1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright 2018 Joyent, Inc.
29 * Copyright (c) 2013 by Delphix. All rights reserved.
30 */
31
32#ifndef _SYS_DTRACE_H
33#define	_SYS_DTRACE_H
34
35#ifdef	__cplusplus
36extern "C" {
37#endif
38
39/*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice.  Applications and drivers using these interfaces will fail
45 * to run on future releases.  These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */
49
50#ifndef _ASM
51
52#include <sys/types.h>
53#include <sys/modctl.h>
54#include <sys/processor.h>
55#include <sys/systm.h>
56#include <sys/ctf_api.h>
57#include <sys/cyclic.h>
58#include <sys/int_limits.h>
59
60/*
61 * DTrace Universal Constants and Typedefs
62 */
63#define	DTRACE_CPUALL		-1	/* all CPUs */
64#define	DTRACE_IDNONE		0	/* invalid probe identifier */
65#define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
66#define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
67#define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
68#define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
69#define	DTRACE_PROVNONE		0	/* invalid provider identifier */
70#define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
71#define	DTRACE_ARGNONE		-1	/* invalid argument index */
72
73#define	DTRACE_PROVNAMELEN	64
74#define	DTRACE_MODNAMELEN	64
75#define	DTRACE_FUNCNAMELEN	128
76#define	DTRACE_NAMELEN		64
77#define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79#define	DTRACE_ARGTYPELEN	128
80
81typedef uint32_t dtrace_id_t;		/* probe identifier */
82typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
83typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
84typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
85typedef uint16_t dtrace_actkind_t;	/* action kind */
86typedef int64_t dtrace_optval_t;	/* option value */
87typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
88
89typedef enum dtrace_probespec {
90	DTRACE_PROBESPEC_NONE = -1,
91	DTRACE_PROBESPEC_PROVIDER = 0,
92	DTRACE_PROBESPEC_MOD,
93	DTRACE_PROBESPEC_FUNC,
94	DTRACE_PROBESPEC_NAME
95} dtrace_probespec_t;
96
97/*
98 * DTrace Intermediate Format (DIF)
99 *
100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 * a RISC-like instruction set and program encoding used to represent
102 * predicates and actions that can be bound to DTrace probes.  The constants
103 * below defining the number of available registers are suggested minimums; the
104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 * registers provided by the current DTrace implementation.
106 */
107#define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
108#define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
109#define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
110#define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
111#define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
112
113#define	DIF_OP_OR	1		/* or	r1, r2, rd */
114#define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
115#define	DIF_OP_AND	3		/* and	r1, r2, rd */
116#define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
117#define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
118#define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
119#define	DIF_OP_ADD	7		/* add	r1, r2, rd */
120#define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
121#define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
122#define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
123#define	DIF_OP_SREM	11		/* srem r1, r2, rd */
124#define	DIF_OP_UREM	12		/* urem r1, r2, rd */
125#define	DIF_OP_NOT	13		/* not	r1, rd */
126#define	DIF_OP_MOV	14		/* mov	r1, rd */
127#define	DIF_OP_CMP	15		/* cmp	r1, r2 */
128#define	DIF_OP_TST	16		/* tst  r1 */
129#define	DIF_OP_BA	17		/* ba	label */
130#define	DIF_OP_BE	18		/* be	label */
131#define	DIF_OP_BNE	19		/* bne	label */
132#define	DIF_OP_BG	20		/* bg	label */
133#define	DIF_OP_BGU	21		/* bgu	label */
134#define	DIF_OP_BGE	22		/* bge	label */
135#define	DIF_OP_BGEU	23		/* bgeu	label */
136#define	DIF_OP_BL	24		/* bl	label */
137#define	DIF_OP_BLU	25		/* blu	label */
138#define	DIF_OP_BLE	26		/* ble	label */
139#define	DIF_OP_BLEU	27		/* bleu	label */
140#define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
141#define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
142#define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
143#define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
144#define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
145#define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
146#define	DIF_OP_LDX	34		/* ldx	[r1], rd */
147#define	DIF_OP_RET	35		/* ret	rd */
148#define	DIF_OP_NOP	36		/* nop */
149#define	DIF_OP_SETX	37		/* setx	intindex, rd */
150#define	DIF_OP_SETS	38		/* sets strindex, rd */
151#define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
152#define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
153#define	DIF_OP_LDGS	41		/* ldgs var, rd */
154#define	DIF_OP_STGS	42		/* stgs var, rs */
155#define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
156#define	DIF_OP_LDTS	44		/* ldts var, rd */
157#define	DIF_OP_STTS	45		/* stts var, rs */
158#define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
159#define	DIF_OP_CALL	47		/* call	subr, rd */
160#define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
161#define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
162#define	DIF_OP_POPTS	50		/* popts */
163#define	DIF_OP_FLUSHTS	51		/* flushts */
164#define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
165#define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
166#define	DIF_OP_STGAA	54		/* stgaa var, rs */
167#define	DIF_OP_STTAA	55		/* sttaa var, rs */
168#define	DIF_OP_LDLS	56		/* ldls	var, rd */
169#define	DIF_OP_STLS	57		/* stls	var, rs */
170#define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
171#define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
172#define	DIF_OP_STB	60		/* stb	r1, [rd] */
173#define	DIF_OP_STH	61		/* sth	r1, [rd] */
174#define	DIF_OP_STW	62		/* stw	r1, [rd] */
175#define	DIF_OP_STX	63		/* stx	r1, [rd] */
176#define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
177#define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
178#define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
179#define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
180#define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
181#define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
182#define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
183#define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
184#define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
185#define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
186#define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
187#define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
188#define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
189#define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
190#define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
191#define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
192#define	DIF_OP_STGA	80		/* stga var, ri, rd */
193
194#define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
195#define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
196#define	DIF_REGISTER_MAX	0xff	/* highest register number */
197#define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
198#define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
199
200#define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
201#define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
202#define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
203
204#define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
205#define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
206#define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
207
208#define	DIF_VAR_ARGS		0x0000	/* arguments array */
209#define	DIF_VAR_REGS		0x0001	/* registers array */
210#define	DIF_VAR_UREGS		0x0002	/* user registers array */
211#define	DIF_VAR_VMREGS		0x0003	/* virtual machine registers array */
212#define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
213#define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
214#define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
215#define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
216#define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
217#define	DIF_VAR_ID		0x0105	/* probe ID */
218#define	DIF_VAR_ARG0		0x0106	/* first argument */
219#define	DIF_VAR_ARG1		0x0107	/* second argument */
220#define	DIF_VAR_ARG2		0x0108	/* third argument */
221#define	DIF_VAR_ARG3		0x0109	/* fourth argument */
222#define	DIF_VAR_ARG4		0x010a	/* fifth argument */
223#define	DIF_VAR_ARG5		0x010b	/* sixth argument */
224#define	DIF_VAR_ARG6		0x010c	/* seventh argument */
225#define	DIF_VAR_ARG7		0x010d	/* eighth argument */
226#define	DIF_VAR_ARG8		0x010e	/* ninth argument */
227#define	DIF_VAR_ARG9		0x010f	/* tenth argument */
228#define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
229#define	DIF_VAR_CALLER		0x0111	/* caller */
230#define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
231#define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
232#define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
233#define	DIF_VAR_PROBENAME	0x0115	/* probe name */
234#define	DIF_VAR_PID		0x0116	/* process ID */
235#define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
236#define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
237#define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
238#define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
239#define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
240#define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
241#define	DIF_VAR_PPID		0x011d	/* parent process ID */
242#define	DIF_VAR_UID		0x011e	/* process user ID */
243#define	DIF_VAR_GID		0x011f	/* process group ID */
244#define	DIF_VAR_ERRNO		0x0120	/* thread errno */
245#define	DIF_VAR_THREADNAME	0x0121	/* thread name */
246
247#define	DIF_SUBR_RAND			0
248#define	DIF_SUBR_MUTEX_OWNED		1
249#define	DIF_SUBR_MUTEX_OWNER		2
250#define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
251#define	DIF_SUBR_MUTEX_TYPE_SPIN	4
252#define	DIF_SUBR_RW_READ_HELD		5
253#define	DIF_SUBR_RW_WRITE_HELD		6
254#define	DIF_SUBR_RW_ISWRITER		7
255#define	DIF_SUBR_COPYIN			8
256#define	DIF_SUBR_COPYINSTR		9
257#define	DIF_SUBR_SPECULATION		10
258#define	DIF_SUBR_PROGENYOF		11
259#define	DIF_SUBR_STRLEN			12
260#define	DIF_SUBR_COPYOUT		13
261#define	DIF_SUBR_COPYOUTSTR		14
262#define	DIF_SUBR_ALLOCA			15
263#define	DIF_SUBR_BCOPY			16
264#define	DIF_SUBR_COPYINTO		17
265#define	DIF_SUBR_MSGDSIZE		18
266#define	DIF_SUBR_MSGSIZE		19
267#define	DIF_SUBR_GETMAJOR		20
268#define	DIF_SUBR_GETMINOR		21
269#define	DIF_SUBR_DDI_PATHNAME		22
270#define	DIF_SUBR_STRJOIN		23
271#define	DIF_SUBR_LLTOSTR		24
272#define	DIF_SUBR_BASENAME		25
273#define	DIF_SUBR_DIRNAME		26
274#define	DIF_SUBR_CLEANPATH		27
275#define	DIF_SUBR_STRCHR			28
276#define	DIF_SUBR_STRRCHR		29
277#define	DIF_SUBR_STRSTR			30
278#define	DIF_SUBR_STRTOK			31
279#define	DIF_SUBR_SUBSTR			32
280#define	DIF_SUBR_INDEX			33
281#define	DIF_SUBR_RINDEX			34
282#define	DIF_SUBR_HTONS			35
283#define	DIF_SUBR_HTONL			36
284#define	DIF_SUBR_HTONLL			37
285#define	DIF_SUBR_NTOHS			38
286#define	DIF_SUBR_NTOHL			39
287#define	DIF_SUBR_NTOHLL			40
288#define	DIF_SUBR_INET_NTOP		41
289#define	DIF_SUBR_INET_NTOA		42
290#define	DIF_SUBR_INET_NTOA6		43
291#define	DIF_SUBR_TOUPPER		44
292#define	DIF_SUBR_TOLOWER		45
293#define	DIF_SUBR_GETF			46
294#define	DIF_SUBR_JSON			47
295#define	DIF_SUBR_STRTOLL		48
296
297#define	DIF_SUBR_MAX			48	/* max subroutine value */
298
299typedef uint32_t dif_instr_t;
300
301#define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
302#define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
303#define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
304#define	DIF_INSTR_RD(i)			((i) & 0xff)
305#define	DIF_INSTR_RS(i)			((i) & 0xff)
306#define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
307#define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
308#define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
309#define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
310#define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
311#define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
312#define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
313
314#define	DIF_INSTR_FMT(op, r1, r2, d) \
315	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
316
317#define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
318#define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
319#define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
320#define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
321#define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
322#define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
323#define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
324#define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
325#define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
326#define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
327#define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
328#define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
329#define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
330#define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
331#define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
332#define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
333#define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
334#define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
335#define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
336#define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
337#define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
338
339#define	DIF_REG_R0	0		/* %r0 is always set to zero */
340
341/*
342 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
343 * of variables, function and associative array arguments, and the return type
344 * for each DIF object (shown below).  It contains a description of the type,
345 * its size in bytes, and a module identifier.
346 */
347typedef struct dtrace_diftype {
348	uint8_t dtdt_kind;		/* type kind (see below) */
349	uint8_t dtdt_ckind;		/* type kind in CTF */
350	uint8_t dtdt_flags;		/* type flags (see below) */
351	uint8_t dtdt_pad;		/* reserved for future use */
352	uint32_t dtdt_size;		/* type size in bytes (unless string) */
353} dtrace_diftype_t;
354
355#define	DIF_TYPE_CTF		0	/* type is a CTF type */
356#define	DIF_TYPE_STRING		1	/* type is a D string */
357
358#define	DIF_TF_BYREF		0x1	/* type is passed by reference */
359#define	DIF_TF_BYUREF		0x2	/* user type is passed by reference */
360
361/*
362 * A DTrace Intermediate Format variable record is used to describe each of the
363 * variables referenced by a given DIF object.  It contains an integer variable
364 * identifier along with variable scope and properties, as shown below.  The
365 * size of this structure must be sizeof (int) aligned.
366 */
367typedef struct dtrace_difv {
368	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
369	uint32_t dtdv_id;		/* variable reference identifier */
370	uint8_t dtdv_kind;		/* variable kind (see below) */
371	uint8_t dtdv_scope;		/* variable scope (see below) */
372	uint16_t dtdv_flags;		/* variable flags (see below) */
373	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
374} dtrace_difv_t;
375
376#define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
377#define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
378
379#define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
380#define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
381#define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
382
383#define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
384#define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
385
386/*
387 * DTrace Actions
388 *
389 * The upper byte determines the class of the action; the low bytes determines
390 * the specific action within that class.  The classes of actions are as
391 * follows:
392 *
393 *   [ no class ]                  <= May record process- or kernel-related data
394 *   DTRACEACT_PROC                <= Only records process-related data
395 *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
396 *   DTRACEACT_KERNEL              <= Only records kernel-related data
397 *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
398 *   DTRACEACT_SPECULATIVE         <= Speculation-related action
399 *   DTRACEACT_AGGREGATION         <= Aggregating action
400 */
401#define	DTRACEACT_NONE			0	/* no action */
402#define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
403#define	DTRACEACT_EXIT			2	/* exit() action */
404#define	DTRACEACT_PRINTF		3	/* printf() action */
405#define	DTRACEACT_PRINTA		4	/* printa() action */
406#define	DTRACEACT_LIBACT		5	/* library-controlled action */
407#define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
408#define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
409
410#define	DTRACEACT_PROC			0x0100
411#define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
412#define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
413#define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
414#define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
415#define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
416
417#define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
418#define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
419#define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
420#define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
421#define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
422
423#define	DTRACEACT_PROC_CONTROL		0x0300
424
425#define	DTRACEACT_KERNEL		0x0400
426#define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
427#define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
428#define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
429
430#define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
431#define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
432#define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
433#define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
434
435#define	DTRACEACT_SPECULATIVE		0x0600
436#define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
437#define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
438#define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
439
440#define	DTRACEACT_CLASS(x)		((x) & 0xff00)
441
442#define	DTRACEACT_ISDESTRUCTIVE(x)	\
443	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
444	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
445
446#define	DTRACEACT_ISSPECULATIVE(x)	\
447	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
448
449#define	DTRACEACT_ISPRINTFLIKE(x)	\
450	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
451	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
452
453/*
454 * DTrace Aggregating Actions
455 *
456 * These are functions f(x) for which the following is true:
457 *
458 *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
459 *
460 * where x_n is a set of arbitrary data.  Aggregating actions are in their own
461 * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
462 * for easier processing of the aggregation argument and data payload for a few
463 * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
464 */
465#define	DTRACEACT_AGGREGATION		0x0700
466#define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
467#define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
468#define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
469#define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
470#define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
471#define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
472#define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
473#define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
474#define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
475
476#define	DTRACEACT_ISAGG(x)		\
477	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
478
479#define	DTRACE_QUANTIZE_NBUCKETS	\
480	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
481
482#define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
483
484#define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
485	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
486	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
487	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
488	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
489
490#define	DTRACE_LQUANTIZE_STEPSHIFT		48
491#define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
492#define	DTRACE_LQUANTIZE_LEVELSHIFT		32
493#define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
494#define	DTRACE_LQUANTIZE_BASESHIFT		0
495#define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
496
497#define	DTRACE_LQUANTIZE_STEP(x)		\
498	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
499	DTRACE_LQUANTIZE_STEPSHIFT)
500
501#define	DTRACE_LQUANTIZE_LEVELS(x)		\
502	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
503	DTRACE_LQUANTIZE_LEVELSHIFT)
504
505#define	DTRACE_LQUANTIZE_BASE(x)		\
506	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
507	DTRACE_LQUANTIZE_BASESHIFT)
508
509#define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
510#define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
511#define	DTRACE_LLQUANTIZE_LOWSHIFT		32
512#define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
513#define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
514#define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
515#define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
516#define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
517
518#define	DTRACE_LLQUANTIZE_FACTOR(x)		\
519	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
520	DTRACE_LLQUANTIZE_FACTORSHIFT)
521
522#define	DTRACE_LLQUANTIZE_LOW(x)		\
523	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
524	DTRACE_LLQUANTIZE_LOWSHIFT)
525
526#define	DTRACE_LLQUANTIZE_HIGH(x)		\
527	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
528	DTRACE_LLQUANTIZE_HIGHSHIFT)
529
530#define	DTRACE_LLQUANTIZE_NSTEP(x)		\
531	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
532	DTRACE_LLQUANTIZE_NSTEPSHIFT)
533
534#define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
535#define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
536#define	DTRACE_USTACK_ARG(x, y)		\
537	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
538
539#ifndef _LP64
540#ifndef _LITTLE_ENDIAN
541#define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
542#else
543#define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
544#endif
545#else
546#define	DTRACE_PTR(type, name)	type *name
547#endif
548
549/*
550 * DTrace Object Format (DOF)
551 *
552 * DTrace programs can be persistently encoded in the DOF format so that they
553 * may be embedded in other programs (for example, in an ELF file) or in the
554 * dtrace driver configuration file for use in anonymous tracing.  The DOF
555 * format is versioned and extensible so that it can be revised and so that
556 * internal data structures can be modified or extended compatibly.  All DOF
557 * structures use fixed-size types, so the 32-bit and 64-bit representations
558 * are identical and consumers can use either data model transparently.
559 *
560 * The file layout is structured as follows:
561 *
562 * +---------------+-------------------+----- ... ----+---- ... ------+
563 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
564 * | (file header) | (section headers) | section data | section data  |
565 * +---------------+-------------------+----- ... ----+---- ... ------+
566 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
567 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
568 *
569 * The file header stores meta-data including a magic number, data model for
570 * the instrumentation, data encoding, and properties of the DIF code within.
571 * The header describes its own size and the size of the section headers.  By
572 * convention, an array of section headers follows the file header, and then
573 * the data for all loadable sections and unloadable sections.  This permits
574 * consumer code to easily download the headers and all loadable data into the
575 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
576 *
577 * The section headers describe the size, offset, alignment, and section type
578 * for each section.  Sections are described using a set of #defines that tell
579 * the consumer what kind of data is expected.  Sections can contain links to
580 * other sections by storing a dof_secidx_t, an index into the section header
581 * array, inside of the section data structures.  The section header includes
582 * an entry size so that sections with data arrays can grow their structures.
583 *
584 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
585 * are represented themselves as a collection of related DOF sections.  This
586 * permits us to change the set of sections associated with a DIFO over time,
587 * and also permits us to encode DIFOs that contain different sets of sections.
588 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
589 * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
590 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
591 *
592 * This loose coupling of the file structure (header and sections) to the
593 * structure of the DTrace program itself (ECB descriptions, action
594 * descriptions, and DIFOs) permits activities such as relocation processing
595 * to occur in a single pass without having to understand D program structure.
596 *
597 * Finally, strings are always stored in ELF-style string tables along with a
598 * string table section index and string table offset.  Therefore strings in
599 * DOF are always arbitrary-length and not bound to the current implementation.
600 */
601
602#define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
603
604typedef struct dof_hdr {
605	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
606	uint32_t dofh_flags;		/* file attribute flags (if any) */
607	uint32_t dofh_hdrsize;		/* size of file header in bytes */
608	uint32_t dofh_secsize;		/* size of section header in bytes */
609	uint32_t dofh_secnum;		/* number of section headers */
610	uint64_t dofh_secoff;		/* file offset of section headers */
611	uint64_t dofh_loadsz;		/* file size of loadable portion */
612	uint64_t dofh_filesz;		/* file size of entire DOF file */
613	uint64_t dofh_pad;		/* reserved for future use */
614} dof_hdr_t;
615
616#define	DOF_ID_MAG0	0	/* first byte of magic number */
617#define	DOF_ID_MAG1	1	/* second byte of magic number */
618#define	DOF_ID_MAG2	2	/* third byte of magic number */
619#define	DOF_ID_MAG3	3	/* fourth byte of magic number */
620#define	DOF_ID_MODEL	4	/* DOF data model (see below) */
621#define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
622#define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
623#define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
624#define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
625#define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
626#define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
627
628#define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
629#define	DOF_MAG_MAG1	'D'
630#define	DOF_MAG_MAG2	'O'
631#define	DOF_MAG_MAG3	'F'
632
633#define	DOF_MAG_STRING	"\177DOF"
634#define	DOF_MAG_STRLEN	4
635
636#define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
637#define	DOF_MODEL_ILP32	1
638#define	DOF_MODEL_LP64	2
639
640#ifdef _LP64
641#define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
642#else
643#define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
644#endif
645
646#define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
647#define	DOF_ENCODE_LSB	1
648#define	DOF_ENCODE_MSB	2
649
650#ifdef _BIG_ENDIAN
651#define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
652#else
653#define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
654#endif
655
656#define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
657#define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
658#define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
659
660#define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
661
662typedef uint32_t dof_secidx_t;	/* section header table index type */
663typedef uint32_t dof_stridx_t;	/* string table index type */
664
665#define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
666#define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
667
668typedef struct dof_sec {
669	uint32_t dofs_type;	/* section type (see below) */
670	uint32_t dofs_align;	/* section data memory alignment */
671	uint32_t dofs_flags;	/* section flags (if any) */
672	uint32_t dofs_entsize;	/* size of section entry (if table) */
673	uint64_t dofs_offset;	/* offset of section data within file */
674	uint64_t dofs_size;	/* size of section data in bytes */
675} dof_sec_t;
676
677#define	DOF_SECT_NONE		0	/* null section */
678#define	DOF_SECT_COMMENTS	1	/* compiler comments */
679#define	DOF_SECT_SOURCE		2	/* D program source code */
680#define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
681#define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
682#define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
683#define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
684#define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
685#define	DOF_SECT_STRTAB		8	/* string table */
686#define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
687#define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
688#define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
689#define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
690#define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
691#define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
692#define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
693#define	DOF_SECT_PROBES		16	/* dof_probe_t array */
694#define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
695#define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
696#define	DOF_SECT_INTTAB		19	/* uint64_t array */
697#define	DOF_SECT_UTSNAME	20	/* struct utsname */
698#define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
699#define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
700#define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
701#define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
702#define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
703#define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
704
705#define	DOF_SECF_LOAD		1	/* section should be loaded */
706
707#define	DOF_SEC_ISLOADABLE(x)						\
708	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
709	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
710	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
711	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
712	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
713	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
714	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
715	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
716	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
717	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
718	((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) ||	\
719	((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
720
721typedef struct dof_ecbdesc {
722	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
723	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
724	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
725	uint32_t dofe_pad;		/* reserved for future use */
726	uint64_t dofe_uarg;		/* user-supplied library argument */
727} dof_ecbdesc_t;
728
729typedef struct dof_probedesc {
730	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
731	dof_stridx_t dofp_provider;	/* provider string */
732	dof_stridx_t dofp_mod;		/* module string */
733	dof_stridx_t dofp_func;		/* function string */
734	dof_stridx_t dofp_name;		/* name string */
735	uint32_t dofp_id;		/* probe identifier (or zero) */
736} dof_probedesc_t;
737
738typedef struct dof_actdesc {
739	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
740	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
741	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
742	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
743	uint64_t dofa_arg;		/* kind-specific argument */
744	uint64_t dofa_uarg;		/* user-supplied argument */
745} dof_actdesc_t;
746
747typedef struct dof_difohdr {
748	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
749	dof_secidx_t dofd_links[1];	/* variable length array of indices */
750} dof_difohdr_t;
751
752typedef struct dof_relohdr {
753	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
754	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
755	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
756} dof_relohdr_t;
757
758typedef struct dof_relodesc {
759	dof_stridx_t dofr_name;		/* string name of relocation symbol */
760	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
761	uint64_t dofr_offset;		/* byte offset for relocation */
762	uint64_t dofr_data;		/* additional type-specific data */
763} dof_relodesc_t;
764
765#define	DOF_RELO_NONE	0		/* empty relocation entry */
766#define	DOF_RELO_SETX	1		/* relocate setx value */
767
768typedef struct dof_optdesc {
769	uint32_t dofo_option;		/* option identifier */
770	dof_secidx_t dofo_strtab;	/* string table, if string option */
771	uint64_t dofo_value;		/* option value or string index */
772} dof_optdesc_t;
773
774typedef uint32_t dof_attr_t;		/* encoded stability attributes */
775
776#define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
777#define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
778#define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
779#define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
780
781typedef struct dof_provider {
782	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
783	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
784	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
785	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
786	dof_stridx_t dofpv_name;	/* provider name string */
787	dof_attr_t dofpv_provattr;	/* provider attributes */
788	dof_attr_t dofpv_modattr;	/* module attributes */
789	dof_attr_t dofpv_funcattr;	/* function attributes */
790	dof_attr_t dofpv_nameattr;	/* name attributes */
791	dof_attr_t dofpv_argsattr;	/* args attributes */
792	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
793} dof_provider_t;
794
795typedef struct dof_probe {
796	uint64_t dofpr_addr;		/* probe base address or offset */
797	dof_stridx_t dofpr_func;	/* probe function string */
798	dof_stridx_t dofpr_name;	/* probe name string */
799	dof_stridx_t dofpr_nargv;	/* native argument type strings */
800	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
801	uint32_t dofpr_argidx;		/* index of first argument mapping */
802	uint32_t dofpr_offidx;		/* index of first offset entry */
803	uint8_t dofpr_nargc;		/* native argument count */
804	uint8_t dofpr_xargc;		/* translated argument count */
805	uint16_t dofpr_noffs;		/* number of offset entries for probe */
806	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
807	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
808	uint16_t dofpr_pad1;		/* reserved for future use */
809	uint32_t dofpr_pad2;		/* reserved for future use */
810} dof_probe_t;
811
812typedef struct dof_xlator {
813	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
814	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
815	dof_stridx_t dofxl_argv;	/* input parameter type strings */
816	uint32_t dofxl_argc;		/* input parameter list length */
817	dof_stridx_t dofxl_type;	/* output type string name */
818	dof_attr_t dofxl_attr;		/* output stability attributes */
819} dof_xlator_t;
820
821typedef struct dof_xlmember {
822	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
823	dof_stridx_t dofxm_name;	/* member name */
824	dtrace_diftype_t dofxm_type;	/* member type */
825} dof_xlmember_t;
826
827typedef struct dof_xlref {
828	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
829	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
830	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
831} dof_xlref_t;
832
833/*
834 * DTrace Intermediate Format Object (DIFO)
835 *
836 * A DIFO is used to store the compiled DIF for a D expression, its return
837 * type, and its string and variable tables.  The string table is a single
838 * buffer of character data into which sets instructions and variable
839 * references can reference strings using a byte offset.  The variable table
840 * is an array of dtrace_difv_t structures that describe the name and type of
841 * each variable and the id used in the DIF code.  This structure is described
842 * above in the DIF section of this header file.  The DIFO is used at both
843 * user-level (in the library) and in the kernel, but the structure is never
844 * passed between the two: the DOF structures form the only interface.  As a
845 * result, the definition can change depending on the presence of _KERNEL.
846 */
847typedef struct dtrace_difo {
848	dif_instr_t *dtdo_buf;		/* instruction buffer */
849	uint64_t *dtdo_inttab;		/* integer table (optional) */
850	char *dtdo_strtab;		/* string table (optional) */
851	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
852	uint_t dtdo_len;		/* length of instruction buffer */
853	uint_t dtdo_intlen;		/* length of integer table */
854	uint_t dtdo_strlen;		/* length of string table */
855	uint_t dtdo_varlen;		/* length of variable table */
856	dtrace_diftype_t dtdo_rtype;	/* return type */
857	uint_t dtdo_refcnt;		/* owner reference count */
858	uint_t dtdo_destructive;	/* invokes destructive subroutines */
859#ifndef _KERNEL
860	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
861	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
862	struct dt_node **dtdo_xlmtab;	/* translator references */
863	uint_t dtdo_krelen;		/* length of krelo table */
864	uint_t dtdo_urelen;		/* length of urelo table */
865	uint_t dtdo_xlmlen;		/* length of translator table */
866#endif
867} dtrace_difo_t;
868
869/*
870 * DTrace Enabling Description Structures
871 *
872 * When DTrace is tracking the description of a DTrace enabling entity (probe,
873 * predicate, action, ECB, record, etc.), it does so in a description
874 * structure.  These structures all end in "desc", and are used at both
875 * user-level and in the kernel -- but (with the exception of
876 * dtrace_probedesc_t) they are never passed between them.  Typically,
877 * user-level will use the description structures when assembling an enabling.
878 * It will then distill those description structures into a DOF object (see
879 * above), and send it into the kernel.  The kernel will again use the
880 * description structures to create a description of the enabling as it reads
881 * the DOF.  When the description is complete, the enabling will be actually
882 * created -- turning it into the structures that represent the enabling
883 * instead of merely describing it.  Not surprisingly, the description
884 * structures bear a strong resemblance to the DOF structures that act as their
885 * conduit.
886 */
887struct dtrace_predicate;
888
889typedef struct dtrace_probedesc {
890	dtrace_id_t dtpd_id;			/* probe identifier */
891	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
892	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
893	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
894	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
895} dtrace_probedesc_t;
896
897typedef struct dtrace_repldesc {
898	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
899	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
900} dtrace_repldesc_t;
901
902typedef struct dtrace_preddesc {
903	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
904	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
905} dtrace_preddesc_t;
906
907typedef struct dtrace_actdesc {
908	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
909	struct dtrace_actdesc *dtad_next;	/* next action */
910	dtrace_actkind_t dtad_kind;		/* kind of action */
911	uint32_t dtad_ntuple;			/* number in tuple */
912	uint64_t dtad_arg;			/* action argument */
913	uint64_t dtad_uarg;			/* user argument */
914	int dtad_refcnt;			/* reference count */
915} dtrace_actdesc_t;
916
917typedef struct dtrace_ecbdesc {
918	dtrace_actdesc_t *dted_action;		/* action description(s) */
919	dtrace_preddesc_t dted_pred;		/* predicate description */
920	dtrace_probedesc_t dted_probe;		/* probe description */
921	uint64_t dted_uarg;			/* library argument */
922	int dted_refcnt;			/* reference count */
923} dtrace_ecbdesc_t;
924
925/*
926 * DTrace Metadata Description Structures
927 *
928 * DTrace separates the trace data stream from the metadata stream.  The only
929 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
930 * timestamp) or (in the case of aggregations) aggregation identifiers.  To
931 * determine the structure of the data, DTrace consumers pass the token to the
932 * kernel, and receive in return a corresponding description of the enabled
933 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
934 * dtrace_aggdesc structure).  Both of these structures are expressed in terms
935 * of record descriptions (via the dtrace_recdesc structure) that describe the
936 * exact structure of the data.  Some record descriptions may also contain a
937 * format identifier; this additional bit of metadata can be retrieved from the
938 * kernel, for which a format description is returned via the dtrace_fmtdesc
939 * structure.  Note that all four of these structures must be bitness-neutral
940 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
941 */
942typedef struct dtrace_recdesc {
943	dtrace_actkind_t dtrd_action;		/* kind of action */
944	uint32_t dtrd_size;			/* size of record */
945	uint32_t dtrd_offset;			/* offset in ECB's data */
946	uint16_t dtrd_alignment;		/* required alignment */
947	uint16_t dtrd_format;			/* format, if any */
948	uint64_t dtrd_arg;			/* action argument */
949	uint64_t dtrd_uarg;			/* user argument */
950} dtrace_recdesc_t;
951
952typedef struct dtrace_eprobedesc {
953	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
954	dtrace_id_t dtepd_probeid;		/* probe ID */
955	uint64_t dtepd_uarg;			/* library argument */
956	uint32_t dtepd_size;			/* total size */
957	int dtepd_nrecs;			/* number of records */
958	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
959} dtrace_eprobedesc_t;
960
961typedef struct dtrace_aggdesc {
962	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
963	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
964	int dtagd_flags;			/* not filled in by kernel */
965	dtrace_aggid_t dtagd_id;		/* aggregation ID */
966	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
967	uint32_t dtagd_size;			/* size in bytes */
968	int dtagd_nrecs;			/* number of records */
969	uint32_t dtagd_pad;			/* explicit padding */
970	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
971} dtrace_aggdesc_t;
972
973typedef struct dtrace_fmtdesc {
974	DTRACE_PTR(char, dtfd_string);		/* format string */
975	int dtfd_length;			/* length of format string */
976	uint16_t dtfd_format;			/* format identifier */
977} dtrace_fmtdesc_t;
978
979#define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
980	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
981	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
982
983#define	DTRACE_SIZEOF_AGGDESC(desc)				\
984	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
985	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
986
987/*
988 * DTrace Option Interface
989 *
990 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
991 * in a DOF image.  The dof_optdesc structure contains an option identifier and
992 * an option value.  The valid option identifiers are found below; the mapping
993 * between option identifiers and option identifying strings is maintained at
994 * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
995 * following are potentially valid option values:  all positive integers, zero
996 * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
997 * predefined tokens as their values; these are defined with
998 * DTRACEOPT_{option}_{token}.
999 */
1000#define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1001#define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1002#define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1003#define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1004#define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1005#define	DTRACEOPT_NSPEC		5	/* number of speculations */
1006#define	DTRACEOPT_STRSIZE	6	/* string size */
1007#define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1008#define	DTRACEOPT_CPU		8	/* CPU to trace */
1009#define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1010#define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1011#define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1012#define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1013#define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1014#define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1015#define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1016#define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1017#define	DTRACEOPT_STATUSRATE	17	/* status rate */
1018#define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1019#define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1020#define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1021#define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1022#define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1023#define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1024#define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1025#define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1026#define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1027#define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1028#define	DTRACEOPT_AGGHIST	28	/* histogram aggregation output */
1029#define	DTRACEOPT_AGGPACK	29	/* packed aggregation output */
1030#define	DTRACEOPT_AGGZOOM	30	/* zoomed aggregation scaling */
1031#define	DTRACEOPT_ZONE		31	/* zone in which to enable probes */
1032#define	DTRACEOPT_MAX		32	/* number of options */
1033
1034#define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1035
1036#define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1037#define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1038#define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1039
1040#define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1041#define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1042
1043/*
1044 * DTrace Buffer Interface
1045 *
1046 * In order to get a snapshot of the principal or aggregation buffer,
1047 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1048 * structure.  This describes which CPU user-level is interested in, and
1049 * where user-level wishes the kernel to snapshot the buffer to (the
1050 * dtbd_data field).  The kernel uses the same structure to pass back some
1051 * information regarding the buffer:  the size of data actually copied out, the
1052 * number of drops, the number of errors, the offset of the oldest record,
1053 * and the time of the snapshot.
1054 *
1055 * If the buffer policy is a "switch" policy, taking a snapshot of the
1056 * principal buffer has the additional effect of switching the active and
1057 * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1058 * the additional effect of switching the active and inactive buffers.
1059 */
1060typedef struct dtrace_bufdesc {
1061	uint64_t dtbd_size;			/* size of buffer */
1062	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1063	uint32_t dtbd_errors;			/* number of errors */
1064	uint64_t dtbd_drops;			/* number of drops */
1065	DTRACE_PTR(char, dtbd_data);		/* data */
1066	uint64_t dtbd_oldest;			/* offset of oldest record */
1067	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1068} dtrace_bufdesc_t;
1069
1070/*
1071 * Each record in the buffer (dtbd_data) begins with a header that includes
1072 * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1073 * so that we do not require 8-byte alignment.
1074 */
1075typedef struct dtrace_rechdr {
1076	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1077	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1078	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1079} dtrace_rechdr_t;
1080
1081#define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1082	((dtrh)->dtrh_timestamp_lo +				\
1083	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1084
1085#define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1086	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1087	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1088}
1089
1090/*
1091 * DTrace Status
1092 *
1093 * The status of DTrace is relayed via the dtrace_status structure.  This
1094 * structure contains members to count drops other than the capacity drops
1095 * available via the buffer interface (see above).  This consists of dynamic
1096 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1097 * speculative drops (including capacity speculative drops, drops due to busy
1098 * speculative buffers and drops due to unavailable speculative buffers).
1099 * Additionally, the status structure contains a field to indicate the number
1100 * of "fill"-policy buffers have been filled and a boolean field to indicate
1101 * that exit() has been called.  If the dtst_exiting field is non-zero, no
1102 * further data will be generated until tracing is stopped (at which time any
1103 * enablings of the END action will be processed); if user-level sees that
1104 * this field is non-zero, tracing should be stopped as soon as possible.
1105 */
1106typedef struct dtrace_status {
1107	uint64_t dtst_dyndrops;			/* dynamic drops */
1108	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1109	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1110	uint64_t dtst_specdrops;		/* speculative drops */
1111	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1112	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1113	uint64_t dtst_errors;			/* total errors */
1114	uint64_t dtst_filled;			/* number of filled bufs */
1115	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1116	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1117	char dtst_killed;			/* non-zero if killed */
1118	char dtst_exiting;			/* non-zero if exit() called */
1119	char dtst_pad[6];			/* pad out to 64-bit align */
1120} dtrace_status_t;
1121
1122/*
1123 * DTrace Configuration
1124 *
1125 * User-level may need to understand some elements of the kernel DTrace
1126 * configuration in order to generate correct DIF.  This information is
1127 * conveyed via the dtrace_conf structure.
1128 */
1129typedef struct dtrace_conf {
1130	uint_t dtc_difversion;			/* supported DIF version */
1131	uint_t dtc_difintregs;			/* # of DIF integer registers */
1132	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1133	uint_t dtc_ctfmodel;			/* CTF data model */
1134	uint_t dtc_pad[8];			/* reserved for future use */
1135} dtrace_conf_t;
1136
1137/*
1138 * DTrace Faults
1139 *
1140 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1141 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1142 * postprocessing at user-level.  Probe processing faults induce an ERROR
1143 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1144 * the error condition using thse symbolic labels.
1145 */
1146#define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1147#define	DTRACEFLT_BADADDR		1	/* Bad address */
1148#define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1149#define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1150#define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1151#define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1152#define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1153#define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1154#define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1155#define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1156
1157#define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1158
1159/*
1160 * DTrace Argument Types
1161 *
1162 * Because it would waste both space and time, argument types do not reside
1163 * with the probe.  In order to determine argument types for args[X]
1164 * variables, the D compiler queries for argument types on a probe-by-probe
1165 * basis.  (This optimizes for the common case that arguments are either not
1166 * used or used in an untyped fashion.)  Typed arguments are specified with a
1167 * string of the type name in the dtragd_native member of the argument
1168 * description structure.  Typed arguments may be further translated to types
1169 * of greater stability; the provider indicates such a translated argument by
1170 * filling in the dtargd_xlate member with the string of the translated type.
1171 * Finally, the provider may indicate which argument value a given argument
1172 * maps to by setting the dtargd_mapping member -- allowing a single argument
1173 * to map to multiple args[X] variables.
1174 */
1175typedef struct dtrace_argdesc {
1176	dtrace_id_t dtargd_id;			/* probe identifier */
1177	int dtargd_ndx;				/* arg number (-1 iff none) */
1178	int dtargd_mapping;			/* value mapping */
1179	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1180	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1181} dtrace_argdesc_t;
1182
1183/*
1184 * DTrace Stability Attributes
1185 *
1186 * Each DTrace provider advertises the name and data stability of each of its
1187 * probe description components, as well as its architectural dependencies.
1188 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1189 * order to compute the properties of an input program and report them.
1190 */
1191typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1192typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1193
1194#define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1195#define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1196#define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1197#define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1198#define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1199#define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1200#define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1201#define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1202#define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1203
1204#define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1205#define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1206#define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1207#define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1208#define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1209#define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1210#define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1211
1212#define	DTRACE_PRIV_NONE	0x0000
1213#define	DTRACE_PRIV_KERNEL	0x0001
1214#define	DTRACE_PRIV_USER	0x0002
1215#define	DTRACE_PRIV_PROC	0x0004
1216#define	DTRACE_PRIV_OWNER	0x0008
1217#define	DTRACE_PRIV_ZONEOWNER	0x0010
1218
1219#define	DTRACE_PRIV_ALL	\
1220	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1221	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1222
1223typedef struct dtrace_ppriv {
1224	uint32_t dtpp_flags;			/* privilege flags */
1225	uid_t dtpp_uid;				/* user ID */
1226	zoneid_t dtpp_zoneid;			/* zone ID */
1227} dtrace_ppriv_t;
1228
1229typedef struct dtrace_attribute {
1230	dtrace_stability_t dtat_name;		/* entity name stability */
1231	dtrace_stability_t dtat_data;		/* entity data stability */
1232	dtrace_class_t dtat_class;		/* entity data dependency */
1233} dtrace_attribute_t;
1234
1235typedef struct dtrace_pattr {
1236	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1237	dtrace_attribute_t dtpa_mod;		/* module attributes */
1238	dtrace_attribute_t dtpa_func;		/* function attributes */
1239	dtrace_attribute_t dtpa_name;		/* name attributes */
1240	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1241} dtrace_pattr_t;
1242
1243typedef struct dtrace_providerdesc {
1244	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1245	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1246	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1247} dtrace_providerdesc_t;
1248
1249/*
1250 * DTrace Pseudodevice Interface
1251 *
1252 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1253 * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1254 * DTrace.
1255 */
1256#define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1257#define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1258#define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1259#define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1260#define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1261#define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1262#define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1263#define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1264#define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1265#define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1266#define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1267#define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1268#define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1269#define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1270#define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1271#define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1272#define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1273
1274/*
1275 * DTrace Helpers
1276 *
1277 * In general, DTrace establishes probes in processes and takes actions on
1278 * processes without knowing their specific user-level structures.  Instead of
1279 * existing in the framework, process-specific knowledge is contained by the
1280 * enabling D program -- which can apply process-specific knowledge by making
1281 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1282 * operate on user-level data.  However, there may exist some specific probes
1283 * of particular semantic relevance that the application developer may wish to
1284 * explicitly export.  For example, an application may wish to export a probe
1285 * at the point that it begins and ends certain well-defined transactions.  In
1286 * addition to providing probes, programs may wish to offer assistance for
1287 * certain actions.  For example, in highly dynamic environments (e.g., Java),
1288 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1289 * names (the translation from instruction addresses to corresponding symbol
1290 * names may only be possible in situ); these environments may wish to define
1291 * a series of actions to be applied in situ to obtain a meaningful stack
1292 * trace.
1293 *
1294 * These two mechanisms -- user-level statically defined tracing and assisting
1295 * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1296 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1297 * providers, probes and their arguments.  If a helper wishes to provide
1298 * action assistance, probe descriptions and corresponding DIF actions may be
1299 * specified in the helper DOF.  For such helper actions, however, the probe
1300 * description describes the specific helper:  all DTrace helpers have the
1301 * provider name "dtrace" and the module name "helper", and the name of the
1302 * helper is contained in the function name (for example, the ustack() helper
1303 * is named "ustack").  Any helper-specific name may be contained in the name
1304 * (for example, if a helper were to have a constructor, it might be named
1305 * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1306 * action that they are helping is taken.  Helper actions may only return DIF
1307 * expressions, and may only call the following subroutines:
1308 *
1309 *    alloca()      <= Allocates memory out of the consumer's scratch space
1310 *    bcopy()       <= Copies memory to scratch space
1311 *    copyin()      <= Copies memory from user-level into consumer's scratch
1312 *    copyinto()    <= Copies memory into a specific location in scratch
1313 *    copyinstr()   <= Copies a string into a specific location in scratch
1314 *
1315 * Helper actions may only access the following built-in variables:
1316 *
1317 *    curthread     <= Current kthread_t pointer
1318 *    tid           <= Current thread identifier
1319 *    pid           <= Current process identifier
1320 *    ppid          <= Parent process identifier
1321 *    uid           <= Current user ID
1322 *    gid           <= Current group ID
1323 *    execname      <= Current executable name
1324 *    zonename      <= Current zone name
1325 *
1326 * Helper actions may not manipulate or allocate dynamic variables, but they
1327 * may have clause-local and statically-allocated global variables.  The
1328 * helper action variable state is specific to the helper action -- variables
1329 * used by the helper action may not be accessed outside of the helper
1330 * action, and the helper action may not access variables that like outside
1331 * of it.  Helper actions may not load from kernel memory at-large; they are
1332 * restricting to loading current user state (via copyin() and variants) and
1333 * scratch space.  As with probe enablings, helper actions are executed in
1334 * program order.  The result of the helper action is the result of the last
1335 * executing helper expression.
1336 *
1337 * Helpers -- composed of either providers/probes or probes/actions (or both)
1338 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1339 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1340 * encapsulates the name and base address of the user-level library or
1341 * executable publishing the helpers and probes as well as the DOF that
1342 * contains the definitions of those helpers and probes.
1343 *
1344 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1345 * helpers and should no longer be used.  No other ioctls are valid on the
1346 * helper minor node.
1347 */
1348#define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1349#define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1350#define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1351#define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1352
1353typedef struct dof_helper {
1354	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1355	uint64_t dofhp_addr;			/* base address of object */
1356	uint64_t dofhp_dof;			/* address of helper DOF */
1357} dof_helper_t;
1358
1359#define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1360#define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1361#define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1362#define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1363#define	DTRACEMNRN_CLONE	2		/* first clone minor */
1364
1365#ifdef _KERNEL
1366
1367/*
1368 * DTrace Provider API
1369 *
1370 * The following functions are implemented by the DTrace framework and are
1371 * used to implement separate in-kernel DTrace providers.  Common functions
1372 * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1373 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1374 *
1375 * The provider API has two halves:  the API that the providers consume from
1376 * DTrace, and the API that providers make available to DTrace.
1377 *
1378 * 1 Framework-to-Provider API
1379 *
1380 * 1.1  Overview
1381 *
1382 * The Framework-to-Provider API is represented by the dtrace_pops structure
1383 * that the provider passes to the framework when registering itself.  This
1384 * structure consists of the following members:
1385 *
1386 *   dtps_provide()          <-- Provide all probes, all modules
1387 *   dtps_provide_module()   <-- Provide all probes in specified module
1388 *   dtps_enable()           <-- Enable specified probe
1389 *   dtps_disable()          <-- Disable specified probe
1390 *   dtps_suspend()          <-- Suspend specified probe
1391 *   dtps_resume()           <-- Resume specified probe
1392 *   dtps_getargdesc()       <-- Get the argument description for args[X]
1393 *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1394 *   dtps_mode()             <-- Return the mode of the fired probe
1395 *   dtps_destroy()          <-- Destroy all state associated with this probe
1396 *
1397 * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1398 *
1399 * 1.2.1  Overview
1400 *
1401 *   Called to indicate that the provider should provide all probes.  If the
1402 *   specified description is non-NULL, dtps_provide() is being called because
1403 *   no probe matched a specified probe -- if the provider has the ability to
1404 *   create custom probes, it may wish to create a probe that matches the
1405 *   specified description.
1406 *
1407 * 1.2.2  Arguments and notes
1408 *
1409 *   The first argument is the cookie as passed to dtrace_register().  The
1410 *   second argument is a pointer to a probe description that the provider may
1411 *   wish to consider when creating custom probes.  The provider is expected to
1412 *   call back into the DTrace framework via dtrace_probe_create() to create
1413 *   any necessary probes.  dtps_provide() may be called even if the provider
1414 *   has made available all probes; the provider should check the return value
1415 *   of dtrace_probe_create() to handle this case.  Note that the provider need
1416 *   not implement both dtps_provide() and dtps_provide_module(); see
1417 *   "Arguments and Notes" for dtrace_register(), below.
1418 *
1419 * 1.2.3  Return value
1420 *
1421 *   None.
1422 *
1423 * 1.2.4  Caller's context
1424 *
1425 *   dtps_provide() is typically called from open() or ioctl() context, but may
1426 *   be called from other contexts as well.  The DTrace framework is locked in
1427 *   such a way that providers may not register or unregister.  This means that
1428 *   the provider may not call any DTrace API that affects its registration with
1429 *   the framework, including dtrace_register(), dtrace_unregister(),
1430 *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1431 *   that the provider may (and indeed, is expected to) call probe-related
1432 *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1433 *   and dtrace_probe_arg().
1434 *
1435 * 1.3  void dtps_provide_module(void *arg, struct modctl *mp)
1436 *
1437 * 1.3.1  Overview
1438 *
1439 *   Called to indicate that the provider should provide all probes in the
1440 *   specified module.
1441 *
1442 * 1.3.2  Arguments and notes
1443 *
1444 *   The first argument is the cookie as passed to dtrace_register().  The
1445 *   second argument is a pointer to a modctl structure that indicates the
1446 *   module for which probes should be created.
1447 *
1448 * 1.3.3  Return value
1449 *
1450 *   None.
1451 *
1452 * 1.3.4  Caller's context
1453 *
1454 *   dtps_provide_module() may be called from open() or ioctl() context, but
1455 *   may also be called from a module loading context.  mod_lock is held, and
1456 *   the DTrace framework is locked in such a way that providers may not
1457 *   register or unregister.  This means that the provider may not call any
1458 *   DTrace API that affects its registration with the framework, including
1459 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1460 *   dtrace_condense().  However, the context is such that the provider may (and
1461 *   indeed, is expected to) call probe-related DTrace routines, including
1462 *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1463 *   that the provider need not implement both dtps_provide() and
1464 *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1465 *   below.
1466 *
1467 * 1.4  int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1468 *
1469 * 1.4.1  Overview
1470 *
1471 *   Called to enable the specified probe.
1472 *
1473 * 1.4.2  Arguments and notes
1474 *
1475 *   The first argument is the cookie as passed to dtrace_register().  The
1476 *   second argument is the identifier of the probe to be enabled.  The third
1477 *   argument is the probe argument as passed to dtrace_probe_create().
1478 *   dtps_enable() will be called when a probe transitions from not being
1479 *   enabled at all to having one or more ECB.  The number of ECBs associated
1480 *   with the probe may change without subsequent calls into the provider.
1481 *   When the number of ECBs drops to zero, the provider will be explicitly
1482 *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1483 *   be called for a probe identifier that hasn't been explicitly enabled via
1484 *   dtps_enable().
1485 *
1486 * 1.4.3  Return value
1487 *
1488 *   On success, dtps_enable() should return 0. On failure, -1 should be
1489 *   returned.
1490 *
1491 * 1.4.4  Caller's context
1492 *
1493 *   The DTrace framework is locked in such a way that it may not be called
1494 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1495 *   be acquired.
1496 *
1497 * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1498 *
1499 * 1.5.1  Overview
1500 *
1501 *   Called to disable the specified probe.
1502 *
1503 * 1.5.2  Arguments and notes
1504 *
1505 *   The first argument is the cookie as passed to dtrace_register().  The
1506 *   second argument is the identifier of the probe to be disabled.  The third
1507 *   argument is the probe argument as passed to dtrace_probe_create().
1508 *   dtps_disable() will be called when a probe transitions from being enabled
1509 *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1510 *   identifier that has been explicitly enabled via dtps_disable().
1511 *
1512 * 1.5.3  Return value
1513 *
1514 *   None.
1515 *
1516 * 1.5.4  Caller's context
1517 *
1518 *   The DTrace framework is locked in such a way that it may not be called
1519 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1520 *   be acquired.
1521 *
1522 * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1523 *
1524 * 1.6.1  Overview
1525 *
1526 *   Called to suspend the specified enabled probe.  This entry point is for
1527 *   providers that may need to suspend some or all of their probes when CPUs
1528 *   are being powered on or when the boot monitor is being entered for a
1529 *   prolonged period of time.
1530 *
1531 * 1.6.2  Arguments and notes
1532 *
1533 *   The first argument is the cookie as passed to dtrace_register().  The
1534 *   second argument is the identifier of the probe to be suspended.  The
1535 *   third argument is the probe argument as passed to dtrace_probe_create().
1536 *   dtps_suspend will only be called on an enabled probe.  Providers that
1537 *   provide a dtps_suspend entry point will want to take roughly the action
1538 *   that it takes for dtps_disable.
1539 *
1540 * 1.6.3  Return value
1541 *
1542 *   None.
1543 *
1544 * 1.6.4  Caller's context
1545 *
1546 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1547 *   specified probe cannot be disabled or destroyed for the duration of
1548 *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1549 *   little latitude; the provider is expected to do no more than a store to
1550 *   memory.
1551 *
1552 * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1553 *
1554 * 1.7.1  Overview
1555 *
1556 *   Called to resume the specified enabled probe.  This entry point is for
1557 *   providers that may need to resume some or all of their probes after the
1558 *   completion of an event that induced a call to dtps_suspend().
1559 *
1560 * 1.7.2  Arguments and notes
1561 *
1562 *   The first argument is the cookie as passed to dtrace_register().  The
1563 *   second argument is the identifier of the probe to be resumed.  The
1564 *   third argument is the probe argument as passed to dtrace_probe_create().
1565 *   dtps_resume will only be called on an enabled probe.  Providers that
1566 *   provide a dtps_resume entry point will want to take roughly the action
1567 *   that it takes for dtps_enable.
1568 *
1569 * 1.7.3  Return value
1570 *
1571 *   None.
1572 *
1573 * 1.7.4  Caller's context
1574 *
1575 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1576 *   specified probe cannot be disabled or destroyed for the duration of
1577 *   dtps_resume().  As interrupts are disabled, the provider is afforded
1578 *   little latitude; the provider is expected to do no more than a store to
1579 *   memory.
1580 *
1581 * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1582 *           dtrace_argdesc_t *desc)
1583 *
1584 * 1.8.1  Overview
1585 *
1586 *   Called to retrieve the argument description for an args[X] variable.
1587 *
1588 * 1.8.2  Arguments and notes
1589 *
1590 *   The first argument is the cookie as passed to dtrace_register(). The
1591 *   second argument is the identifier of the current probe. The third
1592 *   argument is the probe argument as passed to dtrace_probe_create(). The
1593 *   fourth argument is a pointer to the argument description.  This
1594 *   description is both an input and output parameter:  it contains the
1595 *   index of the desired argument in the dtargd_ndx field, and expects
1596 *   the other fields to be filled in upon return.  If there is no argument
1597 *   corresponding to the specified index, the dtargd_ndx field should be set
1598 *   to DTRACE_ARGNONE.
1599 *
1600 * 1.8.3  Return value
1601 *
1602 *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1603 *   members of the dtrace_argdesc_t structure are all output values.
1604 *
1605 * 1.8.4  Caller's context
1606 *
1607 *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1608 *   the DTrace framework is locked in such a way that providers may not
1609 *   register or unregister.  This means that the provider may not call any
1610 *   DTrace API that affects its registration with the framework, including
1611 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1612 *   dtrace_condense().
1613 *
1614 * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1615 *               int argno, int aframes)
1616 *
1617 * 1.9.1  Overview
1618 *
1619 *   Called to retrieve a value for an argX or args[X] variable.
1620 *
1621 * 1.9.2  Arguments and notes
1622 *
1623 *   The first argument is the cookie as passed to dtrace_register(). The
1624 *   second argument is the identifier of the current probe. The third
1625 *   argument is the probe argument as passed to dtrace_probe_create(). The
1626 *   fourth argument is the number of the argument (the X in the example in
1627 *   1.9.1). The fifth argument is the number of stack frames that were used
1628 *   to get from the actual place in the code that fired the probe to
1629 *   dtrace_probe() itself, the so-called artificial frames. This argument may
1630 *   be used to descend an appropriate number of frames to find the correct
1631 *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1632 *   function is used.
1633 *
1634 * 1.9.3  Return value
1635 *
1636 *   The value of the argument.
1637 *
1638 * 1.9.4  Caller's context
1639 *
1640 *   This is called from within dtrace_probe() meaning that interrupts
1641 *   are disabled. No locks should be taken within this entry point.
1642 *
1643 * 1.10  int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1644 *
1645 * 1.10.1  Overview
1646 *
1647 *   Called to determine the mode of a fired probe.
1648 *
1649 * 1.10.2  Arguments and notes
1650 *
1651 *   The first argument is the cookie as passed to dtrace_register(). The
1652 *   second argument is the identifier of the current probe.  The third
1653 *   argument is the probe argument as passed to dtrace_probe_create().  This
1654 *   entry point must not be left NULL for providers whose probes allow for
1655 *   mixed mode tracing, that is to say those unanchored probes that can fire
1656 *   during kernel- or user-mode execution.
1657 *
1658 * 1.10.3  Return value
1659 *
1660 *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1661 *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1662 *   is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1663 *   DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT).  If
1664 *   DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1665 *   in the probe firing being silently ignored for the enabling; if the
1666 *   DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1667 *   prevent probe processing for the enabling, but restrictions will be in
1668 *   place that induce a UPRIV fault upon attempt to examine probe arguments
1669 *   or current process state.  If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1670 *   is set, similar restrictions will be placed upon operation if the
1671 *   privilege is sufficient to process the enabling, but does not otherwise
1672 *   entitle the enabling to all zones.  The DTRACE_MODE_NOPRIV_DROP and
1673 *   DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1674 *   two policies must be specified), but either may be combined (or not)
1675 *   with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1676 *
1677 * 1.10.4  Caller's context
1678 *
1679 *   This is called from within dtrace_probe() meaning that interrupts
1680 *   are disabled. No locks should be taken within this entry point.
1681 *
1682 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1683 *
1684 * 1.11.1 Overview
1685 *
1686 *   Called to destroy the specified probe.
1687 *
1688 * 1.11.2 Arguments and notes
1689 *
1690 *   The first argument is the cookie as passed to dtrace_register().  The
1691 *   second argument is the identifier of the probe to be destroyed.  The third
1692 *   argument is the probe argument as passed to dtrace_probe_create().  The
1693 *   provider should free all state associated with the probe.  The framework
1694 *   guarantees that dtps_destroy() is only called for probes that have either
1695 *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1696 *   Once dtps_disable() has been called for a probe, no further call will be
1697 *   made specifying the probe.
1698 *
1699 * 1.11.3 Return value
1700 *
1701 *   None.
1702 *
1703 * 1.11.4 Caller's context
1704 *
1705 *   The DTrace framework is locked in such a way that it may not be called
1706 *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1707 *   acquired.
1708 *
1709 *
1710 * 2 Provider-to-Framework API
1711 *
1712 * 2.1  Overview
1713 *
1714 * The Provider-to-Framework API provides the mechanism for the provider to
1715 * register itself with the DTrace framework, to create probes, to lookup
1716 * probes and (most importantly) to fire probes.  The Provider-to-Framework
1717 * consists of:
1718 *
1719 *   dtrace_register()       <-- Register a provider with the DTrace framework
1720 *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1721 *   dtrace_invalidate()     <-- Invalidate the specified provider
1722 *   dtrace_condense()       <-- Remove a provider's unenabled probes
1723 *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1724 *   dtrace_probe_create()   <-- Create a DTrace probe
1725 *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1726 *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1727 *   dtrace_probe()          <-- Fire the specified probe
1728 *
1729 * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1730 *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1731 *          dtrace_provider_id_t *idp)
1732 *
1733 * 2.2.1  Overview
1734 *
1735 *   dtrace_register() registers the calling provider with the DTrace
1736 *   framework.  It should generally be called by DTrace providers in their
1737 *   attach(9E) entry point.
1738 *
1739 * 2.2.2  Arguments and Notes
1740 *
1741 *   The first argument is the name of the provider.  The second argument is a
1742 *   pointer to the stability attributes for the provider.  The third argument
1743 *   is the privilege flags for the provider, and must be some combination of:
1744 *
1745 *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1746 *
1747 *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1748 *                             enable probes from this provider
1749 *
1750 *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1751 *                             enable probes from this provider
1752 *
1753 *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1754 *                             may enable probes from this provider
1755 *
1756 *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1757 *                             the privilege requirements above. These probes
1758 *                             require either (a) a user ID matching the user
1759 *                             ID of the cred passed in the fourth argument
1760 *                             or (b) the PRIV_PROC_OWNER privilege.
1761 *
1762 *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1763 *                             the privilege requirements above. These probes
1764 *                             require either (a) a zone ID matching the zone
1765 *                             ID of the cred passed in the fourth argument
1766 *                             or (b) the PRIV_PROC_ZONE privilege.
1767 *
1768 *   Note that these flags designate the _visibility_ of the probes, not
1769 *   the conditions under which they may or may not fire.
1770 *
1771 *   The fourth argument is the credential that is associated with the
1772 *   provider.  This argument should be NULL if the privilege flags don't
1773 *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1774 *   framework stashes the uid and zoneid represented by this credential
1775 *   for use at probe-time, in implicit predicates.  These limit visibility
1776 *   of the probes to users and/or zones which have sufficient privilege to
1777 *   access them.
1778 *
1779 *   The fifth argument is a DTrace provider operations vector, which provides
1780 *   the implementation for the Framework-to-Provider API.  (See Section 1,
1781 *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1782 *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1783 *   members (if the provider so desires, _one_ of these members may be left
1784 *   NULL -- denoting that the provider only implements the other) and (2)
1785 *   the dtps_suspend() and dtps_resume() members, which must either both be
1786 *   NULL or both be non-NULL.
1787 *
1788 *   The sixth argument is a cookie to be specified as the first argument for
1789 *   each function in the Framework-to-Provider API.  This argument may have
1790 *   any value.
1791 *
1792 *   The final argument is a pointer to dtrace_provider_id_t.  If
1793 *   dtrace_register() successfully completes, the provider identifier will be
1794 *   stored in the memory pointed to be this argument.  This argument must be
1795 *   non-NULL.
1796 *
1797 * 2.2.3  Return value
1798 *
1799 *   On success, dtrace_register() returns 0 and stores the new provider's
1800 *   identifier into the memory pointed to by the idp argument.  On failure,
1801 *   dtrace_register() returns an errno:
1802 *
1803 *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1804 *              This may because a parameter that must be non-NULL was NULL,
1805 *              because the name was invalid (either empty or an illegal
1806 *              provider name) or because the attributes were invalid.
1807 *
1808 *   No other failure code is returned.
1809 *
1810 * 2.2.4  Caller's context
1811 *
1812 *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1813 *   hold no locks across dtrace_register() that may also be acquired by
1814 *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1815 *
1816 * 2.3  int dtrace_unregister(dtrace_provider_t id)
1817 *
1818 * 2.3.1  Overview
1819 *
1820 *   Unregisters the specified provider from the DTrace framework.  It should
1821 *   generally be called by DTrace providers in their detach(9E) entry point.
1822 *
1823 * 2.3.2  Arguments and Notes
1824 *
1825 *   The only argument is the provider identifier, as returned from a
1826 *   successful call to dtrace_register().  As a result of calling
1827 *   dtrace_unregister(), the DTrace framework will call back into the provider
1828 *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1829 *   completes, however, the DTrace framework will no longer make calls through
1830 *   the Framework-to-Provider API.
1831 *
1832 * 2.3.3  Return value
1833 *
1834 *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1835 *   returns an errno:
1836 *
1837 *     EBUSY    There are currently processes that have the DTrace pseudodevice
1838 *              open, or there exists an anonymous enabling that hasn't yet
1839 *              been claimed.
1840 *
1841 *   No other failure code is returned.
1842 *
1843 * 2.3.4  Caller's context
1844 *
1845 *   Because a call to dtrace_unregister() may induce calls through the
1846 *   Framework-to-Provider API, the caller may not hold any lock across
1847 *   dtrace_register() that is also acquired in any of the Framework-to-
1848 *   Provider API functions.  Additionally, mod_lock may not be held.
1849 *
1850 * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1851 *
1852 * 2.4.1  Overview
1853 *
1854 *   Invalidates the specified provider.  All subsequent probe lookups for the
1855 *   specified provider will fail, but its probes will not be removed.
1856 *
1857 * 2.4.2  Arguments and note
1858 *
1859 *   The only argument is the provider identifier, as returned from a
1860 *   successful call to dtrace_register().  In general, a provider's probes
1861 *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1862 *   an entire provider, regardless of whether or not probes are enabled or
1863 *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1864 *   probes from firing -- it will merely prevent any new enablings of the
1865 *   provider's probes.
1866 *
1867 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1868 *
1869 * 2.5.1  Overview
1870 *
1871 *   Removes all the unenabled probes for the given provider. This function is
1872 *   not unlike dtrace_unregister(), except that it doesn't remove the
1873 *   provider just as many of its associated probes as it can.
1874 *
1875 * 2.5.2  Arguments and Notes
1876 *
1877 *   As with dtrace_unregister(), the sole argument is the provider identifier
1878 *   as returned from a successful call to dtrace_register().  As a result of
1879 *   calling dtrace_condense(), the DTrace framework will call back into the
1880 *   given provider's dtps_destroy() entry point for each of the provider's
1881 *   unenabled probes.
1882 *
1883 * 2.5.3  Return value
1884 *
1885 *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1886 *   function should check the return value as appropriate; its behavior may
1887 *   change in the future.
1888 *
1889 * 2.5.4  Caller's context
1890 *
1891 *   As with dtrace_unregister(), the caller may not hold any lock across
1892 *   dtrace_condense() that is also acquired in the provider's entry points.
1893 *   Also, mod_lock may not be held.
1894 *
1895 * 2.6 int dtrace_attached()
1896 *
1897 * 2.6.1  Overview
1898 *
1899 *   Indicates whether or not DTrace has attached.
1900 *
1901 * 2.6.2  Arguments and Notes
1902 *
1903 *   For most providers, DTrace makes initial contact beyond registration.
1904 *   That is, once a provider has registered with DTrace, it waits to hear
1905 *   from DTrace to create probes.  However, some providers may wish to
1906 *   proactively create probes without first being told by DTrace to do so.
1907 *   If providers wish to do this, they must first call dtrace_attached() to
1908 *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1909 *   the provider must not make any other Provider-to-Framework API call.
1910 *
1911 * 2.6.3  Return value
1912 *
1913 *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1914 *
1915 * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1916 *	    const char *func, const char *name, int aframes, void *arg)
1917 *
1918 * 2.7.1  Overview
1919 *
1920 *   Creates a probe with specified module name, function name, and name.
1921 *
1922 * 2.7.2  Arguments and Notes
1923 *
1924 *   The first argument is the provider identifier, as returned from a
1925 *   successful call to dtrace_register().  The second, third, and fourth
1926 *   arguments are the module name, function name, and probe name,
1927 *   respectively.  Of these, module name and function name may both be NULL
1928 *   (in which case the probe is considered to be unanchored), or they may both
1929 *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1930 *   string.
1931 *
1932 *   The fifth argument is the number of artificial stack frames that will be
1933 *   found on the stack when dtrace_probe() is called for the new probe.  These
1934 *   artificial frames will be automatically be pruned should the stack() or
1935 *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1936 *   the parameter doesn't add an artificial frame, this parameter should be
1937 *   zero.
1938 *
1939 *   The final argument is a probe argument that will be passed back to the
1940 *   provider when a probe-specific operation is called.  (e.g., via
1941 *   dtps_enable(), dtps_disable(), etc.)
1942 *
1943 *   Note that it is up to the provider to be sure that the probe that it
1944 *   creates does not already exist -- if the provider is unsure of the probe's
1945 *   existence, it should assure its absence with dtrace_probe_lookup() before
1946 *   calling dtrace_probe_create().
1947 *
1948 * 2.7.3  Return value
1949 *
1950 *   dtrace_probe_create() always succeeds, and always returns the identifier
1951 *   of the newly-created probe.
1952 *
1953 * 2.7.4  Caller's context
1954 *
1955 *   While dtrace_probe_create() is generally expected to be called from
1956 *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1957 *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1958 *
1959 * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1960 *	    const char *func, const char *name)
1961 *
1962 * 2.8.1  Overview
1963 *
1964 *   Looks up a probe based on provdider and one or more of module name,
1965 *   function name and probe name.
1966 *
1967 * 2.8.2  Arguments and Notes
1968 *
1969 *   The first argument is the provider identifier, as returned from a
1970 *   successful call to dtrace_register().  The second, third, and fourth
1971 *   arguments are the module name, function name, and probe name,
1972 *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1973 *   the identifier of the first probe that is provided by the specified
1974 *   provider and matches all of the non-NULL matching criteria.
1975 *   dtrace_probe_lookup() is generally used by a provider to be check the
1976 *   existence of a probe before creating it with dtrace_probe_create().
1977 *
1978 * 2.8.3  Return value
1979 *
1980 *   If the probe exists, returns its identifier.  If the probe does not exist,
1981 *   return DTRACE_IDNONE.
1982 *
1983 * 2.8.4  Caller's context
1984 *
1985 *   While dtrace_probe_lookup() is generally expected to be called from
1986 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1987 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1988 *
1989 * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1990 *
1991 * 2.9.1  Overview
1992 *
1993 *   Returns the probe argument associated with the specified probe.
1994 *
1995 * 2.9.2  Arguments and Notes
1996 *
1997 *   The first argument is the provider identifier, as returned from a
1998 *   successful call to dtrace_register().  The second argument is a probe
1999 *   identifier, as returned from dtrace_probe_lookup() or
2000 *   dtrace_probe_create().  This is useful if a probe has multiple
2001 *   provider-specific components to it:  the provider can create the probe
2002 *   once with provider-specific state, and then add to the state by looking
2003 *   up the probe based on probe identifier.
2004 *
2005 * 2.9.3  Return value
2006 *
2007 *   Returns the argument associated with the specified probe.  If the
2008 *   specified probe does not exist, or if the specified probe is not provided
2009 *   by the specified provider, NULL is returned.
2010 *
2011 * 2.9.4  Caller's context
2012 *
2013 *   While dtrace_probe_arg() is generally expected to be called from
2014 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2015 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2016 *
2017 * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2018 *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2019 *
2020 * 2.10.1  Overview
2021 *
2022 *   The epicenter of DTrace:  fires the specified probes with the specified
2023 *   arguments.
2024 *
2025 * 2.10.2  Arguments and Notes
2026 *
2027 *   The first argument is a probe identifier as returned by
2028 *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2029 *   arguments are the values to which the D variables "arg0" through "arg4"
2030 *   will be mapped.
2031 *
2032 *   dtrace_probe() should be called whenever the specified probe has fired --
2033 *   however the provider defines it.
2034 *
2035 * 2.10.3  Return value
2036 *
2037 *   None.
2038 *
2039 * 2.10.4  Caller's context
2040 *
2041 *   dtrace_probe() may be called in virtually any context:  kernel, user,
2042 *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2043 *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2044 *   that must be afforded to DTrace is the ability to make calls within
2045 *   itself (and to its in-kernel subroutines) and the ability to access
2046 *   arbitrary (but mapped) memory.  On some platforms, this constrains
2047 *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2048 *   from any context in which TL is greater than zero.  dtrace_probe() may
2049 *   also not be called from any routine which may be called by dtrace_probe()
2050 *   -- which includes functions in the DTrace framework and some in-kernel
2051 *   DTrace subroutines.  All such functions "dtrace_"; providers that
2052 *   instrument the kernel arbitrarily should be sure to not instrument these
2053 *   routines.
2054 */
2055typedef struct dtrace_pops {
2056	void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2057	void (*dtps_provide_module)(void *arg, struct modctl *mp);
2058	int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2059	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2060	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2061	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2062	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2063	    dtrace_argdesc_t *desc);
2064	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2065	    int argno, int aframes);
2066	int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2067	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2068} dtrace_pops_t;
2069
2070#define	DTRACE_MODE_KERNEL			0x01
2071#define	DTRACE_MODE_USER			0x02
2072#define	DTRACE_MODE_NOPRIV_DROP			0x10
2073#define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2074#define	DTRACE_MODE_LIMITEDPRIV_RESTRICT	0x40
2075
2076typedef uintptr_t	dtrace_provider_id_t;
2077
2078extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2079    cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2080extern int dtrace_unregister(dtrace_provider_id_t);
2081extern int dtrace_condense(dtrace_provider_id_t);
2082extern void dtrace_invalidate(dtrace_provider_id_t);
2083extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2084    const char *, const char *);
2085extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2086    const char *, const char *, int, void *);
2087extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2088extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2089    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2090
2091/*
2092 * DTrace Meta Provider API
2093 *
2094 * The following functions are implemented by the DTrace framework and are
2095 * used to implement meta providers. Meta providers plug into the DTrace
2096 * framework and are used to instantiate new providers on the fly. At
2097 * present, there is only one type of meta provider and only one meta
2098 * provider may be registered with the DTrace framework at a time. The
2099 * sole meta provider type provides user-land static tracing facilities
2100 * by taking meta probe descriptions and adding a corresponding provider
2101 * into the DTrace framework.
2102 *
2103 * 1 Framework-to-Provider
2104 *
2105 * 1.1 Overview
2106 *
2107 * The Framework-to-Provider API is represented by the dtrace_mops structure
2108 * that the meta provider passes to the framework when registering itself as
2109 * a meta provider. This structure consists of the following members:
2110 *
2111 *   dtms_create_probe()	<-- Add a new probe to a created provider
2112 *   dtms_provide_pid()		<-- Create a new provider for a given process
2113 *   dtms_remove_pid()		<-- Remove a previously created provider
2114 *
2115 * 1.2  void dtms_create_probe(void *arg, void *parg,
2116 *           dtrace_helper_probedesc_t *probedesc);
2117 *
2118 * 1.2.1  Overview
2119 *
2120 *   Called by the DTrace framework to create a new probe in a provider
2121 *   created by this meta provider.
2122 *
2123 * 1.2.2  Arguments and notes
2124 *
2125 *   The first argument is the cookie as passed to dtrace_meta_register().
2126 *   The second argument is the provider cookie for the associated provider;
2127 *   this is obtained from the return value of dtms_provide_pid(). The third
2128 *   argument is the helper probe description.
2129 *
2130 * 1.2.3  Return value
2131 *
2132 *   None
2133 *
2134 * 1.2.4  Caller's context
2135 *
2136 *   dtms_create_probe() is called from either ioctl() or module load context
2137 *   in the context of a newly-created provider (that is, a provider that
2138 *   is a result of a call to dtms_provide_pid()). The DTrace framework is
2139 *   locked in such a way that meta providers may not register or unregister,
2140 *   such that no other thread can call into a meta provider operation and that
2141 *   atomicity is assured with respect to meta provider operations across
2142 *   dtms_provide_pid() and subsequent calls to dtms_create_probe().
2143 *   The context is thus effectively single-threaded with respect to the meta
2144 *   provider, and that the meta provider cannot call dtrace_meta_register()
2145 *   or dtrace_meta_unregister(). However, the context is such that the
2146 *   provider may (and is expected to) call provider-related DTrace provider
2147 *   APIs including dtrace_probe_create().
2148 *
2149 * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2150 *	      pid_t pid)
2151 *
2152 * 1.3.1  Overview
2153 *
2154 *   Called by the DTrace framework to instantiate a new provider given the
2155 *   description of the provider and probes in the mprov argument. The
2156 *   meta provider should call dtrace_register() to insert the new provider
2157 *   into the DTrace framework.
2158 *
2159 * 1.3.2  Arguments and notes
2160 *
2161 *   The first argument is the cookie as passed to dtrace_meta_register().
2162 *   The second argument is a pointer to a structure describing the new
2163 *   helper provider. The third argument is the process identifier for
2164 *   process associated with this new provider. Note that the name of the
2165 *   provider as passed to dtrace_register() should be the contatenation of
2166 *   the dtmpb_provname member of the mprov argument and the processs
2167 *   identifier as a string.
2168 *
2169 * 1.3.3  Return value
2170 *
2171 *   The cookie for the provider that the meta provider creates. This is
2172 *   the same value that it passed to dtrace_register().
2173 *
2174 * 1.3.4  Caller's context
2175 *
2176 *   dtms_provide_pid() is called from either ioctl() or module load context.
2177 *   The DTrace framework is locked in such a way that meta providers may not
2178 *   register or unregister. This means that the meta provider cannot call
2179 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2180 *   is such that the provider may -- and is expected to --  call
2181 *   provider-related DTrace provider APIs including dtrace_register().
2182 *
2183 * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2184 *	     pid_t pid)
2185 *
2186 * 1.4.1  Overview
2187 *
2188 *   Called by the DTrace framework to remove a provider that had previously
2189 *   been instantiated via the dtms_provide_pid() entry point. The meta
2190 *   provider need not remove the provider immediately, but this entry
2191 *   point indicates that the provider should be removed as soon as possible
2192 *   using the dtrace_unregister() API.
2193 *
2194 * 1.4.2  Arguments and notes
2195 *
2196 *   The first argument is the cookie as passed to dtrace_meta_register().
2197 *   The second argument is a pointer to a structure describing the helper
2198 *   provider. The third argument is the process identifier for process
2199 *   associated with this new provider.
2200 *
2201 * 1.4.3  Return value
2202 *
2203 *   None
2204 *
2205 * 1.4.4  Caller's context
2206 *
2207 *   dtms_remove_pid() is called from either ioctl() or exit() context.
2208 *   The DTrace framework is locked in such a way that meta providers may not
2209 *   register or unregister. This means that the meta provider cannot call
2210 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2211 *   is such that the provider may -- and is expected to -- call
2212 *   provider-related DTrace provider APIs including dtrace_unregister().
2213 */
2214typedef struct dtrace_helper_probedesc {
2215	char *dthpb_mod;			/* probe module */
2216	char *dthpb_func;			/* probe function */
2217	char *dthpb_name;			/* probe name */
2218	uint64_t dthpb_base;			/* base address */
2219	uint32_t *dthpb_offs;			/* offsets array */
2220	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2221	uint32_t dthpb_noffs;			/* offsets count */
2222	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2223	uint8_t *dthpb_args;			/* argument mapping array */
2224	uint8_t dthpb_xargc;			/* translated argument count */
2225	uint8_t dthpb_nargc;			/* native argument count */
2226	char *dthpb_xtypes;			/* translated types strings */
2227	char *dthpb_ntypes;			/* native types strings */
2228} dtrace_helper_probedesc_t;
2229
2230typedef struct dtrace_helper_provdesc {
2231	char *dthpv_provname;			/* provider name */
2232	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2233} dtrace_helper_provdesc_t;
2234
2235typedef struct dtrace_mops {
2236	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2237	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2238	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2239} dtrace_mops_t;
2240
2241typedef uintptr_t	dtrace_meta_provider_id_t;
2242
2243extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2244    dtrace_meta_provider_id_t *);
2245extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2246
2247/*
2248 * DTrace Kernel Hooks
2249 *
2250 * The following functions are implemented by the base kernel and form a set of
2251 * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2252 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2253 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2254 */
2255
2256typedef enum dtrace_vtime_state {
2257	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2258	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2259	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2260	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2261} dtrace_vtime_state_t;
2262
2263extern dtrace_vtime_state_t dtrace_vtime_active;
2264extern void dtrace_vtime_switch(kthread_t *next);
2265extern void dtrace_vtime_enable_tnf(void);
2266extern void dtrace_vtime_disable_tnf(void);
2267extern void dtrace_vtime_enable(void);
2268extern void dtrace_vtime_disable(void);
2269
2270struct regs;
2271
2272extern int (*dtrace_pid_probe_ptr)(struct regs *);
2273extern int (*dtrace_return_probe_ptr)(struct regs *);
2274extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2275extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2276extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2277extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2278
2279typedef uintptr_t dtrace_icookie_t;
2280typedef void (*dtrace_xcall_t)(void *);
2281
2282extern dtrace_icookie_t dtrace_interrupt_disable(void);
2283extern void dtrace_interrupt_enable(dtrace_icookie_t);
2284
2285extern void dtrace_membar_producer(void);
2286extern void dtrace_membar_consumer(void);
2287
2288extern void (*dtrace_cpu_init)(processorid_t);
2289extern void (*dtrace_modload)(struct modctl *);
2290extern void (*dtrace_modunload)(struct modctl *);
2291extern void (*dtrace_helpers_cleanup)(proc_t *);
2292extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2293extern void (*dtrace_cpustart_init)();
2294extern void (*dtrace_cpustart_fini)();
2295extern void (*dtrace_closef)();
2296
2297extern void (*dtrace_debugger_init)();
2298extern void (*dtrace_debugger_fini)();
2299extern dtrace_cacheid_t dtrace_predcache_id;
2300
2301extern hrtime_t dtrace_gethrtime(void);
2302extern void dtrace_sync(void);
2303extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2304extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2305extern void dtrace_vpanic(const char *, __va_list);
2306extern void dtrace_panic(const char *, ...);
2307
2308extern int dtrace_safe_defer_signal(void);
2309extern void dtrace_safe_synchronous_signal(void);
2310
2311extern int dtrace_mach_aframes(void);
2312
2313#if defined(__i386) || defined(__amd64)
2314extern int dtrace_instr_size(uchar_t *instr);
2315extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2316extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2317extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2318extern void dtrace_invop_callsite(void);
2319#endif
2320
2321#ifdef __sparc
2322extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2323extern void dtrace_getfsr(uint64_t *);
2324#endif
2325
2326#define	DTRACE_CPUFLAG_ISSET(flag) \
2327	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2328
2329#define	DTRACE_CPUFLAG_SET(flag) \
2330	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2331
2332#define	DTRACE_CPUFLAG_CLEAR(flag) \
2333	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2334
2335#endif /* _KERNEL */
2336
2337#endif	/* _ASM */
2338
2339#if defined(__i386) || defined(__amd64)
2340
2341#define	DTRACE_INVOP_PUSHL_EBP		1
2342#define	DTRACE_INVOP_POPL_EBP		2
2343#define	DTRACE_INVOP_LEAVE		3
2344#define	DTRACE_INVOP_NOP		4
2345#define	DTRACE_INVOP_RET		5
2346
2347#endif
2348
2349#ifdef	__cplusplus
2350}
2351#endif
2352
2353#endif	/* _SYS_DTRACE_H */
2354