	uint64_t dtad_arg;			/* action argument */
856 	uint64_t dtad_uarg;			/* user argument */
857 	int dtad_refcnt;			/* reference count */
858 } dtrace_actdesc_t;
859 
860 typedef struct dtrace_ecbdesc {
861 	dtrace_actdesc_t *dted_action;		/* action description(s) */
862 	dtrace_preddesc_t dted_pred;		/* predicate description */
863 	dtrace_probedesc_t dted_probe;		/* probe description */
864 	uint64_t dted_uarg;			/* library argument */
865 	int dted_refcnt;			/* reference count */
866 } dtrace_ecbdesc_t;
867 
868 /*
869  * DTrace Metadata Description Structures
870  *
871  * DTrace separates the trace data stream from the metadata stream.  The only
872  * metadata tokens placed in the data stream are enabled probe identifiers
873  * (EPIDs) or (in the case of aggregations) aggregation identifiers.  In order
874  * to determine the structure of the data, DTrace consumers pass the token to
875  * the kernel, and receive in return a corresponding description of the enabled
876  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
877  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
878  * of record descriptions (via the dtrace_recdesc structure) that describe the
879  * exact structure of the data.  Some record descriptions may also contain a
880  * format identifier; this additional bit of metadata can be retrieved from the
881  * kernel, for which a format description is returned via the dtrace_fmtdesc
882  * structure.  Note that all four of these structures must be bitness-neutral
883  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
884  */
885 typedef struct dtrace_recdesc {
886 	dtrace_actkind_t dtrd_action;		/* kind of action */
887 	uint32_t dtrd_size;			/* size of record */
888 	uint32_t dtrd_offset;			/* offset in ECB's data */
889 	uint16_t dtrd_alignment;		/* required alignment */
890 	uint16_t dtrd_format;			/* format, if any */
891 	uint64_t dtrd_arg;			/* action argument */
892 	uint64_t dtrd_uarg;			/* user argument */
893 } dtrace_recdesc_t;
894 
895 typedef struct dtrace_eprobedesc {
896 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
897 	dtrace_id_t dtepd_probeid;		/* probe ID */
898 	uint64_t dtepd_uarg;			/* library argument */
899 	uint32_t dtepd_size;			/* total size */
900 	int dtepd_nrecs;			/* number of records */
901 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
902 } dtrace_eprobedesc_t;
903 
904 typedef struct dtrace_aggdesc {
905 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
906 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
907 	int dtagd_flags;			/* not filled in by kernel */
908 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
909 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
910 	uint32_t dtagd_size;			/* size in bytes */
911 	int dtagd_nrecs;			/* number of records */
912 	uint32_t dtagd_pad;			/* explicit padding */
913 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
914 } dtrace_aggdesc_t;
915 
916 typedef struct dtrace_fmtdesc {
917 	DTRACE_PTR(char, dtfd_string);		/* format string */
918 	int dtfd_length;			/* length of format string */
919 	uint16_t dtfd_format;			/* format identifier */
920 } dtrace_fmtdesc_t;
921 
922 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
923 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
924 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
925 
926 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
927 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
928 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
929 
930 /*
931  * DTrace Option Interface
932  *
933  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
934  * in a DOF image.  The dof_optdesc structure contains an option identifier and
935  * an option value.  The valid option identifiers are found below; the mapping
936  * between option identifiers and option identifying strings is maintained at
937  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
938  * following are potentially valid option values:  all positive integers, zero
939  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
940  * predefined tokens as their values; these are defined with
941  * DTRACEOPT_{option}_{token}.
942  */
943 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
944 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
945 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
946 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
947 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
948 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
949 #define	DTRACEOPT_STRSIZE	6	/* string size */
950 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
951 #define	DTRACEOPT_CPU		8	/* CPU to trace */
952 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
953 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
954 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
955 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
956 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
957 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
958 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
959 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
960 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
961 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
962 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
963 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
964 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
965 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
966 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
967 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
968 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
969 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
970 #define	DTRACEOPT_MAX		27	/* number of options */
971 
972 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
973 
974 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
975 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
976 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
977 
978 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
979 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
980 
981 /*
982  * DTrace Buffer Interface
983  *
984  * In order to get a snapshot of the principal or aggregation buffer,
985  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
986  * structure.  This describes which CPU user-level is interested in, and
987  * where user-level wishes the kernel to snapshot the buffer to (the
988  * dtbd_data field).  The kernel uses the same structure to pass back some
989  * information regarding the buffer:  the size of data actually copied out, the
990  * number of drops, the number of errors, and the offset of the oldest record.
991  * If the buffer policy is a "switch" policy, taking a snapshot of the
992  * principal buffer has the additional effect of switching the active and
993  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
994  * the additional effect of switching the active and inactive buffers.
995  */
996 typedef struct dtrace_bufdesc {
997 	uint64_t dtbd_size;			/* size of buffer */
998 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
999 	uint32_t dtbd_errors;			/* number of errors */
1000 	uint64_t dtbd_drops;			/* number of drops */
1001 	DTRACE_PTR(char, dtbd_data);		/* data */
1002 	uint64_t dtbd_oldest;			/* offset of oldest record */
1003 } dtrace_bufdesc_t;
1004 
1005 /*
1006  * DTrace Status
1007  *
1008  * The status of DTrace is relayed via the dtrace_status structure.  This
1009  * structure contains members to count drops other than the capacity drops
1010  * available via the buffer interface (see above).  This consists of dynamic
1011  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1012  * speculative drops (including capacity speculative drops, drops due to busy
1013  * speculative buffers and drops due to unavailable speculative buffers).
1014  * Additionally, the status structure contains a field to indicate the number
1015  * of "fill"-policy buffers have been filled and a boolean field to indicate
1016  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1017  * further data will be generated until tracing is stopped (at which time any
1018  * enablings of the END action will be processed); if user-level sees that
1019  * this field is non-zero, tracing should be stopped as soon as possible.
1020  */
1021 typedef struct dtrace_status {
1022 	uint64_t dtst_dyndrops;			/* dynamic drops */
1023 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1024 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1025 	uint64_t dtst_specdrops;		/* speculative drops */
1026 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1027 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1028 	uint64_t dtst_errors;			/* total errors */
1029 	uint64_t dtst_filled;			/* number of filled bufs */
1030 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1031 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1032 	char dtst_killed;			/* non-zero if killed */
1033 	char dtst_exiting;			/* non-zero if exit() called */
1034 	char dtst_pad[6];			/* pad out to 64-bit align */
1035 } dtrace_status_t;
1036 
1037 /*
1038  * DTrace Configuration
1039  *
1040  * User-level may need to understand some elements of the kernel DTrace
1041  * configuration in order to generate correct DIF.  This information is
1042  * conveyed via the dtrace_conf structure.
1043  */
1044 typedef struct dtrace_conf {
1045 	uint_t dtc_difversion;			/* supported DIF version */
1046 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1047 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1048 	uint_t dtc_ctfmodel;			/* CTF data model */
1049 	uint_t dtc_pad[8];			/* reserved for future use */
1050 } dtrace_conf_t;
1051 
1052 /*
1053  * DTrace Faults
1054  *
1055  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1056  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1057  * postprocessing at user-level.  Probe processing faults induce an ERROR
1058  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1059  * the error condition using thse symbolic labels.
1060  */
1061 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1062 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1063 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1064 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1065 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1066 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1067 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1068 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1069 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1070 
1071 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1072 
1073 /*
1074  * DTrace Argument Types
1075  *
1076  * Because it would waste both space and time, argument types do not reside
1077  * with the probe.  In order to determine argument types for args[X]
1078  * variables, the D compiler queries for argument types on a probe-by-probe
1079  * basis.  (This optimizes for the common case that arguments are either not
1080  * used or used in an untyped fashion.)  Typed arguments are specified with a
1081  * string of the type name in the dtragd_native member of the argument
1082  * description structure.  Typed arguments may be further translated to types
1083  * of greater stability; the provider indicates such a translated argument by
1084  * filling in the dtargd_xlate member with the string of the translated type.
1085  * Finally, the provider may indicate which argument value a given argument
1086  * maps to by setting the dtargd_mapping member -- allowing a single argument
1087  * to map to multiple args[X] variables.
1088  */
1089 typedef struct dtrace_argdesc {
1090 	dtrace_id_t dtargd_id;			/* probe identifier */
1091 	int dtargd_ndx;				/* arg number (-1 iff none) */
1092 	int dtargd_mapping;			/* value mapping */
1093 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1094 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1095 } dtrace_argdesc_t;
1096 
1097 /*
1098  * DTrace Stability Attributes
1099  *
1100  * Each DTrace provider advertises the name and data stability of each of its
1101  * probe description components, as well as its architectural dependencies.
1102  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1103  * order to compute the properties of an input program and report them.
1104  */
1105 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1106 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1107 
1108 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1109 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1110 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1111 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1112 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1113 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1114 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1115 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1116 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1117 
1118 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1119 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1120 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1121 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1122 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1123 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1124 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1125 
1126 #define	DTRACE_PRIV_NONE	0x0000
1127 #define	DTRACE_PRIV_KERNEL	0x0001
1128 #define	DTRACE_PRIV_USER	0x0002
1129 #define	DTRACE_PRIV_PROC	0x0004
1130 #define	DTRACE_PRIV_OWNER	0x0008
1131 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1132 
1133 #define	DTRACE_PRIV_ALL	\
1134 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1135 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1136 
1137 typedef struct dtrace_ppriv {
1138 	uint32_t dtpp_flags;			/* privilege flags */
1139 	uid_t dtpp_uid;				/* user ID */
1140 	zoneid_t dtpp_zoneid;			/* zone ID */
1141 } dtrace_ppriv_t;
1142 
1143 typedef struct dtrace_attribute {
1144 	dtrace_stability_t dtat_name;		/* entity name stability */
1145 	dtrace_stability_t dtat_data;		/* entity data stability */
1146 	dtrace_class_t dtat_class;		/* entity data dependency */
1147 } dtrace_attribute_t;
1148 
1149 typedef struct dtrace_pattr {
1150 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1151 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1152 	dtrace_attribute_t dtpa_func;		/* function attributes */
1153 	dtrace_attribute_t dtpa_name;		/* name attributes */
1154 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1155 } dtrace_pattr_t;
1156 
1157 typedef struct dtrace_providerdesc {
1158 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1159 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1160 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1161 } dtrace_providerdesc_t;
1162 
1163 /*
1164  * DTrace Pseudodevice Interface
1165  *
1166  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1167  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1168  * DTrace.
1169  */
1170 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1171 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1172 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1173 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1174 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1175 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1176 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1177 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1178 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1179 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1180 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1181 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1182 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1183 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1184 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1185 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1186 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1187 
1188 /*
1189  * DTrace Helpers
1190  *
1191  * In general, DTrace establishes probes in processes and takes actions on
1192  * processes without knowing their specific user-level structures.  Instead of
1193  * existing in the framework, process-specific knowledge is contained by the
1194  * enabling D program -- which can apply process-specific knowledge by making
1195  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1196  * operate on user-level data.  However, there may exist some specific probes
1197  * of particular semantic relevance that the application developer may wish to
1198  * explicitly export.  For example, an application may wish to export a probe
1199  * at the point that it begins and ends certain well-defined transactions.  In
1200  * addition to providing probes, programs may wish to offer assistance for
1201  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1202  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1203  * names (the translation from instruction addresses to corresponding symbol
1204  * names may only be possible in situ); these environments may wish to define
1205  * a series of actions to be applied in situ to obtain a meaningful stack
1206  * trace.
1207  *
1208  * These two mechanisms -- user-level statically defined tracing and assisting
1209  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1210  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1211  * providers, probes and their arguments.  If a helper wishes to provide
1212  * action assistance, probe descriptions and corresponding DIF actions may be
1213  * specified in the helper DOF.  For such helper actions, however, the probe
1214  * description describes the specific helper:  all DTrace helpers have the
1215  * provider name "dtrace" and the module name "helper", and the name of the
1216  * helper is contained in the function name (for example, the ustack() helper
1217  * is named "ustack").  Any helper-specific name may be contained in the name
1218  * (for example, if a helper were to have a constructor, it might be named
1219  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1220  * action that they are helping is taken.  Helper actions may only return DIF
1221  * expressions, and may only call the following subroutines:
1222  *
1223  *    alloca()      <= Allocates memory out of the consumer's scratch space
1224  *    bcopy()       <= Copies memory to scratch space
1225  *    copyin()      <= Copies memory from user-level into consumer's scratch
1226  *    copyinto()    <= Copies memory into a specific location in scratch
1227  *    copyinstr()   <= Copies a string into a specific location in scratch
1228  *
1229  * Helper actions may only access the following built-in variables:
1230  *
1231  *    curthread     <= Current kthread_t pointer
1232  *    tid           <= Current thread identifier
1233  *    pid           <= Current process identifier
1234  *    ppid          <= Parent process identifier
1235  *    uid           <= Current user ID
1236  *    gid           <= Current group ID
1237  *    execname      <= Current executable name
1238  *    zonename      <= Current zone name
1239  *
1240  * Helper actions may not manipulate or allocate dynamic variables, but they
1241  * may have clause-local and statically-allocated global variables.  The
1242  * helper action variable state is specific to the helper action -- variables
1243  * used by the helper action may not be accessed outside of the helper
1244  * action, and the helper action may not access variables that like outside
1245  * of it.  Helper actions may not load from kernel memory at-large; they are
1246  * restricting to loading current user state (via copyin() and variants) and
1247  * scratch space.  As with probe enablings, helper actions are executed in
1248  * program order.  The result of the helper action is the result of the last
1249  * executing helper expression.
1250  *
1251  * Helpers -- composed of either providers/probes or probes/actions (or both)
1252  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1253  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1254  * encapsulates the name and base address of the user-level library or
1255  * executable publishing the helpers and probes as well as the DOF that
1256  * contains the definitions of those helpers and probes.
1257  *
1258  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1259  * helpers and should no longer be used.  No other ioctls are valid on the
1260  * helper minor node.
1261  */
1262 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1263 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1264 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1265 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1266 
1267 typedef struct dof_helper {
1268 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1269 	uint64_t dofhp_addr;			/* base address of object */
1270 	uint64_t dofhp_dof;			/* address of helper DOF */
1271 } dof_helper_t;
1272 
1273 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1274 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1275 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1276 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1277 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1278 
1279 #ifdef _KERNEL
1280 
1281 /*
1282  * DTrace Provider API
1283  *
1284  * The following functions are implemented by the DTrace framework and are
1285  * used to implement separate in-kernel DTrace providers.  Common functions
1286  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1287  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1288  *
1289  * The provider API has two halves:  the API that the providers consume from
1290  * DTrace, and the API that providers make available to DTrace.
1291  *
1292  * 1 Framework-to-Provider API
1293  *
1294  * 1.1  Overview
1295  *
1296  * The Framework-to-Provider API is represented by the dtrace_pops structure
1297  * that the provider passes to the framework when registering itself.  This
1298  * structure consists of the following members:
1299  *
1300  *   dtps_provide()          <-- Provide all probes, all modules
1301  *   dtps_provide_module()   <-- Provide all probes in specified module
1302  *   dtps_enable()           <-- Enable specified probe
1303  *   dtps_disable()          <-- Disable specified probe
1304  *   dtps_suspend()          <-- Suspend specified probe
1305  *   dtps_resume()           <-- Resume specified probe
1306  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1307  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1308  *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1309  *   dtps_destroy()          <-- Destroy all state associated with this probe
1310  *
1311  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1312  *
1313  * 1.2.1  Overview
1314  *
1315  *   Called to indicate that the provider should provide all probes.  If the
1316  *   specified description is non-NULL, dtps_provide() is being called because
1317  *   no probe matched a specified probe -- if the provider has the ability to
1318  *   create custom probes, it may wish to create a probe that matches the
1319  *   specified description.
1320  *
1321  * 1.2.2  Arguments and notes
1322  *
1323  *   The first argument is the cookie as passed to dtrace_register().  The
1324  *   second argument is a pointer to a probe description that the provider may
1325  *   wish to consider when creating custom probes.  The provider is expected to
1326  *   call back into the DTrace framework via dtrace_probe_create() to create
1327  *   any necessary probes.  dtps_provide() may be called even if the provider
1328  *   has made available all probes; the provider should check the return value
1329  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1330  *   not implement both dtps_provide() and dtps_provide_module(); see
1331  *   "Arguments and Notes" for dtrace_register(), below.
1332  *
1333  * 1.2.3  Return value
1334  *
1335  *   None.
1336  *
1337  * 1.2.4  Caller's context
1338  *
1339  *   dtps_provide() is typically called from open() or ioctl() context, but may
1340  *   be called from other contexts as well.  The DTrace framework is locked in
1341  *   such a way that providers may not register or unregister.  This means that
1342  *   the provider may not call any DTrace API that affects its registration with
1343  *   the framework, including dtrace_register(), dtrace_unregister(),
1344  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1345  *   that the provider may (and indeed, is expected to) call probe-related
1346  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1347  *   and dtrace_probe_arg().
1348  *
1349  * 1.3  void dtps_provide_module(void *arg, struct modctl *mp)
1350  *
1351  * 1.3.1  Overview
1352  *
1353  *   Called to indicate that the provider should provide all probes in the
1354  *   specified module.
1355  *
1356  * 1.3.2  Arguments and notes
1357  *
1358  *   The first argument is the cookie as passed to dtrace_register().  The
1359  *   second argument is a pointer to a modctl structure that indicates the
1360  *   module for which probes should be created.
1361  *
1362  * 1.3.3  Return value
1363  *
1364  *   None.
1365  *
1366  * 1.3.4  Caller's context
1367  *
1368  *   dtps_provide_module() may be called from open() or ioctl() context, but
1369  *   may also be called from a module loading context.  mod_lock is held, and
1370  *   the DTrace framework is locked in such a way that providers may not
1371  *   register or unregister.  This means that the provider may not call any
1372  *   DTrace API that affects its registration with the framework, including
1373  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1374  *   dtrace_condense().  However, the context is such that the provider may (and
1375  *   indeed, is expected to) call probe-related DTrace routines, including
1376  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1377  *   that the provider need not implement both dtps_provide() and
1378  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1379  *   below.
1380  *
1381  * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1382  *
1383  * 1.4.1  Overview
1384  *
1385  *   Called to enable the specified probe.
1386  *
1387  * 1.4.2  Arguments and notes
1388  *
1389  *   The first argument is the cookie as passed to dtrace_register().  The
1390  *   second argument is the identifier of the probe to be enabled.  The third
1391  *   argument is the probe argument as passed to dtrace_probe_create().
1392  *   dtps_enable() will be called when a probe transitions from not being
1393  *   enabled at all to having one or more ECB.  The number of ECBs associated
1394  *   with the probe may change without subsequent calls into the provider.
1395  *   When the number of ECBs drops to zero, the provider will be explicitly
1396  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1397  *   be called for a probe identifier that hasn't been explicitly enabled via
1398  *   dtps_enable().
1399  *
1400  * 1.4.3  Return value
1401  *
1402  *   None.
1403  *
1404  * 1.4.4  Caller's context
1405  *
1406  *   The DTrace framework is locked in such a way that it may not be called
1407  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1408  *   be acquired.
1409  *
1410  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1411  *
1412  * 1.5.1  Overview
1413  *
1414  *   Called to disable the specified probe.
1415  *
1416  * 1.5.2  Arguments and notes
1417  *
1418  *   The first argument is the cookie as passed to dtrace_register().  The
1419  *   second argument is the identifier of the probe to be disabled.  The third
1420  *   argument is the probe argument as passed to dtrace_probe_create().
1421  *   dtps_disable() will be called when a probe transitions from being enabled
1422  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1423  *   identifier that has been explicitly enabled via dtps_disable().
1424  *
1425  * 1.5.3  Return value
1426  *
1427  *   None.
1428  *
1429  * 1.5.4  Caller's context
1430  *
1431  *   The DTrace framework is locked in such a way that it may not be called
1432  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1433  *   be acquired.
1434  *
1435  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1436  *
1437  * 1.6.1  Overview
1438  *
1439  *   Called to suspend the specified enabled probe.  This entry point is for
1440  *   providers that may need to suspend some or all of their probes when CPUs
1441  *   are being powered on or when the boot monitor is being entered for a
1442  *   prolonged period of time.
1443  *
1444  * 1.6.2  Arguments and notes
1445  *
1446  *   The first argument is the cookie as passed to dtrace_register().  The
1447  *   second argument is the identifier of the probe to be suspended.  The
1448  *   third argument is the probe argument as passed to dtrace_probe_create().
1449  *   dtps_suspend will only be called on an enabled probe.  Providers that
1450  *   provide a dtps_suspend entry point will want to take roughly the action
1451  *   that it takes for dtps_disable.
1452  *
1453  * 1.6.3  Return value
1454  *
1455  *   None.
1456  *
1457  * 1.6.4  Caller's context
1458  *
1459  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1460  *   specified probe cannot be disabled or destroyed for the duration of
1461  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1462  *   little latitude; the provider is expected to do no more than a store to
1463  *   memory.
1464  *
1465  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1466  *
1467  * 1.7.1  Overview
1468  *
1469  *   Called to resume the specified enabled probe.  This entry point is for
1470  *   providers that may need to resume some or all of their probes after the
1471  *   completion of an event that induced a call to dtps_suspend().
1472  *
1473  * 1.7.2  Arguments and notes
1474  *
1475  *   The first argument is the cookie as passed to dtrace_register().  The
1476  *   second argument is the identifier of the probe to be resumed.  The
1477  *   third argument is the probe argument as passed to dtrace_probe_create().
1478  *   dtps_resume will only be called on an enabled probe.  Providers that
1479  *   provide a dtps_resume entry point will want to take roughly the action
1480  *   that it takes for dtps_enable.
1481  *
1482  * 1.7.3  Return value
1483  *
1484  *   None.
1485  *
1486  * 1.7.4  Caller's context
1487  *
1488  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1489  *   specified probe cannot be disabled or destroyed for the duration of
1490  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1491  *   little latitude; the provider is expected to do no more than a store to
1492  *   memory.
1493  *
1494  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1495  *           dtrace_argdesc_t *desc)
1496  *
1497  * 1.8.1  Overview
1498  *
1499  *   Called to retrieve the argument description for an args[X] variable.
1500  *
1501  * 1.8.2  Arguments and notes
1502  *
1503  *   The first argument is the cookie as passed to dtrace_register(). The
1504  *   second argument is the identifier of the current probe. The third
1505  *   argument is the probe argument as passed to dtrace_probe_create(). The
1506  *   fourth argument is a pointer to the argument description.  This
1507  *   description is both an input and output parameter:  it contains the
1508  *   index of the desired argument in the dtargd_ndx field, and expects
1509  *   the other fields to be filled in upon return.  If there is no argument
1510  *   corresponding to the specified index, the dtargd_ndx field should be set
1511  *   to DTRACE_ARGNONE.
1512  *
1513  * 1.8.3  Return value
1514  *
1515  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1516  *   members of the dtrace_argdesc_t structure are all output values.
1517  *
1518  * 1.8.4  Caller's context
1519  *
1520  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1521  *   the DTrace framework is locked in such a way that providers may not
1522  *   register or unregister.  This means that the provider may not call any
1523  *   DTrace API that affects its registration with the framework, including
1524  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1525  *   dtrace_condense().
1526  *
1527  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1528  *               int argno, int aframes)
1529  *
1530  * 1.9.1  Overview
1531  *
1532  *   Called to retrieve a value for an argX or args[X] variable.
1533  *
1534  * 1.9.2  Arguments and notes
1535  *
1536  *   The first argument is the cookie as passed to dtrace_register(). The
1537  *   second argument is the identifier of the current probe. The third
1538  *   argument is the probe argument as passed to dtrace_probe_create(). The
1539  *   fourth argument is the number of the argument (the X in the example in
1540  *   1.9.1). The fifth argument is the number of stack frames that were used
1541  *   to get from the actual place in the code that fired the probe to
1542  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1543  *   be used to descend an appropriate number of frames to find the correct
1544  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1545  *   function is used.
1546  *
1547  * 1.9.3  Return value
1548  *
1549  *   The value of the argument.
1550  *
1551  * 1.9.4  Caller's context
1552  *
1553  *   This is called from within dtrace_probe() meaning that interrupts
1554  *   are disabled. No locks should be taken within this entry point.
1555  *
1556  * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1557  *
1558  * 1.10.1  Overview
1559  *
1560  *   Called to determine if the probe was fired in a user context.
1561  *
1562  * 1.10.2  Arguments and notes
1563  *
1564  *   The first argument is the cookie as passed to dtrace_register(). The
1565  *   second argument is the identifier of the current probe. The third
1566  *   argument is the probe argument as passed to dtrace_probe_create().  This
1567  *   entry point must not be left NULL for providers whose probes allow for
1568  *   mixed mode tracing, that is to say those probes that can fire during
1569  *   kernel- _or_ user-mode execution
1570  *
1571  * 1.10.3  Return value
1572  *
1573  *   A boolean value.
1574  *
1575  * 1.10.4  Caller's context
1576  *
1577  *   This is called from within dtrace_probe() meaning that interrupts
1578  *   are disabled. No locks should be taken within this entry point.
1579  *
1580  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1581  *
1582  * 1.11.1 Overview
1583  *
1584  *   Called to destroy the specified probe.
1585  *
1586  * 1.11.2 Arguments and notes
1587  *
1588  *   The first argument is the cookie as passed to dtrace_register().  The
1589  *   second argument is the identifier of the probe to be destroyed.  The third
1590  *   argument is the probe argument as passed to dtrace_probe_create().  The
1591  *   provider should free all state associated with the probe.  The framework
1592  *   guarantees that dtps_destroy() is only called for probes that have either
1593  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1594  *   Once dtps_disable() has been called for a probe, no further call will be
1595  *   made specifying the probe.
1596  *
1597  * 1.11.3 Return value
1598  *
1599  *   None.
1600  *
1601  * 1.11.4 Caller's context
1602  *
1603  *   The DTrace framework is locked in such a way that it may not be called
1604  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1605  *   acquired.
1606  *
1607  *
1608  * 2 Provider-to-Framework API
1609  *
1610  * 2.1  Overview
1611  *
1612  * The Provider-to-Framework API provides the mechanism for the provider to
1613  * register itself with the DTrace framework, to create probes, to lookup
1614  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1615  * consists of:
1616  *
1617  *   dtrace_register()       <-- Register a provider with the DTrace framework
1618  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1619  *   dtrace_invalidate()     <-- Invalidate the specified provider
1620  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1621  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1622  *   dtrace_probe_create()   <-- Create a DTrace probe
1623  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1624  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1625  *   dtrace_probe()          <-- Fire the specified probe
1626  *
1627  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1628  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1629  *          dtrace_provider_id_t *idp)
1630  *
1631  * 2.2.1  Overview
1632  *
1633  *   dtrace_register() registers the calling provider with the DTrace
1634  *   framework.  It should generally be called by DTrace providers in their
1635  *   attach(9E) entry point.
1636  *
1637  * 2.2.2  Arguments and Notes
1638  *
1639  *   The first argument is the name of the provider.  The second argument is a
1640  *   pointer to the stability attributes for the provider.  The third argument
1641  *   is the privilege flags for the provider, and must be some combination of:
1642  *
1643  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1644  *
1645  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1646  *                             enable probes from this provider
1647  *
1648  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1649  *                             enable probes from this provider
1650  *
1651  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1652  *                             may enable probes from this provider
1653  *
1654  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1655  *                             the privilege requirements above. These probes
1656  *                             require either (a) a user ID matching the user
1657  *                             ID of the cred passed in the fourth argument
1658  *                             or (b) the PRIV_PROC_OWNER privilege.
1659  *
1660  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1661  *                             the privilege requirements above. These probes
1662  *                             require either (a) a zone ID matching the zone
1663  *                             ID of the cred passed in the fourth argument
1664  *                             or (b) the PRIV_PROC_ZONE privilege.
1665  *
1666  *   Note that these flags designate the _visibility_ of the probes, not
1667  *   the conditions under which they may or may not fire.
1668  *
1669  *   The fourth argument is the credential that is associated with the
1670  *   provider.  This argument should be NULL if the privilege flags don't
1671  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1672  *   framework stashes the uid and zoneid represented by this credential
1673  *   for use at probe-time, in implicit predicates.  These limit visibility
1674  *   of the probes to users and/or zones which have sufficient privilege to
1675  *   access them.
1676  *
1677  *   The fifth argument is a DTrace provider operations vector, which provides
1678  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1679  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1680  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1681  *   members (if the provider so desires, _one_ of these members may be left
1682  *   NULL -- denoting that the provider only implements the other) and (2)
1683  *   the dtps_suspend() and dtps_resume() members, which must either both be
1684  *   NULL or both be non-NULL.
1685  *
1686  *   The sixth argument is a cookie to be specified as the first argument for
1687  *   each function in the Framework-to-Provider API.  This argument may have
1688  *   any value.
1689  *
1690  *   The final argument is a pointer to dtrace_provider_id_t.  If
1691  *   dtrace_register() successfully completes, the provider identifier will be
1692  *   stored in the memory pointed to be this argument.  This argument must be
1693  *   non-NULL.
1694  *
1695  * 2.2.3  Return value
1696  *
1697  *   On success, dtrace_register() returns 0 and stores the new provider's
1698  *   identifier into the memory pointed to by the idp argument.  On failure,
1699  *   dtrace_register() returns an errno:
1700  *
1701  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1702  *              This may because a parameter that must be non-NULL was NULL,
1703  *              because the name was invalid (either empty or an illegal
1704  *              provider name) or because the attributes were invalid.
1705  *
1706  *   No other failure code is returned.
1707  *
1708  * 2.2.4  Caller's context
1709  *
1710  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1711  *   hold no locks across dtrace_register() that may also be acquired by
1712  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1713  *
1714  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1715  *
1716  * 2.3.1  Overview
1717  *
1718  *   Unregisters the specified provider from the DTrace framework.  It should
1719  *   generally be called by DTrace providers in their detach(9E) entry point.
1720  *
1721  * 2.3.2  Arguments and Notes
1722  *
1723  *   The only argument is the provider identifier, as returned from a
1724  *   successful call to dtrace_register().  As a result of calling
1725  *   dtrace_unregister(), the DTrace framework will call back into the provider
1726  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1727  *   completes, however, the DTrace framework will no longer make calls through
1728  *   the Framework-to-Provider API.
1729  *
1730  * 2.3.3  Return value
1731  *
1732  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1733  *   returns an errno:
1734  *
1735  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1736  *              open, or there exists an anonymous enabling that hasn't yet
1737  *              been claimed.
1738  *
1739  *   No other failure code is returned.
1740  *
1741  * 2.3.4  Caller's context
1742  *
1743  *   Because a call to dtrace_unregister() may induce calls through the
1744  *   Framework-to-Provider API, the caller may not hold any lock across
1745  *   dtrace_register() that is also acquired in any of the Framework-to-
1746  *   Provider API functions.  Additionally, mod_lock may not be held.
1747  *
1748  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1749  *
1750  * 2.4.1  Overview
1751  *
1752  *   Invalidates the specified provider.  All subsequent probe lookups for the
1753  *   specified provider will fail, but its probes will not be removed.
1754  *
1755  * 2.4.2  Arguments and note
1756  *
1757  *   The only argument is the provider identifier, as returned from a
1758  *   successful call to dtrace_register().  In general, a provider's probes
1759  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1760  *   an entire provider, regardless of whether or not probes are enabled or
1761  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1762  *   probes from firing -- it will merely prevent any new enablings of the
1763  *   provider's probes.
1764  *
1765  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1766  *
1767  * 2.5.1  Overview
1768  *
1769  *   Removes all the unenabled probes for the given provider. This function is
1770  *   not unlike dtrace_unregister(), except that it doesn't remove the
1771  *   provider just as many of its associated probes as it can.
1772  *
1773  * 2.5.2  Arguments and Notes
1774  *
1775  *   As with dtrace_unregister(), the sole argument is the provider identifier
1776  *   as returned from a successful call to dtrace_register().  As a result of
1777  *   calling dtrace_condense(), the DTrace framework will call back into the
1778  *   given provider's dtps_destroy() entry point for each of the provider's
1779  *   unenabled probes.
1780  *
1781  * 2.5.3  Return value
1782  *
1783  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1784  *   function should check the return value as appropriate; its behavior may
1785  *   change in the future.
1786  *
1787  * 2.5.4  Caller's context
1788  *
1789  *   As with dtrace_unregister(), the caller may not hold any lock across
1790  *   dtrace_condense() that is also acquired in the provider's entry points.
1791  *   Also, mod_lock may not be held.
1792  *
1793  * 2.6 int dtrace_attached()
1794  *
1795  * 2.6.1  Overview
1796  *
1797  *   Indicates whether or not DTrace has attached.
1798  *
1799  * 2.6.2  Arguments and Notes
1800  *
1801  *   For most providers, DTrace makes initial contact beyond registration.
1802  *   That is, once a provider has registered with DTrace, it waits to hear
1803  *   from DTrace to create probes.  However, some providers may wish to
1804  *   proactively create probes without first being told by DTrace to do so.
1805  *   If providers wish to do this, they must first call dtrace_attached() to
1806  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1807  *   the provider must not make any other Provider-to-Framework API call.
1808  *
1809  * 2.6.3  Return value
1810  *
1811  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1812  *
1813  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1814  *	    const char *func, const char *name, int aframes, void *arg)
1815  *
1816  * 2.7.1  Overview
1817  *
1818  *   Creates a probe with specified module name, function name, and name.
1819  *
1820  * 2.7.2  Arguments and Notes
1821  *
1822  *   The first argument is the provider identifier, as returned from a
1823  *   successful call to dtrace_register().  The second, third, and fourth
1824  *   arguments are the module name, function name, and probe name,
1825  *   respectively.  Of these, module name and function name may both be NULL
1826  *   (in which case the probe is considered to be unanchored), or they may both
1827  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1828  *   string.
1829  *
1830  *   The fifth argument is the number of artificial stack frames that will be
1831  *   found on the stack when dtrace_probe() is called for the new probe.  These
1832  *   artificial frames will be automatically be pruned should the stack() or
1833  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1834  *   the parameter doesn't add an artificial frame, this parameter should be
1835  *   zero.
1836  *
1837  *   The final argument is a probe argument that will be passed back to the
1838  *   provider when a probe-specific operation is called.  (e.g., via
1839  *   dtps_enable(), dtps_disable(), etc.)
1840  *
1841  *   Note that it is up to the provider to be sure that the probe that it
1842  *   creates does not already exist -- if the provider is unsure of the probe's
1843  *   existence, it should assure its absence with dtrace_probe_lookup() before
1844  *   calling dtrace_probe_create().
1845  *
1846  * 2.7.3  Return value
1847  *
1848  *   dtrace_probe_create() always succeeds, and always returns the identifier
1849  *   of the newly-created probe.
1850  *
1851  * 2.7.4  Caller's context
1852  *
1853  *   While dtrace_probe_create() is generally expected to be called from
1854  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1855  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1856  *
1857  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1858  *	    const char *func, const char *name)
1859  *
1860  * 2.8.1  Overview
1861  *
1862  *   Looks up a probe based on provdider and one or more of module name,
1863  *   function name and probe name.
1864  *
1865  * 2.8.2  Arguments and Notes
1866  *
1867  *   The first argument is the provider identifier, as returned from a
1868  *   successful call to dtrace_register().  The second, third, and fourth
1869  *   arguments are the module name, function name, and probe name,
1870  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1871  *   the identifier of the first probe that is provided by the specified
1872  *   provider and matches all of the non-NULL matching criteria.
1873  *   dtrace_probe_lookup() is generally used by a provider to be check the
1874  *   existence of a probe before creating it with dtrace_probe_create().
1875  *
1876  * 2.8.3  Return value
1877  *
1878  *   If the probe exists, returns its identifier.  If the probe does not exist,
1879  *   return DTRACE_IDNONE.
1880  *
1881  * 2.8.4  Caller's context
1882  *
1883  *   While dtrace_probe_lookup() is generally expected to be called from
1884  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1885  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1886  *
1887  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1888  *
1889  * 2.9.1  Overview
1890  *
1891  *   Returns the probe argument associated with the specified probe.
1892  *
1893  * 2.9.2  Arguments and Notes
1894  *
1895  *   The first argument is the provider identifier, as returned from a
1896  *   successful call to dtrace_register().  The second argument is a probe
1897  *   identifier, as returned from dtrace_probe_lookup() or
1898  *   dtrace_probe_create().  This is useful if a probe has multiple
1899  *   provider-specific components to it:  the provider can create the probe
1900  *   once with provider-specific state, and then add to the state by looking
1901  *   up the probe based on probe identifier.
1902  *
1903  * 2.9.3  Return value
1904  *
1905  *   Returns the argument associated with the specified probe.  If the
1906  *   specified probe does not exist, or if the specified probe is not provided
1907  *   by the specified provider, NULL is returned.
1908  *
1909  * 2.9.4  Caller's context
1910  *
1911  *   While dtrace_probe_arg() is generally expected to be called from
1912  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1913  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1914  *
1915  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1916  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1917  *
1918  * 2.10.1  Overview
1919  *
1920  *   The epicenter of DTrace:  fires the specified probes with the specified
1921  *   arguments.
1922  *
1923  * 2.10.2  Arguments and Notes
1924  *
1925  *   The first argument is a probe identifier as returned by
1926  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
1927  *   arguments are the values to which the D variables "arg0" through "arg4"
1928  *   will be mapped.
1929  *
1930  *   dtrace_probe() should be called whenever the specified probe has fired --
1931  *   however the provider defines it.
1932  *
1933  * 2.10.3  Return value
1934  *
1935  *   None.
1936  *
1937  * 2.10.4  Caller's context
1938  *
1939  *   dtrace_probe() may be called in virtually any context:  kernel, user,
1940  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
1941  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
1942  *   that must be afforded to DTrace is the ability to make calls within
1943  *   itself (and to its in-kernel subroutines) and the ability to access
1944  *   arbitrary (but mapped) memory.  On some platforms, this constrains
1945  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
1946  *   from any context in which TL is greater than zero.  dtrace_probe() may
1947  *   also not be called from any routine which may be called by dtrace_probe()
1948  *   -- which includes functions in the DTrace framework and some in-kernel
1949  *   DTrace subroutines.  All such functions "dtrace_"; providers that
1950  *   instrument the kernel arbitrarily should be sure to not instrument these
1951  *   routines.
1952  */
1953 typedef struct dtrace_pops {
1954 	void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
1955 	void (*dtps_provide_module)(void *arg, struct modctl *mp);
1956 	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
1957 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
1958 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
1959 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
1960 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
1961 	    dtrace_argdesc_t *desc);
1962 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
1963 	    int argno, int aframes);
1964 	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
1965 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
1966 } dtrace_pops_t;
1967 
1968 typedef uintptr_t	dtrace_provider_id_t;
1969 
1970 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
1971     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
1972 extern int dtrace_unregister(dtrace_provider_id_t);
1973 extern int dtrace_condense(dtrace_provider_id_t);
1974 extern void dtrace_invalidate(dtrace_provider_id_t);
1975 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
1976     const char *, const char *);
1977 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
1978     const char *, const char *, int, void *);
1979 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
1980 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
1981     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
1982 
1983 /*
1984  * DTrace Meta Provider API
1985  *
1986  * The following functions are implemented by the DTrace framework and are
1987  * used to implement meta providers. Meta providers plug into the DTrace
1988  * framework and are used to instantiate new providers on the fly. At
1989  * present, there is only one type of meta provider and only one meta
1990  * provider may be registered with the DTrace framework at a time. The
1991  * sole meta provider type provides user-land static tracing facilities
1992  * by taking meta probe descriptions and adding a corresponding provider
1993  * into the DTrace framework.
1994  *
1995  * 1 Framework-to-Provider
1996  *
1997  * 1.1 Overview
1998  *
1999  * The Framework-to-Provider API is represented by the dtrace_mops structure
2000  * that the meta provider passes to the framework when registering itself as
2001  * a meta provider. This structure consists of the following members:
2002  *
2003  *   dtms_create_probe()	<-- Add a new probe to a created provider
2004  *   dtms_provide_pid()		<-- Create a new provider for a given process
2005  *   dtms_remove_pid()		<-- Remove a previously created provider
2006  *
2007  * 1.2  void dtms_create_probe(void *arg, void *parg,
2008  *           dtrace_helper_probedesc_t *probedesc);
2009  *
2010  * 1.2.1  Overview
2011  *
2012  *   Called by the DTrace framework to create a new probe in a provider
2013  *   created by this meta provider.
2014  *
2015  * 1.2.2  Arguments and notes
2016  *
2017  *   The first argument is the cookie as passed to dtrace_meta_register().
2018  *   The second argument is the provider cookie for the associated provider;
2019  *   this is obtained from the return value of dtms_provide_pid(). The third
2020  *   argument is the helper probe description.
2021  *
2022  * 1.2.3  Return value
2023  *
2024  *   None
2025  *
2026  * 1.2.4  Caller's context
2027  *
2028  *   dtms_create_probe() is called from either ioctl() or module load context.
2029  *   The DTrace framework is locked in such a way that meta providers may not
2030  *   register or unregister. This means that the meta provider cannot call
2031  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2032  *   such that the provider may (and is expected to) call provider-related
2033  *   DTrace provider APIs including dtrace_probe_create().
2034  *
2035  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2036  *	      pid_t pid)
2037  *
2038  * 1.3.1  Overview
2039  *
2040  *   Called by the DTrace framework to instantiate a new provider given the
2041  *   description of the provider and probes in the mprov argument. The
2042  *   meta provider should call dtrace_register() to insert the new provider
2043  *   into the DTrace framework.
2044  *
2045  * 1.3.2  Arguments and notes
2046  *
2047  *   The first argument is the cookie as passed to dtrace_meta_register().
2048  *   The second argument is a pointer to a structure describing the new
2049  *   helper provider. The third argument is the process identifier for
2050  *   process associated with this new provider. Note that the name of the
2051  *   provider as passed to dtrace_register() should be the contatenation of
2052  *   the dtmpb_provname member of the mprov argument and the processs
2053  *   identifier as a string.
2054  *
2055  * 1.3.3  Return value
2056  *
2057  *   The cookie for the provider that the meta provider creates. This is
2058  *   the same value that it passed to dtrace_register().
2059  *
2060  * 1.3.4  Caller's context
2061  *
2062  *   dtms_provide_pid() is called from either ioctl() or module load context.
2063  *   The DTrace framework is locked in such a way that meta providers may not
2064  *   register or unregister. This means that the meta provider cannot call
2065  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2066  *   is such that the provider may -- and is expected to --  call
2067  *   provider-related DTrace provider APIs including dtrace_register().
2068  *
2069  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2070  *	     pid_t pid)
2071  *
2072  * 1.4.1  Overview
2073  *
2074  *   Called by the DTrace framework to remove a provider that had previously
2075  *   been instantiated via the dtms_provide_pid() entry point. The meta
2076  *   provider need not remove the provider immediately, but this entry
2077  *   point indicates that the provider should be removed as soon as possible
2078  *   using the dtrace_unregister() API.
2079  *
2080  * 1.4.2  Arguments and notes
2081  *
2082  *   The first argument is the cookie as passed to dtrace_meta_register().
2083  *   The second argument is a pointer to a structure describing the helper
2084  *   provider. The third argument is the process identifier for process
2085  *   associated with this new provider.
2086  *
2087  * 1.4.3  Return value
2088  *
2089  *   None
2090  *
2091  * 1.4.4  Caller's context
2092  *
2093  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2094  *   The DTrace framework is locked in such a way that meta providers may not
2095  *   register or unregister. This means that the meta provider cannot call
2096  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2097  *   is such that the provider may -- and is expected to -- call
2098  *   provider-related DTrace provider APIs including dtrace_unregister().
2099  */
2100 typedef struct dtrace_helper_probedesc {
2101 	char *dthpb_mod;			/* probe module */
2102 	char *dthpb_func; 			/* probe function */
2103 	char *dthpb_name; 			/* probe name */
2104 	uint64_t dthpb_base;			/* base address */
2105 	uint32_t *dthpb_offs;			/* offsets array */
2106 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2107 	uint32_t dthpb_noffs;			/* offsets count */
2108 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2109 	uint8_t *dthpb_args;			/* argument mapping array */
2110 	uint8_t dthpb_xargc;			/* translated argument count */
2111 	uint8_t dthpb_nargc;			/* native argument count */
2112 	char *dthpb_xtypes;			/* translated types strings */
2113 	char *dthpb_ntypes;			/* native types strings */
2114 } dtrace_helper_probedesc_t;
2115 
2116 typedef struct dtrace_helper_provdesc {
2117 	char *dthpv_provname;			/* provider name */
2118 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2119 } dtrace_helper_provdesc_t;
2120 
2121 typedef struct dtrace_mops {
2122 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2123 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2124 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2125 } dtrace_mops_t;
2126 
2127 typedef uintptr_t	dtrace_meta_provider_id_t;
2128 
2129 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2130     dtrace_meta_provider_id_t *);
2131 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2132 
2133 /*
2134  * DTrace Kernel Hooks
2135  *
2136  * The following functions are implemented by the base kernel and form a set of
2137  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2138  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2139  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2140  */
2141 
2142 typedef enum dtrace_vtime_state {
2143 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2144 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2145 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2146 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2147 } dtrace_vtime_state_t;
2148 
2149 extern dtrace_vtime_state_t dtrace_vtime_active;
2150 extern void dtrace_vtime_switch(kthread_t *next);
2151 extern void dtrace_vtime_enable_tnf(void);
2152 extern void dtrace_vtime_disable_tnf(void);
2153 extern void dtrace_vtime_enable(void);
2154 extern void dtrace_vtime_disable(void);
2155 
2156 struct regs;
2157 
2158 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2159 extern int (*dtrace_return_probe_ptr)(struct regs *);
2160 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2161 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2162 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2163 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2164 
2165 typedef uintptr_t dtrace_icookie_t;
2166 typedef void (*dtrace_xcall_t)(void *);
2167 
2168 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2169 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2170 
2171 extern void dtrace_membar_producer(void);
2172 extern void dtrace_membar_consumer(void);
2173 
2174 extern void (*dtrace_cpu_init)(processorid_t);
2175 extern void (*dtrace_modload)(struct modctl *);
2176 extern void (*dtrace_modunload)(struct modctl *);
2177 extern void (*dtrace_helpers_cleanup)();
2178 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2179 extern void (*dtrace_cpustart_init)();
2180 extern void (*dtrace_cpustart_fini)();
2181 
2182 extern void (*dtrace_kreloc_init)();
2183 extern void (*dtrace_kreloc_fini)();
2184 
2185 extern void (*dtrace_debugger_init)();
2186 extern void (*dtrace_debugger_fini)();
2187 extern dtrace_cacheid_t dtrace_predcache_id;
2188 
2189 extern hrtime_t dtrace_gethrtime(void);
2190 extern void dtrace_sync(void);
2191 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2192 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2193 extern void dtrace_vpanic(const char *, __va_list);
2194 extern void dtrace_panic(const char *, ...);
2195 
2196 extern int dtrace_safe_defer_signal(void);
2197 extern void dtrace_safe_synchronous_signal(void);
2198 
2199 extern int dtrace_mach_aframes(void);
2200 
2201 #if defined(__i386) || defined(__amd64)
2202 extern int dtrace_instr_size(uchar_t *instr);
2203 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2204 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2205 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2206 extern void dtrace_invop_callsite(void);
2207 #endif
2208 
2209 #ifdef __sparc
2210 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2211 extern void dtrace_getfsr(uint64_t *);
2212 #endif
2213 
2214 #define	DTRACE_CPUFLAG_ISSET(flag) \
2215 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2216 
2217 #define	DTRACE_CPUFLAG_SET(flag) \
2218 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2219 
2220 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2221 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2222 
2223 #endif /* _KERNEL */
2224 
2225 #endif	/* _ASM */
2226 
2227 #if defined(__i386) || defined(__amd64)
2228 
2229 #define	DTRACE_INVOP_PUSHL_EBP		1
2230 #define	DTRACE_INVOP_POPL_EBP		2
2231 #define	DTRACE_INVOP_LEAVE		3
2232 #define	DTRACE_INVOP_NOP		4
2233 #define	DTRACE_INVOP_RET		5
2234 
2235 #endif
2236 
2237 #ifdef	__cplusplus
2238 }
2239 #endif
2240 
2241 #endif	/* _SYS_DTRACE_H */
2242