xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 48bbca816818409505a6e214d0911fda44e622e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * Zones
30  *
31  *   A zone is a named collection of processes, namespace constraints,
32  *   and other system resources which comprise a secure and manageable
33  *   application containment facility.
34  *
35  *   Zones (represented by the reference counted zone_t) are tracked in
36  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
37  *   (zoneid_t) are used to track zone association.  Zone IDs are
38  *   dynamically generated when the zone is created; if a persistent
39  *   identifier is needed (core files, accounting logs, audit trail,
40  *   etc.), the zone name should be used.
41  *
42  *
43  *   Global Zone:
44  *
45  *   The global zone (zoneid 0) is automatically associated with all
46  *   system resources that have not been bound to a user-created zone.
47  *   This means that even systems where zones are not in active use
48  *   have a global zone, and all processes, mounts, etc. are
49  *   associated with that zone.  The global zone is generally
50  *   unconstrained in terms of privileges and access, though the usual
51  *   credential and privilege based restrictions apply.
52  *
53  *
54  *   Zone States:
55  *
56  *   The states in which a zone may be in and the transitions are as
57  *   follows:
58  *
59  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
60  *   initialized zone is added to the list of active zones on the system but
61  *   isn't accessible.
62  *
63  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
64  *   not yet completed. Not possible to enter the zone, but attributes can
65  *   be retrieved.
66  *
67  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
68  *   ready.  The zone is made visible after the ZSD constructor callbacks are
69  *   executed.  A zone remains in this state until it transitions into
70  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
71  *
72  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
73  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
74  *   state.
75  *
76  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
77  *   successfully started init.   A zone remains in this state until
78  *   zone_shutdown() is called.
79  *
80  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
81  *   killing all processes running in the zone. The zone remains
82  *   in this state until there are no more user processes running in the zone.
83  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
84  *   Since zone_shutdown() is restartable, it may be called successfully
85  *   multiple times for the same zone_t.  Setting of the zone's state to
86  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
87  *   the zone's status without worrying about it being a moving target.
88  *
89  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
90  *   are no more user processes in the zone.  The zone remains in this
91  *   state until there are no more kernel threads associated with the
92  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
93  *   fail.
94  *
95  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
96  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
97  *   join the zone or create kernel threads therein.
98  *
99  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
100  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
101  *   return NULL from now on.
102  *
103  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
104  *   processes or threads doing work on behalf of the zone.  The zone is
105  *   removed from the list of active zones.  zone_destroy() returns, and
106  *   the zone can be recreated.
107  *
108  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
109  *   callbacks are executed, and all memory associated with the zone is
110  *   freed.
111  *
112  *   Threads can wait for the zone to enter a requested state by using
113  *   zone_status_wait() or zone_status_timedwait() with the desired
114  *   state passed in as an argument.  Zone state transitions are
115  *   uni-directional; it is not possible to move back to an earlier state.
116  *
117  *
118  *   Zone-Specific Data:
119  *
120  *   Subsystems needing to maintain zone-specific data can store that
121  *   data using the ZSD mechanism.  This provides a zone-specific data
122  *   store, similar to thread-specific data (see pthread_getspecific(3C)
123  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
124  *   to register callbacks to be invoked when a zone is created, shut
125  *   down, or destroyed.  This can be used to initialize zone-specific
126  *   data for new zones and to clean up when zones go away.
127  *
128  *
129  *   Data Structures:
130  *
131  *   The per-zone structure (zone_t) is reference counted, and freed
132  *   when all references are released.  zone_hold and zone_rele can be
133  *   used to adjust the reference count.  In addition, reference counts
134  *   associated with the cred_t structure are tracked separately using
135  *   zone_cred_hold and zone_cred_rele.
136  *
137  *   Pointers to active zone_t's are stored in two hash tables; one
138  *   for searching by id, the other for searching by name.  Lookups
139  *   can be performed on either basis, using zone_find_by_id and
140  *   zone_find_by_name.  Both return zone_t pointers with the zone
141  *   held, so zone_rele should be called when the pointer is no longer
142  *   needed.  Zones can also be searched by path; zone_find_by_path
143  *   returns the zone with which a path name is associated (global
144  *   zone if the path is not within some other zone's file system
145  *   hierarchy).  This currently requires iterating through each zone,
146  *   so it is slower than an id or name search via a hash table.
147  *
148  *
149  *   Locking:
150  *
151  *   zonehash_lock: This is a top-level global lock used to protect the
152  *       zone hash tables and lists.  Zones cannot be created or destroyed
153  *       while this lock is held.
154  *   zone_status_lock: This is a global lock protecting zone state.
155  *       Zones cannot change state while this lock is held.  It also
156  *       protects the list of kernel threads associated with a zone.
157  *   zone_lock: This is a per-zone lock used to protect several fields of
158  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
159  *       this lock means that the zone cannot go away.
160  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
161  *	 related to the zone.max-lwps rctl.
162  *   zone_mem_lock: This is a per-zone lock used to protect the fields
163  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
164  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
165  *       currently just max_lofi
166  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
167  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
168  *       list (a list of zones in the ZONE_IS_DEAD state).
169  *
170  *   Ordering requirements:
171  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
172  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
173  *
174  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
176  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
177  *
178  *   Blocking memory allocations are permitted while holding any of the
179  *   zone locks.
180  *
181  *
182  *   System Call Interface:
183  *
184  *   The zone subsystem can be managed and queried from user level with
185  *   the following system calls (all subcodes of the primary "zone"
186  *   system call):
187  *   - zone_create: creates a zone with selected attributes (name,
188  *     root path, privileges, resource controls, ZFS datasets)
189  *   - zone_enter: allows the current process to enter a zone
190  *   - zone_getattr: reports attributes of a zone
191  *   - zone_setattr: set attributes of a zone
192  *   - zone_boot: set 'init' running for the zone
193  *   - zone_list: lists all zones active in the system
194  *   - zone_lookup: looks up zone id based on name
195  *   - zone_shutdown: initiates shutdown process (see states above)
196  *   - zone_destroy: completes shutdown process (see states above)
197  *
198  */
199 
200 #include <sys/priv_impl.h>
201 #include <sys/cred.h>
202 #include <c2/audit.h>
203 #include <sys/debug.h>
204 #include <sys/file.h>
205 #include <sys/kmem.h>
206 #include <sys/kstat.h>
207 #include <sys/mutex.h>
208 #include <sys/note.h>
209 #include <sys/pathname.h>
210 #include <sys/proc.h>
211 #include <sys/project.h>
212 #include <sys/sysevent.h>
213 #include <sys/task.h>
214 #include <sys/systm.h>
215 #include <sys/types.h>
216 #include <sys/utsname.h>
217 #include <sys/vnode.h>
218 #include <sys/vfs.h>
219 #include <sys/systeminfo.h>
220 #include <sys/policy.h>
221 #include <sys/cred_impl.h>
222 #include <sys/contract_impl.h>
223 #include <sys/contract/process_impl.h>
224 #include <sys/class.h>
225 #include <sys/pool.h>
226 #include <sys/pool_pset.h>
227 #include <sys/pset.h>
228 #include <sys/strlog.h>
229 #include <sys/sysmacros.h>
230 #include <sys/callb.h>
231 #include <sys/vmparam.h>
232 #include <sys/corectl.h>
233 #include <sys/ipc_impl.h>
234 #include <sys/klpd.h>
235 
236 #include <sys/door.h>
237 #include <sys/cpuvar.h>
238 #include <sys/sdt.h>
239 
240 #include <sys/uadmin.h>
241 #include <sys/session.h>
242 #include <sys/cmn_err.h>
243 #include <sys/modhash.h>
244 #include <sys/sunddi.h>
245 #include <sys/nvpair.h>
246 #include <sys/rctl.h>
247 #include <sys/fss.h>
248 #include <sys/brand.h>
249 #include <sys/zone.h>
250 #include <net/if.h>
251 #include <sys/cpucaps.h>
252 #include <vm/seg.h>
253 #include <sys/mac.h>
254 
255 /*
256  * This constant specifies the number of seconds that threads waiting for
257  * subsystems to release a zone's general-purpose references will wait before
258  * they log the zone's reference counts.  The constant's value shouldn't
259  * be so small that reference counts are unnecessarily reported for zones
260  * whose references are slowly released.  On the other hand, it shouldn't be so
261  * large that users reboot their systems out of frustration over hung zones
262  * before the system logs the zones' reference counts.
263  */
264 #define	ZONE_DESTROY_TIMEOUT_SECS	60
265 
266 /* List of data link IDs which are accessible from the zone */
267 typedef struct zone_dl {
268 	datalink_id_t	zdl_id;
269 	nvlist_t	*zdl_net;
270 	list_node_t	zdl_linkage;
271 } zone_dl_t;
272 
273 /*
274  * cv used to signal that all references to the zone have been released.  This
275  * needs to be global since there may be multiple waiters, and the first to
276  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
277  */
278 static kcondvar_t zone_destroy_cv;
279 /*
280  * Lock used to serialize access to zone_cv.  This could have been per-zone,
281  * but then we'd need another lock for zone_destroy_cv, and why bother?
282  */
283 static kmutex_t zone_status_lock;
284 
285 /*
286  * ZSD-related global variables.
287  */
288 static kmutex_t zsd_key_lock;	/* protects the following two */
289 /*
290  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
291  */
292 static zone_key_t zsd_keyval = 0;
293 /*
294  * Global list of registered keys.  We use this when a new zone is created.
295  */
296 static list_t zsd_registered_keys;
297 
298 int zone_hash_size = 256;
299 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
300 static kmutex_t zonehash_lock;
301 static uint_t zonecount;
302 static id_space_t *zoneid_space;
303 
304 /*
305  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
306  * kernel proper runs, and which manages all other zones.
307  *
308  * Although not declared as static, the variable "zone0" should not be used
309  * except for by code that needs to reference the global zone early on in boot,
310  * before it is fully initialized.  All other consumers should use
311  * 'global_zone'.
312  */
313 zone_t zone0;
314 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
315 
316 /*
317  * List of active zones, protected by zonehash_lock.
318  */
319 static list_t zone_active;
320 
321 /*
322  * List of destroyed zones that still have outstanding cred references.
323  * Used for debugging.  Uses a separate lock to avoid lock ordering
324  * problems in zone_free.
325  */
326 static list_t zone_deathrow;
327 static kmutex_t zone_deathrow_lock;
328 
329 /* number of zones is limited by virtual interface limit in IP */
330 uint_t maxzones = 8192;
331 
332 /* Event channel to sent zone state change notifications */
333 evchan_t *zone_event_chan;
334 
335 /*
336  * This table holds the mapping from kernel zone states to
337  * states visible in the state notification API.
338  * The idea is that we only expose "obvious" states and
339  * do not expose states which are just implementation details.
340  */
341 const char  *zone_status_table[] = {
342 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
343 	ZONE_EVENT_INITIALIZED,		/* initialized */
344 	ZONE_EVENT_READY,		/* ready */
345 	ZONE_EVENT_READY,		/* booting */
346 	ZONE_EVENT_RUNNING,		/* running */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
350 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
351 	ZONE_EVENT_UNINITIALIZED,	/* dead */
352 };
353 
354 /*
355  * This array contains the names of the subsystems listed in zone_ref_subsys_t
356  * (see sys/zone.h).
357  */
358 static char *zone_ref_subsys_names[] = {
359 	"NFS",		/* ZONE_REF_NFS */
360 	"NFSv4",	/* ZONE_REF_NFSV4 */
361 	"SMBFS",	/* ZONE_REF_SMBFS */
362 	"MNTFS",	/* ZONE_REF_MNTFS */
363 	"LOFI",		/* ZONE_REF_LOFI */
364 	"VFS",		/* ZONE_REF_VFS */
365 	"IPC"		/* ZONE_REF_IPC */
366 };
367 
368 /*
369  * This isn't static so lint doesn't complain.
370  */
371 rctl_hndl_t rc_zone_cpu_shares;
372 rctl_hndl_t rc_zone_locked_mem;
373 rctl_hndl_t rc_zone_max_swap;
374 rctl_hndl_t rc_zone_max_lofi;
375 rctl_hndl_t rc_zone_cpu_cap;
376 rctl_hndl_t rc_zone_nlwps;
377 rctl_hndl_t rc_zone_nprocs;
378 rctl_hndl_t rc_zone_shmmax;
379 rctl_hndl_t rc_zone_shmmni;
380 rctl_hndl_t rc_zone_semmni;
381 rctl_hndl_t rc_zone_msgmni;
382 
383 const char * const zone_default_initname = "/sbin/init";
384 static char * const zone_prefix = "/zone/";
385 static int zone_shutdown(zoneid_t zoneid);
386 static int zone_add_datalink(zoneid_t, datalink_id_t);
387 static int zone_remove_datalink(zoneid_t, datalink_id_t);
388 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
389 static int zone_set_network(zoneid_t, zone_net_data_t *);
390 static int zone_get_network(zoneid_t, zone_net_data_t *);
391 
392 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
393 
394 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
395 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
396 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
397 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
398     zone_key_t);
399 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
400 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
401     kmutex_t *);
402 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
403     kmutex_t *);
404 
405 /*
406  * Bump this number when you alter the zone syscall interfaces; this is
407  * because we need to have support for previous API versions in libc
408  * to support patching; libc calls into the kernel to determine this number.
409  *
410  * Version 1 of the API is the version originally shipped with Solaris 10
411  * Version 2 alters the zone_create system call in order to support more
412  *     arguments by moving the args into a structure; and to do better
413  *     error reporting when zone_create() fails.
414  * Version 3 alters the zone_create system call in order to support the
415  *     import of ZFS datasets to zones.
416  * Version 4 alters the zone_create system call in order to support
417  *     Trusted Extensions.
418  * Version 5 alters the zone_boot system call, and converts its old
419  *     bootargs parameter to be set by the zone_setattr API instead.
420  * Version 6 adds the flag argument to zone_create.
421  */
422 static const int ZONE_SYSCALL_API_VERSION = 6;
423 
424 /*
425  * Certain filesystems (such as NFS and autofs) need to know which zone
426  * the mount is being placed in.  Because of this, we need to be able to
427  * ensure that a zone isn't in the process of being created/destroyed such
428  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
429  * it gets added the list of mounted zones, it ends up on the wrong zone's
430  * mount list. Since a zone can't reside on an NFS file system, we don't
431  * have to worry about the zonepath itself.
432  *
433  * The following functions: block_mounts()/resume_mounts() and
434  * mount_in_progress()/mount_completed() are used by zones and the VFS
435  * layer (respectively) to synchronize zone state transitions and new
436  * mounts within a zone. This syncronization is on a per-zone basis, so
437  * activity for one zone will not interfere with activity for another zone.
438  *
439  * The semantics are like a reader-reader lock such that there may
440  * either be multiple mounts (or zone state transitions, if that weren't
441  * serialized by zonehash_lock) in progress at the same time, but not
442  * both.
443  *
444  * We use cv's so the user can ctrl-C out of the operation if it's
445  * taking too long.
446  *
447  * The semantics are such that there is unfair bias towards the
448  * "current" operation.  This means that zone halt may starve if
449  * there is a rapid succession of new mounts coming in to the zone.
450  */
451 /*
452  * Prevent new mounts from progressing to the point of calling
453  * VFS_MOUNT().  If there are already mounts in this "region", wait for
454  * them to complete.
455  */
456 static int
457 block_mounts(zone_t *zp)
458 {
459 	int retval = 0;
460 
461 	/*
462 	 * Since it may block for a long time, block_mounts() shouldn't be
463 	 * called with zonehash_lock held.
464 	 */
465 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
466 	mutex_enter(&zp->zone_mount_lock);
467 	while (zp->zone_mounts_in_progress > 0) {
468 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
469 			goto signaled;
470 	}
471 	/*
472 	 * A negative value of mounts_in_progress indicates that mounts
473 	 * have been blocked by (-mounts_in_progress) different callers
474 	 * (remotely possible if two threads enter zone_shutdown at the same
475 	 * time).
476 	 */
477 	zp->zone_mounts_in_progress--;
478 	retval = 1;
479 signaled:
480 	mutex_exit(&zp->zone_mount_lock);
481 	return (retval);
482 }
483 
484 /*
485  * The VFS layer may progress with new mounts as far as we're concerned.
486  * Allow them to progress if we were the last obstacle.
487  */
488 static void
489 resume_mounts(zone_t *zp)
490 {
491 	mutex_enter(&zp->zone_mount_lock);
492 	if (++zp->zone_mounts_in_progress == 0)
493 		cv_broadcast(&zp->zone_mount_cv);
494 	mutex_exit(&zp->zone_mount_lock);
495 }
496 
497 /*
498  * The VFS layer is busy with a mount; this zone should wait until all
499  * of its mounts are completed to progress.
500  */
501 void
502 mount_in_progress(zone_t *zp)
503 {
504 	mutex_enter(&zp->zone_mount_lock);
505 	while (zp->zone_mounts_in_progress < 0)
506 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
507 	zp->zone_mounts_in_progress++;
508 	mutex_exit(&zp->zone_mount_lock);
509 }
510 
511 /*
512  * VFS is done with one mount; wake up any waiting block_mounts()
513  * callers if this is the last mount.
514  */
515 void
516 mount_completed(zone_t *zp)
517 {
518 	mutex_enter(&zp->zone_mount_lock);
519 	if (--zp->zone_mounts_in_progress == 0)
520 		cv_broadcast(&zp->zone_mount_cv);
521 	mutex_exit(&zp->zone_mount_lock);
522 }
523 
524 /*
525  * ZSD routines.
526  *
527  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
528  * defined by the pthread_key_create() and related interfaces.
529  *
530  * Kernel subsystems may register one or more data items and/or
531  * callbacks to be executed when a zone is created, shutdown, or
532  * destroyed.
533  *
534  * Unlike the thread counterpart, destructor callbacks will be executed
535  * even if the data pointer is NULL and/or there are no constructor
536  * callbacks, so it is the responsibility of such callbacks to check for
537  * NULL data values if necessary.
538  *
539  * The locking strategy and overall picture is as follows:
540  *
541  * When someone calls zone_key_create(), a template ZSD entry is added to the
542  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
543  * holding that lock all the existing zones are marked as
544  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
545  * zone_zsd list (protected by zone_lock). The global list is updated first
546  * (under zone_key_lock) to make sure that newly created zones use the
547  * most recent list of keys. Then under zonehash_lock we walk the zones
548  * and mark them.  Similar locking is used in zone_key_delete().
549  *
550  * The actual create, shutdown, and destroy callbacks are done without
551  * holding any lock. And zsd_flags are used to ensure that the operations
552  * completed so that when zone_key_create (and zone_create) is done, as well as
553  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
554  * are completed.
555  *
556  * When new zones are created constructor callbacks for all registered ZSD
557  * entries will be called. That also uses the above two phases of marking
558  * what needs to be done, and then running the callbacks without holding
559  * any locks.
560  *
561  * The framework does not provide any locking around zone_getspecific() and
562  * zone_setspecific() apart from that needed for internal consistency, so
563  * callers interested in atomic "test-and-set" semantics will need to provide
564  * their own locking.
565  */
566 
567 /*
568  * Helper function to find the zsd_entry associated with the key in the
569  * given list.
570  */
571 static struct zsd_entry *
572 zsd_find(list_t *l, zone_key_t key)
573 {
574 	struct zsd_entry *zsd;
575 
576 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
577 		if (zsd->zsd_key == key) {
578 			return (zsd);
579 		}
580 	}
581 	return (NULL);
582 }
583 
584 /*
585  * Helper function to find the zsd_entry associated with the key in the
586  * given list. Move it to the front of the list.
587  */
588 static struct zsd_entry *
589 zsd_find_mru(list_t *l, zone_key_t key)
590 {
591 	struct zsd_entry *zsd;
592 
593 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
594 		if (zsd->zsd_key == key) {
595 			/*
596 			 * Move to head of list to keep list in MRU order.
597 			 */
598 			if (zsd != list_head(l)) {
599 				list_remove(l, zsd);
600 				list_insert_head(l, zsd);
601 			}
602 			return (zsd);
603 		}
604 	}
605 	return (NULL);
606 }
607 
608 void
609 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
610     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
611 {
612 	struct zsd_entry *zsdp;
613 	struct zsd_entry *t;
614 	struct zone *zone;
615 	zone_key_t  key;
616 
617 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
618 	zsdp->zsd_data = NULL;
619 	zsdp->zsd_create = create;
620 	zsdp->zsd_shutdown = shutdown;
621 	zsdp->zsd_destroy = destroy;
622 
623 	/*
624 	 * Insert in global list of callbacks. Makes future zone creations
625 	 * see it.
626 	 */
627 	mutex_enter(&zsd_key_lock);
628 	key = zsdp->zsd_key = ++zsd_keyval;
629 	ASSERT(zsd_keyval != 0);
630 	list_insert_tail(&zsd_registered_keys, zsdp);
631 	mutex_exit(&zsd_key_lock);
632 
633 	/*
634 	 * Insert for all existing zones and mark them as needing
635 	 * a create callback.
636 	 */
637 	mutex_enter(&zonehash_lock);	/* stop the world */
638 	for (zone = list_head(&zone_active); zone != NULL;
639 	    zone = list_next(&zone_active, zone)) {
640 		zone_status_t status;
641 
642 		mutex_enter(&zone->zone_lock);
643 
644 		/* Skip zones that are on the way down or not yet up */
645 		status = zone_status_get(zone);
646 		if (status >= ZONE_IS_DOWN ||
647 		    status == ZONE_IS_UNINITIALIZED) {
648 			mutex_exit(&zone->zone_lock);
649 			continue;
650 		}
651 
652 		t = zsd_find_mru(&zone->zone_zsd, key);
653 		if (t != NULL) {
654 			/*
655 			 * A zsd_configure already inserted it after
656 			 * we dropped zsd_key_lock above.
657 			 */
658 			mutex_exit(&zone->zone_lock);
659 			continue;
660 		}
661 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
662 		t->zsd_key = key;
663 		t->zsd_create = create;
664 		t->zsd_shutdown = shutdown;
665 		t->zsd_destroy = destroy;
666 		if (create != NULL) {
667 			t->zsd_flags = ZSD_CREATE_NEEDED;
668 			DTRACE_PROBE2(zsd__create__needed,
669 			    zone_t *, zone, zone_key_t, key);
670 		}
671 		list_insert_tail(&zone->zone_zsd, t);
672 		mutex_exit(&zone->zone_lock);
673 	}
674 	mutex_exit(&zonehash_lock);
675 
676 	if (create != NULL) {
677 		/* Now call the create callback for this key */
678 		zsd_apply_all_zones(zsd_apply_create, key);
679 	}
680 	/*
681 	 * It is safe for consumers to use the key now, make it
682 	 * globally visible. Specifically zone_getspecific() will
683 	 * always successfully return the zone specific data associated
684 	 * with the key.
685 	 */
686 	*keyp = key;
687 
688 }
689 
690 /*
691  * Function called when a module is being unloaded, or otherwise wishes
692  * to unregister its ZSD key and callbacks.
693  *
694  * Remove from the global list and determine the functions that need to
695  * be called under a global lock. Then call the functions without
696  * holding any locks. Finally free up the zone_zsd entries. (The apply
697  * functions need to access the zone_zsd entries to find zsd_data etc.)
698  */
699 int
700 zone_key_delete(zone_key_t key)
701 {
702 	struct zsd_entry *zsdp = NULL;
703 	zone_t *zone;
704 
705 	mutex_enter(&zsd_key_lock);
706 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
707 	if (zsdp == NULL) {
708 		mutex_exit(&zsd_key_lock);
709 		return (-1);
710 	}
711 	list_remove(&zsd_registered_keys, zsdp);
712 	mutex_exit(&zsd_key_lock);
713 
714 	mutex_enter(&zonehash_lock);
715 	for (zone = list_head(&zone_active); zone != NULL;
716 	    zone = list_next(&zone_active, zone)) {
717 		struct zsd_entry *del;
718 
719 		mutex_enter(&zone->zone_lock);
720 		del = zsd_find_mru(&zone->zone_zsd, key);
721 		if (del == NULL) {
722 			/*
723 			 * Somebody else got here first e.g the zone going
724 			 * away.
725 			 */
726 			mutex_exit(&zone->zone_lock);
727 			continue;
728 		}
729 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
730 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
731 		if (del->zsd_shutdown != NULL &&
732 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
733 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
734 			DTRACE_PROBE2(zsd__shutdown__needed,
735 			    zone_t *, zone, zone_key_t, key);
736 		}
737 		if (del->zsd_destroy != NULL &&
738 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
739 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
740 			DTRACE_PROBE2(zsd__destroy__needed,
741 			    zone_t *, zone, zone_key_t, key);
742 		}
743 		mutex_exit(&zone->zone_lock);
744 	}
745 	mutex_exit(&zonehash_lock);
746 	kmem_free(zsdp, sizeof (*zsdp));
747 
748 	/* Now call the shutdown and destroy callback for this key */
749 	zsd_apply_all_zones(zsd_apply_shutdown, key);
750 	zsd_apply_all_zones(zsd_apply_destroy, key);
751 
752 	/* Now we can free up the zsdp structures in each zone */
753 	mutex_enter(&zonehash_lock);
754 	for (zone = list_head(&zone_active); zone != NULL;
755 	    zone = list_next(&zone_active, zone)) {
756 		struct zsd_entry *del;
757 
758 		mutex_enter(&zone->zone_lock);
759 		del = zsd_find(&zone->zone_zsd, key);
760 		if (del != NULL) {
761 			list_remove(&zone->zone_zsd, del);
762 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
763 			kmem_free(del, sizeof (*del));
764 		}
765 		mutex_exit(&zone->zone_lock);
766 	}
767 	mutex_exit(&zonehash_lock);
768 
769 	return (0);
770 }
771 
772 /*
773  * ZSD counterpart of pthread_setspecific().
774  *
775  * Since all zsd callbacks, including those with no create function,
776  * have an entry in zone_zsd, if the key is registered it is part of
777  * the zone_zsd list.
778  * Return an error if the key wasn't registerd.
779  */
780 int
781 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
782 {
783 	struct zsd_entry *t;
784 
785 	mutex_enter(&zone->zone_lock);
786 	t = zsd_find_mru(&zone->zone_zsd, key);
787 	if (t != NULL) {
788 		/*
789 		 * Replace old value with new
790 		 */
791 		t->zsd_data = (void *)data;
792 		mutex_exit(&zone->zone_lock);
793 		return (0);
794 	}
795 	mutex_exit(&zone->zone_lock);
796 	return (-1);
797 }
798 
799 /*
800  * ZSD counterpart of pthread_getspecific().
801  */
802 void *
803 zone_getspecific(zone_key_t key, zone_t *zone)
804 {
805 	struct zsd_entry *t;
806 	void *data;
807 
808 	mutex_enter(&zone->zone_lock);
809 	t = zsd_find_mru(&zone->zone_zsd, key);
810 	data = (t == NULL ? NULL : t->zsd_data);
811 	mutex_exit(&zone->zone_lock);
812 	return (data);
813 }
814 
815 /*
816  * Function used to initialize a zone's list of ZSD callbacks and data
817  * when the zone is being created.  The callbacks are initialized from
818  * the template list (zsd_registered_keys). The constructor callback is
819  * executed later (once the zone exists and with locks dropped).
820  */
821 static void
822 zone_zsd_configure(zone_t *zone)
823 {
824 	struct zsd_entry *zsdp;
825 	struct zsd_entry *t;
826 
827 	ASSERT(MUTEX_HELD(&zonehash_lock));
828 	ASSERT(list_head(&zone->zone_zsd) == NULL);
829 	mutex_enter(&zone->zone_lock);
830 	mutex_enter(&zsd_key_lock);
831 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
832 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
833 		/*
834 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
835 		 * should not have added anything to it.
836 		 */
837 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
838 
839 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
840 		t->zsd_key = zsdp->zsd_key;
841 		t->zsd_create = zsdp->zsd_create;
842 		t->zsd_shutdown = zsdp->zsd_shutdown;
843 		t->zsd_destroy = zsdp->zsd_destroy;
844 		if (zsdp->zsd_create != NULL) {
845 			t->zsd_flags = ZSD_CREATE_NEEDED;
846 			DTRACE_PROBE2(zsd__create__needed,
847 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
848 		}
849 		list_insert_tail(&zone->zone_zsd, t);
850 	}
851 	mutex_exit(&zsd_key_lock);
852 	mutex_exit(&zone->zone_lock);
853 }
854 
855 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
856 
857 /*
858  * Helper function to execute shutdown or destructor callbacks.
859  */
860 static void
861 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
862 {
863 	struct zsd_entry *t;
864 
865 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
866 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
867 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
868 
869 	/*
870 	 * Run the callback solely based on what is registered for the zone
871 	 * in zone_zsd. The global list can change independently of this
872 	 * as keys are registered and unregistered and we don't register new
873 	 * callbacks for a zone that is in the process of going away.
874 	 */
875 	mutex_enter(&zone->zone_lock);
876 	for (t = list_head(&zone->zone_zsd); t != NULL;
877 	    t = list_next(&zone->zone_zsd, t)) {
878 		zone_key_t key = t->zsd_key;
879 
880 		/* Skip if no callbacks registered */
881 
882 		if (ct == ZSD_SHUTDOWN) {
883 			if (t->zsd_shutdown != NULL &&
884 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
885 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
886 				DTRACE_PROBE2(zsd__shutdown__needed,
887 				    zone_t *, zone, zone_key_t, key);
888 			}
889 		} else {
890 			if (t->zsd_destroy != NULL &&
891 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
892 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
893 				DTRACE_PROBE2(zsd__destroy__needed,
894 				    zone_t *, zone, zone_key_t, key);
895 			}
896 		}
897 	}
898 	mutex_exit(&zone->zone_lock);
899 
900 	/* Now call the shutdown and destroy callback for this key */
901 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
902 	zsd_apply_all_keys(zsd_apply_destroy, zone);
903 
904 }
905 
906 /*
907  * Called when the zone is going away; free ZSD-related memory, and
908  * destroy the zone_zsd list.
909  */
910 static void
911 zone_free_zsd(zone_t *zone)
912 {
913 	struct zsd_entry *t, *next;
914 
915 	/*
916 	 * Free all the zsd_entry's we had on this zone.
917 	 */
918 	mutex_enter(&zone->zone_lock);
919 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
920 		next = list_next(&zone->zone_zsd, t);
921 		list_remove(&zone->zone_zsd, t);
922 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
923 		kmem_free(t, sizeof (*t));
924 	}
925 	list_destroy(&zone->zone_zsd);
926 	mutex_exit(&zone->zone_lock);
927 
928 }
929 
930 /*
931  * Apply a function to all zones for particular key value.
932  *
933  * The applyfn has to drop zonehash_lock if it does some work, and
934  * then reacquire it before it returns.
935  * When the lock is dropped we don't follow list_next even
936  * if it is possible to do so without any hazards. This is
937  * because we want the design to allow for the list of zones
938  * to change in any arbitrary way during the time the
939  * lock was dropped.
940  *
941  * It is safe to restart the loop at list_head since the applyfn
942  * changes the zsd_flags as it does work, so a subsequent
943  * pass through will have no effect in applyfn, hence the loop will terminate
944  * in at worst O(N^2).
945  */
946 static void
947 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
948 {
949 	zone_t *zone;
950 
951 	mutex_enter(&zonehash_lock);
952 	zone = list_head(&zone_active);
953 	while (zone != NULL) {
954 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
955 			/* Lock dropped - restart at head */
956 			zone = list_head(&zone_active);
957 		} else {
958 			zone = list_next(&zone_active, zone);
959 		}
960 	}
961 	mutex_exit(&zonehash_lock);
962 }
963 
964 /*
965  * Apply a function to all keys for a particular zone.
966  *
967  * The applyfn has to drop zonehash_lock if it does some work, and
968  * then reacquire it before it returns.
969  * When the lock is dropped we don't follow list_next even
970  * if it is possible to do so without any hazards. This is
971  * because we want the design to allow for the list of zsd callbacks
972  * to change in any arbitrary way during the time the
973  * lock was dropped.
974  *
975  * It is safe to restart the loop at list_head since the applyfn
976  * changes the zsd_flags as it does work, so a subsequent
977  * pass through will have no effect in applyfn, hence the loop will terminate
978  * in at worst O(N^2).
979  */
980 static void
981 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
982 {
983 	struct zsd_entry *t;
984 
985 	mutex_enter(&zone->zone_lock);
986 	t = list_head(&zone->zone_zsd);
987 	while (t != NULL) {
988 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
989 			/* Lock dropped - restart at head */
990 			t = list_head(&zone->zone_zsd);
991 		} else {
992 			t = list_next(&zone->zone_zsd, t);
993 		}
994 	}
995 	mutex_exit(&zone->zone_lock);
996 }
997 
998 /*
999  * Call the create function for the zone and key if CREATE_NEEDED
1000  * is set.
1001  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1002  * we wait for that thread to complete so that we can ensure that
1003  * all the callbacks are done when we've looped over all zones/keys.
1004  *
1005  * When we call the create function, we drop the global held by the
1006  * caller, and return true to tell the caller it needs to re-evalute the
1007  * state.
1008  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1009  * remains held on exit.
1010  */
1011 static boolean_t
1012 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1013     zone_t *zone, zone_key_t key)
1014 {
1015 	void *result;
1016 	struct zsd_entry *t;
1017 	boolean_t dropped;
1018 
1019 	if (lockp != NULL) {
1020 		ASSERT(MUTEX_HELD(lockp));
1021 	}
1022 	if (zone_lock_held) {
1023 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1024 	} else {
1025 		mutex_enter(&zone->zone_lock);
1026 	}
1027 
1028 	t = zsd_find(&zone->zone_zsd, key);
1029 	if (t == NULL) {
1030 		/*
1031 		 * Somebody else got here first e.g the zone going
1032 		 * away.
1033 		 */
1034 		if (!zone_lock_held)
1035 			mutex_exit(&zone->zone_lock);
1036 		return (B_FALSE);
1037 	}
1038 	dropped = B_FALSE;
1039 	if (zsd_wait_for_inprogress(zone, t, lockp))
1040 		dropped = B_TRUE;
1041 
1042 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1043 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1044 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1045 		DTRACE_PROBE2(zsd__create__inprogress,
1046 		    zone_t *, zone, zone_key_t, key);
1047 		mutex_exit(&zone->zone_lock);
1048 		if (lockp != NULL)
1049 			mutex_exit(lockp);
1050 
1051 		dropped = B_TRUE;
1052 		ASSERT(t->zsd_create != NULL);
1053 		DTRACE_PROBE2(zsd__create__start,
1054 		    zone_t *, zone, zone_key_t, key);
1055 
1056 		result = (*t->zsd_create)(zone->zone_id);
1057 
1058 		DTRACE_PROBE2(zsd__create__end,
1059 		    zone_t *, zone, voidn *, result);
1060 
1061 		ASSERT(result != NULL);
1062 		if (lockp != NULL)
1063 			mutex_enter(lockp);
1064 		mutex_enter(&zone->zone_lock);
1065 		t->zsd_data = result;
1066 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1067 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1068 		cv_broadcast(&t->zsd_cv);
1069 		DTRACE_PROBE2(zsd__create__completed,
1070 		    zone_t *, zone, zone_key_t, key);
1071 	}
1072 	if (!zone_lock_held)
1073 		mutex_exit(&zone->zone_lock);
1074 	return (dropped);
1075 }
1076 
1077 /*
1078  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1079  * is set.
1080  * If some other thread gets here first and sets *_INPROGRESS, then
1081  * we wait for that thread to complete so that we can ensure that
1082  * all the callbacks are done when we've looped over all zones/keys.
1083  *
1084  * When we call the shutdown function, we drop the global held by the
1085  * caller, and return true to tell the caller it needs to re-evalute the
1086  * state.
1087  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1088  * remains held on exit.
1089  */
1090 static boolean_t
1091 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1092     zone_t *zone, zone_key_t key)
1093 {
1094 	struct zsd_entry *t;
1095 	void *data;
1096 	boolean_t dropped;
1097 
1098 	if (lockp != NULL) {
1099 		ASSERT(MUTEX_HELD(lockp));
1100 	}
1101 	if (zone_lock_held) {
1102 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1103 	} else {
1104 		mutex_enter(&zone->zone_lock);
1105 	}
1106 
1107 	t = zsd_find(&zone->zone_zsd, key);
1108 	if (t == NULL) {
1109 		/*
1110 		 * Somebody else got here first e.g the zone going
1111 		 * away.
1112 		 */
1113 		if (!zone_lock_held)
1114 			mutex_exit(&zone->zone_lock);
1115 		return (B_FALSE);
1116 	}
1117 	dropped = B_FALSE;
1118 	if (zsd_wait_for_creator(zone, t, lockp))
1119 		dropped = B_TRUE;
1120 
1121 	if (zsd_wait_for_inprogress(zone, t, lockp))
1122 		dropped = B_TRUE;
1123 
1124 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1125 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1126 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1127 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1128 		    zone_t *, zone, zone_key_t, key);
1129 		mutex_exit(&zone->zone_lock);
1130 		if (lockp != NULL)
1131 			mutex_exit(lockp);
1132 		dropped = B_TRUE;
1133 
1134 		ASSERT(t->zsd_shutdown != NULL);
1135 		data = t->zsd_data;
1136 
1137 		DTRACE_PROBE2(zsd__shutdown__start,
1138 		    zone_t *, zone, zone_key_t, key);
1139 
1140 		(t->zsd_shutdown)(zone->zone_id, data);
1141 		DTRACE_PROBE2(zsd__shutdown__end,
1142 		    zone_t *, zone, zone_key_t, key);
1143 
1144 		if (lockp != NULL)
1145 			mutex_enter(lockp);
1146 		mutex_enter(&zone->zone_lock);
1147 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1148 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1149 		cv_broadcast(&t->zsd_cv);
1150 		DTRACE_PROBE2(zsd__shutdown__completed,
1151 		    zone_t *, zone, zone_key_t, key);
1152 	}
1153 	if (!zone_lock_held)
1154 		mutex_exit(&zone->zone_lock);
1155 	return (dropped);
1156 }
1157 
1158 /*
1159  * Call the destroy function for the zone and key if DESTROY_NEEDED
1160  * is set.
1161  * If some other thread gets here first and sets *_INPROGRESS, then
1162  * we wait for that thread to complete so that we can ensure that
1163  * all the callbacks are done when we've looped over all zones/keys.
1164  *
1165  * When we call the destroy function, we drop the global held by the
1166  * caller, and return true to tell the caller it needs to re-evalute the
1167  * state.
1168  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1169  * remains held on exit.
1170  */
1171 static boolean_t
1172 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1173     zone_t *zone, zone_key_t key)
1174 {
1175 	struct zsd_entry *t;
1176 	void *data;
1177 	boolean_t dropped;
1178 
1179 	if (lockp != NULL) {
1180 		ASSERT(MUTEX_HELD(lockp));
1181 	}
1182 	if (zone_lock_held) {
1183 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1184 	} else {
1185 		mutex_enter(&zone->zone_lock);
1186 	}
1187 
1188 	t = zsd_find(&zone->zone_zsd, key);
1189 	if (t == NULL) {
1190 		/*
1191 		 * Somebody else got here first e.g the zone going
1192 		 * away.
1193 		 */
1194 		if (!zone_lock_held)
1195 			mutex_exit(&zone->zone_lock);
1196 		return (B_FALSE);
1197 	}
1198 	dropped = B_FALSE;
1199 	if (zsd_wait_for_creator(zone, t, lockp))
1200 		dropped = B_TRUE;
1201 
1202 	if (zsd_wait_for_inprogress(zone, t, lockp))
1203 		dropped = B_TRUE;
1204 
1205 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1206 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1207 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1208 		DTRACE_PROBE2(zsd__destroy__inprogress,
1209 		    zone_t *, zone, zone_key_t, key);
1210 		mutex_exit(&zone->zone_lock);
1211 		if (lockp != NULL)
1212 			mutex_exit(lockp);
1213 		dropped = B_TRUE;
1214 
1215 		ASSERT(t->zsd_destroy != NULL);
1216 		data = t->zsd_data;
1217 		DTRACE_PROBE2(zsd__destroy__start,
1218 		    zone_t *, zone, zone_key_t, key);
1219 
1220 		(t->zsd_destroy)(zone->zone_id, data);
1221 		DTRACE_PROBE2(zsd__destroy__end,
1222 		    zone_t *, zone, zone_key_t, key);
1223 
1224 		if (lockp != NULL)
1225 			mutex_enter(lockp);
1226 		mutex_enter(&zone->zone_lock);
1227 		t->zsd_data = NULL;
1228 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1229 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1230 		cv_broadcast(&t->zsd_cv);
1231 		DTRACE_PROBE2(zsd__destroy__completed,
1232 		    zone_t *, zone, zone_key_t, key);
1233 	}
1234 	if (!zone_lock_held)
1235 		mutex_exit(&zone->zone_lock);
1236 	return (dropped);
1237 }
1238 
1239 /*
1240  * Wait for any CREATE_NEEDED flag to be cleared.
1241  * Returns true if lockp was temporarily dropped while waiting.
1242  */
1243 static boolean_t
1244 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1245 {
1246 	boolean_t dropped = B_FALSE;
1247 
1248 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1249 		DTRACE_PROBE2(zsd__wait__for__creator,
1250 		    zone_t *, zone, struct zsd_entry *, t);
1251 		if (lockp != NULL) {
1252 			dropped = B_TRUE;
1253 			mutex_exit(lockp);
1254 		}
1255 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1256 		if (lockp != NULL) {
1257 			/* First drop zone_lock to preserve order */
1258 			mutex_exit(&zone->zone_lock);
1259 			mutex_enter(lockp);
1260 			mutex_enter(&zone->zone_lock);
1261 		}
1262 	}
1263 	return (dropped);
1264 }
1265 
1266 /*
1267  * Wait for any INPROGRESS flag to be cleared.
1268  * Returns true if lockp was temporarily dropped while waiting.
1269  */
1270 static boolean_t
1271 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1272 {
1273 	boolean_t dropped = B_FALSE;
1274 
1275 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1276 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1277 		    zone_t *, zone, struct zsd_entry *, t);
1278 		if (lockp != NULL) {
1279 			dropped = B_TRUE;
1280 			mutex_exit(lockp);
1281 		}
1282 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1283 		if (lockp != NULL) {
1284 			/* First drop zone_lock to preserve order */
1285 			mutex_exit(&zone->zone_lock);
1286 			mutex_enter(lockp);
1287 			mutex_enter(&zone->zone_lock);
1288 		}
1289 	}
1290 	return (dropped);
1291 }
1292 
1293 /*
1294  * Frees memory associated with the zone dataset list.
1295  */
1296 static void
1297 zone_free_datasets(zone_t *zone)
1298 {
1299 	zone_dataset_t *t, *next;
1300 
1301 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1302 		next = list_next(&zone->zone_datasets, t);
1303 		list_remove(&zone->zone_datasets, t);
1304 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1305 		kmem_free(t, sizeof (*t));
1306 	}
1307 	list_destroy(&zone->zone_datasets);
1308 }
1309 
1310 /*
1311  * zone.cpu-shares resource control support.
1312  */
1313 /*ARGSUSED*/
1314 static rctl_qty_t
1315 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1316 {
1317 	ASSERT(MUTEX_HELD(&p->p_lock));
1318 	return (p->p_zone->zone_shares);
1319 }
1320 
1321 /*ARGSUSED*/
1322 static int
1323 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1324     rctl_qty_t nv)
1325 {
1326 	ASSERT(MUTEX_HELD(&p->p_lock));
1327 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1328 	if (e->rcep_p.zone == NULL)
1329 		return (0);
1330 
1331 	e->rcep_p.zone->zone_shares = nv;
1332 	return (0);
1333 }
1334 
1335 static rctl_ops_t zone_cpu_shares_ops = {
1336 	rcop_no_action,
1337 	zone_cpu_shares_usage,
1338 	zone_cpu_shares_set,
1339 	rcop_no_test
1340 };
1341 
1342 /*
1343  * zone.cpu-cap resource control support.
1344  */
1345 /*ARGSUSED*/
1346 static rctl_qty_t
1347 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1348 {
1349 	ASSERT(MUTEX_HELD(&p->p_lock));
1350 	return (cpucaps_zone_get(p->p_zone));
1351 }
1352 
1353 /*ARGSUSED*/
1354 static int
1355 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1356     rctl_qty_t nv)
1357 {
1358 	zone_t *zone = e->rcep_p.zone;
1359 
1360 	ASSERT(MUTEX_HELD(&p->p_lock));
1361 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1362 
1363 	if (zone == NULL)
1364 		return (0);
1365 
1366 	/*
1367 	 * set cap to the new value.
1368 	 */
1369 	return (cpucaps_zone_set(zone, nv));
1370 }
1371 
1372 static rctl_ops_t zone_cpu_cap_ops = {
1373 	rcop_no_action,
1374 	zone_cpu_cap_get,
1375 	zone_cpu_cap_set,
1376 	rcop_no_test
1377 };
1378 
1379 /*ARGSUSED*/
1380 static rctl_qty_t
1381 zone_lwps_usage(rctl_t *r, proc_t *p)
1382 {
1383 	rctl_qty_t nlwps;
1384 	zone_t *zone = p->p_zone;
1385 
1386 	ASSERT(MUTEX_HELD(&p->p_lock));
1387 
1388 	mutex_enter(&zone->zone_nlwps_lock);
1389 	nlwps = zone->zone_nlwps;
1390 	mutex_exit(&zone->zone_nlwps_lock);
1391 
1392 	return (nlwps);
1393 }
1394 
1395 /*ARGSUSED*/
1396 static int
1397 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1398     rctl_qty_t incr, uint_t flags)
1399 {
1400 	rctl_qty_t nlwps;
1401 
1402 	ASSERT(MUTEX_HELD(&p->p_lock));
1403 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1404 	if (e->rcep_p.zone == NULL)
1405 		return (0);
1406 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1407 	nlwps = e->rcep_p.zone->zone_nlwps;
1408 
1409 	if (nlwps + incr > rcntl->rcv_value)
1410 		return (1);
1411 
1412 	return (0);
1413 }
1414 
1415 /*ARGSUSED*/
1416 static int
1417 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1418 {
1419 	ASSERT(MUTEX_HELD(&p->p_lock));
1420 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1421 	if (e->rcep_p.zone == NULL)
1422 		return (0);
1423 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1424 	return (0);
1425 }
1426 
1427 static rctl_ops_t zone_lwps_ops = {
1428 	rcop_no_action,
1429 	zone_lwps_usage,
1430 	zone_lwps_set,
1431 	zone_lwps_test,
1432 };
1433 
1434 /*ARGSUSED*/
1435 static rctl_qty_t
1436 zone_procs_usage(rctl_t *r, proc_t *p)
1437 {
1438 	rctl_qty_t nprocs;
1439 	zone_t *zone = p->p_zone;
1440 
1441 	ASSERT(MUTEX_HELD(&p->p_lock));
1442 
1443 	mutex_enter(&zone->zone_nlwps_lock);
1444 	nprocs = zone->zone_nprocs;
1445 	mutex_exit(&zone->zone_nlwps_lock);
1446 
1447 	return (nprocs);
1448 }
1449 
1450 /*ARGSUSED*/
1451 static int
1452 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1453     rctl_qty_t incr, uint_t flags)
1454 {
1455 	rctl_qty_t nprocs;
1456 
1457 	ASSERT(MUTEX_HELD(&p->p_lock));
1458 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1459 	if (e->rcep_p.zone == NULL)
1460 		return (0);
1461 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1462 	nprocs = e->rcep_p.zone->zone_nprocs;
1463 
1464 	if (nprocs + incr > rcntl->rcv_value)
1465 		return (1);
1466 
1467 	return (0);
1468 }
1469 
1470 /*ARGSUSED*/
1471 static int
1472 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1473 {
1474 	ASSERT(MUTEX_HELD(&p->p_lock));
1475 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1476 	if (e->rcep_p.zone == NULL)
1477 		return (0);
1478 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1479 	return (0);
1480 }
1481 
1482 static rctl_ops_t zone_procs_ops = {
1483 	rcop_no_action,
1484 	zone_procs_usage,
1485 	zone_procs_set,
1486 	zone_procs_test,
1487 };
1488 
1489 /*ARGSUSED*/
1490 static rctl_qty_t
1491 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1492 {
1493 	ASSERT(MUTEX_HELD(&p->p_lock));
1494 	return (p->p_zone->zone_shmmax);
1495 }
1496 
1497 /*ARGSUSED*/
1498 static int
1499 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1500     rctl_qty_t incr, uint_t flags)
1501 {
1502 	rctl_qty_t v;
1503 	ASSERT(MUTEX_HELD(&p->p_lock));
1504 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1505 	v = e->rcep_p.zone->zone_shmmax + incr;
1506 	if (v > rval->rcv_value)
1507 		return (1);
1508 	return (0);
1509 }
1510 
1511 static rctl_ops_t zone_shmmax_ops = {
1512 	rcop_no_action,
1513 	zone_shmmax_usage,
1514 	rcop_no_set,
1515 	zone_shmmax_test
1516 };
1517 
1518 /*ARGSUSED*/
1519 static rctl_qty_t
1520 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1521 {
1522 	ASSERT(MUTEX_HELD(&p->p_lock));
1523 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1524 }
1525 
1526 /*ARGSUSED*/
1527 static int
1528 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1529     rctl_qty_t incr, uint_t flags)
1530 {
1531 	rctl_qty_t v;
1532 	ASSERT(MUTEX_HELD(&p->p_lock));
1533 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1534 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1535 	if (v > rval->rcv_value)
1536 		return (1);
1537 	return (0);
1538 }
1539 
1540 static rctl_ops_t zone_shmmni_ops = {
1541 	rcop_no_action,
1542 	zone_shmmni_usage,
1543 	rcop_no_set,
1544 	zone_shmmni_test
1545 };
1546 
1547 /*ARGSUSED*/
1548 static rctl_qty_t
1549 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1550 {
1551 	ASSERT(MUTEX_HELD(&p->p_lock));
1552 	return (p->p_zone->zone_ipc.ipcq_semmni);
1553 }
1554 
1555 /*ARGSUSED*/
1556 static int
1557 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1558     rctl_qty_t incr, uint_t flags)
1559 {
1560 	rctl_qty_t v;
1561 	ASSERT(MUTEX_HELD(&p->p_lock));
1562 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1563 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1564 	if (v > rval->rcv_value)
1565 		return (1);
1566 	return (0);
1567 }
1568 
1569 static rctl_ops_t zone_semmni_ops = {
1570 	rcop_no_action,
1571 	zone_semmni_usage,
1572 	rcop_no_set,
1573 	zone_semmni_test
1574 };
1575 
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1579 {
1580 	ASSERT(MUTEX_HELD(&p->p_lock));
1581 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1582 }
1583 
1584 /*ARGSUSED*/
1585 static int
1586 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1587     rctl_qty_t incr, uint_t flags)
1588 {
1589 	rctl_qty_t v;
1590 	ASSERT(MUTEX_HELD(&p->p_lock));
1591 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1592 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1593 	if (v > rval->rcv_value)
1594 		return (1);
1595 	return (0);
1596 }
1597 
1598 static rctl_ops_t zone_msgmni_ops = {
1599 	rcop_no_action,
1600 	zone_msgmni_usage,
1601 	rcop_no_set,
1602 	zone_msgmni_test
1603 };
1604 
1605 /*ARGSUSED*/
1606 static rctl_qty_t
1607 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1608 {
1609 	rctl_qty_t q;
1610 	ASSERT(MUTEX_HELD(&p->p_lock));
1611 	mutex_enter(&p->p_zone->zone_mem_lock);
1612 	q = p->p_zone->zone_locked_mem;
1613 	mutex_exit(&p->p_zone->zone_mem_lock);
1614 	return (q);
1615 }
1616 
1617 /*ARGSUSED*/
1618 static int
1619 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1620     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1621 {
1622 	rctl_qty_t q;
1623 	zone_t *z;
1624 
1625 	z = e->rcep_p.zone;
1626 	ASSERT(MUTEX_HELD(&p->p_lock));
1627 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1628 	q = z->zone_locked_mem;
1629 	if (q + incr > rcntl->rcv_value)
1630 		return (1);
1631 	return (0);
1632 }
1633 
1634 /*ARGSUSED*/
1635 static int
1636 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1637     rctl_qty_t nv)
1638 {
1639 	ASSERT(MUTEX_HELD(&p->p_lock));
1640 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1641 	if (e->rcep_p.zone == NULL)
1642 		return (0);
1643 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1644 	return (0);
1645 }
1646 
1647 static rctl_ops_t zone_locked_mem_ops = {
1648 	rcop_no_action,
1649 	zone_locked_mem_usage,
1650 	zone_locked_mem_set,
1651 	zone_locked_mem_test
1652 };
1653 
1654 /*ARGSUSED*/
1655 static rctl_qty_t
1656 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1657 {
1658 	rctl_qty_t q;
1659 	zone_t *z = p->p_zone;
1660 
1661 	ASSERT(MUTEX_HELD(&p->p_lock));
1662 	mutex_enter(&z->zone_mem_lock);
1663 	q = z->zone_max_swap;
1664 	mutex_exit(&z->zone_mem_lock);
1665 	return (q);
1666 }
1667 
1668 /*ARGSUSED*/
1669 static int
1670 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1671     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1672 {
1673 	rctl_qty_t q;
1674 	zone_t *z;
1675 
1676 	z = e->rcep_p.zone;
1677 	ASSERT(MUTEX_HELD(&p->p_lock));
1678 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1679 	q = z->zone_max_swap;
1680 	if (q + incr > rcntl->rcv_value)
1681 		return (1);
1682 	return (0);
1683 }
1684 
1685 /*ARGSUSED*/
1686 static int
1687 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1688     rctl_qty_t nv)
1689 {
1690 	ASSERT(MUTEX_HELD(&p->p_lock));
1691 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1692 	if (e->rcep_p.zone == NULL)
1693 		return (0);
1694 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1695 	return (0);
1696 }
1697 
1698 static rctl_ops_t zone_max_swap_ops = {
1699 	rcop_no_action,
1700 	zone_max_swap_usage,
1701 	zone_max_swap_set,
1702 	zone_max_swap_test
1703 };
1704 
1705 /*ARGSUSED*/
1706 static rctl_qty_t
1707 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1708 {
1709 	rctl_qty_t q;
1710 	zone_t *z = p->p_zone;
1711 
1712 	ASSERT(MUTEX_HELD(&p->p_lock));
1713 	mutex_enter(&z->zone_rctl_lock);
1714 	q = z->zone_max_lofi;
1715 	mutex_exit(&z->zone_rctl_lock);
1716 	return (q);
1717 }
1718 
1719 /*ARGSUSED*/
1720 static int
1721 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1722     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1723 {
1724 	rctl_qty_t q;
1725 	zone_t *z;
1726 
1727 	z = e->rcep_p.zone;
1728 	ASSERT(MUTEX_HELD(&p->p_lock));
1729 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1730 	q = z->zone_max_lofi;
1731 	if (q + incr > rcntl->rcv_value)
1732 		return (1);
1733 	return (0);
1734 }
1735 
1736 /*ARGSUSED*/
1737 static int
1738 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1739     rctl_qty_t nv)
1740 {
1741 	ASSERT(MUTEX_HELD(&p->p_lock));
1742 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1743 	if (e->rcep_p.zone == NULL)
1744 		return (0);
1745 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1746 	return (0);
1747 }
1748 
1749 static rctl_ops_t zone_max_lofi_ops = {
1750 	rcop_no_action,
1751 	zone_max_lofi_usage,
1752 	zone_max_lofi_set,
1753 	zone_max_lofi_test
1754 };
1755 
1756 /*
1757  * Helper function to brand the zone with a unique ID.
1758  */
1759 static void
1760 zone_uniqid(zone_t *zone)
1761 {
1762 	static uint64_t uniqid = 0;
1763 
1764 	ASSERT(MUTEX_HELD(&zonehash_lock));
1765 	zone->zone_uniqid = uniqid++;
1766 }
1767 
1768 /*
1769  * Returns a held pointer to the "kcred" for the specified zone.
1770  */
1771 struct cred *
1772 zone_get_kcred(zoneid_t zoneid)
1773 {
1774 	zone_t *zone;
1775 	cred_t *cr;
1776 
1777 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1778 		return (NULL);
1779 	cr = zone->zone_kcred;
1780 	crhold(cr);
1781 	zone_rele(zone);
1782 	return (cr);
1783 }
1784 
1785 static int
1786 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1787 {
1788 	zone_t *zone = ksp->ks_private;
1789 	zone_kstat_t *zk = ksp->ks_data;
1790 
1791 	if (rw == KSTAT_WRITE)
1792 		return (EACCES);
1793 
1794 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1795 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1796 	return (0);
1797 }
1798 
1799 static int
1800 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1801 {
1802 	zone_t *zone = ksp->ks_private;
1803 	zone_kstat_t *zk = ksp->ks_data;
1804 
1805 	if (rw == KSTAT_WRITE)
1806 		return (EACCES);
1807 
1808 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1809 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1810 	return (0);
1811 }
1812 
1813 static int
1814 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1815 {
1816 	zone_t *zone = ksp->ks_private;
1817 	zone_kstat_t *zk = ksp->ks_data;
1818 
1819 	if (rw == KSTAT_WRITE)
1820 		return (EACCES);
1821 
1822 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1823 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1824 	return (0);
1825 }
1826 
1827 static kstat_t *
1828 zone_kstat_create_common(zone_t *zone, char *name,
1829     int (*updatefunc) (kstat_t *, int))
1830 {
1831 	kstat_t *ksp;
1832 	zone_kstat_t *zk;
1833 
1834 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1835 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1836 	    KSTAT_FLAG_VIRTUAL);
1837 
1838 	if (ksp == NULL)
1839 		return (NULL);
1840 
1841 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1842 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1843 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1844 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1845 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1846 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1847 	ksp->ks_update = updatefunc;
1848 	ksp->ks_private = zone;
1849 	kstat_install(ksp);
1850 	return (ksp);
1851 }
1852 
1853 
1854 static int
1855 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1856 {
1857 	zone_t *zone = ksp->ks_private;
1858 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1859 
1860 	if (rw == KSTAT_WRITE)
1861 		return (EACCES);
1862 
1863 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1864 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1865 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1866 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1867 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1868 
1869 	return (0);
1870 }
1871 
1872 static kstat_t *
1873 zone_mcap_kstat_create(zone_t *zone)
1874 {
1875 	kstat_t *ksp;
1876 	zone_mcap_kstat_t *zmp;
1877 
1878 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1879 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1880 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1881 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1882 		return (NULL);
1883 
1884 	if (zone->zone_id != GLOBAL_ZONEID)
1885 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1886 
1887 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1888 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1889 	ksp->ks_lock = &zone->zone_mcap_lock;
1890 	zone->zone_mcap_stats = zmp;
1891 
1892 	/* The kstat "name" field is not large enough for a full zonename */
1893 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1894 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1895 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1896 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1899 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1900 	    KSTAT_DATA_UINT64);
1901 
1902 	ksp->ks_update = zone_mcap_kstat_update;
1903 	ksp->ks_private = zone;
1904 
1905 	kstat_install(ksp);
1906 	return (ksp);
1907 }
1908 
1909 static int
1910 zone_misc_kstat_update(kstat_t *ksp, int rw)
1911 {
1912 	zone_t *zone = ksp->ks_private;
1913 	zone_misc_kstat_t *zmp = ksp->ks_data;
1914 	hrtime_t tmp;
1915 
1916 	if (rw == KSTAT_WRITE)
1917 		return (EACCES);
1918 
1919 	tmp = zone->zone_utime;
1920 	scalehrtime(&tmp);
1921 	zmp->zm_utime.value.ui64 = tmp;
1922 	tmp = zone->zone_stime;
1923 	scalehrtime(&tmp);
1924 	zmp->zm_stime.value.ui64 = tmp;
1925 	tmp = zone->zone_wtime;
1926 	scalehrtime(&tmp);
1927 	zmp->zm_wtime.value.ui64 = tmp;
1928 
1929 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1930 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1931 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1932 
1933 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1934 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1935 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1936 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1937 
1938 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1939 
1940 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1941 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1942 
1943 	return (0);
1944 }
1945 
1946 static kstat_t *
1947 zone_misc_kstat_create(zone_t *zone)
1948 {
1949 	kstat_t *ksp;
1950 	zone_misc_kstat_t *zmp;
1951 
1952 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1953 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1954 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1955 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1956 		return (NULL);
1957 
1958 	if (zone->zone_id != GLOBAL_ZONEID)
1959 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1960 
1961 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1962 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1963 	ksp->ks_lock = &zone->zone_misc_lock;
1964 	zone->zone_misc_stats = zmp;
1965 
1966 	/* The kstat "name" field is not large enough for a full zonename */
1967 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1968 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1969 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1970 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1971 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1972 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1973 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1974 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1975 	    KSTAT_DATA_UINT32);
1976 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1977 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1978 	    KSTAT_DATA_UINT32);
1979 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1981 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1982 	    KSTAT_DATA_UINT32);
1983 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1984 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1985 
1986 	ksp->ks_update = zone_misc_kstat_update;
1987 	ksp->ks_private = zone;
1988 
1989 	kstat_install(ksp);
1990 	return (ksp);
1991 }
1992 
1993 static void
1994 zone_kstat_create(zone_t *zone)
1995 {
1996 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1997 	    "lockedmem", zone_lockedmem_kstat_update);
1998 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1999 	    "swapresv", zone_swapresv_kstat_update);
2000 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2001 	    "nprocs", zone_nprocs_kstat_update);
2002 
2003 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2004 		zone->zone_mcap_stats = kmem_zalloc(
2005 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2006 	}
2007 
2008 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2009 		zone->zone_misc_stats = kmem_zalloc(
2010 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2011 	}
2012 }
2013 
2014 static void
2015 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2016 {
2017 	void *data;
2018 
2019 	if (*pkstat != NULL) {
2020 		data = (*pkstat)->ks_data;
2021 		kstat_delete(*pkstat);
2022 		kmem_free(data, datasz);
2023 		*pkstat = NULL;
2024 	}
2025 }
2026 
2027 static void
2028 zone_kstat_delete(zone_t *zone)
2029 {
2030 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2031 	    sizeof (zone_kstat_t));
2032 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2033 	    sizeof (zone_kstat_t));
2034 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2035 	    sizeof (zone_kstat_t));
2036 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2037 	    sizeof (zone_mcap_kstat_t));
2038 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2039 	    sizeof (zone_misc_kstat_t));
2040 }
2041 
2042 /*
2043  * Called very early on in boot to initialize the ZSD list so that
2044  * zone_key_create() can be called before zone_init().  It also initializes
2045  * portions of zone0 which may be used before zone_init() is called.  The
2046  * variable "global_zone" will be set when zone0 is fully initialized by
2047  * zone_init().
2048  */
2049 void
2050 zone_zsd_init(void)
2051 {
2052 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2053 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2054 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2055 	    offsetof(struct zsd_entry, zsd_linkage));
2056 	list_create(&zone_active, sizeof (zone_t),
2057 	    offsetof(zone_t, zone_linkage));
2058 	list_create(&zone_deathrow, sizeof (zone_t),
2059 	    offsetof(zone_t, zone_linkage));
2060 
2061 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2062 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2063 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2064 	zone0.zone_shares = 1;
2065 	zone0.zone_nlwps = 0;
2066 	zone0.zone_nlwps_ctl = INT_MAX;
2067 	zone0.zone_nprocs = 0;
2068 	zone0.zone_nprocs_ctl = INT_MAX;
2069 	zone0.zone_locked_mem = 0;
2070 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2071 	ASSERT(zone0.zone_max_swap == 0);
2072 	zone0.zone_max_swap_ctl = UINT64_MAX;
2073 	zone0.zone_max_lofi = 0;
2074 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2075 	zone0.zone_shmmax = 0;
2076 	zone0.zone_ipc.ipcq_shmmni = 0;
2077 	zone0.zone_ipc.ipcq_semmni = 0;
2078 	zone0.zone_ipc.ipcq_msgmni = 0;
2079 	zone0.zone_name = GLOBAL_ZONENAME;
2080 	zone0.zone_nodename = utsname.nodename;
2081 	zone0.zone_domain = srpc_domain;
2082 	zone0.zone_hostid = HW_INVALID_HOSTID;
2083 	zone0.zone_fs_allowed = NULL;
2084 	psecflags_default(&zone0.zone_secflags);
2085 	zone0.zone_ref = 1;
2086 	zone0.zone_id = GLOBAL_ZONEID;
2087 	zone0.zone_status = ZONE_IS_RUNNING;
2088 	zone0.zone_rootpath = "/";
2089 	zone0.zone_rootpathlen = 2;
2090 	zone0.zone_psetid = ZONE_PS_INVAL;
2091 	zone0.zone_ncpus = 0;
2092 	zone0.zone_ncpus_online = 0;
2093 	zone0.zone_proc_initpid = 1;
2094 	zone0.zone_initname = initname;
2095 	zone0.zone_lockedmem_kstat = NULL;
2096 	zone0.zone_swapresv_kstat = NULL;
2097 	zone0.zone_nprocs_kstat = NULL;
2098 
2099 	zone0.zone_stime = 0;
2100 	zone0.zone_utime = 0;
2101 	zone0.zone_wtime = 0;
2102 
2103 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2104 	    offsetof(zone_ref_t, zref_linkage));
2105 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2106 	    offsetof(struct zsd_entry, zsd_linkage));
2107 	list_insert_head(&zone_active, &zone0);
2108 
2109 	/*
2110 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2111 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2112 	 * vfs_mountroot().
2113 	 */
2114 	zone0.zone_rootvp = NULL;
2115 	zone0.zone_vfslist = NULL;
2116 	zone0.zone_bootargs = initargs;
2117 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2118 	/*
2119 	 * The global zone has all privileges
2120 	 */
2121 	priv_fillset(zone0.zone_privset);
2122 	/*
2123 	 * Add p0 to the global zone
2124 	 */
2125 	zone0.zone_zsched = &p0;
2126 	p0.p_zone = &zone0;
2127 }
2128 
2129 /*
2130  * Compute a hash value based on the contents of the label and the DOI.  The
2131  * hash algorithm is somewhat arbitrary, but is based on the observation that
2132  * humans will likely pick labels that differ by amounts that work out to be
2133  * multiples of the number of hash chains, and thus stirring in some primes
2134  * should help.
2135  */
2136 static uint_t
2137 hash_bylabel(void *hdata, mod_hash_key_t key)
2138 {
2139 	const ts_label_t *lab = (ts_label_t *)key;
2140 	const uint32_t *up, *ue;
2141 	uint_t hash;
2142 	int i;
2143 
2144 	_NOTE(ARGUNUSED(hdata));
2145 
2146 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2147 	/* we depend on alignment of label, but not representation */
2148 	up = (const uint32_t *)&lab->tsl_label;
2149 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2150 	i = 1;
2151 	while (up < ue) {
2152 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2153 		hash += *up + (*up << ((i % 16) + 1));
2154 		up++;
2155 		i++;
2156 	}
2157 	return (hash);
2158 }
2159 
2160 /*
2161  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2162  * equal).  This may need to be changed if less than / greater than is ever
2163  * needed.
2164  */
2165 static int
2166 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2167 {
2168 	ts_label_t *lab1 = (ts_label_t *)key1;
2169 	ts_label_t *lab2 = (ts_label_t *)key2;
2170 
2171 	return (label_equal(lab1, lab2) ? 0 : 1);
2172 }
2173 
2174 /*
2175  * Called by main() to initialize the zones framework.
2176  */
2177 void
2178 zone_init(void)
2179 {
2180 	rctl_dict_entry_t *rde;
2181 	rctl_val_t *dval;
2182 	rctl_set_t *set;
2183 	rctl_alloc_gp_t *gp;
2184 	rctl_entity_p_t e;
2185 	int res;
2186 
2187 	ASSERT(curproc == &p0);
2188 
2189 	/*
2190 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2191 	 * global zone.
2192 	 */
2193 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2194 
2195 	/*
2196 	 * Initialize generic zone resource controls, if any.
2197 	 */
2198 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2199 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2200 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2201 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2202 
2203 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2204 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2205 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2206 	    RCTL_GLOBAL_INFINITE,
2207 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2208 
2209 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2210 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2211 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2212 
2213 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2214 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2215 	    INT_MAX, INT_MAX, &zone_procs_ops);
2216 
2217 	/*
2218 	 * System V IPC resource controls
2219 	 */
2220 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2221 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2222 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2223 
2224 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2225 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2226 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2227 
2228 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2229 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2230 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2231 
2232 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2233 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2234 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2235 
2236 	/*
2237 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2238 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2239 	 */
2240 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2241 	bzero(dval, sizeof (rctl_val_t));
2242 	dval->rcv_value = 1;
2243 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2244 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2245 	dval->rcv_action_recip_pid = -1;
2246 
2247 	rde = rctl_dict_lookup("zone.cpu-shares");
2248 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2249 
2250 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2251 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2252 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2253 	    &zone_locked_mem_ops);
2254 
2255 	rc_zone_max_swap = rctl_register("zone.max-swap",
2256 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2257 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2258 	    &zone_max_swap_ops);
2259 
2260 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2261 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2262 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2263 	    &zone_max_lofi_ops);
2264 
2265 	/*
2266 	 * Initialize the ``global zone''.
2267 	 */
2268 	set = rctl_set_create();
2269 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2270 	mutex_enter(&p0.p_lock);
2271 	e.rcep_p.zone = &zone0;
2272 	e.rcep_t = RCENTITY_ZONE;
2273 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2274 	    gp);
2275 
2276 	zone0.zone_nlwps = p0.p_lwpcnt;
2277 	zone0.zone_nprocs = 1;
2278 	zone0.zone_ntasks = 1;
2279 	mutex_exit(&p0.p_lock);
2280 	zone0.zone_restart_init = B_TRUE;
2281 	zone0.zone_brand = &native_brand;
2282 	rctl_prealloc_destroy(gp);
2283 	/*
2284 	 * pool_default hasn't been initialized yet, so we let pool_init()
2285 	 * take care of making sure the global zone is in the default pool.
2286 	 */
2287 
2288 	/*
2289 	 * Initialize global zone kstats
2290 	 */
2291 	zone_kstat_create(&zone0);
2292 
2293 	/*
2294 	 * Initialize zone label.
2295 	 * mlp are initialized when tnzonecfg is loaded.
2296 	 */
2297 	zone0.zone_slabel = l_admin_low;
2298 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2299 	label_hold(l_admin_low);
2300 
2301 	/*
2302 	 * Initialise the lock for the database structure used by mntfs.
2303 	 */
2304 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2305 
2306 	mutex_enter(&zonehash_lock);
2307 	zone_uniqid(&zone0);
2308 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2309 
2310 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2311 	    mod_hash_null_valdtor);
2312 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2313 	    zone_hash_size, mod_hash_null_valdtor);
2314 	/*
2315 	 * maintain zonehashbylabel only for labeled systems
2316 	 */
2317 	if (is_system_labeled())
2318 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2319 		    zone_hash_size, mod_hash_null_keydtor,
2320 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2321 		    hash_labelkey_cmp, KM_SLEEP);
2322 	zonecount = 1;
2323 
2324 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2325 	    (mod_hash_val_t)&zone0);
2326 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2327 	    (mod_hash_val_t)&zone0);
2328 	if (is_system_labeled()) {
2329 		zone0.zone_flags |= ZF_HASHED_LABEL;
2330 		(void) mod_hash_insert(zonehashbylabel,
2331 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2332 	}
2333 	mutex_exit(&zonehash_lock);
2334 
2335 	/*
2336 	 * We avoid setting zone_kcred until now, since kcred is initialized
2337 	 * sometime after zone_zsd_init() and before zone_init().
2338 	 */
2339 	zone0.zone_kcred = kcred;
2340 	/*
2341 	 * The global zone is fully initialized (except for zone_rootvp which
2342 	 * will be set when the root filesystem is mounted).
2343 	 */
2344 	global_zone = &zone0;
2345 
2346 	/*
2347 	 * Setup an event channel to send zone status change notifications on
2348 	 */
2349 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2350 	    EVCH_CREAT);
2351 
2352 	if (res)
2353 		panic("Sysevent_evc_bind failed during zone setup.\n");
2354 
2355 }
2356 
2357 static void
2358 zone_free(zone_t *zone)
2359 {
2360 	ASSERT(zone != global_zone);
2361 	ASSERT(zone->zone_ntasks == 0);
2362 	ASSERT(zone->zone_nlwps == 0);
2363 	ASSERT(zone->zone_nprocs == 0);
2364 	ASSERT(zone->zone_cred_ref == 0);
2365 	ASSERT(zone->zone_kcred == NULL);
2366 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2367 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2368 	ASSERT(list_is_empty(&zone->zone_ref_list));
2369 
2370 	/*
2371 	 * Remove any zone caps.
2372 	 */
2373 	cpucaps_zone_remove(zone);
2374 
2375 	ASSERT(zone->zone_cpucap == NULL);
2376 
2377 	/* remove from deathrow list */
2378 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2379 		ASSERT(zone->zone_ref == 0);
2380 		mutex_enter(&zone_deathrow_lock);
2381 		list_remove(&zone_deathrow, zone);
2382 		mutex_exit(&zone_deathrow_lock);
2383 	}
2384 
2385 	list_destroy(&zone->zone_ref_list);
2386 	zone_free_zsd(zone);
2387 	zone_free_datasets(zone);
2388 	list_destroy(&zone->zone_dl_list);
2389 
2390 	if (zone->zone_rootvp != NULL)
2391 		VN_RELE(zone->zone_rootvp);
2392 	if (zone->zone_rootpath)
2393 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2394 	if (zone->zone_name != NULL)
2395 		kmem_free(zone->zone_name, ZONENAME_MAX);
2396 	if (zone->zone_slabel != NULL)
2397 		label_rele(zone->zone_slabel);
2398 	if (zone->zone_nodename != NULL)
2399 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2400 	if (zone->zone_domain != NULL)
2401 		kmem_free(zone->zone_domain, _SYS_NMLN);
2402 	if (zone->zone_privset != NULL)
2403 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2404 	if (zone->zone_rctls != NULL)
2405 		rctl_set_free(zone->zone_rctls);
2406 	if (zone->zone_bootargs != NULL)
2407 		strfree(zone->zone_bootargs);
2408 	if (zone->zone_initname != NULL)
2409 		strfree(zone->zone_initname);
2410 	if (zone->zone_fs_allowed != NULL)
2411 		strfree(zone->zone_fs_allowed);
2412 	if (zone->zone_pfexecd != NULL)
2413 		klpd_freelist(&zone->zone_pfexecd);
2414 	id_free(zoneid_space, zone->zone_id);
2415 	mutex_destroy(&zone->zone_lock);
2416 	cv_destroy(&zone->zone_cv);
2417 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2418 	rw_destroy(&zone->zone_mntfs_db_lock);
2419 	kmem_free(zone, sizeof (zone_t));
2420 }
2421 
2422 /*
2423  * See block comment at the top of this file for information about zone
2424  * status values.
2425  */
2426 /*
2427  * Convenience function for setting zone status.
2428  */
2429 static void
2430 zone_status_set(zone_t *zone, zone_status_t status)
2431 {
2432 
2433 	nvlist_t *nvl = NULL;
2434 	ASSERT(MUTEX_HELD(&zone_status_lock));
2435 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2436 	    status >= zone_status_get(zone));
2437 
2438 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2439 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2440 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2441 	    zone_status_table[status]) ||
2442 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2443 	    zone_status_table[zone->zone_status]) ||
2444 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2445 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2446 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2447 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2448 #ifdef DEBUG
2449 		(void) printf(
2450 		    "Failed to allocate and send zone state change event.\n");
2451 #endif
2452 	}
2453 	nvlist_free(nvl);
2454 
2455 	zone->zone_status = status;
2456 
2457 	cv_broadcast(&zone->zone_cv);
2458 }
2459 
2460 /*
2461  * Public function to retrieve the zone status.  The zone status may
2462  * change after it is retrieved.
2463  */
2464 zone_status_t
2465 zone_status_get(zone_t *zone)
2466 {
2467 	return (zone->zone_status);
2468 }
2469 
2470 static int
2471 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2472 {
2473 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2474 	int err = 0;
2475 
2476 	ASSERT(zone != global_zone);
2477 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2478 		goto done;	/* EFAULT or ENAMETOOLONG */
2479 
2480 	if (zone->zone_bootargs != NULL)
2481 		strfree(zone->zone_bootargs);
2482 
2483 	zone->zone_bootargs = strdup(buf);
2484 
2485 done:
2486 	kmem_free(buf, BOOTARGS_MAX);
2487 	return (err);
2488 }
2489 
2490 static int
2491 zone_set_brand(zone_t *zone, const char *brand)
2492 {
2493 	struct brand_attr *attrp;
2494 	brand_t *bp;
2495 
2496 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2497 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2498 		kmem_free(attrp, sizeof (struct brand_attr));
2499 		return (EFAULT);
2500 	}
2501 
2502 	bp = brand_register_zone(attrp);
2503 	kmem_free(attrp, sizeof (struct brand_attr));
2504 	if (bp == NULL)
2505 		return (EINVAL);
2506 
2507 	/*
2508 	 * This is the only place where a zone can change it's brand.
2509 	 * We already need to hold zone_status_lock to check the zone
2510 	 * status, so we'll just use that lock to serialize zone
2511 	 * branding requests as well.
2512 	 */
2513 	mutex_enter(&zone_status_lock);
2514 
2515 	/* Re-Branding is not allowed and the zone can't be booted yet */
2516 	if ((ZONE_IS_BRANDED(zone)) ||
2517 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2518 		mutex_exit(&zone_status_lock);
2519 		brand_unregister_zone(bp);
2520 		return (EINVAL);
2521 	}
2522 
2523 	/* set up the brand specific data */
2524 	zone->zone_brand = bp;
2525 	ZBROP(zone)->b_init_brand_data(zone);
2526 
2527 	mutex_exit(&zone_status_lock);
2528 	return (0);
2529 }
2530 
2531 static int
2532 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2533 {
2534 	int err = 0;
2535 	psecflags_t psf;
2536 
2537 	ASSERT(zone != global_zone);
2538 
2539 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2540 		return (err);
2541 
2542 	if (zone_status_get(zone) > ZONE_IS_READY)
2543 		return (EINVAL);
2544 
2545 	if (!psecflags_validate(&psf))
2546 		return (EINVAL);
2547 
2548 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2549 
2550 	/* Set security flags on the zone's zsched */
2551 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2552 	    sizeof (zone->zone_zsched->p_secflags));
2553 
2554 	return (0);
2555 }
2556 
2557 static int
2558 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2559 {
2560 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2561 	int err = 0;
2562 
2563 	ASSERT(zone != global_zone);
2564 	if ((err = copyinstr(zone_fs_allowed, buf,
2565 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2566 		goto done;
2567 
2568 	if (zone->zone_fs_allowed != NULL)
2569 		strfree(zone->zone_fs_allowed);
2570 
2571 	zone->zone_fs_allowed = strdup(buf);
2572 
2573 done:
2574 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2575 	return (err);
2576 }
2577 
2578 static int
2579 zone_set_initname(zone_t *zone, const char *zone_initname)
2580 {
2581 	char initname[INITNAME_SZ];
2582 	size_t len;
2583 	int err = 0;
2584 
2585 	ASSERT(zone != global_zone);
2586 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2587 		return (err);	/* EFAULT or ENAMETOOLONG */
2588 
2589 	if (zone->zone_initname != NULL)
2590 		strfree(zone->zone_initname);
2591 
2592 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2593 	(void) strcpy(zone->zone_initname, initname);
2594 	return (0);
2595 }
2596 
2597 static int
2598 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2599 {
2600 	uint64_t mcap;
2601 	int err = 0;
2602 
2603 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2604 		zone->zone_phys_mcap = mcap;
2605 
2606 	return (err);
2607 }
2608 
2609 static int
2610 zone_set_sched_class(zone_t *zone, const char *new_class)
2611 {
2612 	char sched_class[PC_CLNMSZ];
2613 	id_t classid;
2614 	int err;
2615 
2616 	ASSERT(zone != global_zone);
2617 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2618 		return (err);	/* EFAULT or ENAMETOOLONG */
2619 
2620 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2621 		return (set_errno(EINVAL));
2622 	zone->zone_defaultcid = classid;
2623 	ASSERT(zone->zone_defaultcid > 0 &&
2624 	    zone->zone_defaultcid < loaded_classes);
2625 
2626 	return (0);
2627 }
2628 
2629 /*
2630  * Block indefinitely waiting for (zone_status >= status)
2631  */
2632 void
2633 zone_status_wait(zone_t *zone, zone_status_t status)
2634 {
2635 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2636 
2637 	mutex_enter(&zone_status_lock);
2638 	while (zone->zone_status < status) {
2639 		cv_wait(&zone->zone_cv, &zone_status_lock);
2640 	}
2641 	mutex_exit(&zone_status_lock);
2642 }
2643 
2644 /*
2645  * Private CPR-safe version of zone_status_wait().
2646  */
2647 static void
2648 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2649 {
2650 	callb_cpr_t cprinfo;
2651 
2652 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2653 
2654 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2655 	    str);
2656 	mutex_enter(&zone_status_lock);
2657 	while (zone->zone_status < status) {
2658 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2659 		cv_wait(&zone->zone_cv, &zone_status_lock);
2660 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2661 	}
2662 	/*
2663 	 * zone_status_lock is implicitly released by the following.
2664 	 */
2665 	CALLB_CPR_EXIT(&cprinfo);
2666 }
2667 
2668 /*
2669  * Block until zone enters requested state or signal is received.  Return (0)
2670  * if signaled, non-zero otherwise.
2671  */
2672 int
2673 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2674 {
2675 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2676 
2677 	mutex_enter(&zone_status_lock);
2678 	while (zone->zone_status < status) {
2679 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2680 			mutex_exit(&zone_status_lock);
2681 			return (0);
2682 		}
2683 	}
2684 	mutex_exit(&zone_status_lock);
2685 	return (1);
2686 }
2687 
2688 /*
2689  * Block until the zone enters the requested state or the timeout expires,
2690  * whichever happens first.  Return (-1) if operation timed out, time remaining
2691  * otherwise.
2692  */
2693 clock_t
2694 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2695 {
2696 	clock_t timeleft = 0;
2697 
2698 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2699 
2700 	mutex_enter(&zone_status_lock);
2701 	while (zone->zone_status < status && timeleft != -1) {
2702 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2703 	}
2704 	mutex_exit(&zone_status_lock);
2705 	return (timeleft);
2706 }
2707 
2708 /*
2709  * Block until the zone enters the requested state, the current process is
2710  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2711  * operation timed out, 0 if signaled, time remaining otherwise.
2712  */
2713 clock_t
2714 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2715 {
2716 	clock_t timeleft = tim - ddi_get_lbolt();
2717 
2718 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2719 
2720 	mutex_enter(&zone_status_lock);
2721 	while (zone->zone_status < status) {
2722 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2723 		    tim);
2724 		if (timeleft <= 0)
2725 			break;
2726 	}
2727 	mutex_exit(&zone_status_lock);
2728 	return (timeleft);
2729 }
2730 
2731 /*
2732  * Zones have two reference counts: one for references from credential
2733  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2734  * This is so we can allow a zone to be rebooted while there are still
2735  * outstanding cred references, since certain drivers cache dblks (which
2736  * implicitly results in cached creds).  We wait for zone_ref to drop to
2737  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2738  * later freed when the zone_cred_ref drops to 0, though nothing other
2739  * than the zone id and privilege set should be accessed once the zone
2740  * is "dead".
2741  *
2742  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2743  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2744  * to 0.  This can be useful to flush out other sources of cached creds
2745  * that may be less innocuous than the driver case.
2746  *
2747  * Zones also provide a tracked reference counting mechanism in which zone
2748  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2749  * debuggers determine the sources of leaked zone references.  See
2750  * zone_hold_ref() and zone_rele_ref() below for more information.
2751  */
2752 
2753 int zone_wait_for_cred = 0;
2754 
2755 static void
2756 zone_hold_locked(zone_t *z)
2757 {
2758 	ASSERT(MUTEX_HELD(&z->zone_lock));
2759 	z->zone_ref++;
2760 	ASSERT(z->zone_ref != 0);
2761 }
2762 
2763 /*
2764  * Increment the specified zone's reference count.  The zone's zone_t structure
2765  * will not be freed as long as the zone's reference count is nonzero.
2766  * Decrement the zone's reference count via zone_rele().
2767  *
2768  * NOTE: This function should only be used to hold zones for short periods of
2769  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2770  */
2771 void
2772 zone_hold(zone_t *z)
2773 {
2774 	mutex_enter(&z->zone_lock);
2775 	zone_hold_locked(z);
2776 	mutex_exit(&z->zone_lock);
2777 }
2778 
2779 /*
2780  * If the non-cred ref count drops to 1 and either the cred ref count
2781  * is 0 or we aren't waiting for cred references, the zone is ready to
2782  * be destroyed.
2783  */
2784 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2785 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2786 
2787 /*
2788  * Common zone reference release function invoked by zone_rele() and
2789  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2790  * zone's subsystem-specific reference counters are not affected by the
2791  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2792  * removed from the specified zone's reference list.  ref must be non-NULL iff
2793  * subsys is not ZONE_REF_NUM_SUBSYS.
2794  */
2795 static void
2796 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2797 {
2798 	boolean_t wakeup;
2799 
2800 	mutex_enter(&z->zone_lock);
2801 	ASSERT(z->zone_ref != 0);
2802 	z->zone_ref--;
2803 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2804 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2805 		z->zone_subsys_ref[subsys]--;
2806 		list_remove(&z->zone_ref_list, ref);
2807 	}
2808 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2809 		/* no more refs, free the structure */
2810 		mutex_exit(&z->zone_lock);
2811 		zone_free(z);
2812 		return;
2813 	}
2814 	/* signal zone_destroy so the zone can finish halting */
2815 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2816 	mutex_exit(&z->zone_lock);
2817 
2818 	if (wakeup) {
2819 		/*
2820 		 * Grabbing zonehash_lock here effectively synchronizes with
2821 		 * zone_destroy() to avoid missed signals.
2822 		 */
2823 		mutex_enter(&zonehash_lock);
2824 		cv_broadcast(&zone_destroy_cv);
2825 		mutex_exit(&zonehash_lock);
2826 	}
2827 }
2828 
2829 /*
2830  * Decrement the specified zone's reference count.  The specified zone will
2831  * cease to exist after this function returns if the reference count drops to
2832  * zero.  This function should be paired with zone_hold().
2833  */
2834 void
2835 zone_rele(zone_t *z)
2836 {
2837 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2838 }
2839 
2840 /*
2841  * Initialize a zone reference structure.  This function must be invoked for
2842  * a reference structure before the structure is passed to zone_hold_ref().
2843  */
2844 void
2845 zone_init_ref(zone_ref_t *ref)
2846 {
2847 	ref->zref_zone = NULL;
2848 	list_link_init(&ref->zref_linkage);
2849 }
2850 
2851 /*
2852  * Acquire a reference to zone z.  The caller must specify the
2853  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2854  * zone_ref_t structure will represent a reference to the specified zone.  Use
2855  * zone_rele_ref() to release the reference.
2856  *
2857  * The referenced zone_t structure will not be freed as long as the zone_t's
2858  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2859  * references.
2860  *
2861  * NOTE: The zone_ref_t structure must be initialized before it is used.
2862  * See zone_init_ref() above.
2863  */
2864 void
2865 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2866 {
2867 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2868 
2869 	/*
2870 	 * Prevent consumers from reusing a reference structure before
2871 	 * releasing it.
2872 	 */
2873 	VERIFY(ref->zref_zone == NULL);
2874 
2875 	ref->zref_zone = z;
2876 	mutex_enter(&z->zone_lock);
2877 	zone_hold_locked(z);
2878 	z->zone_subsys_ref[subsys]++;
2879 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2880 	list_insert_head(&z->zone_ref_list, ref);
2881 	mutex_exit(&z->zone_lock);
2882 }
2883 
2884 /*
2885  * Release the zone reference represented by the specified zone_ref_t.
2886  * The reference is invalid after it's released; however, the zone_ref_t
2887  * structure can be reused without having to invoke zone_init_ref().
2888  * subsys should be the same value that was passed to zone_hold_ref()
2889  * when the reference was acquired.
2890  */
2891 void
2892 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2893 {
2894 	zone_rele_common(ref->zref_zone, ref, subsys);
2895 
2896 	/*
2897 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2898 	 * when consumers dereference the reference.  This helps us catch
2899 	 * consumers who use released references.  Furthermore, this lets
2900 	 * consumers reuse the zone_ref_t structure without having to
2901 	 * invoke zone_init_ref().
2902 	 */
2903 	ref->zref_zone = NULL;
2904 }
2905 
2906 void
2907 zone_cred_hold(zone_t *z)
2908 {
2909 	mutex_enter(&z->zone_lock);
2910 	z->zone_cred_ref++;
2911 	ASSERT(z->zone_cred_ref != 0);
2912 	mutex_exit(&z->zone_lock);
2913 }
2914 
2915 void
2916 zone_cred_rele(zone_t *z)
2917 {
2918 	boolean_t wakeup;
2919 
2920 	mutex_enter(&z->zone_lock);
2921 	ASSERT(z->zone_cred_ref != 0);
2922 	z->zone_cred_ref--;
2923 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2924 		/* no more refs, free the structure */
2925 		mutex_exit(&z->zone_lock);
2926 		zone_free(z);
2927 		return;
2928 	}
2929 	/*
2930 	 * If zone_destroy is waiting for the cred references to drain
2931 	 * out, and they have, signal it.
2932 	 */
2933 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2934 	    zone_status_get(z) >= ZONE_IS_DEAD);
2935 	mutex_exit(&z->zone_lock);
2936 
2937 	if (wakeup) {
2938 		/*
2939 		 * Grabbing zonehash_lock here effectively synchronizes with
2940 		 * zone_destroy() to avoid missed signals.
2941 		 */
2942 		mutex_enter(&zonehash_lock);
2943 		cv_broadcast(&zone_destroy_cv);
2944 		mutex_exit(&zonehash_lock);
2945 	}
2946 }
2947 
2948 void
2949 zone_task_hold(zone_t *z)
2950 {
2951 	mutex_enter(&z->zone_lock);
2952 	z->zone_ntasks++;
2953 	ASSERT(z->zone_ntasks != 0);
2954 	mutex_exit(&z->zone_lock);
2955 }
2956 
2957 void
2958 zone_task_rele(zone_t *zone)
2959 {
2960 	uint_t refcnt;
2961 
2962 	mutex_enter(&zone->zone_lock);
2963 	ASSERT(zone->zone_ntasks != 0);
2964 	refcnt = --zone->zone_ntasks;
2965 	if (refcnt > 1)	{	/* Common case */
2966 		mutex_exit(&zone->zone_lock);
2967 		return;
2968 	}
2969 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2970 	mutex_exit(&zone->zone_lock);
2971 	if (refcnt == 1) {
2972 		/*
2973 		 * See if the zone is shutting down.
2974 		 */
2975 		mutex_enter(&zone_status_lock);
2976 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2977 			goto out;
2978 		}
2979 
2980 		/*
2981 		 * Make sure the ntasks didn't change since we
2982 		 * dropped zone_lock.
2983 		 */
2984 		mutex_enter(&zone->zone_lock);
2985 		if (refcnt != zone->zone_ntasks) {
2986 			mutex_exit(&zone->zone_lock);
2987 			goto out;
2988 		}
2989 		mutex_exit(&zone->zone_lock);
2990 
2991 		/*
2992 		 * No more user processes in the zone.  The zone is empty.
2993 		 */
2994 		zone_status_set(zone, ZONE_IS_EMPTY);
2995 		goto out;
2996 	}
2997 
2998 	ASSERT(refcnt == 0);
2999 	/*
3000 	 * zsched has exited; the zone is dead.
3001 	 */
3002 	zone->zone_zsched = NULL;		/* paranoia */
3003 	mutex_enter(&zone_status_lock);
3004 	zone_status_set(zone, ZONE_IS_DEAD);
3005 out:
3006 	mutex_exit(&zone_status_lock);
3007 	zone_rele(zone);
3008 }
3009 
3010 zoneid_t
3011 getzoneid(void)
3012 {
3013 	return (curproc->p_zone->zone_id);
3014 }
3015 
3016 /*
3017  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3018  * check the validity of a zone's state.
3019  */
3020 static zone_t *
3021 zone_find_all_by_id(zoneid_t zoneid)
3022 {
3023 	mod_hash_val_t hv;
3024 	zone_t *zone = NULL;
3025 
3026 	ASSERT(MUTEX_HELD(&zonehash_lock));
3027 
3028 	if (mod_hash_find(zonehashbyid,
3029 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3030 		zone = (zone_t *)hv;
3031 	return (zone);
3032 }
3033 
3034 static zone_t *
3035 zone_find_all_by_label(const ts_label_t *label)
3036 {
3037 	mod_hash_val_t hv;
3038 	zone_t *zone = NULL;
3039 
3040 	ASSERT(MUTEX_HELD(&zonehash_lock));
3041 
3042 	/*
3043 	 * zonehashbylabel is not maintained for unlabeled systems
3044 	 */
3045 	if (!is_system_labeled())
3046 		return (NULL);
3047 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3048 		zone = (zone_t *)hv;
3049 	return (zone);
3050 }
3051 
3052 static zone_t *
3053 zone_find_all_by_name(char *name)
3054 {
3055 	mod_hash_val_t hv;
3056 	zone_t *zone = NULL;
3057 
3058 	ASSERT(MUTEX_HELD(&zonehash_lock));
3059 
3060 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3061 		zone = (zone_t *)hv;
3062 	return (zone);
3063 }
3064 
3065 /*
3066  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3067  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3068  * Caller must call zone_rele() once it is done with the zone.
3069  *
3070  * The zone may begin the zone_destroy() sequence immediately after this
3071  * function returns, but may be safely used until zone_rele() is called.
3072  */
3073 zone_t *
3074 zone_find_by_id(zoneid_t zoneid)
3075 {
3076 	zone_t *zone;
3077 	zone_status_t status;
3078 
3079 	mutex_enter(&zonehash_lock);
3080 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3081 		mutex_exit(&zonehash_lock);
3082 		return (NULL);
3083 	}
3084 	status = zone_status_get(zone);
3085 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3086 		/*
3087 		 * For all practical purposes the zone doesn't exist.
3088 		 */
3089 		mutex_exit(&zonehash_lock);
3090 		return (NULL);
3091 	}
3092 	zone_hold(zone);
3093 	mutex_exit(&zonehash_lock);
3094 	return (zone);
3095 }
3096 
3097 /*
3098  * Similar to zone_find_by_id, but using zone label as the key.
3099  */
3100 zone_t *
3101 zone_find_by_label(const ts_label_t *label)
3102 {
3103 	zone_t *zone;
3104 	zone_status_t status;
3105 
3106 	mutex_enter(&zonehash_lock);
3107 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3108 		mutex_exit(&zonehash_lock);
3109 		return (NULL);
3110 	}
3111 
3112 	status = zone_status_get(zone);
3113 	if (status > ZONE_IS_DOWN) {
3114 		/*
3115 		 * For all practical purposes the zone doesn't exist.
3116 		 */
3117 		mutex_exit(&zonehash_lock);
3118 		return (NULL);
3119 	}
3120 	zone_hold(zone);
3121 	mutex_exit(&zonehash_lock);
3122 	return (zone);
3123 }
3124 
3125 /*
3126  * Similar to zone_find_by_id, but using zone name as the key.
3127  */
3128 zone_t *
3129 zone_find_by_name(char *name)
3130 {
3131 	zone_t *zone;
3132 	zone_status_t status;
3133 
3134 	mutex_enter(&zonehash_lock);
3135 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3136 		mutex_exit(&zonehash_lock);
3137 		return (NULL);
3138 	}
3139 	status = zone_status_get(zone);
3140 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3141 		/*
3142 		 * For all practical purposes the zone doesn't exist.
3143 		 */
3144 		mutex_exit(&zonehash_lock);
3145 		return (NULL);
3146 	}
3147 	zone_hold(zone);
3148 	mutex_exit(&zonehash_lock);
3149 	return (zone);
3150 }
3151 
3152 /*
3153  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3154  * if there is a zone "foo" rooted at /foo/root, and the path argument
3155  * is "/foo/root/proc", it will return the held zone_t corresponding to
3156  * zone "foo".
3157  *
3158  * zone_find_by_path() always returns a non-NULL value, since at the
3159  * very least every path will be contained in the global zone.
3160  *
3161  * As with the other zone_find_by_*() functions, the caller is
3162  * responsible for zone_rele()ing the return value of this function.
3163  */
3164 zone_t *
3165 zone_find_by_path(const char *path)
3166 {
3167 	zone_t *zone;
3168 	zone_t *zret = NULL;
3169 	zone_status_t status;
3170 
3171 	if (path == NULL) {
3172 		/*
3173 		 * Call from rootconf().
3174 		 */
3175 		zone_hold(global_zone);
3176 		return (global_zone);
3177 	}
3178 	ASSERT(*path == '/');
3179 	mutex_enter(&zonehash_lock);
3180 	for (zone = list_head(&zone_active); zone != NULL;
3181 	    zone = list_next(&zone_active, zone)) {
3182 		if (ZONE_PATH_VISIBLE(path, zone))
3183 			zret = zone;
3184 	}
3185 	ASSERT(zret != NULL);
3186 	status = zone_status_get(zret);
3187 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3188 		/*
3189 		 * Zone practically doesn't exist.
3190 		 */
3191 		zret = global_zone;
3192 	}
3193 	zone_hold(zret);
3194 	mutex_exit(&zonehash_lock);
3195 	return (zret);
3196 }
3197 
3198 /*
3199  * Public interface for updating per-zone load averages.  Called once per
3200  * second.
3201  *
3202  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3203  */
3204 void
3205 zone_loadavg_update()
3206 {
3207 	zone_t *zp;
3208 	zone_status_t status;
3209 	struct loadavg_s *lavg;
3210 	hrtime_t zone_total;
3211 	int i;
3212 	hrtime_t hr_avg;
3213 	int nrun;
3214 	static int64_t f[3] = { 135, 27, 9 };
3215 	int64_t q, r;
3216 
3217 	mutex_enter(&zonehash_lock);
3218 	for (zp = list_head(&zone_active); zp != NULL;
3219 	    zp = list_next(&zone_active, zp)) {
3220 		mutex_enter(&zp->zone_lock);
3221 
3222 		/* Skip zones that are on the way down or not yet up */
3223 		status = zone_status_get(zp);
3224 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3225 			/* For all practical purposes the zone doesn't exist. */
3226 			mutex_exit(&zp->zone_lock);
3227 			continue;
3228 		}
3229 
3230 		/*
3231 		 * Update the 10 second moving average data in zone_loadavg.
3232 		 */
3233 		lavg = &zp->zone_loadavg;
3234 
3235 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3236 		scalehrtime(&zone_total);
3237 
3238 		/* The zone_total should always be increasing. */
3239 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3240 		    zone_total - lavg->lg_total : 0;
3241 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3242 		/* lg_total holds the prev. 1 sec. total */
3243 		lavg->lg_total = zone_total;
3244 
3245 		/*
3246 		 * To simplify the calculation, we don't calculate the load avg.
3247 		 * until the zone has been up for at least 10 seconds and our
3248 		 * moving average is thus full.
3249 		 */
3250 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3251 			lavg->lg_len++;
3252 			mutex_exit(&zp->zone_lock);
3253 			continue;
3254 		}
3255 
3256 		/* Now calculate the 1min, 5min, 15 min load avg. */
3257 		hr_avg = 0;
3258 		for (i = 0; i < S_LOADAVG_SZ; i++)
3259 			hr_avg += lavg->lg_loads[i];
3260 		hr_avg = hr_avg / S_LOADAVG_SZ;
3261 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3262 
3263 		/* Compute load avg. See comment in calcloadavg() */
3264 		for (i = 0; i < 3; i++) {
3265 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3266 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3267 			zp->zone_hp_avenrun[i] +=
3268 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3269 
3270 			/* avenrun[] can only hold 31 bits of load avg. */
3271 			if (zp->zone_hp_avenrun[i] <
3272 			    ((uint64_t)1<<(31+16-FSHIFT)))
3273 				zp->zone_avenrun[i] = (int32_t)
3274 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3275 			else
3276 				zp->zone_avenrun[i] = 0x7fffffff;
3277 		}
3278 
3279 		mutex_exit(&zp->zone_lock);
3280 	}
3281 	mutex_exit(&zonehash_lock);
3282 }
3283 
3284 /*
3285  * Get the number of cpus visible to this zone.  The system-wide global
3286  * 'ncpus' is returned if pools are disabled, the caller is in the
3287  * global zone, or a NULL zone argument is passed in.
3288  */
3289 int
3290 zone_ncpus_get(zone_t *zone)
3291 {
3292 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3293 
3294 	return (myncpus != 0 ? myncpus : ncpus);
3295 }
3296 
3297 /*
3298  * Get the number of online cpus visible to this zone.  The system-wide
3299  * global 'ncpus_online' is returned if pools are disabled, the caller
3300  * is in the global zone, or a NULL zone argument is passed in.
3301  */
3302 int
3303 zone_ncpus_online_get(zone_t *zone)
3304 {
3305 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3306 
3307 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3308 }
3309 
3310 /*
3311  * Return the pool to which the zone is currently bound.
3312  */
3313 pool_t *
3314 zone_pool_get(zone_t *zone)
3315 {
3316 	ASSERT(pool_lock_held());
3317 
3318 	return (zone->zone_pool);
3319 }
3320 
3321 /*
3322  * Set the zone's pool pointer and update the zone's visibility to match
3323  * the resources in the new pool.
3324  */
3325 void
3326 zone_pool_set(zone_t *zone, pool_t *pool)
3327 {
3328 	ASSERT(pool_lock_held());
3329 	ASSERT(MUTEX_HELD(&cpu_lock));
3330 
3331 	zone->zone_pool = pool;
3332 	zone_pset_set(zone, pool->pool_pset->pset_id);
3333 }
3334 
3335 /*
3336  * Return the cached value of the id of the processor set to which the
3337  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3338  * facility is disabled.
3339  */
3340 psetid_t
3341 zone_pset_get(zone_t *zone)
3342 {
3343 	ASSERT(MUTEX_HELD(&cpu_lock));
3344 
3345 	return (zone->zone_psetid);
3346 }
3347 
3348 /*
3349  * Set the cached value of the id of the processor set to which the zone
3350  * is currently bound.  Also update the zone's visibility to match the
3351  * resources in the new processor set.
3352  */
3353 void
3354 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3355 {
3356 	psetid_t oldpsetid;
3357 
3358 	ASSERT(MUTEX_HELD(&cpu_lock));
3359 	oldpsetid = zone_pset_get(zone);
3360 
3361 	if (oldpsetid == newpsetid)
3362 		return;
3363 	/*
3364 	 * Global zone sees all.
3365 	 */
3366 	if (zone != global_zone) {
3367 		zone->zone_psetid = newpsetid;
3368 		if (newpsetid != ZONE_PS_INVAL)
3369 			pool_pset_visibility_add(newpsetid, zone);
3370 		if (oldpsetid != ZONE_PS_INVAL)
3371 			pool_pset_visibility_remove(oldpsetid, zone);
3372 	}
3373 	/*
3374 	 * Disabling pools, so we should start using the global values
3375 	 * for ncpus and ncpus_online.
3376 	 */
3377 	if (newpsetid == ZONE_PS_INVAL) {
3378 		zone->zone_ncpus = 0;
3379 		zone->zone_ncpus_online = 0;
3380 	}
3381 }
3382 
3383 /*
3384  * Walk the list of active zones and issue the provided callback for
3385  * each of them.
3386  *
3387  * Caller must not be holding any locks that may be acquired under
3388  * zonehash_lock.  See comment at the beginning of the file for a list of
3389  * common locks and their interactions with zones.
3390  */
3391 int
3392 zone_walk(int (*cb)(zone_t *, void *), void *data)
3393 {
3394 	zone_t *zone;
3395 	int ret = 0;
3396 	zone_status_t status;
3397 
3398 	mutex_enter(&zonehash_lock);
3399 	for (zone = list_head(&zone_active); zone != NULL;
3400 	    zone = list_next(&zone_active, zone)) {
3401 		/*
3402 		 * Skip zones that shouldn't be externally visible.
3403 		 */
3404 		status = zone_status_get(zone);
3405 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3406 			continue;
3407 		/*
3408 		 * Bail immediately if any callback invocation returns a
3409 		 * non-zero value.
3410 		 */
3411 		ret = (*cb)(zone, data);
3412 		if (ret != 0)
3413 			break;
3414 	}
3415 	mutex_exit(&zonehash_lock);
3416 	return (ret);
3417 }
3418 
3419 static int
3420 zone_set_root(zone_t *zone, const char *upath)
3421 {
3422 	vnode_t *vp;
3423 	int trycount;
3424 	int error = 0;
3425 	char *path;
3426 	struct pathname upn, pn;
3427 	size_t pathlen;
3428 
3429 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3430 		return (error);
3431 
3432 	pn_alloc(&pn);
3433 
3434 	/* prevent infinite loop */
3435 	trycount = 10;
3436 	for (;;) {
3437 		if (--trycount <= 0) {
3438 			error = ESTALE;
3439 			goto out;
3440 		}
3441 
3442 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3443 			/*
3444 			 * VOP_ACCESS() may cover 'vp' with a new
3445 			 * filesystem, if 'vp' is an autoFS vnode.
3446 			 * Get the new 'vp' if so.
3447 			 */
3448 			if ((error =
3449 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3450 			    (!vn_ismntpt(vp) ||
3451 			    (error = traverse(&vp)) == 0)) {
3452 				pathlen = pn.pn_pathlen + 2;
3453 				path = kmem_alloc(pathlen, KM_SLEEP);
3454 				(void) strncpy(path, pn.pn_path,
3455 				    pn.pn_pathlen + 1);
3456 				path[pathlen - 2] = '/';
3457 				path[pathlen - 1] = '\0';
3458 				pn_free(&pn);
3459 				pn_free(&upn);
3460 
3461 				/* Success! */
3462 				break;
3463 			}
3464 			VN_RELE(vp);
3465 		}
3466 		if (error != ESTALE)
3467 			goto out;
3468 	}
3469 
3470 	ASSERT(error == 0);
3471 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3472 	zone->zone_rootpath = path;
3473 	zone->zone_rootpathlen = pathlen;
3474 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3475 		zone->zone_flags |= ZF_IS_SCRATCH;
3476 	return (0);
3477 
3478 out:
3479 	pn_free(&pn);
3480 	pn_free(&upn);
3481 	return (error);
3482 }
3483 
3484 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3485 			((c) >= 'a' && (c) <= 'z') || \
3486 			((c) >= 'A' && (c) <= 'Z'))
3487 
3488 static int
3489 zone_set_name(zone_t *zone, const char *uname)
3490 {
3491 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3492 	size_t len;
3493 	int i, err;
3494 
3495 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3496 		kmem_free(kname, ZONENAME_MAX);
3497 		return (err);	/* EFAULT or ENAMETOOLONG */
3498 	}
3499 
3500 	/* must be less than ZONENAME_MAX */
3501 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3502 		kmem_free(kname, ZONENAME_MAX);
3503 		return (EINVAL);
3504 	}
3505 
3506 	/*
3507 	 * Name must start with an alphanumeric and must contain only
3508 	 * alphanumerics, '-', '_' and '.'.
3509 	 */
3510 	if (!isalnum(kname[0])) {
3511 		kmem_free(kname, ZONENAME_MAX);
3512 		return (EINVAL);
3513 	}
3514 	for (i = 1; i < len - 1; i++) {
3515 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3516 		    kname[i] != '.') {
3517 			kmem_free(kname, ZONENAME_MAX);
3518 			return (EINVAL);
3519 		}
3520 	}
3521 
3522 	zone->zone_name = kname;
3523 	return (0);
3524 }
3525 
3526 /*
3527  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3528  * is NULL or it points to a zone with no hostid emulation, then the machine's
3529  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3530  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3531  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3532  * hostid and the machine's hostid is invalid.
3533  */
3534 uint32_t
3535 zone_get_hostid(zone_t *zonep)
3536 {
3537 	unsigned long machine_hostid;
3538 
3539 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3540 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3541 			return (HW_INVALID_HOSTID);
3542 		return ((uint32_t)machine_hostid);
3543 	}
3544 	return (zonep->zone_hostid);
3545 }
3546 
3547 /*
3548  * Similar to thread_create(), but makes sure the thread is in the appropriate
3549  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3550  */
3551 /*ARGSUSED*/
3552 kthread_t *
3553 zthread_create(
3554     caddr_t stk,
3555     size_t stksize,
3556     void (*proc)(),
3557     void *arg,
3558     size_t len,
3559     pri_t pri)
3560 {
3561 	kthread_t *t;
3562 	zone_t *zone = curproc->p_zone;
3563 	proc_t *pp = zone->zone_zsched;
3564 
3565 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3566 
3567 	/*
3568 	 * No-one should be trying to create threads if the zone is shutting
3569 	 * down and there aren't any kernel threads around.  See comment
3570 	 * in zthread_exit().
3571 	 */
3572 	ASSERT(!(zone->zone_kthreads == NULL &&
3573 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3574 	/*
3575 	 * Create a thread, but don't let it run until we've finished setting
3576 	 * things up.
3577 	 */
3578 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3579 	ASSERT(t->t_forw == NULL);
3580 	mutex_enter(&zone_status_lock);
3581 	if (zone->zone_kthreads == NULL) {
3582 		t->t_forw = t->t_back = t;
3583 	} else {
3584 		kthread_t *tx = zone->zone_kthreads;
3585 
3586 		t->t_forw = tx;
3587 		t->t_back = tx->t_back;
3588 		tx->t_back->t_forw = t;
3589 		tx->t_back = t;
3590 	}
3591 	zone->zone_kthreads = t;
3592 	mutex_exit(&zone_status_lock);
3593 
3594 	mutex_enter(&pp->p_lock);
3595 	t->t_proc_flag |= TP_ZTHREAD;
3596 	project_rele(t->t_proj);
3597 	t->t_proj = project_hold(pp->p_task->tk_proj);
3598 
3599 	/*
3600 	 * Setup complete, let it run.
3601 	 */
3602 	thread_lock(t);
3603 	t->t_schedflag |= TS_ALLSTART;
3604 	setrun_locked(t);
3605 	thread_unlock(t);
3606 
3607 	mutex_exit(&pp->p_lock);
3608 
3609 	return (t);
3610 }
3611 
3612 /*
3613  * Similar to thread_exit().  Must be called by threads created via
3614  * zthread_exit().
3615  */
3616 void
3617 zthread_exit(void)
3618 {
3619 	kthread_t *t = curthread;
3620 	proc_t *pp = curproc;
3621 	zone_t *zone = pp->p_zone;
3622 
3623 	mutex_enter(&zone_status_lock);
3624 
3625 	/*
3626 	 * Reparent to p0
3627 	 */
3628 	kpreempt_disable();
3629 	mutex_enter(&pp->p_lock);
3630 	t->t_proc_flag &= ~TP_ZTHREAD;
3631 	t->t_procp = &p0;
3632 	hat_thread_exit(t);
3633 	mutex_exit(&pp->p_lock);
3634 	kpreempt_enable();
3635 
3636 	if (t->t_back == t) {
3637 		ASSERT(t->t_forw == t);
3638 		/*
3639 		 * If the zone is empty, once the thread count
3640 		 * goes to zero no further kernel threads can be
3641 		 * created.  This is because if the creator is a process
3642 		 * in the zone, then it must have exited before the zone
3643 		 * state could be set to ZONE_IS_EMPTY.
3644 		 * Otherwise, if the creator is a kernel thread in the
3645 		 * zone, the thread count is non-zero.
3646 		 *
3647 		 * This really means that non-zone kernel threads should
3648 		 * not create zone kernel threads.
3649 		 */
3650 		zone->zone_kthreads = NULL;
3651 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3652 			zone_status_set(zone, ZONE_IS_DOWN);
3653 			/*
3654 			 * Remove any CPU caps on this zone.
3655 			 */
3656 			cpucaps_zone_remove(zone);
3657 		}
3658 	} else {
3659 		t->t_forw->t_back = t->t_back;
3660 		t->t_back->t_forw = t->t_forw;
3661 		if (zone->zone_kthreads == t)
3662 			zone->zone_kthreads = t->t_forw;
3663 	}
3664 	mutex_exit(&zone_status_lock);
3665 	zone_rele(zone);
3666 	thread_exit();
3667 	/* NOTREACHED */
3668 }
3669 
3670 static void
3671 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3672 {
3673 	vnode_t *oldvp;
3674 
3675 	/* we're going to hold a reference here to the directory */
3676 	VN_HOLD(vp);
3677 
3678 	/* update abs cwd/root path see c2/audit.c */
3679 	if (AU_AUDITING())
3680 		audit_chdirec(vp, vpp);
3681 
3682 	mutex_enter(&pp->p_lock);
3683 	oldvp = *vpp;
3684 	*vpp = vp;
3685 	mutex_exit(&pp->p_lock);
3686 	if (oldvp != NULL)
3687 		VN_RELE(oldvp);
3688 }
3689 
3690 /*
3691  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3692  */
3693 static int
3694 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3695 {
3696 	nvpair_t *nvp = NULL;
3697 	boolean_t priv_set = B_FALSE;
3698 	boolean_t limit_set = B_FALSE;
3699 	boolean_t action_set = B_FALSE;
3700 
3701 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3702 		const char *name;
3703 		uint64_t ui64;
3704 
3705 		name = nvpair_name(nvp);
3706 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3707 			return (EINVAL);
3708 		(void) nvpair_value_uint64(nvp, &ui64);
3709 		if (strcmp(name, "privilege") == 0) {
3710 			/*
3711 			 * Currently only privileged values are allowed, but
3712 			 * this may change in the future.
3713 			 */
3714 			if (ui64 != RCPRIV_PRIVILEGED)
3715 				return (EINVAL);
3716 			rv->rcv_privilege = ui64;
3717 			priv_set = B_TRUE;
3718 		} else if (strcmp(name, "limit") == 0) {
3719 			rv->rcv_value = ui64;
3720 			limit_set = B_TRUE;
3721 		} else if (strcmp(name, "action") == 0) {
3722 			if (ui64 != RCTL_LOCAL_NOACTION &&
3723 			    ui64 != RCTL_LOCAL_DENY)
3724 				return (EINVAL);
3725 			rv->rcv_flagaction = ui64;
3726 			action_set = B_TRUE;
3727 		} else {
3728 			return (EINVAL);
3729 		}
3730 	}
3731 
3732 	if (!(priv_set && limit_set && action_set))
3733 		return (EINVAL);
3734 	rv->rcv_action_signal = 0;
3735 	rv->rcv_action_recipient = NULL;
3736 	rv->rcv_action_recip_pid = -1;
3737 	rv->rcv_firing_time = 0;
3738 
3739 	return (0);
3740 }
3741 
3742 /*
3743  * Non-global zone version of start_init.
3744  */
3745 void
3746 zone_start_init(void)
3747 {
3748 	proc_t *p = ttoproc(curthread);
3749 	zone_t *z = p->p_zone;
3750 
3751 	ASSERT(!INGLOBALZONE(curproc));
3752 
3753 	/*
3754 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3755 	 * storing just the pid of init is sufficient.
3756 	 */
3757 	z->zone_proc_initpid = p->p_pid;
3758 
3759 	/*
3760 	 * We maintain zone_boot_err so that we can return the cause of the
3761 	 * failure back to the caller of the zone_boot syscall.
3762 	 */
3763 	p->p_zone->zone_boot_err = start_init_common();
3764 
3765 	/*
3766 	 * We will prevent booting zones from becoming running zones if the
3767 	 * global zone is shutting down.
3768 	 */
3769 	mutex_enter(&zone_status_lock);
3770 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3771 	    ZONE_IS_SHUTTING_DOWN) {
3772 		/*
3773 		 * Make sure we are still in the booting state-- we could have
3774 		 * raced and already be shutting down, or even further along.
3775 		 */
3776 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3777 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3778 		}
3779 		mutex_exit(&zone_status_lock);
3780 		/* It's gone bad, dispose of the process */
3781 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3782 			mutex_enter(&p->p_lock);
3783 			ASSERT(p->p_flag & SEXITLWPS);
3784 			lwp_exit();
3785 		}
3786 	} else {
3787 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3788 			zone_status_set(z, ZONE_IS_RUNNING);
3789 		mutex_exit(&zone_status_lock);
3790 		/* cause the process to return to userland. */
3791 		lwp_rtt();
3792 	}
3793 }
3794 
3795 struct zsched_arg {
3796 	zone_t *zone;
3797 	nvlist_t *nvlist;
3798 };
3799 
3800 /*
3801  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3802  * anything to do with scheduling, but rather with the fact that
3803  * per-zone kernel threads are parented to zsched, just like regular
3804  * kernel threads are parented to sched (p0).
3805  *
3806  * zsched is also responsible for launching init for the zone.
3807  */
3808 static void
3809 zsched(void *arg)
3810 {
3811 	struct zsched_arg *za = arg;
3812 	proc_t *pp = curproc;
3813 	proc_t *initp = proc_init;
3814 	zone_t *zone = za->zone;
3815 	cred_t *cr, *oldcred;
3816 	rctl_set_t *set;
3817 	rctl_alloc_gp_t *gp;
3818 	contract_t *ct = NULL;
3819 	task_t *tk, *oldtk;
3820 	rctl_entity_p_t e;
3821 	kproject_t *pj;
3822 
3823 	nvlist_t *nvl = za->nvlist;
3824 	nvpair_t *nvp = NULL;
3825 
3826 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3827 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3828 	PTOU(pp)->u_argc = 0;
3829 	PTOU(pp)->u_argv = NULL;
3830 	PTOU(pp)->u_envp = NULL;
3831 	closeall(P_FINFO(pp));
3832 
3833 	/*
3834 	 * We are this zone's "zsched" process.  As the zone isn't generally
3835 	 * visible yet we don't need to grab any locks before initializing its
3836 	 * zone_proc pointer.
3837 	 */
3838 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3839 	zone->zone_zsched = pp;
3840 	mutex_enter(&pp->p_lock);
3841 	pp->p_zone = zone;
3842 	mutex_exit(&pp->p_lock);
3843 
3844 	/*
3845 	 * Disassociate process from its 'parent'; parent ourselves to init
3846 	 * (pid 1) and change other values as needed.
3847 	 */
3848 	sess_create();
3849 
3850 	mutex_enter(&pidlock);
3851 	proc_detach(pp);
3852 	pp->p_ppid = 1;
3853 	pp->p_flag |= SZONETOP;
3854 	pp->p_ancpid = 1;
3855 	pp->p_parent = initp;
3856 	pp->p_psibling = NULL;
3857 	if (initp->p_child)
3858 		initp->p_child->p_psibling = pp;
3859 	pp->p_sibling = initp->p_child;
3860 	initp->p_child = pp;
3861 
3862 	/* Decrement what newproc() incremented. */
3863 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3864 	/*
3865 	 * Our credentials are about to become kcred-like, so we don't care
3866 	 * about the caller's ruid.
3867 	 */
3868 	upcount_inc(crgetruid(kcred), zone->zone_id);
3869 	mutex_exit(&pidlock);
3870 
3871 	/*
3872 	 * getting out of global zone, so decrement lwp and process counts
3873 	 */
3874 	pj = pp->p_task->tk_proj;
3875 	mutex_enter(&global_zone->zone_nlwps_lock);
3876 	pj->kpj_nlwps -= pp->p_lwpcnt;
3877 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3878 	pj->kpj_nprocs--;
3879 	global_zone->zone_nprocs--;
3880 	mutex_exit(&global_zone->zone_nlwps_lock);
3881 
3882 	/*
3883 	 * Decrement locked memory counts on old zone and project.
3884 	 */
3885 	mutex_enter(&global_zone->zone_mem_lock);
3886 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3887 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3888 	mutex_exit(&global_zone->zone_mem_lock);
3889 
3890 	/*
3891 	 * Create and join a new task in project '0' of this zone.
3892 	 *
3893 	 * We don't need to call holdlwps() since we know we're the only lwp in
3894 	 * this process.
3895 	 *
3896 	 * task_join() returns with p_lock held.
3897 	 */
3898 	tk = task_create(0, zone);
3899 	mutex_enter(&cpu_lock);
3900 	oldtk = task_join(tk, 0);
3901 
3902 	pj = pp->p_task->tk_proj;
3903 
3904 	mutex_enter(&zone->zone_mem_lock);
3905 	zone->zone_locked_mem += pp->p_locked_mem;
3906 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3907 	mutex_exit(&zone->zone_mem_lock);
3908 
3909 	/*
3910 	 * add lwp and process counts to zsched's zone, and increment
3911 	 * project's task and process count due to the task created in
3912 	 * the above task_create.
3913 	 */
3914 	mutex_enter(&zone->zone_nlwps_lock);
3915 	pj->kpj_nlwps += pp->p_lwpcnt;
3916 	pj->kpj_ntasks += 1;
3917 	zone->zone_nlwps += pp->p_lwpcnt;
3918 	pj->kpj_nprocs++;
3919 	zone->zone_nprocs++;
3920 	mutex_exit(&zone->zone_nlwps_lock);
3921 
3922 	mutex_exit(&curproc->p_lock);
3923 	mutex_exit(&cpu_lock);
3924 	task_rele(oldtk);
3925 
3926 	/*
3927 	 * The process was created by a process in the global zone, hence the
3928 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3929 	 */
3930 	cr = zone->zone_kcred;
3931 	crhold(cr);
3932 	mutex_enter(&pp->p_crlock);
3933 	oldcred = pp->p_cred;
3934 	pp->p_cred = cr;
3935 	mutex_exit(&pp->p_crlock);
3936 	crfree(oldcred);
3937 
3938 	/*
3939 	 * Hold credentials again (for thread)
3940 	 */
3941 	crhold(cr);
3942 
3943 	/*
3944 	 * p_lwpcnt can't change since this is a kernel process.
3945 	 */
3946 	crset(pp, cr);
3947 
3948 	/*
3949 	 * Chroot
3950 	 */
3951 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3952 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3953 
3954 	/*
3955 	 * Initialize zone's rctl set.
3956 	 */
3957 	set = rctl_set_create();
3958 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3959 	mutex_enter(&pp->p_lock);
3960 	e.rcep_p.zone = zone;
3961 	e.rcep_t = RCENTITY_ZONE;
3962 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3963 	mutex_exit(&pp->p_lock);
3964 	rctl_prealloc_destroy(gp);
3965 
3966 	/*
3967 	 * Apply the rctls passed in to zone_create().  This is basically a list
3968 	 * assignment: all of the old values are removed and the new ones
3969 	 * inserted.  That is, if an empty list is passed in, all values are
3970 	 * removed.
3971 	 */
3972 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3973 		rctl_dict_entry_t *rde;
3974 		rctl_hndl_t hndl;
3975 		char *name;
3976 		nvlist_t **nvlarray;
3977 		uint_t i, nelem;
3978 		int error;	/* For ASSERT()s */
3979 
3980 		name = nvpair_name(nvp);
3981 		hndl = rctl_hndl_lookup(name);
3982 		ASSERT(hndl != -1);
3983 		rde = rctl_dict_lookup_hndl(hndl);
3984 		ASSERT(rde != NULL);
3985 
3986 		for (; /* ever */; ) {
3987 			rctl_val_t oval;
3988 
3989 			mutex_enter(&pp->p_lock);
3990 			error = rctl_local_get(hndl, NULL, &oval, pp);
3991 			mutex_exit(&pp->p_lock);
3992 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3993 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3994 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3995 				break;
3996 			mutex_enter(&pp->p_lock);
3997 			error = rctl_local_delete(hndl, &oval, pp);
3998 			mutex_exit(&pp->p_lock);
3999 			ASSERT(error == 0);
4000 		}
4001 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4002 		ASSERT(error == 0);
4003 		for (i = 0; i < nelem; i++) {
4004 			rctl_val_t *nvalp;
4005 
4006 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4007 			error = nvlist2rctlval(nvlarray[i], nvalp);
4008 			ASSERT(error == 0);
4009 			/*
4010 			 * rctl_local_insert can fail if the value being
4011 			 * inserted is a duplicate; this is OK.
4012 			 */
4013 			mutex_enter(&pp->p_lock);
4014 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4015 				kmem_cache_free(rctl_val_cache, nvalp);
4016 			mutex_exit(&pp->p_lock);
4017 		}
4018 	}
4019 
4020 	/*
4021 	 * Tell the world that we're done setting up.
4022 	 *
4023 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4024 	 * and atomically set the zone's processor set visibility.  Once
4025 	 * we drop pool_lock() this zone will automatically get updated
4026 	 * to reflect any future changes to the pools configuration.
4027 	 *
4028 	 * Note that after we drop the locks below (zonehash_lock in
4029 	 * particular) other operations such as a zone_getattr call can
4030 	 * now proceed and observe the zone. That is the reason for doing a
4031 	 * state transition to the INITIALIZED state.
4032 	 */
4033 	pool_lock();
4034 	mutex_enter(&cpu_lock);
4035 	mutex_enter(&zonehash_lock);
4036 	zone_uniqid(zone);
4037 	zone_zsd_configure(zone);
4038 	if (pool_state == POOL_ENABLED)
4039 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4040 	mutex_enter(&zone_status_lock);
4041 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4042 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4043 	mutex_exit(&zone_status_lock);
4044 	mutex_exit(&zonehash_lock);
4045 	mutex_exit(&cpu_lock);
4046 	pool_unlock();
4047 
4048 	/* Now call the create callback for this key */
4049 	zsd_apply_all_keys(zsd_apply_create, zone);
4050 
4051 	/* The callbacks are complete. Mark ZONE_IS_READY */
4052 	mutex_enter(&zone_status_lock);
4053 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4054 	zone_status_set(zone, ZONE_IS_READY);
4055 	mutex_exit(&zone_status_lock);
4056 
4057 	/*
4058 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4059 	 * we launch init, and set the state to running.
4060 	 */
4061 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4062 
4063 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4064 		id_t cid;
4065 
4066 		/*
4067 		 * Ok, this is a little complicated.  We need to grab the
4068 		 * zone's pool's scheduling class ID; note that by now, we
4069 		 * are already bound to a pool if we need to be (zoneadmd
4070 		 * will have done that to us while we're in the READY
4071 		 * state).  *But* the scheduling class for the zone's 'init'
4072 		 * must be explicitly passed to newproc, which doesn't
4073 		 * respect pool bindings.
4074 		 *
4075 		 * We hold the pool_lock across the call to newproc() to
4076 		 * close the obvious race: the pool's scheduling class
4077 		 * could change before we manage to create the LWP with
4078 		 * classid 'cid'.
4079 		 */
4080 		pool_lock();
4081 		if (zone->zone_defaultcid > 0)
4082 			cid = zone->zone_defaultcid;
4083 		else
4084 			cid = pool_get_class(zone->zone_pool);
4085 		if (cid == -1)
4086 			cid = defaultcid;
4087 
4088 		/*
4089 		 * If this fails, zone_boot will ultimately fail.  The
4090 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4091 		 * will have to tear down the zone, and fail, or try again.
4092 		 */
4093 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4094 		    minclsyspri - 1, &ct, 0)) != 0) {
4095 			mutex_enter(&zone_status_lock);
4096 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4097 			mutex_exit(&zone_status_lock);
4098 		} else {
4099 			zone->zone_boot_time = gethrestime_sec();
4100 		}
4101 
4102 		pool_unlock();
4103 	}
4104 
4105 	/*
4106 	 * Wait for zone_destroy() to be called.  This is what we spend
4107 	 * most of our life doing.
4108 	 */
4109 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4110 
4111 	if (ct)
4112 		/*
4113 		 * At this point the process contract should be empty.
4114 		 * (Though if it isn't, it's not the end of the world.)
4115 		 */
4116 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4117 
4118 	/*
4119 	 * Allow kcred to be freed when all referring processes
4120 	 * (including this one) go away.  We can't just do this in
4121 	 * zone_free because we need to wait for the zone_cred_ref to
4122 	 * drop to 0 before calling zone_free, and the existence of
4123 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4124 	 * balance the crdup in zone_create.  The crhold calls earlier
4125 	 * in zsched will be dropped when the thread and process exit.
4126 	 */
4127 	crfree(zone->zone_kcred);
4128 	zone->zone_kcred = NULL;
4129 
4130 	exit(CLD_EXITED, 0);
4131 }
4132 
4133 /*
4134  * Helper function to determine if there are any submounts of the
4135  * provided path.  Used to make sure the zone doesn't "inherit" any
4136  * mounts from before it is created.
4137  */
4138 static uint_t
4139 zone_mount_count(const char *rootpath)
4140 {
4141 	vfs_t *vfsp;
4142 	uint_t count = 0;
4143 	size_t rootpathlen = strlen(rootpath);
4144 
4145 	/*
4146 	 * Holding zonehash_lock prevents race conditions with
4147 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4148 	 * zone_find_by_path().
4149 	 */
4150 	ASSERT(MUTEX_HELD(&zonehash_lock));
4151 	/*
4152 	 * The rootpath must end with a '/'
4153 	 */
4154 	ASSERT(rootpath[rootpathlen - 1] == '/');
4155 
4156 	/*
4157 	 * This intentionally does not count the rootpath itself if that
4158 	 * happens to be a mount point.
4159 	 */
4160 	vfs_list_read_lock();
4161 	vfsp = rootvfs;
4162 	do {
4163 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4164 		    rootpathlen) == 0)
4165 			count++;
4166 		vfsp = vfsp->vfs_next;
4167 	} while (vfsp != rootvfs);
4168 	vfs_list_unlock();
4169 	return (count);
4170 }
4171 
4172 /*
4173  * Helper function to make sure that a zone created on 'rootpath'
4174  * wouldn't end up containing other zones' rootpaths.
4175  */
4176 static boolean_t
4177 zone_is_nested(const char *rootpath)
4178 {
4179 	zone_t *zone;
4180 	size_t rootpathlen = strlen(rootpath);
4181 	size_t len;
4182 
4183 	ASSERT(MUTEX_HELD(&zonehash_lock));
4184 
4185 	/*
4186 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4187 	 */
4188 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4189 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4190 		return (B_TRUE);
4191 
4192 	for (zone = list_head(&zone_active); zone != NULL;
4193 	    zone = list_next(&zone_active, zone)) {
4194 		if (zone == global_zone)
4195 			continue;
4196 		len = strlen(zone->zone_rootpath);
4197 		if (strncmp(rootpath, zone->zone_rootpath,
4198 		    MIN(rootpathlen, len)) == 0)
4199 			return (B_TRUE);
4200 	}
4201 	return (B_FALSE);
4202 }
4203 
4204 static int
4205 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4206     size_t zone_privssz)
4207 {
4208 	priv_set_t *privs;
4209 
4210 	if (zone_privssz < sizeof (priv_set_t))
4211 		return (ENOMEM);
4212 
4213 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4214 
4215 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4216 		kmem_free(privs, sizeof (priv_set_t));
4217 		return (EFAULT);
4218 	}
4219 
4220 	zone->zone_privset = privs;
4221 	return (0);
4222 }
4223 
4224 /*
4225  * We make creative use of nvlists to pass in rctls from userland.  The list is
4226  * a list of the following structures:
4227  *
4228  * (name = rctl_name, value = nvpair_list_array)
4229  *
4230  * Where each element of the nvpair_list_array is of the form:
4231  *
4232  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4233  * 	(name = "limit", value = uint64_t),
4234  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4235  */
4236 static int
4237 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4238 {
4239 	nvpair_t *nvp = NULL;
4240 	nvlist_t *nvl = NULL;
4241 	char *kbuf;
4242 	int error;
4243 	rctl_val_t rv;
4244 
4245 	*nvlp = NULL;
4246 
4247 	if (buflen == 0)
4248 		return (0);
4249 
4250 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4251 		return (ENOMEM);
4252 	if (copyin(ubuf, kbuf, buflen)) {
4253 		error = EFAULT;
4254 		goto out;
4255 	}
4256 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4257 		/*
4258 		 * nvl may have been allocated/free'd, but the value set to
4259 		 * non-NULL, so we reset it here.
4260 		 */
4261 		nvl = NULL;
4262 		error = EINVAL;
4263 		goto out;
4264 	}
4265 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4266 		rctl_dict_entry_t *rde;
4267 		rctl_hndl_t hndl;
4268 		nvlist_t **nvlarray;
4269 		uint_t i, nelem;
4270 		char *name;
4271 
4272 		error = EINVAL;
4273 		name = nvpair_name(nvp);
4274 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4275 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4276 			goto out;
4277 		}
4278 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4279 			goto out;
4280 		}
4281 		rde = rctl_dict_lookup_hndl(hndl);
4282 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4283 		ASSERT(error == 0);
4284 		for (i = 0; i < nelem; i++) {
4285 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4286 				goto out;
4287 		}
4288 		if (rctl_invalid_value(rde, &rv)) {
4289 			error = EINVAL;
4290 			goto out;
4291 		}
4292 	}
4293 	error = 0;
4294 	*nvlp = nvl;
4295 out:
4296 	kmem_free(kbuf, buflen);
4297 	if (error && nvl != NULL)
4298 		nvlist_free(nvl);
4299 	return (error);
4300 }
4301 
4302 int
4303 zone_create_error(int er_error, int er_ext, int *er_out)
4304 {
4305 	if (er_out != NULL) {
4306 		if (copyout(&er_ext, er_out, sizeof (int))) {
4307 			return (set_errno(EFAULT));
4308 		}
4309 	}
4310 	return (set_errno(er_error));
4311 }
4312 
4313 static int
4314 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4315 {
4316 	ts_label_t *tsl;
4317 	bslabel_t blab;
4318 
4319 	/* Get label from user */
4320 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4321 		return (EFAULT);
4322 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4323 	if (tsl == NULL)
4324 		return (ENOMEM);
4325 
4326 	zone->zone_slabel = tsl;
4327 	return (0);
4328 }
4329 
4330 /*
4331  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4332  */
4333 static int
4334 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4335 {
4336 	char *kbuf;
4337 	char *dataset, *next;
4338 	zone_dataset_t *zd;
4339 	size_t len;
4340 
4341 	if (ubuf == NULL || buflen == 0)
4342 		return (0);
4343 
4344 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4345 		return (ENOMEM);
4346 
4347 	if (copyin(ubuf, kbuf, buflen) != 0) {
4348 		kmem_free(kbuf, buflen);
4349 		return (EFAULT);
4350 	}
4351 
4352 	dataset = next = kbuf;
4353 	for (;;) {
4354 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4355 
4356 		next = strchr(dataset, ',');
4357 
4358 		if (next == NULL)
4359 			len = strlen(dataset);
4360 		else
4361 			len = next - dataset;
4362 
4363 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4364 		bcopy(dataset, zd->zd_dataset, len);
4365 		zd->zd_dataset[len] = '\0';
4366 
4367 		list_insert_head(&zone->zone_datasets, zd);
4368 
4369 		if (next == NULL)
4370 			break;
4371 
4372 		dataset = next + 1;
4373 	}
4374 
4375 	kmem_free(kbuf, buflen);
4376 	return (0);
4377 }
4378 
4379 /*
4380  * System call to create/initialize a new zone named 'zone_name', rooted
4381  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4382  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4383  * with labeling set by 'match', 'doi', and 'label'.
4384  *
4385  * If extended error is non-null, we may use it to return more detailed
4386  * error information.
4387  */
4388 static zoneid_t
4389 zone_create(const char *zone_name, const char *zone_root,
4390     const priv_set_t *zone_privs, size_t zone_privssz,
4391     caddr_t rctlbuf, size_t rctlbufsz,
4392     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4393     int match, uint32_t doi, const bslabel_t *label,
4394     int flags)
4395 {
4396 	struct zsched_arg zarg;
4397 	nvlist_t *rctls = NULL;
4398 	proc_t *pp = curproc;
4399 	zone_t *zone, *ztmp;
4400 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4401 	int error;
4402 	int error2 = 0;
4403 	char *str;
4404 	cred_t *zkcr;
4405 	boolean_t insert_label_hash;
4406 
4407 	if (secpolicy_zone_config(CRED()) != 0)
4408 		return (set_errno(EPERM));
4409 
4410 	/* can't boot zone from within chroot environment */
4411 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4412 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4413 		    extended_error));
4414 	/*
4415 	 * As the first step of zone creation, we want to allocate a zoneid.
4416 	 * This allocation is complicated by the fact that netstacks use the
4417 	 * zoneid to determine their stackid, but netstacks themselves are
4418 	 * freed asynchronously with respect to zone destruction.  This means
4419 	 * that a netstack reference leak (or in principle, an extraordinarily
4420 	 * long netstack reference hold) could result in a zoneid being
4421 	 * allocated that in fact corresponds to a stackid from an active
4422 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4423 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4424 	 * zoneid to not be deallocated until its last referencing netstack
4425 	 * has been released, but netstacks lack a backpointer into their
4426 	 * referencing zone -- and changing them to have such a pointer would
4427 	 * be substantial, to put it euphemistically.)  To avoid this, we
4428 	 * detect this condition on allocation: if we have allocated a zoneid
4429 	 * that corresponds to a netstack that's still in use, we warn about
4430 	 * it (as it is much more likely to be a reference leak than an actual
4431 	 * netstack reference), free it, and allocate another.  That these
4432 	 * identifers are allocated out of an ID space assures that we won't
4433 	 * see the identifier we just allocated.
4434 	 */
4435 	for (;;) {
4436 		zoneid = id_alloc(zoneid_space);
4437 
4438 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4439 			break;
4440 
4441 		id_free(zoneid_space, zoneid);
4442 
4443 		if (start == GLOBAL_ZONEID) {
4444 			start = zoneid;
4445 		} else if (zoneid == start) {
4446 			/*
4447 			 * We have managed to iterate over the entire available
4448 			 * zoneid space -- there are no identifiers available,
4449 			 * presumably due to some number of leaked netstack
4450 			 * references.  While it's in principle possible for us
4451 			 * to continue to try, it seems wiser to give up at
4452 			 * this point to warn and fail explicitly with a
4453 			 * distinctive error.
4454 			 */
4455 			cmn_err(CE_WARN, "zone_create() failed: all available "
4456 			    "zone IDs have netstacks still in use");
4457 			return (set_errno(ENFILE));
4458 		}
4459 
4460 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4461 		    "netstack still in use", zoneid);
4462 	}
4463 
4464 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4465 	zone->zone_id = zoneid;
4466 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4467 	zone->zone_pool = pool_default;
4468 	zone->zone_pool_mod = gethrtime();
4469 	zone->zone_psetid = ZONE_PS_INVAL;
4470 	zone->zone_ncpus = 0;
4471 	zone->zone_ncpus_online = 0;
4472 	zone->zone_restart_init = B_TRUE;
4473 	zone->zone_brand = &native_brand;
4474 	zone->zone_initname = NULL;
4475 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4476 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4477 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4478 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4479 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4480 	    offsetof(zone_ref_t, zref_linkage));
4481 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4482 	    offsetof(struct zsd_entry, zsd_linkage));
4483 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4484 	    offsetof(zone_dataset_t, zd_linkage));
4485 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4486 	    offsetof(zone_dl_t, zdl_linkage));
4487 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4488 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4489 
4490 	if (flags & ZCF_NET_EXCL) {
4491 		zone->zone_flags |= ZF_NET_EXCL;
4492 	}
4493 
4494 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4495 		zone_free(zone);
4496 		return (zone_create_error(error, 0, extended_error));
4497 	}
4498 
4499 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4500 		zone_free(zone);
4501 		return (zone_create_error(error, 0, extended_error));
4502 	}
4503 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4504 		zone_free(zone);
4505 		return (zone_create_error(error, 0, extended_error));
4506 	}
4507 
4508 	/* initialize node name to be the same as zone name */
4509 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4510 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4511 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4512 
4513 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4514 	zone->zone_domain[0] = '\0';
4515 	zone->zone_hostid = HW_INVALID_HOSTID;
4516 	zone->zone_shares = 1;
4517 	zone->zone_shmmax = 0;
4518 	zone->zone_ipc.ipcq_shmmni = 0;
4519 	zone->zone_ipc.ipcq_semmni = 0;
4520 	zone->zone_ipc.ipcq_msgmni = 0;
4521 	zone->zone_bootargs = NULL;
4522 	zone->zone_fs_allowed = NULL;
4523 
4524 	secflags_zero(&zone0.zone_secflags.psf_lower);
4525 	secflags_zero(&zone0.zone_secflags.psf_effective);
4526 	secflags_zero(&zone0.zone_secflags.psf_inherit);
4527 	secflags_fullset(&zone0.zone_secflags.psf_upper);
4528 
4529 	zone->zone_initname =
4530 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4531 	(void) strcpy(zone->zone_initname, zone_default_initname);
4532 	zone->zone_nlwps = 0;
4533 	zone->zone_nlwps_ctl = INT_MAX;
4534 	zone->zone_nprocs = 0;
4535 	zone->zone_nprocs_ctl = INT_MAX;
4536 	zone->zone_locked_mem = 0;
4537 	zone->zone_locked_mem_ctl = UINT64_MAX;
4538 	zone->zone_max_swap = 0;
4539 	zone->zone_max_swap_ctl = UINT64_MAX;
4540 	zone->zone_max_lofi = 0;
4541 	zone->zone_max_lofi_ctl = UINT64_MAX;
4542 	zone0.zone_lockedmem_kstat = NULL;
4543 	zone0.zone_swapresv_kstat = NULL;
4544 
4545 	/*
4546 	 * Zsched initializes the rctls.
4547 	 */
4548 	zone->zone_rctls = NULL;
4549 
4550 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4551 		zone_free(zone);
4552 		return (zone_create_error(error, 0, extended_error));
4553 	}
4554 
4555 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4556 		zone_free(zone);
4557 		return (set_errno(error));
4558 	}
4559 
4560 	/*
4561 	 * Read in the trusted system parameters:
4562 	 * match flag and sensitivity label.
4563 	 */
4564 	zone->zone_match = match;
4565 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4566 		/* Fail if requested to set doi to anything but system's doi */
4567 		if (doi != 0 && doi != default_doi) {
4568 			zone_free(zone);
4569 			return (set_errno(EINVAL));
4570 		}
4571 		/* Always apply system's doi to the zone */
4572 		error = zone_set_label(zone, label, default_doi);
4573 		if (error != 0) {
4574 			zone_free(zone);
4575 			return (set_errno(error));
4576 		}
4577 		insert_label_hash = B_TRUE;
4578 	} else {
4579 		/* all zones get an admin_low label if system is not labeled */
4580 		zone->zone_slabel = l_admin_low;
4581 		label_hold(l_admin_low);
4582 		insert_label_hash = B_FALSE;
4583 	}
4584 
4585 	/*
4586 	 * Stop all lwps since that's what normally happens as part of fork().
4587 	 * This needs to happen before we grab any locks to avoid deadlock
4588 	 * (another lwp in the process could be waiting for the held lock).
4589 	 */
4590 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4591 		zone_free(zone);
4592 		nvlist_free(rctls);
4593 		return (zone_create_error(error, 0, extended_error));
4594 	}
4595 
4596 	if (block_mounts(zone) == 0) {
4597 		mutex_enter(&pp->p_lock);
4598 		if (curthread != pp->p_agenttp)
4599 			continuelwps(pp);
4600 		mutex_exit(&pp->p_lock);
4601 		zone_free(zone);
4602 		nvlist_free(rctls);
4603 		return (zone_create_error(error, 0, extended_error));
4604 	}
4605 
4606 	/*
4607 	 * Set up credential for kernel access.  After this, any errors
4608 	 * should go through the dance in errout rather than calling
4609 	 * zone_free directly.
4610 	 */
4611 	zone->zone_kcred = crdup(kcred);
4612 	crsetzone(zone->zone_kcred, zone);
4613 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4614 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4615 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4616 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4617 
4618 	mutex_enter(&zonehash_lock);
4619 	/*
4620 	 * Make sure zone doesn't already exist.
4621 	 *
4622 	 * If the system and zone are labeled,
4623 	 * make sure no other zone exists that has the same label.
4624 	 */
4625 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4626 	    (insert_label_hash &&
4627 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4628 		zone_status_t status;
4629 
4630 		status = zone_status_get(ztmp);
4631 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4632 			error = EEXIST;
4633 		else
4634 			error = EBUSY;
4635 
4636 		if (insert_label_hash)
4637 			error2 = ZE_LABELINUSE;
4638 
4639 		goto errout;
4640 	}
4641 
4642 	/*
4643 	 * Don't allow zone creations which would cause one zone's rootpath to
4644 	 * be accessible from that of another (non-global) zone.
4645 	 */
4646 	if (zone_is_nested(zone->zone_rootpath)) {
4647 		error = EBUSY;
4648 		goto errout;
4649 	}
4650 
4651 	ASSERT(zonecount != 0);		/* check for leaks */
4652 	if (zonecount + 1 > maxzones) {
4653 		error = ENOMEM;
4654 		goto errout;
4655 	}
4656 
4657 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4658 		error = EBUSY;
4659 		error2 = ZE_AREMOUNTS;
4660 		goto errout;
4661 	}
4662 
4663 	/*
4664 	 * Zone is still incomplete, but we need to drop all locks while
4665 	 * zsched() initializes this zone's kernel process.  We
4666 	 * optimistically add the zone to the hashtable and associated
4667 	 * lists so a parallel zone_create() doesn't try to create the
4668 	 * same zone.
4669 	 */
4670 	zonecount++;
4671 	(void) mod_hash_insert(zonehashbyid,
4672 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4673 	    (mod_hash_val_t)(uintptr_t)zone);
4674 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4675 	(void) strcpy(str, zone->zone_name);
4676 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4677 	    (mod_hash_val_t)(uintptr_t)zone);
4678 	if (insert_label_hash) {
4679 		(void) mod_hash_insert(zonehashbylabel,
4680 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4681 		zone->zone_flags |= ZF_HASHED_LABEL;
4682 	}
4683 
4684 	/*
4685 	 * Insert into active list.  At this point there are no 'hold's
4686 	 * on the zone, but everyone else knows not to use it, so we can
4687 	 * continue to use it.  zsched() will do a zone_hold() if the
4688 	 * newproc() is successful.
4689 	 */
4690 	list_insert_tail(&zone_active, zone);
4691 	mutex_exit(&zonehash_lock);
4692 
4693 	zarg.zone = zone;
4694 	zarg.nvlist = rctls;
4695 	/*
4696 	 * The process, task, and project rctls are probably wrong;
4697 	 * we need an interface to get the default values of all rctls,
4698 	 * and initialize zsched appropriately.  I'm not sure that that
4699 	 * makes much of a difference, though.
4700 	 */
4701 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4702 	if (error != 0) {
4703 		/*
4704 		 * We need to undo all globally visible state.
4705 		 */
4706 		mutex_enter(&zonehash_lock);
4707 		list_remove(&zone_active, zone);
4708 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4709 			ASSERT(zone->zone_slabel != NULL);
4710 			(void) mod_hash_destroy(zonehashbylabel,
4711 			    (mod_hash_key_t)zone->zone_slabel);
4712 		}
4713 		(void) mod_hash_destroy(zonehashbyname,
4714 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4715 		(void) mod_hash_destroy(zonehashbyid,
4716 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4717 		ASSERT(zonecount > 1);
4718 		zonecount--;
4719 		goto errout;
4720 	}
4721 
4722 	/*
4723 	 * Zone creation can't fail from now on.
4724 	 */
4725 
4726 	/*
4727 	 * Create zone kstats
4728 	 */
4729 	zone_kstat_create(zone);
4730 
4731 	/*
4732 	 * Let the other lwps continue.
4733 	 */
4734 	mutex_enter(&pp->p_lock);
4735 	if (curthread != pp->p_agenttp)
4736 		continuelwps(pp);
4737 	mutex_exit(&pp->p_lock);
4738 
4739 	/*
4740 	 * Wait for zsched to finish initializing the zone.
4741 	 */
4742 	zone_status_wait(zone, ZONE_IS_READY);
4743 	/*
4744 	 * The zone is fully visible, so we can let mounts progress.
4745 	 */
4746 	resume_mounts(zone);
4747 	nvlist_free(rctls);
4748 
4749 	return (zoneid);
4750 
4751 errout:
4752 	mutex_exit(&zonehash_lock);
4753 	/*
4754 	 * Let the other lwps continue.
4755 	 */
4756 	mutex_enter(&pp->p_lock);
4757 	if (curthread != pp->p_agenttp)
4758 		continuelwps(pp);
4759 	mutex_exit(&pp->p_lock);
4760 
4761 	resume_mounts(zone);
4762 	nvlist_free(rctls);
4763 	/*
4764 	 * There is currently one reference to the zone, a cred_ref from
4765 	 * zone_kcred.  To free the zone, we call crfree, which will call
4766 	 * zone_cred_rele, which will call zone_free.
4767 	 */
4768 	ASSERT(zone->zone_cred_ref == 1);
4769 	ASSERT(zone->zone_kcred->cr_ref == 1);
4770 	ASSERT(zone->zone_ref == 0);
4771 	zkcr = zone->zone_kcred;
4772 	zone->zone_kcred = NULL;
4773 	crfree(zkcr);				/* triggers call to zone_free */
4774 	return (zone_create_error(error, error2, extended_error));
4775 }
4776 
4777 /*
4778  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4779  * the heavy lifting.  initname is the path to the program to launch
4780  * at the "top" of the zone; if this is NULL, we use the system default,
4781  * which is stored at zone_default_initname.
4782  */
4783 static int
4784 zone_boot(zoneid_t zoneid)
4785 {
4786 	int err;
4787 	zone_t *zone;
4788 
4789 	if (secpolicy_zone_config(CRED()) != 0)
4790 		return (set_errno(EPERM));
4791 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4792 		return (set_errno(EINVAL));
4793 
4794 	mutex_enter(&zonehash_lock);
4795 	/*
4796 	 * Look for zone under hash lock to prevent races with calls to
4797 	 * zone_shutdown, zone_destroy, etc.
4798 	 */
4799 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4800 		mutex_exit(&zonehash_lock);
4801 		return (set_errno(EINVAL));
4802 	}
4803 
4804 	mutex_enter(&zone_status_lock);
4805 	if (zone_status_get(zone) != ZONE_IS_READY) {
4806 		mutex_exit(&zone_status_lock);
4807 		mutex_exit(&zonehash_lock);
4808 		return (set_errno(EINVAL));
4809 	}
4810 	zone_status_set(zone, ZONE_IS_BOOTING);
4811 	mutex_exit(&zone_status_lock);
4812 
4813 	zone_hold(zone);	/* so we can use the zone_t later */
4814 	mutex_exit(&zonehash_lock);
4815 
4816 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4817 		zone_rele(zone);
4818 		return (set_errno(EINTR));
4819 	}
4820 
4821 	/*
4822 	 * Boot (starting init) might have failed, in which case the zone
4823 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4824 	 * be placed in zone->zone_boot_err, and so we return that.
4825 	 */
4826 	err = zone->zone_boot_err;
4827 	zone_rele(zone);
4828 	return (err ? set_errno(err) : 0);
4829 }
4830 
4831 /*
4832  * Kills all user processes in the zone, waiting for them all to exit
4833  * before returning.
4834  */
4835 static int
4836 zone_empty(zone_t *zone)
4837 {
4838 	int waitstatus;
4839 
4840 	/*
4841 	 * We need to drop zonehash_lock before killing all
4842 	 * processes, otherwise we'll deadlock with zone_find_*
4843 	 * which can be called from the exit path.
4844 	 */
4845 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4846 	while ((waitstatus = zone_status_timedwait_sig(zone,
4847 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4848 		killall(zone->zone_id);
4849 	}
4850 	/*
4851 	 * return EINTR if we were signaled
4852 	 */
4853 	if (waitstatus == 0)
4854 		return (EINTR);
4855 	return (0);
4856 }
4857 
4858 /*
4859  * This function implements the policy for zone visibility.
4860  *
4861  * In standard Solaris, a non-global zone can only see itself.
4862  *
4863  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4864  * it dominates. For this test, the label of the global zone is treated as
4865  * admin_high so it is special-cased instead of being checked for dominance.
4866  *
4867  * Returns true if zone attributes are viewable, false otherwise.
4868  */
4869 static boolean_t
4870 zone_list_access(zone_t *zone)
4871 {
4872 
4873 	if (curproc->p_zone == global_zone ||
4874 	    curproc->p_zone == zone) {
4875 		return (B_TRUE);
4876 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4877 		bslabel_t *curproc_label;
4878 		bslabel_t *zone_label;
4879 
4880 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4881 		zone_label = label2bslabel(zone->zone_slabel);
4882 
4883 		if (zone->zone_id != GLOBAL_ZONEID &&
4884 		    bldominates(curproc_label, zone_label)) {
4885 			return (B_TRUE);
4886 		} else {
4887 			return (B_FALSE);
4888 		}
4889 	} else {
4890 		return (B_FALSE);
4891 	}
4892 }
4893 
4894 /*
4895  * Systemcall to start the zone's halt sequence.  By the time this
4896  * function successfully returns, all user processes and kernel threads
4897  * executing in it will have exited, ZSD shutdown callbacks executed,
4898  * and the zone status set to ZONE_IS_DOWN.
4899  *
4900  * It is possible that the call will interrupt itself if the caller is the
4901  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4902  */
4903 static int
4904 zone_shutdown(zoneid_t zoneid)
4905 {
4906 	int error;
4907 	zone_t *zone;
4908 	zone_status_t status;
4909 
4910 	if (secpolicy_zone_config(CRED()) != 0)
4911 		return (set_errno(EPERM));
4912 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4913 		return (set_errno(EINVAL));
4914 
4915 	mutex_enter(&zonehash_lock);
4916 	/*
4917 	 * Look for zone under hash lock to prevent races with other
4918 	 * calls to zone_shutdown and zone_destroy.
4919 	 */
4920 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4921 		mutex_exit(&zonehash_lock);
4922 		return (set_errno(EINVAL));
4923 	}
4924 
4925 	/*
4926 	 * We have to drop zonehash_lock before calling block_mounts.
4927 	 * Hold the zone so we can continue to use the zone_t.
4928 	 */
4929 	zone_hold(zone);
4930 	mutex_exit(&zonehash_lock);
4931 
4932 	/*
4933 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4934 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4935 	 *
4936 	 * e.g. NFS can fail the mount if it determines that the zone
4937 	 * has already begun the shutdown sequence.
4938 	 *
4939 	 */
4940 	if (block_mounts(zone) == 0) {
4941 		zone_rele(zone);
4942 		return (set_errno(EINTR));
4943 	}
4944 
4945 	mutex_enter(&zonehash_lock);
4946 	mutex_enter(&zone_status_lock);
4947 	status = zone_status_get(zone);
4948 	/*
4949 	 * Fail if the zone isn't fully initialized yet.
4950 	 */
4951 	if (status < ZONE_IS_READY) {
4952 		mutex_exit(&zone_status_lock);
4953 		mutex_exit(&zonehash_lock);
4954 		resume_mounts(zone);
4955 		zone_rele(zone);
4956 		return (set_errno(EINVAL));
4957 	}
4958 	/*
4959 	 * If conditions required for zone_shutdown() to return have been met,
4960 	 * return success.
4961 	 */
4962 	if (status >= ZONE_IS_DOWN) {
4963 		mutex_exit(&zone_status_lock);
4964 		mutex_exit(&zonehash_lock);
4965 		resume_mounts(zone);
4966 		zone_rele(zone);
4967 		return (0);
4968 	}
4969 	/*
4970 	 * If zone_shutdown() hasn't been called before, go through the motions.
4971 	 * If it has, there's nothing to do but wait for the kernel threads to
4972 	 * drain.
4973 	 */
4974 	if (status < ZONE_IS_EMPTY) {
4975 		uint_t ntasks;
4976 
4977 		mutex_enter(&zone->zone_lock);
4978 		if ((ntasks = zone->zone_ntasks) != 1) {
4979 			/*
4980 			 * There's still stuff running.
4981 			 */
4982 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4983 		}
4984 		mutex_exit(&zone->zone_lock);
4985 		if (ntasks == 1) {
4986 			/*
4987 			 * The only way to create another task is through
4988 			 * zone_enter(), which will block until we drop
4989 			 * zonehash_lock.  The zone is empty.
4990 			 */
4991 			if (zone->zone_kthreads == NULL) {
4992 				/*
4993 				 * Skip ahead to ZONE_IS_DOWN
4994 				 */
4995 				zone_status_set(zone, ZONE_IS_DOWN);
4996 			} else {
4997 				zone_status_set(zone, ZONE_IS_EMPTY);
4998 			}
4999 		}
5000 	}
5001 	mutex_exit(&zone_status_lock);
5002 	mutex_exit(&zonehash_lock);
5003 	resume_mounts(zone);
5004 
5005 	if (error = zone_empty(zone)) {
5006 		zone_rele(zone);
5007 		return (set_errno(error));
5008 	}
5009 	/*
5010 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5011 	 * longer be notified of changes to the pools configuration, so
5012 	 * in order to not end up with a stale pool pointer, we point
5013 	 * ourselves at the default pool and remove all resource
5014 	 * visibility.  This is especially important as the zone_t may
5015 	 * languish on the deathrow for a very long time waiting for
5016 	 * cred's to drain out.
5017 	 *
5018 	 * This rebinding of the zone can happen multiple times
5019 	 * (presumably due to interrupted or parallel systemcalls)
5020 	 * without any adverse effects.
5021 	 */
5022 	if (pool_lock_intr() != 0) {
5023 		zone_rele(zone);
5024 		return (set_errno(EINTR));
5025 	}
5026 	if (pool_state == POOL_ENABLED) {
5027 		mutex_enter(&cpu_lock);
5028 		zone_pool_set(zone, pool_default);
5029 		/*
5030 		 * The zone no longer needs to be able to see any cpus.
5031 		 */
5032 		zone_pset_set(zone, ZONE_PS_INVAL);
5033 		mutex_exit(&cpu_lock);
5034 	}
5035 	pool_unlock();
5036 
5037 	/*
5038 	 * ZSD shutdown callbacks can be executed multiple times, hence
5039 	 * it is safe to not be holding any locks across this call.
5040 	 */
5041 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5042 
5043 	mutex_enter(&zone_status_lock);
5044 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5045 		zone_status_set(zone, ZONE_IS_DOWN);
5046 	mutex_exit(&zone_status_lock);
5047 
5048 	/*
5049 	 * Wait for kernel threads to drain.
5050 	 */
5051 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5052 		zone_rele(zone);
5053 		return (set_errno(EINTR));
5054 	}
5055 
5056 	/*
5057 	 * Zone can be become down/destroyable even if the above wait
5058 	 * returns EINTR, so any code added here may never execute.
5059 	 * (i.e. don't add code here)
5060 	 */
5061 
5062 	zone_rele(zone);
5063 	return (0);
5064 }
5065 
5066 /*
5067  * Log the specified zone's reference counts.  The caller should not be
5068  * holding the zone's zone_lock.
5069  */
5070 static void
5071 zone_log_refcounts(zone_t *zone)
5072 {
5073 	char *buffer;
5074 	char *buffer_position;
5075 	uint32_t buffer_size;
5076 	uint32_t index;
5077 	uint_t ref;
5078 	uint_t cred_ref;
5079 
5080 	/*
5081 	 * Construct a string representing the subsystem-specific reference
5082 	 * counts.  The counts are printed in ascending order by index into the
5083 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5084 	 * square brackets [] and will only contain nonzero reference counts.
5085 	 *
5086 	 * The buffer will hold two square bracket characters plus ten digits,
5087 	 * one colon, one space, one comma, and some characters for a
5088 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5089 	 * bit integers have at most ten decimal digits.)  The last
5090 	 * reference count's comma is replaced by the closing square
5091 	 * bracket and a NULL character to terminate the string.
5092 	 *
5093 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5094 	 * snapshot of the zone's reference counters.
5095 	 *
5096 	 * First, figure out how much space the string buffer will need.
5097 	 * The buffer's size is stored in buffer_size.
5098 	 */
5099 	buffer_size = 2;			/* for the square brackets */
5100 	mutex_enter(&zone->zone_lock);
5101 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5102 	ref = zone->zone_ref;
5103 	cred_ref = zone->zone_cred_ref;
5104 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5105 		if (zone->zone_subsys_ref[index] != 0)
5106 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5107 			    13;
5108 	if (buffer_size == 2) {
5109 		/*
5110 		 * No subsystems had nonzero reference counts.  Don't bother
5111 		 * with allocating a buffer; just log the general-purpose and
5112 		 * credential reference counts.
5113 		 */
5114 		mutex_exit(&zone->zone_lock);
5115 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5116 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5117 		    "references and %u credential references are still extant",
5118 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5119 		return;
5120 	}
5121 
5122 	/*
5123 	 * buffer_size contains the exact number of characters that the
5124 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5125 	 * subsystem-specific reference counts.  Surround the results with
5126 	 * square brackets afterwards.
5127 	 */
5128 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5129 	buffer_position = &buffer[1];
5130 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5131 		/*
5132 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5133 		 * the modified buffer rather than the number of bytes written
5134 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5135 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5136 		 * number of bytes written.  Using INT_MAX is safe because
5137 		 * the buffer is perfectly sized for the data: we'll never
5138 		 * overrun the buffer.
5139 		 */
5140 		if (zone->zone_subsys_ref[index] != 0)
5141 			buffer_position += snprintf(buffer_position, INT_MAX,
5142 			    "%s: %u,", zone_ref_subsys_names[index],
5143 			    zone->zone_subsys_ref[index]);
5144 	}
5145 	mutex_exit(&zone->zone_lock);
5146 	buffer[0] = '[';
5147 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5148 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5149 	buffer_position[-1] = ']';
5150 
5151 	/*
5152 	 * Log the reference counts and free the message buffer.
5153 	 */
5154 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5155 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5156 	    "%u credential references are still extant %s", zone->zone_name,
5157 	    zone->zone_id, ref, cred_ref, buffer);
5158 	kmem_free(buffer, buffer_size);
5159 }
5160 
5161 /*
5162  * Systemcall entry point to finalize the zone halt process.  The caller
5163  * must have already successfully called zone_shutdown().
5164  *
5165  * Upon successful completion, the zone will have been fully destroyed:
5166  * zsched will have exited, destructor callbacks executed, and the zone
5167  * removed from the list of active zones.
5168  */
5169 static int
5170 zone_destroy(zoneid_t zoneid)
5171 {
5172 	uint64_t uniqid;
5173 	zone_t *zone;
5174 	zone_status_t status;
5175 	clock_t wait_time;
5176 	boolean_t log_refcounts;
5177 
5178 	if (secpolicy_zone_config(CRED()) != 0)
5179 		return (set_errno(EPERM));
5180 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5181 		return (set_errno(EINVAL));
5182 
5183 	mutex_enter(&zonehash_lock);
5184 	/*
5185 	 * Look for zone under hash lock to prevent races with other
5186 	 * calls to zone_destroy.
5187 	 */
5188 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5189 		mutex_exit(&zonehash_lock);
5190 		return (set_errno(EINVAL));
5191 	}
5192 
5193 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5194 		mutex_exit(&zonehash_lock);
5195 		return (set_errno(EBUSY));
5196 	}
5197 	mutex_enter(&zone_status_lock);
5198 	status = zone_status_get(zone);
5199 	if (status < ZONE_IS_DOWN) {
5200 		mutex_exit(&zone_status_lock);
5201 		mutex_exit(&zonehash_lock);
5202 		return (set_errno(EBUSY));
5203 	} else if (status == ZONE_IS_DOWN) {
5204 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5205 	}
5206 	mutex_exit(&zone_status_lock);
5207 	zone_hold(zone);
5208 	mutex_exit(&zonehash_lock);
5209 
5210 	/*
5211 	 * wait for zsched to exit
5212 	 */
5213 	zone_status_wait(zone, ZONE_IS_DEAD);
5214 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5215 	zone->zone_netstack = NULL;
5216 	uniqid = zone->zone_uniqid;
5217 	zone_rele(zone);
5218 	zone = NULL;	/* potentially free'd */
5219 
5220 	log_refcounts = B_FALSE;
5221 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5222 	mutex_enter(&zonehash_lock);
5223 	for (; /* ever */; ) {
5224 		boolean_t unref;
5225 		boolean_t refs_have_been_logged;
5226 
5227 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5228 		    zone->zone_uniqid != uniqid) {
5229 			/*
5230 			 * The zone has gone away.  Necessary conditions
5231 			 * are met, so we return success.
5232 			 */
5233 			mutex_exit(&zonehash_lock);
5234 			return (0);
5235 		}
5236 		mutex_enter(&zone->zone_lock);
5237 		unref = ZONE_IS_UNREF(zone);
5238 		refs_have_been_logged = (zone->zone_flags &
5239 		    ZF_REFCOUNTS_LOGGED);
5240 		mutex_exit(&zone->zone_lock);
5241 		if (unref) {
5242 			/*
5243 			 * There is only one reference to the zone -- that
5244 			 * added when the zone was added to the hashtables --
5245 			 * and things will remain this way until we drop
5246 			 * zonehash_lock... we can go ahead and cleanup the
5247 			 * zone.
5248 			 */
5249 			break;
5250 		}
5251 
5252 		/*
5253 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5254 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5255 		 * some zone's general-purpose reference count reaches one.
5256 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5257 		 * on zone_destroy_cv, then log the zone's reference counts and
5258 		 * continue to wait for zone_rele() and zone_cred_rele().
5259 		 */
5260 		if (!refs_have_been_logged) {
5261 			if (!log_refcounts) {
5262 				/*
5263 				 * This thread hasn't timed out waiting on
5264 				 * zone_destroy_cv yet.  Wait wait_time clock
5265 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5266 				 * seconds) for the zone's references to clear.
5267 				 */
5268 				ASSERT(wait_time > 0);
5269 				wait_time = cv_reltimedwait_sig(
5270 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5271 				    TR_SEC);
5272 				if (wait_time > 0) {
5273 					/*
5274 					 * A thread in zone_rele() or
5275 					 * zone_cred_rele() signaled
5276 					 * zone_destroy_cv before this thread's
5277 					 * wait timed out.  The zone might have
5278 					 * only one reference left; find out!
5279 					 */
5280 					continue;
5281 				} else if (wait_time == 0) {
5282 					/* The thread's process was signaled. */
5283 					mutex_exit(&zonehash_lock);
5284 					return (set_errno(EINTR));
5285 				}
5286 
5287 				/*
5288 				 * The thread timed out while waiting on
5289 				 * zone_destroy_cv.  Even though the thread
5290 				 * timed out, it has to check whether another
5291 				 * thread woke up from zone_destroy_cv and
5292 				 * destroyed the zone.
5293 				 *
5294 				 * If the zone still exists and has more than
5295 				 * one unreleased general-purpose reference,
5296 				 * then log the zone's reference counts.
5297 				 */
5298 				log_refcounts = B_TRUE;
5299 				continue;
5300 			}
5301 
5302 			/*
5303 			 * The thread already timed out on zone_destroy_cv while
5304 			 * waiting for subsystems to release the zone's last
5305 			 * general-purpose references.  Log the zone's reference
5306 			 * counts and wait indefinitely on zone_destroy_cv.
5307 			 */
5308 			zone_log_refcounts(zone);
5309 		}
5310 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5311 			/* The thread's process was signaled. */
5312 			mutex_exit(&zonehash_lock);
5313 			return (set_errno(EINTR));
5314 		}
5315 	}
5316 
5317 	/*
5318 	 * Remove CPU cap for this zone now since we're not going to
5319 	 * fail below this point.
5320 	 */
5321 	cpucaps_zone_remove(zone);
5322 
5323 	/* Get rid of the zone's kstats */
5324 	zone_kstat_delete(zone);
5325 
5326 	/* remove the pfexecd doors */
5327 	if (zone->zone_pfexecd != NULL) {
5328 		klpd_freelist(&zone->zone_pfexecd);
5329 		zone->zone_pfexecd = NULL;
5330 	}
5331 
5332 	/* free brand specific data */
5333 	if (ZONE_IS_BRANDED(zone))
5334 		ZBROP(zone)->b_free_brand_data(zone);
5335 
5336 	/* Say goodbye to brand framework. */
5337 	brand_unregister_zone(zone->zone_brand);
5338 
5339 	/*
5340 	 * It is now safe to let the zone be recreated; remove it from the
5341 	 * lists.  The memory will not be freed until the last cred
5342 	 * reference goes away.
5343 	 */
5344 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5345 	zonecount--;
5346 	/* remove from active list and hash tables */
5347 	list_remove(&zone_active, zone);
5348 	(void) mod_hash_destroy(zonehashbyname,
5349 	    (mod_hash_key_t)zone->zone_name);
5350 	(void) mod_hash_destroy(zonehashbyid,
5351 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5352 	if (zone->zone_flags & ZF_HASHED_LABEL)
5353 		(void) mod_hash_destroy(zonehashbylabel,
5354 		    (mod_hash_key_t)zone->zone_slabel);
5355 	mutex_exit(&zonehash_lock);
5356 
5357 	/*
5358 	 * Release the root vnode; we're not using it anymore.  Nor should any
5359 	 * other thread that might access it exist.
5360 	 */
5361 	if (zone->zone_rootvp != NULL) {
5362 		VN_RELE(zone->zone_rootvp);
5363 		zone->zone_rootvp = NULL;
5364 	}
5365 
5366 	/* add to deathrow list */
5367 	mutex_enter(&zone_deathrow_lock);
5368 	list_insert_tail(&zone_deathrow, zone);
5369 	mutex_exit(&zone_deathrow_lock);
5370 
5371 	/*
5372 	 * Drop last reference (which was added by zsched()), this will
5373 	 * free the zone unless there are outstanding cred references.
5374 	 */
5375 	zone_rele(zone);
5376 	return (0);
5377 }
5378 
5379 /*
5380  * Systemcall entry point for zone_getattr(2).
5381  */
5382 static ssize_t
5383 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5384 {
5385 	size_t size;
5386 	int error = 0, err;
5387 	zone_t *zone;
5388 	char *zonepath;
5389 	char *outstr;
5390 	zone_status_t zone_status;
5391 	pid_t initpid;
5392 	boolean_t global = (curzone == global_zone);
5393 	boolean_t inzone = (curzone->zone_id == zoneid);
5394 	ushort_t flags;
5395 	zone_net_data_t *zbuf;
5396 
5397 	mutex_enter(&zonehash_lock);
5398 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5399 		mutex_exit(&zonehash_lock);
5400 		return (set_errno(EINVAL));
5401 	}
5402 	zone_status = zone_status_get(zone);
5403 	if (zone_status < ZONE_IS_INITIALIZED) {
5404 		mutex_exit(&zonehash_lock);
5405 		return (set_errno(EINVAL));
5406 	}
5407 	zone_hold(zone);
5408 	mutex_exit(&zonehash_lock);
5409 
5410 	/*
5411 	 * If not in the global zone, don't show information about other zones,
5412 	 * unless the system is labeled and the local zone's label dominates
5413 	 * the other zone.
5414 	 */
5415 	if (!zone_list_access(zone)) {
5416 		zone_rele(zone);
5417 		return (set_errno(EINVAL));
5418 	}
5419 
5420 	switch (attr) {
5421 	case ZONE_ATTR_ROOT:
5422 		if (global) {
5423 			/*
5424 			 * Copy the path to trim the trailing "/" (except for
5425 			 * the global zone).
5426 			 */
5427 			if (zone != global_zone)
5428 				size = zone->zone_rootpathlen - 1;
5429 			else
5430 				size = zone->zone_rootpathlen;
5431 			zonepath = kmem_alloc(size, KM_SLEEP);
5432 			bcopy(zone->zone_rootpath, zonepath, size);
5433 			zonepath[size - 1] = '\0';
5434 		} else {
5435 			if (inzone || !is_system_labeled()) {
5436 				/*
5437 				 * Caller is not in the global zone.
5438 				 * if the query is on the current zone
5439 				 * or the system is not labeled,
5440 				 * just return faked-up path for current zone.
5441 				 */
5442 				zonepath = "/";
5443 				size = 2;
5444 			} else {
5445 				/*
5446 				 * Return related path for current zone.
5447 				 */
5448 				int prefix_len = strlen(zone_prefix);
5449 				int zname_len = strlen(zone->zone_name);
5450 
5451 				size = prefix_len + zname_len + 1;
5452 				zonepath = kmem_alloc(size, KM_SLEEP);
5453 				bcopy(zone_prefix, zonepath, prefix_len);
5454 				bcopy(zone->zone_name, zonepath +
5455 				    prefix_len, zname_len);
5456 				zonepath[size - 1] = '\0';
5457 			}
5458 		}
5459 		if (bufsize > size)
5460 			bufsize = size;
5461 		if (buf != NULL) {
5462 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5463 			if (err != 0 && err != ENAMETOOLONG)
5464 				error = EFAULT;
5465 		}
5466 		if (global || (is_system_labeled() && !inzone))
5467 			kmem_free(zonepath, size);
5468 		break;
5469 
5470 	case ZONE_ATTR_NAME:
5471 		size = strlen(zone->zone_name) + 1;
5472 		if (bufsize > size)
5473 			bufsize = size;
5474 		if (buf != NULL) {
5475 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5476 			if (err != 0 && err != ENAMETOOLONG)
5477 				error = EFAULT;
5478 		}
5479 		break;
5480 
5481 	case ZONE_ATTR_STATUS:
5482 		/*
5483 		 * Since we're not holding zonehash_lock, the zone status
5484 		 * may be anything; leave it up to userland to sort it out.
5485 		 */
5486 		size = sizeof (zone_status);
5487 		if (bufsize > size)
5488 			bufsize = size;
5489 		zone_status = zone_status_get(zone);
5490 		if (buf != NULL &&
5491 		    copyout(&zone_status, buf, bufsize) != 0)
5492 			error = EFAULT;
5493 		break;
5494 	case ZONE_ATTR_FLAGS:
5495 		size = sizeof (zone->zone_flags);
5496 		if (bufsize > size)
5497 			bufsize = size;
5498 		flags = zone->zone_flags;
5499 		if (buf != NULL &&
5500 		    copyout(&flags, buf, bufsize) != 0)
5501 			error = EFAULT;
5502 		break;
5503 	case ZONE_ATTR_PRIVSET:
5504 		size = sizeof (priv_set_t);
5505 		if (bufsize > size)
5506 			bufsize = size;
5507 		if (buf != NULL &&
5508 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5509 			error = EFAULT;
5510 		break;
5511 	case ZONE_ATTR_UNIQID:
5512 		size = sizeof (zone->zone_uniqid);
5513 		if (bufsize > size)
5514 			bufsize = size;
5515 		if (buf != NULL &&
5516 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5517 			error = EFAULT;
5518 		break;
5519 	case ZONE_ATTR_POOLID:
5520 		{
5521 			pool_t *pool;
5522 			poolid_t poolid;
5523 
5524 			if (pool_lock_intr() != 0) {
5525 				error = EINTR;
5526 				break;
5527 			}
5528 			pool = zone_pool_get(zone);
5529 			poolid = pool->pool_id;
5530 			pool_unlock();
5531 			size = sizeof (poolid);
5532 			if (bufsize > size)
5533 				bufsize = size;
5534 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5535 				error = EFAULT;
5536 		}
5537 		break;
5538 	case ZONE_ATTR_SLBL:
5539 		size = sizeof (bslabel_t);
5540 		if (bufsize > size)
5541 			bufsize = size;
5542 		if (zone->zone_slabel == NULL)
5543 			error = EINVAL;
5544 		else if (buf != NULL &&
5545 		    copyout(label2bslabel(zone->zone_slabel), buf,
5546 		    bufsize) != 0)
5547 			error = EFAULT;
5548 		break;
5549 	case ZONE_ATTR_INITPID:
5550 		size = sizeof (initpid);
5551 		if (bufsize > size)
5552 			bufsize = size;
5553 		initpid = zone->zone_proc_initpid;
5554 		if (initpid == -1) {
5555 			error = ESRCH;
5556 			break;
5557 		}
5558 		if (buf != NULL &&
5559 		    copyout(&initpid, buf, bufsize) != 0)
5560 			error = EFAULT;
5561 		break;
5562 	case ZONE_ATTR_BRAND:
5563 		size = strlen(zone->zone_brand->b_name) + 1;
5564 
5565 		if (bufsize > size)
5566 			bufsize = size;
5567 		if (buf != NULL) {
5568 			err = copyoutstr(zone->zone_brand->b_name, buf,
5569 			    bufsize, NULL);
5570 			if (err != 0 && err != ENAMETOOLONG)
5571 				error = EFAULT;
5572 		}
5573 		break;
5574 	case ZONE_ATTR_INITNAME:
5575 		size = strlen(zone->zone_initname) + 1;
5576 		if (bufsize > size)
5577 			bufsize = size;
5578 		if (buf != NULL) {
5579 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5580 			    NULL);
5581 			if (err != 0 && err != ENAMETOOLONG)
5582 				error = EFAULT;
5583 		}
5584 		break;
5585 	case ZONE_ATTR_BOOTARGS:
5586 		if (zone->zone_bootargs == NULL)
5587 			outstr = "";
5588 		else
5589 			outstr = zone->zone_bootargs;
5590 		size = strlen(outstr) + 1;
5591 		if (bufsize > size)
5592 			bufsize = size;
5593 		if (buf != NULL) {
5594 			err = copyoutstr(outstr, buf, bufsize, NULL);
5595 			if (err != 0 && err != ENAMETOOLONG)
5596 				error = EFAULT;
5597 		}
5598 		break;
5599 	case ZONE_ATTR_PHYS_MCAP:
5600 		size = sizeof (zone->zone_phys_mcap);
5601 		if (bufsize > size)
5602 			bufsize = size;
5603 		if (buf != NULL &&
5604 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5605 			error = EFAULT;
5606 		break;
5607 	case ZONE_ATTR_SCHED_CLASS:
5608 		mutex_enter(&class_lock);
5609 
5610 		if (zone->zone_defaultcid >= loaded_classes)
5611 			outstr = "";
5612 		else
5613 			outstr = sclass[zone->zone_defaultcid].cl_name;
5614 		size = strlen(outstr) + 1;
5615 		if (bufsize > size)
5616 			bufsize = size;
5617 		if (buf != NULL) {
5618 			err = copyoutstr(outstr, buf, bufsize, NULL);
5619 			if (err != 0 && err != ENAMETOOLONG)
5620 				error = EFAULT;
5621 		}
5622 
5623 		mutex_exit(&class_lock);
5624 		break;
5625 	case ZONE_ATTR_HOSTID:
5626 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5627 		    bufsize == sizeof (zone->zone_hostid)) {
5628 			size = sizeof (zone->zone_hostid);
5629 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5630 			    bufsize) != 0)
5631 				error = EFAULT;
5632 		} else {
5633 			error = EINVAL;
5634 		}
5635 		break;
5636 	case ZONE_ATTR_FS_ALLOWED:
5637 		if (zone->zone_fs_allowed == NULL)
5638 			outstr = "";
5639 		else
5640 			outstr = zone->zone_fs_allowed;
5641 		size = strlen(outstr) + 1;
5642 		if (bufsize > size)
5643 			bufsize = size;
5644 		if (buf != NULL) {
5645 			err = copyoutstr(outstr, buf, bufsize, NULL);
5646 			if (err != 0 && err != ENAMETOOLONG)
5647 				error = EFAULT;
5648 		}
5649 		break;
5650 	case ZONE_ATTR_SECFLAGS:
5651 		size = sizeof (zone->zone_secflags);
5652 		if (bufsize > size)
5653 			bufsize = size;
5654 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5655 			error = EFAULT;
5656 		break;
5657 	case ZONE_ATTR_NETWORK:
5658 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5659 		if (copyin(buf, zbuf, bufsize) != 0) {
5660 			error = EFAULT;
5661 		} else {
5662 			error = zone_get_network(zoneid, zbuf);
5663 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5664 				error = EFAULT;
5665 		}
5666 		kmem_free(zbuf, bufsize);
5667 		break;
5668 	default:
5669 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5670 			size = bufsize;
5671 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5672 		} else {
5673 			error = EINVAL;
5674 		}
5675 	}
5676 	zone_rele(zone);
5677 
5678 	if (error)
5679 		return (set_errno(error));
5680 	return ((ssize_t)size);
5681 }
5682 
5683 /*
5684  * Systemcall entry point for zone_setattr(2).
5685  */
5686 /*ARGSUSED*/
5687 static int
5688 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5689 {
5690 	zone_t *zone;
5691 	zone_status_t zone_status;
5692 	int err = -1;
5693 	zone_net_data_t *zbuf;
5694 
5695 	if (secpolicy_zone_config(CRED()) != 0)
5696 		return (set_errno(EPERM));
5697 
5698 	/*
5699 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5700 	 * global zone.
5701 	 */
5702 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5703 		return (set_errno(EINVAL));
5704 	}
5705 
5706 	mutex_enter(&zonehash_lock);
5707 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5708 		mutex_exit(&zonehash_lock);
5709 		return (set_errno(EINVAL));
5710 	}
5711 	zone_hold(zone);
5712 	mutex_exit(&zonehash_lock);
5713 
5714 	/*
5715 	 * At present most attributes can only be set on non-running,
5716 	 * non-global zones.
5717 	 */
5718 	zone_status = zone_status_get(zone);
5719 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5720 		err = EINVAL;
5721 		goto done;
5722 	}
5723 
5724 	switch (attr) {
5725 	case ZONE_ATTR_INITNAME:
5726 		err = zone_set_initname(zone, (const char *)buf);
5727 		break;
5728 	case ZONE_ATTR_INITNORESTART:
5729 		zone->zone_restart_init = B_FALSE;
5730 		err = 0;
5731 		break;
5732 	case ZONE_ATTR_BOOTARGS:
5733 		err = zone_set_bootargs(zone, (const char *)buf);
5734 		break;
5735 	case ZONE_ATTR_BRAND:
5736 		err = zone_set_brand(zone, (const char *)buf);
5737 		break;
5738 	case ZONE_ATTR_FS_ALLOWED:
5739 		err = zone_set_fs_allowed(zone, (const char *)buf);
5740 		break;
5741 	case ZONE_ATTR_SECFLAGS:
5742 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5743 		break;
5744 	case ZONE_ATTR_PHYS_MCAP:
5745 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5746 		break;
5747 	case ZONE_ATTR_SCHED_CLASS:
5748 		err = zone_set_sched_class(zone, (const char *)buf);
5749 		break;
5750 	case ZONE_ATTR_HOSTID:
5751 		if (bufsize == sizeof (zone->zone_hostid)) {
5752 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5753 				err = 0;
5754 			else
5755 				err = EFAULT;
5756 		} else {
5757 			err = EINVAL;
5758 		}
5759 		break;
5760 	case ZONE_ATTR_NETWORK:
5761 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5762 			err = EINVAL;
5763 			break;
5764 		}
5765 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5766 		if (copyin(buf, zbuf, bufsize) != 0) {
5767 			kmem_free(zbuf, bufsize);
5768 			err = EFAULT;
5769 			break;
5770 		}
5771 		err = zone_set_network(zoneid, zbuf);
5772 		kmem_free(zbuf, bufsize);
5773 		break;
5774 	default:
5775 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5776 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5777 		else
5778 			err = EINVAL;
5779 	}
5780 
5781 done:
5782 	zone_rele(zone);
5783 	ASSERT(err != -1);
5784 	return (err != 0 ? set_errno(err) : 0);
5785 }
5786 
5787 /*
5788  * Return zero if the process has at least one vnode mapped in to its
5789  * address space which shouldn't be allowed to change zones.
5790  *
5791  * Also return zero if the process has any shared mappings which reserve
5792  * swap.  This is because the counting for zone.max-swap does not allow swap
5793  * reservation to be shared between zones.  zone swap reservation is counted
5794  * on zone->zone_max_swap.
5795  */
5796 static int
5797 as_can_change_zones(void)
5798 {
5799 	proc_t *pp = curproc;
5800 	struct seg *seg;
5801 	struct as *as = pp->p_as;
5802 	vnode_t *vp;
5803 	int allow = 1;
5804 
5805 	ASSERT(pp->p_as != &kas);
5806 	AS_LOCK_ENTER(as, RW_READER);
5807 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5808 
5809 		/*
5810 		 * Cannot enter zone with shared anon memory which
5811 		 * reserves swap.  See comment above.
5812 		 */
5813 		if (seg_can_change_zones(seg) == B_FALSE) {
5814 			allow = 0;
5815 			break;
5816 		}
5817 		/*
5818 		 * if we can't get a backing vnode for this segment then skip
5819 		 * it.
5820 		 */
5821 		vp = NULL;
5822 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5823 			continue;
5824 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5825 			allow = 0;
5826 			break;
5827 		}
5828 	}
5829 	AS_LOCK_EXIT(as);
5830 	return (allow);
5831 }
5832 
5833 /*
5834  * Count swap reserved by curproc's address space
5835  */
5836 static size_t
5837 as_swresv(void)
5838 {
5839 	proc_t *pp = curproc;
5840 	struct seg *seg;
5841 	struct as *as = pp->p_as;
5842 	size_t swap = 0;
5843 
5844 	ASSERT(pp->p_as != &kas);
5845 	ASSERT(AS_WRITE_HELD(as));
5846 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5847 		swap += seg_swresv(seg);
5848 
5849 	return (swap);
5850 }
5851 
5852 /*
5853  * Systemcall entry point for zone_enter().
5854  *
5855  * The current process is injected into said zone.  In the process
5856  * it will change its project membership, privileges, rootdir/cwd,
5857  * zone-wide rctls, and pool association to match those of the zone.
5858  *
5859  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5860  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5861  * enter a zone that is "ready" or "running".
5862  */
5863 static int
5864 zone_enter(zoneid_t zoneid)
5865 {
5866 	zone_t *zone;
5867 	vnode_t *vp;
5868 	proc_t *pp = curproc;
5869 	contract_t *ct;
5870 	cont_process_t *ctp;
5871 	task_t *tk, *oldtk;
5872 	kproject_t *zone_proj0;
5873 	cred_t *cr, *newcr;
5874 	pool_t *oldpool, *newpool;
5875 	sess_t *sp;
5876 	uid_t uid;
5877 	zone_status_t status;
5878 	int err = 0;
5879 	rctl_entity_p_t e;
5880 	size_t swap;
5881 	kthread_id_t t;
5882 
5883 	if (secpolicy_zone_config(CRED()) != 0)
5884 		return (set_errno(EPERM));
5885 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5886 		return (set_errno(EINVAL));
5887 
5888 	/*
5889 	 * Stop all lwps so we don't need to hold a lock to look at
5890 	 * curproc->p_zone.  This needs to happen before we grab any
5891 	 * locks to avoid deadlock (another lwp in the process could
5892 	 * be waiting for the held lock).
5893 	 */
5894 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5895 		return (set_errno(EINTR));
5896 
5897 	/*
5898 	 * Make sure we're not changing zones with files open or mapped in
5899 	 * to our address space which shouldn't be changing zones.
5900 	 */
5901 	if (!files_can_change_zones()) {
5902 		err = EBADF;
5903 		goto out;
5904 	}
5905 	if (!as_can_change_zones()) {
5906 		err = EFAULT;
5907 		goto out;
5908 	}
5909 
5910 	mutex_enter(&zonehash_lock);
5911 	if (pp->p_zone != global_zone) {
5912 		mutex_exit(&zonehash_lock);
5913 		err = EINVAL;
5914 		goto out;
5915 	}
5916 
5917 	zone = zone_find_all_by_id(zoneid);
5918 	if (zone == NULL) {
5919 		mutex_exit(&zonehash_lock);
5920 		err = EINVAL;
5921 		goto out;
5922 	}
5923 
5924 	/*
5925 	 * To prevent processes in a zone from holding contracts on
5926 	 * extrazonal resources, and to avoid process contract
5927 	 * memberships which span zones, contract holders and processes
5928 	 * which aren't the sole members of their encapsulating process
5929 	 * contracts are not allowed to zone_enter.
5930 	 */
5931 	ctp = pp->p_ct_process;
5932 	ct = &ctp->conp_contract;
5933 	mutex_enter(&ct->ct_lock);
5934 	mutex_enter(&pp->p_lock);
5935 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5936 		mutex_exit(&pp->p_lock);
5937 		mutex_exit(&ct->ct_lock);
5938 		mutex_exit(&zonehash_lock);
5939 		err = EINVAL;
5940 		goto out;
5941 	}
5942 
5943 	/*
5944 	 * Moreover, we don't allow processes whose encapsulating
5945 	 * process contracts have inherited extrazonal contracts.
5946 	 * While it would be easier to eliminate all process contracts
5947 	 * with inherited contracts, we need to be able to give a
5948 	 * restarted init (or other zone-penetrating process) its
5949 	 * predecessor's contracts.
5950 	 */
5951 	if (ctp->conp_ninherited != 0) {
5952 		contract_t *next;
5953 		for (next = list_head(&ctp->conp_inherited); next;
5954 		    next = list_next(&ctp->conp_inherited, next)) {
5955 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5956 				mutex_exit(&pp->p_lock);
5957 				mutex_exit(&ct->ct_lock);
5958 				mutex_exit(&zonehash_lock);
5959 				err = EINVAL;
5960 				goto out;
5961 			}
5962 		}
5963 	}
5964 
5965 	mutex_exit(&pp->p_lock);
5966 	mutex_exit(&ct->ct_lock);
5967 
5968 	status = zone_status_get(zone);
5969 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5970 		/*
5971 		 * Can't join
5972 		 */
5973 		mutex_exit(&zonehash_lock);
5974 		err = EINVAL;
5975 		goto out;
5976 	}
5977 
5978 	/*
5979 	 * Make sure new priv set is within the permitted set for caller
5980 	 */
5981 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5982 		mutex_exit(&zonehash_lock);
5983 		err = EPERM;
5984 		goto out;
5985 	}
5986 	/*
5987 	 * We want to momentarily drop zonehash_lock while we optimistically
5988 	 * bind curproc to the pool it should be running in.  This is safe
5989 	 * since the zone can't disappear (we have a hold on it).
5990 	 */
5991 	zone_hold(zone);
5992 	mutex_exit(&zonehash_lock);
5993 
5994 	/*
5995 	 * Grab pool_lock to keep the pools configuration from changing
5996 	 * and to stop ourselves from getting rebound to another pool
5997 	 * until we join the zone.
5998 	 */
5999 	if (pool_lock_intr() != 0) {
6000 		zone_rele(zone);
6001 		err = EINTR;
6002 		goto out;
6003 	}
6004 	ASSERT(secpolicy_pool(CRED()) == 0);
6005 	/*
6006 	 * Bind ourselves to the pool currently associated with the zone.
6007 	 */
6008 	oldpool = curproc->p_pool;
6009 	newpool = zone_pool_get(zone);
6010 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6011 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6012 	    POOL_BIND_ALL)) != 0) {
6013 		pool_unlock();
6014 		zone_rele(zone);
6015 		goto out;
6016 	}
6017 
6018 	/*
6019 	 * Grab cpu_lock now; we'll need it later when we call
6020 	 * task_join().
6021 	 */
6022 	mutex_enter(&cpu_lock);
6023 	mutex_enter(&zonehash_lock);
6024 	/*
6025 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6026 	 */
6027 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6028 		/*
6029 		 * Can't join anymore.
6030 		 */
6031 		mutex_exit(&zonehash_lock);
6032 		mutex_exit(&cpu_lock);
6033 		if (pool_state == POOL_ENABLED &&
6034 		    newpool != oldpool)
6035 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6036 			    POOL_BIND_ALL);
6037 		pool_unlock();
6038 		zone_rele(zone);
6039 		err = EINVAL;
6040 		goto out;
6041 	}
6042 
6043 	/*
6044 	 * a_lock must be held while transfering locked memory and swap
6045 	 * reservation from the global zone to the non global zone because
6046 	 * asynchronous faults on the processes' address space can lock
6047 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6048 	 * segments respectively.
6049 	 */
6050 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6051 	swap = as_swresv();
6052 	mutex_enter(&pp->p_lock);
6053 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6054 	/* verify that we do not exceed and task or lwp limits */
6055 	mutex_enter(&zone->zone_nlwps_lock);
6056 	/* add new lwps to zone and zone's proj0 */
6057 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6058 	zone->zone_nlwps += pp->p_lwpcnt;
6059 	/* add 1 task to zone's proj0 */
6060 	zone_proj0->kpj_ntasks += 1;
6061 
6062 	zone_proj0->kpj_nprocs++;
6063 	zone->zone_nprocs++;
6064 	mutex_exit(&zone->zone_nlwps_lock);
6065 
6066 	mutex_enter(&zone->zone_mem_lock);
6067 	zone->zone_locked_mem += pp->p_locked_mem;
6068 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6069 	zone->zone_max_swap += swap;
6070 	mutex_exit(&zone->zone_mem_lock);
6071 
6072 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6073 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6074 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6075 
6076 	/* remove lwps and process from proc's old zone and old project */
6077 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6078 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6079 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6080 	pp->p_task->tk_proj->kpj_nprocs--;
6081 	pp->p_zone->zone_nprocs--;
6082 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6083 
6084 	mutex_enter(&pp->p_zone->zone_mem_lock);
6085 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6086 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6087 	pp->p_zone->zone_max_swap -= swap;
6088 	mutex_exit(&pp->p_zone->zone_mem_lock);
6089 
6090 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6091 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6092 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6093 
6094 	pp->p_flag |= SZONETOP;
6095 	pp->p_zone = zone;
6096 	mutex_exit(&pp->p_lock);
6097 	AS_LOCK_EXIT(pp->p_as);
6098 
6099 	/*
6100 	 * Joining the zone cannot fail from now on.
6101 	 *
6102 	 * This means that a lot of the following code can be commonized and
6103 	 * shared with zsched().
6104 	 */
6105 
6106 	/*
6107 	 * If the process contract fmri was inherited, we need to
6108 	 * flag this so that any contract status will not leak
6109 	 * extra zone information, svc_fmri in this case
6110 	 */
6111 	if (ctp->conp_svc_ctid != ct->ct_id) {
6112 		mutex_enter(&ct->ct_lock);
6113 		ctp->conp_svc_zone_enter = ct->ct_id;
6114 		mutex_exit(&ct->ct_lock);
6115 	}
6116 
6117 	/*
6118 	 * Reset the encapsulating process contract's zone.
6119 	 */
6120 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6121 	contract_setzuniqid(ct, zone->zone_uniqid);
6122 
6123 	/*
6124 	 * Create a new task and associate the process with the project keyed
6125 	 * by (projid,zoneid).
6126 	 *
6127 	 * We might as well be in project 0; the global zone's projid doesn't
6128 	 * make much sense in a zone anyhow.
6129 	 *
6130 	 * This also increments zone_ntasks, and returns with p_lock held.
6131 	 */
6132 	tk = task_create(0, zone);
6133 	oldtk = task_join(tk, 0);
6134 	mutex_exit(&cpu_lock);
6135 
6136 	/*
6137 	 * call RCTLOP_SET functions on this proc
6138 	 */
6139 	e.rcep_p.zone = zone;
6140 	e.rcep_t = RCENTITY_ZONE;
6141 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6142 	    RCD_CALLBACK);
6143 	mutex_exit(&pp->p_lock);
6144 
6145 	/*
6146 	 * We don't need to hold any of zsched's locks here; not only do we know
6147 	 * the process and zone aren't going away, we know its session isn't
6148 	 * changing either.
6149 	 *
6150 	 * By joining zsched's session here, we mimic the behavior in the
6151 	 * global zone of init's sid being the pid of sched.  We extend this
6152 	 * to all zlogin-like zone_enter()'ing processes as well.
6153 	 */
6154 	mutex_enter(&pidlock);
6155 	sp = zone->zone_zsched->p_sessp;
6156 	sess_hold(zone->zone_zsched);
6157 	mutex_enter(&pp->p_lock);
6158 	pgexit(pp);
6159 	sess_rele(pp->p_sessp, B_TRUE);
6160 	pp->p_sessp = sp;
6161 	pgjoin(pp, zone->zone_zsched->p_pidp);
6162 
6163 	/*
6164 	 * If any threads are scheduled to be placed on zone wait queue they
6165 	 * should abandon the idea since the wait queue is changing.
6166 	 * We need to be holding pidlock & p_lock to do this.
6167 	 */
6168 	if ((t = pp->p_tlist) != NULL) {
6169 		do {
6170 			thread_lock(t);
6171 			/*
6172 			 * Kick this thread so that it doesn't sit
6173 			 * on a wrong wait queue.
6174 			 */
6175 			if (ISWAITING(t))
6176 				setrun_locked(t);
6177 
6178 			if (t->t_schedflag & TS_ANYWAITQ)
6179 				t->t_schedflag &= ~ TS_ANYWAITQ;
6180 
6181 			thread_unlock(t);
6182 		} while ((t = t->t_forw) != pp->p_tlist);
6183 	}
6184 
6185 	/*
6186 	 * If there is a default scheduling class for the zone and it is not
6187 	 * the class we are currently in, change all of the threads in the
6188 	 * process to the new class.  We need to be holding pidlock & p_lock
6189 	 * when we call parmsset so this is a good place to do it.
6190 	 */
6191 	if (zone->zone_defaultcid > 0 &&
6192 	    zone->zone_defaultcid != curthread->t_cid) {
6193 		pcparms_t pcparms;
6194 
6195 		pcparms.pc_cid = zone->zone_defaultcid;
6196 		pcparms.pc_clparms[0] = 0;
6197 
6198 		/*
6199 		 * If setting the class fails, we still want to enter the zone.
6200 		 */
6201 		if ((t = pp->p_tlist) != NULL) {
6202 			do {
6203 				(void) parmsset(&pcparms, t);
6204 			} while ((t = t->t_forw) != pp->p_tlist);
6205 		}
6206 	}
6207 
6208 	mutex_exit(&pp->p_lock);
6209 	mutex_exit(&pidlock);
6210 
6211 	mutex_exit(&zonehash_lock);
6212 	/*
6213 	 * We're firmly in the zone; let pools progress.
6214 	 */
6215 	pool_unlock();
6216 	task_rele(oldtk);
6217 	/*
6218 	 * We don't need to retain a hold on the zone since we already
6219 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6220 	 */
6221 	zone_rele(zone);
6222 
6223 	/*
6224 	 * Chroot
6225 	 */
6226 	vp = zone->zone_rootvp;
6227 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6228 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6229 
6230 	/*
6231 	 * Change process security flags.  Note that the _effective_ flags
6232 	 * cannot change
6233 	 */
6234 	secflags_copy(&pp->p_secflags.psf_lower,
6235 	    &zone->zone_secflags.psf_lower);
6236 	secflags_copy(&pp->p_secflags.psf_upper,
6237 	    &zone->zone_secflags.psf_upper);
6238 	secflags_copy(&pp->p_secflags.psf_inherit,
6239 	    &zone->zone_secflags.psf_inherit);
6240 
6241 	/*
6242 	 * Change process credentials
6243 	 */
6244 	newcr = cralloc();
6245 	mutex_enter(&pp->p_crlock);
6246 	cr = pp->p_cred;
6247 	crcopy_to(cr, newcr);
6248 	crsetzone(newcr, zone);
6249 	pp->p_cred = newcr;
6250 
6251 	/*
6252 	 * Restrict all process privilege sets to zone limit
6253 	 */
6254 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6255 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6256 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6257 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6258 	mutex_exit(&pp->p_crlock);
6259 	crset(pp, newcr);
6260 
6261 	/*
6262 	 * Adjust upcount to reflect zone entry.
6263 	 */
6264 	uid = crgetruid(newcr);
6265 	mutex_enter(&pidlock);
6266 	upcount_dec(uid, GLOBAL_ZONEID);
6267 	upcount_inc(uid, zoneid);
6268 	mutex_exit(&pidlock);
6269 
6270 	/*
6271 	 * Set up core file path and content.
6272 	 */
6273 	set_core_defaults();
6274 
6275 out:
6276 	/*
6277 	 * Let the other lwps continue.
6278 	 */
6279 	mutex_enter(&pp->p_lock);
6280 	if (curthread != pp->p_agenttp)
6281 		continuelwps(pp);
6282 	mutex_exit(&pp->p_lock);
6283 
6284 	return (err != 0 ? set_errno(err) : 0);
6285 }
6286 
6287 /*
6288  * Systemcall entry point for zone_list(2).
6289  *
6290  * Processes running in a (non-global) zone only see themselves.
6291  * On labeled systems, they see all zones whose label they dominate.
6292  */
6293 static int
6294 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6295 {
6296 	zoneid_t *zoneids;
6297 	zone_t *zone, *myzone;
6298 	uint_t user_nzones, real_nzones;
6299 	uint_t domi_nzones;
6300 	int error;
6301 
6302 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6303 		return (set_errno(EFAULT));
6304 
6305 	myzone = curproc->p_zone;
6306 	if (myzone != global_zone) {
6307 		bslabel_t *mybslab;
6308 
6309 		if (!is_system_labeled()) {
6310 			/* just return current zone */
6311 			real_nzones = domi_nzones = 1;
6312 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6313 			zoneids[0] = myzone->zone_id;
6314 		} else {
6315 			/* return all zones that are dominated */
6316 			mutex_enter(&zonehash_lock);
6317 			real_nzones = zonecount;
6318 			domi_nzones = 0;
6319 			if (real_nzones > 0) {
6320 				zoneids = kmem_alloc(real_nzones *
6321 				    sizeof (zoneid_t), KM_SLEEP);
6322 				mybslab = label2bslabel(myzone->zone_slabel);
6323 				for (zone = list_head(&zone_active);
6324 				    zone != NULL;
6325 				    zone = list_next(&zone_active, zone)) {
6326 					if (zone->zone_id == GLOBAL_ZONEID)
6327 						continue;
6328 					if (zone != myzone &&
6329 					    (zone->zone_flags & ZF_IS_SCRATCH))
6330 						continue;
6331 					/*
6332 					 * Note that a label always dominates
6333 					 * itself, so myzone is always included
6334 					 * in the list.
6335 					 */
6336 					if (bldominates(mybslab,
6337 					    label2bslabel(zone->zone_slabel))) {
6338 						zoneids[domi_nzones++] =
6339 						    zone->zone_id;
6340 					}
6341 				}
6342 			}
6343 			mutex_exit(&zonehash_lock);
6344 		}
6345 	} else {
6346 		mutex_enter(&zonehash_lock);
6347 		real_nzones = zonecount;
6348 		domi_nzones = 0;
6349 		if (real_nzones > 0) {
6350 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6351 			    KM_SLEEP);
6352 			for (zone = list_head(&zone_active); zone != NULL;
6353 			    zone = list_next(&zone_active, zone))
6354 				zoneids[domi_nzones++] = zone->zone_id;
6355 			ASSERT(domi_nzones == real_nzones);
6356 		}
6357 		mutex_exit(&zonehash_lock);
6358 	}
6359 
6360 	/*
6361 	 * If user has allocated space for fewer entries than we found, then
6362 	 * return only up to their limit.  Either way, tell them exactly how
6363 	 * many we found.
6364 	 */
6365 	if (domi_nzones < user_nzones)
6366 		user_nzones = domi_nzones;
6367 	error = 0;
6368 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6369 		error = EFAULT;
6370 	} else if (zoneidlist != NULL && user_nzones != 0) {
6371 		if (copyout(zoneids, zoneidlist,
6372 		    user_nzones * sizeof (zoneid_t)) != 0)
6373 			error = EFAULT;
6374 	}
6375 
6376 	if (real_nzones > 0)
6377 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6378 
6379 	if (error != 0)
6380 		return (set_errno(error));
6381 	else
6382 		return (0);
6383 }
6384 
6385 /*
6386  * Systemcall entry point for zone_lookup(2).
6387  *
6388  * Non-global zones are only able to see themselves and (on labeled systems)
6389  * the zones they dominate.
6390  */
6391 static zoneid_t
6392 zone_lookup(const char *zone_name)
6393 {
6394 	char *kname;
6395 	zone_t *zone;
6396 	zoneid_t zoneid;
6397 	int err;
6398 
6399 	if (zone_name == NULL) {
6400 		/* return caller's zone id */
6401 		return (getzoneid());
6402 	}
6403 
6404 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6405 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6406 		kmem_free(kname, ZONENAME_MAX);
6407 		return (set_errno(err));
6408 	}
6409 
6410 	mutex_enter(&zonehash_lock);
6411 	zone = zone_find_all_by_name(kname);
6412 	kmem_free(kname, ZONENAME_MAX);
6413 	/*
6414 	 * In a non-global zone, can only lookup global and own name.
6415 	 * In Trusted Extensions zone label dominance rules apply.
6416 	 */
6417 	if (zone == NULL ||
6418 	    zone_status_get(zone) < ZONE_IS_READY ||
6419 	    !zone_list_access(zone)) {
6420 		mutex_exit(&zonehash_lock);
6421 		return (set_errno(EINVAL));
6422 	} else {
6423 		zoneid = zone->zone_id;
6424 		mutex_exit(&zonehash_lock);
6425 		return (zoneid);
6426 	}
6427 }
6428 
6429 static int
6430 zone_version(int *version_arg)
6431 {
6432 	int version = ZONE_SYSCALL_API_VERSION;
6433 
6434 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6435 		return (set_errno(EFAULT));
6436 	return (0);
6437 }
6438 
6439 /* ARGSUSED */
6440 long
6441 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6442 {
6443 	zone_def zs;
6444 	int err;
6445 
6446 	switch (cmd) {
6447 	case ZONE_CREATE:
6448 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6449 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6450 				return (set_errno(EFAULT));
6451 			}
6452 		} else {
6453 #ifdef _SYSCALL32_IMPL
6454 			zone_def32 zs32;
6455 
6456 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6457 				return (set_errno(EFAULT));
6458 			}
6459 			zs.zone_name =
6460 			    (const char *)(unsigned long)zs32.zone_name;
6461 			zs.zone_root =
6462 			    (const char *)(unsigned long)zs32.zone_root;
6463 			zs.zone_privs =
6464 			    (const struct priv_set *)
6465 			    (unsigned long)zs32.zone_privs;
6466 			zs.zone_privssz = zs32.zone_privssz;
6467 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6468 			zs.rctlbufsz = zs32.rctlbufsz;
6469 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6470 			zs.zfsbufsz = zs32.zfsbufsz;
6471 			zs.extended_error =
6472 			    (int *)(unsigned long)zs32.extended_error;
6473 			zs.match = zs32.match;
6474 			zs.doi = zs32.doi;
6475 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6476 			zs.flags = zs32.flags;
6477 #else
6478 			panic("get_udatamodel() returned bogus result\n");
6479 #endif
6480 		}
6481 
6482 		return (zone_create(zs.zone_name, zs.zone_root,
6483 		    zs.zone_privs, zs.zone_privssz,
6484 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6485 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6486 		    zs.extended_error, zs.match, zs.doi,
6487 		    zs.label, zs.flags));
6488 	case ZONE_BOOT:
6489 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6490 	case ZONE_DESTROY:
6491 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6492 	case ZONE_GETATTR:
6493 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6494 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6495 	case ZONE_SETATTR:
6496 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6497 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6498 	case ZONE_ENTER:
6499 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6500 	case ZONE_LIST:
6501 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6502 	case ZONE_SHUTDOWN:
6503 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6504 	case ZONE_LOOKUP:
6505 		return (zone_lookup((const char *)arg1));
6506 	case ZONE_VERSION:
6507 		return (zone_version((int *)arg1));
6508 	case ZONE_ADD_DATALINK:
6509 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6510 		    (datalink_id_t)(uintptr_t)arg2));
6511 	case ZONE_DEL_DATALINK:
6512 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6513 		    (datalink_id_t)(uintptr_t)arg2));
6514 	case ZONE_CHECK_DATALINK: {
6515 		zoneid_t	zoneid;
6516 		boolean_t	need_copyout;
6517 
6518 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6519 			return (EFAULT);
6520 		need_copyout = (zoneid == ALL_ZONES);
6521 		err = zone_check_datalink(&zoneid,
6522 		    (datalink_id_t)(uintptr_t)arg2);
6523 		if (err == 0 && need_copyout) {
6524 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6525 				err = EFAULT;
6526 		}
6527 		return (err == 0 ? 0 : set_errno(err));
6528 	}
6529 	case ZONE_LIST_DATALINK:
6530 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6531 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6532 	default:
6533 		return (set_errno(EINVAL));
6534 	}
6535 }
6536 
6537 struct zarg {
6538 	zone_t *zone;
6539 	zone_cmd_arg_t arg;
6540 };
6541 
6542 static int
6543 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6544 {
6545 	char *buf;
6546 	size_t buflen;
6547 	int error;
6548 
6549 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6550 	buf = kmem_alloc(buflen, KM_SLEEP);
6551 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6552 	error = door_ki_open(buf, doorp);
6553 	kmem_free(buf, buflen);
6554 	return (error);
6555 }
6556 
6557 static void
6558 zone_release_door(door_handle_t *doorp)
6559 {
6560 	door_ki_rele(*doorp);
6561 	*doorp = NULL;
6562 }
6563 
6564 static void
6565 zone_ki_call_zoneadmd(struct zarg *zargp)
6566 {
6567 	door_handle_t door = NULL;
6568 	door_arg_t darg, save_arg;
6569 	char *zone_name;
6570 	size_t zone_namelen;
6571 	zoneid_t zoneid;
6572 	zone_t *zone;
6573 	zone_cmd_arg_t arg;
6574 	uint64_t uniqid;
6575 	size_t size;
6576 	int error;
6577 	int retry;
6578 
6579 	zone = zargp->zone;
6580 	arg = zargp->arg;
6581 	kmem_free(zargp, sizeof (*zargp));
6582 
6583 	zone_namelen = strlen(zone->zone_name) + 1;
6584 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6585 	bcopy(zone->zone_name, zone_name, zone_namelen);
6586 	zoneid = zone->zone_id;
6587 	uniqid = zone->zone_uniqid;
6588 	/*
6589 	 * zoneadmd may be down, but at least we can empty out the zone.
6590 	 * We can ignore the return value of zone_empty() since we're called
6591 	 * from a kernel thread and know we won't be delivered any signals.
6592 	 */
6593 	ASSERT(curproc == &p0);
6594 	(void) zone_empty(zone);
6595 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6596 	zone_rele(zone);
6597 
6598 	size = sizeof (arg);
6599 	darg.rbuf = (char *)&arg;
6600 	darg.data_ptr = (char *)&arg;
6601 	darg.rsize = size;
6602 	darg.data_size = size;
6603 	darg.desc_ptr = NULL;
6604 	darg.desc_num = 0;
6605 
6606 	save_arg = darg;
6607 	/*
6608 	 * Since we're not holding a reference to the zone, any number of
6609 	 * things can go wrong, including the zone disappearing before we get a
6610 	 * chance to talk to zoneadmd.
6611 	 */
6612 	for (retry = 0; /* forever */; retry++) {
6613 		if (door == NULL &&
6614 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6615 			goto next;
6616 		}
6617 		ASSERT(door != NULL);
6618 
6619 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6620 		    SIZE_MAX, 0)) == 0) {
6621 			break;
6622 		}
6623 		switch (error) {
6624 		case EINTR:
6625 			/* FALLTHROUGH */
6626 		case EAGAIN:	/* process may be forking */
6627 			/*
6628 			 * Back off for a bit
6629 			 */
6630 			break;
6631 		case EBADF:
6632 			zone_release_door(&door);
6633 			if (zone_lookup_door(zone_name, &door) != 0) {
6634 				/*
6635 				 * zoneadmd may be dead, but it may come back to
6636 				 * life later.
6637 				 */
6638 				break;
6639 			}
6640 			break;
6641 		default:
6642 			cmn_err(CE_WARN,
6643 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6644 			    error);
6645 			goto out;
6646 		}
6647 next:
6648 		/*
6649 		 * If this isn't the same zone_t that we originally had in mind,
6650 		 * then this is the same as if two kadmin requests come in at
6651 		 * the same time: the first one wins.  This means we lose, so we
6652 		 * bail.
6653 		 */
6654 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6655 			/*
6656 			 * Problem is solved.
6657 			 */
6658 			break;
6659 		}
6660 		if (zone->zone_uniqid != uniqid) {
6661 			/*
6662 			 * zoneid recycled
6663 			 */
6664 			zone_rele(zone);
6665 			break;
6666 		}
6667 		/*
6668 		 * We could zone_status_timedwait(), but there doesn't seem to
6669 		 * be much point in doing that (plus, it would mean that
6670 		 * zone_free() isn't called until this thread exits).
6671 		 */
6672 		zone_rele(zone);
6673 		delay(hz);
6674 		darg = save_arg;
6675 	}
6676 out:
6677 	if (door != NULL) {
6678 		zone_release_door(&door);
6679 	}
6680 	kmem_free(zone_name, zone_namelen);
6681 	thread_exit();
6682 }
6683 
6684 /*
6685  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6686  * kadmin().  The caller is a process in the zone.
6687  *
6688  * In order to shutdown the zone, we will hand off control to zoneadmd
6689  * (running in the global zone) via a door.  We do a half-hearted job at
6690  * killing all processes in the zone, create a kernel thread to contact
6691  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6692  * a form of generation number used to let zoneadmd (as well as
6693  * zone_destroy()) know exactly which zone they're re talking about.
6694  */
6695 int
6696 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6697 {
6698 	struct zarg *zargp;
6699 	zone_cmd_t zcmd;
6700 	zone_t *zone;
6701 
6702 	zone = curproc->p_zone;
6703 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6704 
6705 	switch (cmd) {
6706 	case A_SHUTDOWN:
6707 		switch (fcn) {
6708 		case AD_HALT:
6709 		case AD_POWEROFF:
6710 			zcmd = Z_HALT;
6711 			break;
6712 		case AD_BOOT:
6713 			zcmd = Z_REBOOT;
6714 			break;
6715 		case AD_IBOOT:
6716 		case AD_SBOOT:
6717 		case AD_SIBOOT:
6718 		case AD_NOSYNC:
6719 			return (ENOTSUP);
6720 		default:
6721 			return (EINVAL);
6722 		}
6723 		break;
6724 	case A_REBOOT:
6725 		zcmd = Z_REBOOT;
6726 		break;
6727 	case A_FTRACE:
6728 	case A_REMOUNT:
6729 	case A_FREEZE:
6730 	case A_DUMP:
6731 	case A_CONFIG:
6732 		return (ENOTSUP);
6733 	default:
6734 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6735 		return (EINVAL);
6736 	}
6737 
6738 	if (secpolicy_zone_admin(credp, B_FALSE))
6739 		return (EPERM);
6740 	mutex_enter(&zone_status_lock);
6741 
6742 	/*
6743 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6744 	 * is in the zone.
6745 	 */
6746 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6747 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6748 		/*
6749 		 * This zone is already on its way down.
6750 		 */
6751 		mutex_exit(&zone_status_lock);
6752 		return (0);
6753 	}
6754 	/*
6755 	 * Prevent future zone_enter()s
6756 	 */
6757 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6758 	mutex_exit(&zone_status_lock);
6759 
6760 	/*
6761 	 * Kill everyone now and call zoneadmd later.
6762 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6763 	 * later.
6764 	 */
6765 	killall(zone->zone_id);
6766 	/*
6767 	 * Now, create the thread to contact zoneadmd and do the rest of the
6768 	 * work.  This thread can't be created in our zone otherwise
6769 	 * zone_destroy() would deadlock.
6770 	 */
6771 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6772 	zargp->arg.cmd = zcmd;
6773 	zargp->arg.uniqid = zone->zone_uniqid;
6774 	zargp->zone = zone;
6775 	(void) strcpy(zargp->arg.locale, "C");
6776 	/* mdep was already copied in for us by uadmin */
6777 	if (mdep != NULL)
6778 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6779 		    sizeof (zargp->arg.bootbuf));
6780 	zone_hold(zone);
6781 
6782 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6783 	    TS_RUN, minclsyspri);
6784 	exit(CLD_EXITED, 0);
6785 
6786 	return (EINVAL);
6787 }
6788 
6789 /*
6790  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6791  * status to ZONE_IS_SHUTTING_DOWN.
6792  *
6793  * This function also shuts down all running zones to ensure that they won't
6794  * fork new processes.
6795  */
6796 void
6797 zone_shutdown_global(void)
6798 {
6799 	zone_t *current_zonep;
6800 
6801 	ASSERT(INGLOBALZONE(curproc));
6802 	mutex_enter(&zonehash_lock);
6803 	mutex_enter(&zone_status_lock);
6804 
6805 	/* Modify the global zone's status first. */
6806 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6807 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6808 
6809 	/*
6810 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6811 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6812 	 * could cause assertions to fail (e.g., assertions about a zone's
6813 	 * state during initialization, readying, or booting) or produce races.
6814 	 * We'll let threads continue to initialize and ready new zones: they'll
6815 	 * fail to boot the new zones when they see that the global zone is
6816 	 * shutting down.
6817 	 */
6818 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6819 	    current_zonep = list_next(&zone_active, current_zonep)) {
6820 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6821 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6822 	}
6823 	mutex_exit(&zone_status_lock);
6824 	mutex_exit(&zonehash_lock);
6825 }
6826 
6827 /*
6828  * Returns true if the named dataset is visible in the current zone.
6829  * The 'write' parameter is set to 1 if the dataset is also writable.
6830  */
6831 int
6832 zone_dataset_visible(const char *dataset, int *write)
6833 {
6834 	static int zfstype = -1;
6835 	zone_dataset_t *zd;
6836 	size_t len;
6837 	zone_t *zone = curproc->p_zone;
6838 	const char *name = NULL;
6839 	vfs_t *vfsp = NULL;
6840 
6841 	if (dataset[0] == '\0')
6842 		return (0);
6843 
6844 	/*
6845 	 * Walk the list once, looking for datasets which match exactly, or
6846 	 * specify a dataset underneath an exported dataset.  If found, return
6847 	 * true and note that it is writable.
6848 	 */
6849 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6850 	    zd = list_next(&zone->zone_datasets, zd)) {
6851 
6852 		len = strlen(zd->zd_dataset);
6853 		if (strlen(dataset) >= len &&
6854 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6855 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6856 		    dataset[len] == '@')) {
6857 			if (write)
6858 				*write = 1;
6859 			return (1);
6860 		}
6861 	}
6862 
6863 	/*
6864 	 * Walk the list a second time, searching for datasets which are parents
6865 	 * of exported datasets.  These should be visible, but read-only.
6866 	 *
6867 	 * Note that we also have to support forms such as 'pool/dataset/', with
6868 	 * a trailing slash.
6869 	 */
6870 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6871 	    zd = list_next(&zone->zone_datasets, zd)) {
6872 
6873 		len = strlen(dataset);
6874 		if (dataset[len - 1] == '/')
6875 			len--;	/* Ignore trailing slash */
6876 		if (len < strlen(zd->zd_dataset) &&
6877 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6878 		    zd->zd_dataset[len] == '/') {
6879 			if (write)
6880 				*write = 0;
6881 			return (1);
6882 		}
6883 	}
6884 
6885 	/*
6886 	 * We reach here if the given dataset is not found in the zone_dataset
6887 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6888 	 * instead of delegation. For this we search for the dataset in the
6889 	 * zone_vfslist of this zone. If found, return true and note that it is
6890 	 * not writable.
6891 	 */
6892 
6893 	/*
6894 	 * Initialize zfstype if it is not initialized yet.
6895 	 */
6896 	if (zfstype == -1) {
6897 		struct vfssw *vswp = vfs_getvfssw("zfs");
6898 		zfstype = vswp - vfssw;
6899 		vfs_unrefvfssw(vswp);
6900 	}
6901 
6902 	vfs_list_read_lock();
6903 	vfsp = zone->zone_vfslist;
6904 	do {
6905 		ASSERT(vfsp);
6906 		if (vfsp->vfs_fstype == zfstype) {
6907 			name = refstr_value(vfsp->vfs_resource);
6908 
6909 			/*
6910 			 * Check if we have an exact match.
6911 			 */
6912 			if (strcmp(dataset, name) == 0) {
6913 				vfs_list_unlock();
6914 				if (write)
6915 					*write = 0;
6916 				return (1);
6917 			}
6918 			/*
6919 			 * We need to check if we are looking for parents of
6920 			 * a dataset. These should be visible, but read-only.
6921 			 */
6922 			len = strlen(dataset);
6923 			if (dataset[len - 1] == '/')
6924 				len--;
6925 
6926 			if (len < strlen(name) &&
6927 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6928 				vfs_list_unlock();
6929 				if (write)
6930 					*write = 0;
6931 				return (1);
6932 			}
6933 		}
6934 		vfsp = vfsp->vfs_zone_next;
6935 	} while (vfsp != zone->zone_vfslist);
6936 
6937 	vfs_list_unlock();
6938 	return (0);
6939 }
6940 
6941 /*
6942  * zone_find_by_any_path() -
6943  *
6944  * kernel-private routine similar to zone_find_by_path(), but which
6945  * effectively compares against zone paths rather than zonerootpath
6946  * (i.e., the last component of zonerootpaths, which should be "root/",
6947  * are not compared.)  This is done in order to accurately identify all
6948  * paths, whether zone-visible or not, including those which are parallel
6949  * to /root/, such as /dev/, /home/, etc...
6950  *
6951  * If the specified path does not fall under any zone path then global
6952  * zone is returned.
6953  *
6954  * The treat_abs parameter indicates whether the path should be treated as
6955  * an absolute path although it does not begin with "/".  (This supports
6956  * nfs mount syntax such as host:any/path.)
6957  *
6958  * The caller is responsible for zone_rele of the returned zone.
6959  */
6960 zone_t *
6961 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6962 {
6963 	zone_t *zone;
6964 	int path_offset = 0;
6965 
6966 	if (path == NULL) {
6967 		zone_hold(global_zone);
6968 		return (global_zone);
6969 	}
6970 
6971 	if (*path != '/') {
6972 		ASSERT(treat_abs);
6973 		path_offset = 1;
6974 	}
6975 
6976 	mutex_enter(&zonehash_lock);
6977 	for (zone = list_head(&zone_active); zone != NULL;
6978 	    zone = list_next(&zone_active, zone)) {
6979 		char	*c;
6980 		size_t	pathlen;
6981 		char *rootpath_start;
6982 
6983 		if (zone == global_zone)	/* skip global zone */
6984 			continue;
6985 
6986 		/* scan backwards to find start of last component */
6987 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6988 		do {
6989 			c--;
6990 		} while (*c != '/');
6991 
6992 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6993 		rootpath_start = (zone->zone_rootpath + path_offset);
6994 		if (strncmp(path, rootpath_start, pathlen) == 0)
6995 			break;
6996 	}
6997 	if (zone == NULL)
6998 		zone = global_zone;
6999 	zone_hold(zone);
7000 	mutex_exit(&zonehash_lock);
7001 	return (zone);
7002 }
7003 
7004 /*
7005  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7006  * zone_dl_t pointer if found, and NULL otherwise.
7007  */
7008 static zone_dl_t *
7009 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7010 {
7011 	zone_dl_t *zdl;
7012 
7013 	ASSERT(mutex_owned(&zone->zone_lock));
7014 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7015 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7016 		if (zdl->zdl_id == linkid)
7017 			break;
7018 	}
7019 	return (zdl);
7020 }
7021 
7022 static boolean_t
7023 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7024 {
7025 	boolean_t exists;
7026 
7027 	mutex_enter(&zone->zone_lock);
7028 	exists = (zone_find_dl(zone, linkid) != NULL);
7029 	mutex_exit(&zone->zone_lock);
7030 	return (exists);
7031 }
7032 
7033 /*
7034  * Add an data link name for the zone.
7035  */
7036 static int
7037 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7038 {
7039 	zone_dl_t *zdl;
7040 	zone_t *zone;
7041 	zone_t *thiszone;
7042 
7043 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7044 		return (set_errno(ENXIO));
7045 
7046 	/* Verify that the datalink ID doesn't already belong to a zone. */
7047 	mutex_enter(&zonehash_lock);
7048 	for (zone = list_head(&zone_active); zone != NULL;
7049 	    zone = list_next(&zone_active, zone)) {
7050 		if (zone_dl_exists(zone, linkid)) {
7051 			mutex_exit(&zonehash_lock);
7052 			zone_rele(thiszone);
7053 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7054 		}
7055 	}
7056 
7057 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7058 	zdl->zdl_id = linkid;
7059 	zdl->zdl_net = NULL;
7060 	mutex_enter(&thiszone->zone_lock);
7061 	list_insert_head(&thiszone->zone_dl_list, zdl);
7062 	mutex_exit(&thiszone->zone_lock);
7063 	mutex_exit(&zonehash_lock);
7064 	zone_rele(thiszone);
7065 	return (0);
7066 }
7067 
7068 static int
7069 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7070 {
7071 	zone_dl_t *zdl;
7072 	zone_t *zone;
7073 	int err = 0;
7074 
7075 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7076 		return (set_errno(EINVAL));
7077 
7078 	mutex_enter(&zone->zone_lock);
7079 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7080 		err = ENXIO;
7081 	} else {
7082 		list_remove(&zone->zone_dl_list, zdl);
7083 		nvlist_free(zdl->zdl_net);
7084 		kmem_free(zdl, sizeof (zone_dl_t));
7085 	}
7086 	mutex_exit(&zone->zone_lock);
7087 	zone_rele(zone);
7088 	return (err == 0 ? 0 : set_errno(err));
7089 }
7090 
7091 /*
7092  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7093  * the linkid.  Otherwise we just check if the specified zoneidp has been
7094  * assigned the supplied linkid.
7095  */
7096 int
7097 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7098 {
7099 	zone_t *zone;
7100 	int err = ENXIO;
7101 
7102 	if (*zoneidp != ALL_ZONES) {
7103 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7104 			if (zone_dl_exists(zone, linkid))
7105 				err = 0;
7106 			zone_rele(zone);
7107 		}
7108 		return (err);
7109 	}
7110 
7111 	mutex_enter(&zonehash_lock);
7112 	for (zone = list_head(&zone_active); zone != NULL;
7113 	    zone = list_next(&zone_active, zone)) {
7114 		if (zone_dl_exists(zone, linkid)) {
7115 			*zoneidp = zone->zone_id;
7116 			err = 0;
7117 			break;
7118 		}
7119 	}
7120 	mutex_exit(&zonehash_lock);
7121 	return (err);
7122 }
7123 
7124 /*
7125  * Get the list of datalink IDs assigned to a zone.
7126  *
7127  * On input, *nump is the number of datalink IDs that can fit in the supplied
7128  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7129  * that were placed in the array if the array was large enough, or to the
7130  * number of datalink IDs that the function needs to place in the array if the
7131  * array is too small.
7132  */
7133 static int
7134 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7135 {
7136 	uint_t num, dlcount;
7137 	zone_t *zone;
7138 	zone_dl_t *zdl;
7139 	datalink_id_t *idptr = idarray;
7140 
7141 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7142 		return (set_errno(EFAULT));
7143 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7144 		return (set_errno(ENXIO));
7145 
7146 	num = 0;
7147 	mutex_enter(&zone->zone_lock);
7148 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7149 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7150 		/*
7151 		 * If the list is bigger than what the caller supplied, just
7152 		 * count, don't do copyout.
7153 		 */
7154 		if (++num > dlcount)
7155 			continue;
7156 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7157 			mutex_exit(&zone->zone_lock);
7158 			zone_rele(zone);
7159 			return (set_errno(EFAULT));
7160 		}
7161 		idptr++;
7162 	}
7163 	mutex_exit(&zone->zone_lock);
7164 	zone_rele(zone);
7165 
7166 	/* Increased or decreased, caller should be notified. */
7167 	if (num != dlcount) {
7168 		if (copyout(&num, nump, sizeof (num)) != 0)
7169 			return (set_errno(EFAULT));
7170 	}
7171 	return (0);
7172 }
7173 
7174 /*
7175  * Public interface for looking up a zone by zoneid. It's a customized version
7176  * for netstack_zone_create(). It can only be called from the zsd create
7177  * callbacks, since it doesn't have reference on the zone structure hence if
7178  * it is called elsewhere the zone could disappear after the zonehash_lock
7179  * is dropped.
7180  *
7181  * Furthermore it
7182  * 1. Doesn't check the status of the zone.
7183  * 2. It will be called even before zone_init is called, in that case the
7184  *    address of zone0 is returned directly, and netstack_zone_create()
7185  *    will only assign a value to zone0.zone_netstack, won't break anything.
7186  * 3. Returns without the zone being held.
7187  */
7188 zone_t *
7189 zone_find_by_id_nolock(zoneid_t zoneid)
7190 {
7191 	zone_t *zone;
7192 
7193 	mutex_enter(&zonehash_lock);
7194 	if (zonehashbyid == NULL)
7195 		zone = &zone0;
7196 	else
7197 		zone = zone_find_all_by_id(zoneid);
7198 	mutex_exit(&zonehash_lock);
7199 	return (zone);
7200 }
7201 
7202 /*
7203  * Walk the datalinks for a given zone
7204  */
7205 int
7206 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7207     void *data)
7208 {
7209 	zone_t		*zone;
7210 	zone_dl_t	*zdl;
7211 	datalink_id_t	*idarray;
7212 	uint_t		idcount = 0;
7213 	int		i, ret = 0;
7214 
7215 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7216 		return (ENOENT);
7217 
7218 	/*
7219 	 * We first build an array of linkid's so that we can walk these and
7220 	 * execute the callback with the zone_lock dropped.
7221 	 */
7222 	mutex_enter(&zone->zone_lock);
7223 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7224 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7225 		idcount++;
7226 	}
7227 
7228 	if (idcount == 0) {
7229 		mutex_exit(&zone->zone_lock);
7230 		zone_rele(zone);
7231 		return (0);
7232 	}
7233 
7234 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7235 	if (idarray == NULL) {
7236 		mutex_exit(&zone->zone_lock);
7237 		zone_rele(zone);
7238 		return (ENOMEM);
7239 	}
7240 
7241 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7242 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7243 		idarray[i] = zdl->zdl_id;
7244 	}
7245 
7246 	mutex_exit(&zone->zone_lock);
7247 
7248 	for (i = 0; i < idcount && ret == 0; i++) {
7249 		if ((ret = (*cb)(idarray[i], data)) != 0)
7250 			break;
7251 	}
7252 
7253 	zone_rele(zone);
7254 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7255 	return (ret);
7256 }
7257 
7258 static char *
7259 zone_net_type2name(int type)
7260 {
7261 	switch (type) {
7262 	case ZONE_NETWORK_ADDRESS:
7263 		return (ZONE_NET_ADDRNAME);
7264 	case ZONE_NETWORK_DEFROUTER:
7265 		return (ZONE_NET_RTRNAME);
7266 	default:
7267 		return (NULL);
7268 	}
7269 }
7270 
7271 static int
7272 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7273 {
7274 	zone_t *zone;
7275 	zone_dl_t *zdl;
7276 	nvlist_t *nvl;
7277 	int err = 0;
7278 	uint8_t *new = NULL;
7279 	char *nvname;
7280 	int bufsize;
7281 	datalink_id_t linkid = znbuf->zn_linkid;
7282 
7283 	if (secpolicy_zone_config(CRED()) != 0)
7284 		return (set_errno(EPERM));
7285 
7286 	if (zoneid == GLOBAL_ZONEID)
7287 		return (set_errno(EINVAL));
7288 
7289 	nvname = zone_net_type2name(znbuf->zn_type);
7290 	bufsize = znbuf->zn_len;
7291 	new = znbuf->zn_val;
7292 	if (nvname == NULL)
7293 		return (set_errno(EINVAL));
7294 
7295 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7296 		return (set_errno(EINVAL));
7297 	}
7298 
7299 	mutex_enter(&zone->zone_lock);
7300 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7301 		err = ENXIO;
7302 		goto done;
7303 	}
7304 	if ((nvl = zdl->zdl_net) == NULL) {
7305 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7306 			err = ENOMEM;
7307 			goto done;
7308 		} else {
7309 			zdl->zdl_net = nvl;
7310 		}
7311 	}
7312 	if (nvlist_exists(nvl, nvname)) {
7313 		err = EINVAL;
7314 		goto done;
7315 	}
7316 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7317 	ASSERT(err == 0);
7318 done:
7319 	mutex_exit(&zone->zone_lock);
7320 	zone_rele(zone);
7321 	if (err != 0)
7322 		return (set_errno(err));
7323 	else
7324 		return (0);
7325 }
7326 
7327 static int
7328 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7329 {
7330 	zone_t *zone;
7331 	zone_dl_t *zdl;
7332 	nvlist_t *nvl;
7333 	uint8_t *ptr;
7334 	uint_t psize;
7335 	int err = 0;
7336 	char *nvname;
7337 	int bufsize;
7338 	void *buf;
7339 	datalink_id_t linkid = znbuf->zn_linkid;
7340 
7341 	if (zoneid == GLOBAL_ZONEID)
7342 		return (set_errno(EINVAL));
7343 
7344 	nvname = zone_net_type2name(znbuf->zn_type);
7345 	bufsize = znbuf->zn_len;
7346 	buf = znbuf->zn_val;
7347 
7348 	if (nvname == NULL)
7349 		return (set_errno(EINVAL));
7350 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7351 		return (set_errno(EINVAL));
7352 
7353 	mutex_enter(&zone->zone_lock);
7354 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7355 		err = ENXIO;
7356 		goto done;
7357 	}
7358 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7359 		err = ENOENT;
7360 		goto done;
7361 	}
7362 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7363 	ASSERT(err == 0);
7364 
7365 	if (psize > bufsize) {
7366 		err = ENOBUFS;
7367 		goto done;
7368 	}
7369 	znbuf->zn_len = psize;
7370 	bcopy(ptr, buf, psize);
7371 done:
7372 	mutex_exit(&zone->zone_lock);
7373 	zone_rele(zone);
7374 	if (err != 0)
7375 		return (set_errno(err));
7376 	else
7377 		return (0);
7378 }
7379