xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 66d7818b6a24876c96bdd1a81986c017f368decd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 /*
30  * Zones
31  *
32  *   A zone is a named collection of processes, namespace constraints,
33  *   and other system resources which comprise a secure and manageable
34  *   application containment facility.
35  *
36  *   Zones (represented by the reference counted zone_t) are tracked in
37  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
38  *   (zoneid_t) are used to track zone association.  Zone IDs are
39  *   dynamically generated when the zone is created; if a persistent
40  *   identifier is needed (core files, accounting logs, audit trail,
41  *   etc.), the zone name should be used.
42  *
43  *
44  *   Global Zone:
45  *
46  *   The global zone (zoneid 0) is automatically associated with all
47  *   system resources that have not been bound to a user-created zone.
48  *   This means that even systems where zones are not in active use
49  *   have a global zone, and all processes, mounts, etc. are
50  *   associated with that zone.  The global zone is generally
51  *   unconstrained in terms of privileges and access, though the usual
52  *   credential and privilege based restrictions apply.
53  *
54  *
55  *   Zone States:
56  *
57  *   The states in which a zone may be in and the transitions are as
58  *   follows:
59  *
60  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61  *   initialized zone is added to the list of active zones on the system but
62  *   isn't accessible.
63  *
64  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65  *   not yet completed. Not possible to enter the zone, but attributes can
66  *   be retrieved.
67  *
68  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69  *   ready.  The zone is made visible after the ZSD constructor callbacks are
70  *   executed.  A zone remains in this state until it transitions into
71  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72  *
73  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75  *   state.
76  *
77  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
78  *   successfully started init.   A zone remains in this state until
79  *   zone_shutdown() is called.
80  *
81  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82  *   killing all processes running in the zone. The zone remains
83  *   in this state until there are no more user processes running in the zone.
84  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85  *   Since zone_shutdown() is restartable, it may be called successfully
86  *   multiple times for the same zone_t.  Setting of the zone's state to
87  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88  *   the zone's status without worrying about it being a moving target.
89  *
90  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91  *   are no more user processes in the zone.  The zone remains in this
92  *   state until there are no more kernel threads associated with the
93  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
94  *   fail.
95  *
96  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
98  *   join the zone or create kernel threads therein.
99  *
100  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
102  *   return NULL from now on.
103  *
104  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
105  *   processes or threads doing work on behalf of the zone.  The zone is
106  *   removed from the list of active zones.  zone_destroy() returns, and
107  *   the zone can be recreated.
108  *
109  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
110  *   callbacks are executed, and all memory associated with the zone is
111  *   freed.
112  *
113  *   Threads can wait for the zone to enter a requested state by using
114  *   zone_status_wait() or zone_status_timedwait() with the desired
115  *   state passed in as an argument.  Zone state transitions are
116  *   uni-directional; it is not possible to move back to an earlier state.
117  *
118  *
119  *   Zone-Specific Data:
120  *
121  *   Subsystems needing to maintain zone-specific data can store that
122  *   data using the ZSD mechanism.  This provides a zone-specific data
123  *   store, similar to thread-specific data (see pthread_getspecific(3C)
124  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
125  *   to register callbacks to be invoked when a zone is created, shut
126  *   down, or destroyed.  This can be used to initialize zone-specific
127  *   data for new zones and to clean up when zones go away.
128  *
129  *
130  *   Data Structures:
131  *
132  *   The per-zone structure (zone_t) is reference counted, and freed
133  *   when all references are released.  zone_hold and zone_rele can be
134  *   used to adjust the reference count.  In addition, reference counts
135  *   associated with the cred_t structure are tracked separately using
136  *   zone_cred_hold and zone_cred_rele.
137  *
138  *   Pointers to active zone_t's are stored in two hash tables; one
139  *   for searching by id, the other for searching by name.  Lookups
140  *   can be performed on either basis, using zone_find_by_id and
141  *   zone_find_by_name.  Both return zone_t pointers with the zone
142  *   held, so zone_rele should be called when the pointer is no longer
143  *   needed.  Zones can also be searched by path; zone_find_by_path
144  *   returns the zone with which a path name is associated (global
145  *   zone if the path is not within some other zone's file system
146  *   hierarchy).  This currently requires iterating through each zone,
147  *   so it is slower than an id or name search via a hash table.
148  *
149  *
150  *   Locking:
151  *
152  *   zonehash_lock: This is a top-level global lock used to protect the
153  *       zone hash tables and lists.  Zones cannot be created or destroyed
154  *       while this lock is held.
155  *   zone_status_lock: This is a global lock protecting zone state.
156  *       Zones cannot change state while this lock is held.  It also
157  *       protects the list of kernel threads associated with a zone.
158  *   zone_lock: This is a per-zone lock used to protect several fields of
159  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
160  *       this lock means that the zone cannot go away.
161  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-lwps rctl.
163  *   zone_mem_lock: This is a per-zone lock used to protect the fields
164  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
165  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
166  *       currently just max_lofi
167  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
168  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
169  *       list (a list of zones in the ZONE_IS_DEAD state).
170  *
171  *   Ordering requirements:
172  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
173  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
174  *
175  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
176  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
177  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178  *
179  *   Blocking memory allocations are permitted while holding any of the
180  *   zone locks.
181  *
182  *
183  *   System Call Interface:
184  *
185  *   The zone subsystem can be managed and queried from user level with
186  *   the following system calls (all subcodes of the primary "zone"
187  *   system call):
188  *   - zone_create: creates a zone with selected attributes (name,
189  *     root path, privileges, resource controls, ZFS datasets)
190  *   - zone_enter: allows the current process to enter a zone
191  *   - zone_getattr: reports attributes of a zone
192  *   - zone_setattr: set attributes of a zone
193  *   - zone_boot: set 'init' running for the zone
194  *   - zone_list: lists all zones active in the system
195  *   - zone_lookup: looks up zone id based on name
196  *   - zone_shutdown: initiates shutdown process (see states above)
197  *   - zone_destroy: completes shutdown process (see states above)
198  *
199  */
200 
201 #include <sys/priv_impl.h>
202 #include <sys/cred.h>
203 #include <c2/audit.h>
204 #include <sys/debug.h>
205 #include <sys/file.h>
206 #include <sys/kmem.h>
207 #include <sys/kstat.h>
208 #include <sys/mutex.h>
209 #include <sys/note.h>
210 #include <sys/pathname.h>
211 #include <sys/proc.h>
212 #include <sys/project.h>
213 #include <sys/sysevent.h>
214 #include <sys/task.h>
215 #include <sys/systm.h>
216 #include <sys/types.h>
217 #include <sys/utsname.h>
218 #include <sys/vnode.h>
219 #include <sys/vfs.h>
220 #include <sys/systeminfo.h>
221 #include <sys/policy.h>
222 #include <sys/cred_impl.h>
223 #include <sys/contract_impl.h>
224 #include <sys/contract/process_impl.h>
225 #include <sys/class.h>
226 #include <sys/pool.h>
227 #include <sys/pool_pset.h>
228 #include <sys/pset.h>
229 #include <sys/strlog.h>
230 #include <sys/sysmacros.h>
231 #include <sys/callb.h>
232 #include <sys/vmparam.h>
233 #include <sys/corectl.h>
234 #include <sys/ipc_impl.h>
235 #include <sys/klpd.h>
236 
237 #include <sys/door.h>
238 #include <sys/cpuvar.h>
239 #include <sys/sdt.h>
240 
241 #include <sys/uadmin.h>
242 #include <sys/session.h>
243 #include <sys/cmn_err.h>
244 #include <sys/modhash.h>
245 #include <sys/sunddi.h>
246 #include <sys/nvpair.h>
247 #include <sys/rctl.h>
248 #include <sys/fss.h>
249 #include <sys/brand.h>
250 #include <sys/zone.h>
251 #include <net/if.h>
252 #include <sys/cpucaps.h>
253 #include <vm/seg.h>
254 #include <sys/mac.h>
255 
256 /*
257  * This constant specifies the number of seconds that threads waiting for
258  * subsystems to release a zone's general-purpose references will wait before
259  * they log the zone's reference counts.  The constant's value shouldn't
260  * be so small that reference counts are unnecessarily reported for zones
261  * whose references are slowly released.  On the other hand, it shouldn't be so
262  * large that users reboot their systems out of frustration over hung zones
263  * before the system logs the zones' reference counts.
264  */
265 #define	ZONE_DESTROY_TIMEOUT_SECS	60
266 
267 /* List of data link IDs which are accessible from the zone */
268 typedef struct zone_dl {
269 	datalink_id_t	zdl_id;
270 	nvlist_t	*zdl_net;
271 	list_node_t	zdl_linkage;
272 } zone_dl_t;
273 
274 /*
275  * cv used to signal that all references to the zone have been released.  This
276  * needs to be global since there may be multiple waiters, and the first to
277  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278  */
279 static kcondvar_t zone_destroy_cv;
280 /*
281  * Lock used to serialize access to zone_cv.  This could have been per-zone,
282  * but then we'd need another lock for zone_destroy_cv, and why bother?
283  */
284 static kmutex_t zone_status_lock;
285 
286 /*
287  * ZSD-related global variables.
288  */
289 static kmutex_t zsd_key_lock;	/* protects the following two */
290 /*
291  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292  */
293 static zone_key_t zsd_keyval = 0;
294 /*
295  * Global list of registered keys.  We use this when a new zone is created.
296  */
297 static list_t zsd_registered_keys;
298 
299 int zone_hash_size = 256;
300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
301 static kmutex_t zonehash_lock;
302 static uint_t zonecount;
303 static id_space_t *zoneid_space;
304 
305 /*
306  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
307  * kernel proper runs, and which manages all other zones.
308  *
309  * Although not declared as static, the variable "zone0" should not be used
310  * except for by code that needs to reference the global zone early on in boot,
311  * before it is fully initialized.  All other consumers should use
312  * 'global_zone'.
313  */
314 zone_t zone0;
315 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
316 
317 /*
318  * List of active zones, protected by zonehash_lock.
319  */
320 static list_t zone_active;
321 
322 /*
323  * List of destroyed zones that still have outstanding cred references.
324  * Used for debugging.  Uses a separate lock to avoid lock ordering
325  * problems in zone_free.
326  */
327 static list_t zone_deathrow;
328 static kmutex_t zone_deathrow_lock;
329 
330 /* number of zones is limited by virtual interface limit in IP */
331 uint_t maxzones = 8192;
332 
333 /* Event channel to sent zone state change notifications */
334 evchan_t *zone_event_chan;
335 
336 /*
337  * This table holds the mapping from kernel zone states to
338  * states visible in the state notification API.
339  * The idea is that we only expose "obvious" states and
340  * do not expose states which are just implementation details.
341  */
342 const char  *zone_status_table[] = {
343 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
344 	ZONE_EVENT_INITIALIZED,		/* initialized */
345 	ZONE_EVENT_READY,		/* ready */
346 	ZONE_EVENT_READY,		/* booting */
347 	ZONE_EVENT_RUNNING,		/* running */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
350 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
351 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
352 	ZONE_EVENT_UNINITIALIZED,	/* dead */
353 };
354 
355 /*
356  * This array contains the names of the subsystems listed in zone_ref_subsys_t
357  * (see sys/zone.h).
358  */
359 static char *zone_ref_subsys_names[] = {
360 	"NFS",		/* ZONE_REF_NFS */
361 	"NFSv4",	/* ZONE_REF_NFSV4 */
362 	"SMBFS",	/* ZONE_REF_SMBFS */
363 	"MNTFS",	/* ZONE_REF_MNTFS */
364 	"LOFI",		/* ZONE_REF_LOFI */
365 	"VFS",		/* ZONE_REF_VFS */
366 	"IPC"		/* ZONE_REF_IPC */
367 };
368 
369 /*
370  * This isn't static so lint doesn't complain.
371  */
372 rctl_hndl_t rc_zone_cpu_shares;
373 rctl_hndl_t rc_zone_locked_mem;
374 rctl_hndl_t rc_zone_max_swap;
375 rctl_hndl_t rc_zone_max_lofi;
376 rctl_hndl_t rc_zone_cpu_cap;
377 rctl_hndl_t rc_zone_nlwps;
378 rctl_hndl_t rc_zone_nprocs;
379 rctl_hndl_t rc_zone_shmmax;
380 rctl_hndl_t rc_zone_shmmni;
381 rctl_hndl_t rc_zone_semmni;
382 rctl_hndl_t rc_zone_msgmni;
383 
384 const char * const zone_default_initname = "/sbin/init";
385 static char * const zone_prefix = "/zone/";
386 static int zone_shutdown(zoneid_t zoneid);
387 static int zone_add_datalink(zoneid_t, datalink_id_t);
388 static int zone_remove_datalink(zoneid_t, datalink_id_t);
389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
390 static int zone_set_network(zoneid_t, zone_net_data_t *);
391 static int zone_get_network(zoneid_t, zone_net_data_t *);
392 
393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394 
395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
399     zone_key_t);
400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
404     kmutex_t *);
405 
406 /*
407  * Bump this number when you alter the zone syscall interfaces; this is
408  * because we need to have support for previous API versions in libc
409  * to support patching; libc calls into the kernel to determine this number.
410  *
411  * Version 1 of the API is the version originally shipped with Solaris 10
412  * Version 2 alters the zone_create system call in order to support more
413  *     arguments by moving the args into a structure; and to do better
414  *     error reporting when zone_create() fails.
415  * Version 3 alters the zone_create system call in order to support the
416  *     import of ZFS datasets to zones.
417  * Version 4 alters the zone_create system call in order to support
418  *     Trusted Extensions.
419  * Version 5 alters the zone_boot system call, and converts its old
420  *     bootargs parameter to be set by the zone_setattr API instead.
421  * Version 6 adds the flag argument to zone_create.
422  */
423 static const int ZONE_SYSCALL_API_VERSION = 6;
424 
425 /*
426  * Certain filesystems (such as NFS and autofs) need to know which zone
427  * the mount is being placed in.  Because of this, we need to be able to
428  * ensure that a zone isn't in the process of being created/destroyed such
429  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
430  * it gets added the list of mounted zones, it ends up on the wrong zone's
431  * mount list. Since a zone can't reside on an NFS file system, we don't
432  * have to worry about the zonepath itself.
433  *
434  * The following functions: block_mounts()/resume_mounts() and
435  * mount_in_progress()/mount_completed() are used by zones and the VFS
436  * layer (respectively) to synchronize zone state transitions and new
437  * mounts within a zone. This syncronization is on a per-zone basis, so
438  * activity for one zone will not interfere with activity for another zone.
439  *
440  * The semantics are like a reader-reader lock such that there may
441  * either be multiple mounts (or zone state transitions, if that weren't
442  * serialized by zonehash_lock) in progress at the same time, but not
443  * both.
444  *
445  * We use cv's so the user can ctrl-C out of the operation if it's
446  * taking too long.
447  *
448  * The semantics are such that there is unfair bias towards the
449  * "current" operation.  This means that zone halt may starve if
450  * there is a rapid succession of new mounts coming in to the zone.
451  */
452 /*
453  * Prevent new mounts from progressing to the point of calling
454  * VFS_MOUNT().  If there are already mounts in this "region", wait for
455  * them to complete.
456  */
457 static int
458 block_mounts(zone_t *zp)
459 {
460 	int retval = 0;
461 
462 	/*
463 	 * Since it may block for a long time, block_mounts() shouldn't be
464 	 * called with zonehash_lock held.
465 	 */
466 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
467 	mutex_enter(&zp->zone_mount_lock);
468 	while (zp->zone_mounts_in_progress > 0) {
469 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
470 			goto signaled;
471 	}
472 	/*
473 	 * A negative value of mounts_in_progress indicates that mounts
474 	 * have been blocked by (-mounts_in_progress) different callers
475 	 * (remotely possible if two threads enter zone_shutdown at the same
476 	 * time).
477 	 */
478 	zp->zone_mounts_in_progress--;
479 	retval = 1;
480 signaled:
481 	mutex_exit(&zp->zone_mount_lock);
482 	return (retval);
483 }
484 
485 /*
486  * The VFS layer may progress with new mounts as far as we're concerned.
487  * Allow them to progress if we were the last obstacle.
488  */
489 static void
490 resume_mounts(zone_t *zp)
491 {
492 	mutex_enter(&zp->zone_mount_lock);
493 	if (++zp->zone_mounts_in_progress == 0)
494 		cv_broadcast(&zp->zone_mount_cv);
495 	mutex_exit(&zp->zone_mount_lock);
496 }
497 
498 /*
499  * The VFS layer is busy with a mount; this zone should wait until all
500  * of its mounts are completed to progress.
501  */
502 void
503 mount_in_progress(zone_t *zp)
504 {
505 	mutex_enter(&zp->zone_mount_lock);
506 	while (zp->zone_mounts_in_progress < 0)
507 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
508 	zp->zone_mounts_in_progress++;
509 	mutex_exit(&zp->zone_mount_lock);
510 }
511 
512 /*
513  * VFS is done with one mount; wake up any waiting block_mounts()
514  * callers if this is the last mount.
515  */
516 void
517 mount_completed(zone_t *zp)
518 {
519 	mutex_enter(&zp->zone_mount_lock);
520 	if (--zp->zone_mounts_in_progress == 0)
521 		cv_broadcast(&zp->zone_mount_cv);
522 	mutex_exit(&zp->zone_mount_lock);
523 }
524 
525 /*
526  * ZSD routines.
527  *
528  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
529  * defined by the pthread_key_create() and related interfaces.
530  *
531  * Kernel subsystems may register one or more data items and/or
532  * callbacks to be executed when a zone is created, shutdown, or
533  * destroyed.
534  *
535  * Unlike the thread counterpart, destructor callbacks will be executed
536  * even if the data pointer is NULL and/or there are no constructor
537  * callbacks, so it is the responsibility of such callbacks to check for
538  * NULL data values if necessary.
539  *
540  * The locking strategy and overall picture is as follows:
541  *
542  * When someone calls zone_key_create(), a template ZSD entry is added to the
543  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
544  * holding that lock all the existing zones are marked as
545  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
546  * zone_zsd list (protected by zone_lock). The global list is updated first
547  * (under zone_key_lock) to make sure that newly created zones use the
548  * most recent list of keys. Then under zonehash_lock we walk the zones
549  * and mark them.  Similar locking is used in zone_key_delete().
550  *
551  * The actual create, shutdown, and destroy callbacks are done without
552  * holding any lock. And zsd_flags are used to ensure that the operations
553  * completed so that when zone_key_create (and zone_create) is done, as well as
554  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
555  * are completed.
556  *
557  * When new zones are created constructor callbacks for all registered ZSD
558  * entries will be called. That also uses the above two phases of marking
559  * what needs to be done, and then running the callbacks without holding
560  * any locks.
561  *
562  * The framework does not provide any locking around zone_getspecific() and
563  * zone_setspecific() apart from that needed for internal consistency, so
564  * callers interested in atomic "test-and-set" semantics will need to provide
565  * their own locking.
566  */
567 
568 /*
569  * Helper function to find the zsd_entry associated with the key in the
570  * given list.
571  */
572 static struct zsd_entry *
573 zsd_find(list_t *l, zone_key_t key)
574 {
575 	struct zsd_entry *zsd;
576 
577 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
578 		if (zsd->zsd_key == key) {
579 			return (zsd);
580 		}
581 	}
582 	return (NULL);
583 }
584 
585 /*
586  * Helper function to find the zsd_entry associated with the key in the
587  * given list. Move it to the front of the list.
588  */
589 static struct zsd_entry *
590 zsd_find_mru(list_t *l, zone_key_t key)
591 {
592 	struct zsd_entry *zsd;
593 
594 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
595 		if (zsd->zsd_key == key) {
596 			/*
597 			 * Move to head of list to keep list in MRU order.
598 			 */
599 			if (zsd != list_head(l)) {
600 				list_remove(l, zsd);
601 				list_insert_head(l, zsd);
602 			}
603 			return (zsd);
604 		}
605 	}
606 	return (NULL);
607 }
608 
609 void
610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
611     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 {
613 	struct zsd_entry *zsdp;
614 	struct zsd_entry *t;
615 	struct zone *zone;
616 	zone_key_t  key;
617 
618 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
619 	zsdp->zsd_data = NULL;
620 	zsdp->zsd_create = create;
621 	zsdp->zsd_shutdown = shutdown;
622 	zsdp->zsd_destroy = destroy;
623 
624 	/*
625 	 * Insert in global list of callbacks. Makes future zone creations
626 	 * see it.
627 	 */
628 	mutex_enter(&zsd_key_lock);
629 	key = zsdp->zsd_key = ++zsd_keyval;
630 	ASSERT(zsd_keyval != 0);
631 	list_insert_tail(&zsd_registered_keys, zsdp);
632 	mutex_exit(&zsd_key_lock);
633 
634 	/*
635 	 * Insert for all existing zones and mark them as needing
636 	 * a create callback.
637 	 */
638 	mutex_enter(&zonehash_lock);	/* stop the world */
639 	for (zone = list_head(&zone_active); zone != NULL;
640 	    zone = list_next(&zone_active, zone)) {
641 		zone_status_t status;
642 
643 		mutex_enter(&zone->zone_lock);
644 
645 		/* Skip zones that are on the way down or not yet up */
646 		status = zone_status_get(zone);
647 		if (status >= ZONE_IS_DOWN ||
648 		    status == ZONE_IS_UNINITIALIZED) {
649 			mutex_exit(&zone->zone_lock);
650 			continue;
651 		}
652 
653 		t = zsd_find_mru(&zone->zone_zsd, key);
654 		if (t != NULL) {
655 			/*
656 			 * A zsd_configure already inserted it after
657 			 * we dropped zsd_key_lock above.
658 			 */
659 			mutex_exit(&zone->zone_lock);
660 			continue;
661 		}
662 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
663 		t->zsd_key = key;
664 		t->zsd_create = create;
665 		t->zsd_shutdown = shutdown;
666 		t->zsd_destroy = destroy;
667 		if (create != NULL) {
668 			t->zsd_flags = ZSD_CREATE_NEEDED;
669 			DTRACE_PROBE2(zsd__create__needed,
670 			    zone_t *, zone, zone_key_t, key);
671 		}
672 		list_insert_tail(&zone->zone_zsd, t);
673 		mutex_exit(&zone->zone_lock);
674 	}
675 	mutex_exit(&zonehash_lock);
676 
677 	if (create != NULL) {
678 		/* Now call the create callback for this key */
679 		zsd_apply_all_zones(zsd_apply_create, key);
680 	}
681 	/*
682 	 * It is safe for consumers to use the key now, make it
683 	 * globally visible. Specifically zone_getspecific() will
684 	 * always successfully return the zone specific data associated
685 	 * with the key.
686 	 */
687 	*keyp = key;
688 
689 }
690 
691 /*
692  * Function called when a module is being unloaded, or otherwise wishes
693  * to unregister its ZSD key and callbacks.
694  *
695  * Remove from the global list and determine the functions that need to
696  * be called under a global lock. Then call the functions without
697  * holding any locks. Finally free up the zone_zsd entries. (The apply
698  * functions need to access the zone_zsd entries to find zsd_data etc.)
699  */
700 int
701 zone_key_delete(zone_key_t key)
702 {
703 	struct zsd_entry *zsdp = NULL;
704 	zone_t *zone;
705 
706 	mutex_enter(&zsd_key_lock);
707 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
708 	if (zsdp == NULL) {
709 		mutex_exit(&zsd_key_lock);
710 		return (-1);
711 	}
712 	list_remove(&zsd_registered_keys, zsdp);
713 	mutex_exit(&zsd_key_lock);
714 
715 	mutex_enter(&zonehash_lock);
716 	for (zone = list_head(&zone_active); zone != NULL;
717 	    zone = list_next(&zone_active, zone)) {
718 		struct zsd_entry *del;
719 
720 		mutex_enter(&zone->zone_lock);
721 		del = zsd_find_mru(&zone->zone_zsd, key);
722 		if (del == NULL) {
723 			/*
724 			 * Somebody else got here first e.g the zone going
725 			 * away.
726 			 */
727 			mutex_exit(&zone->zone_lock);
728 			continue;
729 		}
730 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
731 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
732 		if (del->zsd_shutdown != NULL &&
733 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
734 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
735 			DTRACE_PROBE2(zsd__shutdown__needed,
736 			    zone_t *, zone, zone_key_t, key);
737 		}
738 		if (del->zsd_destroy != NULL &&
739 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
740 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
741 			DTRACE_PROBE2(zsd__destroy__needed,
742 			    zone_t *, zone, zone_key_t, key);
743 		}
744 		mutex_exit(&zone->zone_lock);
745 	}
746 	mutex_exit(&zonehash_lock);
747 	kmem_free(zsdp, sizeof (*zsdp));
748 
749 	/* Now call the shutdown and destroy callback for this key */
750 	zsd_apply_all_zones(zsd_apply_shutdown, key);
751 	zsd_apply_all_zones(zsd_apply_destroy, key);
752 
753 	/* Now we can free up the zsdp structures in each zone */
754 	mutex_enter(&zonehash_lock);
755 	for (zone = list_head(&zone_active); zone != NULL;
756 	    zone = list_next(&zone_active, zone)) {
757 		struct zsd_entry *del;
758 
759 		mutex_enter(&zone->zone_lock);
760 		del = zsd_find(&zone->zone_zsd, key);
761 		if (del != NULL) {
762 			list_remove(&zone->zone_zsd, del);
763 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
764 			kmem_free(del, sizeof (*del));
765 		}
766 		mutex_exit(&zone->zone_lock);
767 	}
768 	mutex_exit(&zonehash_lock);
769 
770 	return (0);
771 }
772 
773 /*
774  * ZSD counterpart of pthread_setspecific().
775  *
776  * Since all zsd callbacks, including those with no create function,
777  * have an entry in zone_zsd, if the key is registered it is part of
778  * the zone_zsd list.
779  * Return an error if the key wasn't registerd.
780  */
781 int
782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 {
784 	struct zsd_entry *t;
785 
786 	mutex_enter(&zone->zone_lock);
787 	t = zsd_find_mru(&zone->zone_zsd, key);
788 	if (t != NULL) {
789 		/*
790 		 * Replace old value with new
791 		 */
792 		t->zsd_data = (void *)data;
793 		mutex_exit(&zone->zone_lock);
794 		return (0);
795 	}
796 	mutex_exit(&zone->zone_lock);
797 	return (-1);
798 }
799 
800 /*
801  * ZSD counterpart of pthread_getspecific().
802  */
803 void *
804 zone_getspecific(zone_key_t key, zone_t *zone)
805 {
806 	struct zsd_entry *t;
807 	void *data;
808 
809 	mutex_enter(&zone->zone_lock);
810 	t = zsd_find_mru(&zone->zone_zsd, key);
811 	data = (t == NULL ? NULL : t->zsd_data);
812 	mutex_exit(&zone->zone_lock);
813 	return (data);
814 }
815 
816 /*
817  * Function used to initialize a zone's list of ZSD callbacks and data
818  * when the zone is being created.  The callbacks are initialized from
819  * the template list (zsd_registered_keys). The constructor callback is
820  * executed later (once the zone exists and with locks dropped).
821  */
822 static void
823 zone_zsd_configure(zone_t *zone)
824 {
825 	struct zsd_entry *zsdp;
826 	struct zsd_entry *t;
827 
828 	ASSERT(MUTEX_HELD(&zonehash_lock));
829 	ASSERT(list_head(&zone->zone_zsd) == NULL);
830 	mutex_enter(&zone->zone_lock);
831 	mutex_enter(&zsd_key_lock);
832 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
833 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 		/*
835 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
836 		 * should not have added anything to it.
837 		 */
838 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839 
840 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
841 		t->zsd_key = zsdp->zsd_key;
842 		t->zsd_create = zsdp->zsd_create;
843 		t->zsd_shutdown = zsdp->zsd_shutdown;
844 		t->zsd_destroy = zsdp->zsd_destroy;
845 		if (zsdp->zsd_create != NULL) {
846 			t->zsd_flags = ZSD_CREATE_NEEDED;
847 			DTRACE_PROBE2(zsd__create__needed,
848 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 		}
850 		list_insert_tail(&zone->zone_zsd, t);
851 	}
852 	mutex_exit(&zsd_key_lock);
853 	mutex_exit(&zone->zone_lock);
854 }
855 
856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857 
858 /*
859  * Helper function to execute shutdown or destructor callbacks.
860  */
861 static void
862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 {
864 	struct zsd_entry *t;
865 
866 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
867 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
868 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869 
870 	/*
871 	 * Run the callback solely based on what is registered for the zone
872 	 * in zone_zsd. The global list can change independently of this
873 	 * as keys are registered and unregistered and we don't register new
874 	 * callbacks for a zone that is in the process of going away.
875 	 */
876 	mutex_enter(&zone->zone_lock);
877 	for (t = list_head(&zone->zone_zsd); t != NULL;
878 	    t = list_next(&zone->zone_zsd, t)) {
879 		zone_key_t key = t->zsd_key;
880 
881 		/* Skip if no callbacks registered */
882 
883 		if (ct == ZSD_SHUTDOWN) {
884 			if (t->zsd_shutdown != NULL &&
885 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
886 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
887 				DTRACE_PROBE2(zsd__shutdown__needed,
888 				    zone_t *, zone, zone_key_t, key);
889 			}
890 		} else {
891 			if (t->zsd_destroy != NULL &&
892 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
893 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
894 				DTRACE_PROBE2(zsd__destroy__needed,
895 				    zone_t *, zone, zone_key_t, key);
896 			}
897 		}
898 	}
899 	mutex_exit(&zone->zone_lock);
900 
901 	/* Now call the shutdown and destroy callback for this key */
902 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
903 	zsd_apply_all_keys(zsd_apply_destroy, zone);
904 
905 }
906 
907 /*
908  * Called when the zone is going away; free ZSD-related memory, and
909  * destroy the zone_zsd list.
910  */
911 static void
912 zone_free_zsd(zone_t *zone)
913 {
914 	struct zsd_entry *t, *next;
915 
916 	/*
917 	 * Free all the zsd_entry's we had on this zone.
918 	 */
919 	mutex_enter(&zone->zone_lock);
920 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
921 		next = list_next(&zone->zone_zsd, t);
922 		list_remove(&zone->zone_zsd, t);
923 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
924 		kmem_free(t, sizeof (*t));
925 	}
926 	list_destroy(&zone->zone_zsd);
927 	mutex_exit(&zone->zone_lock);
928 
929 }
930 
931 /*
932  * Apply a function to all zones for particular key value.
933  *
934  * The applyfn has to drop zonehash_lock if it does some work, and
935  * then reacquire it before it returns.
936  * When the lock is dropped we don't follow list_next even
937  * if it is possible to do so without any hazards. This is
938  * because we want the design to allow for the list of zones
939  * to change in any arbitrary way during the time the
940  * lock was dropped.
941  *
942  * It is safe to restart the loop at list_head since the applyfn
943  * changes the zsd_flags as it does work, so a subsequent
944  * pass through will have no effect in applyfn, hence the loop will terminate
945  * in at worst O(N^2).
946  */
947 static void
948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 {
950 	zone_t *zone;
951 
952 	mutex_enter(&zonehash_lock);
953 	zone = list_head(&zone_active);
954 	while (zone != NULL) {
955 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
956 			/* Lock dropped - restart at head */
957 			zone = list_head(&zone_active);
958 		} else {
959 			zone = list_next(&zone_active, zone);
960 		}
961 	}
962 	mutex_exit(&zonehash_lock);
963 }
964 
965 /*
966  * Apply a function to all keys for a particular zone.
967  *
968  * The applyfn has to drop zonehash_lock if it does some work, and
969  * then reacquire it before it returns.
970  * When the lock is dropped we don't follow list_next even
971  * if it is possible to do so without any hazards. This is
972  * because we want the design to allow for the list of zsd callbacks
973  * to change in any arbitrary way during the time the
974  * lock was dropped.
975  *
976  * It is safe to restart the loop at list_head since the applyfn
977  * changes the zsd_flags as it does work, so a subsequent
978  * pass through will have no effect in applyfn, hence the loop will terminate
979  * in at worst O(N^2).
980  */
981 static void
982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 {
984 	struct zsd_entry *t;
985 
986 	mutex_enter(&zone->zone_lock);
987 	t = list_head(&zone->zone_zsd);
988 	while (t != NULL) {
989 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
990 			/* Lock dropped - restart at head */
991 			t = list_head(&zone->zone_zsd);
992 		} else {
993 			t = list_next(&zone->zone_zsd, t);
994 		}
995 	}
996 	mutex_exit(&zone->zone_lock);
997 }
998 
999 /*
1000  * Call the create function for the zone and key if CREATE_NEEDED
1001  * is set.
1002  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1003  * we wait for that thread to complete so that we can ensure that
1004  * all the callbacks are done when we've looped over all zones/keys.
1005  *
1006  * When we call the create function, we drop the global held by the
1007  * caller, and return true to tell the caller it needs to re-evalute the
1008  * state.
1009  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1010  * remains held on exit.
1011  */
1012 static boolean_t
1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1014     zone_t *zone, zone_key_t key)
1015 {
1016 	void *result;
1017 	struct zsd_entry *t;
1018 	boolean_t dropped;
1019 
1020 	if (lockp != NULL) {
1021 		ASSERT(MUTEX_HELD(lockp));
1022 	}
1023 	if (zone_lock_held) {
1024 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1025 	} else {
1026 		mutex_enter(&zone->zone_lock);
1027 	}
1028 
1029 	t = zsd_find(&zone->zone_zsd, key);
1030 	if (t == NULL) {
1031 		/*
1032 		 * Somebody else got here first e.g the zone going
1033 		 * away.
1034 		 */
1035 		if (!zone_lock_held)
1036 			mutex_exit(&zone->zone_lock);
1037 		return (B_FALSE);
1038 	}
1039 	dropped = B_FALSE;
1040 	if (zsd_wait_for_inprogress(zone, t, lockp))
1041 		dropped = B_TRUE;
1042 
1043 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1044 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1045 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1046 		DTRACE_PROBE2(zsd__create__inprogress,
1047 		    zone_t *, zone, zone_key_t, key);
1048 		mutex_exit(&zone->zone_lock);
1049 		if (lockp != NULL)
1050 			mutex_exit(lockp);
1051 
1052 		dropped = B_TRUE;
1053 		ASSERT(t->zsd_create != NULL);
1054 		DTRACE_PROBE2(zsd__create__start,
1055 		    zone_t *, zone, zone_key_t, key);
1056 
1057 		result = (*t->zsd_create)(zone->zone_id);
1058 
1059 		DTRACE_PROBE2(zsd__create__end,
1060 		    zone_t *, zone, voidn *, result);
1061 
1062 		ASSERT(result != NULL);
1063 		if (lockp != NULL)
1064 			mutex_enter(lockp);
1065 		mutex_enter(&zone->zone_lock);
1066 		t->zsd_data = result;
1067 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1068 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1069 		cv_broadcast(&t->zsd_cv);
1070 		DTRACE_PROBE2(zsd__create__completed,
1071 		    zone_t *, zone, zone_key_t, key);
1072 	}
1073 	if (!zone_lock_held)
1074 		mutex_exit(&zone->zone_lock);
1075 	return (dropped);
1076 }
1077 
1078 /*
1079  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1080  * is set.
1081  * If some other thread gets here first and sets *_INPROGRESS, then
1082  * we wait for that thread to complete so that we can ensure that
1083  * all the callbacks are done when we've looped over all zones/keys.
1084  *
1085  * When we call the shutdown function, we drop the global held by the
1086  * caller, and return true to tell the caller it needs to re-evalute the
1087  * state.
1088  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1089  * remains held on exit.
1090  */
1091 static boolean_t
1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1093     zone_t *zone, zone_key_t key)
1094 {
1095 	struct zsd_entry *t;
1096 	void *data;
1097 	boolean_t dropped;
1098 
1099 	if (lockp != NULL) {
1100 		ASSERT(MUTEX_HELD(lockp));
1101 	}
1102 	if (zone_lock_held) {
1103 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1104 	} else {
1105 		mutex_enter(&zone->zone_lock);
1106 	}
1107 
1108 	t = zsd_find(&zone->zone_zsd, key);
1109 	if (t == NULL) {
1110 		/*
1111 		 * Somebody else got here first e.g the zone going
1112 		 * away.
1113 		 */
1114 		if (!zone_lock_held)
1115 			mutex_exit(&zone->zone_lock);
1116 		return (B_FALSE);
1117 	}
1118 	dropped = B_FALSE;
1119 	if (zsd_wait_for_creator(zone, t, lockp))
1120 		dropped = B_TRUE;
1121 
1122 	if (zsd_wait_for_inprogress(zone, t, lockp))
1123 		dropped = B_TRUE;
1124 
1125 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1126 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1127 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1128 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1129 		    zone_t *, zone, zone_key_t, key);
1130 		mutex_exit(&zone->zone_lock);
1131 		if (lockp != NULL)
1132 			mutex_exit(lockp);
1133 		dropped = B_TRUE;
1134 
1135 		ASSERT(t->zsd_shutdown != NULL);
1136 		data = t->zsd_data;
1137 
1138 		DTRACE_PROBE2(zsd__shutdown__start,
1139 		    zone_t *, zone, zone_key_t, key);
1140 
1141 		(t->zsd_shutdown)(zone->zone_id, data);
1142 		DTRACE_PROBE2(zsd__shutdown__end,
1143 		    zone_t *, zone, zone_key_t, key);
1144 
1145 		if (lockp != NULL)
1146 			mutex_enter(lockp);
1147 		mutex_enter(&zone->zone_lock);
1148 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1149 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1150 		cv_broadcast(&t->zsd_cv);
1151 		DTRACE_PROBE2(zsd__shutdown__completed,
1152 		    zone_t *, zone, zone_key_t, key);
1153 	}
1154 	if (!zone_lock_held)
1155 		mutex_exit(&zone->zone_lock);
1156 	return (dropped);
1157 }
1158 
1159 /*
1160  * Call the destroy function for the zone and key if DESTROY_NEEDED
1161  * is set.
1162  * If some other thread gets here first and sets *_INPROGRESS, then
1163  * we wait for that thread to complete so that we can ensure that
1164  * all the callbacks are done when we've looped over all zones/keys.
1165  *
1166  * When we call the destroy function, we drop the global held by the
1167  * caller, and return true to tell the caller it needs to re-evalute the
1168  * state.
1169  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1170  * remains held on exit.
1171  */
1172 static boolean_t
1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1174     zone_t *zone, zone_key_t key)
1175 {
1176 	struct zsd_entry *t;
1177 	void *data;
1178 	boolean_t dropped;
1179 
1180 	if (lockp != NULL) {
1181 		ASSERT(MUTEX_HELD(lockp));
1182 	}
1183 	if (zone_lock_held) {
1184 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1185 	} else {
1186 		mutex_enter(&zone->zone_lock);
1187 	}
1188 
1189 	t = zsd_find(&zone->zone_zsd, key);
1190 	if (t == NULL) {
1191 		/*
1192 		 * Somebody else got here first e.g the zone going
1193 		 * away.
1194 		 */
1195 		if (!zone_lock_held)
1196 			mutex_exit(&zone->zone_lock);
1197 		return (B_FALSE);
1198 	}
1199 	dropped = B_FALSE;
1200 	if (zsd_wait_for_creator(zone, t, lockp))
1201 		dropped = B_TRUE;
1202 
1203 	if (zsd_wait_for_inprogress(zone, t, lockp))
1204 		dropped = B_TRUE;
1205 
1206 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1207 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1208 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1209 		DTRACE_PROBE2(zsd__destroy__inprogress,
1210 		    zone_t *, zone, zone_key_t, key);
1211 		mutex_exit(&zone->zone_lock);
1212 		if (lockp != NULL)
1213 			mutex_exit(lockp);
1214 		dropped = B_TRUE;
1215 
1216 		ASSERT(t->zsd_destroy != NULL);
1217 		data = t->zsd_data;
1218 		DTRACE_PROBE2(zsd__destroy__start,
1219 		    zone_t *, zone, zone_key_t, key);
1220 
1221 		(t->zsd_destroy)(zone->zone_id, data);
1222 		DTRACE_PROBE2(zsd__destroy__end,
1223 		    zone_t *, zone, zone_key_t, key);
1224 
1225 		if (lockp != NULL)
1226 			mutex_enter(lockp);
1227 		mutex_enter(&zone->zone_lock);
1228 		t->zsd_data = NULL;
1229 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1230 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1231 		cv_broadcast(&t->zsd_cv);
1232 		DTRACE_PROBE2(zsd__destroy__completed,
1233 		    zone_t *, zone, zone_key_t, key);
1234 	}
1235 	if (!zone_lock_held)
1236 		mutex_exit(&zone->zone_lock);
1237 	return (dropped);
1238 }
1239 
1240 /*
1241  * Wait for any CREATE_NEEDED flag to be cleared.
1242  * Returns true if lockp was temporarily dropped while waiting.
1243  */
1244 static boolean_t
1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 {
1247 	boolean_t dropped = B_FALSE;
1248 
1249 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1250 		DTRACE_PROBE2(zsd__wait__for__creator,
1251 		    zone_t *, zone, struct zsd_entry *, t);
1252 		if (lockp != NULL) {
1253 			dropped = B_TRUE;
1254 			mutex_exit(lockp);
1255 		}
1256 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1257 		if (lockp != NULL) {
1258 			/* First drop zone_lock to preserve order */
1259 			mutex_exit(&zone->zone_lock);
1260 			mutex_enter(lockp);
1261 			mutex_enter(&zone->zone_lock);
1262 		}
1263 	}
1264 	return (dropped);
1265 }
1266 
1267 /*
1268  * Wait for any INPROGRESS flag to be cleared.
1269  * Returns true if lockp was temporarily dropped while waiting.
1270  */
1271 static boolean_t
1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 {
1274 	boolean_t dropped = B_FALSE;
1275 
1276 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1277 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1278 		    zone_t *, zone, struct zsd_entry *, t);
1279 		if (lockp != NULL) {
1280 			dropped = B_TRUE;
1281 			mutex_exit(lockp);
1282 		}
1283 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1284 		if (lockp != NULL) {
1285 			/* First drop zone_lock to preserve order */
1286 			mutex_exit(&zone->zone_lock);
1287 			mutex_enter(lockp);
1288 			mutex_enter(&zone->zone_lock);
1289 		}
1290 	}
1291 	return (dropped);
1292 }
1293 
1294 /*
1295  * Frees memory associated with the zone dataset list.
1296  */
1297 static void
1298 zone_free_datasets(zone_t *zone)
1299 {
1300 	zone_dataset_t *t, *next;
1301 
1302 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1303 		next = list_next(&zone->zone_datasets, t);
1304 		list_remove(&zone->zone_datasets, t);
1305 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1306 		kmem_free(t, sizeof (*t));
1307 	}
1308 	list_destroy(&zone->zone_datasets);
1309 }
1310 
1311 /*
1312  * zone.cpu-shares resource control support.
1313  */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 {
1318 	ASSERT(MUTEX_HELD(&p->p_lock));
1319 	return (p->p_zone->zone_shares);
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325     rctl_qty_t nv)
1326 {
1327 	ASSERT(MUTEX_HELD(&p->p_lock));
1328 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1329 	if (e->rcep_p.zone == NULL)
1330 		return (0);
1331 
1332 	e->rcep_p.zone->zone_shares = nv;
1333 	return (0);
1334 }
1335 
1336 static rctl_ops_t zone_cpu_shares_ops = {
1337 	rcop_no_action,
1338 	zone_cpu_shares_usage,
1339 	zone_cpu_shares_set,
1340 	rcop_no_test
1341 };
1342 
1343 /*
1344  * zone.cpu-cap resource control support.
1345  */
1346 /*ARGSUSED*/
1347 static rctl_qty_t
1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 {
1350 	ASSERT(MUTEX_HELD(&p->p_lock));
1351 	return (cpucaps_zone_get(p->p_zone));
1352 }
1353 
1354 /*ARGSUSED*/
1355 static int
1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1357     rctl_qty_t nv)
1358 {
1359 	zone_t *zone = e->rcep_p.zone;
1360 
1361 	ASSERT(MUTEX_HELD(&p->p_lock));
1362 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1363 
1364 	if (zone == NULL)
1365 		return (0);
1366 
1367 	/*
1368 	 * set cap to the new value.
1369 	 */
1370 	return (cpucaps_zone_set(zone, nv));
1371 }
1372 
1373 static rctl_ops_t zone_cpu_cap_ops = {
1374 	rcop_no_action,
1375 	zone_cpu_cap_get,
1376 	zone_cpu_cap_set,
1377 	rcop_no_test
1378 };
1379 
1380 /*ARGSUSED*/
1381 static rctl_qty_t
1382 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 {
1384 	rctl_qty_t nlwps;
1385 	zone_t *zone = p->p_zone;
1386 
1387 	ASSERT(MUTEX_HELD(&p->p_lock));
1388 
1389 	mutex_enter(&zone->zone_nlwps_lock);
1390 	nlwps = zone->zone_nlwps;
1391 	mutex_exit(&zone->zone_nlwps_lock);
1392 
1393 	return (nlwps);
1394 }
1395 
1396 /*ARGSUSED*/
1397 static int
1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1399     rctl_qty_t incr, uint_t flags)
1400 {
1401 	rctl_qty_t nlwps;
1402 
1403 	ASSERT(MUTEX_HELD(&p->p_lock));
1404 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1405 	if (e->rcep_p.zone == NULL)
1406 		return (0);
1407 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1408 	nlwps = e->rcep_p.zone->zone_nlwps;
1409 
1410 	if (nlwps + incr > rcntl->rcv_value)
1411 		return (1);
1412 
1413 	return (0);
1414 }
1415 
1416 /*ARGSUSED*/
1417 static int
1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 {
1420 	ASSERT(MUTEX_HELD(&p->p_lock));
1421 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1422 	if (e->rcep_p.zone == NULL)
1423 		return (0);
1424 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1425 	return (0);
1426 }
1427 
1428 static rctl_ops_t zone_lwps_ops = {
1429 	rcop_no_action,
1430 	zone_lwps_usage,
1431 	zone_lwps_set,
1432 	zone_lwps_test,
1433 };
1434 
1435 /*ARGSUSED*/
1436 static rctl_qty_t
1437 zone_procs_usage(rctl_t *r, proc_t *p)
1438 {
1439 	rctl_qty_t nprocs;
1440 	zone_t *zone = p->p_zone;
1441 
1442 	ASSERT(MUTEX_HELD(&p->p_lock));
1443 
1444 	mutex_enter(&zone->zone_nlwps_lock);
1445 	nprocs = zone->zone_nprocs;
1446 	mutex_exit(&zone->zone_nlwps_lock);
1447 
1448 	return (nprocs);
1449 }
1450 
1451 /*ARGSUSED*/
1452 static int
1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1454     rctl_qty_t incr, uint_t flags)
1455 {
1456 	rctl_qty_t nprocs;
1457 
1458 	ASSERT(MUTEX_HELD(&p->p_lock));
1459 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 	if (e->rcep_p.zone == NULL)
1461 		return (0);
1462 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1463 	nprocs = e->rcep_p.zone->zone_nprocs;
1464 
1465 	if (nprocs + incr > rcntl->rcv_value)
1466 		return (1);
1467 
1468 	return (0);
1469 }
1470 
1471 /*ARGSUSED*/
1472 static int
1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 {
1475 	ASSERT(MUTEX_HELD(&p->p_lock));
1476 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 	if (e->rcep_p.zone == NULL)
1478 		return (0);
1479 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1480 	return (0);
1481 }
1482 
1483 static rctl_ops_t zone_procs_ops = {
1484 	rcop_no_action,
1485 	zone_procs_usage,
1486 	zone_procs_set,
1487 	zone_procs_test,
1488 };
1489 
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	return (p->p_zone->zone_shmmax);
1496 }
1497 
1498 /*ARGSUSED*/
1499 static int
1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1501     rctl_qty_t incr, uint_t flags)
1502 {
1503 	rctl_qty_t v;
1504 	ASSERT(MUTEX_HELD(&p->p_lock));
1505 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1506 	v = e->rcep_p.zone->zone_shmmax + incr;
1507 	if (v > rval->rcv_value)
1508 		return (1);
1509 	return (0);
1510 }
1511 
1512 static rctl_ops_t zone_shmmax_ops = {
1513 	rcop_no_action,
1514 	zone_shmmax_usage,
1515 	rcop_no_set,
1516 	zone_shmmax_test
1517 };
1518 
1519 /*ARGSUSED*/
1520 static rctl_qty_t
1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 {
1523 	ASSERT(MUTEX_HELD(&p->p_lock));
1524 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 }
1526 
1527 /*ARGSUSED*/
1528 static int
1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1530     rctl_qty_t incr, uint_t flags)
1531 {
1532 	rctl_qty_t v;
1533 	ASSERT(MUTEX_HELD(&p->p_lock));
1534 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1535 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1536 	if (v > rval->rcv_value)
1537 		return (1);
1538 	return (0);
1539 }
1540 
1541 static rctl_ops_t zone_shmmni_ops = {
1542 	rcop_no_action,
1543 	zone_shmmni_usage,
1544 	rcop_no_set,
1545 	zone_shmmni_test
1546 };
1547 
1548 /*ARGSUSED*/
1549 static rctl_qty_t
1550 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 {
1552 	ASSERT(MUTEX_HELD(&p->p_lock));
1553 	return (p->p_zone->zone_ipc.ipcq_semmni);
1554 }
1555 
1556 /*ARGSUSED*/
1557 static int
1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1559     rctl_qty_t incr, uint_t flags)
1560 {
1561 	rctl_qty_t v;
1562 	ASSERT(MUTEX_HELD(&p->p_lock));
1563 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1564 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1565 	if (v > rval->rcv_value)
1566 		return (1);
1567 	return (0);
1568 }
1569 
1570 static rctl_ops_t zone_semmni_ops = {
1571 	rcop_no_action,
1572 	zone_semmni_usage,
1573 	rcop_no_set,
1574 	zone_semmni_test
1575 };
1576 
1577 /*ARGSUSED*/
1578 static rctl_qty_t
1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 {
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 }
1584 
1585 /*ARGSUSED*/
1586 static int
1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1588     rctl_qty_t incr, uint_t flags)
1589 {
1590 	rctl_qty_t v;
1591 	ASSERT(MUTEX_HELD(&p->p_lock));
1592 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1593 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1594 	if (v > rval->rcv_value)
1595 		return (1);
1596 	return (0);
1597 }
1598 
1599 static rctl_ops_t zone_msgmni_ops = {
1600 	rcop_no_action,
1601 	zone_msgmni_usage,
1602 	rcop_no_set,
1603 	zone_msgmni_test
1604 };
1605 
1606 /*ARGSUSED*/
1607 static rctl_qty_t
1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 {
1610 	rctl_qty_t q;
1611 	ASSERT(MUTEX_HELD(&p->p_lock));
1612 	mutex_enter(&p->p_zone->zone_mem_lock);
1613 	q = p->p_zone->zone_locked_mem;
1614 	mutex_exit(&p->p_zone->zone_mem_lock);
1615 	return (q);
1616 }
1617 
1618 /*ARGSUSED*/
1619 static int
1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1621     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 {
1623 	rctl_qty_t q;
1624 	zone_t *z;
1625 
1626 	z = e->rcep_p.zone;
1627 	ASSERT(MUTEX_HELD(&p->p_lock));
1628 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1629 	q = z->zone_locked_mem;
1630 	if (q + incr > rcntl->rcv_value)
1631 		return (1);
1632 	return (0);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1638     rctl_qty_t nv)
1639 {
1640 	ASSERT(MUTEX_HELD(&p->p_lock));
1641 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1642 	if (e->rcep_p.zone == NULL)
1643 		return (0);
1644 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1645 	return (0);
1646 }
1647 
1648 static rctl_ops_t zone_locked_mem_ops = {
1649 	rcop_no_action,
1650 	zone_locked_mem_usage,
1651 	zone_locked_mem_set,
1652 	zone_locked_mem_test
1653 };
1654 
1655 /*ARGSUSED*/
1656 static rctl_qty_t
1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 {
1659 	rctl_qty_t q;
1660 	zone_t *z = p->p_zone;
1661 
1662 	ASSERT(MUTEX_HELD(&p->p_lock));
1663 	mutex_enter(&z->zone_mem_lock);
1664 	q = z->zone_max_swap;
1665 	mutex_exit(&z->zone_mem_lock);
1666 	return (q);
1667 }
1668 
1669 /*ARGSUSED*/
1670 static int
1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1672     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 {
1674 	rctl_qty_t q;
1675 	zone_t *z;
1676 
1677 	z = e->rcep_p.zone;
1678 	ASSERT(MUTEX_HELD(&p->p_lock));
1679 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1680 	q = z->zone_max_swap;
1681 	if (q + incr > rcntl->rcv_value)
1682 		return (1);
1683 	return (0);
1684 }
1685 
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1689     rctl_qty_t nv)
1690 {
1691 	ASSERT(MUTEX_HELD(&p->p_lock));
1692 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1693 	if (e->rcep_p.zone == NULL)
1694 		return (0);
1695 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1696 	return (0);
1697 }
1698 
1699 static rctl_ops_t zone_max_swap_ops = {
1700 	rcop_no_action,
1701 	zone_max_swap_usage,
1702 	zone_max_swap_set,
1703 	zone_max_swap_test
1704 };
1705 
1706 /*ARGSUSED*/
1707 static rctl_qty_t
1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 {
1710 	rctl_qty_t q;
1711 	zone_t *z = p->p_zone;
1712 
1713 	ASSERT(MUTEX_HELD(&p->p_lock));
1714 	mutex_enter(&z->zone_rctl_lock);
1715 	q = z->zone_max_lofi;
1716 	mutex_exit(&z->zone_rctl_lock);
1717 	return (q);
1718 }
1719 
1720 /*ARGSUSED*/
1721 static int
1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1723     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 {
1725 	rctl_qty_t q;
1726 	zone_t *z;
1727 
1728 	z = e->rcep_p.zone;
1729 	ASSERT(MUTEX_HELD(&p->p_lock));
1730 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1731 	q = z->zone_max_lofi;
1732 	if (q + incr > rcntl->rcv_value)
1733 		return (1);
1734 	return (0);
1735 }
1736 
1737 /*ARGSUSED*/
1738 static int
1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1740     rctl_qty_t nv)
1741 {
1742 	ASSERT(MUTEX_HELD(&p->p_lock));
1743 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1744 	if (e->rcep_p.zone == NULL)
1745 		return (0);
1746 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1747 	return (0);
1748 }
1749 
1750 static rctl_ops_t zone_max_lofi_ops = {
1751 	rcop_no_action,
1752 	zone_max_lofi_usage,
1753 	zone_max_lofi_set,
1754 	zone_max_lofi_test
1755 };
1756 
1757 /*
1758  * Helper function to brand the zone with a unique ID.
1759  */
1760 static void
1761 zone_uniqid(zone_t *zone)
1762 {
1763 	static uint64_t uniqid = 0;
1764 
1765 	ASSERT(MUTEX_HELD(&zonehash_lock));
1766 	zone->zone_uniqid = uniqid++;
1767 }
1768 
1769 /*
1770  * Returns a held pointer to the "kcred" for the specified zone.
1771  */
1772 struct cred *
1773 zone_get_kcred(zoneid_t zoneid)
1774 {
1775 	zone_t *zone;
1776 	cred_t *cr;
1777 
1778 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1779 		return (NULL);
1780 	cr = zone->zone_kcred;
1781 	crhold(cr);
1782 	zone_rele(zone);
1783 	return (cr);
1784 }
1785 
1786 static int
1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 {
1789 	zone_t *zone = ksp->ks_private;
1790 	zone_kstat_t *zk = ksp->ks_data;
1791 
1792 	if (rw == KSTAT_WRITE)
1793 		return (EACCES);
1794 
1795 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1796 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1797 	return (0);
1798 }
1799 
1800 static int
1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 {
1803 	zone_t *zone = ksp->ks_private;
1804 	zone_kstat_t *zk = ksp->ks_data;
1805 
1806 	if (rw == KSTAT_WRITE)
1807 		return (EACCES);
1808 
1809 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1810 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1811 	return (0);
1812 }
1813 
1814 static int
1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 {
1817 	zone_t *zone = ksp->ks_private;
1818 	zone_kstat_t *zk = ksp->ks_data;
1819 
1820 	if (rw == KSTAT_WRITE)
1821 		return (EACCES);
1822 
1823 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1824 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1825 	return (0);
1826 }
1827 
1828 static kstat_t *
1829 zone_kstat_create_common(zone_t *zone, char *name,
1830     int (*updatefunc) (kstat_t *, int))
1831 {
1832 	kstat_t *ksp;
1833 	zone_kstat_t *zk;
1834 
1835 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1836 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1837 	    KSTAT_FLAG_VIRTUAL);
1838 
1839 	if (ksp == NULL)
1840 		return (NULL);
1841 
1842 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1843 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1844 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1845 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1846 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1847 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1848 	ksp->ks_update = updatefunc;
1849 	ksp->ks_private = zone;
1850 	kstat_install(ksp);
1851 	return (ksp);
1852 }
1853 
1854 
1855 static int
1856 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 	zone_t *zone = ksp->ks_private;
1859 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1860 
1861 	if (rw == KSTAT_WRITE)
1862 		return (EACCES);
1863 
1864 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1865 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1866 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1867 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1868 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869 
1870 	return (0);
1871 }
1872 
1873 static kstat_t *
1874 zone_mcap_kstat_create(zone_t *zone)
1875 {
1876 	kstat_t *ksp;
1877 	zone_mcap_kstat_t *zmp;
1878 
1879 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1880 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1881 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1882 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1883 		return (NULL);
1884 
1885 	if (zone->zone_id != GLOBAL_ZONEID)
1886 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1887 
1888 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1889 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1890 	ksp->ks_lock = &zone->zone_mcap_lock;
1891 	zone->zone_mcap_stats = zmp;
1892 
1893 	/* The kstat "name" field is not large enough for a full zonename */
1894 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1895 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1896 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1899 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1900 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1901 	    KSTAT_DATA_UINT64);
1902 
1903 	ksp->ks_update = zone_mcap_kstat_update;
1904 	ksp->ks_private = zone;
1905 
1906 	kstat_install(ksp);
1907 	return (ksp);
1908 }
1909 
1910 static int
1911 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 {
1913 	zone_t *zone = ksp->ks_private;
1914 	zone_misc_kstat_t *zmp = ksp->ks_data;
1915 	hrtime_t tmp;
1916 
1917 	if (rw == KSTAT_WRITE)
1918 		return (EACCES);
1919 
1920 	tmp = zone->zone_utime;
1921 	scalehrtime(&tmp);
1922 	zmp->zm_utime.value.ui64 = tmp;
1923 	tmp = zone->zone_stime;
1924 	scalehrtime(&tmp);
1925 	zmp->zm_stime.value.ui64 = tmp;
1926 	tmp = zone->zone_wtime;
1927 	scalehrtime(&tmp);
1928 	zmp->zm_wtime.value.ui64 = tmp;
1929 
1930 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1931 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1932 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1933 
1934 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1935 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1936 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1937 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1938 
1939 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1940 
1941 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1942 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1943 
1944 	return (0);
1945 }
1946 
1947 static kstat_t *
1948 zone_misc_kstat_create(zone_t *zone)
1949 {
1950 	kstat_t *ksp;
1951 	zone_misc_kstat_t *zmp;
1952 
1953 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1954 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1955 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1956 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1957 		return (NULL);
1958 
1959 	if (zone->zone_id != GLOBAL_ZONEID)
1960 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1961 
1962 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1963 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1964 	ksp->ks_lock = &zone->zone_misc_lock;
1965 	zone->zone_misc_stats = zmp;
1966 
1967 	/* The kstat "name" field is not large enough for a full zonename */
1968 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1969 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1970 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1971 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1972 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1973 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1974 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1975 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1976 	    KSTAT_DATA_UINT32);
1977 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1978 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1979 	    KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1981 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1982 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1983 	    KSTAT_DATA_UINT32);
1984 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1985 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1986 
1987 	ksp->ks_update = zone_misc_kstat_update;
1988 	ksp->ks_private = zone;
1989 
1990 	kstat_install(ksp);
1991 	return (ksp);
1992 }
1993 
1994 static void
1995 zone_kstat_create(zone_t *zone)
1996 {
1997 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1998 	    "lockedmem", zone_lockedmem_kstat_update);
1999 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
2000 	    "swapresv", zone_swapresv_kstat_update);
2001 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2002 	    "nprocs", zone_nprocs_kstat_update);
2003 
2004 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2005 		zone->zone_mcap_stats = kmem_zalloc(
2006 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2007 	}
2008 
2009 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2010 		zone->zone_misc_stats = kmem_zalloc(
2011 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2012 	}
2013 }
2014 
2015 static void
2016 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2017 {
2018 	void *data;
2019 
2020 	if (*pkstat != NULL) {
2021 		data = (*pkstat)->ks_data;
2022 		kstat_delete(*pkstat);
2023 		kmem_free(data, datasz);
2024 		*pkstat = NULL;
2025 	}
2026 }
2027 
2028 static void
2029 zone_kstat_delete(zone_t *zone)
2030 {
2031 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2032 	    sizeof (zone_kstat_t));
2033 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2034 	    sizeof (zone_kstat_t));
2035 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2036 	    sizeof (zone_kstat_t));
2037 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2038 	    sizeof (zone_mcap_kstat_t));
2039 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2040 	    sizeof (zone_misc_kstat_t));
2041 }
2042 
2043 /*
2044  * Called very early on in boot to initialize the ZSD list so that
2045  * zone_key_create() can be called before zone_init().  It also initializes
2046  * portions of zone0 which may be used before zone_init() is called.  The
2047  * variable "global_zone" will be set when zone0 is fully initialized by
2048  * zone_init().
2049  */
2050 void
2051 zone_zsd_init(void)
2052 {
2053 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2054 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2055 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2056 	    offsetof(struct zsd_entry, zsd_linkage));
2057 	list_create(&zone_active, sizeof (zone_t),
2058 	    offsetof(zone_t, zone_linkage));
2059 	list_create(&zone_deathrow, sizeof (zone_t),
2060 	    offsetof(zone_t, zone_linkage));
2061 
2062 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2063 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2064 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2065 	zone0.zone_shares = 1;
2066 	zone0.zone_nlwps = 0;
2067 	zone0.zone_nlwps_ctl = INT_MAX;
2068 	zone0.zone_nprocs = 0;
2069 	zone0.zone_nprocs_ctl = INT_MAX;
2070 	zone0.zone_locked_mem = 0;
2071 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2072 	ASSERT(zone0.zone_max_swap == 0);
2073 	zone0.zone_max_swap_ctl = UINT64_MAX;
2074 	zone0.zone_max_lofi = 0;
2075 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2076 	zone0.zone_shmmax = 0;
2077 	zone0.zone_ipc.ipcq_shmmni = 0;
2078 	zone0.zone_ipc.ipcq_semmni = 0;
2079 	zone0.zone_ipc.ipcq_msgmni = 0;
2080 	zone0.zone_name = GLOBAL_ZONENAME;
2081 	zone0.zone_nodename = utsname.nodename;
2082 	zone0.zone_domain = srpc_domain;
2083 	zone0.zone_hostid = HW_INVALID_HOSTID;
2084 	zone0.zone_fs_allowed = NULL;
2085 	psecflags_default(&zone0.zone_secflags);
2086 	zone0.zone_ref = 1;
2087 	zone0.zone_id = GLOBAL_ZONEID;
2088 	zone0.zone_status = ZONE_IS_RUNNING;
2089 	zone0.zone_rootpath = "/";
2090 	zone0.zone_rootpathlen = 2;
2091 	zone0.zone_psetid = ZONE_PS_INVAL;
2092 	zone0.zone_ncpus = 0;
2093 	zone0.zone_ncpus_online = 0;
2094 	zone0.zone_proc_initpid = 1;
2095 	zone0.zone_initname = initname;
2096 	zone0.zone_lockedmem_kstat = NULL;
2097 	zone0.zone_swapresv_kstat = NULL;
2098 	zone0.zone_nprocs_kstat = NULL;
2099 
2100 	zone0.zone_stime = 0;
2101 	zone0.zone_utime = 0;
2102 	zone0.zone_wtime = 0;
2103 
2104 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2105 	    offsetof(zone_ref_t, zref_linkage));
2106 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2107 	    offsetof(struct zsd_entry, zsd_linkage));
2108 	list_insert_head(&zone_active, &zone0);
2109 
2110 	/*
2111 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2112 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2113 	 * vfs_mountroot().
2114 	 */
2115 	zone0.zone_rootvp = NULL;
2116 	zone0.zone_vfslist = NULL;
2117 	zone0.zone_bootargs = initargs;
2118 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2119 	/*
2120 	 * The global zone has all privileges
2121 	 */
2122 	priv_fillset(zone0.zone_privset);
2123 	/*
2124 	 * Add p0 to the global zone
2125 	 */
2126 	zone0.zone_zsched = &p0;
2127 	p0.p_zone = &zone0;
2128 }
2129 
2130 /*
2131  * Compute a hash value based on the contents of the label and the DOI.  The
2132  * hash algorithm is somewhat arbitrary, but is based on the observation that
2133  * humans will likely pick labels that differ by amounts that work out to be
2134  * multiples of the number of hash chains, and thus stirring in some primes
2135  * should help.
2136  */
2137 static uint_t
2138 hash_bylabel(void *hdata, mod_hash_key_t key)
2139 {
2140 	const ts_label_t *lab = (ts_label_t *)key;
2141 	const uint32_t *up, *ue;
2142 	uint_t hash;
2143 	int i;
2144 
2145 	_NOTE(ARGUNUSED(hdata));
2146 
2147 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2148 	/* we depend on alignment of label, but not representation */
2149 	up = (const uint32_t *)&lab->tsl_label;
2150 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2151 	i = 1;
2152 	while (up < ue) {
2153 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2154 		hash += *up + (*up << ((i % 16) + 1));
2155 		up++;
2156 		i++;
2157 	}
2158 	return (hash);
2159 }
2160 
2161 /*
2162  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2163  * equal).  This may need to be changed if less than / greater than is ever
2164  * needed.
2165  */
2166 static int
2167 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2168 {
2169 	ts_label_t *lab1 = (ts_label_t *)key1;
2170 	ts_label_t *lab2 = (ts_label_t *)key2;
2171 
2172 	return (label_equal(lab1, lab2) ? 0 : 1);
2173 }
2174 
2175 /*
2176  * Called by main() to initialize the zones framework.
2177  */
2178 void
2179 zone_init(void)
2180 {
2181 	rctl_dict_entry_t *rde;
2182 	rctl_val_t *dval;
2183 	rctl_set_t *set;
2184 	rctl_alloc_gp_t *gp;
2185 	rctl_entity_p_t e;
2186 	int res;
2187 
2188 	ASSERT(curproc == &p0);
2189 
2190 	/*
2191 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2192 	 * global zone.
2193 	 */
2194 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2195 
2196 	/*
2197 	 * Initialize generic zone resource controls, if any.
2198 	 */
2199 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2200 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2201 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2202 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2203 
2204 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2205 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2206 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2207 	    RCTL_GLOBAL_INFINITE,
2208 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2209 
2210 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2211 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2212 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2213 
2214 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2215 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2216 	    INT_MAX, INT_MAX, &zone_procs_ops);
2217 
2218 	/*
2219 	 * System V IPC resource controls
2220 	 */
2221 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2222 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2223 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2224 
2225 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2226 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2227 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2228 
2229 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2230 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2231 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2232 
2233 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2234 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2235 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2236 
2237 	/*
2238 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2239 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2240 	 */
2241 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2242 	bzero(dval, sizeof (rctl_val_t));
2243 	dval->rcv_value = 1;
2244 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2245 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2246 	dval->rcv_action_recip_pid = -1;
2247 
2248 	rde = rctl_dict_lookup("zone.cpu-shares");
2249 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2250 
2251 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2252 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2253 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2254 	    &zone_locked_mem_ops);
2255 
2256 	rc_zone_max_swap = rctl_register("zone.max-swap",
2257 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2258 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2259 	    &zone_max_swap_ops);
2260 
2261 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2262 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2263 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2264 	    &zone_max_lofi_ops);
2265 
2266 	/*
2267 	 * Initialize the ``global zone''.
2268 	 */
2269 	set = rctl_set_create();
2270 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2271 	mutex_enter(&p0.p_lock);
2272 	e.rcep_p.zone = &zone0;
2273 	e.rcep_t = RCENTITY_ZONE;
2274 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2275 	    gp);
2276 
2277 	zone0.zone_nlwps = p0.p_lwpcnt;
2278 	zone0.zone_nprocs = 1;
2279 	zone0.zone_ntasks = 1;
2280 	mutex_exit(&p0.p_lock);
2281 	zone0.zone_restart_init = B_TRUE;
2282 	zone0.zone_brand = &native_brand;
2283 	rctl_prealloc_destroy(gp);
2284 	/*
2285 	 * pool_default hasn't been initialized yet, so we let pool_init()
2286 	 * take care of making sure the global zone is in the default pool.
2287 	 */
2288 
2289 	/*
2290 	 * Initialize global zone kstats
2291 	 */
2292 	zone_kstat_create(&zone0);
2293 
2294 	/*
2295 	 * Initialize zone label.
2296 	 * mlp are initialized when tnzonecfg is loaded.
2297 	 */
2298 	zone0.zone_slabel = l_admin_low;
2299 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2300 	label_hold(l_admin_low);
2301 
2302 	/*
2303 	 * Initialise the lock for the database structure used by mntfs.
2304 	 */
2305 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2306 
2307 	mutex_enter(&zonehash_lock);
2308 	zone_uniqid(&zone0);
2309 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2310 
2311 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2312 	    mod_hash_null_valdtor);
2313 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2314 	    zone_hash_size, mod_hash_null_valdtor);
2315 	/*
2316 	 * maintain zonehashbylabel only for labeled systems
2317 	 */
2318 	if (is_system_labeled())
2319 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2320 		    zone_hash_size, mod_hash_null_keydtor,
2321 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2322 		    hash_labelkey_cmp, KM_SLEEP);
2323 	zonecount = 1;
2324 
2325 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2326 	    (mod_hash_val_t)&zone0);
2327 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2328 	    (mod_hash_val_t)&zone0);
2329 	if (is_system_labeled()) {
2330 		zone0.zone_flags |= ZF_HASHED_LABEL;
2331 		(void) mod_hash_insert(zonehashbylabel,
2332 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2333 	}
2334 	mutex_exit(&zonehash_lock);
2335 
2336 	/*
2337 	 * We avoid setting zone_kcred until now, since kcred is initialized
2338 	 * sometime after zone_zsd_init() and before zone_init().
2339 	 */
2340 	zone0.zone_kcred = kcred;
2341 	/*
2342 	 * The global zone is fully initialized (except for zone_rootvp which
2343 	 * will be set when the root filesystem is mounted).
2344 	 */
2345 	global_zone = &zone0;
2346 
2347 	/*
2348 	 * Setup an event channel to send zone status change notifications on
2349 	 */
2350 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2351 	    EVCH_CREAT);
2352 
2353 	if (res)
2354 		panic("Sysevent_evc_bind failed during zone setup.\n");
2355 
2356 }
2357 
2358 static void
2359 zone_free(zone_t *zone)
2360 {
2361 	ASSERT(zone != global_zone);
2362 	ASSERT(zone->zone_ntasks == 0);
2363 	ASSERT(zone->zone_nlwps == 0);
2364 	ASSERT(zone->zone_nprocs == 0);
2365 	ASSERT(zone->zone_cred_ref == 0);
2366 	ASSERT(zone->zone_kcred == NULL);
2367 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2368 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2369 	ASSERT(list_is_empty(&zone->zone_ref_list));
2370 
2371 	/*
2372 	 * Remove any zone caps.
2373 	 */
2374 	cpucaps_zone_remove(zone);
2375 
2376 	ASSERT(zone->zone_cpucap == NULL);
2377 
2378 	/* remove from deathrow list */
2379 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2380 		ASSERT(zone->zone_ref == 0);
2381 		mutex_enter(&zone_deathrow_lock);
2382 		list_remove(&zone_deathrow, zone);
2383 		mutex_exit(&zone_deathrow_lock);
2384 	}
2385 
2386 	list_destroy(&zone->zone_ref_list);
2387 	zone_free_zsd(zone);
2388 	zone_free_datasets(zone);
2389 	list_destroy(&zone->zone_dl_list);
2390 
2391 	if (zone->zone_rootvp != NULL)
2392 		VN_RELE(zone->zone_rootvp);
2393 	if (zone->zone_rootpath)
2394 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2395 	if (zone->zone_name != NULL)
2396 		kmem_free(zone->zone_name, ZONENAME_MAX);
2397 	if (zone->zone_slabel != NULL)
2398 		label_rele(zone->zone_slabel);
2399 	if (zone->zone_nodename != NULL)
2400 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2401 	if (zone->zone_domain != NULL)
2402 		kmem_free(zone->zone_domain, _SYS_NMLN);
2403 	if (zone->zone_privset != NULL)
2404 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2405 	if (zone->zone_rctls != NULL)
2406 		rctl_set_free(zone->zone_rctls);
2407 	if (zone->zone_bootargs != NULL)
2408 		strfree(zone->zone_bootargs);
2409 	if (zone->zone_initname != NULL)
2410 		strfree(zone->zone_initname);
2411 	if (zone->zone_fs_allowed != NULL)
2412 		strfree(zone->zone_fs_allowed);
2413 	if (zone->zone_pfexecd != NULL)
2414 		klpd_freelist(&zone->zone_pfexecd);
2415 	id_free(zoneid_space, zone->zone_id);
2416 	mutex_destroy(&zone->zone_lock);
2417 	cv_destroy(&zone->zone_cv);
2418 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2419 	rw_destroy(&zone->zone_mntfs_db_lock);
2420 	kmem_free(zone, sizeof (zone_t));
2421 }
2422 
2423 /*
2424  * See block comment at the top of this file for information about zone
2425  * status values.
2426  */
2427 /*
2428  * Convenience function for setting zone status.
2429  */
2430 static void
2431 zone_status_set(zone_t *zone, zone_status_t status)
2432 {
2433 
2434 	nvlist_t *nvl = NULL;
2435 	ASSERT(MUTEX_HELD(&zone_status_lock));
2436 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2437 	    status >= zone_status_get(zone));
2438 
2439 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2440 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2441 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2442 	    zone_status_table[status]) ||
2443 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2444 	    zone_status_table[zone->zone_status]) ||
2445 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2446 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2447 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2448 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2449 #ifdef DEBUG
2450 		(void) printf(
2451 		    "Failed to allocate and send zone state change event.\n");
2452 #endif
2453 	}
2454 	nvlist_free(nvl);
2455 
2456 	zone->zone_status = status;
2457 
2458 	cv_broadcast(&zone->zone_cv);
2459 }
2460 
2461 /*
2462  * Public function to retrieve the zone status.  The zone status may
2463  * change after it is retrieved.
2464  */
2465 zone_status_t
2466 zone_status_get(zone_t *zone)
2467 {
2468 	return (zone->zone_status);
2469 }
2470 
2471 static int
2472 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2473 {
2474 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2475 	int err = 0;
2476 
2477 	ASSERT(zone != global_zone);
2478 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2479 		goto done;	/* EFAULT or ENAMETOOLONG */
2480 
2481 	if (zone->zone_bootargs != NULL)
2482 		strfree(zone->zone_bootargs);
2483 
2484 	zone->zone_bootargs = strdup(buf);
2485 
2486 done:
2487 	kmem_free(buf, BOOTARGS_MAX);
2488 	return (err);
2489 }
2490 
2491 static int
2492 zone_set_brand(zone_t *zone, const char *brand)
2493 {
2494 	struct brand_attr *attrp;
2495 	brand_t *bp;
2496 
2497 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2498 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2499 		kmem_free(attrp, sizeof (struct brand_attr));
2500 		return (EFAULT);
2501 	}
2502 
2503 	bp = brand_register_zone(attrp);
2504 	kmem_free(attrp, sizeof (struct brand_attr));
2505 	if (bp == NULL)
2506 		return (EINVAL);
2507 
2508 	/*
2509 	 * This is the only place where a zone can change it's brand.
2510 	 * We already need to hold zone_status_lock to check the zone
2511 	 * status, so we'll just use that lock to serialize zone
2512 	 * branding requests as well.
2513 	 */
2514 	mutex_enter(&zone_status_lock);
2515 
2516 	/* Re-Branding is not allowed and the zone can't be booted yet */
2517 	if ((ZONE_IS_BRANDED(zone)) ||
2518 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2519 		mutex_exit(&zone_status_lock);
2520 		brand_unregister_zone(bp);
2521 		return (EINVAL);
2522 	}
2523 
2524 	/* set up the brand specific data */
2525 	zone->zone_brand = bp;
2526 	ZBROP(zone)->b_init_brand_data(zone);
2527 
2528 	mutex_exit(&zone_status_lock);
2529 	return (0);
2530 }
2531 
2532 static int
2533 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2534 {
2535 	int err = 0;
2536 	psecflags_t psf;
2537 
2538 	ASSERT(zone != global_zone);
2539 
2540 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2541 		return (err);
2542 
2543 	if (zone_status_get(zone) > ZONE_IS_READY)
2544 		return (EINVAL);
2545 
2546 	if (!psecflags_validate(&psf))
2547 		return (EINVAL);
2548 
2549 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2550 
2551 	/* Set security flags on the zone's zsched */
2552 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2553 	    sizeof (zone->zone_zsched->p_secflags));
2554 
2555 	return (0);
2556 }
2557 
2558 static int
2559 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2560 {
2561 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2562 	int err = 0;
2563 
2564 	ASSERT(zone != global_zone);
2565 	if ((err = copyinstr(zone_fs_allowed, buf,
2566 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2567 		goto done;
2568 
2569 	if (zone->zone_fs_allowed != NULL)
2570 		strfree(zone->zone_fs_allowed);
2571 
2572 	zone->zone_fs_allowed = strdup(buf);
2573 
2574 done:
2575 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2576 	return (err);
2577 }
2578 
2579 static int
2580 zone_set_initname(zone_t *zone, const char *zone_initname)
2581 {
2582 	char initname[INITNAME_SZ];
2583 	size_t len;
2584 	int err = 0;
2585 
2586 	ASSERT(zone != global_zone);
2587 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2588 		return (err);	/* EFAULT or ENAMETOOLONG */
2589 
2590 	if (zone->zone_initname != NULL)
2591 		strfree(zone->zone_initname);
2592 
2593 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2594 	(void) strcpy(zone->zone_initname, initname);
2595 	return (0);
2596 }
2597 
2598 static int
2599 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2600 {
2601 	uint64_t mcap;
2602 	int err = 0;
2603 
2604 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2605 		zone->zone_phys_mcap = mcap;
2606 
2607 	return (err);
2608 }
2609 
2610 static int
2611 zone_set_sched_class(zone_t *zone, const char *new_class)
2612 {
2613 	char sched_class[PC_CLNMSZ];
2614 	id_t classid;
2615 	int err;
2616 
2617 	ASSERT(zone != global_zone);
2618 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2619 		return (err);	/* EFAULT or ENAMETOOLONG */
2620 
2621 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2622 		return (set_errno(EINVAL));
2623 	zone->zone_defaultcid = classid;
2624 	ASSERT(zone->zone_defaultcid > 0 &&
2625 	    zone->zone_defaultcid < loaded_classes);
2626 
2627 	return (0);
2628 }
2629 
2630 /*
2631  * Block indefinitely waiting for (zone_status >= status)
2632  */
2633 void
2634 zone_status_wait(zone_t *zone, zone_status_t status)
2635 {
2636 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2637 
2638 	mutex_enter(&zone_status_lock);
2639 	while (zone->zone_status < status) {
2640 		cv_wait(&zone->zone_cv, &zone_status_lock);
2641 	}
2642 	mutex_exit(&zone_status_lock);
2643 }
2644 
2645 /*
2646  * Private CPR-safe version of zone_status_wait().
2647  */
2648 static void
2649 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2650 {
2651 	callb_cpr_t cprinfo;
2652 
2653 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2654 
2655 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2656 	    str);
2657 	mutex_enter(&zone_status_lock);
2658 	while (zone->zone_status < status) {
2659 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2660 		cv_wait(&zone->zone_cv, &zone_status_lock);
2661 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2662 	}
2663 	/*
2664 	 * zone_status_lock is implicitly released by the following.
2665 	 */
2666 	CALLB_CPR_EXIT(&cprinfo);
2667 }
2668 
2669 /*
2670  * Block until zone enters requested state or signal is received.  Return (0)
2671  * if signaled, non-zero otherwise.
2672  */
2673 int
2674 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2675 {
2676 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2677 
2678 	mutex_enter(&zone_status_lock);
2679 	while (zone->zone_status < status) {
2680 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2681 			mutex_exit(&zone_status_lock);
2682 			return (0);
2683 		}
2684 	}
2685 	mutex_exit(&zone_status_lock);
2686 	return (1);
2687 }
2688 
2689 /*
2690  * Block until the zone enters the requested state or the timeout expires,
2691  * whichever happens first.  Return (-1) if operation timed out, time remaining
2692  * otherwise.
2693  */
2694 clock_t
2695 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2696 {
2697 	clock_t timeleft = 0;
2698 
2699 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2700 
2701 	mutex_enter(&zone_status_lock);
2702 	while (zone->zone_status < status && timeleft != -1) {
2703 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2704 	}
2705 	mutex_exit(&zone_status_lock);
2706 	return (timeleft);
2707 }
2708 
2709 /*
2710  * Block until the zone enters the requested state, the current process is
2711  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2712  * operation timed out, 0 if signaled, time remaining otherwise.
2713  */
2714 clock_t
2715 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2716 {
2717 	clock_t timeleft = tim - ddi_get_lbolt();
2718 
2719 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2720 
2721 	mutex_enter(&zone_status_lock);
2722 	while (zone->zone_status < status) {
2723 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2724 		    tim);
2725 		if (timeleft <= 0)
2726 			break;
2727 	}
2728 	mutex_exit(&zone_status_lock);
2729 	return (timeleft);
2730 }
2731 
2732 /*
2733  * Zones have two reference counts: one for references from credential
2734  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2735  * This is so we can allow a zone to be rebooted while there are still
2736  * outstanding cred references, since certain drivers cache dblks (which
2737  * implicitly results in cached creds).  We wait for zone_ref to drop to
2738  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2739  * later freed when the zone_cred_ref drops to 0, though nothing other
2740  * than the zone id and privilege set should be accessed once the zone
2741  * is "dead".
2742  *
2743  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2744  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2745  * to 0.  This can be useful to flush out other sources of cached creds
2746  * that may be less innocuous than the driver case.
2747  *
2748  * Zones also provide a tracked reference counting mechanism in which zone
2749  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2750  * debuggers determine the sources of leaked zone references.  See
2751  * zone_hold_ref() and zone_rele_ref() below for more information.
2752  */
2753 
2754 int zone_wait_for_cred = 0;
2755 
2756 static void
2757 zone_hold_locked(zone_t *z)
2758 {
2759 	ASSERT(MUTEX_HELD(&z->zone_lock));
2760 	z->zone_ref++;
2761 	ASSERT(z->zone_ref != 0);
2762 }
2763 
2764 /*
2765  * Increment the specified zone's reference count.  The zone's zone_t structure
2766  * will not be freed as long as the zone's reference count is nonzero.
2767  * Decrement the zone's reference count via zone_rele().
2768  *
2769  * NOTE: This function should only be used to hold zones for short periods of
2770  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2771  */
2772 void
2773 zone_hold(zone_t *z)
2774 {
2775 	mutex_enter(&z->zone_lock);
2776 	zone_hold_locked(z);
2777 	mutex_exit(&z->zone_lock);
2778 }
2779 
2780 /*
2781  * If the non-cred ref count drops to 1 and either the cred ref count
2782  * is 0 or we aren't waiting for cred references, the zone is ready to
2783  * be destroyed.
2784  */
2785 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2786 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2787 
2788 /*
2789  * Common zone reference release function invoked by zone_rele() and
2790  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2791  * zone's subsystem-specific reference counters are not affected by the
2792  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2793  * removed from the specified zone's reference list.  ref must be non-NULL iff
2794  * subsys is not ZONE_REF_NUM_SUBSYS.
2795  */
2796 static void
2797 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2798 {
2799 	boolean_t wakeup;
2800 
2801 	mutex_enter(&z->zone_lock);
2802 	ASSERT(z->zone_ref != 0);
2803 	z->zone_ref--;
2804 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2805 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2806 		z->zone_subsys_ref[subsys]--;
2807 		list_remove(&z->zone_ref_list, ref);
2808 	}
2809 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2810 		/* no more refs, free the structure */
2811 		mutex_exit(&z->zone_lock);
2812 		zone_free(z);
2813 		return;
2814 	}
2815 	/* signal zone_destroy so the zone can finish halting */
2816 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2817 	mutex_exit(&z->zone_lock);
2818 
2819 	if (wakeup) {
2820 		/*
2821 		 * Grabbing zonehash_lock here effectively synchronizes with
2822 		 * zone_destroy() to avoid missed signals.
2823 		 */
2824 		mutex_enter(&zonehash_lock);
2825 		cv_broadcast(&zone_destroy_cv);
2826 		mutex_exit(&zonehash_lock);
2827 	}
2828 }
2829 
2830 /*
2831  * Decrement the specified zone's reference count.  The specified zone will
2832  * cease to exist after this function returns if the reference count drops to
2833  * zero.  This function should be paired with zone_hold().
2834  */
2835 void
2836 zone_rele(zone_t *z)
2837 {
2838 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2839 }
2840 
2841 /*
2842  * Initialize a zone reference structure.  This function must be invoked for
2843  * a reference structure before the structure is passed to zone_hold_ref().
2844  */
2845 void
2846 zone_init_ref(zone_ref_t *ref)
2847 {
2848 	ref->zref_zone = NULL;
2849 	list_link_init(&ref->zref_linkage);
2850 }
2851 
2852 /*
2853  * Acquire a reference to zone z.  The caller must specify the
2854  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2855  * zone_ref_t structure will represent a reference to the specified zone.  Use
2856  * zone_rele_ref() to release the reference.
2857  *
2858  * The referenced zone_t structure will not be freed as long as the zone_t's
2859  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2860  * references.
2861  *
2862  * NOTE: The zone_ref_t structure must be initialized before it is used.
2863  * See zone_init_ref() above.
2864  */
2865 void
2866 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2867 {
2868 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2869 
2870 	/*
2871 	 * Prevent consumers from reusing a reference structure before
2872 	 * releasing it.
2873 	 */
2874 	VERIFY(ref->zref_zone == NULL);
2875 
2876 	ref->zref_zone = z;
2877 	mutex_enter(&z->zone_lock);
2878 	zone_hold_locked(z);
2879 	z->zone_subsys_ref[subsys]++;
2880 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2881 	list_insert_head(&z->zone_ref_list, ref);
2882 	mutex_exit(&z->zone_lock);
2883 }
2884 
2885 /*
2886  * Release the zone reference represented by the specified zone_ref_t.
2887  * The reference is invalid after it's released; however, the zone_ref_t
2888  * structure can be reused without having to invoke zone_init_ref().
2889  * subsys should be the same value that was passed to zone_hold_ref()
2890  * when the reference was acquired.
2891  */
2892 void
2893 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2894 {
2895 	zone_rele_common(ref->zref_zone, ref, subsys);
2896 
2897 	/*
2898 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2899 	 * when consumers dereference the reference.  This helps us catch
2900 	 * consumers who use released references.  Furthermore, this lets
2901 	 * consumers reuse the zone_ref_t structure without having to
2902 	 * invoke zone_init_ref().
2903 	 */
2904 	ref->zref_zone = NULL;
2905 }
2906 
2907 void
2908 zone_cred_hold(zone_t *z)
2909 {
2910 	mutex_enter(&z->zone_lock);
2911 	z->zone_cred_ref++;
2912 	ASSERT(z->zone_cred_ref != 0);
2913 	mutex_exit(&z->zone_lock);
2914 }
2915 
2916 void
2917 zone_cred_rele(zone_t *z)
2918 {
2919 	boolean_t wakeup;
2920 
2921 	mutex_enter(&z->zone_lock);
2922 	ASSERT(z->zone_cred_ref != 0);
2923 	z->zone_cred_ref--;
2924 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2925 		/* no more refs, free the structure */
2926 		mutex_exit(&z->zone_lock);
2927 		zone_free(z);
2928 		return;
2929 	}
2930 	/*
2931 	 * If zone_destroy is waiting for the cred references to drain
2932 	 * out, and they have, signal it.
2933 	 */
2934 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2935 	    zone_status_get(z) >= ZONE_IS_DEAD);
2936 	mutex_exit(&z->zone_lock);
2937 
2938 	if (wakeup) {
2939 		/*
2940 		 * Grabbing zonehash_lock here effectively synchronizes with
2941 		 * zone_destroy() to avoid missed signals.
2942 		 */
2943 		mutex_enter(&zonehash_lock);
2944 		cv_broadcast(&zone_destroy_cv);
2945 		mutex_exit(&zonehash_lock);
2946 	}
2947 }
2948 
2949 void
2950 zone_task_hold(zone_t *z)
2951 {
2952 	mutex_enter(&z->zone_lock);
2953 	z->zone_ntasks++;
2954 	ASSERT(z->zone_ntasks != 0);
2955 	mutex_exit(&z->zone_lock);
2956 }
2957 
2958 void
2959 zone_task_rele(zone_t *zone)
2960 {
2961 	uint_t refcnt;
2962 
2963 	mutex_enter(&zone->zone_lock);
2964 	ASSERT(zone->zone_ntasks != 0);
2965 	refcnt = --zone->zone_ntasks;
2966 	if (refcnt > 1)	{	/* Common case */
2967 		mutex_exit(&zone->zone_lock);
2968 		return;
2969 	}
2970 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2971 	mutex_exit(&zone->zone_lock);
2972 	if (refcnt == 1) {
2973 		/*
2974 		 * See if the zone is shutting down.
2975 		 */
2976 		mutex_enter(&zone_status_lock);
2977 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2978 			goto out;
2979 		}
2980 
2981 		/*
2982 		 * Make sure the ntasks didn't change since we
2983 		 * dropped zone_lock.
2984 		 */
2985 		mutex_enter(&zone->zone_lock);
2986 		if (refcnt != zone->zone_ntasks) {
2987 			mutex_exit(&zone->zone_lock);
2988 			goto out;
2989 		}
2990 		mutex_exit(&zone->zone_lock);
2991 
2992 		/*
2993 		 * No more user processes in the zone.  The zone is empty.
2994 		 */
2995 		zone_status_set(zone, ZONE_IS_EMPTY);
2996 		goto out;
2997 	}
2998 
2999 	ASSERT(refcnt == 0);
3000 	/*
3001 	 * zsched has exited; the zone is dead.
3002 	 */
3003 	zone->zone_zsched = NULL;		/* paranoia */
3004 	mutex_enter(&zone_status_lock);
3005 	zone_status_set(zone, ZONE_IS_DEAD);
3006 out:
3007 	mutex_exit(&zone_status_lock);
3008 	zone_rele(zone);
3009 }
3010 
3011 zoneid_t
3012 getzoneid(void)
3013 {
3014 	return (curproc->p_zone->zone_id);
3015 }
3016 
3017 /*
3018  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3019  * check the validity of a zone's state.
3020  */
3021 static zone_t *
3022 zone_find_all_by_id(zoneid_t zoneid)
3023 {
3024 	mod_hash_val_t hv;
3025 	zone_t *zone = NULL;
3026 
3027 	ASSERT(MUTEX_HELD(&zonehash_lock));
3028 
3029 	if (mod_hash_find(zonehashbyid,
3030 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3031 		zone = (zone_t *)hv;
3032 	return (zone);
3033 }
3034 
3035 static zone_t *
3036 zone_find_all_by_label(const ts_label_t *label)
3037 {
3038 	mod_hash_val_t hv;
3039 	zone_t *zone = NULL;
3040 
3041 	ASSERT(MUTEX_HELD(&zonehash_lock));
3042 
3043 	/*
3044 	 * zonehashbylabel is not maintained for unlabeled systems
3045 	 */
3046 	if (!is_system_labeled())
3047 		return (NULL);
3048 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3049 		zone = (zone_t *)hv;
3050 	return (zone);
3051 }
3052 
3053 static zone_t *
3054 zone_find_all_by_name(char *name)
3055 {
3056 	mod_hash_val_t hv;
3057 	zone_t *zone = NULL;
3058 
3059 	ASSERT(MUTEX_HELD(&zonehash_lock));
3060 
3061 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3062 		zone = (zone_t *)hv;
3063 	return (zone);
3064 }
3065 
3066 /*
3067  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3068  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3069  * Caller must call zone_rele() once it is done with the zone.
3070  *
3071  * The zone may begin the zone_destroy() sequence immediately after this
3072  * function returns, but may be safely used until zone_rele() is called.
3073  */
3074 zone_t *
3075 zone_find_by_id(zoneid_t zoneid)
3076 {
3077 	zone_t *zone;
3078 	zone_status_t status;
3079 
3080 	mutex_enter(&zonehash_lock);
3081 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3082 		mutex_exit(&zonehash_lock);
3083 		return (NULL);
3084 	}
3085 	status = zone_status_get(zone);
3086 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3087 		/*
3088 		 * For all practical purposes the zone doesn't exist.
3089 		 */
3090 		mutex_exit(&zonehash_lock);
3091 		return (NULL);
3092 	}
3093 	zone_hold(zone);
3094 	mutex_exit(&zonehash_lock);
3095 	return (zone);
3096 }
3097 
3098 /*
3099  * Similar to zone_find_by_id, but using zone label as the key.
3100  */
3101 zone_t *
3102 zone_find_by_label(const ts_label_t *label)
3103 {
3104 	zone_t *zone;
3105 	zone_status_t status;
3106 
3107 	mutex_enter(&zonehash_lock);
3108 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3109 		mutex_exit(&zonehash_lock);
3110 		return (NULL);
3111 	}
3112 
3113 	status = zone_status_get(zone);
3114 	if (status > ZONE_IS_DOWN) {
3115 		/*
3116 		 * For all practical purposes the zone doesn't exist.
3117 		 */
3118 		mutex_exit(&zonehash_lock);
3119 		return (NULL);
3120 	}
3121 	zone_hold(zone);
3122 	mutex_exit(&zonehash_lock);
3123 	return (zone);
3124 }
3125 
3126 /*
3127  * Similar to zone_find_by_id, but using zone name as the key.
3128  */
3129 zone_t *
3130 zone_find_by_name(char *name)
3131 {
3132 	zone_t *zone;
3133 	zone_status_t status;
3134 
3135 	mutex_enter(&zonehash_lock);
3136 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3137 		mutex_exit(&zonehash_lock);
3138 		return (NULL);
3139 	}
3140 	status = zone_status_get(zone);
3141 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3142 		/*
3143 		 * For all practical purposes the zone doesn't exist.
3144 		 */
3145 		mutex_exit(&zonehash_lock);
3146 		return (NULL);
3147 	}
3148 	zone_hold(zone);
3149 	mutex_exit(&zonehash_lock);
3150 	return (zone);
3151 }
3152 
3153 /*
3154  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3155  * if there is a zone "foo" rooted at /foo/root, and the path argument
3156  * is "/foo/root/proc", it will return the held zone_t corresponding to
3157  * zone "foo".
3158  *
3159  * zone_find_by_path() always returns a non-NULL value, since at the
3160  * very least every path will be contained in the global zone.
3161  *
3162  * As with the other zone_find_by_*() functions, the caller is
3163  * responsible for zone_rele()ing the return value of this function.
3164  */
3165 zone_t *
3166 zone_find_by_path(const char *path)
3167 {
3168 	zone_t *zone;
3169 	zone_t *zret = NULL;
3170 	zone_status_t status;
3171 
3172 	if (path == NULL) {
3173 		/*
3174 		 * Call from rootconf().
3175 		 */
3176 		zone_hold(global_zone);
3177 		return (global_zone);
3178 	}
3179 	ASSERT(*path == '/');
3180 	mutex_enter(&zonehash_lock);
3181 	for (zone = list_head(&zone_active); zone != NULL;
3182 	    zone = list_next(&zone_active, zone)) {
3183 		if (ZONE_PATH_VISIBLE(path, zone))
3184 			zret = zone;
3185 	}
3186 	ASSERT(zret != NULL);
3187 	status = zone_status_get(zret);
3188 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3189 		/*
3190 		 * Zone practically doesn't exist.
3191 		 */
3192 		zret = global_zone;
3193 	}
3194 	zone_hold(zret);
3195 	mutex_exit(&zonehash_lock);
3196 	return (zret);
3197 }
3198 
3199 /*
3200  * Public interface for updating per-zone load averages.  Called once per
3201  * second.
3202  *
3203  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3204  */
3205 void
3206 zone_loadavg_update()
3207 {
3208 	zone_t *zp;
3209 	zone_status_t status;
3210 	struct loadavg_s *lavg;
3211 	hrtime_t zone_total;
3212 	int i;
3213 	hrtime_t hr_avg;
3214 	int nrun;
3215 	static int64_t f[3] = { 135, 27, 9 };
3216 	int64_t q, r;
3217 
3218 	mutex_enter(&zonehash_lock);
3219 	for (zp = list_head(&zone_active); zp != NULL;
3220 	    zp = list_next(&zone_active, zp)) {
3221 		mutex_enter(&zp->zone_lock);
3222 
3223 		/* Skip zones that are on the way down or not yet up */
3224 		status = zone_status_get(zp);
3225 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3226 			/* For all practical purposes the zone doesn't exist. */
3227 			mutex_exit(&zp->zone_lock);
3228 			continue;
3229 		}
3230 
3231 		/*
3232 		 * Update the 10 second moving average data in zone_loadavg.
3233 		 */
3234 		lavg = &zp->zone_loadavg;
3235 
3236 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3237 		scalehrtime(&zone_total);
3238 
3239 		/* The zone_total should always be increasing. */
3240 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3241 		    zone_total - lavg->lg_total : 0;
3242 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3243 		/* lg_total holds the prev. 1 sec. total */
3244 		lavg->lg_total = zone_total;
3245 
3246 		/*
3247 		 * To simplify the calculation, we don't calculate the load avg.
3248 		 * until the zone has been up for at least 10 seconds and our
3249 		 * moving average is thus full.
3250 		 */
3251 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3252 			lavg->lg_len++;
3253 			mutex_exit(&zp->zone_lock);
3254 			continue;
3255 		}
3256 
3257 		/* Now calculate the 1min, 5min, 15 min load avg. */
3258 		hr_avg = 0;
3259 		for (i = 0; i < S_LOADAVG_SZ; i++)
3260 			hr_avg += lavg->lg_loads[i];
3261 		hr_avg = hr_avg / S_LOADAVG_SZ;
3262 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3263 
3264 		/* Compute load avg. See comment in calcloadavg() */
3265 		for (i = 0; i < 3; i++) {
3266 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3267 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3268 			zp->zone_hp_avenrun[i] +=
3269 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3270 
3271 			/* avenrun[] can only hold 31 bits of load avg. */
3272 			if (zp->zone_hp_avenrun[i] <
3273 			    ((uint64_t)1<<(31+16-FSHIFT)))
3274 				zp->zone_avenrun[i] = (int32_t)
3275 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3276 			else
3277 				zp->zone_avenrun[i] = 0x7fffffff;
3278 		}
3279 
3280 		mutex_exit(&zp->zone_lock);
3281 	}
3282 	mutex_exit(&zonehash_lock);
3283 }
3284 
3285 /*
3286  * Get the number of cpus visible to this zone.  The system-wide global
3287  * 'ncpus' is returned if pools are disabled, the caller is in the
3288  * global zone, or a NULL zone argument is passed in.
3289  */
3290 int
3291 zone_ncpus_get(zone_t *zone)
3292 {
3293 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3294 
3295 	return (myncpus != 0 ? myncpus : ncpus);
3296 }
3297 
3298 /*
3299  * Get the number of online cpus visible to this zone.  The system-wide
3300  * global 'ncpus_online' is returned if pools are disabled, the caller
3301  * is in the global zone, or a NULL zone argument is passed in.
3302  */
3303 int
3304 zone_ncpus_online_get(zone_t *zone)
3305 {
3306 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3307 
3308 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3309 }
3310 
3311 /*
3312  * Return the pool to which the zone is currently bound.
3313  */
3314 pool_t *
3315 zone_pool_get(zone_t *zone)
3316 {
3317 	ASSERT(pool_lock_held());
3318 
3319 	return (zone->zone_pool);
3320 }
3321 
3322 /*
3323  * Set the zone's pool pointer and update the zone's visibility to match
3324  * the resources in the new pool.
3325  */
3326 void
3327 zone_pool_set(zone_t *zone, pool_t *pool)
3328 {
3329 	ASSERT(pool_lock_held());
3330 	ASSERT(MUTEX_HELD(&cpu_lock));
3331 
3332 	zone->zone_pool = pool;
3333 	zone_pset_set(zone, pool->pool_pset->pset_id);
3334 }
3335 
3336 /*
3337  * Return the cached value of the id of the processor set to which the
3338  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3339  * facility is disabled.
3340  */
3341 psetid_t
3342 zone_pset_get(zone_t *zone)
3343 {
3344 	ASSERT(MUTEX_HELD(&cpu_lock));
3345 
3346 	return (zone->zone_psetid);
3347 }
3348 
3349 /*
3350  * Set the cached value of the id of the processor set to which the zone
3351  * is currently bound.  Also update the zone's visibility to match the
3352  * resources in the new processor set.
3353  */
3354 void
3355 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3356 {
3357 	psetid_t oldpsetid;
3358 
3359 	ASSERT(MUTEX_HELD(&cpu_lock));
3360 	oldpsetid = zone_pset_get(zone);
3361 
3362 	if (oldpsetid == newpsetid)
3363 		return;
3364 	/*
3365 	 * Global zone sees all.
3366 	 */
3367 	if (zone != global_zone) {
3368 		zone->zone_psetid = newpsetid;
3369 		if (newpsetid != ZONE_PS_INVAL)
3370 			pool_pset_visibility_add(newpsetid, zone);
3371 		if (oldpsetid != ZONE_PS_INVAL)
3372 			pool_pset_visibility_remove(oldpsetid, zone);
3373 	}
3374 	/*
3375 	 * Disabling pools, so we should start using the global values
3376 	 * for ncpus and ncpus_online.
3377 	 */
3378 	if (newpsetid == ZONE_PS_INVAL) {
3379 		zone->zone_ncpus = 0;
3380 		zone->zone_ncpus_online = 0;
3381 	}
3382 }
3383 
3384 /*
3385  * Walk the list of active zones and issue the provided callback for
3386  * each of them.
3387  *
3388  * Caller must not be holding any locks that may be acquired under
3389  * zonehash_lock.  See comment at the beginning of the file for a list of
3390  * common locks and their interactions with zones.
3391  */
3392 int
3393 zone_walk(int (*cb)(zone_t *, void *), void *data)
3394 {
3395 	zone_t *zone;
3396 	int ret = 0;
3397 	zone_status_t status;
3398 
3399 	mutex_enter(&zonehash_lock);
3400 	for (zone = list_head(&zone_active); zone != NULL;
3401 	    zone = list_next(&zone_active, zone)) {
3402 		/*
3403 		 * Skip zones that shouldn't be externally visible.
3404 		 */
3405 		status = zone_status_get(zone);
3406 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3407 			continue;
3408 		/*
3409 		 * Bail immediately if any callback invocation returns a
3410 		 * non-zero value.
3411 		 */
3412 		ret = (*cb)(zone, data);
3413 		if (ret != 0)
3414 			break;
3415 	}
3416 	mutex_exit(&zonehash_lock);
3417 	return (ret);
3418 }
3419 
3420 static int
3421 zone_set_root(zone_t *zone, const char *upath)
3422 {
3423 	vnode_t *vp;
3424 	int trycount;
3425 	int error = 0;
3426 	char *path;
3427 	struct pathname upn, pn;
3428 	size_t pathlen;
3429 
3430 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3431 		return (error);
3432 
3433 	pn_alloc(&pn);
3434 
3435 	/* prevent infinite loop */
3436 	trycount = 10;
3437 	for (;;) {
3438 		if (--trycount <= 0) {
3439 			error = ESTALE;
3440 			goto out;
3441 		}
3442 
3443 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3444 			/*
3445 			 * VOP_ACCESS() may cover 'vp' with a new
3446 			 * filesystem, if 'vp' is an autoFS vnode.
3447 			 * Get the new 'vp' if so.
3448 			 */
3449 			if ((error =
3450 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3451 			    (!vn_ismntpt(vp) ||
3452 			    (error = traverse(&vp)) == 0)) {
3453 				pathlen = pn.pn_pathlen + 2;
3454 				path = kmem_alloc(pathlen, KM_SLEEP);
3455 				(void) strncpy(path, pn.pn_path,
3456 				    pn.pn_pathlen + 1);
3457 				path[pathlen - 2] = '/';
3458 				path[pathlen - 1] = '\0';
3459 				pn_free(&pn);
3460 				pn_free(&upn);
3461 
3462 				/* Success! */
3463 				break;
3464 			}
3465 			VN_RELE(vp);
3466 		}
3467 		if (error != ESTALE)
3468 			goto out;
3469 	}
3470 
3471 	ASSERT(error == 0);
3472 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3473 	zone->zone_rootpath = path;
3474 	zone->zone_rootpathlen = pathlen;
3475 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3476 		zone->zone_flags |= ZF_IS_SCRATCH;
3477 	return (0);
3478 
3479 out:
3480 	pn_free(&pn);
3481 	pn_free(&upn);
3482 	return (error);
3483 }
3484 
3485 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3486 			((c) >= 'a' && (c) <= 'z') || \
3487 			((c) >= 'A' && (c) <= 'Z'))
3488 
3489 static int
3490 zone_set_name(zone_t *zone, const char *uname)
3491 {
3492 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3493 	size_t len;
3494 	int i, err;
3495 
3496 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3497 		kmem_free(kname, ZONENAME_MAX);
3498 		return (err);	/* EFAULT or ENAMETOOLONG */
3499 	}
3500 
3501 	/* must be less than ZONENAME_MAX */
3502 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3503 		kmem_free(kname, ZONENAME_MAX);
3504 		return (EINVAL);
3505 	}
3506 
3507 	/*
3508 	 * Name must start with an alphanumeric and must contain only
3509 	 * alphanumerics, '-', '_' and '.'.
3510 	 */
3511 	if (!isalnum(kname[0])) {
3512 		kmem_free(kname, ZONENAME_MAX);
3513 		return (EINVAL);
3514 	}
3515 	for (i = 1; i < len - 1; i++) {
3516 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3517 		    kname[i] != '.') {
3518 			kmem_free(kname, ZONENAME_MAX);
3519 			return (EINVAL);
3520 		}
3521 	}
3522 
3523 	zone->zone_name = kname;
3524 	return (0);
3525 }
3526 
3527 /*
3528  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3529  * is NULL or it points to a zone with no hostid emulation, then the machine's
3530  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3531  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3532  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3533  * hostid and the machine's hostid is invalid.
3534  */
3535 uint32_t
3536 zone_get_hostid(zone_t *zonep)
3537 {
3538 	unsigned long machine_hostid;
3539 
3540 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3541 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3542 			return (HW_INVALID_HOSTID);
3543 		return ((uint32_t)machine_hostid);
3544 	}
3545 	return (zonep->zone_hostid);
3546 }
3547 
3548 /*
3549  * Similar to thread_create(), but makes sure the thread is in the appropriate
3550  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3551  */
3552 /*ARGSUSED*/
3553 kthread_t *
3554 zthread_create(
3555     caddr_t stk,
3556     size_t stksize,
3557     void (*proc)(),
3558     void *arg,
3559     size_t len,
3560     pri_t pri)
3561 {
3562 	kthread_t *t;
3563 	zone_t *zone = curproc->p_zone;
3564 	proc_t *pp = zone->zone_zsched;
3565 
3566 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3567 
3568 	/*
3569 	 * No-one should be trying to create threads if the zone is shutting
3570 	 * down and there aren't any kernel threads around.  See comment
3571 	 * in zthread_exit().
3572 	 */
3573 	ASSERT(!(zone->zone_kthreads == NULL &&
3574 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3575 	/*
3576 	 * Create a thread, but don't let it run until we've finished setting
3577 	 * things up.
3578 	 */
3579 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3580 	ASSERT(t->t_forw == NULL);
3581 	mutex_enter(&zone_status_lock);
3582 	if (zone->zone_kthreads == NULL) {
3583 		t->t_forw = t->t_back = t;
3584 	} else {
3585 		kthread_t *tx = zone->zone_kthreads;
3586 
3587 		t->t_forw = tx;
3588 		t->t_back = tx->t_back;
3589 		tx->t_back->t_forw = t;
3590 		tx->t_back = t;
3591 	}
3592 	zone->zone_kthreads = t;
3593 	mutex_exit(&zone_status_lock);
3594 
3595 	mutex_enter(&pp->p_lock);
3596 	t->t_proc_flag |= TP_ZTHREAD;
3597 	project_rele(t->t_proj);
3598 	t->t_proj = project_hold(pp->p_task->tk_proj);
3599 
3600 	/*
3601 	 * Setup complete, let it run.
3602 	 */
3603 	thread_lock(t);
3604 	t->t_schedflag |= TS_ALLSTART;
3605 	setrun_locked(t);
3606 	thread_unlock(t);
3607 
3608 	mutex_exit(&pp->p_lock);
3609 
3610 	return (t);
3611 }
3612 
3613 /*
3614  * Similar to thread_exit().  Must be called by threads created via
3615  * zthread_exit().
3616  */
3617 void
3618 zthread_exit(void)
3619 {
3620 	kthread_t *t = curthread;
3621 	proc_t *pp = curproc;
3622 	zone_t *zone = pp->p_zone;
3623 
3624 	mutex_enter(&zone_status_lock);
3625 
3626 	/*
3627 	 * Reparent to p0
3628 	 */
3629 	kpreempt_disable();
3630 	mutex_enter(&pp->p_lock);
3631 	t->t_proc_flag &= ~TP_ZTHREAD;
3632 	t->t_procp = &p0;
3633 	hat_thread_exit(t);
3634 	mutex_exit(&pp->p_lock);
3635 	kpreempt_enable();
3636 
3637 	if (t->t_back == t) {
3638 		ASSERT(t->t_forw == t);
3639 		/*
3640 		 * If the zone is empty, once the thread count
3641 		 * goes to zero no further kernel threads can be
3642 		 * created.  This is because if the creator is a process
3643 		 * in the zone, then it must have exited before the zone
3644 		 * state could be set to ZONE_IS_EMPTY.
3645 		 * Otherwise, if the creator is a kernel thread in the
3646 		 * zone, the thread count is non-zero.
3647 		 *
3648 		 * This really means that non-zone kernel threads should
3649 		 * not create zone kernel threads.
3650 		 */
3651 		zone->zone_kthreads = NULL;
3652 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3653 			zone_status_set(zone, ZONE_IS_DOWN);
3654 			/*
3655 			 * Remove any CPU caps on this zone.
3656 			 */
3657 			cpucaps_zone_remove(zone);
3658 		}
3659 	} else {
3660 		t->t_forw->t_back = t->t_back;
3661 		t->t_back->t_forw = t->t_forw;
3662 		if (zone->zone_kthreads == t)
3663 			zone->zone_kthreads = t->t_forw;
3664 	}
3665 	mutex_exit(&zone_status_lock);
3666 	zone_rele(zone);
3667 	thread_exit();
3668 	/* NOTREACHED */
3669 }
3670 
3671 static void
3672 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3673 {
3674 	vnode_t *oldvp;
3675 
3676 	/* we're going to hold a reference here to the directory */
3677 	VN_HOLD(vp);
3678 
3679 	/* update abs cwd/root path see c2/audit.c */
3680 	if (AU_AUDITING())
3681 		audit_chdirec(vp, vpp);
3682 
3683 	mutex_enter(&pp->p_lock);
3684 	oldvp = *vpp;
3685 	*vpp = vp;
3686 	mutex_exit(&pp->p_lock);
3687 	if (oldvp != NULL)
3688 		VN_RELE(oldvp);
3689 }
3690 
3691 /*
3692  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3693  */
3694 static int
3695 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3696 {
3697 	nvpair_t *nvp = NULL;
3698 	boolean_t priv_set = B_FALSE;
3699 	boolean_t limit_set = B_FALSE;
3700 	boolean_t action_set = B_FALSE;
3701 
3702 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3703 		const char *name;
3704 		uint64_t ui64;
3705 
3706 		name = nvpair_name(nvp);
3707 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3708 			return (EINVAL);
3709 		(void) nvpair_value_uint64(nvp, &ui64);
3710 		if (strcmp(name, "privilege") == 0) {
3711 			/*
3712 			 * Currently only privileged values are allowed, but
3713 			 * this may change in the future.
3714 			 */
3715 			if (ui64 != RCPRIV_PRIVILEGED)
3716 				return (EINVAL);
3717 			rv->rcv_privilege = ui64;
3718 			priv_set = B_TRUE;
3719 		} else if (strcmp(name, "limit") == 0) {
3720 			rv->rcv_value = ui64;
3721 			limit_set = B_TRUE;
3722 		} else if (strcmp(name, "action") == 0) {
3723 			if (ui64 != RCTL_LOCAL_NOACTION &&
3724 			    ui64 != RCTL_LOCAL_DENY)
3725 				return (EINVAL);
3726 			rv->rcv_flagaction = ui64;
3727 			action_set = B_TRUE;
3728 		} else {
3729 			return (EINVAL);
3730 		}
3731 	}
3732 
3733 	if (!(priv_set && limit_set && action_set))
3734 		return (EINVAL);
3735 	rv->rcv_action_signal = 0;
3736 	rv->rcv_action_recipient = NULL;
3737 	rv->rcv_action_recip_pid = -1;
3738 	rv->rcv_firing_time = 0;
3739 
3740 	return (0);
3741 }
3742 
3743 /*
3744  * Non-global zone version of start_init.
3745  */
3746 void
3747 zone_start_init(void)
3748 {
3749 	proc_t *p = ttoproc(curthread);
3750 	zone_t *z = p->p_zone;
3751 
3752 	ASSERT(!INGLOBALZONE(curproc));
3753 
3754 	/*
3755 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3756 	 * storing just the pid of init is sufficient.
3757 	 */
3758 	z->zone_proc_initpid = p->p_pid;
3759 
3760 	/*
3761 	 * We maintain zone_boot_err so that we can return the cause of the
3762 	 * failure back to the caller of the zone_boot syscall.
3763 	 */
3764 	p->p_zone->zone_boot_err = start_init_common();
3765 
3766 	/*
3767 	 * We will prevent booting zones from becoming running zones if the
3768 	 * global zone is shutting down.
3769 	 */
3770 	mutex_enter(&zone_status_lock);
3771 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3772 	    ZONE_IS_SHUTTING_DOWN) {
3773 		/*
3774 		 * Make sure we are still in the booting state-- we could have
3775 		 * raced and already be shutting down, or even further along.
3776 		 */
3777 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3778 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3779 		}
3780 		mutex_exit(&zone_status_lock);
3781 		/* It's gone bad, dispose of the process */
3782 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3783 			mutex_enter(&p->p_lock);
3784 			ASSERT(p->p_flag & SEXITLWPS);
3785 			lwp_exit();
3786 		}
3787 	} else {
3788 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3789 			zone_status_set(z, ZONE_IS_RUNNING);
3790 		mutex_exit(&zone_status_lock);
3791 		/* cause the process to return to userland. */
3792 		lwp_rtt();
3793 	}
3794 }
3795 
3796 struct zsched_arg {
3797 	zone_t *zone;
3798 	nvlist_t *nvlist;
3799 };
3800 
3801 /*
3802  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3803  * anything to do with scheduling, but rather with the fact that
3804  * per-zone kernel threads are parented to zsched, just like regular
3805  * kernel threads are parented to sched (p0).
3806  *
3807  * zsched is also responsible for launching init for the zone.
3808  */
3809 static void
3810 zsched(void *arg)
3811 {
3812 	struct zsched_arg *za = arg;
3813 	proc_t *pp = curproc;
3814 	proc_t *initp = proc_init;
3815 	zone_t *zone = za->zone;
3816 	cred_t *cr, *oldcred;
3817 	rctl_set_t *set;
3818 	rctl_alloc_gp_t *gp;
3819 	contract_t *ct = NULL;
3820 	task_t *tk, *oldtk;
3821 	rctl_entity_p_t e;
3822 	kproject_t *pj;
3823 
3824 	nvlist_t *nvl = za->nvlist;
3825 	nvpair_t *nvp = NULL;
3826 
3827 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3828 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3829 	PTOU(pp)->u_argc = 0;
3830 	PTOU(pp)->u_argv = NULL;
3831 	PTOU(pp)->u_envp = NULL;
3832 	PTOU(pp)->u_commpagep = NULL;
3833 	closeall(P_FINFO(pp));
3834 
3835 	/*
3836 	 * We are this zone's "zsched" process.  As the zone isn't generally
3837 	 * visible yet we don't need to grab any locks before initializing its
3838 	 * zone_proc pointer.
3839 	 */
3840 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3841 	zone->zone_zsched = pp;
3842 	mutex_enter(&pp->p_lock);
3843 	pp->p_zone = zone;
3844 	mutex_exit(&pp->p_lock);
3845 
3846 	/*
3847 	 * Disassociate process from its 'parent'; parent ourselves to init
3848 	 * (pid 1) and change other values as needed.
3849 	 */
3850 	sess_create();
3851 
3852 	mutex_enter(&pidlock);
3853 	proc_detach(pp);
3854 	pp->p_ppid = 1;
3855 	pp->p_flag |= SZONETOP;
3856 	pp->p_ancpid = 1;
3857 	pp->p_parent = initp;
3858 	pp->p_psibling = NULL;
3859 	if (initp->p_child)
3860 		initp->p_child->p_psibling = pp;
3861 	pp->p_sibling = initp->p_child;
3862 	initp->p_child = pp;
3863 
3864 	/* Decrement what newproc() incremented. */
3865 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3866 	/*
3867 	 * Our credentials are about to become kcred-like, so we don't care
3868 	 * about the caller's ruid.
3869 	 */
3870 	upcount_inc(crgetruid(kcred), zone->zone_id);
3871 	mutex_exit(&pidlock);
3872 
3873 	/*
3874 	 * getting out of global zone, so decrement lwp and process counts
3875 	 */
3876 	pj = pp->p_task->tk_proj;
3877 	mutex_enter(&global_zone->zone_nlwps_lock);
3878 	pj->kpj_nlwps -= pp->p_lwpcnt;
3879 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3880 	pj->kpj_nprocs--;
3881 	global_zone->zone_nprocs--;
3882 	mutex_exit(&global_zone->zone_nlwps_lock);
3883 
3884 	/*
3885 	 * Decrement locked memory counts on old zone and project.
3886 	 */
3887 	mutex_enter(&global_zone->zone_mem_lock);
3888 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3889 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3890 	mutex_exit(&global_zone->zone_mem_lock);
3891 
3892 	/*
3893 	 * Create and join a new task in project '0' of this zone.
3894 	 *
3895 	 * We don't need to call holdlwps() since we know we're the only lwp in
3896 	 * this process.
3897 	 *
3898 	 * task_join() returns with p_lock held.
3899 	 */
3900 	tk = task_create(0, zone);
3901 	mutex_enter(&cpu_lock);
3902 	oldtk = task_join(tk, 0);
3903 
3904 	pj = pp->p_task->tk_proj;
3905 
3906 	mutex_enter(&zone->zone_mem_lock);
3907 	zone->zone_locked_mem += pp->p_locked_mem;
3908 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3909 	mutex_exit(&zone->zone_mem_lock);
3910 
3911 	/*
3912 	 * add lwp and process counts to zsched's zone, and increment
3913 	 * project's task and process count due to the task created in
3914 	 * the above task_create.
3915 	 */
3916 	mutex_enter(&zone->zone_nlwps_lock);
3917 	pj->kpj_nlwps += pp->p_lwpcnt;
3918 	pj->kpj_ntasks += 1;
3919 	zone->zone_nlwps += pp->p_lwpcnt;
3920 	pj->kpj_nprocs++;
3921 	zone->zone_nprocs++;
3922 	mutex_exit(&zone->zone_nlwps_lock);
3923 
3924 	mutex_exit(&curproc->p_lock);
3925 	mutex_exit(&cpu_lock);
3926 	task_rele(oldtk);
3927 
3928 	/*
3929 	 * The process was created by a process in the global zone, hence the
3930 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3931 	 */
3932 	cr = zone->zone_kcred;
3933 	crhold(cr);
3934 	mutex_enter(&pp->p_crlock);
3935 	oldcred = pp->p_cred;
3936 	pp->p_cred = cr;
3937 	mutex_exit(&pp->p_crlock);
3938 	crfree(oldcred);
3939 
3940 	/*
3941 	 * Hold credentials again (for thread)
3942 	 */
3943 	crhold(cr);
3944 
3945 	/*
3946 	 * p_lwpcnt can't change since this is a kernel process.
3947 	 */
3948 	crset(pp, cr);
3949 
3950 	/*
3951 	 * Chroot
3952 	 */
3953 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3954 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3955 
3956 	/*
3957 	 * Initialize zone's rctl set.
3958 	 */
3959 	set = rctl_set_create();
3960 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3961 	mutex_enter(&pp->p_lock);
3962 	e.rcep_p.zone = zone;
3963 	e.rcep_t = RCENTITY_ZONE;
3964 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3965 	mutex_exit(&pp->p_lock);
3966 	rctl_prealloc_destroy(gp);
3967 
3968 	/*
3969 	 * Apply the rctls passed in to zone_create().  This is basically a list
3970 	 * assignment: all of the old values are removed and the new ones
3971 	 * inserted.  That is, if an empty list is passed in, all values are
3972 	 * removed.
3973 	 */
3974 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3975 		rctl_dict_entry_t *rde;
3976 		rctl_hndl_t hndl;
3977 		char *name;
3978 		nvlist_t **nvlarray;
3979 		uint_t i, nelem;
3980 		int error;	/* For ASSERT()s */
3981 
3982 		name = nvpair_name(nvp);
3983 		hndl = rctl_hndl_lookup(name);
3984 		ASSERT(hndl != -1);
3985 		rde = rctl_dict_lookup_hndl(hndl);
3986 		ASSERT(rde != NULL);
3987 
3988 		for (; /* ever */; ) {
3989 			rctl_val_t oval;
3990 
3991 			mutex_enter(&pp->p_lock);
3992 			error = rctl_local_get(hndl, NULL, &oval, pp);
3993 			mutex_exit(&pp->p_lock);
3994 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3995 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3996 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3997 				break;
3998 			mutex_enter(&pp->p_lock);
3999 			error = rctl_local_delete(hndl, &oval, pp);
4000 			mutex_exit(&pp->p_lock);
4001 			ASSERT(error == 0);
4002 		}
4003 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4004 		ASSERT(error == 0);
4005 		for (i = 0; i < nelem; i++) {
4006 			rctl_val_t *nvalp;
4007 
4008 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4009 			error = nvlist2rctlval(nvlarray[i], nvalp);
4010 			ASSERT(error == 0);
4011 			/*
4012 			 * rctl_local_insert can fail if the value being
4013 			 * inserted is a duplicate; this is OK.
4014 			 */
4015 			mutex_enter(&pp->p_lock);
4016 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4017 				kmem_cache_free(rctl_val_cache, nvalp);
4018 			mutex_exit(&pp->p_lock);
4019 		}
4020 	}
4021 
4022 	/*
4023 	 * Tell the world that we're done setting up.
4024 	 *
4025 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4026 	 * and atomically set the zone's processor set visibility.  Once
4027 	 * we drop pool_lock() this zone will automatically get updated
4028 	 * to reflect any future changes to the pools configuration.
4029 	 *
4030 	 * Note that after we drop the locks below (zonehash_lock in
4031 	 * particular) other operations such as a zone_getattr call can
4032 	 * now proceed and observe the zone. That is the reason for doing a
4033 	 * state transition to the INITIALIZED state.
4034 	 */
4035 	pool_lock();
4036 	mutex_enter(&cpu_lock);
4037 	mutex_enter(&zonehash_lock);
4038 	zone_uniqid(zone);
4039 	zone_zsd_configure(zone);
4040 	if (pool_state == POOL_ENABLED)
4041 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4042 	mutex_enter(&zone_status_lock);
4043 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4044 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4045 	mutex_exit(&zone_status_lock);
4046 	mutex_exit(&zonehash_lock);
4047 	mutex_exit(&cpu_lock);
4048 	pool_unlock();
4049 
4050 	/* Now call the create callback for this key */
4051 	zsd_apply_all_keys(zsd_apply_create, zone);
4052 
4053 	/* The callbacks are complete. Mark ZONE_IS_READY */
4054 	mutex_enter(&zone_status_lock);
4055 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4056 	zone_status_set(zone, ZONE_IS_READY);
4057 	mutex_exit(&zone_status_lock);
4058 
4059 	/*
4060 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4061 	 * we launch init, and set the state to running.
4062 	 */
4063 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4064 
4065 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4066 		id_t cid;
4067 
4068 		/*
4069 		 * Ok, this is a little complicated.  We need to grab the
4070 		 * zone's pool's scheduling class ID; note that by now, we
4071 		 * are already bound to a pool if we need to be (zoneadmd
4072 		 * will have done that to us while we're in the READY
4073 		 * state).  *But* the scheduling class for the zone's 'init'
4074 		 * must be explicitly passed to newproc, which doesn't
4075 		 * respect pool bindings.
4076 		 *
4077 		 * We hold the pool_lock across the call to newproc() to
4078 		 * close the obvious race: the pool's scheduling class
4079 		 * could change before we manage to create the LWP with
4080 		 * classid 'cid'.
4081 		 */
4082 		pool_lock();
4083 		if (zone->zone_defaultcid > 0)
4084 			cid = zone->zone_defaultcid;
4085 		else
4086 			cid = pool_get_class(zone->zone_pool);
4087 		if (cid == -1)
4088 			cid = defaultcid;
4089 
4090 		/*
4091 		 * If this fails, zone_boot will ultimately fail.  The
4092 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4093 		 * will have to tear down the zone, and fail, or try again.
4094 		 */
4095 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4096 		    minclsyspri - 1, &ct, 0)) != 0) {
4097 			mutex_enter(&zone_status_lock);
4098 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4099 			mutex_exit(&zone_status_lock);
4100 		} else {
4101 			zone->zone_boot_time = gethrestime_sec();
4102 		}
4103 
4104 		pool_unlock();
4105 	}
4106 
4107 	/*
4108 	 * Wait for zone_destroy() to be called.  This is what we spend
4109 	 * most of our life doing.
4110 	 */
4111 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4112 
4113 	if (ct)
4114 		/*
4115 		 * At this point the process contract should be empty.
4116 		 * (Though if it isn't, it's not the end of the world.)
4117 		 */
4118 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4119 
4120 	/*
4121 	 * Allow kcred to be freed when all referring processes
4122 	 * (including this one) go away.  We can't just do this in
4123 	 * zone_free because we need to wait for the zone_cred_ref to
4124 	 * drop to 0 before calling zone_free, and the existence of
4125 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4126 	 * balance the crdup in zone_create.  The crhold calls earlier
4127 	 * in zsched will be dropped when the thread and process exit.
4128 	 */
4129 	crfree(zone->zone_kcred);
4130 	zone->zone_kcred = NULL;
4131 
4132 	exit(CLD_EXITED, 0);
4133 }
4134 
4135 /*
4136  * Helper function to determine if there are any submounts of the
4137  * provided path.  Used to make sure the zone doesn't "inherit" any
4138  * mounts from before it is created.
4139  */
4140 static uint_t
4141 zone_mount_count(const char *rootpath)
4142 {
4143 	vfs_t *vfsp;
4144 	uint_t count = 0;
4145 	size_t rootpathlen = strlen(rootpath);
4146 
4147 	/*
4148 	 * Holding zonehash_lock prevents race conditions with
4149 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4150 	 * zone_find_by_path().
4151 	 */
4152 	ASSERT(MUTEX_HELD(&zonehash_lock));
4153 	/*
4154 	 * The rootpath must end with a '/'
4155 	 */
4156 	ASSERT(rootpath[rootpathlen - 1] == '/');
4157 
4158 	/*
4159 	 * This intentionally does not count the rootpath itself if that
4160 	 * happens to be a mount point.
4161 	 */
4162 	vfs_list_read_lock();
4163 	vfsp = rootvfs;
4164 	do {
4165 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4166 		    rootpathlen) == 0)
4167 			count++;
4168 		vfsp = vfsp->vfs_next;
4169 	} while (vfsp != rootvfs);
4170 	vfs_list_unlock();
4171 	return (count);
4172 }
4173 
4174 /*
4175  * Helper function to make sure that a zone created on 'rootpath'
4176  * wouldn't end up containing other zones' rootpaths.
4177  */
4178 static boolean_t
4179 zone_is_nested(const char *rootpath)
4180 {
4181 	zone_t *zone;
4182 	size_t rootpathlen = strlen(rootpath);
4183 	size_t len;
4184 
4185 	ASSERT(MUTEX_HELD(&zonehash_lock));
4186 
4187 	/*
4188 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4189 	 */
4190 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4191 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4192 		return (B_TRUE);
4193 
4194 	for (zone = list_head(&zone_active); zone != NULL;
4195 	    zone = list_next(&zone_active, zone)) {
4196 		if (zone == global_zone)
4197 			continue;
4198 		len = strlen(zone->zone_rootpath);
4199 		if (strncmp(rootpath, zone->zone_rootpath,
4200 		    MIN(rootpathlen, len)) == 0)
4201 			return (B_TRUE);
4202 	}
4203 	return (B_FALSE);
4204 }
4205 
4206 static int
4207 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4208     size_t zone_privssz)
4209 {
4210 	priv_set_t *privs;
4211 
4212 	if (zone_privssz < sizeof (priv_set_t))
4213 		return (ENOMEM);
4214 
4215 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4216 
4217 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4218 		kmem_free(privs, sizeof (priv_set_t));
4219 		return (EFAULT);
4220 	}
4221 
4222 	zone->zone_privset = privs;
4223 	return (0);
4224 }
4225 
4226 /*
4227  * We make creative use of nvlists to pass in rctls from userland.  The list is
4228  * a list of the following structures:
4229  *
4230  * (name = rctl_name, value = nvpair_list_array)
4231  *
4232  * Where each element of the nvpair_list_array is of the form:
4233  *
4234  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4235  * 	(name = "limit", value = uint64_t),
4236  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4237  */
4238 static int
4239 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4240 {
4241 	nvpair_t *nvp = NULL;
4242 	nvlist_t *nvl = NULL;
4243 	char *kbuf;
4244 	int error;
4245 	rctl_val_t rv;
4246 
4247 	*nvlp = NULL;
4248 
4249 	if (buflen == 0)
4250 		return (0);
4251 
4252 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4253 		return (ENOMEM);
4254 	if (copyin(ubuf, kbuf, buflen)) {
4255 		error = EFAULT;
4256 		goto out;
4257 	}
4258 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4259 		/*
4260 		 * nvl may have been allocated/free'd, but the value set to
4261 		 * non-NULL, so we reset it here.
4262 		 */
4263 		nvl = NULL;
4264 		error = EINVAL;
4265 		goto out;
4266 	}
4267 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4268 		rctl_dict_entry_t *rde;
4269 		rctl_hndl_t hndl;
4270 		nvlist_t **nvlarray;
4271 		uint_t i, nelem;
4272 		char *name;
4273 
4274 		error = EINVAL;
4275 		name = nvpair_name(nvp);
4276 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4277 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4278 			goto out;
4279 		}
4280 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4281 			goto out;
4282 		}
4283 		rde = rctl_dict_lookup_hndl(hndl);
4284 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4285 		ASSERT(error == 0);
4286 		for (i = 0; i < nelem; i++) {
4287 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4288 				goto out;
4289 		}
4290 		if (rctl_invalid_value(rde, &rv)) {
4291 			error = EINVAL;
4292 			goto out;
4293 		}
4294 	}
4295 	error = 0;
4296 	*nvlp = nvl;
4297 out:
4298 	kmem_free(kbuf, buflen);
4299 	if (error && nvl != NULL)
4300 		nvlist_free(nvl);
4301 	return (error);
4302 }
4303 
4304 int
4305 zone_create_error(int er_error, int er_ext, int *er_out)
4306 {
4307 	if (er_out != NULL) {
4308 		if (copyout(&er_ext, er_out, sizeof (int))) {
4309 			return (set_errno(EFAULT));
4310 		}
4311 	}
4312 	return (set_errno(er_error));
4313 }
4314 
4315 static int
4316 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4317 {
4318 	ts_label_t *tsl;
4319 	bslabel_t blab;
4320 
4321 	/* Get label from user */
4322 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4323 		return (EFAULT);
4324 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4325 	if (tsl == NULL)
4326 		return (ENOMEM);
4327 
4328 	zone->zone_slabel = tsl;
4329 	return (0);
4330 }
4331 
4332 /*
4333  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4334  */
4335 static int
4336 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4337 {
4338 	char *kbuf;
4339 	char *dataset, *next;
4340 	zone_dataset_t *zd;
4341 	size_t len;
4342 
4343 	if (ubuf == NULL || buflen == 0)
4344 		return (0);
4345 
4346 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4347 		return (ENOMEM);
4348 
4349 	if (copyin(ubuf, kbuf, buflen) != 0) {
4350 		kmem_free(kbuf, buflen);
4351 		return (EFAULT);
4352 	}
4353 
4354 	dataset = next = kbuf;
4355 	for (;;) {
4356 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4357 
4358 		next = strchr(dataset, ',');
4359 
4360 		if (next == NULL)
4361 			len = strlen(dataset);
4362 		else
4363 			len = next - dataset;
4364 
4365 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4366 		bcopy(dataset, zd->zd_dataset, len);
4367 		zd->zd_dataset[len] = '\0';
4368 
4369 		list_insert_head(&zone->zone_datasets, zd);
4370 
4371 		if (next == NULL)
4372 			break;
4373 
4374 		dataset = next + 1;
4375 	}
4376 
4377 	kmem_free(kbuf, buflen);
4378 	return (0);
4379 }
4380 
4381 /*
4382  * System call to create/initialize a new zone named 'zone_name', rooted
4383  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4384  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4385  * with labeling set by 'match', 'doi', and 'label'.
4386  *
4387  * If extended error is non-null, we may use it to return more detailed
4388  * error information.
4389  */
4390 static zoneid_t
4391 zone_create(const char *zone_name, const char *zone_root,
4392     const priv_set_t *zone_privs, size_t zone_privssz,
4393     caddr_t rctlbuf, size_t rctlbufsz,
4394     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4395     int match, uint32_t doi, const bslabel_t *label,
4396     int flags)
4397 {
4398 	struct zsched_arg zarg;
4399 	nvlist_t *rctls = NULL;
4400 	proc_t *pp = curproc;
4401 	zone_t *zone, *ztmp;
4402 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4403 	int error;
4404 	int error2 = 0;
4405 	char *str;
4406 	cred_t *zkcr;
4407 	boolean_t insert_label_hash;
4408 
4409 	if (secpolicy_zone_config(CRED()) != 0)
4410 		return (set_errno(EPERM));
4411 
4412 	/* can't boot zone from within chroot environment */
4413 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4414 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4415 		    extended_error));
4416 	/*
4417 	 * As the first step of zone creation, we want to allocate a zoneid.
4418 	 * This allocation is complicated by the fact that netstacks use the
4419 	 * zoneid to determine their stackid, but netstacks themselves are
4420 	 * freed asynchronously with respect to zone destruction.  This means
4421 	 * that a netstack reference leak (or in principle, an extraordinarily
4422 	 * long netstack reference hold) could result in a zoneid being
4423 	 * allocated that in fact corresponds to a stackid from an active
4424 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4425 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4426 	 * zoneid to not be deallocated until its last referencing netstack
4427 	 * has been released, but netstacks lack a backpointer into their
4428 	 * referencing zone -- and changing them to have such a pointer would
4429 	 * be substantial, to put it euphemistically.)  To avoid this, we
4430 	 * detect this condition on allocation: if we have allocated a zoneid
4431 	 * that corresponds to a netstack that's still in use, we warn about
4432 	 * it (as it is much more likely to be a reference leak than an actual
4433 	 * netstack reference), free it, and allocate another.  That these
4434 	 * identifers are allocated out of an ID space assures that we won't
4435 	 * see the identifier we just allocated.
4436 	 */
4437 	for (;;) {
4438 		zoneid = id_alloc(zoneid_space);
4439 
4440 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4441 			break;
4442 
4443 		id_free(zoneid_space, zoneid);
4444 
4445 		if (start == GLOBAL_ZONEID) {
4446 			start = zoneid;
4447 		} else if (zoneid == start) {
4448 			/*
4449 			 * We have managed to iterate over the entire available
4450 			 * zoneid space -- there are no identifiers available,
4451 			 * presumably due to some number of leaked netstack
4452 			 * references.  While it's in principle possible for us
4453 			 * to continue to try, it seems wiser to give up at
4454 			 * this point to warn and fail explicitly with a
4455 			 * distinctive error.
4456 			 */
4457 			cmn_err(CE_WARN, "zone_create() failed: all available "
4458 			    "zone IDs have netstacks still in use");
4459 			return (set_errno(ENFILE));
4460 		}
4461 
4462 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4463 		    "netstack still in use", zoneid);
4464 	}
4465 
4466 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4467 	zone->zone_id = zoneid;
4468 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4469 	zone->zone_pool = pool_default;
4470 	zone->zone_pool_mod = gethrtime();
4471 	zone->zone_psetid = ZONE_PS_INVAL;
4472 	zone->zone_ncpus = 0;
4473 	zone->zone_ncpus_online = 0;
4474 	zone->zone_restart_init = B_TRUE;
4475 	zone->zone_brand = &native_brand;
4476 	zone->zone_initname = NULL;
4477 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4478 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4479 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4480 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4481 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4482 	    offsetof(zone_ref_t, zref_linkage));
4483 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4484 	    offsetof(struct zsd_entry, zsd_linkage));
4485 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4486 	    offsetof(zone_dataset_t, zd_linkage));
4487 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4488 	    offsetof(zone_dl_t, zdl_linkage));
4489 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4490 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4491 
4492 	if (flags & ZCF_NET_EXCL) {
4493 		zone->zone_flags |= ZF_NET_EXCL;
4494 	}
4495 
4496 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4497 		zone_free(zone);
4498 		return (zone_create_error(error, 0, extended_error));
4499 	}
4500 
4501 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4502 		zone_free(zone);
4503 		return (zone_create_error(error, 0, extended_error));
4504 	}
4505 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4506 		zone_free(zone);
4507 		return (zone_create_error(error, 0, extended_error));
4508 	}
4509 
4510 	/* initialize node name to be the same as zone name */
4511 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4512 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4513 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4514 
4515 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4516 	zone->zone_domain[0] = '\0';
4517 	zone->zone_hostid = HW_INVALID_HOSTID;
4518 	zone->zone_shares = 1;
4519 	zone->zone_shmmax = 0;
4520 	zone->zone_ipc.ipcq_shmmni = 0;
4521 	zone->zone_ipc.ipcq_semmni = 0;
4522 	zone->zone_ipc.ipcq_msgmni = 0;
4523 	zone->zone_bootargs = NULL;
4524 	zone->zone_fs_allowed = NULL;
4525 
4526 	secflags_zero(&zone0.zone_secflags.psf_lower);
4527 	secflags_zero(&zone0.zone_secflags.psf_effective);
4528 	secflags_zero(&zone0.zone_secflags.psf_inherit);
4529 	secflags_fullset(&zone0.zone_secflags.psf_upper);
4530 
4531 	zone->zone_initname =
4532 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4533 	(void) strcpy(zone->zone_initname, zone_default_initname);
4534 	zone->zone_nlwps = 0;
4535 	zone->zone_nlwps_ctl = INT_MAX;
4536 	zone->zone_nprocs = 0;
4537 	zone->zone_nprocs_ctl = INT_MAX;
4538 	zone->zone_locked_mem = 0;
4539 	zone->zone_locked_mem_ctl = UINT64_MAX;
4540 	zone->zone_max_swap = 0;
4541 	zone->zone_max_swap_ctl = UINT64_MAX;
4542 	zone->zone_max_lofi = 0;
4543 	zone->zone_max_lofi_ctl = UINT64_MAX;
4544 	zone0.zone_lockedmem_kstat = NULL;
4545 	zone0.zone_swapresv_kstat = NULL;
4546 
4547 	/*
4548 	 * Zsched initializes the rctls.
4549 	 */
4550 	zone->zone_rctls = NULL;
4551 
4552 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4553 		zone_free(zone);
4554 		return (zone_create_error(error, 0, extended_error));
4555 	}
4556 
4557 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4558 		zone_free(zone);
4559 		return (set_errno(error));
4560 	}
4561 
4562 	/*
4563 	 * Read in the trusted system parameters:
4564 	 * match flag and sensitivity label.
4565 	 */
4566 	zone->zone_match = match;
4567 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4568 		/* Fail if requested to set doi to anything but system's doi */
4569 		if (doi != 0 && doi != default_doi) {
4570 			zone_free(zone);
4571 			return (set_errno(EINVAL));
4572 		}
4573 		/* Always apply system's doi to the zone */
4574 		error = zone_set_label(zone, label, default_doi);
4575 		if (error != 0) {
4576 			zone_free(zone);
4577 			return (set_errno(error));
4578 		}
4579 		insert_label_hash = B_TRUE;
4580 	} else {
4581 		/* all zones get an admin_low label if system is not labeled */
4582 		zone->zone_slabel = l_admin_low;
4583 		label_hold(l_admin_low);
4584 		insert_label_hash = B_FALSE;
4585 	}
4586 
4587 	/*
4588 	 * Stop all lwps since that's what normally happens as part of fork().
4589 	 * This needs to happen before we grab any locks to avoid deadlock
4590 	 * (another lwp in the process could be waiting for the held lock).
4591 	 */
4592 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4593 		zone_free(zone);
4594 		nvlist_free(rctls);
4595 		return (zone_create_error(error, 0, extended_error));
4596 	}
4597 
4598 	if (block_mounts(zone) == 0) {
4599 		mutex_enter(&pp->p_lock);
4600 		if (curthread != pp->p_agenttp)
4601 			continuelwps(pp);
4602 		mutex_exit(&pp->p_lock);
4603 		zone_free(zone);
4604 		nvlist_free(rctls);
4605 		return (zone_create_error(error, 0, extended_error));
4606 	}
4607 
4608 	/*
4609 	 * Set up credential for kernel access.  After this, any errors
4610 	 * should go through the dance in errout rather than calling
4611 	 * zone_free directly.
4612 	 */
4613 	zone->zone_kcred = crdup(kcred);
4614 	crsetzone(zone->zone_kcred, zone);
4615 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4616 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4617 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4618 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4619 
4620 	mutex_enter(&zonehash_lock);
4621 	/*
4622 	 * Make sure zone doesn't already exist.
4623 	 *
4624 	 * If the system and zone are labeled,
4625 	 * make sure no other zone exists that has the same label.
4626 	 */
4627 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4628 	    (insert_label_hash &&
4629 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4630 		zone_status_t status;
4631 
4632 		status = zone_status_get(ztmp);
4633 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4634 			error = EEXIST;
4635 		else
4636 			error = EBUSY;
4637 
4638 		if (insert_label_hash)
4639 			error2 = ZE_LABELINUSE;
4640 
4641 		goto errout;
4642 	}
4643 
4644 	/*
4645 	 * Don't allow zone creations which would cause one zone's rootpath to
4646 	 * be accessible from that of another (non-global) zone.
4647 	 */
4648 	if (zone_is_nested(zone->zone_rootpath)) {
4649 		error = EBUSY;
4650 		goto errout;
4651 	}
4652 
4653 	ASSERT(zonecount != 0);		/* check for leaks */
4654 	if (zonecount + 1 > maxzones) {
4655 		error = ENOMEM;
4656 		goto errout;
4657 	}
4658 
4659 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4660 		error = EBUSY;
4661 		error2 = ZE_AREMOUNTS;
4662 		goto errout;
4663 	}
4664 
4665 	/*
4666 	 * Zone is still incomplete, but we need to drop all locks while
4667 	 * zsched() initializes this zone's kernel process.  We
4668 	 * optimistically add the zone to the hashtable and associated
4669 	 * lists so a parallel zone_create() doesn't try to create the
4670 	 * same zone.
4671 	 */
4672 	zonecount++;
4673 	(void) mod_hash_insert(zonehashbyid,
4674 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4675 	    (mod_hash_val_t)(uintptr_t)zone);
4676 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4677 	(void) strcpy(str, zone->zone_name);
4678 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4679 	    (mod_hash_val_t)(uintptr_t)zone);
4680 	if (insert_label_hash) {
4681 		(void) mod_hash_insert(zonehashbylabel,
4682 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4683 		zone->zone_flags |= ZF_HASHED_LABEL;
4684 	}
4685 
4686 	/*
4687 	 * Insert into active list.  At this point there are no 'hold's
4688 	 * on the zone, but everyone else knows not to use it, so we can
4689 	 * continue to use it.  zsched() will do a zone_hold() if the
4690 	 * newproc() is successful.
4691 	 */
4692 	list_insert_tail(&zone_active, zone);
4693 	mutex_exit(&zonehash_lock);
4694 
4695 	zarg.zone = zone;
4696 	zarg.nvlist = rctls;
4697 	/*
4698 	 * The process, task, and project rctls are probably wrong;
4699 	 * we need an interface to get the default values of all rctls,
4700 	 * and initialize zsched appropriately.  I'm not sure that that
4701 	 * makes much of a difference, though.
4702 	 */
4703 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4704 	if (error != 0) {
4705 		/*
4706 		 * We need to undo all globally visible state.
4707 		 */
4708 		mutex_enter(&zonehash_lock);
4709 		list_remove(&zone_active, zone);
4710 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4711 			ASSERT(zone->zone_slabel != NULL);
4712 			(void) mod_hash_destroy(zonehashbylabel,
4713 			    (mod_hash_key_t)zone->zone_slabel);
4714 		}
4715 		(void) mod_hash_destroy(zonehashbyname,
4716 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4717 		(void) mod_hash_destroy(zonehashbyid,
4718 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4719 		ASSERT(zonecount > 1);
4720 		zonecount--;
4721 		goto errout;
4722 	}
4723 
4724 	/*
4725 	 * Zone creation can't fail from now on.
4726 	 */
4727 
4728 	/*
4729 	 * Create zone kstats
4730 	 */
4731 	zone_kstat_create(zone);
4732 
4733 	/*
4734 	 * Let the other lwps continue.
4735 	 */
4736 	mutex_enter(&pp->p_lock);
4737 	if (curthread != pp->p_agenttp)
4738 		continuelwps(pp);
4739 	mutex_exit(&pp->p_lock);
4740 
4741 	/*
4742 	 * Wait for zsched to finish initializing the zone.
4743 	 */
4744 	zone_status_wait(zone, ZONE_IS_READY);
4745 	/*
4746 	 * The zone is fully visible, so we can let mounts progress.
4747 	 */
4748 	resume_mounts(zone);
4749 	nvlist_free(rctls);
4750 
4751 	return (zoneid);
4752 
4753 errout:
4754 	mutex_exit(&zonehash_lock);
4755 	/*
4756 	 * Let the other lwps continue.
4757 	 */
4758 	mutex_enter(&pp->p_lock);
4759 	if (curthread != pp->p_agenttp)
4760 		continuelwps(pp);
4761 	mutex_exit(&pp->p_lock);
4762 
4763 	resume_mounts(zone);
4764 	nvlist_free(rctls);
4765 	/*
4766 	 * There is currently one reference to the zone, a cred_ref from
4767 	 * zone_kcred.  To free the zone, we call crfree, which will call
4768 	 * zone_cred_rele, which will call zone_free.
4769 	 */
4770 	ASSERT(zone->zone_cred_ref == 1);
4771 	ASSERT(zone->zone_kcred->cr_ref == 1);
4772 	ASSERT(zone->zone_ref == 0);
4773 	zkcr = zone->zone_kcred;
4774 	zone->zone_kcred = NULL;
4775 	crfree(zkcr);				/* triggers call to zone_free */
4776 	return (zone_create_error(error, error2, extended_error));
4777 }
4778 
4779 /*
4780  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4781  * the heavy lifting.  initname is the path to the program to launch
4782  * at the "top" of the zone; if this is NULL, we use the system default,
4783  * which is stored at zone_default_initname.
4784  */
4785 static int
4786 zone_boot(zoneid_t zoneid)
4787 {
4788 	int err;
4789 	zone_t *zone;
4790 
4791 	if (secpolicy_zone_config(CRED()) != 0)
4792 		return (set_errno(EPERM));
4793 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4794 		return (set_errno(EINVAL));
4795 
4796 	mutex_enter(&zonehash_lock);
4797 	/*
4798 	 * Look for zone under hash lock to prevent races with calls to
4799 	 * zone_shutdown, zone_destroy, etc.
4800 	 */
4801 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4802 		mutex_exit(&zonehash_lock);
4803 		return (set_errno(EINVAL));
4804 	}
4805 
4806 	mutex_enter(&zone_status_lock);
4807 	if (zone_status_get(zone) != ZONE_IS_READY) {
4808 		mutex_exit(&zone_status_lock);
4809 		mutex_exit(&zonehash_lock);
4810 		return (set_errno(EINVAL));
4811 	}
4812 	zone_status_set(zone, ZONE_IS_BOOTING);
4813 	mutex_exit(&zone_status_lock);
4814 
4815 	zone_hold(zone);	/* so we can use the zone_t later */
4816 	mutex_exit(&zonehash_lock);
4817 
4818 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4819 		zone_rele(zone);
4820 		return (set_errno(EINTR));
4821 	}
4822 
4823 	/*
4824 	 * Boot (starting init) might have failed, in which case the zone
4825 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4826 	 * be placed in zone->zone_boot_err, and so we return that.
4827 	 */
4828 	err = zone->zone_boot_err;
4829 	zone_rele(zone);
4830 	return (err ? set_errno(err) : 0);
4831 }
4832 
4833 /*
4834  * Kills all user processes in the zone, waiting for them all to exit
4835  * before returning.
4836  */
4837 static int
4838 zone_empty(zone_t *zone)
4839 {
4840 	int waitstatus;
4841 
4842 	/*
4843 	 * We need to drop zonehash_lock before killing all
4844 	 * processes, otherwise we'll deadlock with zone_find_*
4845 	 * which can be called from the exit path.
4846 	 */
4847 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4848 	while ((waitstatus = zone_status_timedwait_sig(zone,
4849 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4850 		killall(zone->zone_id);
4851 	}
4852 	/*
4853 	 * return EINTR if we were signaled
4854 	 */
4855 	if (waitstatus == 0)
4856 		return (EINTR);
4857 	return (0);
4858 }
4859 
4860 /*
4861  * This function implements the policy for zone visibility.
4862  *
4863  * In standard Solaris, a non-global zone can only see itself.
4864  *
4865  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4866  * it dominates. For this test, the label of the global zone is treated as
4867  * admin_high so it is special-cased instead of being checked for dominance.
4868  *
4869  * Returns true if zone attributes are viewable, false otherwise.
4870  */
4871 static boolean_t
4872 zone_list_access(zone_t *zone)
4873 {
4874 
4875 	if (curproc->p_zone == global_zone ||
4876 	    curproc->p_zone == zone) {
4877 		return (B_TRUE);
4878 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4879 		bslabel_t *curproc_label;
4880 		bslabel_t *zone_label;
4881 
4882 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4883 		zone_label = label2bslabel(zone->zone_slabel);
4884 
4885 		if (zone->zone_id != GLOBAL_ZONEID &&
4886 		    bldominates(curproc_label, zone_label)) {
4887 			return (B_TRUE);
4888 		} else {
4889 			return (B_FALSE);
4890 		}
4891 	} else {
4892 		return (B_FALSE);
4893 	}
4894 }
4895 
4896 /*
4897  * Systemcall to start the zone's halt sequence.  By the time this
4898  * function successfully returns, all user processes and kernel threads
4899  * executing in it will have exited, ZSD shutdown callbacks executed,
4900  * and the zone status set to ZONE_IS_DOWN.
4901  *
4902  * It is possible that the call will interrupt itself if the caller is the
4903  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4904  */
4905 static int
4906 zone_shutdown(zoneid_t zoneid)
4907 {
4908 	int error;
4909 	zone_t *zone;
4910 	zone_status_t status;
4911 
4912 	if (secpolicy_zone_config(CRED()) != 0)
4913 		return (set_errno(EPERM));
4914 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4915 		return (set_errno(EINVAL));
4916 
4917 	mutex_enter(&zonehash_lock);
4918 	/*
4919 	 * Look for zone under hash lock to prevent races with other
4920 	 * calls to zone_shutdown and zone_destroy.
4921 	 */
4922 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4923 		mutex_exit(&zonehash_lock);
4924 		return (set_errno(EINVAL));
4925 	}
4926 
4927 	/*
4928 	 * We have to drop zonehash_lock before calling block_mounts.
4929 	 * Hold the zone so we can continue to use the zone_t.
4930 	 */
4931 	zone_hold(zone);
4932 	mutex_exit(&zonehash_lock);
4933 
4934 	/*
4935 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4936 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4937 	 *
4938 	 * e.g. NFS can fail the mount if it determines that the zone
4939 	 * has already begun the shutdown sequence.
4940 	 *
4941 	 */
4942 	if (block_mounts(zone) == 0) {
4943 		zone_rele(zone);
4944 		return (set_errno(EINTR));
4945 	}
4946 
4947 	mutex_enter(&zonehash_lock);
4948 	mutex_enter(&zone_status_lock);
4949 	status = zone_status_get(zone);
4950 	/*
4951 	 * Fail if the zone isn't fully initialized yet.
4952 	 */
4953 	if (status < ZONE_IS_READY) {
4954 		mutex_exit(&zone_status_lock);
4955 		mutex_exit(&zonehash_lock);
4956 		resume_mounts(zone);
4957 		zone_rele(zone);
4958 		return (set_errno(EINVAL));
4959 	}
4960 	/*
4961 	 * If conditions required for zone_shutdown() to return have been met,
4962 	 * return success.
4963 	 */
4964 	if (status >= ZONE_IS_DOWN) {
4965 		mutex_exit(&zone_status_lock);
4966 		mutex_exit(&zonehash_lock);
4967 		resume_mounts(zone);
4968 		zone_rele(zone);
4969 		return (0);
4970 	}
4971 	/*
4972 	 * If zone_shutdown() hasn't been called before, go through the motions.
4973 	 * If it has, there's nothing to do but wait for the kernel threads to
4974 	 * drain.
4975 	 */
4976 	if (status < ZONE_IS_EMPTY) {
4977 		uint_t ntasks;
4978 
4979 		mutex_enter(&zone->zone_lock);
4980 		if ((ntasks = zone->zone_ntasks) != 1) {
4981 			/*
4982 			 * There's still stuff running.
4983 			 */
4984 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4985 		}
4986 		mutex_exit(&zone->zone_lock);
4987 		if (ntasks == 1) {
4988 			/*
4989 			 * The only way to create another task is through
4990 			 * zone_enter(), which will block until we drop
4991 			 * zonehash_lock.  The zone is empty.
4992 			 */
4993 			if (zone->zone_kthreads == NULL) {
4994 				/*
4995 				 * Skip ahead to ZONE_IS_DOWN
4996 				 */
4997 				zone_status_set(zone, ZONE_IS_DOWN);
4998 			} else {
4999 				zone_status_set(zone, ZONE_IS_EMPTY);
5000 			}
5001 		}
5002 	}
5003 	mutex_exit(&zone_status_lock);
5004 	mutex_exit(&zonehash_lock);
5005 	resume_mounts(zone);
5006 
5007 	if (error = zone_empty(zone)) {
5008 		zone_rele(zone);
5009 		return (set_errno(error));
5010 	}
5011 	/*
5012 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5013 	 * longer be notified of changes to the pools configuration, so
5014 	 * in order to not end up with a stale pool pointer, we point
5015 	 * ourselves at the default pool and remove all resource
5016 	 * visibility.  This is especially important as the zone_t may
5017 	 * languish on the deathrow for a very long time waiting for
5018 	 * cred's to drain out.
5019 	 *
5020 	 * This rebinding of the zone can happen multiple times
5021 	 * (presumably due to interrupted or parallel systemcalls)
5022 	 * without any adverse effects.
5023 	 */
5024 	if (pool_lock_intr() != 0) {
5025 		zone_rele(zone);
5026 		return (set_errno(EINTR));
5027 	}
5028 	if (pool_state == POOL_ENABLED) {
5029 		mutex_enter(&cpu_lock);
5030 		zone_pool_set(zone, pool_default);
5031 		/*
5032 		 * The zone no longer needs to be able to see any cpus.
5033 		 */
5034 		zone_pset_set(zone, ZONE_PS_INVAL);
5035 		mutex_exit(&cpu_lock);
5036 	}
5037 	pool_unlock();
5038 
5039 	/*
5040 	 * ZSD shutdown callbacks can be executed multiple times, hence
5041 	 * it is safe to not be holding any locks across this call.
5042 	 */
5043 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5044 
5045 	mutex_enter(&zone_status_lock);
5046 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5047 		zone_status_set(zone, ZONE_IS_DOWN);
5048 	mutex_exit(&zone_status_lock);
5049 
5050 	/*
5051 	 * Wait for kernel threads to drain.
5052 	 */
5053 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5054 		zone_rele(zone);
5055 		return (set_errno(EINTR));
5056 	}
5057 
5058 	/*
5059 	 * Zone can be become down/destroyable even if the above wait
5060 	 * returns EINTR, so any code added here may never execute.
5061 	 * (i.e. don't add code here)
5062 	 */
5063 
5064 	zone_rele(zone);
5065 	return (0);
5066 }
5067 
5068 /*
5069  * Log the specified zone's reference counts.  The caller should not be
5070  * holding the zone's zone_lock.
5071  */
5072 static void
5073 zone_log_refcounts(zone_t *zone)
5074 {
5075 	char *buffer;
5076 	char *buffer_position;
5077 	uint32_t buffer_size;
5078 	uint32_t index;
5079 	uint_t ref;
5080 	uint_t cred_ref;
5081 
5082 	/*
5083 	 * Construct a string representing the subsystem-specific reference
5084 	 * counts.  The counts are printed in ascending order by index into the
5085 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5086 	 * square brackets [] and will only contain nonzero reference counts.
5087 	 *
5088 	 * The buffer will hold two square bracket characters plus ten digits,
5089 	 * one colon, one space, one comma, and some characters for a
5090 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5091 	 * bit integers have at most ten decimal digits.)  The last
5092 	 * reference count's comma is replaced by the closing square
5093 	 * bracket and a NULL character to terminate the string.
5094 	 *
5095 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5096 	 * snapshot of the zone's reference counters.
5097 	 *
5098 	 * First, figure out how much space the string buffer will need.
5099 	 * The buffer's size is stored in buffer_size.
5100 	 */
5101 	buffer_size = 2;			/* for the square brackets */
5102 	mutex_enter(&zone->zone_lock);
5103 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5104 	ref = zone->zone_ref;
5105 	cred_ref = zone->zone_cred_ref;
5106 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5107 		if (zone->zone_subsys_ref[index] != 0)
5108 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5109 			    13;
5110 	if (buffer_size == 2) {
5111 		/*
5112 		 * No subsystems had nonzero reference counts.  Don't bother
5113 		 * with allocating a buffer; just log the general-purpose and
5114 		 * credential reference counts.
5115 		 */
5116 		mutex_exit(&zone->zone_lock);
5117 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5118 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5119 		    "references and %u credential references are still extant",
5120 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5121 		return;
5122 	}
5123 
5124 	/*
5125 	 * buffer_size contains the exact number of characters that the
5126 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5127 	 * subsystem-specific reference counts.  Surround the results with
5128 	 * square brackets afterwards.
5129 	 */
5130 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5131 	buffer_position = &buffer[1];
5132 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5133 		/*
5134 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5135 		 * the modified buffer rather than the number of bytes written
5136 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5137 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5138 		 * number of bytes written.  Using INT_MAX is safe because
5139 		 * the buffer is perfectly sized for the data: we'll never
5140 		 * overrun the buffer.
5141 		 */
5142 		if (zone->zone_subsys_ref[index] != 0)
5143 			buffer_position += snprintf(buffer_position, INT_MAX,
5144 			    "%s: %u,", zone_ref_subsys_names[index],
5145 			    zone->zone_subsys_ref[index]);
5146 	}
5147 	mutex_exit(&zone->zone_lock);
5148 	buffer[0] = '[';
5149 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5150 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5151 	buffer_position[-1] = ']';
5152 
5153 	/*
5154 	 * Log the reference counts and free the message buffer.
5155 	 */
5156 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5157 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5158 	    "%u credential references are still extant %s", zone->zone_name,
5159 	    zone->zone_id, ref, cred_ref, buffer);
5160 	kmem_free(buffer, buffer_size);
5161 }
5162 
5163 /*
5164  * Systemcall entry point to finalize the zone halt process.  The caller
5165  * must have already successfully called zone_shutdown().
5166  *
5167  * Upon successful completion, the zone will have been fully destroyed:
5168  * zsched will have exited, destructor callbacks executed, and the zone
5169  * removed from the list of active zones.
5170  */
5171 static int
5172 zone_destroy(zoneid_t zoneid)
5173 {
5174 	uint64_t uniqid;
5175 	zone_t *zone;
5176 	zone_status_t status;
5177 	clock_t wait_time;
5178 	boolean_t log_refcounts;
5179 
5180 	if (secpolicy_zone_config(CRED()) != 0)
5181 		return (set_errno(EPERM));
5182 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5183 		return (set_errno(EINVAL));
5184 
5185 	mutex_enter(&zonehash_lock);
5186 	/*
5187 	 * Look for zone under hash lock to prevent races with other
5188 	 * calls to zone_destroy.
5189 	 */
5190 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5191 		mutex_exit(&zonehash_lock);
5192 		return (set_errno(EINVAL));
5193 	}
5194 
5195 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5196 		mutex_exit(&zonehash_lock);
5197 		return (set_errno(EBUSY));
5198 	}
5199 	mutex_enter(&zone_status_lock);
5200 	status = zone_status_get(zone);
5201 	if (status < ZONE_IS_DOWN) {
5202 		mutex_exit(&zone_status_lock);
5203 		mutex_exit(&zonehash_lock);
5204 		return (set_errno(EBUSY));
5205 	} else if (status == ZONE_IS_DOWN) {
5206 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5207 	}
5208 	mutex_exit(&zone_status_lock);
5209 	zone_hold(zone);
5210 	mutex_exit(&zonehash_lock);
5211 
5212 	/*
5213 	 * wait for zsched to exit
5214 	 */
5215 	zone_status_wait(zone, ZONE_IS_DEAD);
5216 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5217 	zone->zone_netstack = NULL;
5218 	uniqid = zone->zone_uniqid;
5219 	zone_rele(zone);
5220 	zone = NULL;	/* potentially free'd */
5221 
5222 	log_refcounts = B_FALSE;
5223 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5224 	mutex_enter(&zonehash_lock);
5225 	for (; /* ever */; ) {
5226 		boolean_t unref;
5227 		boolean_t refs_have_been_logged;
5228 
5229 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5230 		    zone->zone_uniqid != uniqid) {
5231 			/*
5232 			 * The zone has gone away.  Necessary conditions
5233 			 * are met, so we return success.
5234 			 */
5235 			mutex_exit(&zonehash_lock);
5236 			return (0);
5237 		}
5238 		mutex_enter(&zone->zone_lock);
5239 		unref = ZONE_IS_UNREF(zone);
5240 		refs_have_been_logged = (zone->zone_flags &
5241 		    ZF_REFCOUNTS_LOGGED);
5242 		mutex_exit(&zone->zone_lock);
5243 		if (unref) {
5244 			/*
5245 			 * There is only one reference to the zone -- that
5246 			 * added when the zone was added to the hashtables --
5247 			 * and things will remain this way until we drop
5248 			 * zonehash_lock... we can go ahead and cleanup the
5249 			 * zone.
5250 			 */
5251 			break;
5252 		}
5253 
5254 		/*
5255 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5256 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5257 		 * some zone's general-purpose reference count reaches one.
5258 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5259 		 * on zone_destroy_cv, then log the zone's reference counts and
5260 		 * continue to wait for zone_rele() and zone_cred_rele().
5261 		 */
5262 		if (!refs_have_been_logged) {
5263 			if (!log_refcounts) {
5264 				/*
5265 				 * This thread hasn't timed out waiting on
5266 				 * zone_destroy_cv yet.  Wait wait_time clock
5267 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5268 				 * seconds) for the zone's references to clear.
5269 				 */
5270 				ASSERT(wait_time > 0);
5271 				wait_time = cv_reltimedwait_sig(
5272 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5273 				    TR_SEC);
5274 				if (wait_time > 0) {
5275 					/*
5276 					 * A thread in zone_rele() or
5277 					 * zone_cred_rele() signaled
5278 					 * zone_destroy_cv before this thread's
5279 					 * wait timed out.  The zone might have
5280 					 * only one reference left; find out!
5281 					 */
5282 					continue;
5283 				} else if (wait_time == 0) {
5284 					/* The thread's process was signaled. */
5285 					mutex_exit(&zonehash_lock);
5286 					return (set_errno(EINTR));
5287 				}
5288 
5289 				/*
5290 				 * The thread timed out while waiting on
5291 				 * zone_destroy_cv.  Even though the thread
5292 				 * timed out, it has to check whether another
5293 				 * thread woke up from zone_destroy_cv and
5294 				 * destroyed the zone.
5295 				 *
5296 				 * If the zone still exists and has more than
5297 				 * one unreleased general-purpose reference,
5298 				 * then log the zone's reference counts.
5299 				 */
5300 				log_refcounts = B_TRUE;
5301 				continue;
5302 			}
5303 
5304 			/*
5305 			 * The thread already timed out on zone_destroy_cv while
5306 			 * waiting for subsystems to release the zone's last
5307 			 * general-purpose references.  Log the zone's reference
5308 			 * counts and wait indefinitely on zone_destroy_cv.
5309 			 */
5310 			zone_log_refcounts(zone);
5311 		}
5312 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5313 			/* The thread's process was signaled. */
5314 			mutex_exit(&zonehash_lock);
5315 			return (set_errno(EINTR));
5316 		}
5317 	}
5318 
5319 	/*
5320 	 * Remove CPU cap for this zone now since we're not going to
5321 	 * fail below this point.
5322 	 */
5323 	cpucaps_zone_remove(zone);
5324 
5325 	/* Get rid of the zone's kstats */
5326 	zone_kstat_delete(zone);
5327 
5328 	/* remove the pfexecd doors */
5329 	if (zone->zone_pfexecd != NULL) {
5330 		klpd_freelist(&zone->zone_pfexecd);
5331 		zone->zone_pfexecd = NULL;
5332 	}
5333 
5334 	/* free brand specific data */
5335 	if (ZONE_IS_BRANDED(zone))
5336 		ZBROP(zone)->b_free_brand_data(zone);
5337 
5338 	/* Say goodbye to brand framework. */
5339 	brand_unregister_zone(zone->zone_brand);
5340 
5341 	/*
5342 	 * It is now safe to let the zone be recreated; remove it from the
5343 	 * lists.  The memory will not be freed until the last cred
5344 	 * reference goes away.
5345 	 */
5346 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5347 	zonecount--;
5348 	/* remove from active list and hash tables */
5349 	list_remove(&zone_active, zone);
5350 	(void) mod_hash_destroy(zonehashbyname,
5351 	    (mod_hash_key_t)zone->zone_name);
5352 	(void) mod_hash_destroy(zonehashbyid,
5353 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5354 	if (zone->zone_flags & ZF_HASHED_LABEL)
5355 		(void) mod_hash_destroy(zonehashbylabel,
5356 		    (mod_hash_key_t)zone->zone_slabel);
5357 	mutex_exit(&zonehash_lock);
5358 
5359 	/*
5360 	 * Release the root vnode; we're not using it anymore.  Nor should any
5361 	 * other thread that might access it exist.
5362 	 */
5363 	if (zone->zone_rootvp != NULL) {
5364 		VN_RELE(zone->zone_rootvp);
5365 		zone->zone_rootvp = NULL;
5366 	}
5367 
5368 	/* add to deathrow list */
5369 	mutex_enter(&zone_deathrow_lock);
5370 	list_insert_tail(&zone_deathrow, zone);
5371 	mutex_exit(&zone_deathrow_lock);
5372 
5373 	/*
5374 	 * Drop last reference (which was added by zsched()), this will
5375 	 * free the zone unless there are outstanding cred references.
5376 	 */
5377 	zone_rele(zone);
5378 	return (0);
5379 }
5380 
5381 /*
5382  * Systemcall entry point for zone_getattr(2).
5383  */
5384 static ssize_t
5385 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5386 {
5387 	size_t size;
5388 	int error = 0, err;
5389 	zone_t *zone;
5390 	char *zonepath;
5391 	char *outstr;
5392 	zone_status_t zone_status;
5393 	pid_t initpid;
5394 	boolean_t global = (curzone == global_zone);
5395 	boolean_t inzone = (curzone->zone_id == zoneid);
5396 	ushort_t flags;
5397 	zone_net_data_t *zbuf;
5398 
5399 	mutex_enter(&zonehash_lock);
5400 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5401 		mutex_exit(&zonehash_lock);
5402 		return (set_errno(EINVAL));
5403 	}
5404 	zone_status = zone_status_get(zone);
5405 	if (zone_status < ZONE_IS_INITIALIZED) {
5406 		mutex_exit(&zonehash_lock);
5407 		return (set_errno(EINVAL));
5408 	}
5409 	zone_hold(zone);
5410 	mutex_exit(&zonehash_lock);
5411 
5412 	/*
5413 	 * If not in the global zone, don't show information about other zones,
5414 	 * unless the system is labeled and the local zone's label dominates
5415 	 * the other zone.
5416 	 */
5417 	if (!zone_list_access(zone)) {
5418 		zone_rele(zone);
5419 		return (set_errno(EINVAL));
5420 	}
5421 
5422 	switch (attr) {
5423 	case ZONE_ATTR_ROOT:
5424 		if (global) {
5425 			/*
5426 			 * Copy the path to trim the trailing "/" (except for
5427 			 * the global zone).
5428 			 */
5429 			if (zone != global_zone)
5430 				size = zone->zone_rootpathlen - 1;
5431 			else
5432 				size = zone->zone_rootpathlen;
5433 			zonepath = kmem_alloc(size, KM_SLEEP);
5434 			bcopy(zone->zone_rootpath, zonepath, size);
5435 			zonepath[size - 1] = '\0';
5436 		} else {
5437 			if (inzone || !is_system_labeled()) {
5438 				/*
5439 				 * Caller is not in the global zone.
5440 				 * if the query is on the current zone
5441 				 * or the system is not labeled,
5442 				 * just return faked-up path for current zone.
5443 				 */
5444 				zonepath = "/";
5445 				size = 2;
5446 			} else {
5447 				/*
5448 				 * Return related path for current zone.
5449 				 */
5450 				int prefix_len = strlen(zone_prefix);
5451 				int zname_len = strlen(zone->zone_name);
5452 
5453 				size = prefix_len + zname_len + 1;
5454 				zonepath = kmem_alloc(size, KM_SLEEP);
5455 				bcopy(zone_prefix, zonepath, prefix_len);
5456 				bcopy(zone->zone_name, zonepath +
5457 				    prefix_len, zname_len);
5458 				zonepath[size - 1] = '\0';
5459 			}
5460 		}
5461 		if (bufsize > size)
5462 			bufsize = size;
5463 		if (buf != NULL) {
5464 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5465 			if (err != 0 && err != ENAMETOOLONG)
5466 				error = EFAULT;
5467 		}
5468 		if (global || (is_system_labeled() && !inzone))
5469 			kmem_free(zonepath, size);
5470 		break;
5471 
5472 	case ZONE_ATTR_NAME:
5473 		size = strlen(zone->zone_name) + 1;
5474 		if (bufsize > size)
5475 			bufsize = size;
5476 		if (buf != NULL) {
5477 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5478 			if (err != 0 && err != ENAMETOOLONG)
5479 				error = EFAULT;
5480 		}
5481 		break;
5482 
5483 	case ZONE_ATTR_STATUS:
5484 		/*
5485 		 * Since we're not holding zonehash_lock, the zone status
5486 		 * may be anything; leave it up to userland to sort it out.
5487 		 */
5488 		size = sizeof (zone_status);
5489 		if (bufsize > size)
5490 			bufsize = size;
5491 		zone_status = zone_status_get(zone);
5492 		if (buf != NULL &&
5493 		    copyout(&zone_status, buf, bufsize) != 0)
5494 			error = EFAULT;
5495 		break;
5496 	case ZONE_ATTR_FLAGS:
5497 		size = sizeof (zone->zone_flags);
5498 		if (bufsize > size)
5499 			bufsize = size;
5500 		flags = zone->zone_flags;
5501 		if (buf != NULL &&
5502 		    copyout(&flags, buf, bufsize) != 0)
5503 			error = EFAULT;
5504 		break;
5505 	case ZONE_ATTR_PRIVSET:
5506 		size = sizeof (priv_set_t);
5507 		if (bufsize > size)
5508 			bufsize = size;
5509 		if (buf != NULL &&
5510 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5511 			error = EFAULT;
5512 		break;
5513 	case ZONE_ATTR_UNIQID:
5514 		size = sizeof (zone->zone_uniqid);
5515 		if (bufsize > size)
5516 			bufsize = size;
5517 		if (buf != NULL &&
5518 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5519 			error = EFAULT;
5520 		break;
5521 	case ZONE_ATTR_POOLID:
5522 		{
5523 			pool_t *pool;
5524 			poolid_t poolid;
5525 
5526 			if (pool_lock_intr() != 0) {
5527 				error = EINTR;
5528 				break;
5529 			}
5530 			pool = zone_pool_get(zone);
5531 			poolid = pool->pool_id;
5532 			pool_unlock();
5533 			size = sizeof (poolid);
5534 			if (bufsize > size)
5535 				bufsize = size;
5536 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5537 				error = EFAULT;
5538 		}
5539 		break;
5540 	case ZONE_ATTR_SLBL:
5541 		size = sizeof (bslabel_t);
5542 		if (bufsize > size)
5543 			bufsize = size;
5544 		if (zone->zone_slabel == NULL)
5545 			error = EINVAL;
5546 		else if (buf != NULL &&
5547 		    copyout(label2bslabel(zone->zone_slabel), buf,
5548 		    bufsize) != 0)
5549 			error = EFAULT;
5550 		break;
5551 	case ZONE_ATTR_INITPID:
5552 		size = sizeof (initpid);
5553 		if (bufsize > size)
5554 			bufsize = size;
5555 		initpid = zone->zone_proc_initpid;
5556 		if (initpid == -1) {
5557 			error = ESRCH;
5558 			break;
5559 		}
5560 		if (buf != NULL &&
5561 		    copyout(&initpid, buf, bufsize) != 0)
5562 			error = EFAULT;
5563 		break;
5564 	case ZONE_ATTR_BRAND:
5565 		size = strlen(zone->zone_brand->b_name) + 1;
5566 
5567 		if (bufsize > size)
5568 			bufsize = size;
5569 		if (buf != NULL) {
5570 			err = copyoutstr(zone->zone_brand->b_name, buf,
5571 			    bufsize, NULL);
5572 			if (err != 0 && err != ENAMETOOLONG)
5573 				error = EFAULT;
5574 		}
5575 		break;
5576 	case ZONE_ATTR_INITNAME:
5577 		size = strlen(zone->zone_initname) + 1;
5578 		if (bufsize > size)
5579 			bufsize = size;
5580 		if (buf != NULL) {
5581 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5582 			    NULL);
5583 			if (err != 0 && err != ENAMETOOLONG)
5584 				error = EFAULT;
5585 		}
5586 		break;
5587 	case ZONE_ATTR_BOOTARGS:
5588 		if (zone->zone_bootargs == NULL)
5589 			outstr = "";
5590 		else
5591 			outstr = zone->zone_bootargs;
5592 		size = strlen(outstr) + 1;
5593 		if (bufsize > size)
5594 			bufsize = size;
5595 		if (buf != NULL) {
5596 			err = copyoutstr(outstr, buf, bufsize, NULL);
5597 			if (err != 0 && err != ENAMETOOLONG)
5598 				error = EFAULT;
5599 		}
5600 		break;
5601 	case ZONE_ATTR_PHYS_MCAP:
5602 		size = sizeof (zone->zone_phys_mcap);
5603 		if (bufsize > size)
5604 			bufsize = size;
5605 		if (buf != NULL &&
5606 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5607 			error = EFAULT;
5608 		break;
5609 	case ZONE_ATTR_SCHED_CLASS:
5610 		mutex_enter(&class_lock);
5611 
5612 		if (zone->zone_defaultcid >= loaded_classes)
5613 			outstr = "";
5614 		else
5615 			outstr = sclass[zone->zone_defaultcid].cl_name;
5616 		size = strlen(outstr) + 1;
5617 		if (bufsize > size)
5618 			bufsize = size;
5619 		if (buf != NULL) {
5620 			err = copyoutstr(outstr, buf, bufsize, NULL);
5621 			if (err != 0 && err != ENAMETOOLONG)
5622 				error = EFAULT;
5623 		}
5624 
5625 		mutex_exit(&class_lock);
5626 		break;
5627 	case ZONE_ATTR_HOSTID:
5628 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5629 		    bufsize == sizeof (zone->zone_hostid)) {
5630 			size = sizeof (zone->zone_hostid);
5631 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5632 			    bufsize) != 0)
5633 				error = EFAULT;
5634 		} else {
5635 			error = EINVAL;
5636 		}
5637 		break;
5638 	case ZONE_ATTR_FS_ALLOWED:
5639 		if (zone->zone_fs_allowed == NULL)
5640 			outstr = "";
5641 		else
5642 			outstr = zone->zone_fs_allowed;
5643 		size = strlen(outstr) + 1;
5644 		if (bufsize > size)
5645 			bufsize = size;
5646 		if (buf != NULL) {
5647 			err = copyoutstr(outstr, buf, bufsize, NULL);
5648 			if (err != 0 && err != ENAMETOOLONG)
5649 				error = EFAULT;
5650 		}
5651 		break;
5652 	case ZONE_ATTR_SECFLAGS:
5653 		size = sizeof (zone->zone_secflags);
5654 		if (bufsize > size)
5655 			bufsize = size;
5656 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5657 			error = EFAULT;
5658 		break;
5659 	case ZONE_ATTR_NETWORK:
5660 		bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
5661 		size = bufsize;
5662 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5663 		if (copyin(buf, zbuf, bufsize) != 0) {
5664 			error = EFAULT;
5665 		} else {
5666 			error = zone_get_network(zoneid, zbuf);
5667 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5668 				error = EFAULT;
5669 		}
5670 		kmem_free(zbuf, bufsize);
5671 		break;
5672 	default:
5673 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5674 			size = bufsize;
5675 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5676 		} else {
5677 			error = EINVAL;
5678 		}
5679 	}
5680 	zone_rele(zone);
5681 
5682 	if (error)
5683 		return (set_errno(error));
5684 	return ((ssize_t)size);
5685 }
5686 
5687 /*
5688  * Systemcall entry point for zone_setattr(2).
5689  */
5690 /*ARGSUSED*/
5691 static int
5692 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5693 {
5694 	zone_t *zone;
5695 	zone_status_t zone_status;
5696 	int err = -1;
5697 	zone_net_data_t *zbuf;
5698 
5699 	if (secpolicy_zone_config(CRED()) != 0)
5700 		return (set_errno(EPERM));
5701 
5702 	/*
5703 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5704 	 * global zone.
5705 	 */
5706 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5707 		return (set_errno(EINVAL));
5708 	}
5709 
5710 	mutex_enter(&zonehash_lock);
5711 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5712 		mutex_exit(&zonehash_lock);
5713 		return (set_errno(EINVAL));
5714 	}
5715 	zone_hold(zone);
5716 	mutex_exit(&zonehash_lock);
5717 
5718 	/*
5719 	 * At present most attributes can only be set on non-running,
5720 	 * non-global zones.
5721 	 */
5722 	zone_status = zone_status_get(zone);
5723 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5724 		err = EINVAL;
5725 		goto done;
5726 	}
5727 
5728 	switch (attr) {
5729 	case ZONE_ATTR_INITNAME:
5730 		err = zone_set_initname(zone, (const char *)buf);
5731 		break;
5732 	case ZONE_ATTR_INITNORESTART:
5733 		zone->zone_restart_init = B_FALSE;
5734 		err = 0;
5735 		break;
5736 	case ZONE_ATTR_BOOTARGS:
5737 		err = zone_set_bootargs(zone, (const char *)buf);
5738 		break;
5739 	case ZONE_ATTR_BRAND:
5740 		err = zone_set_brand(zone, (const char *)buf);
5741 		break;
5742 	case ZONE_ATTR_FS_ALLOWED:
5743 		err = zone_set_fs_allowed(zone, (const char *)buf);
5744 		break;
5745 	case ZONE_ATTR_SECFLAGS:
5746 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5747 		break;
5748 	case ZONE_ATTR_PHYS_MCAP:
5749 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5750 		break;
5751 	case ZONE_ATTR_SCHED_CLASS:
5752 		err = zone_set_sched_class(zone, (const char *)buf);
5753 		break;
5754 	case ZONE_ATTR_HOSTID:
5755 		if (bufsize == sizeof (zone->zone_hostid)) {
5756 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5757 				err = 0;
5758 			else
5759 				err = EFAULT;
5760 		} else {
5761 			err = EINVAL;
5762 		}
5763 		break;
5764 	case ZONE_ATTR_NETWORK:
5765 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5766 			err = EINVAL;
5767 			break;
5768 		}
5769 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5770 		if (copyin(buf, zbuf, bufsize) != 0) {
5771 			kmem_free(zbuf, bufsize);
5772 			err = EFAULT;
5773 			break;
5774 		}
5775 		err = zone_set_network(zoneid, zbuf);
5776 		kmem_free(zbuf, bufsize);
5777 		break;
5778 	default:
5779 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5780 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5781 		else
5782 			err = EINVAL;
5783 	}
5784 
5785 done:
5786 	zone_rele(zone);
5787 	ASSERT(err != -1);
5788 	return (err != 0 ? set_errno(err) : 0);
5789 }
5790 
5791 /*
5792  * Return zero if the process has at least one vnode mapped in to its
5793  * address space which shouldn't be allowed to change zones.
5794  *
5795  * Also return zero if the process has any shared mappings which reserve
5796  * swap.  This is because the counting for zone.max-swap does not allow swap
5797  * reservation to be shared between zones.  zone swap reservation is counted
5798  * on zone->zone_max_swap.
5799  */
5800 static int
5801 as_can_change_zones(void)
5802 {
5803 	proc_t *pp = curproc;
5804 	struct seg *seg;
5805 	struct as *as = pp->p_as;
5806 	vnode_t *vp;
5807 	int allow = 1;
5808 
5809 	ASSERT(pp->p_as != &kas);
5810 	AS_LOCK_ENTER(as, RW_READER);
5811 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5812 
5813 		/*
5814 		 * Cannot enter zone with shared anon memory which
5815 		 * reserves swap.  See comment above.
5816 		 */
5817 		if (seg_can_change_zones(seg) == B_FALSE) {
5818 			allow = 0;
5819 			break;
5820 		}
5821 		/*
5822 		 * if we can't get a backing vnode for this segment then skip
5823 		 * it.
5824 		 */
5825 		vp = NULL;
5826 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5827 			continue;
5828 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5829 			allow = 0;
5830 			break;
5831 		}
5832 	}
5833 	AS_LOCK_EXIT(as);
5834 	return (allow);
5835 }
5836 
5837 /*
5838  * Count swap reserved by curproc's address space
5839  */
5840 static size_t
5841 as_swresv(void)
5842 {
5843 	proc_t *pp = curproc;
5844 	struct seg *seg;
5845 	struct as *as = pp->p_as;
5846 	size_t swap = 0;
5847 
5848 	ASSERT(pp->p_as != &kas);
5849 	ASSERT(AS_WRITE_HELD(as));
5850 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5851 		swap += seg_swresv(seg);
5852 
5853 	return (swap);
5854 }
5855 
5856 /*
5857  * Systemcall entry point for zone_enter().
5858  *
5859  * The current process is injected into said zone.  In the process
5860  * it will change its project membership, privileges, rootdir/cwd,
5861  * zone-wide rctls, and pool association to match those of the zone.
5862  *
5863  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5864  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5865  * enter a zone that is "ready" or "running".
5866  */
5867 static int
5868 zone_enter(zoneid_t zoneid)
5869 {
5870 	zone_t *zone;
5871 	vnode_t *vp;
5872 	proc_t *pp = curproc;
5873 	contract_t *ct;
5874 	cont_process_t *ctp;
5875 	task_t *tk, *oldtk;
5876 	kproject_t *zone_proj0;
5877 	cred_t *cr, *newcr;
5878 	pool_t *oldpool, *newpool;
5879 	sess_t *sp;
5880 	uid_t uid;
5881 	zone_status_t status;
5882 	int err = 0;
5883 	rctl_entity_p_t e;
5884 	size_t swap;
5885 	kthread_id_t t;
5886 
5887 	if (secpolicy_zone_config(CRED()) != 0)
5888 		return (set_errno(EPERM));
5889 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5890 		return (set_errno(EINVAL));
5891 
5892 	/*
5893 	 * Stop all lwps so we don't need to hold a lock to look at
5894 	 * curproc->p_zone.  This needs to happen before we grab any
5895 	 * locks to avoid deadlock (another lwp in the process could
5896 	 * be waiting for the held lock).
5897 	 */
5898 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5899 		return (set_errno(EINTR));
5900 
5901 	/*
5902 	 * Make sure we're not changing zones with files open or mapped in
5903 	 * to our address space which shouldn't be changing zones.
5904 	 */
5905 	if (!files_can_change_zones()) {
5906 		err = EBADF;
5907 		goto out;
5908 	}
5909 	if (!as_can_change_zones()) {
5910 		err = EFAULT;
5911 		goto out;
5912 	}
5913 
5914 	mutex_enter(&zonehash_lock);
5915 	if (pp->p_zone != global_zone) {
5916 		mutex_exit(&zonehash_lock);
5917 		err = EINVAL;
5918 		goto out;
5919 	}
5920 
5921 	zone = zone_find_all_by_id(zoneid);
5922 	if (zone == NULL) {
5923 		mutex_exit(&zonehash_lock);
5924 		err = EINVAL;
5925 		goto out;
5926 	}
5927 
5928 	/*
5929 	 * To prevent processes in a zone from holding contracts on
5930 	 * extrazonal resources, and to avoid process contract
5931 	 * memberships which span zones, contract holders and processes
5932 	 * which aren't the sole members of their encapsulating process
5933 	 * contracts are not allowed to zone_enter.
5934 	 */
5935 	ctp = pp->p_ct_process;
5936 	ct = &ctp->conp_contract;
5937 	mutex_enter(&ct->ct_lock);
5938 	mutex_enter(&pp->p_lock);
5939 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5940 		mutex_exit(&pp->p_lock);
5941 		mutex_exit(&ct->ct_lock);
5942 		mutex_exit(&zonehash_lock);
5943 		err = EINVAL;
5944 		goto out;
5945 	}
5946 
5947 	/*
5948 	 * Moreover, we don't allow processes whose encapsulating
5949 	 * process contracts have inherited extrazonal contracts.
5950 	 * While it would be easier to eliminate all process contracts
5951 	 * with inherited contracts, we need to be able to give a
5952 	 * restarted init (or other zone-penetrating process) its
5953 	 * predecessor's contracts.
5954 	 */
5955 	if (ctp->conp_ninherited != 0) {
5956 		contract_t *next;
5957 		for (next = list_head(&ctp->conp_inherited); next;
5958 		    next = list_next(&ctp->conp_inherited, next)) {
5959 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5960 				mutex_exit(&pp->p_lock);
5961 				mutex_exit(&ct->ct_lock);
5962 				mutex_exit(&zonehash_lock);
5963 				err = EINVAL;
5964 				goto out;
5965 			}
5966 		}
5967 	}
5968 
5969 	mutex_exit(&pp->p_lock);
5970 	mutex_exit(&ct->ct_lock);
5971 
5972 	status = zone_status_get(zone);
5973 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5974 		/*
5975 		 * Can't join
5976 		 */
5977 		mutex_exit(&zonehash_lock);
5978 		err = EINVAL;
5979 		goto out;
5980 	}
5981 
5982 	/*
5983 	 * Make sure new priv set is within the permitted set for caller
5984 	 */
5985 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5986 		mutex_exit(&zonehash_lock);
5987 		err = EPERM;
5988 		goto out;
5989 	}
5990 	/*
5991 	 * We want to momentarily drop zonehash_lock while we optimistically
5992 	 * bind curproc to the pool it should be running in.  This is safe
5993 	 * since the zone can't disappear (we have a hold on it).
5994 	 */
5995 	zone_hold(zone);
5996 	mutex_exit(&zonehash_lock);
5997 
5998 	/*
5999 	 * Grab pool_lock to keep the pools configuration from changing
6000 	 * and to stop ourselves from getting rebound to another pool
6001 	 * until we join the zone.
6002 	 */
6003 	if (pool_lock_intr() != 0) {
6004 		zone_rele(zone);
6005 		err = EINTR;
6006 		goto out;
6007 	}
6008 	ASSERT(secpolicy_pool(CRED()) == 0);
6009 	/*
6010 	 * Bind ourselves to the pool currently associated with the zone.
6011 	 */
6012 	oldpool = curproc->p_pool;
6013 	newpool = zone_pool_get(zone);
6014 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6015 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6016 	    POOL_BIND_ALL)) != 0) {
6017 		pool_unlock();
6018 		zone_rele(zone);
6019 		goto out;
6020 	}
6021 
6022 	/*
6023 	 * Grab cpu_lock now; we'll need it later when we call
6024 	 * task_join().
6025 	 */
6026 	mutex_enter(&cpu_lock);
6027 	mutex_enter(&zonehash_lock);
6028 	/*
6029 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6030 	 */
6031 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6032 		/*
6033 		 * Can't join anymore.
6034 		 */
6035 		mutex_exit(&zonehash_lock);
6036 		mutex_exit(&cpu_lock);
6037 		if (pool_state == POOL_ENABLED &&
6038 		    newpool != oldpool)
6039 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6040 			    POOL_BIND_ALL);
6041 		pool_unlock();
6042 		zone_rele(zone);
6043 		err = EINVAL;
6044 		goto out;
6045 	}
6046 
6047 	/*
6048 	 * a_lock must be held while transfering locked memory and swap
6049 	 * reservation from the global zone to the non global zone because
6050 	 * asynchronous faults on the processes' address space can lock
6051 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6052 	 * segments respectively.
6053 	 */
6054 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6055 	swap = as_swresv();
6056 	mutex_enter(&pp->p_lock);
6057 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6058 	/* verify that we do not exceed and task or lwp limits */
6059 	mutex_enter(&zone->zone_nlwps_lock);
6060 	/* add new lwps to zone and zone's proj0 */
6061 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6062 	zone->zone_nlwps += pp->p_lwpcnt;
6063 	/* add 1 task to zone's proj0 */
6064 	zone_proj0->kpj_ntasks += 1;
6065 
6066 	zone_proj0->kpj_nprocs++;
6067 	zone->zone_nprocs++;
6068 	mutex_exit(&zone->zone_nlwps_lock);
6069 
6070 	mutex_enter(&zone->zone_mem_lock);
6071 	zone->zone_locked_mem += pp->p_locked_mem;
6072 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6073 	zone->zone_max_swap += swap;
6074 	mutex_exit(&zone->zone_mem_lock);
6075 
6076 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6077 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6078 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6079 
6080 	/* remove lwps and process from proc's old zone and old project */
6081 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6082 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6083 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6084 	pp->p_task->tk_proj->kpj_nprocs--;
6085 	pp->p_zone->zone_nprocs--;
6086 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6087 
6088 	mutex_enter(&pp->p_zone->zone_mem_lock);
6089 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6090 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6091 	pp->p_zone->zone_max_swap -= swap;
6092 	mutex_exit(&pp->p_zone->zone_mem_lock);
6093 
6094 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6095 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6096 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6097 
6098 	pp->p_flag |= SZONETOP;
6099 	pp->p_zone = zone;
6100 	mutex_exit(&pp->p_lock);
6101 	AS_LOCK_EXIT(pp->p_as);
6102 
6103 	/*
6104 	 * Joining the zone cannot fail from now on.
6105 	 *
6106 	 * This means that a lot of the following code can be commonized and
6107 	 * shared with zsched().
6108 	 */
6109 
6110 	/*
6111 	 * If the process contract fmri was inherited, we need to
6112 	 * flag this so that any contract status will not leak
6113 	 * extra zone information, svc_fmri in this case
6114 	 */
6115 	if (ctp->conp_svc_ctid != ct->ct_id) {
6116 		mutex_enter(&ct->ct_lock);
6117 		ctp->conp_svc_zone_enter = ct->ct_id;
6118 		mutex_exit(&ct->ct_lock);
6119 	}
6120 
6121 	/*
6122 	 * Reset the encapsulating process contract's zone.
6123 	 */
6124 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6125 	contract_setzuniqid(ct, zone->zone_uniqid);
6126 
6127 	/*
6128 	 * Create a new task and associate the process with the project keyed
6129 	 * by (projid,zoneid).
6130 	 *
6131 	 * We might as well be in project 0; the global zone's projid doesn't
6132 	 * make much sense in a zone anyhow.
6133 	 *
6134 	 * This also increments zone_ntasks, and returns with p_lock held.
6135 	 */
6136 	tk = task_create(0, zone);
6137 	oldtk = task_join(tk, 0);
6138 	mutex_exit(&cpu_lock);
6139 
6140 	/*
6141 	 * call RCTLOP_SET functions on this proc
6142 	 */
6143 	e.rcep_p.zone = zone;
6144 	e.rcep_t = RCENTITY_ZONE;
6145 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6146 	    RCD_CALLBACK);
6147 	mutex_exit(&pp->p_lock);
6148 
6149 	/*
6150 	 * We don't need to hold any of zsched's locks here; not only do we know
6151 	 * the process and zone aren't going away, we know its session isn't
6152 	 * changing either.
6153 	 *
6154 	 * By joining zsched's session here, we mimic the behavior in the
6155 	 * global zone of init's sid being the pid of sched.  We extend this
6156 	 * to all zlogin-like zone_enter()'ing processes as well.
6157 	 */
6158 	mutex_enter(&pidlock);
6159 	sp = zone->zone_zsched->p_sessp;
6160 	sess_hold(zone->zone_zsched);
6161 	mutex_enter(&pp->p_lock);
6162 	pgexit(pp);
6163 	sess_rele(pp->p_sessp, B_TRUE);
6164 	pp->p_sessp = sp;
6165 	pgjoin(pp, zone->zone_zsched->p_pidp);
6166 
6167 	/*
6168 	 * If any threads are scheduled to be placed on zone wait queue they
6169 	 * should abandon the idea since the wait queue is changing.
6170 	 * We need to be holding pidlock & p_lock to do this.
6171 	 */
6172 	if ((t = pp->p_tlist) != NULL) {
6173 		do {
6174 			thread_lock(t);
6175 			/*
6176 			 * Kick this thread so that it doesn't sit
6177 			 * on a wrong wait queue.
6178 			 */
6179 			if (ISWAITING(t))
6180 				setrun_locked(t);
6181 
6182 			if (t->t_schedflag & TS_ANYWAITQ)
6183 				t->t_schedflag &= ~ TS_ANYWAITQ;
6184 
6185 			thread_unlock(t);
6186 		} while ((t = t->t_forw) != pp->p_tlist);
6187 	}
6188 
6189 	/*
6190 	 * If there is a default scheduling class for the zone and it is not
6191 	 * the class we are currently in, change all of the threads in the
6192 	 * process to the new class.  We need to be holding pidlock & p_lock
6193 	 * when we call parmsset so this is a good place to do it.
6194 	 */
6195 	if (zone->zone_defaultcid > 0 &&
6196 	    zone->zone_defaultcid != curthread->t_cid) {
6197 		pcparms_t pcparms;
6198 
6199 		pcparms.pc_cid = zone->zone_defaultcid;
6200 		pcparms.pc_clparms[0] = 0;
6201 
6202 		/*
6203 		 * If setting the class fails, we still want to enter the zone.
6204 		 */
6205 		if ((t = pp->p_tlist) != NULL) {
6206 			do {
6207 				(void) parmsset(&pcparms, t);
6208 			} while ((t = t->t_forw) != pp->p_tlist);
6209 		}
6210 	}
6211 
6212 	mutex_exit(&pp->p_lock);
6213 	mutex_exit(&pidlock);
6214 
6215 	mutex_exit(&zonehash_lock);
6216 	/*
6217 	 * We're firmly in the zone; let pools progress.
6218 	 */
6219 	pool_unlock();
6220 	task_rele(oldtk);
6221 	/*
6222 	 * We don't need to retain a hold on the zone since we already
6223 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6224 	 */
6225 	zone_rele(zone);
6226 
6227 	/*
6228 	 * Chroot
6229 	 */
6230 	vp = zone->zone_rootvp;
6231 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6232 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6233 
6234 	/*
6235 	 * Change process security flags.  Note that the _effective_ flags
6236 	 * cannot change
6237 	 */
6238 	secflags_copy(&pp->p_secflags.psf_lower,
6239 	    &zone->zone_secflags.psf_lower);
6240 	secflags_copy(&pp->p_secflags.psf_upper,
6241 	    &zone->zone_secflags.psf_upper);
6242 	secflags_copy(&pp->p_secflags.psf_inherit,
6243 	    &zone->zone_secflags.psf_inherit);
6244 
6245 	/*
6246 	 * Change process credentials
6247 	 */
6248 	newcr = cralloc();
6249 	mutex_enter(&pp->p_crlock);
6250 	cr = pp->p_cred;
6251 	crcopy_to(cr, newcr);
6252 	crsetzone(newcr, zone);
6253 	pp->p_cred = newcr;
6254 
6255 	/*
6256 	 * Restrict all process privilege sets to zone limit
6257 	 */
6258 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6259 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6260 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6261 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6262 	mutex_exit(&pp->p_crlock);
6263 	crset(pp, newcr);
6264 
6265 	/*
6266 	 * Adjust upcount to reflect zone entry.
6267 	 */
6268 	uid = crgetruid(newcr);
6269 	mutex_enter(&pidlock);
6270 	upcount_dec(uid, GLOBAL_ZONEID);
6271 	upcount_inc(uid, zoneid);
6272 	mutex_exit(&pidlock);
6273 
6274 	/*
6275 	 * Set up core file path and content.
6276 	 */
6277 	set_core_defaults();
6278 
6279 out:
6280 	/*
6281 	 * Let the other lwps continue.
6282 	 */
6283 	mutex_enter(&pp->p_lock);
6284 	if (curthread != pp->p_agenttp)
6285 		continuelwps(pp);
6286 	mutex_exit(&pp->p_lock);
6287 
6288 	return (err != 0 ? set_errno(err) : 0);
6289 }
6290 
6291 /*
6292  * Systemcall entry point for zone_list(2).
6293  *
6294  * Processes running in a (non-global) zone only see themselves.
6295  * On labeled systems, they see all zones whose label they dominate.
6296  */
6297 static int
6298 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6299 {
6300 	zoneid_t *zoneids;
6301 	zone_t *zone, *myzone;
6302 	uint_t user_nzones, real_nzones;
6303 	uint_t domi_nzones;
6304 	int error;
6305 
6306 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6307 		return (set_errno(EFAULT));
6308 
6309 	myzone = curproc->p_zone;
6310 	if (myzone != global_zone) {
6311 		bslabel_t *mybslab;
6312 
6313 		if (!is_system_labeled()) {
6314 			/* just return current zone */
6315 			real_nzones = domi_nzones = 1;
6316 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6317 			zoneids[0] = myzone->zone_id;
6318 		} else {
6319 			/* return all zones that are dominated */
6320 			mutex_enter(&zonehash_lock);
6321 			real_nzones = zonecount;
6322 			domi_nzones = 0;
6323 			if (real_nzones > 0) {
6324 				zoneids = kmem_alloc(real_nzones *
6325 				    sizeof (zoneid_t), KM_SLEEP);
6326 				mybslab = label2bslabel(myzone->zone_slabel);
6327 				for (zone = list_head(&zone_active);
6328 				    zone != NULL;
6329 				    zone = list_next(&zone_active, zone)) {
6330 					if (zone->zone_id == GLOBAL_ZONEID)
6331 						continue;
6332 					if (zone != myzone &&
6333 					    (zone->zone_flags & ZF_IS_SCRATCH))
6334 						continue;
6335 					/*
6336 					 * Note that a label always dominates
6337 					 * itself, so myzone is always included
6338 					 * in the list.
6339 					 */
6340 					if (bldominates(mybslab,
6341 					    label2bslabel(zone->zone_slabel))) {
6342 						zoneids[domi_nzones++] =
6343 						    zone->zone_id;
6344 					}
6345 				}
6346 			}
6347 			mutex_exit(&zonehash_lock);
6348 		}
6349 	} else {
6350 		mutex_enter(&zonehash_lock);
6351 		real_nzones = zonecount;
6352 		domi_nzones = 0;
6353 		if (real_nzones > 0) {
6354 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6355 			    KM_SLEEP);
6356 			for (zone = list_head(&zone_active); zone != NULL;
6357 			    zone = list_next(&zone_active, zone))
6358 				zoneids[domi_nzones++] = zone->zone_id;
6359 			ASSERT(domi_nzones == real_nzones);
6360 		}
6361 		mutex_exit(&zonehash_lock);
6362 	}
6363 
6364 	/*
6365 	 * If user has allocated space for fewer entries than we found, then
6366 	 * return only up to their limit.  Either way, tell them exactly how
6367 	 * many we found.
6368 	 */
6369 	if (domi_nzones < user_nzones)
6370 		user_nzones = domi_nzones;
6371 	error = 0;
6372 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6373 		error = EFAULT;
6374 	} else if (zoneidlist != NULL && user_nzones != 0) {
6375 		if (copyout(zoneids, zoneidlist,
6376 		    user_nzones * sizeof (zoneid_t)) != 0)
6377 			error = EFAULT;
6378 	}
6379 
6380 	if (real_nzones > 0)
6381 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6382 
6383 	if (error != 0)
6384 		return (set_errno(error));
6385 	else
6386 		return (0);
6387 }
6388 
6389 /*
6390  * Systemcall entry point for zone_lookup(2).
6391  *
6392  * Non-global zones are only able to see themselves and (on labeled systems)
6393  * the zones they dominate.
6394  */
6395 static zoneid_t
6396 zone_lookup(const char *zone_name)
6397 {
6398 	char *kname;
6399 	zone_t *zone;
6400 	zoneid_t zoneid;
6401 	int err;
6402 
6403 	if (zone_name == NULL) {
6404 		/* return caller's zone id */
6405 		return (getzoneid());
6406 	}
6407 
6408 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6409 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6410 		kmem_free(kname, ZONENAME_MAX);
6411 		return (set_errno(err));
6412 	}
6413 
6414 	mutex_enter(&zonehash_lock);
6415 	zone = zone_find_all_by_name(kname);
6416 	kmem_free(kname, ZONENAME_MAX);
6417 	/*
6418 	 * In a non-global zone, can only lookup global and own name.
6419 	 * In Trusted Extensions zone label dominance rules apply.
6420 	 */
6421 	if (zone == NULL ||
6422 	    zone_status_get(zone) < ZONE_IS_READY ||
6423 	    !zone_list_access(zone)) {
6424 		mutex_exit(&zonehash_lock);
6425 		return (set_errno(EINVAL));
6426 	} else {
6427 		zoneid = zone->zone_id;
6428 		mutex_exit(&zonehash_lock);
6429 		return (zoneid);
6430 	}
6431 }
6432 
6433 static int
6434 zone_version(int *version_arg)
6435 {
6436 	int version = ZONE_SYSCALL_API_VERSION;
6437 
6438 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6439 		return (set_errno(EFAULT));
6440 	return (0);
6441 }
6442 
6443 /* ARGSUSED */
6444 long
6445 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6446 {
6447 	zone_def zs;
6448 	int err;
6449 
6450 	switch (cmd) {
6451 	case ZONE_CREATE:
6452 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6453 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6454 				return (set_errno(EFAULT));
6455 			}
6456 		} else {
6457 #ifdef _SYSCALL32_IMPL
6458 			zone_def32 zs32;
6459 
6460 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6461 				return (set_errno(EFAULT));
6462 			}
6463 			zs.zone_name =
6464 			    (const char *)(unsigned long)zs32.zone_name;
6465 			zs.zone_root =
6466 			    (const char *)(unsigned long)zs32.zone_root;
6467 			zs.zone_privs =
6468 			    (const struct priv_set *)
6469 			    (unsigned long)zs32.zone_privs;
6470 			zs.zone_privssz = zs32.zone_privssz;
6471 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6472 			zs.rctlbufsz = zs32.rctlbufsz;
6473 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6474 			zs.zfsbufsz = zs32.zfsbufsz;
6475 			zs.extended_error =
6476 			    (int *)(unsigned long)zs32.extended_error;
6477 			zs.match = zs32.match;
6478 			zs.doi = zs32.doi;
6479 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6480 			zs.flags = zs32.flags;
6481 #else
6482 			panic("get_udatamodel() returned bogus result\n");
6483 #endif
6484 		}
6485 
6486 		return (zone_create(zs.zone_name, zs.zone_root,
6487 		    zs.zone_privs, zs.zone_privssz,
6488 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6489 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6490 		    zs.extended_error, zs.match, zs.doi,
6491 		    zs.label, zs.flags));
6492 	case ZONE_BOOT:
6493 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6494 	case ZONE_DESTROY:
6495 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6496 	case ZONE_GETATTR:
6497 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6498 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6499 	case ZONE_SETATTR:
6500 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6501 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6502 	case ZONE_ENTER:
6503 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6504 	case ZONE_LIST:
6505 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6506 	case ZONE_SHUTDOWN:
6507 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6508 	case ZONE_LOOKUP:
6509 		return (zone_lookup((const char *)arg1));
6510 	case ZONE_VERSION:
6511 		return (zone_version((int *)arg1));
6512 	case ZONE_ADD_DATALINK:
6513 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6514 		    (datalink_id_t)(uintptr_t)arg2));
6515 	case ZONE_DEL_DATALINK:
6516 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6517 		    (datalink_id_t)(uintptr_t)arg2));
6518 	case ZONE_CHECK_DATALINK: {
6519 		zoneid_t	zoneid;
6520 		boolean_t	need_copyout;
6521 
6522 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6523 			return (EFAULT);
6524 		need_copyout = (zoneid == ALL_ZONES);
6525 		err = zone_check_datalink(&zoneid,
6526 		    (datalink_id_t)(uintptr_t)arg2);
6527 		if (err == 0 && need_copyout) {
6528 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6529 				err = EFAULT;
6530 		}
6531 		return (err == 0 ? 0 : set_errno(err));
6532 	}
6533 	case ZONE_LIST_DATALINK:
6534 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6535 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6536 	default:
6537 		return (set_errno(EINVAL));
6538 	}
6539 }
6540 
6541 struct zarg {
6542 	zone_t *zone;
6543 	zone_cmd_arg_t arg;
6544 };
6545 
6546 static int
6547 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6548 {
6549 	char *buf;
6550 	size_t buflen;
6551 	int error;
6552 
6553 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6554 	buf = kmem_alloc(buflen, KM_SLEEP);
6555 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6556 	error = door_ki_open(buf, doorp);
6557 	kmem_free(buf, buflen);
6558 	return (error);
6559 }
6560 
6561 static void
6562 zone_release_door(door_handle_t *doorp)
6563 {
6564 	door_ki_rele(*doorp);
6565 	*doorp = NULL;
6566 }
6567 
6568 static void
6569 zone_ki_call_zoneadmd(struct zarg *zargp)
6570 {
6571 	door_handle_t door = NULL;
6572 	door_arg_t darg, save_arg;
6573 	char *zone_name;
6574 	size_t zone_namelen;
6575 	zoneid_t zoneid;
6576 	zone_t *zone;
6577 	zone_cmd_arg_t arg;
6578 	uint64_t uniqid;
6579 	size_t size;
6580 	int error;
6581 	int retry;
6582 
6583 	zone = zargp->zone;
6584 	arg = zargp->arg;
6585 	kmem_free(zargp, sizeof (*zargp));
6586 
6587 	zone_namelen = strlen(zone->zone_name) + 1;
6588 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6589 	bcopy(zone->zone_name, zone_name, zone_namelen);
6590 	zoneid = zone->zone_id;
6591 	uniqid = zone->zone_uniqid;
6592 	/*
6593 	 * zoneadmd may be down, but at least we can empty out the zone.
6594 	 * We can ignore the return value of zone_empty() since we're called
6595 	 * from a kernel thread and know we won't be delivered any signals.
6596 	 */
6597 	ASSERT(curproc == &p0);
6598 	(void) zone_empty(zone);
6599 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6600 	zone_rele(zone);
6601 
6602 	size = sizeof (arg);
6603 	darg.rbuf = (char *)&arg;
6604 	darg.data_ptr = (char *)&arg;
6605 	darg.rsize = size;
6606 	darg.data_size = size;
6607 	darg.desc_ptr = NULL;
6608 	darg.desc_num = 0;
6609 
6610 	save_arg = darg;
6611 	/*
6612 	 * Since we're not holding a reference to the zone, any number of
6613 	 * things can go wrong, including the zone disappearing before we get a
6614 	 * chance to talk to zoneadmd.
6615 	 */
6616 	for (retry = 0; /* forever */; retry++) {
6617 		if (door == NULL &&
6618 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6619 			goto next;
6620 		}
6621 		ASSERT(door != NULL);
6622 
6623 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6624 		    SIZE_MAX, 0)) == 0) {
6625 			break;
6626 		}
6627 		switch (error) {
6628 		case EINTR:
6629 			/* FALLTHROUGH */
6630 		case EAGAIN:	/* process may be forking */
6631 			/*
6632 			 * Back off for a bit
6633 			 */
6634 			break;
6635 		case EBADF:
6636 			zone_release_door(&door);
6637 			if (zone_lookup_door(zone_name, &door) != 0) {
6638 				/*
6639 				 * zoneadmd may be dead, but it may come back to
6640 				 * life later.
6641 				 */
6642 				break;
6643 			}
6644 			break;
6645 		default:
6646 			cmn_err(CE_WARN,
6647 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6648 			    error);
6649 			goto out;
6650 		}
6651 next:
6652 		/*
6653 		 * If this isn't the same zone_t that we originally had in mind,
6654 		 * then this is the same as if two kadmin requests come in at
6655 		 * the same time: the first one wins.  This means we lose, so we
6656 		 * bail.
6657 		 */
6658 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6659 			/*
6660 			 * Problem is solved.
6661 			 */
6662 			break;
6663 		}
6664 		if (zone->zone_uniqid != uniqid) {
6665 			/*
6666 			 * zoneid recycled
6667 			 */
6668 			zone_rele(zone);
6669 			break;
6670 		}
6671 		/*
6672 		 * We could zone_status_timedwait(), but there doesn't seem to
6673 		 * be much point in doing that (plus, it would mean that
6674 		 * zone_free() isn't called until this thread exits).
6675 		 */
6676 		zone_rele(zone);
6677 		delay(hz);
6678 		darg = save_arg;
6679 	}
6680 out:
6681 	if (door != NULL) {
6682 		zone_release_door(&door);
6683 	}
6684 	kmem_free(zone_name, zone_namelen);
6685 	thread_exit();
6686 }
6687 
6688 /*
6689  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6690  * kadmin().  The caller is a process in the zone.
6691  *
6692  * In order to shutdown the zone, we will hand off control to zoneadmd
6693  * (running in the global zone) via a door.  We do a half-hearted job at
6694  * killing all processes in the zone, create a kernel thread to contact
6695  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6696  * a form of generation number used to let zoneadmd (as well as
6697  * zone_destroy()) know exactly which zone they're re talking about.
6698  */
6699 int
6700 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6701 {
6702 	struct zarg *zargp;
6703 	zone_cmd_t zcmd;
6704 	zone_t *zone;
6705 
6706 	zone = curproc->p_zone;
6707 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6708 
6709 	switch (cmd) {
6710 	case A_SHUTDOWN:
6711 		switch (fcn) {
6712 		case AD_HALT:
6713 		case AD_POWEROFF:
6714 			zcmd = Z_HALT;
6715 			break;
6716 		case AD_BOOT:
6717 			zcmd = Z_REBOOT;
6718 			break;
6719 		case AD_IBOOT:
6720 		case AD_SBOOT:
6721 		case AD_SIBOOT:
6722 		case AD_NOSYNC:
6723 			return (ENOTSUP);
6724 		default:
6725 			return (EINVAL);
6726 		}
6727 		break;
6728 	case A_REBOOT:
6729 		zcmd = Z_REBOOT;
6730 		break;
6731 	case A_FTRACE:
6732 	case A_REMOUNT:
6733 	case A_FREEZE:
6734 	case A_DUMP:
6735 	case A_CONFIG:
6736 		return (ENOTSUP);
6737 	default:
6738 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6739 		return (EINVAL);
6740 	}
6741 
6742 	if (secpolicy_zone_admin(credp, B_FALSE))
6743 		return (EPERM);
6744 	mutex_enter(&zone_status_lock);
6745 
6746 	/*
6747 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6748 	 * is in the zone.
6749 	 */
6750 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6751 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6752 		/*
6753 		 * This zone is already on its way down.
6754 		 */
6755 		mutex_exit(&zone_status_lock);
6756 		return (0);
6757 	}
6758 	/*
6759 	 * Prevent future zone_enter()s
6760 	 */
6761 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6762 	mutex_exit(&zone_status_lock);
6763 
6764 	/*
6765 	 * Kill everyone now and call zoneadmd later.
6766 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6767 	 * later.
6768 	 */
6769 	killall(zone->zone_id);
6770 	/*
6771 	 * Now, create the thread to contact zoneadmd and do the rest of the
6772 	 * work.  This thread can't be created in our zone otherwise
6773 	 * zone_destroy() would deadlock.
6774 	 */
6775 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6776 	zargp->arg.cmd = zcmd;
6777 	zargp->arg.uniqid = zone->zone_uniqid;
6778 	zargp->zone = zone;
6779 	(void) strcpy(zargp->arg.locale, "C");
6780 	/* mdep was already copied in for us by uadmin */
6781 	if (mdep != NULL)
6782 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6783 		    sizeof (zargp->arg.bootbuf));
6784 	zone_hold(zone);
6785 
6786 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6787 	    TS_RUN, minclsyspri);
6788 	exit(CLD_EXITED, 0);
6789 
6790 	return (EINVAL);
6791 }
6792 
6793 /*
6794  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6795  * status to ZONE_IS_SHUTTING_DOWN.
6796  *
6797  * This function also shuts down all running zones to ensure that they won't
6798  * fork new processes.
6799  */
6800 void
6801 zone_shutdown_global(void)
6802 {
6803 	zone_t *current_zonep;
6804 
6805 	ASSERT(INGLOBALZONE(curproc));
6806 	mutex_enter(&zonehash_lock);
6807 	mutex_enter(&zone_status_lock);
6808 
6809 	/* Modify the global zone's status first. */
6810 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6811 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6812 
6813 	/*
6814 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6815 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6816 	 * could cause assertions to fail (e.g., assertions about a zone's
6817 	 * state during initialization, readying, or booting) or produce races.
6818 	 * We'll let threads continue to initialize and ready new zones: they'll
6819 	 * fail to boot the new zones when they see that the global zone is
6820 	 * shutting down.
6821 	 */
6822 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6823 	    current_zonep = list_next(&zone_active, current_zonep)) {
6824 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6825 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6826 	}
6827 	mutex_exit(&zone_status_lock);
6828 	mutex_exit(&zonehash_lock);
6829 }
6830 
6831 /*
6832  * Returns true if the named dataset is visible in the current zone.
6833  * The 'write' parameter is set to 1 if the dataset is also writable.
6834  */
6835 int
6836 zone_dataset_visible(const char *dataset, int *write)
6837 {
6838 	static int zfstype = -1;
6839 	zone_dataset_t *zd;
6840 	size_t len;
6841 	zone_t *zone = curproc->p_zone;
6842 	const char *name = NULL;
6843 	vfs_t *vfsp = NULL;
6844 
6845 	if (dataset[0] == '\0')
6846 		return (0);
6847 
6848 	/*
6849 	 * Walk the list once, looking for datasets which match exactly, or
6850 	 * specify a dataset underneath an exported dataset.  If found, return
6851 	 * true and note that it is writable.
6852 	 */
6853 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6854 	    zd = list_next(&zone->zone_datasets, zd)) {
6855 
6856 		len = strlen(zd->zd_dataset);
6857 		if (strlen(dataset) >= len &&
6858 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6859 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6860 		    dataset[len] == '@')) {
6861 			if (write)
6862 				*write = 1;
6863 			return (1);
6864 		}
6865 	}
6866 
6867 	/*
6868 	 * Walk the list a second time, searching for datasets which are parents
6869 	 * of exported datasets.  These should be visible, but read-only.
6870 	 *
6871 	 * Note that we also have to support forms such as 'pool/dataset/', with
6872 	 * a trailing slash.
6873 	 */
6874 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6875 	    zd = list_next(&zone->zone_datasets, zd)) {
6876 
6877 		len = strlen(dataset);
6878 		if (dataset[len - 1] == '/')
6879 			len--;	/* Ignore trailing slash */
6880 		if (len < strlen(zd->zd_dataset) &&
6881 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6882 		    zd->zd_dataset[len] == '/') {
6883 			if (write)
6884 				*write = 0;
6885 			return (1);
6886 		}
6887 	}
6888 
6889 	/*
6890 	 * We reach here if the given dataset is not found in the zone_dataset
6891 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6892 	 * instead of delegation. For this we search for the dataset in the
6893 	 * zone_vfslist of this zone. If found, return true and note that it is
6894 	 * not writable.
6895 	 */
6896 
6897 	/*
6898 	 * Initialize zfstype if it is not initialized yet.
6899 	 */
6900 	if (zfstype == -1) {
6901 		struct vfssw *vswp = vfs_getvfssw("zfs");
6902 		zfstype = vswp - vfssw;
6903 		vfs_unrefvfssw(vswp);
6904 	}
6905 
6906 	vfs_list_read_lock();
6907 	vfsp = zone->zone_vfslist;
6908 	do {
6909 		ASSERT(vfsp);
6910 		if (vfsp->vfs_fstype == zfstype) {
6911 			name = refstr_value(vfsp->vfs_resource);
6912 
6913 			/*
6914 			 * Check if we have an exact match.
6915 			 */
6916 			if (strcmp(dataset, name) == 0) {
6917 				vfs_list_unlock();
6918 				if (write)
6919 					*write = 0;
6920 				return (1);
6921 			}
6922 			/*
6923 			 * We need to check if we are looking for parents of
6924 			 * a dataset. These should be visible, but read-only.
6925 			 */
6926 			len = strlen(dataset);
6927 			if (dataset[len - 1] == '/')
6928 				len--;
6929 
6930 			if (len < strlen(name) &&
6931 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6932 				vfs_list_unlock();
6933 				if (write)
6934 					*write = 0;
6935 				return (1);
6936 			}
6937 		}
6938 		vfsp = vfsp->vfs_zone_next;
6939 	} while (vfsp != zone->zone_vfslist);
6940 
6941 	vfs_list_unlock();
6942 	return (0);
6943 }
6944 
6945 /*
6946  * zone_find_by_any_path() -
6947  *
6948  * kernel-private routine similar to zone_find_by_path(), but which
6949  * effectively compares against zone paths rather than zonerootpath
6950  * (i.e., the last component of zonerootpaths, which should be "root/",
6951  * are not compared.)  This is done in order to accurately identify all
6952  * paths, whether zone-visible or not, including those which are parallel
6953  * to /root/, such as /dev/, /home/, etc...
6954  *
6955  * If the specified path does not fall under any zone path then global
6956  * zone is returned.
6957  *
6958  * The treat_abs parameter indicates whether the path should be treated as
6959  * an absolute path although it does not begin with "/".  (This supports
6960  * nfs mount syntax such as host:any/path.)
6961  *
6962  * The caller is responsible for zone_rele of the returned zone.
6963  */
6964 zone_t *
6965 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6966 {
6967 	zone_t *zone;
6968 	int path_offset = 0;
6969 
6970 	if (path == NULL) {
6971 		zone_hold(global_zone);
6972 		return (global_zone);
6973 	}
6974 
6975 	if (*path != '/') {
6976 		ASSERT(treat_abs);
6977 		path_offset = 1;
6978 	}
6979 
6980 	mutex_enter(&zonehash_lock);
6981 	for (zone = list_head(&zone_active); zone != NULL;
6982 	    zone = list_next(&zone_active, zone)) {
6983 		char	*c;
6984 		size_t	pathlen;
6985 		char *rootpath_start;
6986 
6987 		if (zone == global_zone)	/* skip global zone */
6988 			continue;
6989 
6990 		/* scan backwards to find start of last component */
6991 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6992 		do {
6993 			c--;
6994 		} while (*c != '/');
6995 
6996 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6997 		rootpath_start = (zone->zone_rootpath + path_offset);
6998 		if (strncmp(path, rootpath_start, pathlen) == 0)
6999 			break;
7000 	}
7001 	if (zone == NULL)
7002 		zone = global_zone;
7003 	zone_hold(zone);
7004 	mutex_exit(&zonehash_lock);
7005 	return (zone);
7006 }
7007 
7008 /*
7009  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7010  * zone_dl_t pointer if found, and NULL otherwise.
7011  */
7012 static zone_dl_t *
7013 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7014 {
7015 	zone_dl_t *zdl;
7016 
7017 	ASSERT(mutex_owned(&zone->zone_lock));
7018 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7019 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7020 		if (zdl->zdl_id == linkid)
7021 			break;
7022 	}
7023 	return (zdl);
7024 }
7025 
7026 static boolean_t
7027 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7028 {
7029 	boolean_t exists;
7030 
7031 	mutex_enter(&zone->zone_lock);
7032 	exists = (zone_find_dl(zone, linkid) != NULL);
7033 	mutex_exit(&zone->zone_lock);
7034 	return (exists);
7035 }
7036 
7037 /*
7038  * Add an data link name for the zone.
7039  */
7040 static int
7041 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7042 {
7043 	zone_dl_t *zdl;
7044 	zone_t *zone;
7045 	zone_t *thiszone;
7046 
7047 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7048 		return (set_errno(ENXIO));
7049 
7050 	/* Verify that the datalink ID doesn't already belong to a zone. */
7051 	mutex_enter(&zonehash_lock);
7052 	for (zone = list_head(&zone_active); zone != NULL;
7053 	    zone = list_next(&zone_active, zone)) {
7054 		if (zone_dl_exists(zone, linkid)) {
7055 			mutex_exit(&zonehash_lock);
7056 			zone_rele(thiszone);
7057 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7058 		}
7059 	}
7060 
7061 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7062 	zdl->zdl_id = linkid;
7063 	zdl->zdl_net = NULL;
7064 	mutex_enter(&thiszone->zone_lock);
7065 	list_insert_head(&thiszone->zone_dl_list, zdl);
7066 	mutex_exit(&thiszone->zone_lock);
7067 	mutex_exit(&zonehash_lock);
7068 	zone_rele(thiszone);
7069 	return (0);
7070 }
7071 
7072 static int
7073 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7074 {
7075 	zone_dl_t *zdl;
7076 	zone_t *zone;
7077 	int err = 0;
7078 
7079 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7080 		return (set_errno(EINVAL));
7081 
7082 	mutex_enter(&zone->zone_lock);
7083 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7084 		err = ENXIO;
7085 	} else {
7086 		list_remove(&zone->zone_dl_list, zdl);
7087 		nvlist_free(zdl->zdl_net);
7088 		kmem_free(zdl, sizeof (zone_dl_t));
7089 	}
7090 	mutex_exit(&zone->zone_lock);
7091 	zone_rele(zone);
7092 	return (err == 0 ? 0 : set_errno(err));
7093 }
7094 
7095 /*
7096  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7097  * the linkid.  Otherwise we just check if the specified zoneidp has been
7098  * assigned the supplied linkid.
7099  */
7100 int
7101 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7102 {
7103 	zone_t *zone;
7104 	int err = ENXIO;
7105 
7106 	if (*zoneidp != ALL_ZONES) {
7107 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7108 			if (zone_dl_exists(zone, linkid))
7109 				err = 0;
7110 			zone_rele(zone);
7111 		}
7112 		return (err);
7113 	}
7114 
7115 	mutex_enter(&zonehash_lock);
7116 	for (zone = list_head(&zone_active); zone != NULL;
7117 	    zone = list_next(&zone_active, zone)) {
7118 		if (zone_dl_exists(zone, linkid)) {
7119 			*zoneidp = zone->zone_id;
7120 			err = 0;
7121 			break;
7122 		}
7123 	}
7124 	mutex_exit(&zonehash_lock);
7125 	return (err);
7126 }
7127 
7128 /*
7129  * Get the list of datalink IDs assigned to a zone.
7130  *
7131  * On input, *nump is the number of datalink IDs that can fit in the supplied
7132  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7133  * that were placed in the array if the array was large enough, or to the
7134  * number of datalink IDs that the function needs to place in the array if the
7135  * array is too small.
7136  */
7137 static int
7138 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7139 {
7140 	uint_t num, dlcount;
7141 	zone_t *zone;
7142 	zone_dl_t *zdl;
7143 	datalink_id_t *idptr = idarray;
7144 
7145 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7146 		return (set_errno(EFAULT));
7147 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7148 		return (set_errno(ENXIO));
7149 
7150 	num = 0;
7151 	mutex_enter(&zone->zone_lock);
7152 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7153 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7154 		/*
7155 		 * If the list is bigger than what the caller supplied, just
7156 		 * count, don't do copyout.
7157 		 */
7158 		if (++num > dlcount)
7159 			continue;
7160 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7161 			mutex_exit(&zone->zone_lock);
7162 			zone_rele(zone);
7163 			return (set_errno(EFAULT));
7164 		}
7165 		idptr++;
7166 	}
7167 	mutex_exit(&zone->zone_lock);
7168 	zone_rele(zone);
7169 
7170 	/* Increased or decreased, caller should be notified. */
7171 	if (num != dlcount) {
7172 		if (copyout(&num, nump, sizeof (num)) != 0)
7173 			return (set_errno(EFAULT));
7174 	}
7175 	return (0);
7176 }
7177 
7178 /*
7179  * Public interface for looking up a zone by zoneid. It's a customized version
7180  * for netstack_zone_create(). It can only be called from the zsd create
7181  * callbacks, since it doesn't have reference on the zone structure hence if
7182  * it is called elsewhere the zone could disappear after the zonehash_lock
7183  * is dropped.
7184  *
7185  * Furthermore it
7186  * 1. Doesn't check the status of the zone.
7187  * 2. It will be called even before zone_init is called, in that case the
7188  *    address of zone0 is returned directly, and netstack_zone_create()
7189  *    will only assign a value to zone0.zone_netstack, won't break anything.
7190  * 3. Returns without the zone being held.
7191  */
7192 zone_t *
7193 zone_find_by_id_nolock(zoneid_t zoneid)
7194 {
7195 	zone_t *zone;
7196 
7197 	mutex_enter(&zonehash_lock);
7198 	if (zonehashbyid == NULL)
7199 		zone = &zone0;
7200 	else
7201 		zone = zone_find_all_by_id(zoneid);
7202 	mutex_exit(&zonehash_lock);
7203 	return (zone);
7204 }
7205 
7206 /*
7207  * Walk the datalinks for a given zone
7208  */
7209 int
7210 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7211     void *data)
7212 {
7213 	zone_t		*zone;
7214 	zone_dl_t	*zdl;
7215 	datalink_id_t	*idarray;
7216 	uint_t		idcount = 0;
7217 	int		i, ret = 0;
7218 
7219 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7220 		return (ENOENT);
7221 
7222 	/*
7223 	 * We first build an array of linkid's so that we can walk these and
7224 	 * execute the callback with the zone_lock dropped.
7225 	 */
7226 	mutex_enter(&zone->zone_lock);
7227 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7228 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7229 		idcount++;
7230 	}
7231 
7232 	if (idcount == 0) {
7233 		mutex_exit(&zone->zone_lock);
7234 		zone_rele(zone);
7235 		return (0);
7236 	}
7237 
7238 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7239 	if (idarray == NULL) {
7240 		mutex_exit(&zone->zone_lock);
7241 		zone_rele(zone);
7242 		return (ENOMEM);
7243 	}
7244 
7245 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7246 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7247 		idarray[i] = zdl->zdl_id;
7248 	}
7249 
7250 	mutex_exit(&zone->zone_lock);
7251 
7252 	for (i = 0; i < idcount && ret == 0; i++) {
7253 		if ((ret = (*cb)(idarray[i], data)) != 0)
7254 			break;
7255 	}
7256 
7257 	zone_rele(zone);
7258 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7259 	return (ret);
7260 }
7261 
7262 static char *
7263 zone_net_type2name(int type)
7264 {
7265 	switch (type) {
7266 	case ZONE_NETWORK_ADDRESS:
7267 		return (ZONE_NET_ADDRNAME);
7268 	case ZONE_NETWORK_DEFROUTER:
7269 		return (ZONE_NET_RTRNAME);
7270 	default:
7271 		return (NULL);
7272 	}
7273 }
7274 
7275 static int
7276 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7277 {
7278 	zone_t *zone;
7279 	zone_dl_t *zdl;
7280 	nvlist_t *nvl;
7281 	int err = 0;
7282 	uint8_t *new = NULL;
7283 	char *nvname;
7284 	int bufsize;
7285 	datalink_id_t linkid = znbuf->zn_linkid;
7286 
7287 	if (secpolicy_zone_config(CRED()) != 0)
7288 		return (set_errno(EPERM));
7289 
7290 	if (zoneid == GLOBAL_ZONEID)
7291 		return (set_errno(EINVAL));
7292 
7293 	nvname = zone_net_type2name(znbuf->zn_type);
7294 	bufsize = znbuf->zn_len;
7295 	new = znbuf->zn_val;
7296 	if (nvname == NULL)
7297 		return (set_errno(EINVAL));
7298 
7299 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7300 		return (set_errno(EINVAL));
7301 	}
7302 
7303 	mutex_enter(&zone->zone_lock);
7304 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7305 		err = ENXIO;
7306 		goto done;
7307 	}
7308 	if ((nvl = zdl->zdl_net) == NULL) {
7309 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7310 			err = ENOMEM;
7311 			goto done;
7312 		} else {
7313 			zdl->zdl_net = nvl;
7314 		}
7315 	}
7316 	if (nvlist_exists(nvl, nvname)) {
7317 		err = EINVAL;
7318 		goto done;
7319 	}
7320 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7321 	ASSERT(err == 0);
7322 done:
7323 	mutex_exit(&zone->zone_lock);
7324 	zone_rele(zone);
7325 	if (err != 0)
7326 		return (set_errno(err));
7327 	else
7328 		return (0);
7329 }
7330 
7331 static int
7332 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7333 {
7334 	zone_t *zone;
7335 	zone_dl_t *zdl;
7336 	nvlist_t *nvl;
7337 	uint8_t *ptr;
7338 	uint_t psize;
7339 	int err = 0;
7340 	char *nvname;
7341 	int bufsize;
7342 	void *buf;
7343 	datalink_id_t linkid = znbuf->zn_linkid;
7344 
7345 	if (zoneid == GLOBAL_ZONEID)
7346 		return (set_errno(EINVAL));
7347 
7348 	nvname = zone_net_type2name(znbuf->zn_type);
7349 	bufsize = znbuf->zn_len;
7350 	buf = znbuf->zn_val;
7351 
7352 	if (nvname == NULL)
7353 		return (set_errno(EINVAL));
7354 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7355 		return (set_errno(EINVAL));
7356 
7357 	mutex_enter(&zone->zone_lock);
7358 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7359 		err = ENXIO;
7360 		goto done;
7361 	}
7362 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7363 		err = ENOENT;
7364 		goto done;
7365 	}
7366 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7367 	ASSERT(err == 0);
7368 
7369 	if (psize > bufsize) {
7370 		err = ENOBUFS;
7371 		goto done;
7372 	}
7373 	znbuf->zn_len = psize;
7374 	bcopy(ptr, buf, psize);
7375 done:
7376 	mutex_exit(&zone->zone_lock);
7377 	zone_rele(zone);
7378 	if (err != 0)
7379 		return (set_errno(err));
7380 	else
7381 		return (0);
7382 }
7383