xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision a48d81205a4295fd3f979e8ab98212a784b8f9e9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164  *       currently just max_lofi
165  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
166  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
167  *       list (a list of zones in the ZONE_IS_DEAD state).
168  *
169  *   Ordering requirements:
170  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
172  *
173  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176  *
177  *   Blocking memory allocations are permitted while holding any of the
178  *   zone locks.
179  *
180  *
181  *   System Call Interface:
182  *
183  *   The zone subsystem can be managed and queried from user level with
184  *   the following system calls (all subcodes of the primary "zone"
185  *   system call):
186  *   - zone_create: creates a zone with selected attributes (name,
187  *     root path, privileges, resource controls, ZFS datasets)
188  *   - zone_enter: allows the current process to enter a zone
189  *   - zone_getattr: reports attributes of a zone
190  *   - zone_setattr: set attributes of a zone
191  *   - zone_boot: set 'init' running for the zone
192  *   - zone_list: lists all zones active in the system
193  *   - zone_lookup: looks up zone id based on name
194  *   - zone_shutdown: initiates shutdown process (see states above)
195  *   - zone_destroy: completes shutdown process (see states above)
196  *
197  */
198 
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234 
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238 
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253 
254 /*
255  * This constant specifies the number of seconds that threads waiting for
256  * subsystems to release a zone's general-purpose references will wait before
257  * they log the zone's reference counts.  The constant's value shouldn't
258  * be so small that reference counts are unnecessarily reported for zones
259  * whose references are slowly released.  On the other hand, it shouldn't be so
260  * large that users reboot their systems out of frustration over hung zones
261  * before the system logs the zones' reference counts.
262  */
263 #define	ZONE_DESTROY_TIMEOUT_SECS	60
264 
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 	datalink_id_t	zdl_id;
268 	nvlist_t	*zdl_net;
269 	list_node_t	zdl_linkage;
270 } zone_dl_t;
271 
272 /*
273  * cv used to signal that all references to the zone have been released.  This
274  * needs to be global since there may be multiple waiters, and the first to
275  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276  */
277 static kcondvar_t zone_destroy_cv;
278 /*
279  * Lock used to serialize access to zone_cv.  This could have been per-zone,
280  * but then we'd need another lock for zone_destroy_cv, and why bother?
281  */
282 static kmutex_t zone_status_lock;
283 
284 /*
285  * ZSD-related global variables.
286  */
287 static kmutex_t zsd_key_lock;	/* protects the following two */
288 /*
289  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290  */
291 static zone_key_t zsd_keyval = 0;
292 /*
293  * Global list of registered keys.  We use this when a new zone is created.
294  */
295 static list_t zsd_registered_keys;
296 
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302 
303 /*
304  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305  * kernel proper runs, and which manages all other zones.
306  *
307  * Although not declared as static, the variable "zone0" should not be used
308  * except for by code that needs to reference the global zone early on in boot,
309  * before it is fully initialized.  All other consumers should use
310  * 'global_zone'.
311  */
312 zone_t zone0;
313 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
314 
315 /*
316  * List of active zones, protected by zonehash_lock.
317  */
318 static list_t zone_active;
319 
320 /*
321  * List of destroyed zones that still have outstanding cred references.
322  * Used for debugging.  Uses a separate lock to avoid lock ordering
323  * problems in zone_free.
324  */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327 
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330 
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333 
334 /*
335  * This table holds the mapping from kernel zone states to
336  * states visible in the state notification API.
337  * The idea is that we only expose "obvious" states and
338  * do not expose states which are just implementation details.
339  */
340 const char  *zone_status_table[] = {
341 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
342 	ZONE_EVENT_INITIALIZED,		/* initialized */
343 	ZONE_EVENT_READY,		/* ready */
344 	ZONE_EVENT_READY,		/* booting */
345 	ZONE_EVENT_RUNNING,		/* running */
346 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
350 	ZONE_EVENT_UNINITIALIZED,	/* dead */
351 };
352 
353 /*
354  * This array contains the names of the subsystems listed in zone_ref_subsys_t
355  * (see sys/zone.h).
356  */
357 static char *zone_ref_subsys_names[] = {
358 	"NFS",		/* ZONE_REF_NFS */
359 	"NFSv4",	/* ZONE_REF_NFSV4 */
360 	"SMBFS",	/* ZONE_REF_SMBFS */
361 	"MNTFS",	/* ZONE_REF_MNTFS */
362 	"LOFI",		/* ZONE_REF_LOFI */
363 	"VFS",		/* ZONE_REF_VFS */
364 	"IPC"		/* ZONE_REF_IPC */
365 };
366 
367 /*
368  * This isn't static so lint doesn't complain.
369  */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381 
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
390 
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392 
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397     zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400     kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 
404 /*
405  * Bump this number when you alter the zone syscall interfaces; this is
406  * because we need to have support for previous API versions in libc
407  * to support patching; libc calls into the kernel to determine this number.
408  *
409  * Version 1 of the API is the version originally shipped with Solaris 10
410  * Version 2 alters the zone_create system call in order to support more
411  *     arguments by moving the args into a structure; and to do better
412  *     error reporting when zone_create() fails.
413  * Version 3 alters the zone_create system call in order to support the
414  *     import of ZFS datasets to zones.
415  * Version 4 alters the zone_create system call in order to support
416  *     Trusted Extensions.
417  * Version 5 alters the zone_boot system call, and converts its old
418  *     bootargs parameter to be set by the zone_setattr API instead.
419  * Version 6 adds the flag argument to zone_create.
420  */
421 static const int ZONE_SYSCALL_API_VERSION = 6;
422 
423 /*
424  * Certain filesystems (such as NFS and autofs) need to know which zone
425  * the mount is being placed in.  Because of this, we need to be able to
426  * ensure that a zone isn't in the process of being created/destroyed such
427  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428  * it gets added the list of mounted zones, it ends up on the wrong zone's
429  * mount list. Since a zone can't reside on an NFS file system, we don't
430  * have to worry about the zonepath itself.
431  *
432  * The following functions: block_mounts()/resume_mounts() and
433  * mount_in_progress()/mount_completed() are used by zones and the VFS
434  * layer (respectively) to synchronize zone state transitions and new
435  * mounts within a zone. This syncronization is on a per-zone basis, so
436  * activity for one zone will not interfere with activity for another zone.
437  *
438  * The semantics are like a reader-reader lock such that there may
439  * either be multiple mounts (or zone state transitions, if that weren't
440  * serialized by zonehash_lock) in progress at the same time, but not
441  * both.
442  *
443  * We use cv's so the user can ctrl-C out of the operation if it's
444  * taking too long.
445  *
446  * The semantics are such that there is unfair bias towards the
447  * "current" operation.  This means that zone halt may starve if
448  * there is a rapid succession of new mounts coming in to the zone.
449  */
450 /*
451  * Prevent new mounts from progressing to the point of calling
452  * VFS_MOUNT().  If there are already mounts in this "region", wait for
453  * them to complete.
454  */
455 static int
456 block_mounts(zone_t *zp)
457 {
458 	int retval = 0;
459 
460 	/*
461 	 * Since it may block for a long time, block_mounts() shouldn't be
462 	 * called with zonehash_lock held.
463 	 */
464 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 	mutex_enter(&zp->zone_mount_lock);
466 	while (zp->zone_mounts_in_progress > 0) {
467 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 			goto signaled;
469 	}
470 	/*
471 	 * A negative value of mounts_in_progress indicates that mounts
472 	 * have been blocked by (-mounts_in_progress) different callers
473 	 * (remotely possible if two threads enter zone_shutdown at the same
474 	 * time).
475 	 */
476 	zp->zone_mounts_in_progress--;
477 	retval = 1;
478 signaled:
479 	mutex_exit(&zp->zone_mount_lock);
480 	return (retval);
481 }
482 
483 /*
484  * The VFS layer may progress with new mounts as far as we're concerned.
485  * Allow them to progress if we were the last obstacle.
486  */
487 static void
488 resume_mounts(zone_t *zp)
489 {
490 	mutex_enter(&zp->zone_mount_lock);
491 	if (++zp->zone_mounts_in_progress == 0)
492 		cv_broadcast(&zp->zone_mount_cv);
493 	mutex_exit(&zp->zone_mount_lock);
494 }
495 
496 /*
497  * The VFS layer is busy with a mount; this zone should wait until all
498  * of its mounts are completed to progress.
499  */
500 void
501 mount_in_progress(zone_t *zp)
502 {
503 	mutex_enter(&zp->zone_mount_lock);
504 	while (zp->zone_mounts_in_progress < 0)
505 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 	zp->zone_mounts_in_progress++;
507 	mutex_exit(&zp->zone_mount_lock);
508 }
509 
510 /*
511  * VFS is done with one mount; wake up any waiting block_mounts()
512  * callers if this is the last mount.
513  */
514 void
515 mount_completed(zone_t *zp)
516 {
517 	mutex_enter(&zp->zone_mount_lock);
518 	if (--zp->zone_mounts_in_progress == 0)
519 		cv_broadcast(&zp->zone_mount_cv);
520 	mutex_exit(&zp->zone_mount_lock);
521 }
522 
523 /*
524  * ZSD routines.
525  *
526  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527  * defined by the pthread_key_create() and related interfaces.
528  *
529  * Kernel subsystems may register one or more data items and/or
530  * callbacks to be executed when a zone is created, shutdown, or
531  * destroyed.
532  *
533  * Unlike the thread counterpart, destructor callbacks will be executed
534  * even if the data pointer is NULL and/or there are no constructor
535  * callbacks, so it is the responsibility of such callbacks to check for
536  * NULL data values if necessary.
537  *
538  * The locking strategy and overall picture is as follows:
539  *
540  * When someone calls zone_key_create(), a template ZSD entry is added to the
541  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
542  * holding that lock all the existing zones are marked as
543  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544  * zone_zsd list (protected by zone_lock). The global list is updated first
545  * (under zone_key_lock) to make sure that newly created zones use the
546  * most recent list of keys. Then under zonehash_lock we walk the zones
547  * and mark them.  Similar locking is used in zone_key_delete().
548  *
549  * The actual create, shutdown, and destroy callbacks are done without
550  * holding any lock. And zsd_flags are used to ensure that the operations
551  * completed so that when zone_key_create (and zone_create) is done, as well as
552  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553  * are completed.
554  *
555  * When new zones are created constructor callbacks for all registered ZSD
556  * entries will be called. That also uses the above two phases of marking
557  * what needs to be done, and then running the callbacks without holding
558  * any locks.
559  *
560  * The framework does not provide any locking around zone_getspecific() and
561  * zone_setspecific() apart from that needed for internal consistency, so
562  * callers interested in atomic "test-and-set" semantics will need to provide
563  * their own locking.
564  */
565 
566 /*
567  * Helper function to find the zsd_entry associated with the key in the
568  * given list.
569  */
570 static struct zsd_entry *
571 zsd_find(list_t *l, zone_key_t key)
572 {
573 	struct zsd_entry *zsd;
574 
575 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 		if (zsd->zsd_key == key) {
577 			return (zsd);
578 		}
579 	}
580 	return (NULL);
581 }
582 
583 /*
584  * Helper function to find the zsd_entry associated with the key in the
585  * given list. Move it to the front of the list.
586  */
587 static struct zsd_entry *
588 zsd_find_mru(list_t *l, zone_key_t key)
589 {
590 	struct zsd_entry *zsd;
591 
592 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 		if (zsd->zsd_key == key) {
594 			/*
595 			 * Move to head of list to keep list in MRU order.
596 			 */
597 			if (zsd != list_head(l)) {
598 				list_remove(l, zsd);
599 				list_insert_head(l, zsd);
600 			}
601 			return (zsd);
602 		}
603 	}
604 	return (NULL);
605 }
606 
607 void
608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 {
611 	struct zsd_entry *zsdp;
612 	struct zsd_entry *t;
613 	struct zone *zone;
614 	zone_key_t  key;
615 
616 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 	zsdp->zsd_data = NULL;
618 	zsdp->zsd_create = create;
619 	zsdp->zsd_shutdown = shutdown;
620 	zsdp->zsd_destroy = destroy;
621 
622 	/*
623 	 * Insert in global list of callbacks. Makes future zone creations
624 	 * see it.
625 	 */
626 	mutex_enter(&zsd_key_lock);
627 	key = zsdp->zsd_key = ++zsd_keyval;
628 	ASSERT(zsd_keyval != 0);
629 	list_insert_tail(&zsd_registered_keys, zsdp);
630 	mutex_exit(&zsd_key_lock);
631 
632 	/*
633 	 * Insert for all existing zones and mark them as needing
634 	 * a create callback.
635 	 */
636 	mutex_enter(&zonehash_lock);	/* stop the world */
637 	for (zone = list_head(&zone_active); zone != NULL;
638 	    zone = list_next(&zone_active, zone)) {
639 		zone_status_t status;
640 
641 		mutex_enter(&zone->zone_lock);
642 
643 		/* Skip zones that are on the way down or not yet up */
644 		status = zone_status_get(zone);
645 		if (status >= ZONE_IS_DOWN ||
646 		    status == ZONE_IS_UNINITIALIZED) {
647 			mutex_exit(&zone->zone_lock);
648 			continue;
649 		}
650 
651 		t = zsd_find_mru(&zone->zone_zsd, key);
652 		if (t != NULL) {
653 			/*
654 			 * A zsd_configure already inserted it after
655 			 * we dropped zsd_key_lock above.
656 			 */
657 			mutex_exit(&zone->zone_lock);
658 			continue;
659 		}
660 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 		t->zsd_key = key;
662 		t->zsd_create = create;
663 		t->zsd_shutdown = shutdown;
664 		t->zsd_destroy = destroy;
665 		if (create != NULL) {
666 			t->zsd_flags = ZSD_CREATE_NEEDED;
667 			DTRACE_PROBE2(zsd__create__needed,
668 			    zone_t *, zone, zone_key_t, key);
669 		}
670 		list_insert_tail(&zone->zone_zsd, t);
671 		mutex_exit(&zone->zone_lock);
672 	}
673 	mutex_exit(&zonehash_lock);
674 
675 	if (create != NULL) {
676 		/* Now call the create callback for this key */
677 		zsd_apply_all_zones(zsd_apply_create, key);
678 	}
679 	/*
680 	 * It is safe for consumers to use the key now, make it
681 	 * globally visible. Specifically zone_getspecific() will
682 	 * always successfully return the zone specific data associated
683 	 * with the key.
684 	 */
685 	*keyp = key;
686 
687 }
688 
689 /*
690  * Function called when a module is being unloaded, or otherwise wishes
691  * to unregister its ZSD key and callbacks.
692  *
693  * Remove from the global list and determine the functions that need to
694  * be called under a global lock. Then call the functions without
695  * holding any locks. Finally free up the zone_zsd entries. (The apply
696  * functions need to access the zone_zsd entries to find zsd_data etc.)
697  */
698 int
699 zone_key_delete(zone_key_t key)
700 {
701 	struct zsd_entry *zsdp = NULL;
702 	zone_t *zone;
703 
704 	mutex_enter(&zsd_key_lock);
705 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 	if (zsdp == NULL) {
707 		mutex_exit(&zsd_key_lock);
708 		return (-1);
709 	}
710 	list_remove(&zsd_registered_keys, zsdp);
711 	mutex_exit(&zsd_key_lock);
712 
713 	mutex_enter(&zonehash_lock);
714 	for (zone = list_head(&zone_active); zone != NULL;
715 	    zone = list_next(&zone_active, zone)) {
716 		struct zsd_entry *del;
717 
718 		mutex_enter(&zone->zone_lock);
719 		del = zsd_find_mru(&zone->zone_zsd, key);
720 		if (del == NULL) {
721 			/*
722 			 * Somebody else got here first e.g the zone going
723 			 * away.
724 			 */
725 			mutex_exit(&zone->zone_lock);
726 			continue;
727 		}
728 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 		if (del->zsd_shutdown != NULL &&
731 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 			DTRACE_PROBE2(zsd__shutdown__needed,
734 			    zone_t *, zone, zone_key_t, key);
735 		}
736 		if (del->zsd_destroy != NULL &&
737 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 			DTRACE_PROBE2(zsd__destroy__needed,
740 			    zone_t *, zone, zone_key_t, key);
741 		}
742 		mutex_exit(&zone->zone_lock);
743 	}
744 	mutex_exit(&zonehash_lock);
745 	kmem_free(zsdp, sizeof (*zsdp));
746 
747 	/* Now call the shutdown and destroy callback for this key */
748 	zsd_apply_all_zones(zsd_apply_shutdown, key);
749 	zsd_apply_all_zones(zsd_apply_destroy, key);
750 
751 	/* Now we can free up the zsdp structures in each zone */
752 	mutex_enter(&zonehash_lock);
753 	for (zone = list_head(&zone_active); zone != NULL;
754 	    zone = list_next(&zone_active, zone)) {
755 		struct zsd_entry *del;
756 
757 		mutex_enter(&zone->zone_lock);
758 		del = zsd_find(&zone->zone_zsd, key);
759 		if (del != NULL) {
760 			list_remove(&zone->zone_zsd, del);
761 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 			kmem_free(del, sizeof (*del));
763 		}
764 		mutex_exit(&zone->zone_lock);
765 	}
766 	mutex_exit(&zonehash_lock);
767 
768 	return (0);
769 }
770 
771 /*
772  * ZSD counterpart of pthread_setspecific().
773  *
774  * Since all zsd callbacks, including those with no create function,
775  * have an entry in zone_zsd, if the key is registered it is part of
776  * the zone_zsd list.
777  * Return an error if the key wasn't registerd.
778  */
779 int
780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 {
782 	struct zsd_entry *t;
783 
784 	mutex_enter(&zone->zone_lock);
785 	t = zsd_find_mru(&zone->zone_zsd, key);
786 	if (t != NULL) {
787 		/*
788 		 * Replace old value with new
789 		 */
790 		t->zsd_data = (void *)data;
791 		mutex_exit(&zone->zone_lock);
792 		return (0);
793 	}
794 	mutex_exit(&zone->zone_lock);
795 	return (-1);
796 }
797 
798 /*
799  * ZSD counterpart of pthread_getspecific().
800  */
801 void *
802 zone_getspecific(zone_key_t key, zone_t *zone)
803 {
804 	struct zsd_entry *t;
805 	void *data;
806 
807 	mutex_enter(&zone->zone_lock);
808 	t = zsd_find_mru(&zone->zone_zsd, key);
809 	data = (t == NULL ? NULL : t->zsd_data);
810 	mutex_exit(&zone->zone_lock);
811 	return (data);
812 }
813 
814 /*
815  * Function used to initialize a zone's list of ZSD callbacks and data
816  * when the zone is being created.  The callbacks are initialized from
817  * the template list (zsd_registered_keys). The constructor callback is
818  * executed later (once the zone exists and with locks dropped).
819  */
820 static void
821 zone_zsd_configure(zone_t *zone)
822 {
823 	struct zsd_entry *zsdp;
824 	struct zsd_entry *t;
825 
826 	ASSERT(MUTEX_HELD(&zonehash_lock));
827 	ASSERT(list_head(&zone->zone_zsd) == NULL);
828 	mutex_enter(&zone->zone_lock);
829 	mutex_enter(&zsd_key_lock);
830 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 		/*
833 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 		 * should not have added anything to it.
835 		 */
836 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837 
838 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 		t->zsd_key = zsdp->zsd_key;
840 		t->zsd_create = zsdp->zsd_create;
841 		t->zsd_shutdown = zsdp->zsd_shutdown;
842 		t->zsd_destroy = zsdp->zsd_destroy;
843 		if (zsdp->zsd_create != NULL) {
844 			t->zsd_flags = ZSD_CREATE_NEEDED;
845 			DTRACE_PROBE2(zsd__create__needed,
846 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 		}
848 		list_insert_tail(&zone->zone_zsd, t);
849 	}
850 	mutex_exit(&zsd_key_lock);
851 	mutex_exit(&zone->zone_lock);
852 }
853 
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855 
856 /*
857  * Helper function to execute shutdown or destructor callbacks.
858  */
859 static void
860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 {
862 	struct zsd_entry *t;
863 
864 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867 
868 	/*
869 	 * Run the callback solely based on what is registered for the zone
870 	 * in zone_zsd. The global list can change independently of this
871 	 * as keys are registered and unregistered and we don't register new
872 	 * callbacks for a zone that is in the process of going away.
873 	 */
874 	mutex_enter(&zone->zone_lock);
875 	for (t = list_head(&zone->zone_zsd); t != NULL;
876 	    t = list_next(&zone->zone_zsd, t)) {
877 		zone_key_t key = t->zsd_key;
878 
879 		/* Skip if no callbacks registered */
880 
881 		if (ct == ZSD_SHUTDOWN) {
882 			if (t->zsd_shutdown != NULL &&
883 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 				DTRACE_PROBE2(zsd__shutdown__needed,
886 				    zone_t *, zone, zone_key_t, key);
887 			}
888 		} else {
889 			if (t->zsd_destroy != NULL &&
890 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 				DTRACE_PROBE2(zsd__destroy__needed,
893 				    zone_t *, zone, zone_key_t, key);
894 			}
895 		}
896 	}
897 	mutex_exit(&zone->zone_lock);
898 
899 	/* Now call the shutdown and destroy callback for this key */
900 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 	zsd_apply_all_keys(zsd_apply_destroy, zone);
902 
903 }
904 
905 /*
906  * Called when the zone is going away; free ZSD-related memory, and
907  * destroy the zone_zsd list.
908  */
909 static void
910 zone_free_zsd(zone_t *zone)
911 {
912 	struct zsd_entry *t, *next;
913 
914 	/*
915 	 * Free all the zsd_entry's we had on this zone.
916 	 */
917 	mutex_enter(&zone->zone_lock);
918 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 		next = list_next(&zone->zone_zsd, t);
920 		list_remove(&zone->zone_zsd, t);
921 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 		kmem_free(t, sizeof (*t));
923 	}
924 	list_destroy(&zone->zone_zsd);
925 	mutex_exit(&zone->zone_lock);
926 
927 }
928 
929 /*
930  * Apply a function to all zones for particular key value.
931  *
932  * The applyfn has to drop zonehash_lock if it does some work, and
933  * then reacquire it before it returns.
934  * When the lock is dropped we don't follow list_next even
935  * if it is possible to do so without any hazards. This is
936  * because we want the design to allow for the list of zones
937  * to change in any arbitrary way during the time the
938  * lock was dropped.
939  *
940  * It is safe to restart the loop at list_head since the applyfn
941  * changes the zsd_flags as it does work, so a subsequent
942  * pass through will have no effect in applyfn, hence the loop will terminate
943  * in at worst O(N^2).
944  */
945 static void
946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 {
948 	zone_t *zone;
949 
950 	mutex_enter(&zonehash_lock);
951 	zone = list_head(&zone_active);
952 	while (zone != NULL) {
953 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 			/* Lock dropped - restart at head */
955 			zone = list_head(&zone_active);
956 		} else {
957 			zone = list_next(&zone_active, zone);
958 		}
959 	}
960 	mutex_exit(&zonehash_lock);
961 }
962 
963 /*
964  * Apply a function to all keys for a particular zone.
965  *
966  * The applyfn has to drop zonehash_lock if it does some work, and
967  * then reacquire it before it returns.
968  * When the lock is dropped we don't follow list_next even
969  * if it is possible to do so without any hazards. This is
970  * because we want the design to allow for the list of zsd callbacks
971  * to change in any arbitrary way during the time the
972  * lock was dropped.
973  *
974  * It is safe to restart the loop at list_head since the applyfn
975  * changes the zsd_flags as it does work, so a subsequent
976  * pass through will have no effect in applyfn, hence the loop will terminate
977  * in at worst O(N^2).
978  */
979 static void
980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 {
982 	struct zsd_entry *t;
983 
984 	mutex_enter(&zone->zone_lock);
985 	t = list_head(&zone->zone_zsd);
986 	while (t != NULL) {
987 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 			/* Lock dropped - restart at head */
989 			t = list_head(&zone->zone_zsd);
990 		} else {
991 			t = list_next(&zone->zone_zsd, t);
992 		}
993 	}
994 	mutex_exit(&zone->zone_lock);
995 }
996 
997 /*
998  * Call the create function for the zone and key if CREATE_NEEDED
999  * is set.
1000  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001  * we wait for that thread to complete so that we can ensure that
1002  * all the callbacks are done when we've looped over all zones/keys.
1003  *
1004  * When we call the create function, we drop the global held by the
1005  * caller, and return true to tell the caller it needs to re-evalute the
1006  * state.
1007  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008  * remains held on exit.
1009  */
1010 static boolean_t
1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012     zone_t *zone, zone_key_t key)
1013 {
1014 	void *result;
1015 	struct zsd_entry *t;
1016 	boolean_t dropped;
1017 
1018 	if (lockp != NULL) {
1019 		ASSERT(MUTEX_HELD(lockp));
1020 	}
1021 	if (zone_lock_held) {
1022 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 	} else {
1024 		mutex_enter(&zone->zone_lock);
1025 	}
1026 
1027 	t = zsd_find(&zone->zone_zsd, key);
1028 	if (t == NULL) {
1029 		/*
1030 		 * Somebody else got here first e.g the zone going
1031 		 * away.
1032 		 */
1033 		if (!zone_lock_held)
1034 			mutex_exit(&zone->zone_lock);
1035 		return (B_FALSE);
1036 	}
1037 	dropped = B_FALSE;
1038 	if (zsd_wait_for_inprogress(zone, t, lockp))
1039 		dropped = B_TRUE;
1040 
1041 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 		DTRACE_PROBE2(zsd__create__inprogress,
1045 		    zone_t *, zone, zone_key_t, key);
1046 		mutex_exit(&zone->zone_lock);
1047 		if (lockp != NULL)
1048 			mutex_exit(lockp);
1049 
1050 		dropped = B_TRUE;
1051 		ASSERT(t->zsd_create != NULL);
1052 		DTRACE_PROBE2(zsd__create__start,
1053 		    zone_t *, zone, zone_key_t, key);
1054 
1055 		result = (*t->zsd_create)(zone->zone_id);
1056 
1057 		DTRACE_PROBE2(zsd__create__end,
1058 		    zone_t *, zone, voidn *, result);
1059 
1060 		ASSERT(result != NULL);
1061 		if (lockp != NULL)
1062 			mutex_enter(lockp);
1063 		mutex_enter(&zone->zone_lock);
1064 		t->zsd_data = result;
1065 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 		cv_broadcast(&t->zsd_cv);
1068 		DTRACE_PROBE2(zsd__create__completed,
1069 		    zone_t *, zone, zone_key_t, key);
1070 	}
1071 	if (!zone_lock_held)
1072 		mutex_exit(&zone->zone_lock);
1073 	return (dropped);
1074 }
1075 
1076 /*
1077  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078  * is set.
1079  * If some other thread gets here first and sets *_INPROGRESS, then
1080  * we wait for that thread to complete so that we can ensure that
1081  * all the callbacks are done when we've looped over all zones/keys.
1082  *
1083  * When we call the shutdown function, we drop the global held by the
1084  * caller, and return true to tell the caller it needs to re-evalute the
1085  * state.
1086  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087  * remains held on exit.
1088  */
1089 static boolean_t
1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091     zone_t *zone, zone_key_t key)
1092 {
1093 	struct zsd_entry *t;
1094 	void *data;
1095 	boolean_t dropped;
1096 
1097 	if (lockp != NULL) {
1098 		ASSERT(MUTEX_HELD(lockp));
1099 	}
1100 	if (zone_lock_held) {
1101 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 	} else {
1103 		mutex_enter(&zone->zone_lock);
1104 	}
1105 
1106 	t = zsd_find(&zone->zone_zsd, key);
1107 	if (t == NULL) {
1108 		/*
1109 		 * Somebody else got here first e.g the zone going
1110 		 * away.
1111 		 */
1112 		if (!zone_lock_held)
1113 			mutex_exit(&zone->zone_lock);
1114 		return (B_FALSE);
1115 	}
1116 	dropped = B_FALSE;
1117 	if (zsd_wait_for_creator(zone, t, lockp))
1118 		dropped = B_TRUE;
1119 
1120 	if (zsd_wait_for_inprogress(zone, t, lockp))
1121 		dropped = B_TRUE;
1122 
1123 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 		    zone_t *, zone, zone_key_t, key);
1128 		mutex_exit(&zone->zone_lock);
1129 		if (lockp != NULL)
1130 			mutex_exit(lockp);
1131 		dropped = B_TRUE;
1132 
1133 		ASSERT(t->zsd_shutdown != NULL);
1134 		data = t->zsd_data;
1135 
1136 		DTRACE_PROBE2(zsd__shutdown__start,
1137 		    zone_t *, zone, zone_key_t, key);
1138 
1139 		(t->zsd_shutdown)(zone->zone_id, data);
1140 		DTRACE_PROBE2(zsd__shutdown__end,
1141 		    zone_t *, zone, zone_key_t, key);
1142 
1143 		if (lockp != NULL)
1144 			mutex_enter(lockp);
1145 		mutex_enter(&zone->zone_lock);
1146 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 		cv_broadcast(&t->zsd_cv);
1149 		DTRACE_PROBE2(zsd__shutdown__completed,
1150 		    zone_t *, zone, zone_key_t, key);
1151 	}
1152 	if (!zone_lock_held)
1153 		mutex_exit(&zone->zone_lock);
1154 	return (dropped);
1155 }
1156 
1157 /*
1158  * Call the destroy function for the zone and key if DESTROY_NEEDED
1159  * is set.
1160  * If some other thread gets here first and sets *_INPROGRESS, then
1161  * we wait for that thread to complete so that we can ensure that
1162  * all the callbacks are done when we've looped over all zones/keys.
1163  *
1164  * When we call the destroy function, we drop the global held by the
1165  * caller, and return true to tell the caller it needs to re-evalute the
1166  * state.
1167  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168  * remains held on exit.
1169  */
1170 static boolean_t
1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172     zone_t *zone, zone_key_t key)
1173 {
1174 	struct zsd_entry *t;
1175 	void *data;
1176 	boolean_t dropped;
1177 
1178 	if (lockp != NULL) {
1179 		ASSERT(MUTEX_HELD(lockp));
1180 	}
1181 	if (zone_lock_held) {
1182 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 	} else {
1184 		mutex_enter(&zone->zone_lock);
1185 	}
1186 
1187 	t = zsd_find(&zone->zone_zsd, key);
1188 	if (t == NULL) {
1189 		/*
1190 		 * Somebody else got here first e.g the zone going
1191 		 * away.
1192 		 */
1193 		if (!zone_lock_held)
1194 			mutex_exit(&zone->zone_lock);
1195 		return (B_FALSE);
1196 	}
1197 	dropped = B_FALSE;
1198 	if (zsd_wait_for_creator(zone, t, lockp))
1199 		dropped = B_TRUE;
1200 
1201 	if (zsd_wait_for_inprogress(zone, t, lockp))
1202 		dropped = B_TRUE;
1203 
1204 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 		DTRACE_PROBE2(zsd__destroy__inprogress,
1208 		    zone_t *, zone, zone_key_t, key);
1209 		mutex_exit(&zone->zone_lock);
1210 		if (lockp != NULL)
1211 			mutex_exit(lockp);
1212 		dropped = B_TRUE;
1213 
1214 		ASSERT(t->zsd_destroy != NULL);
1215 		data = t->zsd_data;
1216 		DTRACE_PROBE2(zsd__destroy__start,
1217 		    zone_t *, zone, zone_key_t, key);
1218 
1219 		(t->zsd_destroy)(zone->zone_id, data);
1220 		DTRACE_PROBE2(zsd__destroy__end,
1221 		    zone_t *, zone, zone_key_t, key);
1222 
1223 		if (lockp != NULL)
1224 			mutex_enter(lockp);
1225 		mutex_enter(&zone->zone_lock);
1226 		t->zsd_data = NULL;
1227 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 		cv_broadcast(&t->zsd_cv);
1230 		DTRACE_PROBE2(zsd__destroy__completed,
1231 		    zone_t *, zone, zone_key_t, key);
1232 	}
1233 	if (!zone_lock_held)
1234 		mutex_exit(&zone->zone_lock);
1235 	return (dropped);
1236 }
1237 
1238 /*
1239  * Wait for any CREATE_NEEDED flag to be cleared.
1240  * Returns true if lockp was temporarily dropped while waiting.
1241  */
1242 static boolean_t
1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 	boolean_t dropped = B_FALSE;
1246 
1247 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 		DTRACE_PROBE2(zsd__wait__for__creator,
1249 		    zone_t *, zone, struct zsd_entry *, t);
1250 		if (lockp != NULL) {
1251 			dropped = B_TRUE;
1252 			mutex_exit(lockp);
1253 		}
1254 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 		if (lockp != NULL) {
1256 			/* First drop zone_lock to preserve order */
1257 			mutex_exit(&zone->zone_lock);
1258 			mutex_enter(lockp);
1259 			mutex_enter(&zone->zone_lock);
1260 		}
1261 	}
1262 	return (dropped);
1263 }
1264 
1265 /*
1266  * Wait for any INPROGRESS flag to be cleared.
1267  * Returns true if lockp was temporarily dropped while waiting.
1268  */
1269 static boolean_t
1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 {
1272 	boolean_t dropped = B_FALSE;
1273 
1274 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 		    zone_t *, zone, struct zsd_entry *, t);
1277 		if (lockp != NULL) {
1278 			dropped = B_TRUE;
1279 			mutex_exit(lockp);
1280 		}
1281 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 		if (lockp != NULL) {
1283 			/* First drop zone_lock to preserve order */
1284 			mutex_exit(&zone->zone_lock);
1285 			mutex_enter(lockp);
1286 			mutex_enter(&zone->zone_lock);
1287 		}
1288 	}
1289 	return (dropped);
1290 }
1291 
1292 /*
1293  * Frees memory associated with the zone dataset list.
1294  */
1295 static void
1296 zone_free_datasets(zone_t *zone)
1297 {
1298 	zone_dataset_t *t, *next;
1299 
1300 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 		next = list_next(&zone->zone_datasets, t);
1302 		list_remove(&zone->zone_datasets, t);
1303 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 		kmem_free(t, sizeof (*t));
1305 	}
1306 	list_destroy(&zone->zone_datasets);
1307 }
1308 
1309 /*
1310  * zone.cpu-shares resource control support.
1311  */
1312 /*ARGSUSED*/
1313 static rctl_qty_t
1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 {
1316 	ASSERT(MUTEX_HELD(&p->p_lock));
1317 	return (p->p_zone->zone_shares);
1318 }
1319 
1320 /*ARGSUSED*/
1321 static int
1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323     rctl_qty_t nv)
1324 {
1325 	ASSERT(MUTEX_HELD(&p->p_lock));
1326 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 	if (e->rcep_p.zone == NULL)
1328 		return (0);
1329 
1330 	e->rcep_p.zone->zone_shares = nv;
1331 	return (0);
1332 }
1333 
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 	rcop_no_action,
1336 	zone_cpu_shares_usage,
1337 	zone_cpu_shares_set,
1338 	rcop_no_test
1339 };
1340 
1341 /*
1342  * zone.cpu-cap resource control support.
1343  */
1344 /*ARGSUSED*/
1345 static rctl_qty_t
1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 {
1348 	ASSERT(MUTEX_HELD(&p->p_lock));
1349 	return (cpucaps_zone_get(p->p_zone));
1350 }
1351 
1352 /*ARGSUSED*/
1353 static int
1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355     rctl_qty_t nv)
1356 {
1357 	zone_t *zone = e->rcep_p.zone;
1358 
1359 	ASSERT(MUTEX_HELD(&p->p_lock));
1360 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1361 
1362 	if (zone == NULL)
1363 		return (0);
1364 
1365 	/*
1366 	 * set cap to the new value.
1367 	 */
1368 	return (cpucaps_zone_set(zone, nv));
1369 }
1370 
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 	rcop_no_action,
1373 	zone_cpu_cap_get,
1374 	zone_cpu_cap_set,
1375 	rcop_no_test
1376 };
1377 
1378 /*ARGSUSED*/
1379 static rctl_qty_t
1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 {
1382 	rctl_qty_t nlwps;
1383 	zone_t *zone = p->p_zone;
1384 
1385 	ASSERT(MUTEX_HELD(&p->p_lock));
1386 
1387 	mutex_enter(&zone->zone_nlwps_lock);
1388 	nlwps = zone->zone_nlwps;
1389 	mutex_exit(&zone->zone_nlwps_lock);
1390 
1391 	return (nlwps);
1392 }
1393 
1394 /*ARGSUSED*/
1395 static int
1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397     rctl_qty_t incr, uint_t flags)
1398 {
1399 	rctl_qty_t nlwps;
1400 
1401 	ASSERT(MUTEX_HELD(&p->p_lock));
1402 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 	if (e->rcep_p.zone == NULL)
1404 		return (0);
1405 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 	nlwps = e->rcep_p.zone->zone_nlwps;
1407 
1408 	if (nlwps + incr > rcntl->rcv_value)
1409 		return (1);
1410 
1411 	return (0);
1412 }
1413 
1414 /*ARGSUSED*/
1415 static int
1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 {
1418 	ASSERT(MUTEX_HELD(&p->p_lock));
1419 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 	if (e->rcep_p.zone == NULL)
1421 		return (0);
1422 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 	return (0);
1424 }
1425 
1426 static rctl_ops_t zone_lwps_ops = {
1427 	rcop_no_action,
1428 	zone_lwps_usage,
1429 	zone_lwps_set,
1430 	zone_lwps_test,
1431 };
1432 
1433 /*ARGSUSED*/
1434 static rctl_qty_t
1435 zone_procs_usage(rctl_t *r, proc_t *p)
1436 {
1437 	rctl_qty_t nprocs;
1438 	zone_t *zone = p->p_zone;
1439 
1440 	ASSERT(MUTEX_HELD(&p->p_lock));
1441 
1442 	mutex_enter(&zone->zone_nlwps_lock);
1443 	nprocs = zone->zone_nprocs;
1444 	mutex_exit(&zone->zone_nlwps_lock);
1445 
1446 	return (nprocs);
1447 }
1448 
1449 /*ARGSUSED*/
1450 static int
1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452     rctl_qty_t incr, uint_t flags)
1453 {
1454 	rctl_qty_t nprocs;
1455 
1456 	ASSERT(MUTEX_HELD(&p->p_lock));
1457 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 	if (e->rcep_p.zone == NULL)
1459 		return (0);
1460 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 	nprocs = e->rcep_p.zone->zone_nprocs;
1462 
1463 	if (nprocs + incr > rcntl->rcv_value)
1464 		return (1);
1465 
1466 	return (0);
1467 }
1468 
1469 /*ARGSUSED*/
1470 static int
1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 {
1473 	ASSERT(MUTEX_HELD(&p->p_lock));
1474 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 	if (e->rcep_p.zone == NULL)
1476 		return (0);
1477 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 	return (0);
1479 }
1480 
1481 static rctl_ops_t zone_procs_ops = {
1482 	rcop_no_action,
1483 	zone_procs_usage,
1484 	zone_procs_set,
1485 	zone_procs_test,
1486 };
1487 
1488 /*ARGSUSED*/
1489 static int
1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1491     rctl_qty_t incr, uint_t flags)
1492 {
1493 	rctl_qty_t v;
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1496 	v = e->rcep_p.zone->zone_shmmax + incr;
1497 	if (v > rval->rcv_value)
1498 		return (1);
1499 	return (0);
1500 }
1501 
1502 static rctl_ops_t zone_shmmax_ops = {
1503 	rcop_no_action,
1504 	rcop_no_usage,
1505 	rcop_no_set,
1506 	zone_shmmax_test
1507 };
1508 
1509 /*ARGSUSED*/
1510 static int
1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1512     rctl_qty_t incr, uint_t flags)
1513 {
1514 	rctl_qty_t v;
1515 	ASSERT(MUTEX_HELD(&p->p_lock));
1516 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1517 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1518 	if (v > rval->rcv_value)
1519 		return (1);
1520 	return (0);
1521 }
1522 
1523 static rctl_ops_t zone_shmmni_ops = {
1524 	rcop_no_action,
1525 	rcop_no_usage,
1526 	rcop_no_set,
1527 	zone_shmmni_test
1528 };
1529 
1530 /*ARGSUSED*/
1531 static int
1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1533     rctl_qty_t incr, uint_t flags)
1534 {
1535 	rctl_qty_t v;
1536 	ASSERT(MUTEX_HELD(&p->p_lock));
1537 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1538 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1539 	if (v > rval->rcv_value)
1540 		return (1);
1541 	return (0);
1542 }
1543 
1544 static rctl_ops_t zone_semmni_ops = {
1545 	rcop_no_action,
1546 	rcop_no_usage,
1547 	rcop_no_set,
1548 	zone_semmni_test
1549 };
1550 
1551 /*ARGSUSED*/
1552 static int
1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1554     rctl_qty_t incr, uint_t flags)
1555 {
1556 	rctl_qty_t v;
1557 	ASSERT(MUTEX_HELD(&p->p_lock));
1558 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1559 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1560 	if (v > rval->rcv_value)
1561 		return (1);
1562 	return (0);
1563 }
1564 
1565 static rctl_ops_t zone_msgmni_ops = {
1566 	rcop_no_action,
1567 	rcop_no_usage,
1568 	rcop_no_set,
1569 	zone_msgmni_test
1570 };
1571 
1572 /*ARGSUSED*/
1573 static rctl_qty_t
1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1575 {
1576 	rctl_qty_t q;
1577 	ASSERT(MUTEX_HELD(&p->p_lock));
1578 	mutex_enter(&p->p_zone->zone_mem_lock);
1579 	q = p->p_zone->zone_locked_mem;
1580 	mutex_exit(&p->p_zone->zone_mem_lock);
1581 	return (q);
1582 }
1583 
1584 /*ARGSUSED*/
1585 static int
1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1587     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1588 {
1589 	rctl_qty_t q;
1590 	zone_t *z;
1591 
1592 	z = e->rcep_p.zone;
1593 	ASSERT(MUTEX_HELD(&p->p_lock));
1594 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1595 	q = z->zone_locked_mem;
1596 	if (q + incr > rcntl->rcv_value)
1597 		return (1);
1598 	return (0);
1599 }
1600 
1601 /*ARGSUSED*/
1602 static int
1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1604     rctl_qty_t nv)
1605 {
1606 	ASSERT(MUTEX_HELD(&p->p_lock));
1607 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1608 	if (e->rcep_p.zone == NULL)
1609 		return (0);
1610 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1611 	return (0);
1612 }
1613 
1614 static rctl_ops_t zone_locked_mem_ops = {
1615 	rcop_no_action,
1616 	zone_locked_mem_usage,
1617 	zone_locked_mem_set,
1618 	zone_locked_mem_test
1619 };
1620 
1621 /*ARGSUSED*/
1622 static rctl_qty_t
1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1624 {
1625 	rctl_qty_t q;
1626 	zone_t *z = p->p_zone;
1627 
1628 	ASSERT(MUTEX_HELD(&p->p_lock));
1629 	mutex_enter(&z->zone_mem_lock);
1630 	q = z->zone_max_swap;
1631 	mutex_exit(&z->zone_mem_lock);
1632 	return (q);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1638     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1639 {
1640 	rctl_qty_t q;
1641 	zone_t *z;
1642 
1643 	z = e->rcep_p.zone;
1644 	ASSERT(MUTEX_HELD(&p->p_lock));
1645 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1646 	q = z->zone_max_swap;
1647 	if (q + incr > rcntl->rcv_value)
1648 		return (1);
1649 	return (0);
1650 }
1651 
1652 /*ARGSUSED*/
1653 static int
1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1655     rctl_qty_t nv)
1656 {
1657 	ASSERT(MUTEX_HELD(&p->p_lock));
1658 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1659 	if (e->rcep_p.zone == NULL)
1660 		return (0);
1661 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1662 	return (0);
1663 }
1664 
1665 static rctl_ops_t zone_max_swap_ops = {
1666 	rcop_no_action,
1667 	zone_max_swap_usage,
1668 	zone_max_swap_set,
1669 	zone_max_swap_test
1670 };
1671 
1672 /*ARGSUSED*/
1673 static rctl_qty_t
1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1675 {
1676 	rctl_qty_t q;
1677 	zone_t *z = p->p_zone;
1678 
1679 	ASSERT(MUTEX_HELD(&p->p_lock));
1680 	mutex_enter(&z->zone_rctl_lock);
1681 	q = z->zone_max_lofi;
1682 	mutex_exit(&z->zone_rctl_lock);
1683 	return (q);
1684 }
1685 
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1689     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1690 {
1691 	rctl_qty_t q;
1692 	zone_t *z;
1693 
1694 	z = e->rcep_p.zone;
1695 	ASSERT(MUTEX_HELD(&p->p_lock));
1696 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1697 	q = z->zone_max_lofi;
1698 	if (q + incr > rcntl->rcv_value)
1699 		return (1);
1700 	return (0);
1701 }
1702 
1703 /*ARGSUSED*/
1704 static int
1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1706     rctl_qty_t nv)
1707 {
1708 	ASSERT(MUTEX_HELD(&p->p_lock));
1709 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1710 	if (e->rcep_p.zone == NULL)
1711 		return (0);
1712 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1713 	return (0);
1714 }
1715 
1716 static rctl_ops_t zone_max_lofi_ops = {
1717 	rcop_no_action,
1718 	zone_max_lofi_usage,
1719 	zone_max_lofi_set,
1720 	zone_max_lofi_test
1721 };
1722 
1723 /*
1724  * Helper function to brand the zone with a unique ID.
1725  */
1726 static void
1727 zone_uniqid(zone_t *zone)
1728 {
1729 	static uint64_t uniqid = 0;
1730 
1731 	ASSERT(MUTEX_HELD(&zonehash_lock));
1732 	zone->zone_uniqid = uniqid++;
1733 }
1734 
1735 /*
1736  * Returns a held pointer to the "kcred" for the specified zone.
1737  */
1738 struct cred *
1739 zone_get_kcred(zoneid_t zoneid)
1740 {
1741 	zone_t *zone;
1742 	cred_t *cr;
1743 
1744 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1745 		return (NULL);
1746 	cr = zone->zone_kcred;
1747 	crhold(cr);
1748 	zone_rele(zone);
1749 	return (cr);
1750 }
1751 
1752 static int
1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1754 {
1755 	zone_t *zone = ksp->ks_private;
1756 	zone_kstat_t *zk = ksp->ks_data;
1757 
1758 	if (rw == KSTAT_WRITE)
1759 		return (EACCES);
1760 
1761 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1762 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1763 	return (0);
1764 }
1765 
1766 static int
1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1768 {
1769 	zone_t *zone = ksp->ks_private;
1770 	zone_kstat_t *zk = ksp->ks_data;
1771 
1772 	if (rw == KSTAT_WRITE)
1773 		return (EACCES);
1774 
1775 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1776 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1777 	return (0);
1778 }
1779 
1780 static int
1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1782 {
1783 	zone_t *zone = ksp->ks_private;
1784 	zone_kstat_t *zk = ksp->ks_data;
1785 
1786 	if (rw == KSTAT_WRITE)
1787 		return (EACCES);
1788 
1789 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1790 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1791 	return (0);
1792 }
1793 
1794 static kstat_t *
1795 zone_kstat_create_common(zone_t *zone, char *name,
1796     int (*updatefunc) (kstat_t *, int))
1797 {
1798 	kstat_t *ksp;
1799 	zone_kstat_t *zk;
1800 
1801 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1802 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1803 	    KSTAT_FLAG_VIRTUAL);
1804 
1805 	if (ksp == NULL)
1806 		return (NULL);
1807 
1808 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1809 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1810 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1811 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1812 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1813 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1814 	ksp->ks_update = updatefunc;
1815 	ksp->ks_private = zone;
1816 	kstat_install(ksp);
1817 	return (ksp);
1818 }
1819 
1820 
1821 static int
1822 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1823 {
1824 	zone_t *zone = ksp->ks_private;
1825 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1826 
1827 	if (rw == KSTAT_WRITE)
1828 		return (EACCES);
1829 
1830 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1831 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1832 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1833 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1834 
1835 	return (0);
1836 }
1837 
1838 static kstat_t *
1839 zone_mcap_kstat_create(zone_t *zone)
1840 {
1841 	kstat_t *ksp;
1842 	zone_mcap_kstat_t *zmp;
1843 
1844 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1845 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1846 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1847 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1848 		return (NULL);
1849 
1850 	if (zone->zone_id != GLOBAL_ZONEID)
1851 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1852 
1853 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1854 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1855 	ksp->ks_lock = &zone->zone_mcap_lock;
1856 	zone->zone_mcap_stats = zmp;
1857 
1858 	/* The kstat "name" field is not large enough for a full zonename */
1859 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1860 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1861 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1862 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1863 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1864 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1865 
1866 	ksp->ks_update = zone_mcap_kstat_update;
1867 	ksp->ks_private = zone;
1868 
1869 	kstat_install(ksp);
1870 	return (ksp);
1871 }
1872 
1873 static int
1874 zone_misc_kstat_update(kstat_t *ksp, int rw)
1875 {
1876 	zone_t *zone = ksp->ks_private;
1877 	zone_misc_kstat_t *zmp = ksp->ks_data;
1878 	hrtime_t tmp;
1879 
1880 	if (rw == KSTAT_WRITE)
1881 		return (EACCES);
1882 
1883 	tmp = zone->zone_utime;
1884 	scalehrtime(&tmp);
1885 	zmp->zm_utime.value.ui64 = tmp;
1886 	tmp = zone->zone_stime;
1887 	scalehrtime(&tmp);
1888 	zmp->zm_stime.value.ui64 = tmp;
1889 	tmp = zone->zone_wtime;
1890 	scalehrtime(&tmp);
1891 	zmp->zm_wtime.value.ui64 = tmp;
1892 
1893 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1894 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1895 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1896 
1897 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1898 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1899 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1900 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1901 
1902 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1903 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1904 
1905 	return (0);
1906 }
1907 
1908 static kstat_t *
1909 zone_misc_kstat_create(zone_t *zone)
1910 {
1911 	kstat_t *ksp;
1912 	zone_misc_kstat_t *zmp;
1913 
1914 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1915 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1916 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1917 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1918 		return (NULL);
1919 
1920 	if (zone->zone_id != GLOBAL_ZONEID)
1921 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1922 
1923 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1924 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1925 	ksp->ks_lock = &zone->zone_misc_lock;
1926 	zone->zone_misc_stats = zmp;
1927 
1928 	/* The kstat "name" field is not large enough for a full zonename */
1929 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1930 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1931 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1932 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1933 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1934 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1935 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1936 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1937 	    KSTAT_DATA_UINT32);
1938 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1939 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1940 	    KSTAT_DATA_UINT32);
1941 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1942 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1943 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1944 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1945 
1946 	ksp->ks_update = zone_misc_kstat_update;
1947 	ksp->ks_private = zone;
1948 
1949 	kstat_install(ksp);
1950 	return (ksp);
1951 }
1952 
1953 static void
1954 zone_kstat_create(zone_t *zone)
1955 {
1956 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1957 	    "lockedmem", zone_lockedmem_kstat_update);
1958 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1959 	    "swapresv", zone_swapresv_kstat_update);
1960 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1961 	    "nprocs", zone_nprocs_kstat_update);
1962 
1963 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
1964 		zone->zone_mcap_stats = kmem_zalloc(
1965 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
1966 	}
1967 
1968 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1969 		zone->zone_misc_stats = kmem_zalloc(
1970 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
1971 	}
1972 }
1973 
1974 static void
1975 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1976 {
1977 	void *data;
1978 
1979 	if (*pkstat != NULL) {
1980 		data = (*pkstat)->ks_data;
1981 		kstat_delete(*pkstat);
1982 		kmem_free(data, datasz);
1983 		*pkstat = NULL;
1984 	}
1985 }
1986 
1987 static void
1988 zone_kstat_delete(zone_t *zone)
1989 {
1990 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1991 	    sizeof (zone_kstat_t));
1992 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1993 	    sizeof (zone_kstat_t));
1994 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1995 	    sizeof (zone_kstat_t));
1996 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
1997 	    sizeof (zone_mcap_kstat_t));
1998 	zone_kstat_delete_common(&zone->zone_misc_ksp,
1999 	    sizeof (zone_misc_kstat_t));
2000 }
2001 
2002 /*
2003  * Called very early on in boot to initialize the ZSD list so that
2004  * zone_key_create() can be called before zone_init().  It also initializes
2005  * portions of zone0 which may be used before zone_init() is called.  The
2006  * variable "global_zone" will be set when zone0 is fully initialized by
2007  * zone_init().
2008  */
2009 void
2010 zone_zsd_init(void)
2011 {
2012 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2013 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2014 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2015 	    offsetof(struct zsd_entry, zsd_linkage));
2016 	list_create(&zone_active, sizeof (zone_t),
2017 	    offsetof(zone_t, zone_linkage));
2018 	list_create(&zone_deathrow, sizeof (zone_t),
2019 	    offsetof(zone_t, zone_linkage));
2020 
2021 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2022 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2023 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2024 	zone0.zone_shares = 1;
2025 	zone0.zone_nlwps = 0;
2026 	zone0.zone_nlwps_ctl = INT_MAX;
2027 	zone0.zone_nprocs = 0;
2028 	zone0.zone_nprocs_ctl = INT_MAX;
2029 	zone0.zone_locked_mem = 0;
2030 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2031 	ASSERT(zone0.zone_max_swap == 0);
2032 	zone0.zone_max_swap_ctl = UINT64_MAX;
2033 	zone0.zone_max_lofi = 0;
2034 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2035 	zone0.zone_shmmax = 0;
2036 	zone0.zone_ipc.ipcq_shmmni = 0;
2037 	zone0.zone_ipc.ipcq_semmni = 0;
2038 	zone0.zone_ipc.ipcq_msgmni = 0;
2039 	zone0.zone_name = GLOBAL_ZONENAME;
2040 	zone0.zone_nodename = utsname.nodename;
2041 	zone0.zone_domain = srpc_domain;
2042 	zone0.zone_hostid = HW_INVALID_HOSTID;
2043 	zone0.zone_fs_allowed = NULL;
2044 	zone0.zone_ref = 1;
2045 	zone0.zone_id = GLOBAL_ZONEID;
2046 	zone0.zone_status = ZONE_IS_RUNNING;
2047 	zone0.zone_rootpath = "/";
2048 	zone0.zone_rootpathlen = 2;
2049 	zone0.zone_psetid = ZONE_PS_INVAL;
2050 	zone0.zone_ncpus = 0;
2051 	zone0.zone_ncpus_online = 0;
2052 	zone0.zone_proc_initpid = 1;
2053 	zone0.zone_initname = initname;
2054 	zone0.zone_lockedmem_kstat = NULL;
2055 	zone0.zone_swapresv_kstat = NULL;
2056 	zone0.zone_nprocs_kstat = NULL;
2057 
2058 	zone0.zone_stime = 0;
2059 	zone0.zone_utime = 0;
2060 	zone0.zone_wtime = 0;
2061 
2062 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2063 	    offsetof(zone_ref_t, zref_linkage));
2064 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2065 	    offsetof(struct zsd_entry, zsd_linkage));
2066 	list_insert_head(&zone_active, &zone0);
2067 
2068 	/*
2069 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2070 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2071 	 * vfs_mountroot().
2072 	 */
2073 	zone0.zone_rootvp = NULL;
2074 	zone0.zone_vfslist = NULL;
2075 	zone0.zone_bootargs = initargs;
2076 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2077 	/*
2078 	 * The global zone has all privileges
2079 	 */
2080 	priv_fillset(zone0.zone_privset);
2081 	/*
2082 	 * Add p0 to the global zone
2083 	 */
2084 	zone0.zone_zsched = &p0;
2085 	p0.p_zone = &zone0;
2086 }
2087 
2088 /*
2089  * Compute a hash value based on the contents of the label and the DOI.  The
2090  * hash algorithm is somewhat arbitrary, but is based on the observation that
2091  * humans will likely pick labels that differ by amounts that work out to be
2092  * multiples of the number of hash chains, and thus stirring in some primes
2093  * should help.
2094  */
2095 static uint_t
2096 hash_bylabel(void *hdata, mod_hash_key_t key)
2097 {
2098 	const ts_label_t *lab = (ts_label_t *)key;
2099 	const uint32_t *up, *ue;
2100 	uint_t hash;
2101 	int i;
2102 
2103 	_NOTE(ARGUNUSED(hdata));
2104 
2105 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2106 	/* we depend on alignment of label, but not representation */
2107 	up = (const uint32_t *)&lab->tsl_label;
2108 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2109 	i = 1;
2110 	while (up < ue) {
2111 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2112 		hash += *up + (*up << ((i % 16) + 1));
2113 		up++;
2114 		i++;
2115 	}
2116 	return (hash);
2117 }
2118 
2119 /*
2120  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2121  * equal).  This may need to be changed if less than / greater than is ever
2122  * needed.
2123  */
2124 static int
2125 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2126 {
2127 	ts_label_t *lab1 = (ts_label_t *)key1;
2128 	ts_label_t *lab2 = (ts_label_t *)key2;
2129 
2130 	return (label_equal(lab1, lab2) ? 0 : 1);
2131 }
2132 
2133 /*
2134  * Called by main() to initialize the zones framework.
2135  */
2136 void
2137 zone_init(void)
2138 {
2139 	rctl_dict_entry_t *rde;
2140 	rctl_val_t *dval;
2141 	rctl_set_t *set;
2142 	rctl_alloc_gp_t *gp;
2143 	rctl_entity_p_t e;
2144 	int res;
2145 
2146 	ASSERT(curproc == &p0);
2147 
2148 	/*
2149 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2150 	 * global zone.
2151 	 */
2152 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2153 
2154 	/*
2155 	 * Initialize generic zone resource controls, if any.
2156 	 */
2157 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2158 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2159 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2160 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2161 
2162 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2163 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2164 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2165 	    RCTL_GLOBAL_INFINITE,
2166 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2167 
2168 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2169 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2170 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2171 
2172 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2173 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2174 	    INT_MAX, INT_MAX, &zone_procs_ops);
2175 
2176 	/*
2177 	 * System V IPC resource controls
2178 	 */
2179 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2180 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2181 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2182 
2183 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2184 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2185 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2186 
2187 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2188 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2189 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2190 
2191 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2192 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2193 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2194 
2195 	/*
2196 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2197 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2198 	 */
2199 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2200 	bzero(dval, sizeof (rctl_val_t));
2201 	dval->rcv_value = 1;
2202 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2203 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2204 	dval->rcv_action_recip_pid = -1;
2205 
2206 	rde = rctl_dict_lookup("zone.cpu-shares");
2207 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2208 
2209 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2210 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2211 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2212 	    &zone_locked_mem_ops);
2213 
2214 	rc_zone_max_swap = rctl_register("zone.max-swap",
2215 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2216 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2217 	    &zone_max_swap_ops);
2218 
2219 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2220 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2221 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2222 	    &zone_max_lofi_ops);
2223 
2224 	/*
2225 	 * Initialize the ``global zone''.
2226 	 */
2227 	set = rctl_set_create();
2228 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2229 	mutex_enter(&p0.p_lock);
2230 	e.rcep_p.zone = &zone0;
2231 	e.rcep_t = RCENTITY_ZONE;
2232 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2233 	    gp);
2234 
2235 	zone0.zone_nlwps = p0.p_lwpcnt;
2236 	zone0.zone_nprocs = 1;
2237 	zone0.zone_ntasks = 1;
2238 	mutex_exit(&p0.p_lock);
2239 	zone0.zone_restart_init = B_TRUE;
2240 	zone0.zone_brand = &native_brand;
2241 	rctl_prealloc_destroy(gp);
2242 	/*
2243 	 * pool_default hasn't been initialized yet, so we let pool_init()
2244 	 * take care of making sure the global zone is in the default pool.
2245 	 */
2246 
2247 	/*
2248 	 * Initialize global zone kstats
2249 	 */
2250 	zone_kstat_create(&zone0);
2251 
2252 	/*
2253 	 * Initialize zone label.
2254 	 * mlp are initialized when tnzonecfg is loaded.
2255 	 */
2256 	zone0.zone_slabel = l_admin_low;
2257 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2258 	label_hold(l_admin_low);
2259 
2260 	/*
2261 	 * Initialise the lock for the database structure used by mntfs.
2262 	 */
2263 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2264 
2265 	mutex_enter(&zonehash_lock);
2266 	zone_uniqid(&zone0);
2267 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2268 
2269 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2270 	    mod_hash_null_valdtor);
2271 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2272 	    zone_hash_size, mod_hash_null_valdtor);
2273 	/*
2274 	 * maintain zonehashbylabel only for labeled systems
2275 	 */
2276 	if (is_system_labeled())
2277 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2278 		    zone_hash_size, mod_hash_null_keydtor,
2279 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2280 		    hash_labelkey_cmp, KM_SLEEP);
2281 	zonecount = 1;
2282 
2283 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2284 	    (mod_hash_val_t)&zone0);
2285 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2286 	    (mod_hash_val_t)&zone0);
2287 	if (is_system_labeled()) {
2288 		zone0.zone_flags |= ZF_HASHED_LABEL;
2289 		(void) mod_hash_insert(zonehashbylabel,
2290 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2291 	}
2292 	mutex_exit(&zonehash_lock);
2293 
2294 	/*
2295 	 * We avoid setting zone_kcred until now, since kcred is initialized
2296 	 * sometime after zone_zsd_init() and before zone_init().
2297 	 */
2298 	zone0.zone_kcred = kcred;
2299 	/*
2300 	 * The global zone is fully initialized (except for zone_rootvp which
2301 	 * will be set when the root filesystem is mounted).
2302 	 */
2303 	global_zone = &zone0;
2304 
2305 	/*
2306 	 * Setup an event channel to send zone status change notifications on
2307 	 */
2308 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2309 	    EVCH_CREAT);
2310 
2311 	if (res)
2312 		panic("Sysevent_evc_bind failed during zone setup.\n");
2313 
2314 }
2315 
2316 static void
2317 zone_free(zone_t *zone)
2318 {
2319 	ASSERT(zone != global_zone);
2320 	ASSERT(zone->zone_ntasks == 0);
2321 	ASSERT(zone->zone_nlwps == 0);
2322 	ASSERT(zone->zone_nprocs == 0);
2323 	ASSERT(zone->zone_cred_ref == 0);
2324 	ASSERT(zone->zone_kcred == NULL);
2325 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2326 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2327 	ASSERT(list_is_empty(&zone->zone_ref_list));
2328 
2329 	/*
2330 	 * Remove any zone caps.
2331 	 */
2332 	cpucaps_zone_remove(zone);
2333 
2334 	ASSERT(zone->zone_cpucap == NULL);
2335 
2336 	/* remove from deathrow list */
2337 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2338 		ASSERT(zone->zone_ref == 0);
2339 		mutex_enter(&zone_deathrow_lock);
2340 		list_remove(&zone_deathrow, zone);
2341 		mutex_exit(&zone_deathrow_lock);
2342 	}
2343 
2344 	list_destroy(&zone->zone_ref_list);
2345 	zone_free_zsd(zone);
2346 	zone_free_datasets(zone);
2347 	list_destroy(&zone->zone_dl_list);
2348 
2349 	if (zone->zone_rootvp != NULL)
2350 		VN_RELE(zone->zone_rootvp);
2351 	if (zone->zone_rootpath)
2352 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2353 	if (zone->zone_name != NULL)
2354 		kmem_free(zone->zone_name, ZONENAME_MAX);
2355 	if (zone->zone_slabel != NULL)
2356 		label_rele(zone->zone_slabel);
2357 	if (zone->zone_nodename != NULL)
2358 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2359 	if (zone->zone_domain != NULL)
2360 		kmem_free(zone->zone_domain, _SYS_NMLN);
2361 	if (zone->zone_privset != NULL)
2362 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2363 	if (zone->zone_rctls != NULL)
2364 		rctl_set_free(zone->zone_rctls);
2365 	if (zone->zone_bootargs != NULL)
2366 		strfree(zone->zone_bootargs);
2367 	if (zone->zone_initname != NULL)
2368 		strfree(zone->zone_initname);
2369 	if (zone->zone_fs_allowed != NULL)
2370 		strfree(zone->zone_fs_allowed);
2371 	if (zone->zone_pfexecd != NULL)
2372 		klpd_freelist(&zone->zone_pfexecd);
2373 	id_free(zoneid_space, zone->zone_id);
2374 	mutex_destroy(&zone->zone_lock);
2375 	cv_destroy(&zone->zone_cv);
2376 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2377 	rw_destroy(&zone->zone_mntfs_db_lock);
2378 	kmem_free(zone, sizeof (zone_t));
2379 }
2380 
2381 /*
2382  * See block comment at the top of this file for information about zone
2383  * status values.
2384  */
2385 /*
2386  * Convenience function for setting zone status.
2387  */
2388 static void
2389 zone_status_set(zone_t *zone, zone_status_t status)
2390 {
2391 
2392 	nvlist_t *nvl = NULL;
2393 	ASSERT(MUTEX_HELD(&zone_status_lock));
2394 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2395 	    status >= zone_status_get(zone));
2396 
2397 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2398 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2399 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2400 	    zone_status_table[status]) ||
2401 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2402 	    zone_status_table[zone->zone_status]) ||
2403 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2404 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2405 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2406 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2407 #ifdef DEBUG
2408 		(void) printf(
2409 		    "Failed to allocate and send zone state change event.\n");
2410 #endif
2411 	}
2412 	nvlist_free(nvl);
2413 
2414 	zone->zone_status = status;
2415 
2416 	cv_broadcast(&zone->zone_cv);
2417 }
2418 
2419 /*
2420  * Public function to retrieve the zone status.  The zone status may
2421  * change after it is retrieved.
2422  */
2423 zone_status_t
2424 zone_status_get(zone_t *zone)
2425 {
2426 	return (zone->zone_status);
2427 }
2428 
2429 static int
2430 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2431 {
2432 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2433 	int err = 0;
2434 
2435 	ASSERT(zone != global_zone);
2436 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2437 		goto done;	/* EFAULT or ENAMETOOLONG */
2438 
2439 	if (zone->zone_bootargs != NULL)
2440 		strfree(zone->zone_bootargs);
2441 
2442 	zone->zone_bootargs = strdup(buf);
2443 
2444 done:
2445 	kmem_free(buf, BOOTARGS_MAX);
2446 	return (err);
2447 }
2448 
2449 static int
2450 zone_set_brand(zone_t *zone, const char *brand)
2451 {
2452 	struct brand_attr *attrp;
2453 	brand_t *bp;
2454 
2455 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2456 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2457 		kmem_free(attrp, sizeof (struct brand_attr));
2458 		return (EFAULT);
2459 	}
2460 
2461 	bp = brand_register_zone(attrp);
2462 	kmem_free(attrp, sizeof (struct brand_attr));
2463 	if (bp == NULL)
2464 		return (EINVAL);
2465 
2466 	/*
2467 	 * This is the only place where a zone can change it's brand.
2468 	 * We already need to hold zone_status_lock to check the zone
2469 	 * status, so we'll just use that lock to serialize zone
2470 	 * branding requests as well.
2471 	 */
2472 	mutex_enter(&zone_status_lock);
2473 
2474 	/* Re-Branding is not allowed and the zone can't be booted yet */
2475 	if ((ZONE_IS_BRANDED(zone)) ||
2476 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2477 		mutex_exit(&zone_status_lock);
2478 		brand_unregister_zone(bp);
2479 		return (EINVAL);
2480 	}
2481 
2482 	/* set up the brand specific data */
2483 	zone->zone_brand = bp;
2484 	ZBROP(zone)->b_init_brand_data(zone);
2485 
2486 	mutex_exit(&zone_status_lock);
2487 	return (0);
2488 }
2489 
2490 static int
2491 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2492 {
2493 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2494 	int err = 0;
2495 
2496 	ASSERT(zone != global_zone);
2497 	if ((err = copyinstr(zone_fs_allowed, buf,
2498 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2499 		goto done;
2500 
2501 	if (zone->zone_fs_allowed != NULL)
2502 		strfree(zone->zone_fs_allowed);
2503 
2504 	zone->zone_fs_allowed = strdup(buf);
2505 
2506 done:
2507 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2508 	return (err);
2509 }
2510 
2511 static int
2512 zone_set_initname(zone_t *zone, const char *zone_initname)
2513 {
2514 	char initname[INITNAME_SZ];
2515 	size_t len;
2516 	int err = 0;
2517 
2518 	ASSERT(zone != global_zone);
2519 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2520 		return (err);	/* EFAULT or ENAMETOOLONG */
2521 
2522 	if (zone->zone_initname != NULL)
2523 		strfree(zone->zone_initname);
2524 
2525 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2526 	(void) strcpy(zone->zone_initname, initname);
2527 	return (0);
2528 }
2529 
2530 static int
2531 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2532 {
2533 	uint64_t mcap;
2534 	int err = 0;
2535 
2536 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2537 		zone->zone_phys_mcap = mcap;
2538 
2539 	return (err);
2540 }
2541 
2542 static int
2543 zone_set_sched_class(zone_t *zone, const char *new_class)
2544 {
2545 	char sched_class[PC_CLNMSZ];
2546 	id_t classid;
2547 	int err;
2548 
2549 	ASSERT(zone != global_zone);
2550 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2551 		return (err);	/* EFAULT or ENAMETOOLONG */
2552 
2553 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2554 		return (set_errno(EINVAL));
2555 	zone->zone_defaultcid = classid;
2556 	ASSERT(zone->zone_defaultcid > 0 &&
2557 	    zone->zone_defaultcid < loaded_classes);
2558 
2559 	return (0);
2560 }
2561 
2562 /*
2563  * Block indefinitely waiting for (zone_status >= status)
2564  */
2565 void
2566 zone_status_wait(zone_t *zone, zone_status_t status)
2567 {
2568 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2569 
2570 	mutex_enter(&zone_status_lock);
2571 	while (zone->zone_status < status) {
2572 		cv_wait(&zone->zone_cv, &zone_status_lock);
2573 	}
2574 	mutex_exit(&zone_status_lock);
2575 }
2576 
2577 /*
2578  * Private CPR-safe version of zone_status_wait().
2579  */
2580 static void
2581 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2582 {
2583 	callb_cpr_t cprinfo;
2584 
2585 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2586 
2587 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2588 	    str);
2589 	mutex_enter(&zone_status_lock);
2590 	while (zone->zone_status < status) {
2591 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2592 		cv_wait(&zone->zone_cv, &zone_status_lock);
2593 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2594 	}
2595 	/*
2596 	 * zone_status_lock is implicitly released by the following.
2597 	 */
2598 	CALLB_CPR_EXIT(&cprinfo);
2599 }
2600 
2601 /*
2602  * Block until zone enters requested state or signal is received.  Return (0)
2603  * if signaled, non-zero otherwise.
2604  */
2605 int
2606 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2607 {
2608 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2609 
2610 	mutex_enter(&zone_status_lock);
2611 	while (zone->zone_status < status) {
2612 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2613 			mutex_exit(&zone_status_lock);
2614 			return (0);
2615 		}
2616 	}
2617 	mutex_exit(&zone_status_lock);
2618 	return (1);
2619 }
2620 
2621 /*
2622  * Block until the zone enters the requested state or the timeout expires,
2623  * whichever happens first.  Return (-1) if operation timed out, time remaining
2624  * otherwise.
2625  */
2626 clock_t
2627 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2628 {
2629 	clock_t timeleft = 0;
2630 
2631 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2632 
2633 	mutex_enter(&zone_status_lock);
2634 	while (zone->zone_status < status && timeleft != -1) {
2635 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2636 	}
2637 	mutex_exit(&zone_status_lock);
2638 	return (timeleft);
2639 }
2640 
2641 /*
2642  * Block until the zone enters the requested state, the current process is
2643  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2644  * operation timed out, 0 if signaled, time remaining otherwise.
2645  */
2646 clock_t
2647 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2648 {
2649 	clock_t timeleft = tim - ddi_get_lbolt();
2650 
2651 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2652 
2653 	mutex_enter(&zone_status_lock);
2654 	while (zone->zone_status < status) {
2655 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2656 		    tim);
2657 		if (timeleft <= 0)
2658 			break;
2659 	}
2660 	mutex_exit(&zone_status_lock);
2661 	return (timeleft);
2662 }
2663 
2664 /*
2665  * Zones have two reference counts: one for references from credential
2666  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2667  * This is so we can allow a zone to be rebooted while there are still
2668  * outstanding cred references, since certain drivers cache dblks (which
2669  * implicitly results in cached creds).  We wait for zone_ref to drop to
2670  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2671  * later freed when the zone_cred_ref drops to 0, though nothing other
2672  * than the zone id and privilege set should be accessed once the zone
2673  * is "dead".
2674  *
2675  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2676  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2677  * to 0.  This can be useful to flush out other sources of cached creds
2678  * that may be less innocuous than the driver case.
2679  *
2680  * Zones also provide a tracked reference counting mechanism in which zone
2681  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2682  * debuggers determine the sources of leaked zone references.  See
2683  * zone_hold_ref() and zone_rele_ref() below for more information.
2684  */
2685 
2686 int zone_wait_for_cred = 0;
2687 
2688 static void
2689 zone_hold_locked(zone_t *z)
2690 {
2691 	ASSERT(MUTEX_HELD(&z->zone_lock));
2692 	z->zone_ref++;
2693 	ASSERT(z->zone_ref != 0);
2694 }
2695 
2696 /*
2697  * Increment the specified zone's reference count.  The zone's zone_t structure
2698  * will not be freed as long as the zone's reference count is nonzero.
2699  * Decrement the zone's reference count via zone_rele().
2700  *
2701  * NOTE: This function should only be used to hold zones for short periods of
2702  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2703  */
2704 void
2705 zone_hold(zone_t *z)
2706 {
2707 	mutex_enter(&z->zone_lock);
2708 	zone_hold_locked(z);
2709 	mutex_exit(&z->zone_lock);
2710 }
2711 
2712 /*
2713  * If the non-cred ref count drops to 1 and either the cred ref count
2714  * is 0 or we aren't waiting for cred references, the zone is ready to
2715  * be destroyed.
2716  */
2717 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2718 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2719 
2720 /*
2721  * Common zone reference release function invoked by zone_rele() and
2722  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2723  * zone's subsystem-specific reference counters are not affected by the
2724  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2725  * removed from the specified zone's reference list.  ref must be non-NULL iff
2726  * subsys is not ZONE_REF_NUM_SUBSYS.
2727  */
2728 static void
2729 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2730 {
2731 	boolean_t wakeup;
2732 
2733 	mutex_enter(&z->zone_lock);
2734 	ASSERT(z->zone_ref != 0);
2735 	z->zone_ref--;
2736 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2737 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2738 		z->zone_subsys_ref[subsys]--;
2739 		list_remove(&z->zone_ref_list, ref);
2740 	}
2741 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2742 		/* no more refs, free the structure */
2743 		mutex_exit(&z->zone_lock);
2744 		zone_free(z);
2745 		return;
2746 	}
2747 	/* signal zone_destroy so the zone can finish halting */
2748 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2749 	mutex_exit(&z->zone_lock);
2750 
2751 	if (wakeup) {
2752 		/*
2753 		 * Grabbing zonehash_lock here effectively synchronizes with
2754 		 * zone_destroy() to avoid missed signals.
2755 		 */
2756 		mutex_enter(&zonehash_lock);
2757 		cv_broadcast(&zone_destroy_cv);
2758 		mutex_exit(&zonehash_lock);
2759 	}
2760 }
2761 
2762 /*
2763  * Decrement the specified zone's reference count.  The specified zone will
2764  * cease to exist after this function returns if the reference count drops to
2765  * zero.  This function should be paired with zone_hold().
2766  */
2767 void
2768 zone_rele(zone_t *z)
2769 {
2770 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2771 }
2772 
2773 /*
2774  * Initialize a zone reference structure.  This function must be invoked for
2775  * a reference structure before the structure is passed to zone_hold_ref().
2776  */
2777 void
2778 zone_init_ref(zone_ref_t *ref)
2779 {
2780 	ref->zref_zone = NULL;
2781 	list_link_init(&ref->zref_linkage);
2782 }
2783 
2784 /*
2785  * Acquire a reference to zone z.  The caller must specify the
2786  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2787  * zone_ref_t structure will represent a reference to the specified zone.  Use
2788  * zone_rele_ref() to release the reference.
2789  *
2790  * The referenced zone_t structure will not be freed as long as the zone_t's
2791  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2792  * references.
2793  *
2794  * NOTE: The zone_ref_t structure must be initialized before it is used.
2795  * See zone_init_ref() above.
2796  */
2797 void
2798 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2799 {
2800 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2801 
2802 	/*
2803 	 * Prevent consumers from reusing a reference structure before
2804 	 * releasing it.
2805 	 */
2806 	VERIFY(ref->zref_zone == NULL);
2807 
2808 	ref->zref_zone = z;
2809 	mutex_enter(&z->zone_lock);
2810 	zone_hold_locked(z);
2811 	z->zone_subsys_ref[subsys]++;
2812 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2813 	list_insert_head(&z->zone_ref_list, ref);
2814 	mutex_exit(&z->zone_lock);
2815 }
2816 
2817 /*
2818  * Release the zone reference represented by the specified zone_ref_t.
2819  * The reference is invalid after it's released; however, the zone_ref_t
2820  * structure can be reused without having to invoke zone_init_ref().
2821  * subsys should be the same value that was passed to zone_hold_ref()
2822  * when the reference was acquired.
2823  */
2824 void
2825 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2826 {
2827 	zone_rele_common(ref->zref_zone, ref, subsys);
2828 
2829 	/*
2830 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2831 	 * when consumers dereference the reference.  This helps us catch
2832 	 * consumers who use released references.  Furthermore, this lets
2833 	 * consumers reuse the zone_ref_t structure without having to
2834 	 * invoke zone_init_ref().
2835 	 */
2836 	ref->zref_zone = NULL;
2837 }
2838 
2839 void
2840 zone_cred_hold(zone_t *z)
2841 {
2842 	mutex_enter(&z->zone_lock);
2843 	z->zone_cred_ref++;
2844 	ASSERT(z->zone_cred_ref != 0);
2845 	mutex_exit(&z->zone_lock);
2846 }
2847 
2848 void
2849 zone_cred_rele(zone_t *z)
2850 {
2851 	boolean_t wakeup;
2852 
2853 	mutex_enter(&z->zone_lock);
2854 	ASSERT(z->zone_cred_ref != 0);
2855 	z->zone_cred_ref--;
2856 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2857 		/* no more refs, free the structure */
2858 		mutex_exit(&z->zone_lock);
2859 		zone_free(z);
2860 		return;
2861 	}
2862 	/*
2863 	 * If zone_destroy is waiting for the cred references to drain
2864 	 * out, and they have, signal it.
2865 	 */
2866 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2867 	    zone_status_get(z) >= ZONE_IS_DEAD);
2868 	mutex_exit(&z->zone_lock);
2869 
2870 	if (wakeup) {
2871 		/*
2872 		 * Grabbing zonehash_lock here effectively synchronizes with
2873 		 * zone_destroy() to avoid missed signals.
2874 		 */
2875 		mutex_enter(&zonehash_lock);
2876 		cv_broadcast(&zone_destroy_cv);
2877 		mutex_exit(&zonehash_lock);
2878 	}
2879 }
2880 
2881 void
2882 zone_task_hold(zone_t *z)
2883 {
2884 	mutex_enter(&z->zone_lock);
2885 	z->zone_ntasks++;
2886 	ASSERT(z->zone_ntasks != 0);
2887 	mutex_exit(&z->zone_lock);
2888 }
2889 
2890 void
2891 zone_task_rele(zone_t *zone)
2892 {
2893 	uint_t refcnt;
2894 
2895 	mutex_enter(&zone->zone_lock);
2896 	ASSERT(zone->zone_ntasks != 0);
2897 	refcnt = --zone->zone_ntasks;
2898 	if (refcnt > 1)	{	/* Common case */
2899 		mutex_exit(&zone->zone_lock);
2900 		return;
2901 	}
2902 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2903 	mutex_exit(&zone->zone_lock);
2904 	if (refcnt == 1) {
2905 		/*
2906 		 * See if the zone is shutting down.
2907 		 */
2908 		mutex_enter(&zone_status_lock);
2909 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2910 			goto out;
2911 		}
2912 
2913 		/*
2914 		 * Make sure the ntasks didn't change since we
2915 		 * dropped zone_lock.
2916 		 */
2917 		mutex_enter(&zone->zone_lock);
2918 		if (refcnt != zone->zone_ntasks) {
2919 			mutex_exit(&zone->zone_lock);
2920 			goto out;
2921 		}
2922 		mutex_exit(&zone->zone_lock);
2923 
2924 		/*
2925 		 * No more user processes in the zone.  The zone is empty.
2926 		 */
2927 		zone_status_set(zone, ZONE_IS_EMPTY);
2928 		goto out;
2929 	}
2930 
2931 	ASSERT(refcnt == 0);
2932 	/*
2933 	 * zsched has exited; the zone is dead.
2934 	 */
2935 	zone->zone_zsched = NULL;		/* paranoia */
2936 	mutex_enter(&zone_status_lock);
2937 	zone_status_set(zone, ZONE_IS_DEAD);
2938 out:
2939 	mutex_exit(&zone_status_lock);
2940 	zone_rele(zone);
2941 }
2942 
2943 zoneid_t
2944 getzoneid(void)
2945 {
2946 	return (curproc->p_zone->zone_id);
2947 }
2948 
2949 /*
2950  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2951  * check the validity of a zone's state.
2952  */
2953 static zone_t *
2954 zone_find_all_by_id(zoneid_t zoneid)
2955 {
2956 	mod_hash_val_t hv;
2957 	zone_t *zone = NULL;
2958 
2959 	ASSERT(MUTEX_HELD(&zonehash_lock));
2960 
2961 	if (mod_hash_find(zonehashbyid,
2962 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2963 		zone = (zone_t *)hv;
2964 	return (zone);
2965 }
2966 
2967 static zone_t *
2968 zone_find_all_by_label(const ts_label_t *label)
2969 {
2970 	mod_hash_val_t hv;
2971 	zone_t *zone = NULL;
2972 
2973 	ASSERT(MUTEX_HELD(&zonehash_lock));
2974 
2975 	/*
2976 	 * zonehashbylabel is not maintained for unlabeled systems
2977 	 */
2978 	if (!is_system_labeled())
2979 		return (NULL);
2980 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2981 		zone = (zone_t *)hv;
2982 	return (zone);
2983 }
2984 
2985 static zone_t *
2986 zone_find_all_by_name(char *name)
2987 {
2988 	mod_hash_val_t hv;
2989 	zone_t *zone = NULL;
2990 
2991 	ASSERT(MUTEX_HELD(&zonehash_lock));
2992 
2993 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2994 		zone = (zone_t *)hv;
2995 	return (zone);
2996 }
2997 
2998 /*
2999  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3000  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3001  * Caller must call zone_rele() once it is done with the zone.
3002  *
3003  * The zone may begin the zone_destroy() sequence immediately after this
3004  * function returns, but may be safely used until zone_rele() is called.
3005  */
3006 zone_t *
3007 zone_find_by_id(zoneid_t zoneid)
3008 {
3009 	zone_t *zone;
3010 	zone_status_t status;
3011 
3012 	mutex_enter(&zonehash_lock);
3013 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3014 		mutex_exit(&zonehash_lock);
3015 		return (NULL);
3016 	}
3017 	status = zone_status_get(zone);
3018 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3019 		/*
3020 		 * For all practical purposes the zone doesn't exist.
3021 		 */
3022 		mutex_exit(&zonehash_lock);
3023 		return (NULL);
3024 	}
3025 	zone_hold(zone);
3026 	mutex_exit(&zonehash_lock);
3027 	return (zone);
3028 }
3029 
3030 /*
3031  * Similar to zone_find_by_id, but using zone label as the key.
3032  */
3033 zone_t *
3034 zone_find_by_label(const ts_label_t *label)
3035 {
3036 	zone_t *zone;
3037 	zone_status_t status;
3038 
3039 	mutex_enter(&zonehash_lock);
3040 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3041 		mutex_exit(&zonehash_lock);
3042 		return (NULL);
3043 	}
3044 
3045 	status = zone_status_get(zone);
3046 	if (status > ZONE_IS_DOWN) {
3047 		/*
3048 		 * For all practical purposes the zone doesn't exist.
3049 		 */
3050 		mutex_exit(&zonehash_lock);
3051 		return (NULL);
3052 	}
3053 	zone_hold(zone);
3054 	mutex_exit(&zonehash_lock);
3055 	return (zone);
3056 }
3057 
3058 /*
3059  * Similar to zone_find_by_id, but using zone name as the key.
3060  */
3061 zone_t *
3062 zone_find_by_name(char *name)
3063 {
3064 	zone_t *zone;
3065 	zone_status_t status;
3066 
3067 	mutex_enter(&zonehash_lock);
3068 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3069 		mutex_exit(&zonehash_lock);
3070 		return (NULL);
3071 	}
3072 	status = zone_status_get(zone);
3073 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3074 		/*
3075 		 * For all practical purposes the zone doesn't exist.
3076 		 */
3077 		mutex_exit(&zonehash_lock);
3078 		return (NULL);
3079 	}
3080 	zone_hold(zone);
3081 	mutex_exit(&zonehash_lock);
3082 	return (zone);
3083 }
3084 
3085 /*
3086  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3087  * if there is a zone "foo" rooted at /foo/root, and the path argument
3088  * is "/foo/root/proc", it will return the held zone_t corresponding to
3089  * zone "foo".
3090  *
3091  * zone_find_by_path() always returns a non-NULL value, since at the
3092  * very least every path will be contained in the global zone.
3093  *
3094  * As with the other zone_find_by_*() functions, the caller is
3095  * responsible for zone_rele()ing the return value of this function.
3096  */
3097 zone_t *
3098 zone_find_by_path(const char *path)
3099 {
3100 	zone_t *zone;
3101 	zone_t *zret = NULL;
3102 	zone_status_t status;
3103 
3104 	if (path == NULL) {
3105 		/*
3106 		 * Call from rootconf().
3107 		 */
3108 		zone_hold(global_zone);
3109 		return (global_zone);
3110 	}
3111 	ASSERT(*path == '/');
3112 	mutex_enter(&zonehash_lock);
3113 	for (zone = list_head(&zone_active); zone != NULL;
3114 	    zone = list_next(&zone_active, zone)) {
3115 		if (ZONE_PATH_VISIBLE(path, zone))
3116 			zret = zone;
3117 	}
3118 	ASSERT(zret != NULL);
3119 	status = zone_status_get(zret);
3120 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3121 		/*
3122 		 * Zone practically doesn't exist.
3123 		 */
3124 		zret = global_zone;
3125 	}
3126 	zone_hold(zret);
3127 	mutex_exit(&zonehash_lock);
3128 	return (zret);
3129 }
3130 
3131 /*
3132  * Public interface for updating per-zone load averages.  Called once per
3133  * second.
3134  *
3135  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3136  */
3137 void
3138 zone_loadavg_update()
3139 {
3140 	zone_t *zp;
3141 	zone_status_t status;
3142 	struct loadavg_s *lavg;
3143 	hrtime_t zone_total;
3144 	int i;
3145 	hrtime_t hr_avg;
3146 	int nrun;
3147 	static int64_t f[3] = { 135, 27, 9 };
3148 	int64_t q, r;
3149 
3150 	mutex_enter(&zonehash_lock);
3151 	for (zp = list_head(&zone_active); zp != NULL;
3152 	    zp = list_next(&zone_active, zp)) {
3153 		mutex_enter(&zp->zone_lock);
3154 
3155 		/* Skip zones that are on the way down or not yet up */
3156 		status = zone_status_get(zp);
3157 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3158 			/* For all practical purposes the zone doesn't exist. */
3159 			mutex_exit(&zp->zone_lock);
3160 			continue;
3161 		}
3162 
3163 		/*
3164 		 * Update the 10 second moving average data in zone_loadavg.
3165 		 */
3166 		lavg = &zp->zone_loadavg;
3167 
3168 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3169 		scalehrtime(&zone_total);
3170 
3171 		/* The zone_total should always be increasing. */
3172 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3173 		    zone_total - lavg->lg_total : 0;
3174 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3175 		/* lg_total holds the prev. 1 sec. total */
3176 		lavg->lg_total = zone_total;
3177 
3178 		/*
3179 		 * To simplify the calculation, we don't calculate the load avg.
3180 		 * until the zone has been up for at least 10 seconds and our
3181 		 * moving average is thus full.
3182 		 */
3183 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3184 			lavg->lg_len++;
3185 			mutex_exit(&zp->zone_lock);
3186 			continue;
3187 		}
3188 
3189 		/* Now calculate the 1min, 5min, 15 min load avg. */
3190 		hr_avg = 0;
3191 		for (i = 0; i < S_LOADAVG_SZ; i++)
3192 			hr_avg += lavg->lg_loads[i];
3193 		hr_avg = hr_avg / S_LOADAVG_SZ;
3194 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3195 
3196 		/* Compute load avg. See comment in calcloadavg() */
3197 		for (i = 0; i < 3; i++) {
3198 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3199 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3200 			zp->zone_hp_avenrun[i] +=
3201 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3202 
3203 			/* avenrun[] can only hold 31 bits of load avg. */
3204 			if (zp->zone_hp_avenrun[i] <
3205 			    ((uint64_t)1<<(31+16-FSHIFT)))
3206 				zp->zone_avenrun[i] = (int32_t)
3207 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3208 			else
3209 				zp->zone_avenrun[i] = 0x7fffffff;
3210 		}
3211 
3212 		mutex_exit(&zp->zone_lock);
3213 	}
3214 	mutex_exit(&zonehash_lock);
3215 }
3216 
3217 /*
3218  * Get the number of cpus visible to this zone.  The system-wide global
3219  * 'ncpus' is returned if pools are disabled, the caller is in the
3220  * global zone, or a NULL zone argument is passed in.
3221  */
3222 int
3223 zone_ncpus_get(zone_t *zone)
3224 {
3225 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3226 
3227 	return (myncpus != 0 ? myncpus : ncpus);
3228 }
3229 
3230 /*
3231  * Get the number of online cpus visible to this zone.  The system-wide
3232  * global 'ncpus_online' is returned if pools are disabled, the caller
3233  * is in the global zone, or a NULL zone argument is passed in.
3234  */
3235 int
3236 zone_ncpus_online_get(zone_t *zone)
3237 {
3238 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3239 
3240 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3241 }
3242 
3243 /*
3244  * Return the pool to which the zone is currently bound.
3245  */
3246 pool_t *
3247 zone_pool_get(zone_t *zone)
3248 {
3249 	ASSERT(pool_lock_held());
3250 
3251 	return (zone->zone_pool);
3252 }
3253 
3254 /*
3255  * Set the zone's pool pointer and update the zone's visibility to match
3256  * the resources in the new pool.
3257  */
3258 void
3259 zone_pool_set(zone_t *zone, pool_t *pool)
3260 {
3261 	ASSERT(pool_lock_held());
3262 	ASSERT(MUTEX_HELD(&cpu_lock));
3263 
3264 	zone->zone_pool = pool;
3265 	zone_pset_set(zone, pool->pool_pset->pset_id);
3266 }
3267 
3268 /*
3269  * Return the cached value of the id of the processor set to which the
3270  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3271  * facility is disabled.
3272  */
3273 psetid_t
3274 zone_pset_get(zone_t *zone)
3275 {
3276 	ASSERT(MUTEX_HELD(&cpu_lock));
3277 
3278 	return (zone->zone_psetid);
3279 }
3280 
3281 /*
3282  * Set the cached value of the id of the processor set to which the zone
3283  * is currently bound.  Also update the zone's visibility to match the
3284  * resources in the new processor set.
3285  */
3286 void
3287 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3288 {
3289 	psetid_t oldpsetid;
3290 
3291 	ASSERT(MUTEX_HELD(&cpu_lock));
3292 	oldpsetid = zone_pset_get(zone);
3293 
3294 	if (oldpsetid == newpsetid)
3295 		return;
3296 	/*
3297 	 * Global zone sees all.
3298 	 */
3299 	if (zone != global_zone) {
3300 		zone->zone_psetid = newpsetid;
3301 		if (newpsetid != ZONE_PS_INVAL)
3302 			pool_pset_visibility_add(newpsetid, zone);
3303 		if (oldpsetid != ZONE_PS_INVAL)
3304 			pool_pset_visibility_remove(oldpsetid, zone);
3305 	}
3306 	/*
3307 	 * Disabling pools, so we should start using the global values
3308 	 * for ncpus and ncpus_online.
3309 	 */
3310 	if (newpsetid == ZONE_PS_INVAL) {
3311 		zone->zone_ncpus = 0;
3312 		zone->zone_ncpus_online = 0;
3313 	}
3314 }
3315 
3316 /*
3317  * Walk the list of active zones and issue the provided callback for
3318  * each of them.
3319  *
3320  * Caller must not be holding any locks that may be acquired under
3321  * zonehash_lock.  See comment at the beginning of the file for a list of
3322  * common locks and their interactions with zones.
3323  */
3324 int
3325 zone_walk(int (*cb)(zone_t *, void *), void *data)
3326 {
3327 	zone_t *zone;
3328 	int ret = 0;
3329 	zone_status_t status;
3330 
3331 	mutex_enter(&zonehash_lock);
3332 	for (zone = list_head(&zone_active); zone != NULL;
3333 	    zone = list_next(&zone_active, zone)) {
3334 		/*
3335 		 * Skip zones that shouldn't be externally visible.
3336 		 */
3337 		status = zone_status_get(zone);
3338 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3339 			continue;
3340 		/*
3341 		 * Bail immediately if any callback invocation returns a
3342 		 * non-zero value.
3343 		 */
3344 		ret = (*cb)(zone, data);
3345 		if (ret != 0)
3346 			break;
3347 	}
3348 	mutex_exit(&zonehash_lock);
3349 	return (ret);
3350 }
3351 
3352 static int
3353 zone_set_root(zone_t *zone, const char *upath)
3354 {
3355 	vnode_t *vp;
3356 	int trycount;
3357 	int error = 0;
3358 	char *path;
3359 	struct pathname upn, pn;
3360 	size_t pathlen;
3361 
3362 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3363 		return (error);
3364 
3365 	pn_alloc(&pn);
3366 
3367 	/* prevent infinite loop */
3368 	trycount = 10;
3369 	for (;;) {
3370 		if (--trycount <= 0) {
3371 			error = ESTALE;
3372 			goto out;
3373 		}
3374 
3375 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3376 			/*
3377 			 * VOP_ACCESS() may cover 'vp' with a new
3378 			 * filesystem, if 'vp' is an autoFS vnode.
3379 			 * Get the new 'vp' if so.
3380 			 */
3381 			if ((error =
3382 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3383 			    (!vn_ismntpt(vp) ||
3384 			    (error = traverse(&vp)) == 0)) {
3385 				pathlen = pn.pn_pathlen + 2;
3386 				path = kmem_alloc(pathlen, KM_SLEEP);
3387 				(void) strncpy(path, pn.pn_path,
3388 				    pn.pn_pathlen + 1);
3389 				path[pathlen - 2] = '/';
3390 				path[pathlen - 1] = '\0';
3391 				pn_free(&pn);
3392 				pn_free(&upn);
3393 
3394 				/* Success! */
3395 				break;
3396 			}
3397 			VN_RELE(vp);
3398 		}
3399 		if (error != ESTALE)
3400 			goto out;
3401 	}
3402 
3403 	ASSERT(error == 0);
3404 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3405 	zone->zone_rootpath = path;
3406 	zone->zone_rootpathlen = pathlen;
3407 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3408 		zone->zone_flags |= ZF_IS_SCRATCH;
3409 	return (0);
3410 
3411 out:
3412 	pn_free(&pn);
3413 	pn_free(&upn);
3414 	return (error);
3415 }
3416 
3417 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3418 			((c) >= 'a' && (c) <= 'z') || \
3419 			((c) >= 'A' && (c) <= 'Z'))
3420 
3421 static int
3422 zone_set_name(zone_t *zone, const char *uname)
3423 {
3424 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3425 	size_t len;
3426 	int i, err;
3427 
3428 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3429 		kmem_free(kname, ZONENAME_MAX);
3430 		return (err);	/* EFAULT or ENAMETOOLONG */
3431 	}
3432 
3433 	/* must be less than ZONENAME_MAX */
3434 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3435 		kmem_free(kname, ZONENAME_MAX);
3436 		return (EINVAL);
3437 	}
3438 
3439 	/*
3440 	 * Name must start with an alphanumeric and must contain only
3441 	 * alphanumerics, '-', '_' and '.'.
3442 	 */
3443 	if (!isalnum(kname[0])) {
3444 		kmem_free(kname, ZONENAME_MAX);
3445 		return (EINVAL);
3446 	}
3447 	for (i = 1; i < len - 1; i++) {
3448 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3449 		    kname[i] != '.') {
3450 			kmem_free(kname, ZONENAME_MAX);
3451 			return (EINVAL);
3452 		}
3453 	}
3454 
3455 	zone->zone_name = kname;
3456 	return (0);
3457 }
3458 
3459 /*
3460  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3461  * is NULL or it points to a zone with no hostid emulation, then the machine's
3462  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3463  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3464  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3465  * hostid and the machine's hostid is invalid.
3466  */
3467 uint32_t
3468 zone_get_hostid(zone_t *zonep)
3469 {
3470 	unsigned long machine_hostid;
3471 
3472 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3473 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3474 			return (HW_INVALID_HOSTID);
3475 		return ((uint32_t)machine_hostid);
3476 	}
3477 	return (zonep->zone_hostid);
3478 }
3479 
3480 /*
3481  * Similar to thread_create(), but makes sure the thread is in the appropriate
3482  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3483  */
3484 /*ARGSUSED*/
3485 kthread_t *
3486 zthread_create(
3487     caddr_t stk,
3488     size_t stksize,
3489     void (*proc)(),
3490     void *arg,
3491     size_t len,
3492     pri_t pri)
3493 {
3494 	kthread_t *t;
3495 	zone_t *zone = curproc->p_zone;
3496 	proc_t *pp = zone->zone_zsched;
3497 
3498 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3499 
3500 	/*
3501 	 * No-one should be trying to create threads if the zone is shutting
3502 	 * down and there aren't any kernel threads around.  See comment
3503 	 * in zthread_exit().
3504 	 */
3505 	ASSERT(!(zone->zone_kthreads == NULL &&
3506 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3507 	/*
3508 	 * Create a thread, but don't let it run until we've finished setting
3509 	 * things up.
3510 	 */
3511 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3512 	ASSERT(t->t_forw == NULL);
3513 	mutex_enter(&zone_status_lock);
3514 	if (zone->zone_kthreads == NULL) {
3515 		t->t_forw = t->t_back = t;
3516 	} else {
3517 		kthread_t *tx = zone->zone_kthreads;
3518 
3519 		t->t_forw = tx;
3520 		t->t_back = tx->t_back;
3521 		tx->t_back->t_forw = t;
3522 		tx->t_back = t;
3523 	}
3524 	zone->zone_kthreads = t;
3525 	mutex_exit(&zone_status_lock);
3526 
3527 	mutex_enter(&pp->p_lock);
3528 	t->t_proc_flag |= TP_ZTHREAD;
3529 	project_rele(t->t_proj);
3530 	t->t_proj = project_hold(pp->p_task->tk_proj);
3531 
3532 	/*
3533 	 * Setup complete, let it run.
3534 	 */
3535 	thread_lock(t);
3536 	t->t_schedflag |= TS_ALLSTART;
3537 	setrun_locked(t);
3538 	thread_unlock(t);
3539 
3540 	mutex_exit(&pp->p_lock);
3541 
3542 	return (t);
3543 }
3544 
3545 /*
3546  * Similar to thread_exit().  Must be called by threads created via
3547  * zthread_exit().
3548  */
3549 void
3550 zthread_exit(void)
3551 {
3552 	kthread_t *t = curthread;
3553 	proc_t *pp = curproc;
3554 	zone_t *zone = pp->p_zone;
3555 
3556 	mutex_enter(&zone_status_lock);
3557 
3558 	/*
3559 	 * Reparent to p0
3560 	 */
3561 	kpreempt_disable();
3562 	mutex_enter(&pp->p_lock);
3563 	t->t_proc_flag &= ~TP_ZTHREAD;
3564 	t->t_procp = &p0;
3565 	hat_thread_exit(t);
3566 	mutex_exit(&pp->p_lock);
3567 	kpreempt_enable();
3568 
3569 	if (t->t_back == t) {
3570 		ASSERT(t->t_forw == t);
3571 		/*
3572 		 * If the zone is empty, once the thread count
3573 		 * goes to zero no further kernel threads can be
3574 		 * created.  This is because if the creator is a process
3575 		 * in the zone, then it must have exited before the zone
3576 		 * state could be set to ZONE_IS_EMPTY.
3577 		 * Otherwise, if the creator is a kernel thread in the
3578 		 * zone, the thread count is non-zero.
3579 		 *
3580 		 * This really means that non-zone kernel threads should
3581 		 * not create zone kernel threads.
3582 		 */
3583 		zone->zone_kthreads = NULL;
3584 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3585 			zone_status_set(zone, ZONE_IS_DOWN);
3586 			/*
3587 			 * Remove any CPU caps on this zone.
3588 			 */
3589 			cpucaps_zone_remove(zone);
3590 		}
3591 	} else {
3592 		t->t_forw->t_back = t->t_back;
3593 		t->t_back->t_forw = t->t_forw;
3594 		if (zone->zone_kthreads == t)
3595 			zone->zone_kthreads = t->t_forw;
3596 	}
3597 	mutex_exit(&zone_status_lock);
3598 	zone_rele(zone);
3599 	thread_exit();
3600 	/* NOTREACHED */
3601 }
3602 
3603 static void
3604 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3605 {
3606 	vnode_t *oldvp;
3607 
3608 	/* we're going to hold a reference here to the directory */
3609 	VN_HOLD(vp);
3610 
3611 	/* update abs cwd/root path see c2/audit.c */
3612 	if (AU_AUDITING())
3613 		audit_chdirec(vp, vpp);
3614 
3615 	mutex_enter(&pp->p_lock);
3616 	oldvp = *vpp;
3617 	*vpp = vp;
3618 	mutex_exit(&pp->p_lock);
3619 	if (oldvp != NULL)
3620 		VN_RELE(oldvp);
3621 }
3622 
3623 /*
3624  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3625  */
3626 static int
3627 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3628 {
3629 	nvpair_t *nvp = NULL;
3630 	boolean_t priv_set = B_FALSE;
3631 	boolean_t limit_set = B_FALSE;
3632 	boolean_t action_set = B_FALSE;
3633 
3634 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3635 		const char *name;
3636 		uint64_t ui64;
3637 
3638 		name = nvpair_name(nvp);
3639 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3640 			return (EINVAL);
3641 		(void) nvpair_value_uint64(nvp, &ui64);
3642 		if (strcmp(name, "privilege") == 0) {
3643 			/*
3644 			 * Currently only privileged values are allowed, but
3645 			 * this may change in the future.
3646 			 */
3647 			if (ui64 != RCPRIV_PRIVILEGED)
3648 				return (EINVAL);
3649 			rv->rcv_privilege = ui64;
3650 			priv_set = B_TRUE;
3651 		} else if (strcmp(name, "limit") == 0) {
3652 			rv->rcv_value = ui64;
3653 			limit_set = B_TRUE;
3654 		} else if (strcmp(name, "action") == 0) {
3655 			if (ui64 != RCTL_LOCAL_NOACTION &&
3656 			    ui64 != RCTL_LOCAL_DENY)
3657 				return (EINVAL);
3658 			rv->rcv_flagaction = ui64;
3659 			action_set = B_TRUE;
3660 		} else {
3661 			return (EINVAL);
3662 		}
3663 	}
3664 
3665 	if (!(priv_set && limit_set && action_set))
3666 		return (EINVAL);
3667 	rv->rcv_action_signal = 0;
3668 	rv->rcv_action_recipient = NULL;
3669 	rv->rcv_action_recip_pid = -1;
3670 	rv->rcv_firing_time = 0;
3671 
3672 	return (0);
3673 }
3674 
3675 /*
3676  * Non-global zone version of start_init.
3677  */
3678 void
3679 zone_start_init(void)
3680 {
3681 	proc_t *p = ttoproc(curthread);
3682 	zone_t *z = p->p_zone;
3683 
3684 	ASSERT(!INGLOBALZONE(curproc));
3685 
3686 	/*
3687 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3688 	 * storing just the pid of init is sufficient.
3689 	 */
3690 	z->zone_proc_initpid = p->p_pid;
3691 
3692 	/*
3693 	 * We maintain zone_boot_err so that we can return the cause of the
3694 	 * failure back to the caller of the zone_boot syscall.
3695 	 */
3696 	p->p_zone->zone_boot_err = start_init_common();
3697 
3698 	/*
3699 	 * We will prevent booting zones from becoming running zones if the
3700 	 * global zone is shutting down.
3701 	 */
3702 	mutex_enter(&zone_status_lock);
3703 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3704 	    ZONE_IS_SHUTTING_DOWN) {
3705 		/*
3706 		 * Make sure we are still in the booting state-- we could have
3707 		 * raced and already be shutting down, or even further along.
3708 		 */
3709 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3710 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3711 		}
3712 		mutex_exit(&zone_status_lock);
3713 		/* It's gone bad, dispose of the process */
3714 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3715 			mutex_enter(&p->p_lock);
3716 			ASSERT(p->p_flag & SEXITLWPS);
3717 			lwp_exit();
3718 		}
3719 	} else {
3720 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3721 			zone_status_set(z, ZONE_IS_RUNNING);
3722 		mutex_exit(&zone_status_lock);
3723 		/* cause the process to return to userland. */
3724 		lwp_rtt();
3725 	}
3726 }
3727 
3728 struct zsched_arg {
3729 	zone_t *zone;
3730 	nvlist_t *nvlist;
3731 };
3732 
3733 /*
3734  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3735  * anything to do with scheduling, but rather with the fact that
3736  * per-zone kernel threads are parented to zsched, just like regular
3737  * kernel threads are parented to sched (p0).
3738  *
3739  * zsched is also responsible for launching init for the zone.
3740  */
3741 static void
3742 zsched(void *arg)
3743 {
3744 	struct zsched_arg *za = arg;
3745 	proc_t *pp = curproc;
3746 	proc_t *initp = proc_init;
3747 	zone_t *zone = za->zone;
3748 	cred_t *cr, *oldcred;
3749 	rctl_set_t *set;
3750 	rctl_alloc_gp_t *gp;
3751 	contract_t *ct = NULL;
3752 	task_t *tk, *oldtk;
3753 	rctl_entity_p_t e;
3754 	kproject_t *pj;
3755 
3756 	nvlist_t *nvl = za->nvlist;
3757 	nvpair_t *nvp = NULL;
3758 
3759 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3760 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3761 	PTOU(pp)->u_argc = 0;
3762 	PTOU(pp)->u_argv = NULL;
3763 	PTOU(pp)->u_envp = NULL;
3764 	closeall(P_FINFO(pp));
3765 
3766 	/*
3767 	 * We are this zone's "zsched" process.  As the zone isn't generally
3768 	 * visible yet we don't need to grab any locks before initializing its
3769 	 * zone_proc pointer.
3770 	 */
3771 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3772 	zone->zone_zsched = pp;
3773 	mutex_enter(&pp->p_lock);
3774 	pp->p_zone = zone;
3775 	mutex_exit(&pp->p_lock);
3776 
3777 	/*
3778 	 * Disassociate process from its 'parent'; parent ourselves to init
3779 	 * (pid 1) and change other values as needed.
3780 	 */
3781 	sess_create();
3782 
3783 	mutex_enter(&pidlock);
3784 	proc_detach(pp);
3785 	pp->p_ppid = 1;
3786 	pp->p_flag |= SZONETOP;
3787 	pp->p_ancpid = 1;
3788 	pp->p_parent = initp;
3789 	pp->p_psibling = NULL;
3790 	if (initp->p_child)
3791 		initp->p_child->p_psibling = pp;
3792 	pp->p_sibling = initp->p_child;
3793 	initp->p_child = pp;
3794 
3795 	/* Decrement what newproc() incremented. */
3796 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3797 	/*
3798 	 * Our credentials are about to become kcred-like, so we don't care
3799 	 * about the caller's ruid.
3800 	 */
3801 	upcount_inc(crgetruid(kcred), zone->zone_id);
3802 	mutex_exit(&pidlock);
3803 
3804 	/*
3805 	 * getting out of global zone, so decrement lwp and process counts
3806 	 */
3807 	pj = pp->p_task->tk_proj;
3808 	mutex_enter(&global_zone->zone_nlwps_lock);
3809 	pj->kpj_nlwps -= pp->p_lwpcnt;
3810 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3811 	pj->kpj_nprocs--;
3812 	global_zone->zone_nprocs--;
3813 	mutex_exit(&global_zone->zone_nlwps_lock);
3814 
3815 	/*
3816 	 * Decrement locked memory counts on old zone and project.
3817 	 */
3818 	mutex_enter(&global_zone->zone_mem_lock);
3819 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3820 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3821 	mutex_exit(&global_zone->zone_mem_lock);
3822 
3823 	/*
3824 	 * Create and join a new task in project '0' of this zone.
3825 	 *
3826 	 * We don't need to call holdlwps() since we know we're the only lwp in
3827 	 * this process.
3828 	 *
3829 	 * task_join() returns with p_lock held.
3830 	 */
3831 	tk = task_create(0, zone);
3832 	mutex_enter(&cpu_lock);
3833 	oldtk = task_join(tk, 0);
3834 
3835 	pj = pp->p_task->tk_proj;
3836 
3837 	mutex_enter(&zone->zone_mem_lock);
3838 	zone->zone_locked_mem += pp->p_locked_mem;
3839 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3840 	mutex_exit(&zone->zone_mem_lock);
3841 
3842 	/*
3843 	 * add lwp and process counts to zsched's zone, and increment
3844 	 * project's task and process count due to the task created in
3845 	 * the above task_create.
3846 	 */
3847 	mutex_enter(&zone->zone_nlwps_lock);
3848 	pj->kpj_nlwps += pp->p_lwpcnt;
3849 	pj->kpj_ntasks += 1;
3850 	zone->zone_nlwps += pp->p_lwpcnt;
3851 	pj->kpj_nprocs++;
3852 	zone->zone_nprocs++;
3853 	mutex_exit(&zone->zone_nlwps_lock);
3854 
3855 	mutex_exit(&curproc->p_lock);
3856 	mutex_exit(&cpu_lock);
3857 	task_rele(oldtk);
3858 
3859 	/*
3860 	 * The process was created by a process in the global zone, hence the
3861 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3862 	 */
3863 	cr = zone->zone_kcred;
3864 	crhold(cr);
3865 	mutex_enter(&pp->p_crlock);
3866 	oldcred = pp->p_cred;
3867 	pp->p_cred = cr;
3868 	mutex_exit(&pp->p_crlock);
3869 	crfree(oldcred);
3870 
3871 	/*
3872 	 * Hold credentials again (for thread)
3873 	 */
3874 	crhold(cr);
3875 
3876 	/*
3877 	 * p_lwpcnt can't change since this is a kernel process.
3878 	 */
3879 	crset(pp, cr);
3880 
3881 	/*
3882 	 * Chroot
3883 	 */
3884 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3885 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3886 
3887 	/*
3888 	 * Initialize zone's rctl set.
3889 	 */
3890 	set = rctl_set_create();
3891 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3892 	mutex_enter(&pp->p_lock);
3893 	e.rcep_p.zone = zone;
3894 	e.rcep_t = RCENTITY_ZONE;
3895 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3896 	mutex_exit(&pp->p_lock);
3897 	rctl_prealloc_destroy(gp);
3898 
3899 	/*
3900 	 * Apply the rctls passed in to zone_create().  This is basically a list
3901 	 * assignment: all of the old values are removed and the new ones
3902 	 * inserted.  That is, if an empty list is passed in, all values are
3903 	 * removed.
3904 	 */
3905 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3906 		rctl_dict_entry_t *rde;
3907 		rctl_hndl_t hndl;
3908 		char *name;
3909 		nvlist_t **nvlarray;
3910 		uint_t i, nelem;
3911 		int error;	/* For ASSERT()s */
3912 
3913 		name = nvpair_name(nvp);
3914 		hndl = rctl_hndl_lookup(name);
3915 		ASSERT(hndl != -1);
3916 		rde = rctl_dict_lookup_hndl(hndl);
3917 		ASSERT(rde != NULL);
3918 
3919 		for (; /* ever */; ) {
3920 			rctl_val_t oval;
3921 
3922 			mutex_enter(&pp->p_lock);
3923 			error = rctl_local_get(hndl, NULL, &oval, pp);
3924 			mutex_exit(&pp->p_lock);
3925 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3926 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3927 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3928 				break;
3929 			mutex_enter(&pp->p_lock);
3930 			error = rctl_local_delete(hndl, &oval, pp);
3931 			mutex_exit(&pp->p_lock);
3932 			ASSERT(error == 0);
3933 		}
3934 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3935 		ASSERT(error == 0);
3936 		for (i = 0; i < nelem; i++) {
3937 			rctl_val_t *nvalp;
3938 
3939 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3940 			error = nvlist2rctlval(nvlarray[i], nvalp);
3941 			ASSERT(error == 0);
3942 			/*
3943 			 * rctl_local_insert can fail if the value being
3944 			 * inserted is a duplicate; this is OK.
3945 			 */
3946 			mutex_enter(&pp->p_lock);
3947 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3948 				kmem_cache_free(rctl_val_cache, nvalp);
3949 			mutex_exit(&pp->p_lock);
3950 		}
3951 	}
3952 	/*
3953 	 * Tell the world that we're done setting up.
3954 	 *
3955 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3956 	 * and atomically set the zone's processor set visibility.  Once
3957 	 * we drop pool_lock() this zone will automatically get updated
3958 	 * to reflect any future changes to the pools configuration.
3959 	 *
3960 	 * Note that after we drop the locks below (zonehash_lock in
3961 	 * particular) other operations such as a zone_getattr call can
3962 	 * now proceed and observe the zone. That is the reason for doing a
3963 	 * state transition to the INITIALIZED state.
3964 	 */
3965 	pool_lock();
3966 	mutex_enter(&cpu_lock);
3967 	mutex_enter(&zonehash_lock);
3968 	zone_uniqid(zone);
3969 	zone_zsd_configure(zone);
3970 	if (pool_state == POOL_ENABLED)
3971 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3972 	mutex_enter(&zone_status_lock);
3973 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3974 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3975 	mutex_exit(&zone_status_lock);
3976 	mutex_exit(&zonehash_lock);
3977 	mutex_exit(&cpu_lock);
3978 	pool_unlock();
3979 
3980 	/* Now call the create callback for this key */
3981 	zsd_apply_all_keys(zsd_apply_create, zone);
3982 
3983 	/* The callbacks are complete. Mark ZONE_IS_READY */
3984 	mutex_enter(&zone_status_lock);
3985 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3986 	zone_status_set(zone, ZONE_IS_READY);
3987 	mutex_exit(&zone_status_lock);
3988 
3989 	/*
3990 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3991 	 * we launch init, and set the state to running.
3992 	 */
3993 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3994 
3995 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3996 		id_t cid;
3997 
3998 		/*
3999 		 * Ok, this is a little complicated.  We need to grab the
4000 		 * zone's pool's scheduling class ID; note that by now, we
4001 		 * are already bound to a pool if we need to be (zoneadmd
4002 		 * will have done that to us while we're in the READY
4003 		 * state).  *But* the scheduling class for the zone's 'init'
4004 		 * must be explicitly passed to newproc, which doesn't
4005 		 * respect pool bindings.
4006 		 *
4007 		 * We hold the pool_lock across the call to newproc() to
4008 		 * close the obvious race: the pool's scheduling class
4009 		 * could change before we manage to create the LWP with
4010 		 * classid 'cid'.
4011 		 */
4012 		pool_lock();
4013 		if (zone->zone_defaultcid > 0)
4014 			cid = zone->zone_defaultcid;
4015 		else
4016 			cid = pool_get_class(zone->zone_pool);
4017 		if (cid == -1)
4018 			cid = defaultcid;
4019 
4020 		/*
4021 		 * If this fails, zone_boot will ultimately fail.  The
4022 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4023 		 * will have to tear down the zone, and fail, or try again.
4024 		 */
4025 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4026 		    minclsyspri - 1, &ct, 0)) != 0) {
4027 			mutex_enter(&zone_status_lock);
4028 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4029 			mutex_exit(&zone_status_lock);
4030 		} else {
4031 			zone->zone_boot_time = gethrestime_sec();
4032 		}
4033 
4034 		pool_unlock();
4035 	}
4036 
4037 	/*
4038 	 * Wait for zone_destroy() to be called.  This is what we spend
4039 	 * most of our life doing.
4040 	 */
4041 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4042 
4043 	if (ct)
4044 		/*
4045 		 * At this point the process contract should be empty.
4046 		 * (Though if it isn't, it's not the end of the world.)
4047 		 */
4048 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4049 
4050 	/*
4051 	 * Allow kcred to be freed when all referring processes
4052 	 * (including this one) go away.  We can't just do this in
4053 	 * zone_free because we need to wait for the zone_cred_ref to
4054 	 * drop to 0 before calling zone_free, and the existence of
4055 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4056 	 * balance the crdup in zone_create.  The crhold calls earlier
4057 	 * in zsched will be dropped when the thread and process exit.
4058 	 */
4059 	crfree(zone->zone_kcred);
4060 	zone->zone_kcred = NULL;
4061 
4062 	exit(CLD_EXITED, 0);
4063 }
4064 
4065 /*
4066  * Helper function to determine if there are any submounts of the
4067  * provided path.  Used to make sure the zone doesn't "inherit" any
4068  * mounts from before it is created.
4069  */
4070 static uint_t
4071 zone_mount_count(const char *rootpath)
4072 {
4073 	vfs_t *vfsp;
4074 	uint_t count = 0;
4075 	size_t rootpathlen = strlen(rootpath);
4076 
4077 	/*
4078 	 * Holding zonehash_lock prevents race conditions with
4079 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4080 	 * zone_find_by_path().
4081 	 */
4082 	ASSERT(MUTEX_HELD(&zonehash_lock));
4083 	/*
4084 	 * The rootpath must end with a '/'
4085 	 */
4086 	ASSERT(rootpath[rootpathlen - 1] == '/');
4087 
4088 	/*
4089 	 * This intentionally does not count the rootpath itself if that
4090 	 * happens to be a mount point.
4091 	 */
4092 	vfs_list_read_lock();
4093 	vfsp = rootvfs;
4094 	do {
4095 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4096 		    rootpathlen) == 0)
4097 			count++;
4098 		vfsp = vfsp->vfs_next;
4099 	} while (vfsp != rootvfs);
4100 	vfs_list_unlock();
4101 	return (count);
4102 }
4103 
4104 /*
4105  * Helper function to make sure that a zone created on 'rootpath'
4106  * wouldn't end up containing other zones' rootpaths.
4107  */
4108 static boolean_t
4109 zone_is_nested(const char *rootpath)
4110 {
4111 	zone_t *zone;
4112 	size_t rootpathlen = strlen(rootpath);
4113 	size_t len;
4114 
4115 	ASSERT(MUTEX_HELD(&zonehash_lock));
4116 
4117 	/*
4118 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4119 	 */
4120 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4121 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4122 		return (B_TRUE);
4123 
4124 	for (zone = list_head(&zone_active); zone != NULL;
4125 	    zone = list_next(&zone_active, zone)) {
4126 		if (zone == global_zone)
4127 			continue;
4128 		len = strlen(zone->zone_rootpath);
4129 		if (strncmp(rootpath, zone->zone_rootpath,
4130 		    MIN(rootpathlen, len)) == 0)
4131 			return (B_TRUE);
4132 	}
4133 	return (B_FALSE);
4134 }
4135 
4136 static int
4137 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4138     size_t zone_privssz)
4139 {
4140 	priv_set_t *privs;
4141 
4142 	if (zone_privssz < sizeof (priv_set_t))
4143 		return (ENOMEM);
4144 
4145 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4146 
4147 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4148 		kmem_free(privs, sizeof (priv_set_t));
4149 		return (EFAULT);
4150 	}
4151 
4152 	zone->zone_privset = privs;
4153 	return (0);
4154 }
4155 
4156 /*
4157  * We make creative use of nvlists to pass in rctls from userland.  The list is
4158  * a list of the following structures:
4159  *
4160  * (name = rctl_name, value = nvpair_list_array)
4161  *
4162  * Where each element of the nvpair_list_array is of the form:
4163  *
4164  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4165  * 	(name = "limit", value = uint64_t),
4166  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4167  */
4168 static int
4169 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4170 {
4171 	nvpair_t *nvp = NULL;
4172 	nvlist_t *nvl = NULL;
4173 	char *kbuf;
4174 	int error;
4175 	rctl_val_t rv;
4176 
4177 	*nvlp = NULL;
4178 
4179 	if (buflen == 0)
4180 		return (0);
4181 
4182 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4183 		return (ENOMEM);
4184 	if (copyin(ubuf, kbuf, buflen)) {
4185 		error = EFAULT;
4186 		goto out;
4187 	}
4188 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4189 		/*
4190 		 * nvl may have been allocated/free'd, but the value set to
4191 		 * non-NULL, so we reset it here.
4192 		 */
4193 		nvl = NULL;
4194 		error = EINVAL;
4195 		goto out;
4196 	}
4197 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4198 		rctl_dict_entry_t *rde;
4199 		rctl_hndl_t hndl;
4200 		nvlist_t **nvlarray;
4201 		uint_t i, nelem;
4202 		char *name;
4203 
4204 		error = EINVAL;
4205 		name = nvpair_name(nvp);
4206 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4207 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4208 			goto out;
4209 		}
4210 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4211 			goto out;
4212 		}
4213 		rde = rctl_dict_lookup_hndl(hndl);
4214 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4215 		ASSERT(error == 0);
4216 		for (i = 0; i < nelem; i++) {
4217 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4218 				goto out;
4219 		}
4220 		if (rctl_invalid_value(rde, &rv)) {
4221 			error = EINVAL;
4222 			goto out;
4223 		}
4224 	}
4225 	error = 0;
4226 	*nvlp = nvl;
4227 out:
4228 	kmem_free(kbuf, buflen);
4229 	if (error && nvl != NULL)
4230 		nvlist_free(nvl);
4231 	return (error);
4232 }
4233 
4234 int
4235 zone_create_error(int er_error, int er_ext, int *er_out) {
4236 	if (er_out != NULL) {
4237 		if (copyout(&er_ext, er_out, sizeof (int))) {
4238 			return (set_errno(EFAULT));
4239 		}
4240 	}
4241 	return (set_errno(er_error));
4242 }
4243 
4244 static int
4245 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4246 {
4247 	ts_label_t *tsl;
4248 	bslabel_t blab;
4249 
4250 	/* Get label from user */
4251 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4252 		return (EFAULT);
4253 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4254 	if (tsl == NULL)
4255 		return (ENOMEM);
4256 
4257 	zone->zone_slabel = tsl;
4258 	return (0);
4259 }
4260 
4261 /*
4262  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4263  */
4264 static int
4265 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4266 {
4267 	char *kbuf;
4268 	char *dataset, *next;
4269 	zone_dataset_t *zd;
4270 	size_t len;
4271 
4272 	if (ubuf == NULL || buflen == 0)
4273 		return (0);
4274 
4275 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4276 		return (ENOMEM);
4277 
4278 	if (copyin(ubuf, kbuf, buflen) != 0) {
4279 		kmem_free(kbuf, buflen);
4280 		return (EFAULT);
4281 	}
4282 
4283 	dataset = next = kbuf;
4284 	for (;;) {
4285 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4286 
4287 		next = strchr(dataset, ',');
4288 
4289 		if (next == NULL)
4290 			len = strlen(dataset);
4291 		else
4292 			len = next - dataset;
4293 
4294 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4295 		bcopy(dataset, zd->zd_dataset, len);
4296 		zd->zd_dataset[len] = '\0';
4297 
4298 		list_insert_head(&zone->zone_datasets, zd);
4299 
4300 		if (next == NULL)
4301 			break;
4302 
4303 		dataset = next + 1;
4304 	}
4305 
4306 	kmem_free(kbuf, buflen);
4307 	return (0);
4308 }
4309 
4310 /*
4311  * System call to create/initialize a new zone named 'zone_name', rooted
4312  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4313  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4314  * with labeling set by 'match', 'doi', and 'label'.
4315  *
4316  * If extended error is non-null, we may use it to return more detailed
4317  * error information.
4318  */
4319 static zoneid_t
4320 zone_create(const char *zone_name, const char *zone_root,
4321     const priv_set_t *zone_privs, size_t zone_privssz,
4322     caddr_t rctlbuf, size_t rctlbufsz,
4323     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4324     int match, uint32_t doi, const bslabel_t *label,
4325     int flags)
4326 {
4327 	struct zsched_arg zarg;
4328 	nvlist_t *rctls = NULL;
4329 	proc_t *pp = curproc;
4330 	zone_t *zone, *ztmp;
4331 	zoneid_t zoneid;
4332 	int error;
4333 	int error2 = 0;
4334 	char *str;
4335 	cred_t *zkcr;
4336 	boolean_t insert_label_hash;
4337 
4338 	if (secpolicy_zone_config(CRED()) != 0)
4339 		return (set_errno(EPERM));
4340 
4341 	/* can't boot zone from within chroot environment */
4342 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4343 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4344 		    extended_error));
4345 
4346 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4347 	zoneid = zone->zone_id = id_alloc(zoneid_space);
4348 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4349 	zone->zone_pool = pool_default;
4350 	zone->zone_pool_mod = gethrtime();
4351 	zone->zone_psetid = ZONE_PS_INVAL;
4352 	zone->zone_ncpus = 0;
4353 	zone->zone_ncpus_online = 0;
4354 	zone->zone_restart_init = B_TRUE;
4355 	zone->zone_brand = &native_brand;
4356 	zone->zone_initname = NULL;
4357 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4358 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4359 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4360 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4361 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4362 	    offsetof(zone_ref_t, zref_linkage));
4363 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4364 	    offsetof(struct zsd_entry, zsd_linkage));
4365 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4366 	    offsetof(zone_dataset_t, zd_linkage));
4367 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4368 	    offsetof(zone_dl_t, zdl_linkage));
4369 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4370 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4371 
4372 	if (flags & ZCF_NET_EXCL) {
4373 		zone->zone_flags |= ZF_NET_EXCL;
4374 	}
4375 
4376 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4377 		zone_free(zone);
4378 		return (zone_create_error(error, 0, extended_error));
4379 	}
4380 
4381 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4382 		zone_free(zone);
4383 		return (zone_create_error(error, 0, extended_error));
4384 	}
4385 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4386 		zone_free(zone);
4387 		return (zone_create_error(error, 0, extended_error));
4388 	}
4389 
4390 	/* initialize node name to be the same as zone name */
4391 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4392 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4393 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4394 
4395 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4396 	zone->zone_domain[0] = '\0';
4397 	zone->zone_hostid = HW_INVALID_HOSTID;
4398 	zone->zone_shares = 1;
4399 	zone->zone_shmmax = 0;
4400 	zone->zone_ipc.ipcq_shmmni = 0;
4401 	zone->zone_ipc.ipcq_semmni = 0;
4402 	zone->zone_ipc.ipcq_msgmni = 0;
4403 	zone->zone_bootargs = NULL;
4404 	zone->zone_fs_allowed = NULL;
4405 	zone->zone_initname =
4406 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4407 	(void) strcpy(zone->zone_initname, zone_default_initname);
4408 	zone->zone_nlwps = 0;
4409 	zone->zone_nlwps_ctl = INT_MAX;
4410 	zone->zone_nprocs = 0;
4411 	zone->zone_nprocs_ctl = INT_MAX;
4412 	zone->zone_locked_mem = 0;
4413 	zone->zone_locked_mem_ctl = UINT64_MAX;
4414 	zone->zone_max_swap = 0;
4415 	zone->zone_max_swap_ctl = UINT64_MAX;
4416 	zone->zone_max_lofi = 0;
4417 	zone->zone_max_lofi_ctl = UINT64_MAX;
4418 	zone0.zone_lockedmem_kstat = NULL;
4419 	zone0.zone_swapresv_kstat = NULL;
4420 
4421 	/*
4422 	 * Zsched initializes the rctls.
4423 	 */
4424 	zone->zone_rctls = NULL;
4425 
4426 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4427 		zone_free(zone);
4428 		return (zone_create_error(error, 0, extended_error));
4429 	}
4430 
4431 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4432 		zone_free(zone);
4433 		return (set_errno(error));
4434 	}
4435 
4436 	/*
4437 	 * Read in the trusted system parameters:
4438 	 * match flag and sensitivity label.
4439 	 */
4440 	zone->zone_match = match;
4441 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4442 		/* Fail if requested to set doi to anything but system's doi */
4443 		if (doi != 0 && doi != default_doi) {
4444 			zone_free(zone);
4445 			return (set_errno(EINVAL));
4446 		}
4447 		/* Always apply system's doi to the zone */
4448 		error = zone_set_label(zone, label, default_doi);
4449 		if (error != 0) {
4450 			zone_free(zone);
4451 			return (set_errno(error));
4452 		}
4453 		insert_label_hash = B_TRUE;
4454 	} else {
4455 		/* all zones get an admin_low label if system is not labeled */
4456 		zone->zone_slabel = l_admin_low;
4457 		label_hold(l_admin_low);
4458 		insert_label_hash = B_FALSE;
4459 	}
4460 
4461 	/*
4462 	 * Stop all lwps since that's what normally happens as part of fork().
4463 	 * This needs to happen before we grab any locks to avoid deadlock
4464 	 * (another lwp in the process could be waiting for the held lock).
4465 	 */
4466 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4467 		zone_free(zone);
4468 		nvlist_free(rctls);
4469 		return (zone_create_error(error, 0, extended_error));
4470 	}
4471 
4472 	if (block_mounts(zone) == 0) {
4473 		mutex_enter(&pp->p_lock);
4474 		if (curthread != pp->p_agenttp)
4475 			continuelwps(pp);
4476 		mutex_exit(&pp->p_lock);
4477 		zone_free(zone);
4478 		nvlist_free(rctls);
4479 		return (zone_create_error(error, 0, extended_error));
4480 	}
4481 
4482 	/*
4483 	 * Set up credential for kernel access.  After this, any errors
4484 	 * should go through the dance in errout rather than calling
4485 	 * zone_free directly.
4486 	 */
4487 	zone->zone_kcred = crdup(kcred);
4488 	crsetzone(zone->zone_kcred, zone);
4489 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4490 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4491 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4492 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4493 
4494 	mutex_enter(&zonehash_lock);
4495 	/*
4496 	 * Make sure zone doesn't already exist.
4497 	 *
4498 	 * If the system and zone are labeled,
4499 	 * make sure no other zone exists that has the same label.
4500 	 */
4501 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4502 	    (insert_label_hash &&
4503 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4504 		zone_status_t status;
4505 
4506 		status = zone_status_get(ztmp);
4507 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4508 			error = EEXIST;
4509 		else
4510 			error = EBUSY;
4511 
4512 		if (insert_label_hash)
4513 			error2 = ZE_LABELINUSE;
4514 
4515 		goto errout;
4516 	}
4517 
4518 	/*
4519 	 * Don't allow zone creations which would cause one zone's rootpath to
4520 	 * be accessible from that of another (non-global) zone.
4521 	 */
4522 	if (zone_is_nested(zone->zone_rootpath)) {
4523 		error = EBUSY;
4524 		goto errout;
4525 	}
4526 
4527 	ASSERT(zonecount != 0);		/* check for leaks */
4528 	if (zonecount + 1 > maxzones) {
4529 		error = ENOMEM;
4530 		goto errout;
4531 	}
4532 
4533 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4534 		error = EBUSY;
4535 		error2 = ZE_AREMOUNTS;
4536 		goto errout;
4537 	}
4538 
4539 	/*
4540 	 * Zone is still incomplete, but we need to drop all locks while
4541 	 * zsched() initializes this zone's kernel process.  We
4542 	 * optimistically add the zone to the hashtable and associated
4543 	 * lists so a parallel zone_create() doesn't try to create the
4544 	 * same zone.
4545 	 */
4546 	zonecount++;
4547 	(void) mod_hash_insert(zonehashbyid,
4548 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4549 	    (mod_hash_val_t)(uintptr_t)zone);
4550 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4551 	(void) strcpy(str, zone->zone_name);
4552 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4553 	    (mod_hash_val_t)(uintptr_t)zone);
4554 	if (insert_label_hash) {
4555 		(void) mod_hash_insert(zonehashbylabel,
4556 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4557 		zone->zone_flags |= ZF_HASHED_LABEL;
4558 	}
4559 
4560 	/*
4561 	 * Insert into active list.  At this point there are no 'hold's
4562 	 * on the zone, but everyone else knows not to use it, so we can
4563 	 * continue to use it.  zsched() will do a zone_hold() if the
4564 	 * newproc() is successful.
4565 	 */
4566 	list_insert_tail(&zone_active, zone);
4567 	mutex_exit(&zonehash_lock);
4568 
4569 	zarg.zone = zone;
4570 	zarg.nvlist = rctls;
4571 	/*
4572 	 * The process, task, and project rctls are probably wrong;
4573 	 * we need an interface to get the default values of all rctls,
4574 	 * and initialize zsched appropriately.  I'm not sure that that
4575 	 * makes much of a difference, though.
4576 	 */
4577 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4578 	if (error != 0) {
4579 		/*
4580 		 * We need to undo all globally visible state.
4581 		 */
4582 		mutex_enter(&zonehash_lock);
4583 		list_remove(&zone_active, zone);
4584 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4585 			ASSERT(zone->zone_slabel != NULL);
4586 			(void) mod_hash_destroy(zonehashbylabel,
4587 			    (mod_hash_key_t)zone->zone_slabel);
4588 		}
4589 		(void) mod_hash_destroy(zonehashbyname,
4590 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4591 		(void) mod_hash_destroy(zonehashbyid,
4592 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4593 		ASSERT(zonecount > 1);
4594 		zonecount--;
4595 		goto errout;
4596 	}
4597 
4598 	/*
4599 	 * Zone creation can't fail from now on.
4600 	 */
4601 
4602 	/*
4603 	 * Create zone kstats
4604 	 */
4605 	zone_kstat_create(zone);
4606 
4607 	/*
4608 	 * Let the other lwps continue.
4609 	 */
4610 	mutex_enter(&pp->p_lock);
4611 	if (curthread != pp->p_agenttp)
4612 		continuelwps(pp);
4613 	mutex_exit(&pp->p_lock);
4614 
4615 	/*
4616 	 * Wait for zsched to finish initializing the zone.
4617 	 */
4618 	zone_status_wait(zone, ZONE_IS_READY);
4619 	/*
4620 	 * The zone is fully visible, so we can let mounts progress.
4621 	 */
4622 	resume_mounts(zone);
4623 	nvlist_free(rctls);
4624 
4625 	return (zoneid);
4626 
4627 errout:
4628 	mutex_exit(&zonehash_lock);
4629 	/*
4630 	 * Let the other lwps continue.
4631 	 */
4632 	mutex_enter(&pp->p_lock);
4633 	if (curthread != pp->p_agenttp)
4634 		continuelwps(pp);
4635 	mutex_exit(&pp->p_lock);
4636 
4637 	resume_mounts(zone);
4638 	nvlist_free(rctls);
4639 	/*
4640 	 * There is currently one reference to the zone, a cred_ref from
4641 	 * zone_kcred.  To free the zone, we call crfree, which will call
4642 	 * zone_cred_rele, which will call zone_free.
4643 	 */
4644 	ASSERT(zone->zone_cred_ref == 1);
4645 	ASSERT(zone->zone_kcred->cr_ref == 1);
4646 	ASSERT(zone->zone_ref == 0);
4647 	zkcr = zone->zone_kcred;
4648 	zone->zone_kcred = NULL;
4649 	crfree(zkcr);				/* triggers call to zone_free */
4650 	return (zone_create_error(error, error2, extended_error));
4651 }
4652 
4653 /*
4654  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4655  * the heavy lifting.  initname is the path to the program to launch
4656  * at the "top" of the zone; if this is NULL, we use the system default,
4657  * which is stored at zone_default_initname.
4658  */
4659 static int
4660 zone_boot(zoneid_t zoneid)
4661 {
4662 	int err;
4663 	zone_t *zone;
4664 
4665 	if (secpolicy_zone_config(CRED()) != 0)
4666 		return (set_errno(EPERM));
4667 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4668 		return (set_errno(EINVAL));
4669 
4670 	mutex_enter(&zonehash_lock);
4671 	/*
4672 	 * Look for zone under hash lock to prevent races with calls to
4673 	 * zone_shutdown, zone_destroy, etc.
4674 	 */
4675 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4676 		mutex_exit(&zonehash_lock);
4677 		return (set_errno(EINVAL));
4678 	}
4679 
4680 	mutex_enter(&zone_status_lock);
4681 	if (zone_status_get(zone) != ZONE_IS_READY) {
4682 		mutex_exit(&zone_status_lock);
4683 		mutex_exit(&zonehash_lock);
4684 		return (set_errno(EINVAL));
4685 	}
4686 	zone_status_set(zone, ZONE_IS_BOOTING);
4687 	mutex_exit(&zone_status_lock);
4688 
4689 	zone_hold(zone);	/* so we can use the zone_t later */
4690 	mutex_exit(&zonehash_lock);
4691 
4692 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4693 		zone_rele(zone);
4694 		return (set_errno(EINTR));
4695 	}
4696 
4697 	/*
4698 	 * Boot (starting init) might have failed, in which case the zone
4699 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4700 	 * be placed in zone->zone_boot_err, and so we return that.
4701 	 */
4702 	err = zone->zone_boot_err;
4703 	zone_rele(zone);
4704 	return (err ? set_errno(err) : 0);
4705 }
4706 
4707 /*
4708  * Kills all user processes in the zone, waiting for them all to exit
4709  * before returning.
4710  */
4711 static int
4712 zone_empty(zone_t *zone)
4713 {
4714 	int waitstatus;
4715 
4716 	/*
4717 	 * We need to drop zonehash_lock before killing all
4718 	 * processes, otherwise we'll deadlock with zone_find_*
4719 	 * which can be called from the exit path.
4720 	 */
4721 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4722 	while ((waitstatus = zone_status_timedwait_sig(zone,
4723 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4724 		killall(zone->zone_id);
4725 	}
4726 	/*
4727 	 * return EINTR if we were signaled
4728 	 */
4729 	if (waitstatus == 0)
4730 		return (EINTR);
4731 	return (0);
4732 }
4733 
4734 /*
4735  * This function implements the policy for zone visibility.
4736  *
4737  * In standard Solaris, a non-global zone can only see itself.
4738  *
4739  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4740  * it dominates. For this test, the label of the global zone is treated as
4741  * admin_high so it is special-cased instead of being checked for dominance.
4742  *
4743  * Returns true if zone attributes are viewable, false otherwise.
4744  */
4745 static boolean_t
4746 zone_list_access(zone_t *zone)
4747 {
4748 
4749 	if (curproc->p_zone == global_zone ||
4750 	    curproc->p_zone == zone) {
4751 		return (B_TRUE);
4752 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4753 		bslabel_t *curproc_label;
4754 		bslabel_t *zone_label;
4755 
4756 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4757 		zone_label = label2bslabel(zone->zone_slabel);
4758 
4759 		if (zone->zone_id != GLOBAL_ZONEID &&
4760 		    bldominates(curproc_label, zone_label)) {
4761 			return (B_TRUE);
4762 		} else {
4763 			return (B_FALSE);
4764 		}
4765 	} else {
4766 		return (B_FALSE);
4767 	}
4768 }
4769 
4770 /*
4771  * Systemcall to start the zone's halt sequence.  By the time this
4772  * function successfully returns, all user processes and kernel threads
4773  * executing in it will have exited, ZSD shutdown callbacks executed,
4774  * and the zone status set to ZONE_IS_DOWN.
4775  *
4776  * It is possible that the call will interrupt itself if the caller is the
4777  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4778  */
4779 static int
4780 zone_shutdown(zoneid_t zoneid)
4781 {
4782 	int error;
4783 	zone_t *zone;
4784 	zone_status_t status;
4785 
4786 	if (secpolicy_zone_config(CRED()) != 0)
4787 		return (set_errno(EPERM));
4788 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4789 		return (set_errno(EINVAL));
4790 
4791 	mutex_enter(&zonehash_lock);
4792 	/*
4793 	 * Look for zone under hash lock to prevent races with other
4794 	 * calls to zone_shutdown and zone_destroy.
4795 	 */
4796 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4797 		mutex_exit(&zonehash_lock);
4798 		return (set_errno(EINVAL));
4799 	}
4800 
4801 	/*
4802 	 * We have to drop zonehash_lock before calling block_mounts.
4803 	 * Hold the zone so we can continue to use the zone_t.
4804 	 */
4805 	zone_hold(zone);
4806 	mutex_exit(&zonehash_lock);
4807 
4808 	/*
4809 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4810 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4811 	 *
4812 	 * e.g. NFS can fail the mount if it determines that the zone
4813 	 * has already begun the shutdown sequence.
4814 	 *
4815 	 */
4816 	if (block_mounts(zone) == 0) {
4817 		zone_rele(zone);
4818 		return (set_errno(EINTR));
4819 	}
4820 
4821 	mutex_enter(&zonehash_lock);
4822 	mutex_enter(&zone_status_lock);
4823 	status = zone_status_get(zone);
4824 	/*
4825 	 * Fail if the zone isn't fully initialized yet.
4826 	 */
4827 	if (status < ZONE_IS_READY) {
4828 		mutex_exit(&zone_status_lock);
4829 		mutex_exit(&zonehash_lock);
4830 		resume_mounts(zone);
4831 		zone_rele(zone);
4832 		return (set_errno(EINVAL));
4833 	}
4834 	/*
4835 	 * If conditions required for zone_shutdown() to return have been met,
4836 	 * return success.
4837 	 */
4838 	if (status >= ZONE_IS_DOWN) {
4839 		mutex_exit(&zone_status_lock);
4840 		mutex_exit(&zonehash_lock);
4841 		resume_mounts(zone);
4842 		zone_rele(zone);
4843 		return (0);
4844 	}
4845 	/*
4846 	 * If zone_shutdown() hasn't been called before, go through the motions.
4847 	 * If it has, there's nothing to do but wait for the kernel threads to
4848 	 * drain.
4849 	 */
4850 	if (status < ZONE_IS_EMPTY) {
4851 		uint_t ntasks;
4852 
4853 		mutex_enter(&zone->zone_lock);
4854 		if ((ntasks = zone->zone_ntasks) != 1) {
4855 			/*
4856 			 * There's still stuff running.
4857 			 */
4858 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4859 		}
4860 		mutex_exit(&zone->zone_lock);
4861 		if (ntasks == 1) {
4862 			/*
4863 			 * The only way to create another task is through
4864 			 * zone_enter(), which will block until we drop
4865 			 * zonehash_lock.  The zone is empty.
4866 			 */
4867 			if (zone->zone_kthreads == NULL) {
4868 				/*
4869 				 * Skip ahead to ZONE_IS_DOWN
4870 				 */
4871 				zone_status_set(zone, ZONE_IS_DOWN);
4872 			} else {
4873 				zone_status_set(zone, ZONE_IS_EMPTY);
4874 			}
4875 		}
4876 	}
4877 	mutex_exit(&zone_status_lock);
4878 	mutex_exit(&zonehash_lock);
4879 	resume_mounts(zone);
4880 
4881 	if (error = zone_empty(zone)) {
4882 		zone_rele(zone);
4883 		return (set_errno(error));
4884 	}
4885 	/*
4886 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4887 	 * longer be notified of changes to the pools configuration, so
4888 	 * in order to not end up with a stale pool pointer, we point
4889 	 * ourselves at the default pool and remove all resource
4890 	 * visibility.  This is especially important as the zone_t may
4891 	 * languish on the deathrow for a very long time waiting for
4892 	 * cred's to drain out.
4893 	 *
4894 	 * This rebinding of the zone can happen multiple times
4895 	 * (presumably due to interrupted or parallel systemcalls)
4896 	 * without any adverse effects.
4897 	 */
4898 	if (pool_lock_intr() != 0) {
4899 		zone_rele(zone);
4900 		return (set_errno(EINTR));
4901 	}
4902 	if (pool_state == POOL_ENABLED) {
4903 		mutex_enter(&cpu_lock);
4904 		zone_pool_set(zone, pool_default);
4905 		/*
4906 		 * The zone no longer needs to be able to see any cpus.
4907 		 */
4908 		zone_pset_set(zone, ZONE_PS_INVAL);
4909 		mutex_exit(&cpu_lock);
4910 	}
4911 	pool_unlock();
4912 
4913 	/*
4914 	 * ZSD shutdown callbacks can be executed multiple times, hence
4915 	 * it is safe to not be holding any locks across this call.
4916 	 */
4917 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4918 
4919 	mutex_enter(&zone_status_lock);
4920 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4921 		zone_status_set(zone, ZONE_IS_DOWN);
4922 	mutex_exit(&zone_status_lock);
4923 
4924 	/*
4925 	 * Wait for kernel threads to drain.
4926 	 */
4927 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4928 		zone_rele(zone);
4929 		return (set_errno(EINTR));
4930 	}
4931 
4932 	/*
4933 	 * Zone can be become down/destroyable even if the above wait
4934 	 * returns EINTR, so any code added here may never execute.
4935 	 * (i.e. don't add code here)
4936 	 */
4937 
4938 	zone_rele(zone);
4939 	return (0);
4940 }
4941 
4942 /*
4943  * Log the specified zone's reference counts.  The caller should not be
4944  * holding the zone's zone_lock.
4945  */
4946 static void
4947 zone_log_refcounts(zone_t *zone)
4948 {
4949 	char *buffer;
4950 	char *buffer_position;
4951 	uint32_t buffer_size;
4952 	uint32_t index;
4953 	uint_t ref;
4954 	uint_t cred_ref;
4955 
4956 	/*
4957 	 * Construct a string representing the subsystem-specific reference
4958 	 * counts.  The counts are printed in ascending order by index into the
4959 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
4960 	 * square brackets [] and will only contain nonzero reference counts.
4961 	 *
4962 	 * The buffer will hold two square bracket characters plus ten digits,
4963 	 * one colon, one space, one comma, and some characters for a
4964 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
4965 	 * bit integers have at most ten decimal digits.)  The last
4966 	 * reference count's comma is replaced by the closing square
4967 	 * bracket and a NULL character to terminate the string.
4968 	 *
4969 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
4970 	 * snapshot of the zone's reference counters.
4971 	 *
4972 	 * First, figure out how much space the string buffer will need.
4973 	 * The buffer's size is stored in buffer_size.
4974 	 */
4975 	buffer_size = 2;			/* for the square brackets */
4976 	mutex_enter(&zone->zone_lock);
4977 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4978 	ref = zone->zone_ref;
4979 	cred_ref = zone->zone_cred_ref;
4980 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4981 		if (zone->zone_subsys_ref[index] != 0)
4982 			buffer_size += strlen(zone_ref_subsys_names[index]) +
4983 			    13;
4984 	if (buffer_size == 2) {
4985 		/*
4986 		 * No subsystems had nonzero reference counts.  Don't bother
4987 		 * with allocating a buffer; just log the general-purpose and
4988 		 * credential reference counts.
4989 		 */
4990 		mutex_exit(&zone->zone_lock);
4991 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4992 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
4993 		    "references and %u credential references are still extant",
4994 		    zone->zone_name, zone->zone_id, ref, cred_ref);
4995 		return;
4996 	}
4997 
4998 	/*
4999 	 * buffer_size contains the exact number of characters that the
5000 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5001 	 * subsystem-specific reference counts.  Surround the results with
5002 	 * square brackets afterwards.
5003 	 */
5004 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5005 	buffer_position = &buffer[1];
5006 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5007 		/*
5008 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5009 		 * the modified buffer rather than the number of bytes written
5010 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5011 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5012 		 * number of bytes written.  Using INT_MAX is safe because
5013 		 * the buffer is perfectly sized for the data: we'll never
5014 		 * overrun the buffer.
5015 		 */
5016 		if (zone->zone_subsys_ref[index] != 0)
5017 			buffer_position += snprintf(buffer_position, INT_MAX,
5018 			    "%s: %u,", zone_ref_subsys_names[index],
5019 			    zone->zone_subsys_ref[index]);
5020 	}
5021 	mutex_exit(&zone->zone_lock);
5022 	buffer[0] = '[';
5023 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5024 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5025 	buffer_position[-1] = ']';
5026 
5027 	/*
5028 	 * Log the reference counts and free the message buffer.
5029 	 */
5030 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5031 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5032 	    "%u credential references are still extant %s", zone->zone_name,
5033 	    zone->zone_id, ref, cred_ref, buffer);
5034 	kmem_free(buffer, buffer_size);
5035 }
5036 
5037 /*
5038  * Systemcall entry point to finalize the zone halt process.  The caller
5039  * must have already successfully called zone_shutdown().
5040  *
5041  * Upon successful completion, the zone will have been fully destroyed:
5042  * zsched will have exited, destructor callbacks executed, and the zone
5043  * removed from the list of active zones.
5044  */
5045 static int
5046 zone_destroy(zoneid_t zoneid)
5047 {
5048 	uint64_t uniqid;
5049 	zone_t *zone;
5050 	zone_status_t status;
5051 	clock_t wait_time;
5052 	boolean_t log_refcounts;
5053 
5054 	if (secpolicy_zone_config(CRED()) != 0)
5055 		return (set_errno(EPERM));
5056 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5057 		return (set_errno(EINVAL));
5058 
5059 	mutex_enter(&zonehash_lock);
5060 	/*
5061 	 * Look for zone under hash lock to prevent races with other
5062 	 * calls to zone_destroy.
5063 	 */
5064 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5065 		mutex_exit(&zonehash_lock);
5066 		return (set_errno(EINVAL));
5067 	}
5068 
5069 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5070 		mutex_exit(&zonehash_lock);
5071 		return (set_errno(EBUSY));
5072 	}
5073 	mutex_enter(&zone_status_lock);
5074 	status = zone_status_get(zone);
5075 	if (status < ZONE_IS_DOWN) {
5076 		mutex_exit(&zone_status_lock);
5077 		mutex_exit(&zonehash_lock);
5078 		return (set_errno(EBUSY));
5079 	} else if (status == ZONE_IS_DOWN) {
5080 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5081 	}
5082 	mutex_exit(&zone_status_lock);
5083 	zone_hold(zone);
5084 	mutex_exit(&zonehash_lock);
5085 
5086 	/*
5087 	 * wait for zsched to exit
5088 	 */
5089 	zone_status_wait(zone, ZONE_IS_DEAD);
5090 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5091 	zone->zone_netstack = NULL;
5092 	uniqid = zone->zone_uniqid;
5093 	zone_rele(zone);
5094 	zone = NULL;	/* potentially free'd */
5095 
5096 	log_refcounts = B_FALSE;
5097 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5098 	mutex_enter(&zonehash_lock);
5099 	for (; /* ever */; ) {
5100 		boolean_t unref;
5101 		boolean_t refs_have_been_logged;
5102 
5103 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5104 		    zone->zone_uniqid != uniqid) {
5105 			/*
5106 			 * The zone has gone away.  Necessary conditions
5107 			 * are met, so we return success.
5108 			 */
5109 			mutex_exit(&zonehash_lock);
5110 			return (0);
5111 		}
5112 		mutex_enter(&zone->zone_lock);
5113 		unref = ZONE_IS_UNREF(zone);
5114 		refs_have_been_logged = (zone->zone_flags &
5115 		    ZF_REFCOUNTS_LOGGED);
5116 		mutex_exit(&zone->zone_lock);
5117 		if (unref) {
5118 			/*
5119 			 * There is only one reference to the zone -- that
5120 			 * added when the zone was added to the hashtables --
5121 			 * and things will remain this way until we drop
5122 			 * zonehash_lock... we can go ahead and cleanup the
5123 			 * zone.
5124 			 */
5125 			break;
5126 		}
5127 
5128 		/*
5129 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5130 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5131 		 * some zone's general-purpose reference count reaches one.
5132 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5133 		 * on zone_destroy_cv, then log the zone's reference counts and
5134 		 * continue to wait for zone_rele() and zone_cred_rele().
5135 		 */
5136 		if (!refs_have_been_logged) {
5137 			if (!log_refcounts) {
5138 				/*
5139 				 * This thread hasn't timed out waiting on
5140 				 * zone_destroy_cv yet.  Wait wait_time clock
5141 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5142 				 * seconds) for the zone's references to clear.
5143 				 */
5144 				ASSERT(wait_time > 0);
5145 				wait_time = cv_reltimedwait_sig(
5146 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5147 				    TR_SEC);
5148 				if (wait_time > 0) {
5149 					/*
5150 					 * A thread in zone_rele() or
5151 					 * zone_cred_rele() signaled
5152 					 * zone_destroy_cv before this thread's
5153 					 * wait timed out.  The zone might have
5154 					 * only one reference left; find out!
5155 					 */
5156 					continue;
5157 				} else if (wait_time == 0) {
5158 					/* The thread's process was signaled. */
5159 					mutex_exit(&zonehash_lock);
5160 					return (set_errno(EINTR));
5161 				}
5162 
5163 				/*
5164 				 * The thread timed out while waiting on
5165 				 * zone_destroy_cv.  Even though the thread
5166 				 * timed out, it has to check whether another
5167 				 * thread woke up from zone_destroy_cv and
5168 				 * destroyed the zone.
5169 				 *
5170 				 * If the zone still exists and has more than
5171 				 * one unreleased general-purpose reference,
5172 				 * then log the zone's reference counts.
5173 				 */
5174 				log_refcounts = B_TRUE;
5175 				continue;
5176 			}
5177 
5178 			/*
5179 			 * The thread already timed out on zone_destroy_cv while
5180 			 * waiting for subsystems to release the zone's last
5181 			 * general-purpose references.  Log the zone's reference
5182 			 * counts and wait indefinitely on zone_destroy_cv.
5183 			 */
5184 			zone_log_refcounts(zone);
5185 		}
5186 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5187 			/* The thread's process was signaled. */
5188 			mutex_exit(&zonehash_lock);
5189 			return (set_errno(EINTR));
5190 		}
5191 	}
5192 
5193 	/*
5194 	 * Remove CPU cap for this zone now since we're not going to
5195 	 * fail below this point.
5196 	 */
5197 	cpucaps_zone_remove(zone);
5198 
5199 	/* Get rid of the zone's kstats */
5200 	zone_kstat_delete(zone);
5201 
5202 	/* remove the pfexecd doors */
5203 	if (zone->zone_pfexecd != NULL) {
5204 		klpd_freelist(&zone->zone_pfexecd);
5205 		zone->zone_pfexecd = NULL;
5206 	}
5207 
5208 	/* free brand specific data */
5209 	if (ZONE_IS_BRANDED(zone))
5210 		ZBROP(zone)->b_free_brand_data(zone);
5211 
5212 	/* Say goodbye to brand framework. */
5213 	brand_unregister_zone(zone->zone_brand);
5214 
5215 	/*
5216 	 * It is now safe to let the zone be recreated; remove it from the
5217 	 * lists.  The memory will not be freed until the last cred
5218 	 * reference goes away.
5219 	 */
5220 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5221 	zonecount--;
5222 	/* remove from active list and hash tables */
5223 	list_remove(&zone_active, zone);
5224 	(void) mod_hash_destroy(zonehashbyname,
5225 	    (mod_hash_key_t)zone->zone_name);
5226 	(void) mod_hash_destroy(zonehashbyid,
5227 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5228 	if (zone->zone_flags & ZF_HASHED_LABEL)
5229 		(void) mod_hash_destroy(zonehashbylabel,
5230 		    (mod_hash_key_t)zone->zone_slabel);
5231 	mutex_exit(&zonehash_lock);
5232 
5233 	/*
5234 	 * Release the root vnode; we're not using it anymore.  Nor should any
5235 	 * other thread that might access it exist.
5236 	 */
5237 	if (zone->zone_rootvp != NULL) {
5238 		VN_RELE(zone->zone_rootvp);
5239 		zone->zone_rootvp = NULL;
5240 	}
5241 
5242 	/* add to deathrow list */
5243 	mutex_enter(&zone_deathrow_lock);
5244 	list_insert_tail(&zone_deathrow, zone);
5245 	mutex_exit(&zone_deathrow_lock);
5246 
5247 	/*
5248 	 * Drop last reference (which was added by zsched()), this will
5249 	 * free the zone unless there are outstanding cred references.
5250 	 */
5251 	zone_rele(zone);
5252 	return (0);
5253 }
5254 
5255 /*
5256  * Systemcall entry point for zone_getattr(2).
5257  */
5258 static ssize_t
5259 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5260 {
5261 	size_t size;
5262 	int error = 0, err;
5263 	zone_t *zone;
5264 	char *zonepath;
5265 	char *outstr;
5266 	zone_status_t zone_status;
5267 	pid_t initpid;
5268 	boolean_t global = (curzone == global_zone);
5269 	boolean_t inzone = (curzone->zone_id == zoneid);
5270 	ushort_t flags;
5271 	zone_net_data_t *zbuf;
5272 
5273 	mutex_enter(&zonehash_lock);
5274 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5275 		mutex_exit(&zonehash_lock);
5276 		return (set_errno(EINVAL));
5277 	}
5278 	zone_status = zone_status_get(zone);
5279 	if (zone_status < ZONE_IS_INITIALIZED) {
5280 		mutex_exit(&zonehash_lock);
5281 		return (set_errno(EINVAL));
5282 	}
5283 	zone_hold(zone);
5284 	mutex_exit(&zonehash_lock);
5285 
5286 	/*
5287 	 * If not in the global zone, don't show information about other zones,
5288 	 * unless the system is labeled and the local zone's label dominates
5289 	 * the other zone.
5290 	 */
5291 	if (!zone_list_access(zone)) {
5292 		zone_rele(zone);
5293 		return (set_errno(EINVAL));
5294 	}
5295 
5296 	switch (attr) {
5297 	case ZONE_ATTR_ROOT:
5298 		if (global) {
5299 			/*
5300 			 * Copy the path to trim the trailing "/" (except for
5301 			 * the global zone).
5302 			 */
5303 			if (zone != global_zone)
5304 				size = zone->zone_rootpathlen - 1;
5305 			else
5306 				size = zone->zone_rootpathlen;
5307 			zonepath = kmem_alloc(size, KM_SLEEP);
5308 			bcopy(zone->zone_rootpath, zonepath, size);
5309 			zonepath[size - 1] = '\0';
5310 		} else {
5311 			if (inzone || !is_system_labeled()) {
5312 				/*
5313 				 * Caller is not in the global zone.
5314 				 * if the query is on the current zone
5315 				 * or the system is not labeled,
5316 				 * just return faked-up path for current zone.
5317 				 */
5318 				zonepath = "/";
5319 				size = 2;
5320 			} else {
5321 				/*
5322 				 * Return related path for current zone.
5323 				 */
5324 				int prefix_len = strlen(zone_prefix);
5325 				int zname_len = strlen(zone->zone_name);
5326 
5327 				size = prefix_len + zname_len + 1;
5328 				zonepath = kmem_alloc(size, KM_SLEEP);
5329 				bcopy(zone_prefix, zonepath, prefix_len);
5330 				bcopy(zone->zone_name, zonepath +
5331 				    prefix_len, zname_len);
5332 				zonepath[size - 1] = '\0';
5333 			}
5334 		}
5335 		if (bufsize > size)
5336 			bufsize = size;
5337 		if (buf != NULL) {
5338 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5339 			if (err != 0 && err != ENAMETOOLONG)
5340 				error = EFAULT;
5341 		}
5342 		if (global || (is_system_labeled() && !inzone))
5343 			kmem_free(zonepath, size);
5344 		break;
5345 
5346 	case ZONE_ATTR_NAME:
5347 		size = strlen(zone->zone_name) + 1;
5348 		if (bufsize > size)
5349 			bufsize = size;
5350 		if (buf != NULL) {
5351 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5352 			if (err != 0 && err != ENAMETOOLONG)
5353 				error = EFAULT;
5354 		}
5355 		break;
5356 
5357 	case ZONE_ATTR_STATUS:
5358 		/*
5359 		 * Since we're not holding zonehash_lock, the zone status
5360 		 * may be anything; leave it up to userland to sort it out.
5361 		 */
5362 		size = sizeof (zone_status);
5363 		if (bufsize > size)
5364 			bufsize = size;
5365 		zone_status = zone_status_get(zone);
5366 		if (buf != NULL &&
5367 		    copyout(&zone_status, buf, bufsize) != 0)
5368 			error = EFAULT;
5369 		break;
5370 	case ZONE_ATTR_FLAGS:
5371 		size = sizeof (zone->zone_flags);
5372 		if (bufsize > size)
5373 			bufsize = size;
5374 		flags = zone->zone_flags;
5375 		if (buf != NULL &&
5376 		    copyout(&flags, buf, bufsize) != 0)
5377 			error = EFAULT;
5378 		break;
5379 	case ZONE_ATTR_PRIVSET:
5380 		size = sizeof (priv_set_t);
5381 		if (bufsize > size)
5382 			bufsize = size;
5383 		if (buf != NULL &&
5384 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5385 			error = EFAULT;
5386 		break;
5387 	case ZONE_ATTR_UNIQID:
5388 		size = sizeof (zone->zone_uniqid);
5389 		if (bufsize > size)
5390 			bufsize = size;
5391 		if (buf != NULL &&
5392 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5393 			error = EFAULT;
5394 		break;
5395 	case ZONE_ATTR_POOLID:
5396 		{
5397 			pool_t *pool;
5398 			poolid_t poolid;
5399 
5400 			if (pool_lock_intr() != 0) {
5401 				error = EINTR;
5402 				break;
5403 			}
5404 			pool = zone_pool_get(zone);
5405 			poolid = pool->pool_id;
5406 			pool_unlock();
5407 			size = sizeof (poolid);
5408 			if (bufsize > size)
5409 				bufsize = size;
5410 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5411 				error = EFAULT;
5412 		}
5413 		break;
5414 	case ZONE_ATTR_SLBL:
5415 		size = sizeof (bslabel_t);
5416 		if (bufsize > size)
5417 			bufsize = size;
5418 		if (zone->zone_slabel == NULL)
5419 			error = EINVAL;
5420 		else if (buf != NULL &&
5421 		    copyout(label2bslabel(zone->zone_slabel), buf,
5422 		    bufsize) != 0)
5423 			error = EFAULT;
5424 		break;
5425 	case ZONE_ATTR_INITPID:
5426 		size = sizeof (initpid);
5427 		if (bufsize > size)
5428 			bufsize = size;
5429 		initpid = zone->zone_proc_initpid;
5430 		if (initpid == -1) {
5431 			error = ESRCH;
5432 			break;
5433 		}
5434 		if (buf != NULL &&
5435 		    copyout(&initpid, buf, bufsize) != 0)
5436 			error = EFAULT;
5437 		break;
5438 	case ZONE_ATTR_BRAND:
5439 		size = strlen(zone->zone_brand->b_name) + 1;
5440 
5441 		if (bufsize > size)
5442 			bufsize = size;
5443 		if (buf != NULL) {
5444 			err = copyoutstr(zone->zone_brand->b_name, buf,
5445 			    bufsize, NULL);
5446 			if (err != 0 && err != ENAMETOOLONG)
5447 				error = EFAULT;
5448 		}
5449 		break;
5450 	case ZONE_ATTR_INITNAME:
5451 		size = strlen(zone->zone_initname) + 1;
5452 		if (bufsize > size)
5453 			bufsize = size;
5454 		if (buf != NULL) {
5455 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5456 			    NULL);
5457 			if (err != 0 && err != ENAMETOOLONG)
5458 				error = EFAULT;
5459 		}
5460 		break;
5461 	case ZONE_ATTR_BOOTARGS:
5462 		if (zone->zone_bootargs == NULL)
5463 			outstr = "";
5464 		else
5465 			outstr = zone->zone_bootargs;
5466 		size = strlen(outstr) + 1;
5467 		if (bufsize > size)
5468 			bufsize = size;
5469 		if (buf != NULL) {
5470 			err = copyoutstr(outstr, buf, bufsize, NULL);
5471 			if (err != 0 && err != ENAMETOOLONG)
5472 				error = EFAULT;
5473 		}
5474 		break;
5475 	case ZONE_ATTR_PHYS_MCAP:
5476 		size = sizeof (zone->zone_phys_mcap);
5477 		if (bufsize > size)
5478 			bufsize = size;
5479 		if (buf != NULL &&
5480 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5481 			error = EFAULT;
5482 		break;
5483 	case ZONE_ATTR_SCHED_CLASS:
5484 		mutex_enter(&class_lock);
5485 
5486 		if (zone->zone_defaultcid >= loaded_classes)
5487 			outstr = "";
5488 		else
5489 			outstr = sclass[zone->zone_defaultcid].cl_name;
5490 		size = strlen(outstr) + 1;
5491 		if (bufsize > size)
5492 			bufsize = size;
5493 		if (buf != NULL) {
5494 			err = copyoutstr(outstr, buf, bufsize, NULL);
5495 			if (err != 0 && err != ENAMETOOLONG)
5496 				error = EFAULT;
5497 		}
5498 
5499 		mutex_exit(&class_lock);
5500 		break;
5501 	case ZONE_ATTR_HOSTID:
5502 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5503 		    bufsize == sizeof (zone->zone_hostid)) {
5504 			size = sizeof (zone->zone_hostid);
5505 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5506 			    bufsize) != 0)
5507 				error = EFAULT;
5508 		} else {
5509 			error = EINVAL;
5510 		}
5511 		break;
5512 	case ZONE_ATTR_FS_ALLOWED:
5513 		if (zone->zone_fs_allowed == NULL)
5514 			outstr = "";
5515 		else
5516 			outstr = zone->zone_fs_allowed;
5517 		size = strlen(outstr) + 1;
5518 		if (bufsize > size)
5519 			bufsize = size;
5520 		if (buf != NULL) {
5521 			err = copyoutstr(outstr, buf, bufsize, NULL);
5522 			if (err != 0 && err != ENAMETOOLONG)
5523 				error = EFAULT;
5524 		}
5525 		break;
5526 	case ZONE_ATTR_NETWORK:
5527 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5528 		if (copyin(buf, zbuf, bufsize) != 0) {
5529 			error = EFAULT;
5530 		} else {
5531 			error = zone_get_network(zoneid, zbuf);
5532 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5533 				error = EFAULT;
5534 		}
5535 		kmem_free(zbuf, bufsize);
5536 		break;
5537 	default:
5538 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5539 			size = bufsize;
5540 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5541 		} else {
5542 			error = EINVAL;
5543 		}
5544 	}
5545 	zone_rele(zone);
5546 
5547 	if (error)
5548 		return (set_errno(error));
5549 	return ((ssize_t)size);
5550 }
5551 
5552 /*
5553  * Systemcall entry point for zone_setattr(2).
5554  */
5555 /*ARGSUSED*/
5556 static int
5557 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5558 {
5559 	zone_t *zone;
5560 	zone_status_t zone_status;
5561 	int err = -1;
5562 	zone_net_data_t *zbuf;
5563 
5564 	if (secpolicy_zone_config(CRED()) != 0)
5565 		return (set_errno(EPERM));
5566 
5567 	/*
5568 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5569 	 * global zone.
5570 	 */
5571 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5572 		return (set_errno(EINVAL));
5573 	}
5574 
5575 	mutex_enter(&zonehash_lock);
5576 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5577 		mutex_exit(&zonehash_lock);
5578 		return (set_errno(EINVAL));
5579 	}
5580 	zone_hold(zone);
5581 	mutex_exit(&zonehash_lock);
5582 
5583 	/*
5584 	 * At present most attributes can only be set on non-running,
5585 	 * non-global zones.
5586 	 */
5587 	zone_status = zone_status_get(zone);
5588 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5589 		err = EINVAL;
5590 		goto done;
5591 	}
5592 
5593 	switch (attr) {
5594 	case ZONE_ATTR_INITNAME:
5595 		err = zone_set_initname(zone, (const char *)buf);
5596 		break;
5597 	case ZONE_ATTR_INITNORESTART:
5598 		zone->zone_restart_init = B_FALSE;
5599 		err = 0;
5600 		break;
5601 	case ZONE_ATTR_BOOTARGS:
5602 		err = zone_set_bootargs(zone, (const char *)buf);
5603 		break;
5604 	case ZONE_ATTR_BRAND:
5605 		err = zone_set_brand(zone, (const char *)buf);
5606 		break;
5607 	case ZONE_ATTR_FS_ALLOWED:
5608 		err = zone_set_fs_allowed(zone, (const char *)buf);
5609 		break;
5610 	case ZONE_ATTR_PHYS_MCAP:
5611 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5612 		break;
5613 	case ZONE_ATTR_SCHED_CLASS:
5614 		err = zone_set_sched_class(zone, (const char *)buf);
5615 		break;
5616 	case ZONE_ATTR_HOSTID:
5617 		if (bufsize == sizeof (zone->zone_hostid)) {
5618 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5619 				err = 0;
5620 			else
5621 				err = EFAULT;
5622 		} else {
5623 			err = EINVAL;
5624 		}
5625 		break;
5626 	case ZONE_ATTR_NETWORK:
5627 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5628 			err = EINVAL;
5629 			break;
5630 		}
5631 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5632 		if (copyin(buf, zbuf, bufsize) != 0) {
5633 			kmem_free(zbuf, bufsize);
5634 			err = EFAULT;
5635 			break;
5636 		}
5637 		err = zone_set_network(zoneid, zbuf);
5638 		kmem_free(zbuf, bufsize);
5639 		break;
5640 	default:
5641 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5642 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5643 		else
5644 			err = EINVAL;
5645 	}
5646 
5647 done:
5648 	zone_rele(zone);
5649 	ASSERT(err != -1);
5650 	return (err != 0 ? set_errno(err) : 0);
5651 }
5652 
5653 /*
5654  * Return zero if the process has at least one vnode mapped in to its
5655  * address space which shouldn't be allowed to change zones.
5656  *
5657  * Also return zero if the process has any shared mappings which reserve
5658  * swap.  This is because the counting for zone.max-swap does not allow swap
5659  * reservation to be shared between zones.  zone swap reservation is counted
5660  * on zone->zone_max_swap.
5661  */
5662 static int
5663 as_can_change_zones(void)
5664 {
5665 	proc_t *pp = curproc;
5666 	struct seg *seg;
5667 	struct as *as = pp->p_as;
5668 	vnode_t *vp;
5669 	int allow = 1;
5670 
5671 	ASSERT(pp->p_as != &kas);
5672 	AS_LOCK_ENTER(as, RW_READER);
5673 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5674 
5675 		/*
5676 		 * Cannot enter zone with shared anon memory which
5677 		 * reserves swap.  See comment above.
5678 		 */
5679 		if (seg_can_change_zones(seg) == B_FALSE) {
5680 			allow = 0;
5681 			break;
5682 		}
5683 		/*
5684 		 * if we can't get a backing vnode for this segment then skip
5685 		 * it.
5686 		 */
5687 		vp = NULL;
5688 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5689 			continue;
5690 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5691 			allow = 0;
5692 			break;
5693 		}
5694 	}
5695 	AS_LOCK_EXIT(as);
5696 	return (allow);
5697 }
5698 
5699 /*
5700  * Count swap reserved by curproc's address space
5701  */
5702 static size_t
5703 as_swresv(void)
5704 {
5705 	proc_t *pp = curproc;
5706 	struct seg *seg;
5707 	struct as *as = pp->p_as;
5708 	size_t swap = 0;
5709 
5710 	ASSERT(pp->p_as != &kas);
5711 	ASSERT(AS_WRITE_HELD(as));
5712 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5713 		swap += seg_swresv(seg);
5714 
5715 	return (swap);
5716 }
5717 
5718 /*
5719  * Systemcall entry point for zone_enter().
5720  *
5721  * The current process is injected into said zone.  In the process
5722  * it will change its project membership, privileges, rootdir/cwd,
5723  * zone-wide rctls, and pool association to match those of the zone.
5724  *
5725  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5726  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5727  * enter a zone that is "ready" or "running".
5728  */
5729 static int
5730 zone_enter(zoneid_t zoneid)
5731 {
5732 	zone_t *zone;
5733 	vnode_t *vp;
5734 	proc_t *pp = curproc;
5735 	contract_t *ct;
5736 	cont_process_t *ctp;
5737 	task_t *tk, *oldtk;
5738 	kproject_t *zone_proj0;
5739 	cred_t *cr, *newcr;
5740 	pool_t *oldpool, *newpool;
5741 	sess_t *sp;
5742 	uid_t uid;
5743 	zone_status_t status;
5744 	int err = 0;
5745 	rctl_entity_p_t e;
5746 	size_t swap;
5747 	kthread_id_t t;
5748 
5749 	if (secpolicy_zone_config(CRED()) != 0)
5750 		return (set_errno(EPERM));
5751 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5752 		return (set_errno(EINVAL));
5753 
5754 	/*
5755 	 * Stop all lwps so we don't need to hold a lock to look at
5756 	 * curproc->p_zone.  This needs to happen before we grab any
5757 	 * locks to avoid deadlock (another lwp in the process could
5758 	 * be waiting for the held lock).
5759 	 */
5760 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5761 		return (set_errno(EINTR));
5762 
5763 	/*
5764 	 * Make sure we're not changing zones with files open or mapped in
5765 	 * to our address space which shouldn't be changing zones.
5766 	 */
5767 	if (!files_can_change_zones()) {
5768 		err = EBADF;
5769 		goto out;
5770 	}
5771 	if (!as_can_change_zones()) {
5772 		err = EFAULT;
5773 		goto out;
5774 	}
5775 
5776 	mutex_enter(&zonehash_lock);
5777 	if (pp->p_zone != global_zone) {
5778 		mutex_exit(&zonehash_lock);
5779 		err = EINVAL;
5780 		goto out;
5781 	}
5782 
5783 	zone = zone_find_all_by_id(zoneid);
5784 	if (zone == NULL) {
5785 		mutex_exit(&zonehash_lock);
5786 		err = EINVAL;
5787 		goto out;
5788 	}
5789 
5790 	/*
5791 	 * To prevent processes in a zone from holding contracts on
5792 	 * extrazonal resources, and to avoid process contract
5793 	 * memberships which span zones, contract holders and processes
5794 	 * which aren't the sole members of their encapsulating process
5795 	 * contracts are not allowed to zone_enter.
5796 	 */
5797 	ctp = pp->p_ct_process;
5798 	ct = &ctp->conp_contract;
5799 	mutex_enter(&ct->ct_lock);
5800 	mutex_enter(&pp->p_lock);
5801 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5802 		mutex_exit(&pp->p_lock);
5803 		mutex_exit(&ct->ct_lock);
5804 		mutex_exit(&zonehash_lock);
5805 		err = EINVAL;
5806 		goto out;
5807 	}
5808 
5809 	/*
5810 	 * Moreover, we don't allow processes whose encapsulating
5811 	 * process contracts have inherited extrazonal contracts.
5812 	 * While it would be easier to eliminate all process contracts
5813 	 * with inherited contracts, we need to be able to give a
5814 	 * restarted init (or other zone-penetrating process) its
5815 	 * predecessor's contracts.
5816 	 */
5817 	if (ctp->conp_ninherited != 0) {
5818 		contract_t *next;
5819 		for (next = list_head(&ctp->conp_inherited); next;
5820 		    next = list_next(&ctp->conp_inherited, next)) {
5821 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5822 				mutex_exit(&pp->p_lock);
5823 				mutex_exit(&ct->ct_lock);
5824 				mutex_exit(&zonehash_lock);
5825 				err = EINVAL;
5826 				goto out;
5827 			}
5828 		}
5829 	}
5830 
5831 	mutex_exit(&pp->p_lock);
5832 	mutex_exit(&ct->ct_lock);
5833 
5834 	status = zone_status_get(zone);
5835 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5836 		/*
5837 		 * Can't join
5838 		 */
5839 		mutex_exit(&zonehash_lock);
5840 		err = EINVAL;
5841 		goto out;
5842 	}
5843 
5844 	/*
5845 	 * Make sure new priv set is within the permitted set for caller
5846 	 */
5847 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5848 		mutex_exit(&zonehash_lock);
5849 		err = EPERM;
5850 		goto out;
5851 	}
5852 	/*
5853 	 * We want to momentarily drop zonehash_lock while we optimistically
5854 	 * bind curproc to the pool it should be running in.  This is safe
5855 	 * since the zone can't disappear (we have a hold on it).
5856 	 */
5857 	zone_hold(zone);
5858 	mutex_exit(&zonehash_lock);
5859 
5860 	/*
5861 	 * Grab pool_lock to keep the pools configuration from changing
5862 	 * and to stop ourselves from getting rebound to another pool
5863 	 * until we join the zone.
5864 	 */
5865 	if (pool_lock_intr() != 0) {
5866 		zone_rele(zone);
5867 		err = EINTR;
5868 		goto out;
5869 	}
5870 	ASSERT(secpolicy_pool(CRED()) == 0);
5871 	/*
5872 	 * Bind ourselves to the pool currently associated with the zone.
5873 	 */
5874 	oldpool = curproc->p_pool;
5875 	newpool = zone_pool_get(zone);
5876 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5877 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5878 	    POOL_BIND_ALL)) != 0) {
5879 		pool_unlock();
5880 		zone_rele(zone);
5881 		goto out;
5882 	}
5883 
5884 	/*
5885 	 * Grab cpu_lock now; we'll need it later when we call
5886 	 * task_join().
5887 	 */
5888 	mutex_enter(&cpu_lock);
5889 	mutex_enter(&zonehash_lock);
5890 	/*
5891 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5892 	 */
5893 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5894 		/*
5895 		 * Can't join anymore.
5896 		 */
5897 		mutex_exit(&zonehash_lock);
5898 		mutex_exit(&cpu_lock);
5899 		if (pool_state == POOL_ENABLED &&
5900 		    newpool != oldpool)
5901 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5902 			    POOL_BIND_ALL);
5903 		pool_unlock();
5904 		zone_rele(zone);
5905 		err = EINVAL;
5906 		goto out;
5907 	}
5908 
5909 	/*
5910 	 * a_lock must be held while transfering locked memory and swap
5911 	 * reservation from the global zone to the non global zone because
5912 	 * asynchronous faults on the processes' address space can lock
5913 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5914 	 * segments respectively.
5915 	 */
5916 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5917 	swap = as_swresv();
5918 	mutex_enter(&pp->p_lock);
5919 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5920 	/* verify that we do not exceed and task or lwp limits */
5921 	mutex_enter(&zone->zone_nlwps_lock);
5922 	/* add new lwps to zone and zone's proj0 */
5923 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5924 	zone->zone_nlwps += pp->p_lwpcnt;
5925 	/* add 1 task to zone's proj0 */
5926 	zone_proj0->kpj_ntasks += 1;
5927 
5928 	zone_proj0->kpj_nprocs++;
5929 	zone->zone_nprocs++;
5930 	mutex_exit(&zone->zone_nlwps_lock);
5931 
5932 	mutex_enter(&zone->zone_mem_lock);
5933 	zone->zone_locked_mem += pp->p_locked_mem;
5934 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5935 	zone->zone_max_swap += swap;
5936 	mutex_exit(&zone->zone_mem_lock);
5937 
5938 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5939 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5940 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5941 
5942 	/* remove lwps and process from proc's old zone and old project */
5943 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5944 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5945 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5946 	pp->p_task->tk_proj->kpj_nprocs--;
5947 	pp->p_zone->zone_nprocs--;
5948 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5949 
5950 	mutex_enter(&pp->p_zone->zone_mem_lock);
5951 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5952 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5953 	pp->p_zone->zone_max_swap -= swap;
5954 	mutex_exit(&pp->p_zone->zone_mem_lock);
5955 
5956 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5957 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5958 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5959 
5960 	pp->p_flag |= SZONETOP;
5961 	pp->p_zone = zone;
5962 	mutex_exit(&pp->p_lock);
5963 	AS_LOCK_EXIT(pp->p_as);
5964 
5965 	/*
5966 	 * Joining the zone cannot fail from now on.
5967 	 *
5968 	 * This means that a lot of the following code can be commonized and
5969 	 * shared with zsched().
5970 	 */
5971 
5972 	/*
5973 	 * If the process contract fmri was inherited, we need to
5974 	 * flag this so that any contract status will not leak
5975 	 * extra zone information, svc_fmri in this case
5976 	 */
5977 	if (ctp->conp_svc_ctid != ct->ct_id) {
5978 		mutex_enter(&ct->ct_lock);
5979 		ctp->conp_svc_zone_enter = ct->ct_id;
5980 		mutex_exit(&ct->ct_lock);
5981 	}
5982 
5983 	/*
5984 	 * Reset the encapsulating process contract's zone.
5985 	 */
5986 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5987 	contract_setzuniqid(ct, zone->zone_uniqid);
5988 
5989 	/*
5990 	 * Create a new task and associate the process with the project keyed
5991 	 * by (projid,zoneid).
5992 	 *
5993 	 * We might as well be in project 0; the global zone's projid doesn't
5994 	 * make much sense in a zone anyhow.
5995 	 *
5996 	 * This also increments zone_ntasks, and returns with p_lock held.
5997 	 */
5998 	tk = task_create(0, zone);
5999 	oldtk = task_join(tk, 0);
6000 	mutex_exit(&cpu_lock);
6001 
6002 	/*
6003 	 * call RCTLOP_SET functions on this proc
6004 	 */
6005 	e.rcep_p.zone = zone;
6006 	e.rcep_t = RCENTITY_ZONE;
6007 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6008 	    RCD_CALLBACK);
6009 	mutex_exit(&pp->p_lock);
6010 
6011 	/*
6012 	 * We don't need to hold any of zsched's locks here; not only do we know
6013 	 * the process and zone aren't going away, we know its session isn't
6014 	 * changing either.
6015 	 *
6016 	 * By joining zsched's session here, we mimic the behavior in the
6017 	 * global zone of init's sid being the pid of sched.  We extend this
6018 	 * to all zlogin-like zone_enter()'ing processes as well.
6019 	 */
6020 	mutex_enter(&pidlock);
6021 	sp = zone->zone_zsched->p_sessp;
6022 	sess_hold(zone->zone_zsched);
6023 	mutex_enter(&pp->p_lock);
6024 	pgexit(pp);
6025 	sess_rele(pp->p_sessp, B_TRUE);
6026 	pp->p_sessp = sp;
6027 	pgjoin(pp, zone->zone_zsched->p_pidp);
6028 
6029 	/*
6030 	 * If any threads are scheduled to be placed on zone wait queue they
6031 	 * should abandon the idea since the wait queue is changing.
6032 	 * We need to be holding pidlock & p_lock to do this.
6033 	 */
6034 	if ((t = pp->p_tlist) != NULL) {
6035 		do {
6036 			thread_lock(t);
6037 			/*
6038 			 * Kick this thread so that he doesn't sit
6039 			 * on a wrong wait queue.
6040 			 */
6041 			if (ISWAITING(t))
6042 				setrun_locked(t);
6043 
6044 			if (t->t_schedflag & TS_ANYWAITQ)
6045 				t->t_schedflag &= ~ TS_ANYWAITQ;
6046 
6047 			thread_unlock(t);
6048 		} while ((t = t->t_forw) != pp->p_tlist);
6049 	}
6050 
6051 	/*
6052 	 * If there is a default scheduling class for the zone and it is not
6053 	 * the class we are currently in, change all of the threads in the
6054 	 * process to the new class.  We need to be holding pidlock & p_lock
6055 	 * when we call parmsset so this is a good place to do it.
6056 	 */
6057 	if (zone->zone_defaultcid > 0 &&
6058 	    zone->zone_defaultcid != curthread->t_cid) {
6059 		pcparms_t pcparms;
6060 
6061 		pcparms.pc_cid = zone->zone_defaultcid;
6062 		pcparms.pc_clparms[0] = 0;
6063 
6064 		/*
6065 		 * If setting the class fails, we still want to enter the zone.
6066 		 */
6067 		if ((t = pp->p_tlist) != NULL) {
6068 			do {
6069 				(void) parmsset(&pcparms, t);
6070 			} while ((t = t->t_forw) != pp->p_tlist);
6071 		}
6072 	}
6073 
6074 	mutex_exit(&pp->p_lock);
6075 	mutex_exit(&pidlock);
6076 
6077 	mutex_exit(&zonehash_lock);
6078 	/*
6079 	 * We're firmly in the zone; let pools progress.
6080 	 */
6081 	pool_unlock();
6082 	task_rele(oldtk);
6083 	/*
6084 	 * We don't need to retain a hold on the zone since we already
6085 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6086 	 */
6087 	zone_rele(zone);
6088 
6089 	/*
6090 	 * Chroot
6091 	 */
6092 	vp = zone->zone_rootvp;
6093 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6094 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6095 
6096 	/*
6097 	 * Change process credentials
6098 	 */
6099 	newcr = cralloc();
6100 	mutex_enter(&pp->p_crlock);
6101 	cr = pp->p_cred;
6102 	crcopy_to(cr, newcr);
6103 	crsetzone(newcr, zone);
6104 	pp->p_cred = newcr;
6105 
6106 	/*
6107 	 * Restrict all process privilege sets to zone limit
6108 	 */
6109 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6110 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6111 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6112 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6113 	mutex_exit(&pp->p_crlock);
6114 	crset(pp, newcr);
6115 
6116 	/*
6117 	 * Adjust upcount to reflect zone entry.
6118 	 */
6119 	uid = crgetruid(newcr);
6120 	mutex_enter(&pidlock);
6121 	upcount_dec(uid, GLOBAL_ZONEID);
6122 	upcount_inc(uid, zoneid);
6123 	mutex_exit(&pidlock);
6124 
6125 	/*
6126 	 * Set up core file path and content.
6127 	 */
6128 	set_core_defaults();
6129 
6130 out:
6131 	/*
6132 	 * Let the other lwps continue.
6133 	 */
6134 	mutex_enter(&pp->p_lock);
6135 	if (curthread != pp->p_agenttp)
6136 		continuelwps(pp);
6137 	mutex_exit(&pp->p_lock);
6138 
6139 	return (err != 0 ? set_errno(err) : 0);
6140 }
6141 
6142 /*
6143  * Systemcall entry point for zone_list(2).
6144  *
6145  * Processes running in a (non-global) zone only see themselves.
6146  * On labeled systems, they see all zones whose label they dominate.
6147  */
6148 static int
6149 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6150 {
6151 	zoneid_t *zoneids;
6152 	zone_t *zone, *myzone;
6153 	uint_t user_nzones, real_nzones;
6154 	uint_t domi_nzones;
6155 	int error;
6156 
6157 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6158 		return (set_errno(EFAULT));
6159 
6160 	myzone = curproc->p_zone;
6161 	if (myzone != global_zone) {
6162 		bslabel_t *mybslab;
6163 
6164 		if (!is_system_labeled()) {
6165 			/* just return current zone */
6166 			real_nzones = domi_nzones = 1;
6167 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6168 			zoneids[0] = myzone->zone_id;
6169 		} else {
6170 			/* return all zones that are dominated */
6171 			mutex_enter(&zonehash_lock);
6172 			real_nzones = zonecount;
6173 			domi_nzones = 0;
6174 			if (real_nzones > 0) {
6175 				zoneids = kmem_alloc(real_nzones *
6176 				    sizeof (zoneid_t), KM_SLEEP);
6177 				mybslab = label2bslabel(myzone->zone_slabel);
6178 				for (zone = list_head(&zone_active);
6179 				    zone != NULL;
6180 				    zone = list_next(&zone_active, zone)) {
6181 					if (zone->zone_id == GLOBAL_ZONEID)
6182 						continue;
6183 					if (zone != myzone &&
6184 					    (zone->zone_flags & ZF_IS_SCRATCH))
6185 						continue;
6186 					/*
6187 					 * Note that a label always dominates
6188 					 * itself, so myzone is always included
6189 					 * in the list.
6190 					 */
6191 					if (bldominates(mybslab,
6192 					    label2bslabel(zone->zone_slabel))) {
6193 						zoneids[domi_nzones++] =
6194 						    zone->zone_id;
6195 					}
6196 				}
6197 			}
6198 			mutex_exit(&zonehash_lock);
6199 		}
6200 	} else {
6201 		mutex_enter(&zonehash_lock);
6202 		real_nzones = zonecount;
6203 		domi_nzones = 0;
6204 		if (real_nzones > 0) {
6205 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6206 			    KM_SLEEP);
6207 			for (zone = list_head(&zone_active); zone != NULL;
6208 			    zone = list_next(&zone_active, zone))
6209 				zoneids[domi_nzones++] = zone->zone_id;
6210 			ASSERT(domi_nzones == real_nzones);
6211 		}
6212 		mutex_exit(&zonehash_lock);
6213 	}
6214 
6215 	/*
6216 	 * If user has allocated space for fewer entries than we found, then
6217 	 * return only up to his limit.  Either way, tell him exactly how many
6218 	 * we found.
6219 	 */
6220 	if (domi_nzones < user_nzones)
6221 		user_nzones = domi_nzones;
6222 	error = 0;
6223 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6224 		error = EFAULT;
6225 	} else if (zoneidlist != NULL && user_nzones != 0) {
6226 		if (copyout(zoneids, zoneidlist,
6227 		    user_nzones * sizeof (zoneid_t)) != 0)
6228 			error = EFAULT;
6229 	}
6230 
6231 	if (real_nzones > 0)
6232 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6233 
6234 	if (error != 0)
6235 		return (set_errno(error));
6236 	else
6237 		return (0);
6238 }
6239 
6240 /*
6241  * Systemcall entry point for zone_lookup(2).
6242  *
6243  * Non-global zones are only able to see themselves and (on labeled systems)
6244  * the zones they dominate.
6245  */
6246 static zoneid_t
6247 zone_lookup(const char *zone_name)
6248 {
6249 	char *kname;
6250 	zone_t *zone;
6251 	zoneid_t zoneid;
6252 	int err;
6253 
6254 	if (zone_name == NULL) {
6255 		/* return caller's zone id */
6256 		return (getzoneid());
6257 	}
6258 
6259 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6260 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6261 		kmem_free(kname, ZONENAME_MAX);
6262 		return (set_errno(err));
6263 	}
6264 
6265 	mutex_enter(&zonehash_lock);
6266 	zone = zone_find_all_by_name(kname);
6267 	kmem_free(kname, ZONENAME_MAX);
6268 	/*
6269 	 * In a non-global zone, can only lookup global and own name.
6270 	 * In Trusted Extensions zone label dominance rules apply.
6271 	 */
6272 	if (zone == NULL ||
6273 	    zone_status_get(zone) < ZONE_IS_READY ||
6274 	    !zone_list_access(zone)) {
6275 		mutex_exit(&zonehash_lock);
6276 		return (set_errno(EINVAL));
6277 	} else {
6278 		zoneid = zone->zone_id;
6279 		mutex_exit(&zonehash_lock);
6280 		return (zoneid);
6281 	}
6282 }
6283 
6284 static int
6285 zone_version(int *version_arg)
6286 {
6287 	int version = ZONE_SYSCALL_API_VERSION;
6288 
6289 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6290 		return (set_errno(EFAULT));
6291 	return (0);
6292 }
6293 
6294 /* ARGSUSED */
6295 long
6296 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6297 {
6298 	zone_def zs;
6299 	int err;
6300 
6301 	switch (cmd) {
6302 	case ZONE_CREATE:
6303 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6304 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6305 				return (set_errno(EFAULT));
6306 			}
6307 		} else {
6308 #ifdef _SYSCALL32_IMPL
6309 			zone_def32 zs32;
6310 
6311 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6312 				return (set_errno(EFAULT));
6313 			}
6314 			zs.zone_name =
6315 			    (const char *)(unsigned long)zs32.zone_name;
6316 			zs.zone_root =
6317 			    (const char *)(unsigned long)zs32.zone_root;
6318 			zs.zone_privs =
6319 			    (const struct priv_set *)
6320 			    (unsigned long)zs32.zone_privs;
6321 			zs.zone_privssz = zs32.zone_privssz;
6322 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6323 			zs.rctlbufsz = zs32.rctlbufsz;
6324 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6325 			zs.zfsbufsz = zs32.zfsbufsz;
6326 			zs.extended_error =
6327 			    (int *)(unsigned long)zs32.extended_error;
6328 			zs.match = zs32.match;
6329 			zs.doi = zs32.doi;
6330 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6331 			zs.flags = zs32.flags;
6332 #else
6333 			panic("get_udatamodel() returned bogus result\n");
6334 #endif
6335 		}
6336 
6337 		return (zone_create(zs.zone_name, zs.zone_root,
6338 		    zs.zone_privs, zs.zone_privssz,
6339 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6340 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6341 		    zs.extended_error, zs.match, zs.doi,
6342 		    zs.label, zs.flags));
6343 	case ZONE_BOOT:
6344 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6345 	case ZONE_DESTROY:
6346 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6347 	case ZONE_GETATTR:
6348 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6349 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6350 	case ZONE_SETATTR:
6351 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6352 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6353 	case ZONE_ENTER:
6354 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6355 	case ZONE_LIST:
6356 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6357 	case ZONE_SHUTDOWN:
6358 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6359 	case ZONE_LOOKUP:
6360 		return (zone_lookup((const char *)arg1));
6361 	case ZONE_VERSION:
6362 		return (zone_version((int *)arg1));
6363 	case ZONE_ADD_DATALINK:
6364 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6365 		    (datalink_id_t)(uintptr_t)arg2));
6366 	case ZONE_DEL_DATALINK:
6367 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6368 		    (datalink_id_t)(uintptr_t)arg2));
6369 	case ZONE_CHECK_DATALINK: {
6370 		zoneid_t	zoneid;
6371 		boolean_t	need_copyout;
6372 
6373 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6374 			return (EFAULT);
6375 		need_copyout = (zoneid == ALL_ZONES);
6376 		err = zone_check_datalink(&zoneid,
6377 		    (datalink_id_t)(uintptr_t)arg2);
6378 		if (err == 0 && need_copyout) {
6379 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6380 				err = EFAULT;
6381 		}
6382 		return (err == 0 ? 0 : set_errno(err));
6383 	}
6384 	case ZONE_LIST_DATALINK:
6385 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6386 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6387 	default:
6388 		return (set_errno(EINVAL));
6389 	}
6390 }
6391 
6392 struct zarg {
6393 	zone_t *zone;
6394 	zone_cmd_arg_t arg;
6395 };
6396 
6397 static int
6398 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6399 {
6400 	char *buf;
6401 	size_t buflen;
6402 	int error;
6403 
6404 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6405 	buf = kmem_alloc(buflen, KM_SLEEP);
6406 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6407 	error = door_ki_open(buf, doorp);
6408 	kmem_free(buf, buflen);
6409 	return (error);
6410 }
6411 
6412 static void
6413 zone_release_door(door_handle_t *doorp)
6414 {
6415 	door_ki_rele(*doorp);
6416 	*doorp = NULL;
6417 }
6418 
6419 static void
6420 zone_ki_call_zoneadmd(struct zarg *zargp)
6421 {
6422 	door_handle_t door = NULL;
6423 	door_arg_t darg, save_arg;
6424 	char *zone_name;
6425 	size_t zone_namelen;
6426 	zoneid_t zoneid;
6427 	zone_t *zone;
6428 	zone_cmd_arg_t arg;
6429 	uint64_t uniqid;
6430 	size_t size;
6431 	int error;
6432 	int retry;
6433 
6434 	zone = zargp->zone;
6435 	arg = zargp->arg;
6436 	kmem_free(zargp, sizeof (*zargp));
6437 
6438 	zone_namelen = strlen(zone->zone_name) + 1;
6439 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6440 	bcopy(zone->zone_name, zone_name, zone_namelen);
6441 	zoneid = zone->zone_id;
6442 	uniqid = zone->zone_uniqid;
6443 	/*
6444 	 * zoneadmd may be down, but at least we can empty out the zone.
6445 	 * We can ignore the return value of zone_empty() since we're called
6446 	 * from a kernel thread and know we won't be delivered any signals.
6447 	 */
6448 	ASSERT(curproc == &p0);
6449 	(void) zone_empty(zone);
6450 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6451 	zone_rele(zone);
6452 
6453 	size = sizeof (arg);
6454 	darg.rbuf = (char *)&arg;
6455 	darg.data_ptr = (char *)&arg;
6456 	darg.rsize = size;
6457 	darg.data_size = size;
6458 	darg.desc_ptr = NULL;
6459 	darg.desc_num = 0;
6460 
6461 	save_arg = darg;
6462 	/*
6463 	 * Since we're not holding a reference to the zone, any number of
6464 	 * things can go wrong, including the zone disappearing before we get a
6465 	 * chance to talk to zoneadmd.
6466 	 */
6467 	for (retry = 0; /* forever */; retry++) {
6468 		if (door == NULL &&
6469 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6470 			goto next;
6471 		}
6472 		ASSERT(door != NULL);
6473 
6474 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6475 		    SIZE_MAX, 0)) == 0) {
6476 			break;
6477 		}
6478 		switch (error) {
6479 		case EINTR:
6480 			/* FALLTHROUGH */
6481 		case EAGAIN:	/* process may be forking */
6482 			/*
6483 			 * Back off for a bit
6484 			 */
6485 			break;
6486 		case EBADF:
6487 			zone_release_door(&door);
6488 			if (zone_lookup_door(zone_name, &door) != 0) {
6489 				/*
6490 				 * zoneadmd may be dead, but it may come back to
6491 				 * life later.
6492 				 */
6493 				break;
6494 			}
6495 			break;
6496 		default:
6497 			cmn_err(CE_WARN,
6498 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6499 			    error);
6500 			goto out;
6501 		}
6502 next:
6503 		/*
6504 		 * If this isn't the same zone_t that we originally had in mind,
6505 		 * then this is the same as if two kadmin requests come in at
6506 		 * the same time: the first one wins.  This means we lose, so we
6507 		 * bail.
6508 		 */
6509 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6510 			/*
6511 			 * Problem is solved.
6512 			 */
6513 			break;
6514 		}
6515 		if (zone->zone_uniqid != uniqid) {
6516 			/*
6517 			 * zoneid recycled
6518 			 */
6519 			zone_rele(zone);
6520 			break;
6521 		}
6522 		/*
6523 		 * We could zone_status_timedwait(), but there doesn't seem to
6524 		 * be much point in doing that (plus, it would mean that
6525 		 * zone_free() isn't called until this thread exits).
6526 		 */
6527 		zone_rele(zone);
6528 		delay(hz);
6529 		darg = save_arg;
6530 	}
6531 out:
6532 	if (door != NULL) {
6533 		zone_release_door(&door);
6534 	}
6535 	kmem_free(zone_name, zone_namelen);
6536 	thread_exit();
6537 }
6538 
6539 /*
6540  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6541  * kadmin().  The caller is a process in the zone.
6542  *
6543  * In order to shutdown the zone, we will hand off control to zoneadmd
6544  * (running in the global zone) via a door.  We do a half-hearted job at
6545  * killing all processes in the zone, create a kernel thread to contact
6546  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6547  * a form of generation number used to let zoneadmd (as well as
6548  * zone_destroy()) know exactly which zone they're re talking about.
6549  */
6550 int
6551 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6552 {
6553 	struct zarg *zargp;
6554 	zone_cmd_t zcmd;
6555 	zone_t *zone;
6556 
6557 	zone = curproc->p_zone;
6558 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6559 
6560 	switch (cmd) {
6561 	case A_SHUTDOWN:
6562 		switch (fcn) {
6563 		case AD_HALT:
6564 		case AD_POWEROFF:
6565 			zcmd = Z_HALT;
6566 			break;
6567 		case AD_BOOT:
6568 			zcmd = Z_REBOOT;
6569 			break;
6570 		case AD_IBOOT:
6571 		case AD_SBOOT:
6572 		case AD_SIBOOT:
6573 		case AD_NOSYNC:
6574 			return (ENOTSUP);
6575 		default:
6576 			return (EINVAL);
6577 		}
6578 		break;
6579 	case A_REBOOT:
6580 		zcmd = Z_REBOOT;
6581 		break;
6582 	case A_FTRACE:
6583 	case A_REMOUNT:
6584 	case A_FREEZE:
6585 	case A_DUMP:
6586 	case A_CONFIG:
6587 		return (ENOTSUP);
6588 	default:
6589 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6590 		return (EINVAL);
6591 	}
6592 
6593 	if (secpolicy_zone_admin(credp, B_FALSE))
6594 		return (EPERM);
6595 	mutex_enter(&zone_status_lock);
6596 
6597 	/*
6598 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6599 	 * is in the zone.
6600 	 */
6601 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6602 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6603 		/*
6604 		 * This zone is already on its way down.
6605 		 */
6606 		mutex_exit(&zone_status_lock);
6607 		return (0);
6608 	}
6609 	/*
6610 	 * Prevent future zone_enter()s
6611 	 */
6612 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6613 	mutex_exit(&zone_status_lock);
6614 
6615 	/*
6616 	 * Kill everyone now and call zoneadmd later.
6617 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6618 	 * later.
6619 	 */
6620 	killall(zone->zone_id);
6621 	/*
6622 	 * Now, create the thread to contact zoneadmd and do the rest of the
6623 	 * work.  This thread can't be created in our zone otherwise
6624 	 * zone_destroy() would deadlock.
6625 	 */
6626 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6627 	zargp->arg.cmd = zcmd;
6628 	zargp->arg.uniqid = zone->zone_uniqid;
6629 	zargp->zone = zone;
6630 	(void) strcpy(zargp->arg.locale, "C");
6631 	/* mdep was already copied in for us by uadmin */
6632 	if (mdep != NULL)
6633 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6634 		    sizeof (zargp->arg.bootbuf));
6635 	zone_hold(zone);
6636 
6637 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6638 	    TS_RUN, minclsyspri);
6639 	exit(CLD_EXITED, 0);
6640 
6641 	return (EINVAL);
6642 }
6643 
6644 /*
6645  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6646  * status to ZONE_IS_SHUTTING_DOWN.
6647  *
6648  * This function also shuts down all running zones to ensure that they won't
6649  * fork new processes.
6650  */
6651 void
6652 zone_shutdown_global(void)
6653 {
6654 	zone_t *current_zonep;
6655 
6656 	ASSERT(INGLOBALZONE(curproc));
6657 	mutex_enter(&zonehash_lock);
6658 	mutex_enter(&zone_status_lock);
6659 
6660 	/* Modify the global zone's status first. */
6661 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6662 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6663 
6664 	/*
6665 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6666 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6667 	 * could cause assertions to fail (e.g., assertions about a zone's
6668 	 * state during initialization, readying, or booting) or produce races.
6669 	 * We'll let threads continue to initialize and ready new zones: they'll
6670 	 * fail to boot the new zones when they see that the global zone is
6671 	 * shutting down.
6672 	 */
6673 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6674 	    current_zonep = list_next(&zone_active, current_zonep)) {
6675 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6676 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6677 	}
6678 	mutex_exit(&zone_status_lock);
6679 	mutex_exit(&zonehash_lock);
6680 }
6681 
6682 /*
6683  * Returns true if the named dataset is visible in the current zone.
6684  * The 'write' parameter is set to 1 if the dataset is also writable.
6685  */
6686 int
6687 zone_dataset_visible(const char *dataset, int *write)
6688 {
6689 	static int zfstype = -1;
6690 	zone_dataset_t *zd;
6691 	size_t len;
6692 	zone_t *zone = curproc->p_zone;
6693 	const char *name = NULL;
6694 	vfs_t *vfsp = NULL;
6695 
6696 	if (dataset[0] == '\0')
6697 		return (0);
6698 
6699 	/*
6700 	 * Walk the list once, looking for datasets which match exactly, or
6701 	 * specify a dataset underneath an exported dataset.  If found, return
6702 	 * true and note that it is writable.
6703 	 */
6704 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6705 	    zd = list_next(&zone->zone_datasets, zd)) {
6706 
6707 		len = strlen(zd->zd_dataset);
6708 		if (strlen(dataset) >= len &&
6709 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6710 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6711 		    dataset[len] == '@')) {
6712 			if (write)
6713 				*write = 1;
6714 			return (1);
6715 		}
6716 	}
6717 
6718 	/*
6719 	 * Walk the list a second time, searching for datasets which are parents
6720 	 * of exported datasets.  These should be visible, but read-only.
6721 	 *
6722 	 * Note that we also have to support forms such as 'pool/dataset/', with
6723 	 * a trailing slash.
6724 	 */
6725 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6726 	    zd = list_next(&zone->zone_datasets, zd)) {
6727 
6728 		len = strlen(dataset);
6729 		if (dataset[len - 1] == '/')
6730 			len--;	/* Ignore trailing slash */
6731 		if (len < strlen(zd->zd_dataset) &&
6732 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6733 		    zd->zd_dataset[len] == '/') {
6734 			if (write)
6735 				*write = 0;
6736 			return (1);
6737 		}
6738 	}
6739 
6740 	/*
6741 	 * We reach here if the given dataset is not found in the zone_dataset
6742 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6743 	 * instead of delegation. For this we search for the dataset in the
6744 	 * zone_vfslist of this zone. If found, return true and note that it is
6745 	 * not writable.
6746 	 */
6747 
6748 	/*
6749 	 * Initialize zfstype if it is not initialized yet.
6750 	 */
6751 	if (zfstype == -1) {
6752 		struct vfssw *vswp = vfs_getvfssw("zfs");
6753 		zfstype = vswp - vfssw;
6754 		vfs_unrefvfssw(vswp);
6755 	}
6756 
6757 	vfs_list_read_lock();
6758 	vfsp = zone->zone_vfslist;
6759 	do {
6760 		ASSERT(vfsp);
6761 		if (vfsp->vfs_fstype == zfstype) {
6762 			name = refstr_value(vfsp->vfs_resource);
6763 
6764 			/*
6765 			 * Check if we have an exact match.
6766 			 */
6767 			if (strcmp(dataset, name) == 0) {
6768 				vfs_list_unlock();
6769 				if (write)
6770 					*write = 0;
6771 				return (1);
6772 			}
6773 			/*
6774 			 * We need to check if we are looking for parents of
6775 			 * a dataset. These should be visible, but read-only.
6776 			 */
6777 			len = strlen(dataset);
6778 			if (dataset[len - 1] == '/')
6779 				len--;
6780 
6781 			if (len < strlen(name) &&
6782 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6783 				vfs_list_unlock();
6784 				if (write)
6785 					*write = 0;
6786 				return (1);
6787 			}
6788 		}
6789 		vfsp = vfsp->vfs_zone_next;
6790 	} while (vfsp != zone->zone_vfslist);
6791 
6792 	vfs_list_unlock();
6793 	return (0);
6794 }
6795 
6796 /*
6797  * zone_find_by_any_path() -
6798  *
6799  * kernel-private routine similar to zone_find_by_path(), but which
6800  * effectively compares against zone paths rather than zonerootpath
6801  * (i.e., the last component of zonerootpaths, which should be "root/",
6802  * are not compared.)  This is done in order to accurately identify all
6803  * paths, whether zone-visible or not, including those which are parallel
6804  * to /root/, such as /dev/, /home/, etc...
6805  *
6806  * If the specified path does not fall under any zone path then global
6807  * zone is returned.
6808  *
6809  * The treat_abs parameter indicates whether the path should be treated as
6810  * an absolute path although it does not begin with "/".  (This supports
6811  * nfs mount syntax such as host:any/path.)
6812  *
6813  * The caller is responsible for zone_rele of the returned zone.
6814  */
6815 zone_t *
6816 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6817 {
6818 	zone_t *zone;
6819 	int path_offset = 0;
6820 
6821 	if (path == NULL) {
6822 		zone_hold(global_zone);
6823 		return (global_zone);
6824 	}
6825 
6826 	if (*path != '/') {
6827 		ASSERT(treat_abs);
6828 		path_offset = 1;
6829 	}
6830 
6831 	mutex_enter(&zonehash_lock);
6832 	for (zone = list_head(&zone_active); zone != NULL;
6833 	    zone = list_next(&zone_active, zone)) {
6834 		char	*c;
6835 		size_t	pathlen;
6836 		char *rootpath_start;
6837 
6838 		if (zone == global_zone)	/* skip global zone */
6839 			continue;
6840 
6841 		/* scan backwards to find start of last component */
6842 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6843 		do {
6844 			c--;
6845 		} while (*c != '/');
6846 
6847 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6848 		rootpath_start = (zone->zone_rootpath + path_offset);
6849 		if (strncmp(path, rootpath_start, pathlen) == 0)
6850 			break;
6851 	}
6852 	if (zone == NULL)
6853 		zone = global_zone;
6854 	zone_hold(zone);
6855 	mutex_exit(&zonehash_lock);
6856 	return (zone);
6857 }
6858 
6859 /*
6860  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6861  * zone_dl_t pointer if found, and NULL otherwise.
6862  */
6863 static zone_dl_t *
6864 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6865 {
6866 	zone_dl_t *zdl;
6867 
6868 	ASSERT(mutex_owned(&zone->zone_lock));
6869 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6870 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6871 		if (zdl->zdl_id == linkid)
6872 			break;
6873 	}
6874 	return (zdl);
6875 }
6876 
6877 static boolean_t
6878 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6879 {
6880 	boolean_t exists;
6881 
6882 	mutex_enter(&zone->zone_lock);
6883 	exists = (zone_find_dl(zone, linkid) != NULL);
6884 	mutex_exit(&zone->zone_lock);
6885 	return (exists);
6886 }
6887 
6888 /*
6889  * Add an data link name for the zone.
6890  */
6891 static int
6892 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6893 {
6894 	zone_dl_t *zdl;
6895 	zone_t *zone;
6896 	zone_t *thiszone;
6897 
6898 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6899 		return (set_errno(ENXIO));
6900 
6901 	/* Verify that the datalink ID doesn't already belong to a zone. */
6902 	mutex_enter(&zonehash_lock);
6903 	for (zone = list_head(&zone_active); zone != NULL;
6904 	    zone = list_next(&zone_active, zone)) {
6905 		if (zone_dl_exists(zone, linkid)) {
6906 			mutex_exit(&zonehash_lock);
6907 			zone_rele(thiszone);
6908 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6909 		}
6910 	}
6911 
6912 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6913 	zdl->zdl_id = linkid;
6914 	zdl->zdl_net = NULL;
6915 	mutex_enter(&thiszone->zone_lock);
6916 	list_insert_head(&thiszone->zone_dl_list, zdl);
6917 	mutex_exit(&thiszone->zone_lock);
6918 	mutex_exit(&zonehash_lock);
6919 	zone_rele(thiszone);
6920 	return (0);
6921 }
6922 
6923 static int
6924 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6925 {
6926 	zone_dl_t *zdl;
6927 	zone_t *zone;
6928 	int err = 0;
6929 
6930 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6931 		return (set_errno(EINVAL));
6932 
6933 	mutex_enter(&zone->zone_lock);
6934 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6935 		err = ENXIO;
6936 	} else {
6937 		list_remove(&zone->zone_dl_list, zdl);
6938 		nvlist_free(zdl->zdl_net);
6939 		kmem_free(zdl, sizeof (zone_dl_t));
6940 	}
6941 	mutex_exit(&zone->zone_lock);
6942 	zone_rele(zone);
6943 	return (err == 0 ? 0 : set_errno(err));
6944 }
6945 
6946 /*
6947  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6948  * the linkid.  Otherwise we just check if the specified zoneidp has been
6949  * assigned the supplied linkid.
6950  */
6951 int
6952 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6953 {
6954 	zone_t *zone;
6955 	int err = ENXIO;
6956 
6957 	if (*zoneidp != ALL_ZONES) {
6958 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6959 			if (zone_dl_exists(zone, linkid))
6960 				err = 0;
6961 			zone_rele(zone);
6962 		}
6963 		return (err);
6964 	}
6965 
6966 	mutex_enter(&zonehash_lock);
6967 	for (zone = list_head(&zone_active); zone != NULL;
6968 	    zone = list_next(&zone_active, zone)) {
6969 		if (zone_dl_exists(zone, linkid)) {
6970 			*zoneidp = zone->zone_id;
6971 			err = 0;
6972 			break;
6973 		}
6974 	}
6975 	mutex_exit(&zonehash_lock);
6976 	return (err);
6977 }
6978 
6979 /*
6980  * Get the list of datalink IDs assigned to a zone.
6981  *
6982  * On input, *nump is the number of datalink IDs that can fit in the supplied
6983  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6984  * that were placed in the array if the array was large enough, or to the
6985  * number of datalink IDs that the function needs to place in the array if the
6986  * array is too small.
6987  */
6988 static int
6989 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6990 {
6991 	uint_t num, dlcount;
6992 	zone_t *zone;
6993 	zone_dl_t *zdl;
6994 	datalink_id_t *idptr = idarray;
6995 
6996 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6997 		return (set_errno(EFAULT));
6998 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6999 		return (set_errno(ENXIO));
7000 
7001 	num = 0;
7002 	mutex_enter(&zone->zone_lock);
7003 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7004 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7005 		/*
7006 		 * If the list is bigger than what the caller supplied, just
7007 		 * count, don't do copyout.
7008 		 */
7009 		if (++num > dlcount)
7010 			continue;
7011 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7012 			mutex_exit(&zone->zone_lock);
7013 			zone_rele(zone);
7014 			return (set_errno(EFAULT));
7015 		}
7016 		idptr++;
7017 	}
7018 	mutex_exit(&zone->zone_lock);
7019 	zone_rele(zone);
7020 
7021 	/* Increased or decreased, caller should be notified. */
7022 	if (num != dlcount) {
7023 		if (copyout(&num, nump, sizeof (num)) != 0)
7024 			return (set_errno(EFAULT));
7025 	}
7026 	return (0);
7027 }
7028 
7029 /*
7030  * Public interface for looking up a zone by zoneid. It's a customized version
7031  * for netstack_zone_create(). It can only be called from the zsd create
7032  * callbacks, since it doesn't have reference on the zone structure hence if
7033  * it is called elsewhere the zone could disappear after the zonehash_lock
7034  * is dropped.
7035  *
7036  * Furthermore it
7037  * 1. Doesn't check the status of the zone.
7038  * 2. It will be called even before zone_init is called, in that case the
7039  *    address of zone0 is returned directly, and netstack_zone_create()
7040  *    will only assign a value to zone0.zone_netstack, won't break anything.
7041  * 3. Returns without the zone being held.
7042  */
7043 zone_t *
7044 zone_find_by_id_nolock(zoneid_t zoneid)
7045 {
7046 	zone_t *zone;
7047 
7048 	mutex_enter(&zonehash_lock);
7049 	if (zonehashbyid == NULL)
7050 		zone = &zone0;
7051 	else
7052 		zone = zone_find_all_by_id(zoneid);
7053 	mutex_exit(&zonehash_lock);
7054 	return (zone);
7055 }
7056 
7057 /*
7058  * Walk the datalinks for a given zone
7059  */
7060 int
7061 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7062     void *data)
7063 {
7064 	zone_t		*zone;
7065 	zone_dl_t	*zdl;
7066 	datalink_id_t	*idarray;
7067 	uint_t		idcount = 0;
7068 	int		i, ret = 0;
7069 
7070 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7071 		return (ENOENT);
7072 
7073 	/*
7074 	 * We first build an array of linkid's so that we can walk these and
7075 	 * execute the callback with the zone_lock dropped.
7076 	 */
7077 	mutex_enter(&zone->zone_lock);
7078 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7079 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7080 		idcount++;
7081 	}
7082 
7083 	if (idcount == 0) {
7084 		mutex_exit(&zone->zone_lock);
7085 		zone_rele(zone);
7086 		return (0);
7087 	}
7088 
7089 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7090 	if (idarray == NULL) {
7091 		mutex_exit(&zone->zone_lock);
7092 		zone_rele(zone);
7093 		return (ENOMEM);
7094 	}
7095 
7096 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7097 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7098 		idarray[i] = zdl->zdl_id;
7099 	}
7100 
7101 	mutex_exit(&zone->zone_lock);
7102 
7103 	for (i = 0; i < idcount && ret == 0; i++) {
7104 		if ((ret = (*cb)(idarray[i], data)) != 0)
7105 			break;
7106 	}
7107 
7108 	zone_rele(zone);
7109 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7110 	return (ret);
7111 }
7112 
7113 static char *
7114 zone_net_type2name(int type)
7115 {
7116 	switch (type) {
7117 	case ZONE_NETWORK_ADDRESS:
7118 		return (ZONE_NET_ADDRNAME);
7119 	case ZONE_NETWORK_DEFROUTER:
7120 		return (ZONE_NET_RTRNAME);
7121 	default:
7122 		return (NULL);
7123 	}
7124 }
7125 
7126 static int
7127 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7128 {
7129 	zone_t *zone;
7130 	zone_dl_t *zdl;
7131 	nvlist_t *nvl;
7132 	int err = 0;
7133 	uint8_t *new = NULL;
7134 	char *nvname;
7135 	int bufsize;
7136 	datalink_id_t linkid = znbuf->zn_linkid;
7137 
7138 	if (secpolicy_zone_config(CRED()) != 0)
7139 		return (set_errno(EPERM));
7140 
7141 	if (zoneid == GLOBAL_ZONEID)
7142 		return (set_errno(EINVAL));
7143 
7144 	nvname = zone_net_type2name(znbuf->zn_type);
7145 	bufsize = znbuf->zn_len;
7146 	new = znbuf->zn_val;
7147 	if (nvname == NULL)
7148 		return (set_errno(EINVAL));
7149 
7150 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7151 		return (set_errno(EINVAL));
7152 	}
7153 
7154 	mutex_enter(&zone->zone_lock);
7155 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7156 		err = ENXIO;
7157 		goto done;
7158 	}
7159 	if ((nvl = zdl->zdl_net) == NULL) {
7160 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7161 			err = ENOMEM;
7162 			goto done;
7163 		} else {
7164 			zdl->zdl_net = nvl;
7165 		}
7166 	}
7167 	if (nvlist_exists(nvl, nvname)) {
7168 		err = EINVAL;
7169 		goto done;
7170 	}
7171 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7172 	ASSERT(err == 0);
7173 done:
7174 	mutex_exit(&zone->zone_lock);
7175 	zone_rele(zone);
7176 	if (err != 0)
7177 		return (set_errno(err));
7178 	else
7179 		return (0);
7180 }
7181 
7182 static int
7183 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7184 {
7185 	zone_t *zone;
7186 	zone_dl_t *zdl;
7187 	nvlist_t *nvl;
7188 	uint8_t *ptr;
7189 	uint_t psize;
7190 	int err = 0;
7191 	char *nvname;
7192 	int bufsize;
7193 	void *buf;
7194 	datalink_id_t linkid = znbuf->zn_linkid;
7195 
7196 	if (zoneid == GLOBAL_ZONEID)
7197 		return (set_errno(EINVAL));
7198 
7199 	nvname = zone_net_type2name(znbuf->zn_type);
7200 	bufsize = znbuf->zn_len;
7201 	buf = znbuf->zn_val;
7202 
7203 	if (nvname == NULL)
7204 		return (set_errno(EINVAL));
7205 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7206 		return (set_errno(EINVAL));
7207 
7208 	mutex_enter(&zone->zone_lock);
7209 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7210 		err = ENXIO;
7211 		goto done;
7212 	}
7213 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7214 		err = ENOENT;
7215 		goto done;
7216 	}
7217 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7218 	ASSERT(err == 0);
7219 
7220 	if (psize > bufsize) {
7221 		err = ENOBUFS;
7222 		goto done;
7223 	}
7224 	znbuf->zn_len = psize;
7225 	bcopy(ptr, buf, psize);
7226 done:
7227 	mutex_exit(&zone->zone_lock);
7228 	zone_rele(zone);
7229 	if (err != 0)
7230 		return (set_errno(err));
7231 	else
7232 		return (0);
7233 }
7234