xref: /illumos-gate/usr/src/uts/common/os/streamio.c (revision 7d8deab2c421c563ab11a55e623ed48109e237af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 
25 /*
26  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
27  * Copyright 2017 Joyent, Inc.
28  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/param.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
36 #include <sys/stat.h>
37 #include <sys/proc.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/tihdr.h>
46 #include <sys/var.h>
47 #include <sys/poll.h>
48 #include <sys/termio.h>
49 #include <sys/ttold.h>
50 #include <sys/systm.h>
51 #include <sys/uio.h>
52 #include <sys/cmn_err.h>
53 #include <sys/sad.h>
54 #include <sys/netstack.h>
55 #include <sys/priocntl.h>
56 #include <sys/jioctl.h>
57 #include <sys/procset.h>
58 #include <sys/session.h>
59 #include <sys/kmem.h>
60 #include <sys/filio.h>
61 #include <sys/vtrace.h>
62 #include <sys/debug.h>
63 #include <sys/strredir.h>
64 #include <sys/fs/fifonode.h>
65 #include <sys/fs/snode.h>
66 #include <sys/strlog.h>
67 #include <sys/strsun.h>
68 #include <sys/project.h>
69 #include <sys/kbio.h>
70 #include <sys/msio.h>
71 #include <sys/tty.h>
72 #include <sys/ptyvar.h>
73 #include <sys/vuid_event.h>
74 #include <sys/modctl.h>
75 #include <sys/sunddi.h>
76 #include <sys/sunldi_impl.h>
77 #include <sys/autoconf.h>
78 #include <sys/policy.h>
79 #include <sys/dld.h>
80 #include <sys/zone.h>
81 #include <sys/ptms.h>
82 #include <c2/audit.h>
83 
84 /*
85  * This define helps improve the readability of streams code while
86  * still maintaining a very old streams performance enhancement.  The
87  * performance enhancement basically involved having all callers
88  * of straccess() perform the first check that straccess() will do
89  * locally before actually calling straccess().  (There by reducing
90  * the number of unnecessary calls to straccess().)
91  */
92 #define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
93 				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
94 				    straccess((x), (y)))
95 
96 /*
97  * what is mblk_pull_len?
98  *
99  * If a streams message consists of many short messages,
100  * a performance degradation occurs from copyout overhead.
101  * To decrease the per mblk overhead, messages that are
102  * likely to consist of many small mblks are pulled up into
103  * one continuous chunk of memory.
104  *
105  * To avoid the processing overhead of examining every
106  * mblk, a quick heuristic is used. If the first mblk in
107  * the message is shorter than mblk_pull_len, it is likely
108  * that the rest of the mblk will be short.
109  *
110  * This heuristic was decided upon after performance tests
111  * indicated that anything more complex slowed down the main
112  * code path.
113  */
114 #define	MBLK_PULL_LEN 64
115 uint32_t mblk_pull_len = MBLK_PULL_LEN;
116 
117 /*
118  * The sgttyb_handling flag controls the handling of the old BSD
119  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
120  *
121  * 0 - Emit no warnings at all and retain old, broken behavior.
122  * 1 - Emit no warnings and silently handle new semantics.
123  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
124  *     (once per system invocation).  Handle with new semantics.
125  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
126  *     made (so that offenders drop core and are easy to debug).
127  *
128  * The "new semantics" are that TIOCGETP returns B38400 for
129  * sg_[io]speed if the corresponding value is over B38400, and that
130  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
131  * bit rate."
132  */
133 int sgttyb_handling = 1;
134 static boolean_t sgttyb_complaint;
135 
136 /* don't push drcompat module by default on Style-2 streams */
137 static int push_drcompat = 0;
138 
139 /*
140  * id value used to distinguish between different ioctl messages
141  */
142 static uint32_t ioc_id;
143 
144 static void putback(struct stdata *, queue_t *, mblk_t *, int);
145 static void strcleanall(struct vnode *);
146 static int strwsrv(queue_t *);
147 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
148 
149 /*
150  * qinit and module_info structures for stream head read and write queues
151  */
152 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
153 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
154 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
155 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
156 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
157     FIFOLOWAT };
158 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
159 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
160 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
161 
162 extern kmutex_t	strresources;	/* protects global resources */
163 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
164 
165 static boolean_t msghasdata(mblk_t *bp);
166 #define	msgnodata(bp) (!msghasdata(bp))
167 
168 /*
169  * Stream head locking notes:
170  *	There are four monitors associated with the stream head:
171  *	1. v_stream monitor: in stropen() and strclose() v_lock
172  *		is held while the association of vnode and stream
173  *		head is established or tested for.
174  *	2. open/close/push/pop monitor: sd_lock is held while each
175  *		thread bids for exclusive access to this monitor
176  *		for opening or closing a stream.  In addition, this
177  *		monitor is entered during pushes and pops.  This
178  *		guarantees that during plumbing operations there
179  *		is only one thread trying to change the plumbing.
180  *		Any other threads present in the stream are only
181  *		using the plumbing.
182  *	3. read/write monitor: in the case of read, a thread holds
183  *		sd_lock while trying to get data from the stream
184  *		head queue.  if there is none to fulfill a read
185  *		request, it sets RSLEEP and calls cv_wait_sig() down
186  *		in strwaitq() to await the arrival of new data.
187  *		when new data arrives in strrput(), sd_lock is acquired
188  *		before testing for RSLEEP and calling cv_broadcast().
189  *		the behavior of strwrite(), strwsrv(), and WSLEEP
190  *		mirror this.
191  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
192  *		thread is doing an ioctl at a time.
193  */
194 
195 static int
196 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
197     int anchor, cred_t *crp, uint_t anchor_zoneid)
198 {
199 	int error;
200 	fmodsw_impl_t *fp;
201 
202 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
203 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
204 		return (error);
205 	}
206 	if (stp->sd_pushcnt >= nstrpush) {
207 		return (EINVAL);
208 	}
209 
210 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
211 		stp->sd_flag |= STREOPENFAIL;
212 		return (EINVAL);
213 	}
214 
215 	/*
216 	 * push new module and call its open routine via qattach
217 	 */
218 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
219 		return (error);
220 
221 	/*
222 	 * Check to see if caller wants a STREAMS anchor
223 	 * put at this place in the stream, and add if so.
224 	 */
225 	mutex_enter(&stp->sd_lock);
226 	if (anchor == stp->sd_pushcnt) {
227 		stp->sd_anchor = stp->sd_pushcnt;
228 		stp->sd_anchorzone = anchor_zoneid;
229 	}
230 	mutex_exit(&stp->sd_lock);
231 
232 	return (0);
233 }
234 
235 static int
236 xpg4_fixup(queue_t *qp, dev_t *devp, struct stdata *stp, cred_t *crp)
237 {
238 	static const char *ptsmods[] = {
239 	    "ptem", "ldterm", "ttcompat"
240 	};
241 	dev_t dummydev = *devp;
242 	struct strioctl strioc;
243 	zoneid_t zoneid;
244 	int32_t rval;
245 	uint_t i;
246 
247 	/*
248 	 * Push modules required for the slave PTY to have terminal
249 	 * semantics out of the box; this is required by XPG4v2.
250 	 * These three modules are flagged as single-instance so that
251 	 * the system will never end up with duplicate copies pushed
252 	 * onto a stream.
253 	 */
254 
255 	zoneid = crgetzoneid(crp);
256 	for (i = 0; i < ARRAY_SIZE(ptsmods); i++) {
257 		int error;
258 
259 		error = push_mod(qp, &dummydev, stp, ptsmods[i], 0,
260 		    crp, zoneid);
261 		if (error != 0)
262 			return (error);
263 	}
264 
265 	/*
266 	 * Send PTSSTTY down the stream
267 	 */
268 
269 	strioc.ic_cmd = PTSSTTY;
270 	strioc.ic_timout = 0;
271 	strioc.ic_len = 0;
272 	strioc.ic_dp = NULL;
273 
274 	(void) strdoioctl(stp, &strioc, FNATIVE, K_TO_K, crp, &rval);
275 
276 	return (0);
277 }
278 
279 /*
280  * Open a stream device.
281  */
282 int
283 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
284 {
285 	struct stdata *stp;
286 	queue_t *qp;
287 	int s;
288 	dev_t dummydev, savedev;
289 	struct autopush *ap;
290 	struct dlautopush dlap;
291 	int error = 0;
292 	ssize_t	rmin, rmax;
293 	int cloneopen;
294 	queue_t *brq;
295 	major_t major;
296 	str_stack_t *ss;
297 	zoneid_t zoneid;
298 	uint_t anchor;
299 
300 	/*
301 	 * If the stream already exists, wait for any open in progress
302 	 * to complete, then call the open function of each module and
303 	 * driver in the stream.  Otherwise create the stream.
304 	 */
305 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
306 retry:
307 	mutex_enter(&vp->v_lock);
308 	if ((stp = vp->v_stream) != NULL) {
309 
310 		/*
311 		 * Waiting for stream to be created to device
312 		 * due to another open.
313 		 */
314 		mutex_exit(&vp->v_lock);
315 
316 		if (STRMATED(stp)) {
317 			struct stdata *strmatep = stp->sd_mate;
318 
319 			STRLOCKMATES(stp);
320 			if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
321 				if (flag & (FNDELAY|FNONBLOCK)) {
322 					error = EAGAIN;
323 					mutex_exit(&strmatep->sd_lock);
324 					goto ckreturn;
325 				}
326 				mutex_exit(&stp->sd_lock);
327 				if (!cv_wait_sig(&strmatep->sd_monitor,
328 				    &strmatep->sd_lock)) {
329 					error = EINTR;
330 					mutex_exit(&strmatep->sd_lock);
331 					mutex_enter(&stp->sd_lock);
332 					goto ckreturn;
333 				}
334 				mutex_exit(&strmatep->sd_lock);
335 				goto retry;
336 			}
337 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
338 				if (flag & (FNDELAY|FNONBLOCK)) {
339 					error = EAGAIN;
340 					mutex_exit(&strmatep->sd_lock);
341 					goto ckreturn;
342 				}
343 				mutex_exit(&strmatep->sd_lock);
344 				if (!cv_wait_sig(&stp->sd_monitor,
345 				    &stp->sd_lock)) {
346 					error = EINTR;
347 					goto ckreturn;
348 				}
349 				mutex_exit(&stp->sd_lock);
350 				goto retry;
351 			}
352 
353 			if (stp->sd_flag & (STRDERR|STWRERR)) {
354 				error = EIO;
355 				mutex_exit(&strmatep->sd_lock);
356 				goto ckreturn;
357 			}
358 
359 			stp->sd_flag |= STWOPEN;
360 			STRUNLOCKMATES(stp);
361 		} else {
362 			mutex_enter(&stp->sd_lock);
363 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
364 				if (flag & (FNDELAY|FNONBLOCK)) {
365 					error = EAGAIN;
366 					goto ckreturn;
367 				}
368 				if (!cv_wait_sig(&stp->sd_monitor,
369 				    &stp->sd_lock)) {
370 					error = EINTR;
371 					goto ckreturn;
372 				}
373 				mutex_exit(&stp->sd_lock);
374 				goto retry;  /* could be clone! */
375 			}
376 
377 			if (stp->sd_flag & (STRDERR|STWRERR)) {
378 				error = EIO;
379 				goto ckreturn;
380 			}
381 
382 			stp->sd_flag |= STWOPEN;
383 			mutex_exit(&stp->sd_lock);
384 		}
385 
386 		/*
387 		 * Open all modules and devices down stream to notify
388 		 * that another user is streaming.  For modules, set the
389 		 * last argument to MODOPEN and do not pass any open flags.
390 		 * Ignore dummydev since this is not the first open.
391 		 */
392 		claimstr(stp->sd_wrq);
393 		qp = stp->sd_wrq;
394 		while (_SAMESTR(qp)) {
395 			qp = qp->q_next;
396 			if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
397 				break;
398 		}
399 		releasestr(stp->sd_wrq);
400 		mutex_enter(&stp->sd_lock);
401 		stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
402 		stp->sd_rerror = 0;
403 		stp->sd_werror = 0;
404 ckreturn:
405 		cv_broadcast(&stp->sd_monitor);
406 		mutex_exit(&stp->sd_lock);
407 		return (error);
408 	}
409 
410 	/*
411 	 * This vnode isn't streaming.  SPECFS already
412 	 * checked for multiple vnodes pointing to the
413 	 * same stream, so create a stream to the driver.
414 	 */
415 	qp = allocq();
416 	stp = shalloc(qp);
417 
418 	/*
419 	 * Initialize stream head.  shalloc() has given us
420 	 * exclusive access, and we have the vnode locked;
421 	 * we can do whatever we want with stp.
422 	 */
423 	stp->sd_flag = STWOPEN;
424 	stp->sd_siglist = NULL;
425 	stp->sd_pollist.ph_list = NULL;
426 	stp->sd_sigflags = 0;
427 	stp->sd_mark = NULL;
428 	stp->sd_closetime = STRTIMOUT;
429 	stp->sd_sidp = NULL;
430 	stp->sd_pgidp = NULL;
431 	stp->sd_vnode = vp;
432 	stp->sd_pvnode = NULL;
433 	stp->sd_rerror = 0;
434 	stp->sd_werror = 0;
435 	stp->sd_wroff = 0;
436 	stp->sd_tail = 0;
437 	stp->sd_iocblk = NULL;
438 	stp->sd_cmdblk = NULL;
439 	stp->sd_pushcnt = 0;
440 	stp->sd_qn_minpsz = 0;
441 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
442 	stp->sd_maxblk = INFPSZ;
443 	qp->q_ptr = _WR(qp)->q_ptr = stp;
444 	STREAM(qp) = STREAM(_WR(qp)) = stp;
445 	vp->v_stream = stp;
446 	mutex_exit(&vp->v_lock);
447 	if (vp->v_type == VFIFO) {
448 		stp->sd_flag |= OLDNDELAY;
449 		/*
450 		 * This means, both for pipes and fifos
451 		 * strwrite will send SIGPIPE if the other
452 		 * end is closed. For putmsg it depends
453 		 * on whether it is a XPG4_2 application
454 		 * or not
455 		 */
456 		stp->sd_wput_opt = SW_SIGPIPE;
457 
458 		/* setq might sleep in kmem_alloc - avoid holding locks. */
459 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
460 		    SQ_CI|SQ_CO, B_FALSE);
461 
462 		set_qend(qp);
463 		stp->sd_strtab = fifo_getinfo();
464 		_WR(qp)->q_nfsrv = _WR(qp);
465 		qp->q_nfsrv = qp;
466 		/*
467 		 * Wake up others that are waiting for stream to be created.
468 		 */
469 		mutex_enter(&stp->sd_lock);
470 		/*
471 		 * nothing is be pushed on stream yet, so
472 		 * optimized stream head packetsizes are just that
473 		 * of the read queue
474 		 */
475 		stp->sd_qn_minpsz = qp->q_minpsz;
476 		stp->sd_qn_maxpsz = qp->q_maxpsz;
477 		stp->sd_flag &= ~STWOPEN;
478 		goto fifo_opendone;
479 	}
480 	/* setq might sleep in kmem_alloc - avoid holding locks. */
481 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
482 
483 	set_qend(qp);
484 
485 	/*
486 	 * Open driver and create stream to it (via qattach).
487 	 */
488 	savedev = *devp;
489 	cloneopen = (getmajor(*devp) == clone_major);
490 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
491 		mutex_enter(&vp->v_lock);
492 		vp->v_stream = NULL;
493 		mutex_exit(&vp->v_lock);
494 		mutex_enter(&stp->sd_lock);
495 		cv_broadcast(&stp->sd_monitor);
496 		mutex_exit(&stp->sd_lock);
497 		freeq(_RD(qp));
498 		shfree(stp);
499 		return (error);
500 	}
501 	/*
502 	 * Set sd_strtab after open in order to handle clonable drivers
503 	 */
504 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
505 
506 	/*
507 	 * Historical note: dummydev used to be be prior to the initial
508 	 * open (via qattach above), which made the value seen
509 	 * inconsistent between an I_PUSH and an autopush of a module.
510 	 */
511 	dummydev = *devp;
512 
513 	/*
514 	 * For clone open of old style (Q not associated) network driver,
515 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
516 	 */
517 	brq = _RD(_WR(qp)->q_next);
518 	major = getmajor(*devp);
519 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
520 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
521 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
522 			cmn_err(CE_WARN, "cannot push " DRMODNAME
523 			    " streams module");
524 	}
525 
526 	if (!NETWORK_DRV(major)) {
527 		savedev = *devp;
528 	} else {
529 		/*
530 		 * For network devices, process differently based on the
531 		 * return value from dld_autopush():
532 		 *
533 		 *   0: the passed-in device points to a GLDv3 datalink with
534 		 *   per-link autopush configuration; use that configuration
535 		 *   and ignore any per-driver autopush configuration.
536 		 *
537 		 *   1: the passed-in device points to a physical GLDv3
538 		 *   datalink without per-link autopush configuration.  The
539 		 *   passed in device was changed to refer to the actual
540 		 *   physical device (if it's not already); we use that new
541 		 *   device to look up any per-driver autopush configuration.
542 		 *
543 		 *   -1: neither of the above cases applied; use the initial
544 		 *   device to look up any per-driver autopush configuration.
545 		 */
546 		switch (dld_autopush(&savedev, &dlap)) {
547 		case 0:
548 			zoneid = crgetzoneid(crp);
549 			for (s = 0; s < dlap.dap_npush; s++) {
550 				error = push_mod(qp, &dummydev, stp,
551 				    dlap.dap_aplist[s], dlap.dap_anchor, crp,
552 				    zoneid);
553 				if (error != 0)
554 					break;
555 			}
556 			goto opendone;
557 		case 1:
558 			break;
559 		case -1:
560 			savedev = *devp;
561 			break;
562 		}
563 	}
564 	/*
565 	 * Find the autopush configuration based on "savedev". Start with the
566 	 * global zone. If not found check in the local zone.
567 	 */
568 	zoneid = GLOBAL_ZONEID;
569 retryap:
570 	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
571 	    netstack_str;
572 	if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
573 		netstack_rele(ss->ss_netstack);
574 		if (zoneid == GLOBAL_ZONEID) {
575 			/*
576 			 * None found. Also look in the zone's autopush table.
577 			 */
578 			zoneid = crgetzoneid(crp);
579 			if (zoneid != GLOBAL_ZONEID)
580 				goto retryap;
581 		}
582 		goto opendone;
583 	}
584 	anchor = ap->ap_anchor;
585 	zoneid = crgetzoneid(crp);
586 	for (s = 0; s < ap->ap_npush; s++) {
587 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
588 		    anchor, crp, zoneid);
589 		if (error != 0)
590 			break;
591 	}
592 	sad_ap_rele(ap, ss);
593 	netstack_rele(ss->ss_netstack);
594 
595 opendone:
596 
597 	if (error == 0 &&
598 	    (stp->sd_flag & (STRISTTY|STRXPG4TTY)) == (STRISTTY|STRXPG4TTY)) {
599 		error = xpg4_fixup(qp, devp, stp, crp);
600 	}
601 
602 	/*
603 	 * let specfs know that open failed part way through
604 	 */
605 	if (error != 0) {
606 		mutex_enter(&stp->sd_lock);
607 		stp->sd_flag |= STREOPENFAIL;
608 		mutex_exit(&stp->sd_lock);
609 	}
610 
611 	/*
612 	 * Wake up others that are waiting for stream to be created.
613 	 */
614 	mutex_enter(&stp->sd_lock);
615 	stp->sd_flag &= ~STWOPEN;
616 
617 	/*
618 	 * As a performance concern we are caching the values of
619 	 * q_minpsz and q_maxpsz of the module below the stream
620 	 * head in the stream head.
621 	 */
622 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
623 	rmin = stp->sd_wrq->q_next->q_minpsz;
624 	rmax = stp->sd_wrq->q_next->q_maxpsz;
625 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
626 
627 	/* do this processing here as a performance concern */
628 	if (strmsgsz != 0) {
629 		if (rmax == INFPSZ)
630 			rmax = strmsgsz;
631 		else
632 			rmax = MIN(strmsgsz, rmax);
633 	}
634 
635 	mutex_enter(QLOCK(stp->sd_wrq));
636 	stp->sd_qn_minpsz = rmin;
637 	stp->sd_qn_maxpsz = rmax;
638 	mutex_exit(QLOCK(stp->sd_wrq));
639 
640 fifo_opendone:
641 	cv_broadcast(&stp->sd_monitor);
642 	mutex_exit(&stp->sd_lock);
643 	return (error);
644 }
645 
646 static int strsink(queue_t *, mblk_t *);
647 static struct qinit deadrend = {
648 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
649 };
650 static struct qinit deadwend = {
651 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
652 };
653 
654 /*
655  * Close a stream.
656  * This is called from closef() on the last close of an open stream.
657  * Strclean() will already have removed the siglist and pollist
658  * information, so all that remains is to remove all multiplexor links
659  * for the stream, pop all the modules (and the driver), and free the
660  * stream structure.
661  */
662 
663 int
664 strclose(struct vnode *vp, int flag, cred_t *crp)
665 {
666 	struct stdata *stp;
667 	queue_t *qp;
668 	int rval;
669 	int freestp = 1;
670 	queue_t *rmq;
671 
672 	TRACE_1(TR_FAC_STREAMS_FR,
673 	    TR_STRCLOSE, "strclose:%p", vp);
674 	ASSERT(vp->v_stream);
675 
676 	stp = vp->v_stream;
677 	ASSERT(!(stp->sd_flag & STPLEX));
678 	qp = stp->sd_wrq;
679 
680 	/*
681 	 * Needed so that strpoll will return non-zero for this fd.
682 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
683 	 */
684 	mutex_enter(&stp->sd_lock);
685 	stp->sd_flag |= STRHUP;
686 	mutex_exit(&stp->sd_lock);
687 
688 	/*
689 	 * If the registered process or process group did not have an
690 	 * open instance of this stream then strclean would not be
691 	 * called. Thus at the time of closing all remaining siglist entries
692 	 * are removed.
693 	 */
694 	if (stp->sd_siglist != NULL)
695 		strcleanall(vp);
696 
697 	ASSERT(stp->sd_siglist == NULL);
698 	ASSERT(stp->sd_sigflags == 0);
699 
700 	if (STRMATED(stp)) {
701 		struct stdata *strmatep = stp->sd_mate;
702 		int waited = 1;
703 
704 		STRLOCKMATES(stp);
705 		while (waited) {
706 			waited = 0;
707 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
708 				mutex_exit(&strmatep->sd_lock);
709 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
710 				mutex_exit(&stp->sd_lock);
711 				STRLOCKMATES(stp);
712 				waited = 1;
713 			}
714 			while (strmatep->sd_flag &
715 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
716 				mutex_exit(&stp->sd_lock);
717 				cv_wait(&strmatep->sd_monitor,
718 				    &strmatep->sd_lock);
719 				mutex_exit(&strmatep->sd_lock);
720 				STRLOCKMATES(stp);
721 				waited = 1;
722 			}
723 		}
724 		stp->sd_flag |= STRCLOSE;
725 		STRUNLOCKMATES(stp);
726 	} else {
727 		mutex_enter(&stp->sd_lock);
728 		stp->sd_flag |= STRCLOSE;
729 		mutex_exit(&stp->sd_lock);
730 	}
731 
732 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
733 
734 	/* Check if an I_LINK was ever done on this stream */
735 	if (stp->sd_flag & STRHASLINKS) {
736 		netstack_t *ns;
737 		str_stack_t *ss;
738 
739 		ns = netstack_find_by_cred(crp);
740 		ASSERT(ns != NULL);
741 		ss = ns->netstack_str;
742 		ASSERT(ss != NULL);
743 
744 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
745 		netstack_rele(ss->ss_netstack);
746 	}
747 
748 	while (_SAMESTR(qp)) {
749 		/*
750 		 * Holding sd_lock prevents q_next from changing in
751 		 * this stream.
752 		 */
753 		mutex_enter(&stp->sd_lock);
754 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
755 
756 			/*
757 			 * sleep until awakened by strwsrv() or timeout
758 			 */
759 			for (;;) {
760 				mutex_enter(QLOCK(qp->q_next));
761 				if (!(qp->q_next->q_mblkcnt)) {
762 					mutex_exit(QLOCK(qp->q_next));
763 					break;
764 				}
765 				stp->sd_flag |= WSLEEP;
766 
767 				/* ensure strwsrv gets enabled */
768 				qp->q_next->q_flag |= QWANTW;
769 				mutex_exit(QLOCK(qp->q_next));
770 				/* get out if we timed out or recv'd a signal */
771 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
772 				    stp->sd_closetime, 0) <= 0) {
773 					break;
774 				}
775 			}
776 			stp->sd_flag &= ~WSLEEP;
777 		}
778 		mutex_exit(&stp->sd_lock);
779 
780 		rmq = qp->q_next;
781 		if (rmq->q_flag & QISDRV) {
782 			ASSERT(!_SAMESTR(rmq));
783 			wait_sq_svc(_RD(qp)->q_syncq);
784 		}
785 
786 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
787 	}
788 
789 	/*
790 	 * Since we call pollwakeup in close() now, the poll list should
791 	 * be empty in most cases. The only exception is the layered devices
792 	 * (e.g. the console drivers with redirection modules pushed on top
793 	 * of it).  We have to do this after calling qdetach() because
794 	 * the redirection module won't have torn down the console
795 	 * redirection until after qdetach() has been invoked.
796 	 */
797 	if (stp->sd_pollist.ph_list != NULL) {
798 		pollwakeup(&stp->sd_pollist, POLLERR);
799 		pollhead_clean(&stp->sd_pollist);
800 	}
801 	ASSERT(stp->sd_pollist.ph_list == NULL);
802 	ASSERT(stp->sd_sidp == NULL);
803 	ASSERT(stp->sd_pgidp == NULL);
804 
805 	/* Prevent qenable from re-enabling the stream head queue */
806 	disable_svc(_RD(qp));
807 
808 	/*
809 	 * Wait until service procedure of each queue is
810 	 * run, if QINSERVICE is set.
811 	 */
812 	wait_svc(_RD(qp));
813 
814 	/*
815 	 * Now, flush both queues.
816 	 */
817 	flushq(_RD(qp), FLUSHALL);
818 	flushq(qp, FLUSHALL);
819 
820 	/*
821 	 * If the write queue of the stream head is pointing to a
822 	 * read queue, we have a twisted stream.  If the read queue
823 	 * is alive, convert the stream head queues into a dead end.
824 	 * If the read queue is dead, free the dead pair.
825 	 */
826 	if (qp->q_next && !_SAMESTR(qp)) {
827 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
828 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
829 			shfree(qp->q_next->q_stream);
830 			freeq(qp->q_next);
831 			freeq(_RD(qp));
832 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
833 			freeq(_RD(qp));
834 		} else {				/* pipe */
835 			freestp = 0;
836 			/*
837 			 * The q_info pointers are never accessed when
838 			 * SQLOCK is held.
839 			 */
840 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
841 			mutex_enter(SQLOCK(qp->q_syncq));
842 			qp->q_qinfo = &deadwend;
843 			_RD(qp)->q_qinfo = &deadrend;
844 			mutex_exit(SQLOCK(qp->q_syncq));
845 		}
846 	} else {
847 		freeq(_RD(qp)); /* free stream head queue pair */
848 	}
849 
850 	mutex_enter(&vp->v_lock);
851 	if (stp->sd_iocblk) {
852 		if (stp->sd_iocblk != (mblk_t *)-1) {
853 			freemsg(stp->sd_iocblk);
854 		}
855 		stp->sd_iocblk = NULL;
856 	}
857 	stp->sd_vnode = stp->sd_pvnode = NULL;
858 	vp->v_stream = NULL;
859 	mutex_exit(&vp->v_lock);
860 	mutex_enter(&stp->sd_lock);
861 	freemsg(stp->sd_cmdblk);
862 	stp->sd_cmdblk = NULL;
863 	stp->sd_flag &= ~STRCLOSE;
864 	cv_broadcast(&stp->sd_monitor);
865 	mutex_exit(&stp->sd_lock);
866 
867 	if (freestp)
868 		shfree(stp);
869 	return (0);
870 }
871 
872 static int
873 strsink(queue_t *q, mblk_t *bp)
874 {
875 	struct copyresp *resp;
876 
877 	switch (bp->b_datap->db_type) {
878 	case M_FLUSH:
879 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
880 			*bp->b_rptr &= ~FLUSHR;
881 			bp->b_flag |= MSGNOLOOP;
882 			/*
883 			 * Protect against the driver passing up
884 			 * messages after it has done a qprocsoff.
885 			 */
886 			if (_OTHERQ(q)->q_next == NULL)
887 				freemsg(bp);
888 			else
889 				qreply(q, bp);
890 		} else {
891 			freemsg(bp);
892 		}
893 		break;
894 
895 	case M_COPYIN:
896 	case M_COPYOUT:
897 		if (bp->b_cont) {
898 			freemsg(bp->b_cont);
899 			bp->b_cont = NULL;
900 		}
901 		bp->b_datap->db_type = M_IOCDATA;
902 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
903 		resp = (struct copyresp *)bp->b_rptr;
904 		resp->cp_rval = (caddr_t)1;	/* failure */
905 		/*
906 		 * Protect against the driver passing up
907 		 * messages after it has done a qprocsoff.
908 		 */
909 		if (_OTHERQ(q)->q_next == NULL)
910 			freemsg(bp);
911 		else
912 			qreply(q, bp);
913 		break;
914 
915 	case M_IOCTL:
916 		if (bp->b_cont) {
917 			freemsg(bp->b_cont);
918 			bp->b_cont = NULL;
919 		}
920 		bp->b_datap->db_type = M_IOCNAK;
921 		/*
922 		 * Protect against the driver passing up
923 		 * messages after it has done a qprocsoff.
924 		 */
925 		if (_OTHERQ(q)->q_next == NULL)
926 			freemsg(bp);
927 		else
928 			qreply(q, bp);
929 		break;
930 
931 	default:
932 		freemsg(bp);
933 		break;
934 	}
935 
936 	return (0);
937 }
938 
939 /*
940  * Clean up after a process when it closes a stream.  This is called
941  * from closef for all closes, whereas strclose is called only for the
942  * last close on a stream.  The siglist is scanned for entries for the
943  * current process, and these are removed.
944  */
945 void
946 strclean(struct vnode *vp)
947 {
948 	strsig_t *ssp, *pssp, *tssp;
949 	stdata_t *stp;
950 	int update = 0;
951 
952 	TRACE_1(TR_FAC_STREAMS_FR,
953 	    TR_STRCLEAN, "strclean:%p", vp);
954 	stp = vp->v_stream;
955 	pssp = NULL;
956 	mutex_enter(&stp->sd_lock);
957 	ssp = stp->sd_siglist;
958 	while (ssp) {
959 		if (ssp->ss_pidp == curproc->p_pidp) {
960 			tssp = ssp->ss_next;
961 			if (pssp)
962 				pssp->ss_next = tssp;
963 			else
964 				stp->sd_siglist = tssp;
965 			mutex_enter(&pidlock);
966 			PID_RELE(ssp->ss_pidp);
967 			mutex_exit(&pidlock);
968 			kmem_free(ssp, sizeof (strsig_t));
969 			update = 1;
970 			ssp = tssp;
971 		} else {
972 			pssp = ssp;
973 			ssp = ssp->ss_next;
974 		}
975 	}
976 	if (update) {
977 		stp->sd_sigflags = 0;
978 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
979 			stp->sd_sigflags |= ssp->ss_events;
980 	}
981 	mutex_exit(&stp->sd_lock);
982 }
983 
984 /*
985  * Used on the last close to remove any remaining items on the siglist.
986  * These could be present on the siglist due to I_ESETSIG calls that
987  * use process groups or processed that do not have an open file descriptor
988  * for this stream (Such entries would not be removed by strclean).
989  */
990 static void
991 strcleanall(struct vnode *vp)
992 {
993 	strsig_t *ssp, *nssp;
994 	stdata_t *stp;
995 
996 	stp = vp->v_stream;
997 	mutex_enter(&stp->sd_lock);
998 	ssp = stp->sd_siglist;
999 	stp->sd_siglist = NULL;
1000 	while (ssp) {
1001 		nssp = ssp->ss_next;
1002 		mutex_enter(&pidlock);
1003 		PID_RELE(ssp->ss_pidp);
1004 		mutex_exit(&pidlock);
1005 		kmem_free(ssp, sizeof (strsig_t));
1006 		ssp = nssp;
1007 	}
1008 	stp->sd_sigflags = 0;
1009 	mutex_exit(&stp->sd_lock);
1010 }
1011 
1012 /*
1013  * Retrieve the next message from the logical stream head read queue
1014  * using either rwnext (if sync stream) or getq_noenab.
1015  * It is the callers responsibility to call qbackenable after
1016  * it is finished with the message. The caller should not call
1017  * qbackenable until after any putback calls to avoid spurious backenabling.
1018  */
1019 mblk_t *
1020 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
1021     int *errorp)
1022 {
1023 	mblk_t *bp;
1024 	int error;
1025 	ssize_t rbytes = 0;
1026 
1027 	/* Holding sd_lock prevents the read queue from changing  */
1028 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1029 
1030 	if (uiop != NULL && stp->sd_struiordq != NULL &&
1031 	    q->q_first == NULL &&
1032 	    (!first || (stp->sd_wakeq & RSLEEP))) {
1033 		/*
1034 		 * Stream supports rwnext() for the read side.
1035 		 * If this is the first time we're called by e.g. strread
1036 		 * only do the downcall if there is a deferred wakeup
1037 		 * (registered in sd_wakeq).
1038 		 */
1039 		struiod_t uiod;
1040 
1041 		if (first)
1042 			stp->sd_wakeq &= ~RSLEEP;
1043 
1044 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
1045 		    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
1046 		uiod.d_mp = 0;
1047 		/*
1048 		 * Mark that a thread is in rwnext on the read side
1049 		 * to prevent strrput from nacking ioctls immediately.
1050 		 * When the last concurrent rwnext returns
1051 		 * the ioctls are nack'ed.
1052 		 */
1053 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1054 		stp->sd_struiodnak++;
1055 		/*
1056 		 * Note: rwnext will drop sd_lock.
1057 		 */
1058 		error = rwnext(q, &uiod);
1059 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1060 		mutex_enter(&stp->sd_lock);
1061 		stp->sd_struiodnak--;
1062 		while (stp->sd_struiodnak == 0 &&
1063 		    ((bp = stp->sd_struionak) != NULL)) {
1064 			stp->sd_struionak = bp->b_next;
1065 			bp->b_next = NULL;
1066 			bp->b_datap->db_type = M_IOCNAK;
1067 			/*
1068 			 * Protect against the driver passing up
1069 			 * messages after it has done a qprocsoff.
1070 			 */
1071 			if (_OTHERQ(q)->q_next == NULL)
1072 				freemsg(bp);
1073 			else {
1074 				mutex_exit(&stp->sd_lock);
1075 				qreply(q, bp);
1076 				mutex_enter(&stp->sd_lock);
1077 			}
1078 		}
1079 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1080 		if (error == 0 || error == EWOULDBLOCK) {
1081 			if ((bp = uiod.d_mp) != NULL) {
1082 				*errorp = 0;
1083 				ASSERT(MUTEX_HELD(&stp->sd_lock));
1084 				return (bp);
1085 			}
1086 			error = 0;
1087 		} else if (error == EINVAL) {
1088 			/*
1089 			 * The stream plumbing must have
1090 			 * changed while we were away, so
1091 			 * just turn off rwnext()s.
1092 			 */
1093 			error = 0;
1094 		} else if (error == EBUSY) {
1095 			/*
1096 			 * The module might have data in transit using putnext
1097 			 * Fall back on waiting + getq.
1098 			 */
1099 			error = 0;
1100 		} else {
1101 			*errorp = error;
1102 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1103 			return (NULL);
1104 		}
1105 		/*
1106 		 * Try a getq in case a rwnext() generated mblk
1107 		 * has bubbled up via strrput().
1108 		 */
1109 	}
1110 	*errorp = 0;
1111 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1112 
1113 	/*
1114 	 * If we have a valid uio, try and use this as a guide for how
1115 	 * many bytes to retrieve from the queue via getq_noenab().
1116 	 * Doing this can avoid unneccesary counting of overlong
1117 	 * messages in putback(). We currently only do this for sockets
1118 	 * and only if there is no sd_rputdatafunc hook.
1119 	 *
1120 	 * The sd_rputdatafunc hook transforms the entire message
1121 	 * before any bytes in it can be given to a client. So, rbytes
1122 	 * must be 0 if there is a hook.
1123 	 */
1124 	if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1125 	    (stp->sd_rputdatafunc == NULL))
1126 		rbytes = uiop->uio_resid;
1127 
1128 	return (getq_noenab(q, rbytes));
1129 }
1130 
1131 /*
1132  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1133  * If the message does not fit in the uio the remainder of it is returned;
1134  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1135  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1136  * the error code, the message is consumed, and NULL is returned.
1137  */
1138 static mblk_t *
1139 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1140 {
1141 	int error;
1142 	ptrdiff_t n;
1143 	mblk_t *nbp;
1144 
1145 	ASSERT(bp->b_wptr >= bp->b_rptr);
1146 
1147 	do {
1148 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1149 			ASSERT(n > 0);
1150 
1151 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1152 			if (error != 0) {
1153 				freemsg(bp);
1154 				*errorp = error;
1155 				return (NULL);
1156 			}
1157 		}
1158 
1159 		bp->b_rptr += n;
1160 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1161 			nbp = bp;
1162 			bp = bp->b_cont;
1163 			freeb(nbp);
1164 		}
1165 	} while (bp != NULL && uiop->uio_resid > 0);
1166 
1167 	*errorp = 0;
1168 	return (bp);
1169 }
1170 
1171 /*
1172  * Read a stream according to the mode flags in sd_flag:
1173  *
1174  * (default mode)		- Byte stream, msg boundaries are ignored
1175  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1176  *				any data remaining in msg
1177  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1178  *				any remaining data on head of read queue
1179  *
1180  * Consume readable messages on the front of the queue until
1181  * ttolwp(curthread)->lwp_count
1182  * is satisfied, the readable messages are exhausted, or a message
1183  * boundary is reached in a message mode.  If no data was read and
1184  * the stream was not opened with the NDELAY flag, block until data arrives.
1185  * Otherwise return the data read and update the count.
1186  *
1187  * In default mode a 0 length message signifies end-of-file and terminates
1188  * a read in progress.  The 0 length message is removed from the queue
1189  * only if it is the only message read (no data is read).
1190  *
1191  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1192  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1193  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1194  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1195  * are unlinked from and M_DATA blocks in the message, the protos are
1196  * thrown away, and the data is read.
1197  */
1198 /* ARGSUSED */
1199 int
1200 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1201 {
1202 	struct stdata *stp;
1203 	mblk_t *bp, *nbp;
1204 	queue_t *q;
1205 	int error = 0;
1206 	uint_t old_sd_flag;
1207 	int first;
1208 	char rflg;
1209 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1210 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1211 	short delim;
1212 	unsigned char pri = 0;
1213 	char waitflag;
1214 	unsigned char type;
1215 
1216 	TRACE_1(TR_FAC_STREAMS_FR,
1217 	    TR_STRREAD_ENTER, "strread:%p", vp);
1218 	ASSERT(vp->v_stream);
1219 	stp = vp->v_stream;
1220 
1221 	mutex_enter(&stp->sd_lock);
1222 
1223 	if ((error = i_straccess(stp, JCREAD)) != 0) {
1224 		mutex_exit(&stp->sd_lock);
1225 		return (error);
1226 	}
1227 
1228 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1229 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1230 		if (error != 0) {
1231 			mutex_exit(&stp->sd_lock);
1232 			return (error);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * Loop terminates when uiop->uio_resid == 0.
1238 	 */
1239 	rflg = 0;
1240 	waitflag = READWAIT;
1241 	q = _RD(stp->sd_wrq);
1242 	for (;;) {
1243 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1244 		old_sd_flag = stp->sd_flag;
1245 		mark = 0;
1246 		delim = 0;
1247 		first = 1;
1248 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1249 			int done = 0;
1250 
1251 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1252 
1253 			if (error != 0)
1254 				goto oops;
1255 
1256 			if (stp->sd_flag & (STRHUP|STREOF)) {
1257 				goto oops;
1258 			}
1259 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1260 				goto oops;
1261 			}
1262 			/*
1263 			 * If a read(fd,buf,0) has been done, there is no
1264 			 * need to sleep. We always have zero bytes to
1265 			 * return.
1266 			 */
1267 			if (uiop->uio_resid == 0) {
1268 				goto oops;
1269 			}
1270 
1271 			qbackenable(q, 0);
1272 
1273 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1274 			    "strread calls strwaitq:%p, %p, %p",
1275 			    vp, uiop, crp);
1276 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1277 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1278 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1279 				    "strread error or done:%p, %p, %p",
1280 				    vp, uiop, crp);
1281 				if ((uiop->uio_fmode & FNDELAY) &&
1282 				    (stp->sd_flag & OLDNDELAY) &&
1283 				    (error == EAGAIN))
1284 					error = 0;
1285 				goto oops;
1286 			}
1287 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1288 			    "strread awakes:%p, %p, %p", vp, uiop, crp);
1289 			if ((error = i_straccess(stp, JCREAD)) != 0) {
1290 				goto oops;
1291 			}
1292 			first = 0;
1293 		}
1294 
1295 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1296 		ASSERT(bp);
1297 		pri = bp->b_band;
1298 		/*
1299 		 * Extract any mark information. If the message is not
1300 		 * completely consumed this information will be put in the mblk
1301 		 * that is putback.
1302 		 * If MSGMARKNEXT is set and the message is completely consumed
1303 		 * the STRATMARK flag will be set below. Likewise, if
1304 		 * MSGNOTMARKNEXT is set and the message is
1305 		 * completely consumed STRNOTATMARK will be set.
1306 		 *
1307 		 * For some unknown reason strread only breaks the read at the
1308 		 * last mark.
1309 		 */
1310 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1311 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1312 		    (MSGMARKNEXT|MSGNOTMARKNEXT));
1313 		if (mark != 0 && bp == stp->sd_mark) {
1314 			if (rflg) {
1315 				putback(stp, q, bp, pri);
1316 				goto oops;
1317 			}
1318 			mark |= _LASTMARK;
1319 			stp->sd_mark = NULL;
1320 		}
1321 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1322 			delim = 1;
1323 		mutex_exit(&stp->sd_lock);
1324 
1325 		if (STREAM_NEEDSERVICE(stp))
1326 			stream_runservice(stp);
1327 
1328 		type = bp->b_datap->db_type;
1329 
1330 		switch (type) {
1331 
1332 		case M_DATA:
1333 ismdata:
1334 			if (msgnodata(bp)) {
1335 				if (mark || delim) {
1336 					freemsg(bp);
1337 				} else if (rflg) {
1338 
1339 					/*
1340 					 * If already read data put zero
1341 					 * length message back on queue else
1342 					 * free msg and return 0.
1343 					 */
1344 					bp->b_band = pri;
1345 					mutex_enter(&stp->sd_lock);
1346 					putback(stp, q, bp, pri);
1347 					mutex_exit(&stp->sd_lock);
1348 				} else {
1349 					freemsg(bp);
1350 				}
1351 				error =  0;
1352 				goto oops1;
1353 			}
1354 
1355 			rflg = 1;
1356 			waitflag |= NOINTR;
1357 			bp = struiocopyout(bp, uiop, &error);
1358 			if (error != 0)
1359 				goto oops1;
1360 
1361 			mutex_enter(&stp->sd_lock);
1362 			if (bp) {
1363 				/*
1364 				 * Have remaining data in message.
1365 				 * Free msg if in discard mode.
1366 				 */
1367 				if (stp->sd_read_opt & RD_MSGDIS) {
1368 					freemsg(bp);
1369 				} else {
1370 					bp->b_band = pri;
1371 					if ((mark & _LASTMARK) &&
1372 					    (stp->sd_mark == NULL))
1373 						stp->sd_mark = bp;
1374 					bp->b_flag |= mark & ~_LASTMARK;
1375 					if (delim)
1376 						bp->b_flag |= MSGDELIM;
1377 					if (msgnodata(bp))
1378 						freemsg(bp);
1379 					else
1380 						putback(stp, q, bp, pri);
1381 				}
1382 			} else {
1383 				/*
1384 				 * Consumed the complete message.
1385 				 * Move the MSG*MARKNEXT information
1386 				 * to the stream head just in case
1387 				 * the read queue becomes empty.
1388 				 *
1389 				 * If the stream head was at the mark
1390 				 * (STRATMARK) before we dropped sd_lock above
1391 				 * and some data was consumed then we have
1392 				 * moved past the mark thus STRATMARK is
1393 				 * cleared. However, if a message arrived in
1394 				 * strrput during the copyout above causing
1395 				 * STRATMARK to be set we can not clear that
1396 				 * flag.
1397 				 */
1398 				if (mark &
1399 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1400 					if (mark & MSGMARKNEXT) {
1401 						stp->sd_flag &= ~STRNOTATMARK;
1402 						stp->sd_flag |= STRATMARK;
1403 					} else if (mark & MSGNOTMARKNEXT) {
1404 						stp->sd_flag &= ~STRATMARK;
1405 						stp->sd_flag |= STRNOTATMARK;
1406 					} else {
1407 						stp->sd_flag &=
1408 						    ~(STRATMARK|STRNOTATMARK);
1409 					}
1410 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1411 					stp->sd_flag &= ~STRATMARK;
1412 				}
1413 			}
1414 
1415 			/*
1416 			 * Check for signal messages at the front of the read
1417 			 * queue and generate the signal(s) if appropriate.
1418 			 * The only signal that can be on queue is M_SIG at
1419 			 * this point.
1420 			 */
1421 			while ((((bp = q->q_first)) != NULL) &&
1422 			    (bp->b_datap->db_type == M_SIG)) {
1423 				bp = getq_noenab(q, 0);
1424 				/*
1425 				 * sd_lock is held so the content of the
1426 				 * read queue can not change.
1427 				 */
1428 				ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
1429 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
1430 				mutex_exit(&stp->sd_lock);
1431 				freemsg(bp);
1432 				if (STREAM_NEEDSERVICE(stp))
1433 					stream_runservice(stp);
1434 				mutex_enter(&stp->sd_lock);
1435 			}
1436 
1437 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1438 			    delim ||
1439 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1440 				goto oops;
1441 			}
1442 			continue;
1443 
1444 		case M_SIG:
1445 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1446 			freemsg(bp);
1447 			mutex_enter(&stp->sd_lock);
1448 			continue;
1449 
1450 		case M_PROTO:
1451 		case M_PCPROTO:
1452 			/*
1453 			 * Only data messages are readable.
1454 			 * Any others generate an error, unless
1455 			 * RD_PROTDIS or RD_PROTDAT is set.
1456 			 */
1457 			if (stp->sd_read_opt & RD_PROTDAT) {
1458 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1459 					if ((nbp->b_datap->db_type ==
1460 					    M_PROTO) ||
1461 					    (nbp->b_datap->db_type ==
1462 					    M_PCPROTO)) {
1463 						nbp->b_datap->db_type = M_DATA;
1464 					} else {
1465 						break;
1466 					}
1467 				}
1468 				/*
1469 				 * clear stream head hi pri flag based on
1470 				 * first message
1471 				 */
1472 				if (type == M_PCPROTO) {
1473 					mutex_enter(&stp->sd_lock);
1474 					stp->sd_flag &= ~STRPRI;
1475 					mutex_exit(&stp->sd_lock);
1476 				}
1477 				goto ismdata;
1478 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1479 				/*
1480 				 * discard non-data messages
1481 				 */
1482 				while (bp &&
1483 				    ((bp->b_datap->db_type == M_PROTO) ||
1484 				    (bp->b_datap->db_type == M_PCPROTO))) {
1485 					nbp = unlinkb(bp);
1486 					freeb(bp);
1487 					bp = nbp;
1488 				}
1489 				/*
1490 				 * clear stream head hi pri flag based on
1491 				 * first message
1492 				 */
1493 				if (type == M_PCPROTO) {
1494 					mutex_enter(&stp->sd_lock);
1495 					stp->sd_flag &= ~STRPRI;
1496 					mutex_exit(&stp->sd_lock);
1497 				}
1498 				if (bp) {
1499 					bp->b_band = pri;
1500 					goto ismdata;
1501 				} else {
1502 					break;
1503 				}
1504 			}
1505 			/* FALLTHRU */
1506 		case M_PASSFP:
1507 			if ((bp->b_datap->db_type == M_PASSFP) &&
1508 			    (stp->sd_read_opt & RD_PROTDIS)) {
1509 				freemsg(bp);
1510 				break;
1511 			}
1512 			mutex_enter(&stp->sd_lock);
1513 			putback(stp, q, bp, pri);
1514 			mutex_exit(&stp->sd_lock);
1515 			if (rflg == 0)
1516 				error = EBADMSG;
1517 			goto oops1;
1518 
1519 		default:
1520 			/*
1521 			 * Garbage on stream head read queue.
1522 			 */
1523 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1524 			    bp->b_datap->db_type);
1525 			freemsg(bp);
1526 			goto oops1;
1527 		}
1528 		mutex_enter(&stp->sd_lock);
1529 	}
1530 oops:
1531 	mutex_exit(&stp->sd_lock);
1532 oops1:
1533 	qbackenable(q, pri);
1534 	return (error);
1535 #undef	_LASTMARK
1536 }
1537 
1538 /*
1539  * Default processing of M_PROTO/M_PCPROTO messages.
1540  * Determine which wakeups and signals are needed.
1541  * This can be replaced by a user-specified procedure for kernel users
1542  * of STREAMS.
1543  */
1544 /* ARGSUSED */
1545 mblk_t *
1546 strrput_proto(vnode_t *vp, mblk_t *mp,
1547     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1548     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1549 {
1550 	*wakeups = RSLEEP;
1551 	*allmsgsigs = 0;
1552 
1553 	switch (mp->b_datap->db_type) {
1554 	case M_PROTO:
1555 		if (mp->b_band == 0) {
1556 			*firstmsgsigs = S_INPUT | S_RDNORM;
1557 			*pollwakeups = POLLIN | POLLRDNORM;
1558 		} else {
1559 			*firstmsgsigs = S_INPUT | S_RDBAND;
1560 			*pollwakeups = POLLIN | POLLRDBAND;
1561 		}
1562 		break;
1563 	case M_PCPROTO:
1564 		*firstmsgsigs = S_HIPRI;
1565 		*pollwakeups = POLLPRI;
1566 		break;
1567 	}
1568 	return (mp);
1569 }
1570 
1571 /*
1572  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1573  * M_PASSFP messages.
1574  * Determine which wakeups and signals are needed.
1575  * This can be replaced by a user-specified procedure for kernel users
1576  * of STREAMS.
1577  */
1578 /* ARGSUSED */
1579 mblk_t *
1580 strrput_misc(vnode_t *vp, mblk_t *mp,
1581     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1582     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1583 {
1584 	*wakeups = 0;
1585 	*firstmsgsigs = 0;
1586 	*allmsgsigs = 0;
1587 	*pollwakeups = 0;
1588 	return (mp);
1589 }
1590 
1591 /*
1592  * Stream read put procedure.  Called from downstream driver/module
1593  * with messages for the stream head.  Data, protocol, and in-stream
1594  * signal messages are placed on the queue, others are handled directly.
1595  */
1596 int
1597 strrput(queue_t *q, mblk_t *bp)
1598 {
1599 	struct stdata	*stp;
1600 	ulong_t		rput_opt;
1601 	strwakeup_t	wakeups;
1602 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1603 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1604 	strsigset_t	signals;	/* Signals events to generate */
1605 	strpollset_t	pollwakeups;
1606 	mblk_t		*nextbp;
1607 	uchar_t		band = 0;
1608 	int		hipri_sig;
1609 
1610 	stp = (struct stdata *)q->q_ptr;
1611 	/*
1612 	 * Use rput_opt for optimized access to the SR_ flags except
1613 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1614 	 * is modified by strpoll().
1615 	 */
1616 	rput_opt = stp->sd_rput_opt;
1617 
1618 	ASSERT(qclaimed(q));
1619 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1620 	    "strrput called with message type:q %p bp %p", q, bp);
1621 
1622 	/*
1623 	 * Perform initial processing and pass to the parameterized functions.
1624 	 */
1625 	ASSERT(bp->b_next == NULL);
1626 
1627 	switch (bp->b_datap->db_type) {
1628 	case M_DATA:
1629 		/*
1630 		 * sockfs is the only consumer of STREOF and when it is set,
1631 		 * it implies that the receiver is not interested in receiving
1632 		 * any more data, hence the mblk is freed to prevent unnecessary
1633 		 * message queueing at the stream head.
1634 		 */
1635 		if (stp->sd_flag == STREOF) {
1636 			freemsg(bp);
1637 			return (0);
1638 		}
1639 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1640 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1641 			/*
1642 			 * Ignore zero-length M_DATA messages. These might be
1643 			 * generated by some transports.
1644 			 * The zero-length M_DATA messages, even if they
1645 			 * are ignored, should effect the atmark tracking and
1646 			 * should wake up a thread sleeping in strwaitmark.
1647 			 */
1648 			mutex_enter(&stp->sd_lock);
1649 			if (bp->b_flag & MSGMARKNEXT) {
1650 				/*
1651 				 * Record the position of the mark either
1652 				 * in q_last or in STRATMARK.
1653 				 */
1654 				if (q->q_last != NULL) {
1655 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1656 					q->q_last->b_flag |= MSGMARKNEXT;
1657 				} else {
1658 					stp->sd_flag &= ~STRNOTATMARK;
1659 					stp->sd_flag |= STRATMARK;
1660 				}
1661 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1662 				/*
1663 				 * Record that this is not the position of
1664 				 * the mark either in q_last or in
1665 				 * STRNOTATMARK.
1666 				 */
1667 				if (q->q_last != NULL) {
1668 					q->q_last->b_flag &= ~MSGMARKNEXT;
1669 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1670 				} else {
1671 					stp->sd_flag &= ~STRATMARK;
1672 					stp->sd_flag |= STRNOTATMARK;
1673 				}
1674 			}
1675 			if (stp->sd_flag & RSLEEP) {
1676 				stp->sd_flag &= ~RSLEEP;
1677 				cv_broadcast(&q->q_wait);
1678 			}
1679 			mutex_exit(&stp->sd_lock);
1680 			freemsg(bp);
1681 			return (0);
1682 		}
1683 		wakeups = RSLEEP;
1684 		if (bp->b_band == 0) {
1685 			firstmsgsigs = S_INPUT | S_RDNORM;
1686 			pollwakeups = POLLIN | POLLRDNORM;
1687 		} else {
1688 			firstmsgsigs = S_INPUT | S_RDBAND;
1689 			pollwakeups = POLLIN | POLLRDBAND;
1690 		}
1691 		if (rput_opt & SR_SIGALLDATA)
1692 			allmsgsigs = firstmsgsigs;
1693 		else
1694 			allmsgsigs = 0;
1695 
1696 		mutex_enter(&stp->sd_lock);
1697 		if ((rput_opt & SR_CONSOL_DATA) &&
1698 		    (q->q_last != NULL) &&
1699 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1700 			/*
1701 			 * Consolidate an M_DATA message onto an M_DATA,
1702 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1703 			 * The consolidation does not take place if
1704 			 * the old message is marked with either of the
1705 			 * marks or the delim flag or if the new
1706 			 * message is marked with MSGMARK. The MSGMARK
1707 			 * check is needed to handle the odd semantics of
1708 			 * MSGMARK where essentially the whole message
1709 			 * is to be treated as marked.
1710 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1711 			 * new message to the front of the b_cont chain.
1712 			 */
1713 			mblk_t *lbp = q->q_last;
1714 			unsigned char db_type = lbp->b_datap->db_type;
1715 
1716 			if ((db_type == M_DATA || db_type == M_PROTO ||
1717 			    db_type == M_PCPROTO) &&
1718 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1719 				rmvq_noenab(q, lbp);
1720 				/*
1721 				 * The first message in the b_cont list
1722 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1723 				 * We need to handle the case where we
1724 				 * are appending:
1725 				 *
1726 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1727 				 * 2) a MSGMARKNEXT to a plain message.
1728 				 * 3) a MSGNOTMARKNEXT to a plain message
1729 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1730 				 *    message.
1731 				 *
1732 				 * Thus we never append a MSGMARKNEXT or
1733 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1734 				 */
1735 				if (bp->b_flag & MSGMARKNEXT) {
1736 					lbp->b_flag |= MSGMARKNEXT;
1737 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1738 					bp->b_flag &= ~MSGMARKNEXT;
1739 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1740 					lbp->b_flag |= MSGNOTMARKNEXT;
1741 					bp->b_flag &= ~MSGNOTMARKNEXT;
1742 				}
1743 
1744 				linkb(lbp, bp);
1745 				bp = lbp;
1746 				/*
1747 				 * The new message logically isn't the first
1748 				 * even though the q_first check below thinks
1749 				 * it is. Clear the firstmsgsigs to make it
1750 				 * not appear to be first.
1751 				 */
1752 				firstmsgsigs = 0;
1753 			}
1754 		}
1755 		break;
1756 
1757 	case M_PASSFP:
1758 		wakeups = RSLEEP;
1759 		allmsgsigs = 0;
1760 		if (bp->b_band == 0) {
1761 			firstmsgsigs = S_INPUT | S_RDNORM;
1762 			pollwakeups = POLLIN | POLLRDNORM;
1763 		} else {
1764 			firstmsgsigs = S_INPUT | S_RDBAND;
1765 			pollwakeups = POLLIN | POLLRDBAND;
1766 		}
1767 		mutex_enter(&stp->sd_lock);
1768 		break;
1769 
1770 	case M_PROTO:
1771 	case M_PCPROTO:
1772 		ASSERT(stp->sd_rprotofunc != NULL);
1773 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1774 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1775 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1776 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1777 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1778 		POLLWRBAND)
1779 
1780 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1781 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1782 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1783 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1784 
1785 		mutex_enter(&stp->sd_lock);
1786 		break;
1787 
1788 	default:
1789 		ASSERT(stp->sd_rmiscfunc != NULL);
1790 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1791 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1792 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1793 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1794 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1795 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1796 #undef	ALLSIG
1797 #undef	ALLPOLL
1798 		mutex_enter(&stp->sd_lock);
1799 		break;
1800 	}
1801 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1802 
1803 	/* By default generate superset of signals */
1804 	signals = (firstmsgsigs | allmsgsigs);
1805 
1806 	/*
1807 	 * The  proto and misc functions can return multiple messages
1808 	 * as a b_next chain. Such messages are processed separately.
1809 	 */
1810 one_more:
1811 	hipri_sig = 0;
1812 	if (bp == NULL) {
1813 		nextbp = NULL;
1814 	} else {
1815 		nextbp = bp->b_next;
1816 		bp->b_next = NULL;
1817 
1818 		switch (bp->b_datap->db_type) {
1819 		case M_PCPROTO:
1820 			/*
1821 			 * Only one priority protocol message is allowed at the
1822 			 * stream head at a time.
1823 			 */
1824 			if (stp->sd_flag & STRPRI) {
1825 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1826 				    "M_PCPROTO already at head");
1827 				freemsg(bp);
1828 				mutex_exit(&stp->sd_lock);
1829 				goto done;
1830 			}
1831 			stp->sd_flag |= STRPRI;
1832 			hipri_sig = 1;
1833 			/* FALLTHRU */
1834 		case M_DATA:
1835 		case M_PROTO:
1836 		case M_PASSFP:
1837 			band = bp->b_band;
1838 			/*
1839 			 * Marking doesn't work well when messages
1840 			 * are marked in more than one band.  We only
1841 			 * remember the last message received, even if
1842 			 * it is placed on the queue ahead of other
1843 			 * marked messages.
1844 			 */
1845 			if (bp->b_flag & MSGMARK)
1846 				stp->sd_mark = bp;
1847 			(void) putq(q, bp);
1848 
1849 			/*
1850 			 * If message is a PCPROTO message, always use
1851 			 * firstmsgsigs to determine if a signal should be
1852 			 * sent as strrput is the only place to send
1853 			 * signals for PCPROTO. Other messages are based on
1854 			 * the STRGETINPROG flag. The flag determines if
1855 			 * strrput or (k)strgetmsg will be responsible for
1856 			 * sending the signals, in the firstmsgsigs case.
1857 			 */
1858 			if ((hipri_sig == 1) ||
1859 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1860 			    (q->q_first == bp)))
1861 				signals = (firstmsgsigs | allmsgsigs);
1862 			else
1863 				signals = allmsgsigs;
1864 			break;
1865 
1866 		default:
1867 			mutex_exit(&stp->sd_lock);
1868 			(void) strrput_nondata(q, bp);
1869 			mutex_enter(&stp->sd_lock);
1870 			break;
1871 		}
1872 	}
1873 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1874 	/*
1875 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1876 	 */
1877 	if (wakeups & RSLEEP)
1878 		stp->sd_wakeq &= ~RSLEEP;
1879 
1880 	wakeups &= stp->sd_flag;
1881 	if (wakeups & RSLEEP) {
1882 		stp->sd_flag &= ~RSLEEP;
1883 		cv_broadcast(&q->q_wait);
1884 	}
1885 	if (wakeups & WSLEEP) {
1886 		stp->sd_flag &= ~WSLEEP;
1887 		cv_broadcast(&_WR(q)->q_wait);
1888 	}
1889 
1890 	if (pollwakeups != 0) {
1891 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1892 			/*
1893 			 * Can't use rput_opt since it was not
1894 			 * read when sd_lock was held and SR_POLLIN is changed
1895 			 * by strpoll() under sd_lock.
1896 			 */
1897 			if (!(stp->sd_rput_opt & SR_POLLIN))
1898 				goto no_pollwake;
1899 			stp->sd_rput_opt &= ~SR_POLLIN;
1900 		}
1901 		mutex_exit(&stp->sd_lock);
1902 		pollwakeup(&stp->sd_pollist, pollwakeups);
1903 		mutex_enter(&stp->sd_lock);
1904 	}
1905 no_pollwake:
1906 
1907 	/*
1908 	 * strsendsig can handle multiple signals with a
1909 	 * single call.
1910 	 */
1911 	if (stp->sd_sigflags & signals)
1912 		strsendsig(stp->sd_siglist, signals, band, 0);
1913 	mutex_exit(&stp->sd_lock);
1914 
1915 
1916 done:
1917 	if (nextbp == NULL)
1918 		return (0);
1919 
1920 	/*
1921 	 * Any signals were handled the first time.
1922 	 * Wakeups and pollwakeups are redone to avoid any race
1923 	 * conditions - all the messages are not queued until the
1924 	 * last message has been processed by strrput.
1925 	 */
1926 	bp = nextbp;
1927 	signals = firstmsgsigs = allmsgsigs = 0;
1928 	mutex_enter(&stp->sd_lock);
1929 	goto one_more;
1930 }
1931 
1932 static void
1933 log_dupioc(queue_t *rq, mblk_t *bp)
1934 {
1935 	queue_t *wq, *qp;
1936 	char *modnames, *mnp, *dname;
1937 	size_t maxmodstr;
1938 	boolean_t islast;
1939 
1940 	/*
1941 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1942 	 * and one driver, with spaces between and NUL terminator.  If we can't
1943 	 * get memory, then we'll just log the driver name.
1944 	 */
1945 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1946 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1947 
1948 	/* march down write side to print log message down to the driver */
1949 	wq = WR(rq);
1950 
1951 	/* make sure q_next doesn't shift around while we're grabbing data */
1952 	claimstr(wq);
1953 	qp = wq->q_next;
1954 	do {
1955 		dname = Q2NAME(qp);
1956 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1957 		if (modnames == NULL) {
1958 			/*
1959 			 * If we don't have memory, then get the driver name in
1960 			 * the log where we can see it.  Note that memory
1961 			 * pressure is a possible cause of these sorts of bugs.
1962 			 */
1963 			if (islast) {
1964 				modnames = dname;
1965 				maxmodstr = 0;
1966 			}
1967 		} else {
1968 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1969 			if (!islast)
1970 				*mnp++ = ' ';
1971 		}
1972 		qp = qp->q_next;
1973 	} while (!islast);
1974 	releasestr(wq);
1975 	/* Cannot happen unless stream head is corrupt. */
1976 	ASSERT(modnames != NULL);
1977 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1978 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
1979 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1980 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1981 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1982 	if (maxmodstr != 0)
1983 		kmem_free(modnames, maxmodstr);
1984 }
1985 
1986 int
1987 strrput_nondata(queue_t *q, mblk_t *bp)
1988 {
1989 	struct stdata *stp;
1990 	struct iocblk *iocbp;
1991 	struct stroptions *sop;
1992 	struct copyreq *reqp;
1993 	struct copyresp *resp;
1994 	unsigned char bpri;
1995 	unsigned char  flushed_already = 0;
1996 
1997 	stp = (struct stdata *)q->q_ptr;
1998 
1999 	ASSERT(!(stp->sd_flag & STPLEX));
2000 	ASSERT(qclaimed(q));
2001 
2002 	switch (bp->b_datap->db_type) {
2003 	case M_ERROR:
2004 		/*
2005 		 * An error has occurred downstream, the errno is in the first
2006 		 * bytes of the message.
2007 		 */
2008 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
2009 			unsigned char rw = 0;
2010 
2011 			mutex_enter(&stp->sd_lock);
2012 			if (*bp->b_rptr != NOERROR) {	/* read error */
2013 				if (*bp->b_rptr != 0) {
2014 					if (stp->sd_flag & STRDERR)
2015 						flushed_already |= FLUSHR;
2016 					stp->sd_flag |= STRDERR;
2017 					rw |= FLUSHR;
2018 				} else {
2019 					stp->sd_flag &= ~STRDERR;
2020 				}
2021 				stp->sd_rerror = *bp->b_rptr;
2022 			}
2023 			bp->b_rptr++;
2024 			if (*bp->b_rptr != NOERROR) {	/* write error */
2025 				if (*bp->b_rptr != 0) {
2026 					if (stp->sd_flag & STWRERR)
2027 						flushed_already |= FLUSHW;
2028 					stp->sd_flag |= STWRERR;
2029 					rw |= FLUSHW;
2030 				} else {
2031 					stp->sd_flag &= ~STWRERR;
2032 				}
2033 				stp->sd_werror = *bp->b_rptr;
2034 			}
2035 			if (rw) {
2036 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
2037 				    "strrput cv_broadcast:q %p, bp %p",
2038 				    q, bp);
2039 				cv_broadcast(&q->q_wait); /* readers */
2040 				cv_broadcast(&_WR(q)->q_wait); /* writers */
2041 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2042 
2043 				mutex_exit(&stp->sd_lock);
2044 				pollwakeup(&stp->sd_pollist, POLLERR);
2045 				mutex_enter(&stp->sd_lock);
2046 
2047 				if (stp->sd_sigflags & S_ERROR)
2048 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2049 					    ((rw & FLUSHR) ? stp->sd_rerror :
2050 					    stp->sd_werror));
2051 				mutex_exit(&stp->sd_lock);
2052 				/*
2053 				 * Send the M_FLUSH only
2054 				 * for the first M_ERROR
2055 				 * message on the stream
2056 				 */
2057 				if (flushed_already == rw) {
2058 					freemsg(bp);
2059 					return (0);
2060 				}
2061 
2062 				bp->b_datap->db_type = M_FLUSH;
2063 				*bp->b_rptr = rw;
2064 				bp->b_wptr = bp->b_rptr + 1;
2065 				/*
2066 				 * Protect against the driver
2067 				 * passing up messages after
2068 				 * it has done a qprocsoff
2069 				 */
2070 				if (_OTHERQ(q)->q_next == NULL)
2071 					freemsg(bp);
2072 				else
2073 					qreply(q, bp);
2074 				return (0);
2075 			} else
2076 				mutex_exit(&stp->sd_lock);
2077 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
2078 				if (stp->sd_flag & (STRDERR|STWRERR))
2079 					flushed_already = FLUSHRW;
2080 				mutex_enter(&stp->sd_lock);
2081 				stp->sd_flag |= (STRDERR|STWRERR);
2082 				stp->sd_rerror = *bp->b_rptr;
2083 				stp->sd_werror = *bp->b_rptr;
2084 				TRACE_2(TR_FAC_STREAMS_FR,
2085 				    TR_STRRPUT_WAKE2,
2086 				    "strrput wakeup #2:q %p, bp %p", q, bp);
2087 				cv_broadcast(&q->q_wait); /* the readers */
2088 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
2089 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2090 
2091 				mutex_exit(&stp->sd_lock);
2092 				pollwakeup(&stp->sd_pollist, POLLERR);
2093 				mutex_enter(&stp->sd_lock);
2094 
2095 				if (stp->sd_sigflags & S_ERROR)
2096 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2097 					    (stp->sd_werror ? stp->sd_werror :
2098 					    stp->sd_rerror));
2099 				mutex_exit(&stp->sd_lock);
2100 
2101 				/*
2102 				 * Send the M_FLUSH only
2103 				 * for the first M_ERROR
2104 				 * message on the stream
2105 				 */
2106 				if (flushed_already != FLUSHRW) {
2107 					bp->b_datap->db_type = M_FLUSH;
2108 					*bp->b_rptr = FLUSHRW;
2109 					/*
2110 					 * Protect against the driver passing up
2111 					 * messages after it has done a
2112 					 * qprocsoff.
2113 					 */
2114 					if (_OTHERQ(q)->q_next == NULL)
2115 						freemsg(bp);
2116 					else
2117 						qreply(q, bp);
2118 					return (0);
2119 				}
2120 		}
2121 		freemsg(bp);
2122 		return (0);
2123 
2124 	case M_HANGUP:
2125 
2126 		freemsg(bp);
2127 		mutex_enter(&stp->sd_lock);
2128 		stp->sd_werror = ENXIO;
2129 		stp->sd_flag |= STRHUP;
2130 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2131 
2132 		/*
2133 		 * send signal if controlling tty
2134 		 */
2135 
2136 		if (stp->sd_sidp) {
2137 			prsignal(stp->sd_sidp, SIGHUP);
2138 			if (stp->sd_sidp != stp->sd_pgidp)
2139 				pgsignal(stp->sd_pgidp, SIGTSTP);
2140 		}
2141 
2142 		/*
2143 		 * wake up read, write, and exception pollers and
2144 		 * reset wakeup mechanism.
2145 		 */
2146 		cv_broadcast(&q->q_wait);	/* the readers */
2147 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2148 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2149 		strhup(stp);
2150 		mutex_exit(&stp->sd_lock);
2151 		return (0);
2152 
2153 	case M_UNHANGUP:
2154 		freemsg(bp);
2155 		mutex_enter(&stp->sd_lock);
2156 		stp->sd_werror = 0;
2157 		stp->sd_flag &= ~STRHUP;
2158 		mutex_exit(&stp->sd_lock);
2159 		return (0);
2160 
2161 	case M_SIG:
2162 		/*
2163 		 * Someone downstream wants to post a signal.  The
2164 		 * signal to post is contained in the first byte of the
2165 		 * message.  If the message would go on the front of
2166 		 * the queue, send a signal to the process group
2167 		 * (if not SIGPOLL) or to the siglist processes
2168 		 * (SIGPOLL).  If something is already on the queue,
2169 		 * OR if we are delivering a delayed suspend (*sigh*
2170 		 * another "tty" hack) and there's no one sleeping already,
2171 		 * just enqueue the message.
2172 		 */
2173 		mutex_enter(&stp->sd_lock);
2174 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2175 		    !(stp->sd_flag & RSLEEP))) {
2176 			(void) putq(q, bp);
2177 			mutex_exit(&stp->sd_lock);
2178 			return (0);
2179 		}
2180 		mutex_exit(&stp->sd_lock);
2181 		/* FALLTHRU */
2182 
2183 	case M_PCSIG:
2184 		/*
2185 		 * Don't enqueue, just post the signal.
2186 		 */
2187 		strsignal(stp, *bp->b_rptr, 0L);
2188 		freemsg(bp);
2189 		return (0);
2190 
2191 	case M_CMD:
2192 		if (MBLKL(bp) != sizeof (cmdblk_t)) {
2193 			freemsg(bp);
2194 			return (0);
2195 		}
2196 
2197 		mutex_enter(&stp->sd_lock);
2198 		if (stp->sd_flag & STRCMDWAIT) {
2199 			ASSERT(stp->sd_cmdblk == NULL);
2200 			stp->sd_cmdblk = bp;
2201 			cv_broadcast(&stp->sd_monitor);
2202 			mutex_exit(&stp->sd_lock);
2203 		} else {
2204 			mutex_exit(&stp->sd_lock);
2205 			freemsg(bp);
2206 		}
2207 		return (0);
2208 
2209 	case M_FLUSH:
2210 		/*
2211 		 * Flush queues.  The indication of which queues to flush
2212 		 * is in the first byte of the message.  If the read queue
2213 		 * is specified, then flush it.  If FLUSHBAND is set, just
2214 		 * flush the band specified by the second byte of the message.
2215 		 *
2216 		 * If a module has issued a M_SETOPT to not flush hi
2217 		 * priority messages off of the stream head, then pass this
2218 		 * flag into the flushq code to preserve such messages.
2219 		 */
2220 
2221 		if (*bp->b_rptr & FLUSHR) {
2222 			mutex_enter(&stp->sd_lock);
2223 			if (*bp->b_rptr & FLUSHBAND) {
2224 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2225 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2226 			} else
2227 				flushq_common(q, FLUSHALL,
2228 				    stp->sd_read_opt & RFLUSHPCPROT);
2229 			if ((q->q_first == NULL) ||
2230 			    (q->q_first->b_datap->db_type < QPCTL))
2231 				stp->sd_flag &= ~STRPRI;
2232 			else {
2233 				ASSERT(stp->sd_flag & STRPRI);
2234 			}
2235 			mutex_exit(&stp->sd_lock);
2236 		}
2237 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2238 			*bp->b_rptr &= ~FLUSHR;
2239 			bp->b_flag |= MSGNOLOOP;
2240 			/*
2241 			 * Protect against the driver passing up
2242 			 * messages after it has done a qprocsoff.
2243 			 */
2244 			if (_OTHERQ(q)->q_next == NULL)
2245 				freemsg(bp);
2246 			else
2247 				qreply(q, bp);
2248 			return (0);
2249 		}
2250 		freemsg(bp);
2251 		return (0);
2252 
2253 	case M_IOCACK:
2254 	case M_IOCNAK:
2255 		iocbp = (struct iocblk *)bp->b_rptr;
2256 		/*
2257 		 * If not waiting for ACK or NAK then just free msg.
2258 		 * If incorrect id sequence number then just free msg.
2259 		 * If already have ACK or NAK for user then this is a
2260 		 *    duplicate, display a warning and free the msg.
2261 		 */
2262 		mutex_enter(&stp->sd_lock);
2263 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2264 		    (stp->sd_iocid != iocbp->ioc_id)) {
2265 			/*
2266 			 * If the ACK/NAK is a dup, display a message
2267 			 * Dup is when sd_iocid == ioc_id, and
2268 			 * sd_iocblk == <valid ptr> or -1 (the former
2269 			 * is when an ioctl has been put on the stream
2270 			 * head, but has not yet been consumed, the
2271 			 * later is when it has been consumed).
2272 			 */
2273 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2274 			    (stp->sd_iocblk != NULL)) {
2275 				log_dupioc(q, bp);
2276 			}
2277 			freemsg(bp);
2278 			mutex_exit(&stp->sd_lock);
2279 			return (0);
2280 		}
2281 
2282 		/*
2283 		 * Assign ACK or NAK to user and wake up.
2284 		 */
2285 		stp->sd_iocblk = bp;
2286 		cv_broadcast(&stp->sd_monitor);
2287 		mutex_exit(&stp->sd_lock);
2288 		return (0);
2289 
2290 	case M_COPYIN:
2291 	case M_COPYOUT:
2292 		reqp = (struct copyreq *)bp->b_rptr;
2293 
2294 		/*
2295 		 * If not waiting for ACK or NAK then just fail request.
2296 		 * If already have ACK, NAK, or copy request, then just
2297 		 * fail request.
2298 		 * If incorrect id sequence number then just fail request.
2299 		 */
2300 		mutex_enter(&stp->sd_lock);
2301 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2302 		    (stp->sd_iocid != reqp->cq_id)) {
2303 			if (bp->b_cont) {
2304 				freemsg(bp->b_cont);
2305 				bp->b_cont = NULL;
2306 			}
2307 			bp->b_datap->db_type = M_IOCDATA;
2308 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2309 			resp = (struct copyresp *)bp->b_rptr;
2310 			resp->cp_rval = (caddr_t)1;	/* failure */
2311 			mutex_exit(&stp->sd_lock);
2312 			putnext(stp->sd_wrq, bp);
2313 			return (0);
2314 		}
2315 
2316 		/*
2317 		 * Assign copy request to user and wake up.
2318 		 */
2319 		stp->sd_iocblk = bp;
2320 		cv_broadcast(&stp->sd_monitor);
2321 		mutex_exit(&stp->sd_lock);
2322 		return (0);
2323 
2324 	case M_SETOPTS:
2325 		/*
2326 		 * Set stream head options (read option, write offset,
2327 		 * min/max packet size, and/or high/low water marks for
2328 		 * the read side only).
2329 		 */
2330 
2331 		bpri = 0;
2332 		sop = (struct stroptions *)bp->b_rptr;
2333 		mutex_enter(&stp->sd_lock);
2334 		if (sop->so_flags & SO_READOPT) {
2335 			switch (sop->so_readopt & RMODEMASK) {
2336 			case RNORM:
2337 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2338 				break;
2339 
2340 			case RMSGD:
2341 				stp->sd_read_opt =
2342 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2343 				    RD_MSGDIS);
2344 				break;
2345 
2346 			case RMSGN:
2347 				stp->sd_read_opt =
2348 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2349 				    RD_MSGNODIS);
2350 				break;
2351 			}
2352 			switch (sop->so_readopt & RPROTMASK) {
2353 			case RPROTNORM:
2354 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2355 				break;
2356 
2357 			case RPROTDAT:
2358 				stp->sd_read_opt =
2359 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2360 				    RD_PROTDAT);
2361 				break;
2362 
2363 			case RPROTDIS:
2364 				stp->sd_read_opt =
2365 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2366 				    RD_PROTDIS);
2367 				break;
2368 			}
2369 			switch (sop->so_readopt & RFLUSHMASK) {
2370 			case RFLUSHPCPROT:
2371 				/*
2372 				 * This sets the stream head to NOT flush
2373 				 * M_PCPROTO messages.
2374 				 */
2375 				stp->sd_read_opt |= RFLUSHPCPROT;
2376 				break;
2377 			}
2378 		}
2379 		if (sop->so_flags & SO_ERROPT) {
2380 			switch (sop->so_erropt & RERRMASK) {
2381 			case RERRNORM:
2382 				stp->sd_flag &= ~STRDERRNONPERSIST;
2383 				break;
2384 			case RERRNONPERSIST:
2385 				stp->sd_flag |= STRDERRNONPERSIST;
2386 				break;
2387 			}
2388 			switch (sop->so_erropt & WERRMASK) {
2389 			case WERRNORM:
2390 				stp->sd_flag &= ~STWRERRNONPERSIST;
2391 				break;
2392 			case WERRNONPERSIST:
2393 				stp->sd_flag |= STWRERRNONPERSIST;
2394 				break;
2395 			}
2396 		}
2397 		if (sop->so_flags & SO_COPYOPT) {
2398 			if (sop->so_copyopt & ZCVMSAFE) {
2399 				stp->sd_copyflag |= STZCVMSAFE;
2400 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2401 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2402 				stp->sd_copyflag |= STZCVMUNSAFE;
2403 				stp->sd_copyflag &= ~STZCVMSAFE;
2404 			}
2405 
2406 			if (sop->so_copyopt & COPYCACHED) {
2407 				stp->sd_copyflag |= STRCOPYCACHED;
2408 			}
2409 		}
2410 		if (sop->so_flags & SO_WROFF)
2411 			stp->sd_wroff = sop->so_wroff;
2412 		if (sop->so_flags & SO_TAIL)
2413 			stp->sd_tail = sop->so_tail;
2414 		if (sop->so_flags & SO_MINPSZ)
2415 			q->q_minpsz = sop->so_minpsz;
2416 		if (sop->so_flags & SO_MAXPSZ)
2417 			q->q_maxpsz = sop->so_maxpsz;
2418 		if (sop->so_flags & SO_MAXBLK)
2419 			stp->sd_maxblk = sop->so_maxblk;
2420 		if (sop->so_flags & SO_HIWAT) {
2421 			if (sop->so_flags & SO_BAND) {
2422 				if (strqset(q, QHIWAT,
2423 				    sop->so_band, sop->so_hiwat)) {
2424 					cmn_err(CE_WARN, "strrput: could not "
2425 					    "allocate qband\n");
2426 				} else {
2427 					bpri = sop->so_band;
2428 				}
2429 			} else {
2430 				q->q_hiwat = sop->so_hiwat;
2431 			}
2432 		}
2433 		if (sop->so_flags & SO_LOWAT) {
2434 			if (sop->so_flags & SO_BAND) {
2435 				if (strqset(q, QLOWAT,
2436 				    sop->so_band, sop->so_lowat)) {
2437 					cmn_err(CE_WARN, "strrput: could not "
2438 					    "allocate qband\n");
2439 				} else {
2440 					bpri = sop->so_band;
2441 				}
2442 			} else {
2443 				q->q_lowat = sop->so_lowat;
2444 			}
2445 		}
2446 		if (sop->so_flags & SO_MREADON)
2447 			stp->sd_flag |= SNDMREAD;
2448 		if (sop->so_flags & SO_MREADOFF)
2449 			stp->sd_flag &= ~SNDMREAD;
2450 		if (sop->so_flags & SO_NDELON)
2451 			stp->sd_flag |= OLDNDELAY;
2452 		if (sop->so_flags & SO_NDELOFF)
2453 			stp->sd_flag &= ~OLDNDELAY;
2454 		if (sop->so_flags & SO_ISTTY)
2455 			stp->sd_flag |= STRISTTY;
2456 		if (sop->so_flags & SO_ISNTTY)
2457 			stp->sd_flag &= ~STRISTTY;
2458 		if (sop->so_flags & SO_TOSTOP)
2459 			stp->sd_flag |= STRTOSTOP;
2460 		if (sop->so_flags & SO_TONSTOP)
2461 			stp->sd_flag &= ~STRTOSTOP;
2462 		if (sop->so_flags & SO_DELIM)
2463 			stp->sd_flag |= STRDELIM;
2464 		if (sop->so_flags & SO_NODELIM)
2465 			stp->sd_flag &= ~STRDELIM;
2466 
2467 		mutex_exit(&stp->sd_lock);
2468 		freemsg(bp);
2469 
2470 		/* Check backenable in case the water marks changed */
2471 		qbackenable(q, bpri);
2472 		return (0);
2473 
2474 	/*
2475 	 * The following set of cases deal with situations where two stream
2476 	 * heads are connected to each other (twisted streams).  These messages
2477 	 * have no meaning at the stream head.
2478 	 */
2479 	case M_BREAK:
2480 	case M_CTL:
2481 	case M_DELAY:
2482 	case M_START:
2483 	case M_STOP:
2484 	case M_IOCDATA:
2485 	case M_STARTI:
2486 	case M_STOPI:
2487 		freemsg(bp);
2488 		return (0);
2489 
2490 	case M_IOCTL:
2491 		/*
2492 		 * Always NAK this condition
2493 		 * (makes no sense)
2494 		 * If there is one or more threads in the read side
2495 		 * rwnext we have to defer the nacking until that thread
2496 		 * returns (in strget).
2497 		 */
2498 		mutex_enter(&stp->sd_lock);
2499 		if (stp->sd_struiodnak != 0) {
2500 			/*
2501 			 * Defer NAK to the streamhead. Queue at the end
2502 			 * the list.
2503 			 */
2504 			mblk_t *mp = stp->sd_struionak;
2505 
2506 			while (mp && mp->b_next)
2507 				mp = mp->b_next;
2508 			if (mp)
2509 				mp->b_next = bp;
2510 			else
2511 				stp->sd_struionak = bp;
2512 			bp->b_next = NULL;
2513 			mutex_exit(&stp->sd_lock);
2514 			return (0);
2515 		}
2516 		mutex_exit(&stp->sd_lock);
2517 
2518 		bp->b_datap->db_type = M_IOCNAK;
2519 		/*
2520 		 * Protect against the driver passing up
2521 		 * messages after it has done a qprocsoff.
2522 		 */
2523 		if (_OTHERQ(q)->q_next == NULL)
2524 			freemsg(bp);
2525 		else
2526 			qreply(q, bp);
2527 		return (0);
2528 
2529 	default:
2530 #ifdef DEBUG
2531 		cmn_err(CE_WARN,
2532 		    "bad message type %x received at stream head\n",
2533 		    bp->b_datap->db_type);
2534 #endif
2535 		freemsg(bp);
2536 		return (0);
2537 	}
2538 
2539 	/* NOTREACHED */
2540 }
2541 
2542 /*
2543  * Check if the stream pointed to by `stp' can be written to, and return an
2544  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2545  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2546  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2547  */
2548 static int
2549 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2550 {
2551 	int error;
2552 
2553 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2554 
2555 	/*
2556 	 * For modem support, POSIX states that on writes, EIO should
2557 	 * be returned if the stream has been hung up.
2558 	 */
2559 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2560 		error = EIO;
2561 	else
2562 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2563 
2564 	if (error != 0) {
2565 		if (!(stp->sd_flag & STPLEX) &&
2566 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2567 			tsignal(curthread, SIGPIPE);
2568 			error = EPIPE;
2569 		}
2570 	}
2571 
2572 	return (error);
2573 }
2574 
2575 /*
2576  * Copyin and send data down a stream.
2577  * The caller will allocate and copyin any control part that precedes the
2578  * message and pass that in as mctl.
2579  *
2580  * Caller should *not* hold sd_lock.
2581  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2582  * under sd_lock in order to avoid missing a backenabling wakeup.
2583  *
2584  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2585  *
2586  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2587  * For sync streams we can only ignore flow control by reverting to using
2588  * putnext.
2589  *
2590  * If sd_maxblk is less than *iosize this routine might return without
2591  * transferring all of *iosize. In all cases, on return *iosize will contain
2592  * the amount of data that was transferred.
2593  */
2594 static int
2595 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2596     int b_flag, int pri, int flags)
2597 {
2598 	struiod_t uiod;
2599 	mblk_t *mp;
2600 	queue_t *wqp = stp->sd_wrq;
2601 	int error = 0;
2602 	ssize_t count = *iosize;
2603 
2604 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2605 
2606 	if (uiop != NULL && count >= 0)
2607 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2608 
2609 	if (!(flags & STRUIO_POSTPONE)) {
2610 		/*
2611 		 * Use regular canputnext, strmakedata, putnext sequence.
2612 		 */
2613 		if (pri == 0) {
2614 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2615 				freemsg(mctl);
2616 				return (EWOULDBLOCK);
2617 			}
2618 		} else {
2619 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2620 				freemsg(mctl);
2621 				return (EWOULDBLOCK);
2622 			}
2623 		}
2624 
2625 		if ((error = strmakedata(iosize, uiop, stp, flags,
2626 		    &mp)) != 0) {
2627 			freemsg(mctl);
2628 			/*
2629 			 * need to change return code to ENOMEM
2630 			 * so that this is not confused with
2631 			 * flow control, EAGAIN.
2632 			 */
2633 
2634 			if (error == EAGAIN)
2635 				return (ENOMEM);
2636 			else
2637 				return (error);
2638 		}
2639 		if (mctl != NULL) {
2640 			if (mctl->b_cont == NULL)
2641 				mctl->b_cont = mp;
2642 			else if (mp != NULL)
2643 				linkb(mctl, mp);
2644 			mp = mctl;
2645 		} else if (mp == NULL)
2646 			return (0);
2647 
2648 		mp->b_flag |= b_flag;
2649 		mp->b_band = (uchar_t)pri;
2650 
2651 		if (flags & MSG_IGNFLOW) {
2652 			/*
2653 			 * XXX Hack: Don't get stuck running service
2654 			 * procedures. This is needed for sockfs when
2655 			 * sending the unbind message out of the rput
2656 			 * procedure - we don't want a put procedure
2657 			 * to run service procedures.
2658 			 */
2659 			putnext(wqp, mp);
2660 		} else {
2661 			stream_willservice(stp);
2662 			putnext(wqp, mp);
2663 			stream_runservice(stp);
2664 		}
2665 		return (0);
2666 	}
2667 	/*
2668 	 * Stream supports rwnext() for the write side.
2669 	 */
2670 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2671 		freemsg(mctl);
2672 		/*
2673 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2674 		 */
2675 		return (error == EAGAIN ? ENOMEM : error);
2676 	}
2677 	if (mctl != NULL) {
2678 		if (mctl->b_cont == NULL)
2679 			mctl->b_cont = mp;
2680 		else if (mp != NULL)
2681 			linkb(mctl, mp);
2682 		mp = mctl;
2683 	} else if (mp == NULL) {
2684 		return (0);
2685 	}
2686 
2687 	mp->b_flag |= b_flag;
2688 	mp->b_band = (uchar_t)pri;
2689 
2690 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2691 	    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2692 	uiod.d_uio.uio_offset = 0;
2693 	uiod.d_mp = mp;
2694 	error = rwnext(wqp, &uiod);
2695 	if (! uiod.d_mp) {
2696 		uioskip(uiop, *iosize);
2697 		return (error);
2698 	}
2699 	ASSERT(mp == uiod.d_mp);
2700 	if (error == EINVAL) {
2701 		/*
2702 		 * The stream plumbing must have changed while
2703 		 * we were away, so just turn off rwnext()s.
2704 		 */
2705 		error = 0;
2706 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2707 		/*
2708 		 * Couldn't enter a perimeter or took a page fault,
2709 		 * so fall-back to putnext().
2710 		 */
2711 		error = 0;
2712 	} else {
2713 		freemsg(mp);
2714 		return (error);
2715 	}
2716 	/* Have to check canput before consuming data from the uio */
2717 	if (pri == 0) {
2718 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2719 			freemsg(mp);
2720 			return (EWOULDBLOCK);
2721 		}
2722 	} else {
2723 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2724 			freemsg(mp);
2725 			return (EWOULDBLOCK);
2726 		}
2727 	}
2728 	ASSERT(mp == uiod.d_mp);
2729 	/* Copyin data from the uio */
2730 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2731 		freemsg(mp);
2732 		return (error);
2733 	}
2734 	uioskip(uiop, *iosize);
2735 	if (flags & MSG_IGNFLOW) {
2736 		/*
2737 		 * XXX Hack: Don't get stuck running service procedures.
2738 		 * This is needed for sockfs when sending the unbind message
2739 		 * out of the rput procedure - we don't want a put procedure
2740 		 * to run service procedures.
2741 		 */
2742 		putnext(wqp, mp);
2743 	} else {
2744 		stream_willservice(stp);
2745 		putnext(wqp, mp);
2746 		stream_runservice(stp);
2747 	}
2748 	return (0);
2749 }
2750 
2751 /*
2752  * Write attempts to break the write request into messages conforming
2753  * with the minimum and maximum packet sizes set downstream.
2754  *
2755  * Write will not block if downstream queue is full and
2756  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2757  *
2758  * A write of zero bytes gets packaged into a zero length message and sent
2759  * downstream like any other message.
2760  *
2761  * If buffers of the requested sizes are not available, the write will
2762  * sleep until the buffers become available.
2763  *
2764  * Write (if specified) will supply a write offset in a message if it
2765  * makes sense. This can be specified by downstream modules as part of
2766  * a M_SETOPTS message.  Write will not supply the write offset if it
2767  * cannot supply any data in a buffer.  In other words, write will never
2768  * send down an empty packet due to a write offset.
2769  */
2770 /* ARGSUSED2 */
2771 int
2772 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2773 {
2774 	return (strwrite_common(vp, uiop, crp, 0));
2775 }
2776 
2777 /* ARGSUSED2 */
2778 int
2779 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2780 {
2781 	struct stdata *stp;
2782 	struct queue *wqp;
2783 	ssize_t rmin, rmax;
2784 	ssize_t iosize;
2785 	int waitflag;
2786 	int tempmode;
2787 	int error = 0;
2788 	int b_flag;
2789 
2790 	ASSERT(vp->v_stream);
2791 	stp = vp->v_stream;
2792 
2793 	mutex_enter(&stp->sd_lock);
2794 
2795 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2796 		mutex_exit(&stp->sd_lock);
2797 		return (error);
2798 	}
2799 
2800 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2801 		error = strwriteable(stp, B_TRUE, B_TRUE);
2802 		if (error != 0) {
2803 			mutex_exit(&stp->sd_lock);
2804 			return (error);
2805 		}
2806 	}
2807 
2808 	mutex_exit(&stp->sd_lock);
2809 
2810 	wqp = stp->sd_wrq;
2811 
2812 	/* get these values from them cached in the stream head */
2813 	rmin = stp->sd_qn_minpsz;
2814 	rmax = stp->sd_qn_maxpsz;
2815 
2816 	/*
2817 	 * Check the min/max packet size constraints.  If min packet size
2818 	 * is non-zero, the write cannot be split into multiple messages
2819 	 * and still guarantee the size constraints.
2820 	 */
2821 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2822 
2823 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2824 	if (rmax == 0) {
2825 		return (0);
2826 	}
2827 	if (rmin > 0) {
2828 		if (uiop->uio_resid < rmin) {
2829 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2830 			    "strwrite out:q %p out %d error %d",
2831 			    wqp, 0, ERANGE);
2832 			return (ERANGE);
2833 		}
2834 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2835 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2836 			    "strwrite out:q %p out %d error %d",
2837 			    wqp, 1, ERANGE);
2838 			return (ERANGE);
2839 		}
2840 	}
2841 
2842 	/*
2843 	 * Do until count satisfied or error.
2844 	 */
2845 	waitflag = WRITEWAIT | wflag;
2846 	if (stp->sd_flag & OLDNDELAY)
2847 		tempmode = uiop->uio_fmode & ~FNDELAY;
2848 	else
2849 		tempmode = uiop->uio_fmode;
2850 
2851 	if (rmax == INFPSZ)
2852 		rmax = uiop->uio_resid;
2853 
2854 	/*
2855 	 * Note that tempmode does not get used in strput/strmakedata
2856 	 * but only in strwaitq. The other routines use uio_fmode
2857 	 * unmodified.
2858 	 */
2859 
2860 	/* LINTED: constant in conditional context */
2861 	while (1) {	/* breaks when uio_resid reaches zero */
2862 		/*
2863 		 * Determine the size of the next message to be
2864 		 * packaged.  May have to break write into several
2865 		 * messages based on max packet size.
2866 		 */
2867 		iosize = MIN(uiop->uio_resid, rmax);
2868 
2869 		/*
2870 		 * Put block downstream when flow control allows it.
2871 		 */
2872 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2873 			b_flag = MSGDELIM;
2874 		else
2875 			b_flag = 0;
2876 
2877 		for (;;) {
2878 			int done = 0;
2879 
2880 			error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2881 			if (error == 0)
2882 				break;
2883 			if (error != EWOULDBLOCK)
2884 				goto out;
2885 
2886 			mutex_enter(&stp->sd_lock);
2887 			/*
2888 			 * Check for a missed wakeup.
2889 			 * Needed since strput did not hold sd_lock across
2890 			 * the canputnext.
2891 			 */
2892 			if (canputnext(wqp)) {
2893 				/* Try again */
2894 				mutex_exit(&stp->sd_lock);
2895 				continue;
2896 			}
2897 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2898 			    "strwrite wait:q %p wait", wqp);
2899 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2900 			    tempmode, -1, &done)) != 0 || done) {
2901 				mutex_exit(&stp->sd_lock);
2902 				if ((vp->v_type == VFIFO) &&
2903 				    (uiop->uio_fmode & FNDELAY) &&
2904 				    (error == EAGAIN))
2905 					error = 0;
2906 				goto out;
2907 			}
2908 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2909 			    "strwrite wake:q %p awakes", wqp);
2910 			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2911 				mutex_exit(&stp->sd_lock);
2912 				goto out;
2913 			}
2914 			mutex_exit(&stp->sd_lock);
2915 		}
2916 		waitflag |= NOINTR;
2917 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2918 		    "strwrite resid:q %p uiop %p", wqp, uiop);
2919 		if (uiop->uio_resid) {
2920 			/* Recheck for errors - needed for sockets */
2921 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2922 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2923 				mutex_enter(&stp->sd_lock);
2924 				error = strwriteable(stp, B_FALSE, B_TRUE);
2925 				mutex_exit(&stp->sd_lock);
2926 				if (error != 0)
2927 					return (error);
2928 			}
2929 			continue;
2930 		}
2931 		break;
2932 	}
2933 out:
2934 	/*
2935 	 * For historical reasons, applications expect EAGAIN when a data
2936 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2937 	 */
2938 	if (error == ENOMEM)
2939 		error = EAGAIN;
2940 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2941 	    "strwrite out:q %p out %d error %d", wqp, 2, error);
2942 	return (error);
2943 }
2944 
2945 /*
2946  * Stream head write service routine.
2947  * Its job is to wake up any sleeping writers when a queue
2948  * downstream needs data (part of the flow control in putq and getq).
2949  * It also must wake anyone sleeping on a poll().
2950  * For stream head right below mux module, it must also invoke put procedure
2951  * of next downstream module.
2952  */
2953 int
2954 strwsrv(queue_t *q)
2955 {
2956 	struct stdata *stp;
2957 	queue_t *tq;
2958 	qband_t *qbp;
2959 	int i;
2960 	qband_t *myqbp;
2961 	int isevent;
2962 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
2963 
2964 	TRACE_1(TR_FAC_STREAMS_FR,
2965 	    TR_STRWSRV, "strwsrv:q %p", q);
2966 	stp = (struct stdata *)q->q_ptr;
2967 	ASSERT(qclaimed(q));
2968 	mutex_enter(&stp->sd_lock);
2969 	ASSERT(!(stp->sd_flag & STPLEX));
2970 
2971 	if (stp->sd_flag & WSLEEP) {
2972 		stp->sd_flag &= ~WSLEEP;
2973 		cv_broadcast(&q->q_wait);
2974 	}
2975 	mutex_exit(&stp->sd_lock);
2976 
2977 	/* The other end of a stream pipe went away. */
2978 	if ((tq = q->q_next) == NULL) {
2979 		return (0);
2980 	}
2981 
2982 	/* Find the next module forward that has a service procedure */
2983 	claimstr(q);
2984 	tq = q->q_nfsrv;
2985 	ASSERT(tq != NULL);
2986 
2987 	if ((q->q_flag & QBACK)) {
2988 		if ((tq->q_flag & QFULL)) {
2989 			mutex_enter(QLOCK(tq));
2990 			if (!(tq->q_flag & QFULL)) {
2991 				mutex_exit(QLOCK(tq));
2992 				goto wakeup;
2993 			}
2994 			/*
2995 			 * The queue must have become full again. Set QWANTW
2996 			 * again so strwsrv will be back enabled when
2997 			 * the queue becomes non-full next time.
2998 			 */
2999 			tq->q_flag |= QWANTW;
3000 			mutex_exit(QLOCK(tq));
3001 		} else {
3002 		wakeup:
3003 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
3004 			mutex_enter(&stp->sd_lock);
3005 			if (stp->sd_sigflags & S_WRNORM)
3006 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
3007 			mutex_exit(&stp->sd_lock);
3008 		}
3009 	}
3010 
3011 	isevent = 0;
3012 	i = 1;
3013 	bzero((caddr_t)qbf, NBAND);
3014 	mutex_enter(QLOCK(tq));
3015 	if ((myqbp = q->q_bandp) != NULL)
3016 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
3017 			ASSERT(myqbp);
3018 			if ((myqbp->qb_flag & QB_BACK)) {
3019 				if (qbp->qb_flag & QB_FULL) {
3020 					/*
3021 					 * The band must have become full again.
3022 					 * Set QB_WANTW again so strwsrv will
3023 					 * be back enabled when the band becomes
3024 					 * non-full next time.
3025 					 */
3026 					qbp->qb_flag |= QB_WANTW;
3027 				} else {
3028 					isevent = 1;
3029 					qbf[i] = 1;
3030 				}
3031 			}
3032 			myqbp = myqbp->qb_next;
3033 			i++;
3034 		}
3035 	mutex_exit(QLOCK(tq));
3036 
3037 	if (isevent) {
3038 		for (i = tq->q_nband; i; i--) {
3039 			if (qbf[i]) {
3040 				pollwakeup(&stp->sd_pollist, POLLWRBAND);
3041 				mutex_enter(&stp->sd_lock);
3042 				if (stp->sd_sigflags & S_WRBAND)
3043 					strsendsig(stp->sd_siglist, S_WRBAND,
3044 					    (uchar_t)i, 0);
3045 				mutex_exit(&stp->sd_lock);
3046 			}
3047 		}
3048 	}
3049 
3050 	releasestr(q);
3051 	return (0);
3052 }
3053 
3054 /*
3055  * Special case of strcopyin/strcopyout for copying
3056  * struct strioctl that can deal with both data
3057  * models.
3058  */
3059 
3060 #ifdef	_LP64
3061 
3062 static int
3063 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3064 {
3065 	struct	strioctl32 strioc32;
3066 	struct	strioctl *striocp;
3067 
3068 	if (copyflag & U_TO_K) {
3069 		ASSERT((copyflag & K_TO_K) == 0);
3070 
3071 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3072 			if (copyin(from, &strioc32, sizeof (strioc32)))
3073 				return (EFAULT);
3074 
3075 			striocp = (struct strioctl *)to;
3076 			striocp->ic_cmd	= strioc32.ic_cmd;
3077 			striocp->ic_timout = strioc32.ic_timout;
3078 			striocp->ic_len	= strioc32.ic_len;
3079 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
3080 
3081 		} else { /* NATIVE data model */
3082 			if (copyin(from, to, sizeof (struct strioctl))) {
3083 				return (EFAULT);
3084 			} else {
3085 				return (0);
3086 			}
3087 		}
3088 	} else {
3089 		ASSERT(copyflag & K_TO_K);
3090 		bcopy(from, to, sizeof (struct strioctl));
3091 	}
3092 	return (0);
3093 }
3094 
3095 static int
3096 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3097 {
3098 	struct	strioctl32 strioc32;
3099 	struct	strioctl *striocp;
3100 
3101 	if (copyflag & U_TO_K) {
3102 		ASSERT((copyflag & K_TO_K) == 0);
3103 
3104 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3105 			striocp = (struct strioctl *)from;
3106 			strioc32.ic_cmd	= striocp->ic_cmd;
3107 			strioc32.ic_timout = striocp->ic_timout;
3108 			strioc32.ic_len	= striocp->ic_len;
3109 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3110 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3111 			    striocp->ic_dp);
3112 
3113 			if (copyout(&strioc32, to, sizeof (strioc32)))
3114 				return (EFAULT);
3115 
3116 		} else { /* NATIVE data model */
3117 			if (copyout(from, to, sizeof (struct strioctl))) {
3118 				return (EFAULT);
3119 			} else {
3120 				return (0);
3121 			}
3122 		}
3123 	} else {
3124 		ASSERT(copyflag & K_TO_K);
3125 		bcopy(from, to, sizeof (struct strioctl));
3126 	}
3127 	return (0);
3128 }
3129 
3130 #else	/* ! _LP64 */
3131 
3132 /* ARGSUSED2 */
3133 static int
3134 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3135 {
3136 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3137 }
3138 
3139 /* ARGSUSED2 */
3140 static int
3141 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3142 {
3143 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3144 }
3145 
3146 #endif	/* _LP64 */
3147 
3148 /*
3149  * Determine type of job control semantics expected by user.  The
3150  * possibilities are:
3151  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3152  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3153  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3154  *	JCGETP	- Gets a value in the stream; no signals.
3155  * See straccess in strsubr.c for usage of these values.
3156  *
3157  * This routine also returns -1 for I_STR as a special case; the
3158  * caller must call again with the real ioctl number for
3159  * classification.
3160  */
3161 static int
3162 job_control_type(int cmd)
3163 {
3164 	switch (cmd) {
3165 	case I_STR:
3166 		return (-1);
3167 
3168 	case I_RECVFD:
3169 	case I_E_RECVFD:
3170 		return (JCREAD);
3171 
3172 	case I_FDINSERT:
3173 	case I_SENDFD:
3174 		return (JCWRITE);
3175 
3176 	case TCSETA:
3177 	case TCSETAW:
3178 	case TCSETAF:
3179 	case TCSBRK:
3180 	case TCXONC:
3181 	case TCFLSH:
3182 	case TCDSET:	/* Obsolete */
3183 	case TIOCSWINSZ:
3184 	case TCSETS:
3185 	case TCSETSW:
3186 	case TCSETSF:
3187 	case TIOCSETD:
3188 	case TIOCHPCL:
3189 	case TIOCSETP:
3190 	case TIOCSETN:
3191 	case TIOCEXCL:
3192 	case TIOCNXCL:
3193 	case TIOCFLUSH:
3194 	case TIOCSETC:
3195 	case TIOCLBIS:
3196 	case TIOCLBIC:
3197 	case TIOCLSET:
3198 	case TIOCSBRK:
3199 	case TIOCCBRK:
3200 	case TIOCSDTR:
3201 	case TIOCCDTR:
3202 	case TIOCSLTC:
3203 	case TIOCSTOP:
3204 	case TIOCSTART:
3205 	case TIOCSTI:
3206 	case TIOCSPGRP:
3207 	case TIOCMSET:
3208 	case TIOCMBIS:
3209 	case TIOCMBIC:
3210 	case TIOCREMOTE:
3211 	case TIOCSIGNAL:
3212 	case LDSETT:
3213 	case LDSMAP:	/* Obsolete */
3214 	case DIOCSETP:
3215 	case I_FLUSH:
3216 	case I_SRDOPT:
3217 	case I_SETSIG:
3218 	case I_SWROPT:
3219 	case I_FLUSHBAND:
3220 	case I_SETCLTIME:
3221 	case I_SERROPT:
3222 	case I_ESETSIG:
3223 	case FIONBIO:
3224 	case FIOASYNC:
3225 	case FIOSETOWN:
3226 	case JBOOT:	/* Obsolete */
3227 	case JTERM:	/* Obsolete */
3228 	case JTIMOM:	/* Obsolete */
3229 	case JZOMBOOT:	/* Obsolete */
3230 	case JAGENT:	/* Obsolete */
3231 	case JTRUN:	/* Obsolete */
3232 	case JXTPROTO:	/* Obsolete */
3233 		return (JCSETP);
3234 	}
3235 
3236 	return (JCGETP);
3237 }
3238 
3239 /*
3240  * ioctl for streams
3241  */
3242 int
3243 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3244     cred_t *crp, int *rvalp)
3245 {
3246 	struct stdata *stp;
3247 	struct strcmd *scp;
3248 	struct strioctl strioc;
3249 	struct uio uio;
3250 	struct iovec iov;
3251 	int access;
3252 	mblk_t *mp;
3253 	int error = 0;
3254 	int done = 0;
3255 	ssize_t	rmin, rmax;
3256 	queue_t *wrq;
3257 	queue_t *rdq;
3258 	boolean_t kioctl = B_FALSE;
3259 	uint32_t auditing = AU_AUDITING();
3260 
3261 	if (flag & FKIOCTL) {
3262 		copyflag = K_TO_K;
3263 		kioctl = B_TRUE;
3264 	}
3265 	ASSERT(vp->v_stream);
3266 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3267 	stp = vp->v_stream;
3268 
3269 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3270 	    "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3271 
3272 	/*
3273 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3274 	 * flag is set.  After this it would be a serious error to have
3275 	 * no model flag.
3276 	 */
3277 	if (copyflag == K_TO_K)
3278 		flag = (flag & ~FMODELS) | FNATIVE;
3279 
3280 	ASSERT((flag & FMODELS) != 0);
3281 
3282 	wrq = stp->sd_wrq;
3283 	rdq = _RD(wrq);
3284 
3285 	access = job_control_type(cmd);
3286 
3287 	/* We should never see these here, should be handled by iwscn */
3288 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3289 		return (EINVAL);
3290 
3291 	mutex_enter(&stp->sd_lock);
3292 	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3293 		mutex_exit(&stp->sd_lock);
3294 		return (error);
3295 	}
3296 	mutex_exit(&stp->sd_lock);
3297 
3298 	/*
3299 	 * Check for sgttyb-related ioctls first, and complain as
3300 	 * necessary.
3301 	 */
3302 	switch (cmd) {
3303 	case TIOCGETP:
3304 	case TIOCSETP:
3305 	case TIOCSETN:
3306 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3307 			sgttyb_complaint = B_TRUE;
3308 			cmn_err(CE_NOTE,
3309 			    "application used obsolete TIOC[GS]ET");
3310 		}
3311 		if (sgttyb_handling >= 3) {
3312 			tsignal(curthread, SIGSYS);
3313 			return (EIO);
3314 		}
3315 		break;
3316 	}
3317 
3318 	mutex_enter(&stp->sd_lock);
3319 
3320 	switch (cmd) {
3321 	case I_RECVFD:
3322 	case I_E_RECVFD:
3323 	case I_PEEK:
3324 	case I_NREAD:
3325 	case FIONREAD:
3326 	case FIORDCHK:
3327 	case I_ATMARK:
3328 	case FIONBIO:
3329 	case FIOASYNC:
3330 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3331 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3332 			if (error != 0) {
3333 				mutex_exit(&stp->sd_lock);
3334 				return (error);
3335 			}
3336 		}
3337 		break;
3338 
3339 	default:
3340 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3341 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3342 			if (error != 0) {
3343 				mutex_exit(&stp->sd_lock);
3344 				return (error);
3345 			}
3346 		}
3347 	}
3348 
3349 	mutex_exit(&stp->sd_lock);
3350 
3351 	switch (cmd) {
3352 	default:
3353 		/*
3354 		 * The stream head has hardcoded knowledge of a
3355 		 * miscellaneous collection of terminal-, keyboard- and
3356 		 * mouse-related ioctls, enumerated below.  This hardcoded
3357 		 * knowledge allows the stream head to automatically
3358 		 * convert transparent ioctl requests made by userland
3359 		 * programs into I_STR ioctls which many old STREAMS
3360 		 * modules and drivers require.
3361 		 *
3362 		 * No new ioctls should ever be added to this list.
3363 		 * Instead, the STREAMS module or driver should be written
3364 		 * to either handle transparent ioctls or require any
3365 		 * userland programs to use I_STR ioctls (by returning
3366 		 * EINVAL to any transparent ioctl requests).
3367 		 *
3368 		 * More importantly, removing ioctls from this list should
3369 		 * be done with the utmost care, since our STREAMS modules
3370 		 * and drivers *count* on the stream head performing this
3371 		 * conversion, and thus may panic while processing
3372 		 * transparent ioctl request for one of these ioctls (keep
3373 		 * in mind that third party modules and drivers may have
3374 		 * similar problems).
3375 		 */
3376 		if (((cmd & IOCTYPE) == LDIOC) ||
3377 		    ((cmd & IOCTYPE) == tIOC) ||
3378 		    ((cmd & IOCTYPE) == TIOC) ||
3379 		    ((cmd & IOCTYPE) == KIOC) ||
3380 		    ((cmd & IOCTYPE) == MSIOC) ||
3381 		    ((cmd & IOCTYPE) == VUIOC)) {
3382 			/*
3383 			 * The ioctl is a tty ioctl - set up strioc buffer
3384 			 * and call strdoioctl() to do the work.
3385 			 */
3386 			if (stp->sd_flag & STRHUP)
3387 				return (ENXIO);
3388 			strioc.ic_cmd = cmd;
3389 			strioc.ic_timout = INFTIM;
3390 
3391 			switch (cmd) {
3392 
3393 			case TCXONC:
3394 			case TCSBRK:
3395 			case TCFLSH:
3396 			case TCDSET:
3397 				{
3398 				int native_arg = (int)arg;
3399 				strioc.ic_len = sizeof (int);
3400 				strioc.ic_dp = (char *)&native_arg;
3401 				return (strdoioctl(stp, &strioc, flag,
3402 				    K_TO_K, crp, rvalp));
3403 				}
3404 
3405 			case TCSETA:
3406 			case TCSETAW:
3407 			case TCSETAF:
3408 				strioc.ic_len = sizeof (struct termio);
3409 				strioc.ic_dp = (char *)arg;
3410 				return (strdoioctl(stp, &strioc, flag,
3411 				    copyflag, crp, rvalp));
3412 
3413 			case TCSETS:
3414 			case TCSETSW:
3415 			case TCSETSF:
3416 				strioc.ic_len = sizeof (struct termios);
3417 				strioc.ic_dp = (char *)arg;
3418 				return (strdoioctl(stp, &strioc, flag,
3419 				    copyflag, crp, rvalp));
3420 
3421 			case LDSETT:
3422 				strioc.ic_len = sizeof (struct termcb);
3423 				strioc.ic_dp = (char *)arg;
3424 				return (strdoioctl(stp, &strioc, flag,
3425 				    copyflag, crp, rvalp));
3426 
3427 			case TIOCSETP:
3428 				strioc.ic_len = sizeof (struct sgttyb);
3429 				strioc.ic_dp = (char *)arg;
3430 				return (strdoioctl(stp, &strioc, flag,
3431 				    copyflag, crp, rvalp));
3432 
3433 			case TIOCSTI:
3434 				if ((flag & FREAD) == 0 &&
3435 				    secpolicy_sti(crp) != 0) {
3436 					return (EPERM);
3437 				}
3438 				mutex_enter(&stp->sd_lock);
3439 				mutex_enter(&curproc->p_splock);
3440 				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3441 				    secpolicy_sti(crp) != 0) {
3442 					mutex_exit(&curproc->p_splock);
3443 					mutex_exit(&stp->sd_lock);
3444 					return (EACCES);
3445 				}
3446 				mutex_exit(&curproc->p_splock);
3447 				mutex_exit(&stp->sd_lock);
3448 
3449 				strioc.ic_len = sizeof (char);
3450 				strioc.ic_dp = (char *)arg;
3451 				return (strdoioctl(stp, &strioc, flag,
3452 				    copyflag, crp, rvalp));
3453 
3454 			case TIOCSWINSZ:
3455 				strioc.ic_len = sizeof (struct winsize);
3456 				strioc.ic_dp = (char *)arg;
3457 				return (strdoioctl(stp, &strioc, flag,
3458 				    copyflag, crp, rvalp));
3459 
3460 			case TIOCSSIZE:
3461 				strioc.ic_len = sizeof (struct ttysize);
3462 				strioc.ic_dp = (char *)arg;
3463 				return (strdoioctl(stp, &strioc, flag,
3464 				    copyflag, crp, rvalp));
3465 
3466 			case TIOCSSOFTCAR:
3467 			case KIOCTRANS:
3468 			case KIOCTRANSABLE:
3469 			case KIOCCMD:
3470 			case KIOCSDIRECT:
3471 			case KIOCSCOMPAT:
3472 			case KIOCSKABORTEN:
3473 			case KIOCSRPTCOUNT:
3474 			case KIOCSRPTDELAY:
3475 			case KIOCSRPTRATE:
3476 			case VUIDSFORMAT:
3477 			case TIOCSPPS:
3478 				strioc.ic_len = sizeof (int);
3479 				strioc.ic_dp = (char *)arg;
3480 				return (strdoioctl(stp, &strioc, flag,
3481 				    copyflag, crp, rvalp));
3482 
3483 			case KIOCSETKEY:
3484 			case KIOCGETKEY:
3485 				strioc.ic_len = sizeof (struct kiockey);
3486 				strioc.ic_dp = (char *)arg;
3487 				return (strdoioctl(stp, &strioc, flag,
3488 				    copyflag, crp, rvalp));
3489 
3490 			case KIOCSKEY:
3491 			case KIOCGKEY:
3492 				strioc.ic_len = sizeof (struct kiockeymap);
3493 				strioc.ic_dp = (char *)arg;
3494 				return (strdoioctl(stp, &strioc, flag,
3495 				    copyflag, crp, rvalp));
3496 
3497 			case KIOCSLED:
3498 				/* arg is a pointer to char */
3499 				strioc.ic_len = sizeof (char);
3500 				strioc.ic_dp = (char *)arg;
3501 				return (strdoioctl(stp, &strioc, flag,
3502 				    copyflag, crp, rvalp));
3503 
3504 			case MSIOSETPARMS:
3505 				strioc.ic_len = sizeof (Ms_parms);
3506 				strioc.ic_dp = (char *)arg;
3507 				return (strdoioctl(stp, &strioc, flag,
3508 				    copyflag, crp, rvalp));
3509 
3510 			case VUIDSADDR:
3511 			case VUIDGADDR:
3512 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3513 				strioc.ic_dp = (char *)arg;
3514 				return (strdoioctl(stp, &strioc, flag,
3515 				    copyflag, crp, rvalp));
3516 
3517 			/*
3518 			 * These M_IOCTL's don't require any data to be sent
3519 			 * downstream, and the driver will allocate and link
3520 			 * on its own mblk_t upon M_IOCACK -- thus we set
3521 			 * ic_len to zero and set ic_dp to arg so we know
3522 			 * where to copyout to later.
3523 			 */
3524 			case TIOCGSOFTCAR:
3525 			case TIOCGWINSZ:
3526 			case TIOCGSIZE:
3527 			case KIOCGTRANS:
3528 			case KIOCGTRANSABLE:
3529 			case KIOCTYPE:
3530 			case KIOCGDIRECT:
3531 			case KIOCGCOMPAT:
3532 			case KIOCLAYOUT:
3533 			case KIOCGLED:
3534 			case MSIOGETPARMS:
3535 			case MSIOBUTTONS:
3536 			case VUIDGFORMAT:
3537 			case TIOCGPPS:
3538 			case TIOCGPPSEV:
3539 			case TCGETA:
3540 			case TCGETS:
3541 			case LDGETT:
3542 			case TIOCGETP:
3543 			case KIOCGRPTCOUNT:
3544 			case KIOCGRPTDELAY:
3545 			case KIOCGRPTRATE:
3546 				strioc.ic_len = 0;
3547 				strioc.ic_dp = (char *)arg;
3548 				return (strdoioctl(stp, &strioc, flag,
3549 				    copyflag, crp, rvalp));
3550 			}
3551 		}
3552 
3553 		/*
3554 		 * Unknown cmd - send it down as a transparent ioctl.
3555 		 */
3556 		strioc.ic_cmd = cmd;
3557 		strioc.ic_timout = INFTIM;
3558 		strioc.ic_len = TRANSPARENT;
3559 		strioc.ic_dp = (char *)&arg;
3560 
3561 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3562 
3563 	case I_STR:
3564 		/*
3565 		 * Stream ioctl.  Read in an strioctl buffer from the user
3566 		 * along with any data specified and send it downstream.
3567 		 * Strdoioctl will wait allow only one ioctl message at
3568 		 * a time, and waits for the acknowledgement.
3569 		 */
3570 
3571 		if (stp->sd_flag & STRHUP)
3572 			return (ENXIO);
3573 
3574 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3575 		    copyflag);
3576 		if (error != 0)
3577 			return (error);
3578 
3579 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3580 			return (EINVAL);
3581 
3582 		access = job_control_type(strioc.ic_cmd);
3583 		mutex_enter(&stp->sd_lock);
3584 		if ((access != -1) &&
3585 		    ((error = i_straccess(stp, access)) != 0)) {
3586 			mutex_exit(&stp->sd_lock);
3587 			return (error);
3588 		}
3589 		mutex_exit(&stp->sd_lock);
3590 
3591 		/*
3592 		 * The I_STR facility provides a trap door for malicious
3593 		 * code to send down bogus streamio(7I) ioctl commands to
3594 		 * unsuspecting STREAMS modules and drivers which expect to
3595 		 * only get these messages from the stream head.
3596 		 * Explicitly prohibit any streamio ioctls which can be
3597 		 * passed downstream by the stream head.  Note that we do
3598 		 * not block all streamio ioctls because the ioctl
3599 		 * numberspace is not well managed and thus it's possible
3600 		 * that a module or driver's ioctl numbers may accidentally
3601 		 * collide with them.
3602 		 */
3603 		switch (strioc.ic_cmd) {
3604 		case I_LINK:
3605 		case I_PLINK:
3606 		case I_UNLINK:
3607 		case I_PUNLINK:
3608 		case _I_GETPEERCRED:
3609 		case _I_PLINK_LH:
3610 			return (EINVAL);
3611 		}
3612 
3613 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3614 		if (error == 0) {
3615 			error = strcopyout_strioctl(&strioc, (void *)arg,
3616 			    flag, copyflag);
3617 		}
3618 		return (error);
3619 
3620 	case _I_CMD:
3621 		/*
3622 		 * Like I_STR, but without using M_IOC* messages and without
3623 		 * copyins/copyouts beyond the passed-in argument.
3624 		 */
3625 		if (stp->sd_flag & STRHUP)
3626 			return (ENXIO);
3627 
3628 		if (copyflag == U_TO_K) {
3629 			if ((scp = kmem_alloc(sizeof (strcmd_t),
3630 			    KM_NOSLEEP)) == NULL) {
3631 				return (ENOMEM);
3632 			}
3633 
3634 			if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3635 				kmem_free(scp, sizeof (strcmd_t));
3636 				return (EFAULT);
3637 			}
3638 		} else {
3639 			scp = (strcmd_t *)arg;
3640 		}
3641 
3642 		access = job_control_type(scp->sc_cmd);
3643 		mutex_enter(&stp->sd_lock);
3644 		if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3645 			mutex_exit(&stp->sd_lock);
3646 			if (copyflag == U_TO_K)
3647 				kmem_free(scp, sizeof (strcmd_t));
3648 			return (error);
3649 		}
3650 		mutex_exit(&stp->sd_lock);
3651 
3652 		*rvalp = 0;
3653 		if ((error = strdocmd(stp, scp, crp)) == 0) {
3654 			if (copyflag == U_TO_K &&
3655 			    copyout(scp, (void *)arg, sizeof (strcmd_t))) {
3656 				error = EFAULT;
3657 			}
3658 		}
3659 		if (copyflag == U_TO_K)
3660 			kmem_free(scp, sizeof (strcmd_t));
3661 		return (error);
3662 
3663 	case I_NREAD:
3664 		/*
3665 		 * Return number of bytes of data in first message
3666 		 * in queue in "arg" and return the number of messages
3667 		 * in queue in return value.
3668 		 */
3669 	{
3670 		size_t	size;
3671 		int	retval;
3672 		int	count = 0;
3673 
3674 		mutex_enter(QLOCK(rdq));
3675 
3676 		size = msgdsize(rdq->q_first);
3677 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3678 			count++;
3679 
3680 		mutex_exit(QLOCK(rdq));
3681 		if (stp->sd_struiordq) {
3682 			infod_t infod;
3683 
3684 			infod.d_cmd = INFOD_COUNT;
3685 			infod.d_count = 0;
3686 			if (count == 0) {
3687 				infod.d_cmd |= INFOD_FIRSTBYTES;
3688 				infod.d_bytes = 0;
3689 			}
3690 			infod.d_res = 0;
3691 			(void) infonext(rdq, &infod);
3692 			count += infod.d_count;
3693 			if (infod.d_res & INFOD_FIRSTBYTES)
3694 				size = infod.d_bytes;
3695 		}
3696 
3697 		/*
3698 		 * Drop down from size_t to the "int" required by the
3699 		 * interface.  Cap at INT_MAX.
3700 		 */
3701 		retval = MIN(size, INT_MAX);
3702 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3703 		    copyflag);
3704 		if (!error)
3705 			*rvalp = count;
3706 		return (error);
3707 	}
3708 
3709 	case FIONREAD:
3710 		/*
3711 		 * Return number of bytes of data in all data messages
3712 		 * in queue in "arg".
3713 		 */
3714 	{
3715 		size_t	size = 0;
3716 		int	retval;
3717 
3718 		mutex_enter(QLOCK(rdq));
3719 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3720 			size += msgdsize(mp);
3721 		mutex_exit(QLOCK(rdq));
3722 
3723 		if (stp->sd_struiordq) {
3724 			infod_t infod;
3725 
3726 			infod.d_cmd = INFOD_BYTES;
3727 			infod.d_res = 0;
3728 			infod.d_bytes = 0;
3729 			(void) infonext(rdq, &infod);
3730 			size += infod.d_bytes;
3731 		}
3732 
3733 		/*
3734 		 * Drop down from size_t to the "int" required by the
3735 		 * interface.  Cap at INT_MAX.
3736 		 */
3737 		retval = MIN(size, INT_MAX);
3738 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3739 		    copyflag);
3740 
3741 		*rvalp = 0;
3742 		return (error);
3743 	}
3744 	case FIORDCHK:
3745 		/*
3746 		 * FIORDCHK does not use arg value (like FIONREAD),
3747 		 * instead a count is returned. I_NREAD value may
3748 		 * not be accurate but safe. The real thing to do is
3749 		 * to add the msgdsizes of all data  messages until
3750 		 * a non-data message.
3751 		 */
3752 	{
3753 		size_t size = 0;
3754 
3755 		mutex_enter(QLOCK(rdq));
3756 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3757 			size += msgdsize(mp);
3758 		mutex_exit(QLOCK(rdq));
3759 
3760 		if (stp->sd_struiordq) {
3761 			infod_t infod;
3762 
3763 			infod.d_cmd = INFOD_BYTES;
3764 			infod.d_res = 0;
3765 			infod.d_bytes = 0;
3766 			(void) infonext(rdq, &infod);
3767 			size += infod.d_bytes;
3768 		}
3769 
3770 		/*
3771 		 * Since ioctl returns an int, and memory sizes under
3772 		 * LP64 may not fit, we return INT_MAX if the count was
3773 		 * actually greater.
3774 		 */
3775 		*rvalp = MIN(size, INT_MAX);
3776 		return (0);
3777 	}
3778 
3779 	case I_FIND:
3780 		/*
3781 		 * Get module name.
3782 		 */
3783 	{
3784 		char mname[FMNAMESZ + 1];
3785 		queue_t *q;
3786 
3787 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3788 		    mname, FMNAMESZ + 1, NULL);
3789 		if (error)
3790 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3791 
3792 		/*
3793 		 * Return EINVAL if we're handed a bogus module name.
3794 		 */
3795 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3796 			TRACE_0(TR_FAC_STREAMS_FR,
3797 			    TR_I_CANT_FIND, "couldn't I_FIND");
3798 			return (EINVAL);
3799 		}
3800 
3801 		*rvalp = 0;
3802 
3803 		/* Look downstream to see if module is there. */
3804 		claimstr(stp->sd_wrq);
3805 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3806 			if (q->q_flag & QREADR) {
3807 				q = NULL;
3808 				break;
3809 			}
3810 			if (strcmp(mname, Q2NAME(q)) == 0)
3811 				break;
3812 		}
3813 		releasestr(stp->sd_wrq);
3814 
3815 		*rvalp = (q ? 1 : 0);
3816 		return (error);
3817 	}
3818 
3819 	case I_PUSH:
3820 	case __I_PUSH_NOCTTY:
3821 		/*
3822 		 * Push a module.
3823 		 * For the case __I_PUSH_NOCTTY push a module but
3824 		 * do not allocate controlling tty. See bugid 4025044
3825 		 */
3826 
3827 	{
3828 		char mname[FMNAMESZ + 1];
3829 		fmodsw_impl_t *fp;
3830 		dev_t dummydev;
3831 
3832 		if (stp->sd_flag & STRHUP)
3833 			return (ENXIO);
3834 
3835 		/*
3836 		 * Get module name and look up in fmodsw.
3837 		 */
3838 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3839 		    mname, FMNAMESZ + 1, NULL);
3840 		if (error)
3841 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3842 
3843 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3844 		    NULL)
3845 			return (EINVAL);
3846 
3847 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3848 		    "I_PUSH:fp %p stp %p", fp, stp);
3849 
3850 		/*
3851 		 * If the module is flagged as single-instance, then check
3852 		 * to see if the module is already pushed. If it is, return
3853 		 * as if the push was successful.
3854 		 */
3855 		if (fp->f_qflag & _QSINGLE_INSTANCE) {
3856 			queue_t *q;
3857 
3858 			claimstr(stp->sd_wrq);
3859 			for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3860 				if (q->q_flag & QREADR) {
3861 					q = NULL;
3862 					break;
3863 				}
3864 				if (strcmp(mname, Q2NAME(q)) == 0)
3865 					break;
3866 			}
3867 			releasestr(stp->sd_wrq);
3868 			if (q != NULL) {
3869 				fmodsw_rele(fp);
3870 				return (0);
3871 			}
3872 		}
3873 
3874 		if (error = strstartplumb(stp, flag, cmd)) {
3875 			fmodsw_rele(fp);
3876 			return (error);
3877 		}
3878 
3879 		/*
3880 		 * See if any more modules can be pushed on this stream.
3881 		 * Note that this check must be done after strstartplumb()
3882 		 * since otherwise multiple threads issuing I_PUSHes on
3883 		 * the same stream will be able to exceed nstrpush.
3884 		 */
3885 		mutex_enter(&stp->sd_lock);
3886 		if (stp->sd_pushcnt >= nstrpush) {
3887 			fmodsw_rele(fp);
3888 			strendplumb(stp);
3889 			mutex_exit(&stp->sd_lock);
3890 			return (EINVAL);
3891 		}
3892 		mutex_exit(&stp->sd_lock);
3893 
3894 		/*
3895 		 * Push new module and call its open routine
3896 		 * via qattach().  Modules don't change device
3897 		 * numbers, so just ignore dummydev here.
3898 		 */
3899 		dummydev = vp->v_rdev;
3900 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3901 		    B_FALSE)) == 0) {
3902 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3903 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3904 				/*
3905 				 * try to allocate it as a controlling terminal
3906 				 */
3907 				(void) strctty(stp);
3908 			}
3909 		}
3910 
3911 		mutex_enter(&stp->sd_lock);
3912 
3913 		/*
3914 		 * As a performance concern we are caching the values of
3915 		 * q_minpsz and q_maxpsz of the module below the stream
3916 		 * head in the stream head.
3917 		 */
3918 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3919 		rmin = stp->sd_wrq->q_next->q_minpsz;
3920 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3921 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3922 
3923 		/* Do this processing here as a performance concern */
3924 		if (strmsgsz != 0) {
3925 			if (rmax == INFPSZ)
3926 				rmax = strmsgsz;
3927 			else  {
3928 				if (vp->v_type == VFIFO)
3929 					rmax = MIN(PIPE_BUF, rmax);
3930 				else	rmax = MIN(strmsgsz, rmax);
3931 			}
3932 		}
3933 
3934 		mutex_enter(QLOCK(wrq));
3935 		stp->sd_qn_minpsz = rmin;
3936 		stp->sd_qn_maxpsz = rmax;
3937 		mutex_exit(QLOCK(wrq));
3938 
3939 		strendplumb(stp);
3940 		mutex_exit(&stp->sd_lock);
3941 		return (error);
3942 	}
3943 
3944 	case I_POP:
3945 	{
3946 		queue_t	*q;
3947 
3948 		if (stp->sd_flag & STRHUP)
3949 			return (ENXIO);
3950 		if (!wrq->q_next)	/* for broken pipes */
3951 			return (EINVAL);
3952 
3953 		if (error = strstartplumb(stp, flag, cmd))
3954 			return (error);
3955 
3956 		/*
3957 		 * If there is an anchor on this stream and popping
3958 		 * the current module would attempt to pop through the
3959 		 * anchor, then disallow the pop unless we have sufficient
3960 		 * privileges; take the cheapest (non-locking) check
3961 		 * first.
3962 		 */
3963 		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3964 		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3965 			mutex_enter(&stp->sd_lock);
3966 			/*
3967 			 * Anchors only apply if there's at least one
3968 			 * module on the stream (sd_pushcnt > 0).
3969 			 */
3970 			if (stp->sd_pushcnt > 0 &&
3971 			    stp->sd_pushcnt == stp->sd_anchor &&
3972 			    stp->sd_vnode->v_type != VFIFO) {
3973 				strendplumb(stp);
3974 				mutex_exit(&stp->sd_lock);
3975 				if (stp->sd_anchorzone != crgetzoneid(crp))
3976 					return (EINVAL);
3977 				/* Audit and report error */
3978 				return (secpolicy_ip_config(crp, B_FALSE));
3979 			}
3980 			mutex_exit(&stp->sd_lock);
3981 		}
3982 
3983 		q = wrq->q_next;
3984 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3985 		    "I_POP:%p from %p", q, stp);
3986 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3987 			error = EINVAL;
3988 		} else {
3989 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
3990 			error = 0;
3991 		}
3992 		mutex_enter(&stp->sd_lock);
3993 
3994 		/*
3995 		 * As a performance concern we are caching the values of
3996 		 * q_minpsz and q_maxpsz of the module below the stream
3997 		 * head in the stream head.
3998 		 */
3999 		mutex_enter(QLOCK(wrq->q_next));
4000 		rmin = wrq->q_next->q_minpsz;
4001 		rmax = wrq->q_next->q_maxpsz;
4002 		mutex_exit(QLOCK(wrq->q_next));
4003 
4004 		/* Do this processing here as a performance concern */
4005 		if (strmsgsz != 0) {
4006 			if (rmax == INFPSZ)
4007 				rmax = strmsgsz;
4008 			else  {
4009 				if (vp->v_type == VFIFO)
4010 					rmax = MIN(PIPE_BUF, rmax);
4011 				else	rmax = MIN(strmsgsz, rmax);
4012 			}
4013 		}
4014 
4015 		mutex_enter(QLOCK(wrq));
4016 		stp->sd_qn_minpsz = rmin;
4017 		stp->sd_qn_maxpsz = rmax;
4018 		mutex_exit(QLOCK(wrq));
4019 
4020 		/* If we popped through the anchor, then reset the anchor. */
4021 		if (stp->sd_pushcnt < stp->sd_anchor) {
4022 			stp->sd_anchor = 0;
4023 			stp->sd_anchorzone = 0;
4024 		}
4025 		strendplumb(stp);
4026 		mutex_exit(&stp->sd_lock);
4027 		return (error);
4028 	}
4029 
4030 	case _I_MUXID2FD:
4031 	{
4032 		/*
4033 		 * Create a fd for a I_PLINK'ed lower stream with a given
4034 		 * muxid.  With the fd, application can send down ioctls,
4035 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
4036 		 * that after getting the fd, the application has to do an
4037 		 * I_PUNLINK on the muxid before it can do any operation
4038 		 * on the lower stream.  This is required by spec1170.
4039 		 *
4040 		 * The fd used to do this ioctl should point to the same
4041 		 * controlling device used to do the I_PLINK.  If it uses
4042 		 * a different stream or an invalid muxid, I_MUXID2FD will
4043 		 * fail.  The error code is set to EINVAL.
4044 		 *
4045 		 * The intended use of this interface is the following.
4046 		 * An application I_PLINK'ed a stream and exits.  The fd
4047 		 * to the lower stream is gone.  Another application
4048 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
4049 		 */
4050 		int muxid = (int)arg;
4051 		int fd;
4052 		linkinfo_t *linkp;
4053 		struct file *fp;
4054 		netstack_t *ns;
4055 		str_stack_t *ss;
4056 
4057 		/*
4058 		 * Do not allow the wildcard muxid.  This ioctl is not
4059 		 * intended to find arbitrary link.
4060 		 */
4061 		if (muxid == 0) {
4062 			return (EINVAL);
4063 		}
4064 
4065 		ns = netstack_find_by_cred(crp);
4066 		ASSERT(ns != NULL);
4067 		ss = ns->netstack_str;
4068 		ASSERT(ss != NULL);
4069 
4070 		mutex_enter(&muxifier);
4071 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
4072 		if (linkp == NULL) {
4073 			mutex_exit(&muxifier);
4074 			netstack_rele(ss->ss_netstack);
4075 			return (EINVAL);
4076 		}
4077 
4078 		if ((fd = ufalloc(0)) == -1) {
4079 			mutex_exit(&muxifier);
4080 			netstack_rele(ss->ss_netstack);
4081 			return (EMFILE);
4082 		}
4083 		fp = linkp->li_fpdown;
4084 		mutex_enter(&fp->f_tlock);
4085 		fp->f_count++;
4086 		mutex_exit(&fp->f_tlock);
4087 		mutex_exit(&muxifier);
4088 		setf(fd, fp);
4089 		*rvalp = fd;
4090 		netstack_rele(ss->ss_netstack);
4091 		return (0);
4092 	}
4093 
4094 	case _I_INSERT:
4095 	{
4096 		/*
4097 		 * To insert a module to a given position in a stream.
4098 		 * In the first release, only allow privileged user
4099 		 * to use this ioctl. Furthermore, the insert is only allowed
4100 		 * below an anchor if the zoneid is the same as the zoneid
4101 		 * which created the anchor.
4102 		 *
4103 		 * Note that we do not plan to support this ioctl
4104 		 * on pipes in the first release.  We want to learn more
4105 		 * about the implications of these ioctls before extending
4106 		 * their support.  And we do not think these features are
4107 		 * valuable for pipes.
4108 		 */
4109 		STRUCT_DECL(strmodconf, strmodinsert);
4110 		char mod_name[FMNAMESZ + 1];
4111 		fmodsw_impl_t *fp;
4112 		dev_t dummydev;
4113 		queue_t *tmp_wrq;
4114 		int pos;
4115 		boolean_t is_insert;
4116 
4117 		STRUCT_INIT(strmodinsert, flag);
4118 		if (stp->sd_flag & STRHUP)
4119 			return (ENXIO);
4120 		if (STRMATED(stp))
4121 			return (EINVAL);
4122 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4123 			return (error);
4124 		if (stp->sd_anchor != 0 &&
4125 		    stp->sd_anchorzone != crgetzoneid(crp))
4126 			return (EINVAL);
4127 
4128 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4129 		    STRUCT_SIZE(strmodinsert), copyflag);
4130 		if (error)
4131 			return (error);
4132 
4133 		/*
4134 		 * Get module name and look up in fmodsw.
4135 		 */
4136 		error = (copyflag & U_TO_K ? copyinstr :
4137 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4138 		    mod_name, FMNAMESZ + 1, NULL);
4139 		if (error)
4140 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4141 
4142 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4143 		    NULL)
4144 			return (EINVAL);
4145 
4146 		if (error = strstartplumb(stp, flag, cmd)) {
4147 			fmodsw_rele(fp);
4148 			return (error);
4149 		}
4150 
4151 		/*
4152 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
4153 		 * this because we do some optimizations if this is a
4154 		 * module being pushed.
4155 		 */
4156 		pos = STRUCT_FGET(strmodinsert, pos);
4157 		is_insert = (pos != 0);
4158 
4159 		/*
4160 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
4161 		 * we impose the same limit on the number of modules in a
4162 		 * stream.
4163 		 */
4164 		mutex_enter(&stp->sd_lock);
4165 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4166 		    pos > stp->sd_pushcnt) {
4167 			fmodsw_rele(fp);
4168 			strendplumb(stp);
4169 			mutex_exit(&stp->sd_lock);
4170 			return (EINVAL);
4171 		}
4172 		if (stp->sd_anchor != 0) {
4173 			/*
4174 			 * Is this insert below the anchor?
4175 			 * Pushcnt hasn't been increased yet hence
4176 			 * we test for greater than here, and greater or
4177 			 * equal after qattach.
4178 			 */
4179 			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4180 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4181 				fmodsw_rele(fp);
4182 				strendplumb(stp);
4183 				mutex_exit(&stp->sd_lock);
4184 				return (EPERM);
4185 			}
4186 		}
4187 
4188 		mutex_exit(&stp->sd_lock);
4189 
4190 		/*
4191 		 * First find the correct position this module to
4192 		 * be inserted.  We don't need to call claimstr()
4193 		 * as the stream should not be changing at this point.
4194 		 *
4195 		 * Insert new module and call its open routine
4196 		 * via qattach().  Modules don't change device
4197 		 * numbers, so just ignore dummydev here.
4198 		 */
4199 		for (tmp_wrq = stp->sd_wrq; pos > 0;
4200 		    tmp_wrq = tmp_wrq->q_next, pos--) {
4201 			ASSERT(SAMESTR(tmp_wrq));
4202 		}
4203 		dummydev = vp->v_rdev;
4204 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4205 		    fp, is_insert)) != 0) {
4206 			mutex_enter(&stp->sd_lock);
4207 			strendplumb(stp);
4208 			mutex_exit(&stp->sd_lock);
4209 			return (error);
4210 		}
4211 
4212 		mutex_enter(&stp->sd_lock);
4213 
4214 		/*
4215 		 * As a performance concern we are caching the values of
4216 		 * q_minpsz and q_maxpsz of the module below the stream
4217 		 * head in the stream head.
4218 		 */
4219 		if (!is_insert) {
4220 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4221 			rmin = stp->sd_wrq->q_next->q_minpsz;
4222 			rmax = stp->sd_wrq->q_next->q_maxpsz;
4223 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4224 
4225 			/* Do this processing here as a performance concern */
4226 			if (strmsgsz != 0) {
4227 				if (rmax == INFPSZ) {
4228 					rmax = strmsgsz;
4229 				} else  {
4230 					rmax = MIN(strmsgsz, rmax);
4231 				}
4232 			}
4233 
4234 			mutex_enter(QLOCK(wrq));
4235 			stp->sd_qn_minpsz = rmin;
4236 			stp->sd_qn_maxpsz = rmax;
4237 			mutex_exit(QLOCK(wrq));
4238 		}
4239 
4240 		/*
4241 		 * Need to update the anchor value if this module is
4242 		 * inserted below the anchor point.
4243 		 */
4244 		if (stp->sd_anchor != 0) {
4245 			pos = STRUCT_FGET(strmodinsert, pos);
4246 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4247 				stp->sd_anchor++;
4248 		}
4249 
4250 		strendplumb(stp);
4251 		mutex_exit(&stp->sd_lock);
4252 		return (0);
4253 	}
4254 
4255 	case _I_REMOVE:
4256 	{
4257 		/*
4258 		 * To remove a module with a given name in a stream.  The
4259 		 * caller of this ioctl needs to provide both the name and
4260 		 * the position of the module to be removed.  This eliminates
4261 		 * the ambiguity of removal if a module is inserted/pushed
4262 		 * multiple times in a stream.  In the first release, only
4263 		 * allow privileged user to use this ioctl.
4264 		 * Furthermore, the remove is only allowed
4265 		 * below an anchor if the zoneid is the same as the zoneid
4266 		 * which created the anchor.
4267 		 *
4268 		 * Note that we do not plan to support this ioctl
4269 		 * on pipes in the first release.  We want to learn more
4270 		 * about the implications of these ioctls before extending
4271 		 * their support.  And we do not think these features are
4272 		 * valuable for pipes.
4273 		 *
4274 		 * Also note that _I_REMOVE cannot be used to remove a
4275 		 * driver or the stream head.
4276 		 */
4277 		STRUCT_DECL(strmodconf, strmodremove);
4278 		queue_t	*q;
4279 		int pos;
4280 		char mod_name[FMNAMESZ + 1];
4281 		boolean_t is_remove;
4282 
4283 		STRUCT_INIT(strmodremove, flag);
4284 		if (stp->sd_flag & STRHUP)
4285 			return (ENXIO);
4286 		if (STRMATED(stp))
4287 			return (EINVAL);
4288 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4289 			return (error);
4290 		if (stp->sd_anchor != 0 &&
4291 		    stp->sd_anchorzone != crgetzoneid(crp))
4292 			return (EINVAL);
4293 
4294 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4295 		    STRUCT_SIZE(strmodremove), copyflag);
4296 		if (error)
4297 			return (error);
4298 
4299 		error = (copyflag & U_TO_K ? copyinstr :
4300 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4301 		    mod_name, FMNAMESZ + 1, NULL);
4302 		if (error)
4303 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4304 
4305 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4306 			return (error);
4307 
4308 		/*
4309 		 * Match the name of given module to the name of module at
4310 		 * the given position.
4311 		 */
4312 		pos = STRUCT_FGET(strmodremove, pos);
4313 
4314 		is_remove = (pos != 0);
4315 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4316 		    q = q->q_next, pos--)
4317 			;
4318 		if (pos > 0 || !SAMESTR(q) ||
4319 		    strcmp(Q2NAME(q), mod_name) != 0) {
4320 			mutex_enter(&stp->sd_lock);
4321 			strendplumb(stp);
4322 			mutex_exit(&stp->sd_lock);
4323 			return (EINVAL);
4324 		}
4325 
4326 		/*
4327 		 * If the position is at or below an anchor, then the zoneid
4328 		 * must match the zoneid that created the anchor.
4329 		 */
4330 		if (stp->sd_anchor != 0) {
4331 			pos = STRUCT_FGET(strmodremove, pos);
4332 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4333 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4334 				mutex_enter(&stp->sd_lock);
4335 				strendplumb(stp);
4336 				mutex_exit(&stp->sd_lock);
4337 				return (EPERM);
4338 			}
4339 		}
4340 
4341 
4342 		ASSERT(!(q->q_flag & QREADR));
4343 		qdetach(_RD(q), 1, flag, crp, is_remove);
4344 
4345 		mutex_enter(&stp->sd_lock);
4346 
4347 		/*
4348 		 * As a performance concern we are caching the values of
4349 		 * q_minpsz and q_maxpsz of the module below the stream
4350 		 * head in the stream head.
4351 		 */
4352 		if (!is_remove) {
4353 			mutex_enter(QLOCK(wrq->q_next));
4354 			rmin = wrq->q_next->q_minpsz;
4355 			rmax = wrq->q_next->q_maxpsz;
4356 			mutex_exit(QLOCK(wrq->q_next));
4357 
4358 			/* Do this processing here as a performance concern */
4359 			if (strmsgsz != 0) {
4360 				if (rmax == INFPSZ)
4361 					rmax = strmsgsz;
4362 				else  {
4363 					if (vp->v_type == VFIFO)
4364 						rmax = MIN(PIPE_BUF, rmax);
4365 					else	rmax = MIN(strmsgsz, rmax);
4366 				}
4367 			}
4368 
4369 			mutex_enter(QLOCK(wrq));
4370 			stp->sd_qn_minpsz = rmin;
4371 			stp->sd_qn_maxpsz = rmax;
4372 			mutex_exit(QLOCK(wrq));
4373 		}
4374 
4375 		/*
4376 		 * Need to update the anchor value if this module is removed
4377 		 * at or below the anchor point.  If the removed module is at
4378 		 * the anchor point, remove the anchor for this stream if
4379 		 * there is no module above the anchor point.  Otherwise, if
4380 		 * the removed module is below the anchor point, decrement the
4381 		 * anchor point by 1.
4382 		 */
4383 		if (stp->sd_anchor != 0) {
4384 			pos = STRUCT_FGET(strmodremove, pos);
4385 			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4386 				stp->sd_anchor = 0;
4387 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4388 				stp->sd_anchor--;
4389 		}
4390 
4391 		strendplumb(stp);
4392 		mutex_exit(&stp->sd_lock);
4393 		return (0);
4394 	}
4395 
4396 	case I_ANCHOR:
4397 		/*
4398 		 * Set the anchor position on the stream to reside at
4399 		 * the top module (in other words, the top module
4400 		 * cannot be popped).  Anchors with a FIFO make no
4401 		 * obvious sense, so they're not allowed.
4402 		 */
4403 		mutex_enter(&stp->sd_lock);
4404 
4405 		if (stp->sd_vnode->v_type == VFIFO) {
4406 			mutex_exit(&stp->sd_lock);
4407 			return (EINVAL);
4408 		}
4409 		/* Only allow the same zoneid to update the anchor */
4410 		if (stp->sd_anchor != 0 &&
4411 		    stp->sd_anchorzone != crgetzoneid(crp)) {
4412 			mutex_exit(&stp->sd_lock);
4413 			return (EINVAL);
4414 		}
4415 		stp->sd_anchor = stp->sd_pushcnt;
4416 		stp->sd_anchorzone = crgetzoneid(crp);
4417 		mutex_exit(&stp->sd_lock);
4418 		return (0);
4419 
4420 	case I_LOOK:
4421 		/*
4422 		 * Get name of first module downstream.
4423 		 * If no module, return an error.
4424 		 */
4425 		claimstr(wrq);
4426 		if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
4427 			char *name = Q2NAME(wrq->q_next);
4428 
4429 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4430 			    copyflag);
4431 			releasestr(wrq);
4432 			return (error);
4433 		}
4434 		releasestr(wrq);
4435 		return (EINVAL);
4436 
4437 	case I_LINK:
4438 	case I_PLINK:
4439 		/*
4440 		 * Link a multiplexor.
4441 		 */
4442 		return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4443 
4444 	case _I_PLINK_LH:
4445 		/*
4446 		 * Link a multiplexor: Call must originate from kernel.
4447 		 */
4448 		if (kioctl)
4449 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4450 
4451 		return (EINVAL);
4452 	case I_UNLINK:
4453 	case I_PUNLINK:
4454 		/*
4455 		 * Unlink a multiplexor.
4456 		 * If arg is -1, unlink all links for which this is the
4457 		 * controlling stream.  Otherwise, arg is an index number
4458 		 * for a link to be removed.
4459 		 */
4460 	{
4461 		struct linkinfo *linkp;
4462 		int native_arg = (int)arg;
4463 		int type;
4464 		netstack_t *ns;
4465 		str_stack_t *ss;
4466 
4467 		TRACE_1(TR_FAC_STREAMS_FR,
4468 		    TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4469 		if (vp->v_type == VFIFO) {
4470 			return (EINVAL);
4471 		}
4472 		if (cmd == I_UNLINK)
4473 			type = LINKNORMAL;
4474 		else	/* I_PUNLINK */
4475 			type = LINKPERSIST;
4476 		if (native_arg == 0) {
4477 			return (EINVAL);
4478 		}
4479 		ns = netstack_find_by_cred(crp);
4480 		ASSERT(ns != NULL);
4481 		ss = ns->netstack_str;
4482 		ASSERT(ss != NULL);
4483 
4484 		if (native_arg == MUXID_ALL)
4485 			error = munlinkall(stp, type, crp, rvalp, ss);
4486 		else {
4487 			mutex_enter(&muxifier);
4488 			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4489 				/* invalid user supplied index number */
4490 				mutex_exit(&muxifier);
4491 				netstack_rele(ss->ss_netstack);
4492 				return (EINVAL);
4493 			}
4494 			/* munlink drops the muxifier lock */
4495 			error = munlink(stp, linkp, type, crp, rvalp, ss);
4496 		}
4497 		netstack_rele(ss->ss_netstack);
4498 		return (error);
4499 	}
4500 
4501 	case I_FLUSH:
4502 		/*
4503 		 * send a flush message downstream
4504 		 * flush message can indicate
4505 		 * FLUSHR - flush read queue
4506 		 * FLUSHW - flush write queue
4507 		 * FLUSHRW - flush read/write queue
4508 		 */
4509 		if (stp->sd_flag & STRHUP)
4510 			return (ENXIO);
4511 		if (arg & ~FLUSHRW)
4512 			return (EINVAL);
4513 
4514 		for (;;) {
4515 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4516 				break;
4517 			}
4518 			if (error = strwaitbuf(1, BPRI_HI)) {
4519 				return (error);
4520 			}
4521 		}
4522 
4523 		/*
4524 		 * Send down an unsupported ioctl and wait for the nack
4525 		 * in order to allow the M_FLUSH to propagate back
4526 		 * up to the stream head.
4527 		 * Replaces if (qready()) runqueues();
4528 		 */
4529 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4530 		strioc.ic_timout = 0;
4531 		strioc.ic_len = 0;
4532 		strioc.ic_dp = NULL;
4533 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4534 		*rvalp = 0;
4535 		return (0);
4536 
4537 	case I_FLUSHBAND:
4538 	{
4539 		struct bandinfo binfo;
4540 
4541 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4542 		    copyflag);
4543 		if (error)
4544 			return (error);
4545 		if (stp->sd_flag & STRHUP)
4546 			return (ENXIO);
4547 		if (binfo.bi_flag & ~FLUSHRW)
4548 			return (EINVAL);
4549 		while (!(mp = allocb(2, BPRI_HI))) {
4550 			if (error = strwaitbuf(2, BPRI_HI))
4551 				return (error);
4552 		}
4553 		mp->b_datap->db_type = M_FLUSH;
4554 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4555 		*mp->b_wptr++ = binfo.bi_pri;
4556 		putnext(stp->sd_wrq, mp);
4557 		/*
4558 		 * Send down an unsupported ioctl and wait for the nack
4559 		 * in order to allow the M_FLUSH to propagate back
4560 		 * up to the stream head.
4561 		 * Replaces if (qready()) runqueues();
4562 		 */
4563 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4564 		strioc.ic_timout = 0;
4565 		strioc.ic_len = 0;
4566 		strioc.ic_dp = NULL;
4567 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4568 		*rvalp = 0;
4569 		return (0);
4570 	}
4571 
4572 	case I_SRDOPT:
4573 		/*
4574 		 * Set read options
4575 		 *
4576 		 * RNORM - default stream mode
4577 		 * RMSGN - message no discard
4578 		 * RMSGD - message discard
4579 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4580 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4581 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4582 		 */
4583 		if (arg & ~(RMODEMASK | RPROTMASK))
4584 			return (EINVAL);
4585 
4586 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4587 			return (EINVAL);
4588 
4589 		mutex_enter(&stp->sd_lock);
4590 		switch (arg & RMODEMASK) {
4591 		case RNORM:
4592 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4593 			break;
4594 		case RMSGD:
4595 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4596 			    RD_MSGDIS;
4597 			break;
4598 		case RMSGN:
4599 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4600 			    RD_MSGNODIS;
4601 			break;
4602 		}
4603 
4604 		switch (arg & RPROTMASK) {
4605 		case RPROTNORM:
4606 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4607 			break;
4608 
4609 		case RPROTDAT:
4610 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4611 			    RD_PROTDAT);
4612 			break;
4613 
4614 		case RPROTDIS:
4615 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4616 			    RD_PROTDIS);
4617 			break;
4618 		}
4619 		mutex_exit(&stp->sd_lock);
4620 		return (0);
4621 
4622 	case I_GRDOPT:
4623 		/*
4624 		 * Get read option and return the value
4625 		 * to spot pointed to by arg
4626 		 */
4627 	{
4628 		int rdopt;
4629 
4630 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4631 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4632 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4633 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4634 
4635 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4636 		    copyflag));
4637 	}
4638 
4639 	case I_SERROPT:
4640 		/*
4641 		 * Set error options
4642 		 *
4643 		 * RERRNORM - persistent read errors
4644 		 * RERRNONPERSIST - non-persistent read errors
4645 		 * WERRNORM - persistent write errors
4646 		 * WERRNONPERSIST - non-persistent write errors
4647 		 */
4648 		if (arg & ~(RERRMASK | WERRMASK))
4649 			return (EINVAL);
4650 
4651 		mutex_enter(&stp->sd_lock);
4652 		switch (arg & RERRMASK) {
4653 		case RERRNORM:
4654 			stp->sd_flag &= ~STRDERRNONPERSIST;
4655 			break;
4656 		case RERRNONPERSIST:
4657 			stp->sd_flag |= STRDERRNONPERSIST;
4658 			break;
4659 		}
4660 		switch (arg & WERRMASK) {
4661 		case WERRNORM:
4662 			stp->sd_flag &= ~STWRERRNONPERSIST;
4663 			break;
4664 		case WERRNONPERSIST:
4665 			stp->sd_flag |= STWRERRNONPERSIST;
4666 			break;
4667 		}
4668 		mutex_exit(&stp->sd_lock);
4669 		return (0);
4670 
4671 	case I_GERROPT:
4672 		/*
4673 		 * Get error option and return the value
4674 		 * to spot pointed to by arg
4675 		 */
4676 	{
4677 		int erropt = 0;
4678 
4679 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4680 		    RERRNORM;
4681 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4682 		    WERRNORM;
4683 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4684 		    copyflag));
4685 	}
4686 
4687 	case I_SETSIG:
4688 		/*
4689 		 * Register the calling proc to receive the SIGPOLL
4690 		 * signal based on the events given in arg.  If
4691 		 * arg is zero, remove the proc from register list.
4692 		 */
4693 	{
4694 		strsig_t *ssp, *pssp;
4695 		struct pid *pidp;
4696 
4697 		pssp = NULL;
4698 		pidp = curproc->p_pidp;
4699 		/*
4700 		 * Hold sd_lock to prevent traversal of sd_siglist while
4701 		 * it is modified.
4702 		 */
4703 		mutex_enter(&stp->sd_lock);
4704 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4705 		    pssp = ssp, ssp = ssp->ss_next)
4706 			;
4707 
4708 		if (arg) {
4709 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4710 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4711 				mutex_exit(&stp->sd_lock);
4712 				return (EINVAL);
4713 			}
4714 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4715 				mutex_exit(&stp->sd_lock);
4716 				return (EINVAL);
4717 			}
4718 
4719 			/*
4720 			 * If proc not already registered, add it
4721 			 * to list.
4722 			 */
4723 			if (!ssp) {
4724 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4725 				ssp->ss_pidp = pidp;
4726 				ssp->ss_pid = pidp->pid_id;
4727 				ssp->ss_next = NULL;
4728 				if (pssp)
4729 					pssp->ss_next = ssp;
4730 				else
4731 					stp->sd_siglist = ssp;
4732 				mutex_enter(&pidlock);
4733 				PID_HOLD(pidp);
4734 				mutex_exit(&pidlock);
4735 			}
4736 
4737 			/*
4738 			 * Set events.
4739 			 */
4740 			ssp->ss_events = (int)arg;
4741 		} else {
4742 			/*
4743 			 * Remove proc from register list.
4744 			 */
4745 			if (ssp) {
4746 				mutex_enter(&pidlock);
4747 				PID_RELE(pidp);
4748 				mutex_exit(&pidlock);
4749 				if (pssp)
4750 					pssp->ss_next = ssp->ss_next;
4751 				else
4752 					stp->sd_siglist = ssp->ss_next;
4753 				kmem_free(ssp, sizeof (strsig_t));
4754 			} else {
4755 				mutex_exit(&stp->sd_lock);
4756 				return (EINVAL);
4757 			}
4758 		}
4759 
4760 		/*
4761 		 * Recalculate OR of sig events.
4762 		 */
4763 		stp->sd_sigflags = 0;
4764 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4765 			stp->sd_sigflags |= ssp->ss_events;
4766 		mutex_exit(&stp->sd_lock);
4767 		return (0);
4768 	}
4769 
4770 	case I_GETSIG:
4771 		/*
4772 		 * Return (in arg) the current registration of events
4773 		 * for which the calling proc is to be signaled.
4774 		 */
4775 	{
4776 		struct strsig *ssp;
4777 		struct pid  *pidp;
4778 
4779 		pidp = curproc->p_pidp;
4780 		mutex_enter(&stp->sd_lock);
4781 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4782 			if (ssp->ss_pidp == pidp) {
4783 				error = strcopyout(&ssp->ss_events, (void *)arg,
4784 				    sizeof (int), copyflag);
4785 				mutex_exit(&stp->sd_lock);
4786 				return (error);
4787 			}
4788 		mutex_exit(&stp->sd_lock);
4789 		return (EINVAL);
4790 	}
4791 
4792 	case I_ESETSIG:
4793 		/*
4794 		 * Register the ss_pid to receive the SIGPOLL
4795 		 * signal based on the events is ss_events arg.  If
4796 		 * ss_events is zero, remove the proc from register list.
4797 		 */
4798 	{
4799 		struct strsig *ssp, *pssp;
4800 		struct proc *proc;
4801 		struct pid  *pidp;
4802 		pid_t pid;
4803 		struct strsigset ss;
4804 
4805 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4806 		if (error)
4807 			return (error);
4808 
4809 		pid = ss.ss_pid;
4810 
4811 		if (ss.ss_events != 0) {
4812 			/*
4813 			 * Permissions check by sending signal 0.
4814 			 * Note that when kill fails it does a set_errno
4815 			 * causing the system call to fail.
4816 			 */
4817 			error = kill(pid, 0);
4818 			if (error) {
4819 				return (error);
4820 			}
4821 		}
4822 		mutex_enter(&pidlock);
4823 		if (pid == 0)
4824 			proc = curproc;
4825 		else if (pid < 0)
4826 			proc = pgfind(-pid);
4827 		else
4828 			proc = prfind(pid);
4829 		if (proc == NULL) {
4830 			mutex_exit(&pidlock);
4831 			return (ESRCH);
4832 		}
4833 		if (pid < 0)
4834 			pidp = proc->p_pgidp;
4835 		else
4836 			pidp = proc->p_pidp;
4837 		ASSERT(pidp);
4838 		/*
4839 		 * Get a hold on the pid structure while referencing it.
4840 		 * There is a separate PID_HOLD should it be inserted
4841 		 * in the list below.
4842 		 */
4843 		PID_HOLD(pidp);
4844 		mutex_exit(&pidlock);
4845 
4846 		pssp = NULL;
4847 		/*
4848 		 * Hold sd_lock to prevent traversal of sd_siglist while
4849 		 * it is modified.
4850 		 */
4851 		mutex_enter(&stp->sd_lock);
4852 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4853 		    pssp = ssp, ssp = ssp->ss_next)
4854 			;
4855 
4856 		if (ss.ss_events) {
4857 			if (ss.ss_events &
4858 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4859 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4860 				mutex_exit(&stp->sd_lock);
4861 				mutex_enter(&pidlock);
4862 				PID_RELE(pidp);
4863 				mutex_exit(&pidlock);
4864 				return (EINVAL);
4865 			}
4866 			if ((ss.ss_events & S_BANDURG) &&
4867 			    !(ss.ss_events & S_RDBAND)) {
4868 				mutex_exit(&stp->sd_lock);
4869 				mutex_enter(&pidlock);
4870 				PID_RELE(pidp);
4871 				mutex_exit(&pidlock);
4872 				return (EINVAL);
4873 			}
4874 
4875 			/*
4876 			 * If proc not already registered, add it
4877 			 * to list.
4878 			 */
4879 			if (!ssp) {
4880 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4881 				ssp->ss_pidp = pidp;
4882 				ssp->ss_pid = pid;
4883 				ssp->ss_next = NULL;
4884 				if (pssp)
4885 					pssp->ss_next = ssp;
4886 				else
4887 					stp->sd_siglist = ssp;
4888 				mutex_enter(&pidlock);
4889 				PID_HOLD(pidp);
4890 				mutex_exit(&pidlock);
4891 			}
4892 
4893 			/*
4894 			 * Set events.
4895 			 */
4896 			ssp->ss_events = ss.ss_events;
4897 		} else {
4898 			/*
4899 			 * Remove proc from register list.
4900 			 */
4901 			if (ssp) {
4902 				mutex_enter(&pidlock);
4903 				PID_RELE(pidp);
4904 				mutex_exit(&pidlock);
4905 				if (pssp)
4906 					pssp->ss_next = ssp->ss_next;
4907 				else
4908 					stp->sd_siglist = ssp->ss_next;
4909 				kmem_free(ssp, sizeof (strsig_t));
4910 			} else {
4911 				mutex_exit(&stp->sd_lock);
4912 				mutex_enter(&pidlock);
4913 				PID_RELE(pidp);
4914 				mutex_exit(&pidlock);
4915 				return (EINVAL);
4916 			}
4917 		}
4918 
4919 		/*
4920 		 * Recalculate OR of sig events.
4921 		 */
4922 		stp->sd_sigflags = 0;
4923 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4924 			stp->sd_sigflags |= ssp->ss_events;
4925 		mutex_exit(&stp->sd_lock);
4926 		mutex_enter(&pidlock);
4927 		PID_RELE(pidp);
4928 		mutex_exit(&pidlock);
4929 		return (0);
4930 	}
4931 
4932 	case I_EGETSIG:
4933 		/*
4934 		 * Return (in arg) the current registration of events
4935 		 * for which the calling proc is to be signaled.
4936 		 */
4937 	{
4938 		struct strsig *ssp;
4939 		struct proc *proc;
4940 		pid_t pid;
4941 		struct pid  *pidp;
4942 		struct strsigset ss;
4943 
4944 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4945 		if (error)
4946 			return (error);
4947 
4948 		pid = ss.ss_pid;
4949 		mutex_enter(&pidlock);
4950 		if (pid == 0)
4951 			proc = curproc;
4952 		else if (pid < 0)
4953 			proc = pgfind(-pid);
4954 		else
4955 			proc = prfind(pid);
4956 		if (proc == NULL) {
4957 			mutex_exit(&pidlock);
4958 			return (ESRCH);
4959 		}
4960 		if (pid < 0)
4961 			pidp = proc->p_pgidp;
4962 		else
4963 			pidp = proc->p_pidp;
4964 
4965 		/* Prevent the pidp from being reassigned */
4966 		PID_HOLD(pidp);
4967 		mutex_exit(&pidlock);
4968 
4969 		mutex_enter(&stp->sd_lock);
4970 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4971 			if (ssp->ss_pid == pid) {
4972 				ss.ss_pid = ssp->ss_pid;
4973 				ss.ss_events = ssp->ss_events;
4974 				error = strcopyout(&ss, (void *)arg,
4975 				    sizeof (struct strsigset), copyflag);
4976 				mutex_exit(&stp->sd_lock);
4977 				mutex_enter(&pidlock);
4978 				PID_RELE(pidp);
4979 				mutex_exit(&pidlock);
4980 				return (error);
4981 			}
4982 		mutex_exit(&stp->sd_lock);
4983 		mutex_enter(&pidlock);
4984 		PID_RELE(pidp);
4985 		mutex_exit(&pidlock);
4986 		return (EINVAL);
4987 	}
4988 
4989 	case I_PEEK:
4990 	{
4991 		STRUCT_DECL(strpeek, strpeek);
4992 		size_t n;
4993 		mblk_t *fmp, *tmp_mp = NULL;
4994 
4995 		STRUCT_INIT(strpeek, flag);
4996 
4997 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4998 		    STRUCT_SIZE(strpeek), copyflag);
4999 		if (error)
5000 			return (error);
5001 
5002 		mutex_enter(QLOCK(rdq));
5003 		/*
5004 		 * Skip the invalid messages
5005 		 */
5006 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
5007 			if (mp->b_datap->db_type != M_SIG)
5008 				break;
5009 
5010 		/*
5011 		 * If user has requested to peek at a high priority message
5012 		 * and first message is not, return 0
5013 		 */
5014 		if (mp != NULL) {
5015 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
5016 			    queclass(mp) == QNORM) {
5017 				*rvalp = 0;
5018 				mutex_exit(QLOCK(rdq));
5019 				return (0);
5020 			}
5021 		} else if (stp->sd_struiordq == NULL ||
5022 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
5023 			/*
5024 			 * No mblks to look at at the streamhead and
5025 			 * 1). This isn't a synch stream or
5026 			 * 2). This is a synch stream but caller wants high
5027 			 *	priority messages which is not supported by
5028 			 *	the synch stream. (it only supports QNORM)
5029 			 */
5030 			*rvalp = 0;
5031 			mutex_exit(QLOCK(rdq));
5032 			return (0);
5033 		}
5034 
5035 		fmp = mp;
5036 
5037 		if (mp && mp->b_datap->db_type == M_PASSFP) {
5038 			mutex_exit(QLOCK(rdq));
5039 			return (EBADMSG);
5040 		}
5041 
5042 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
5043 		    mp->b_datap->db_type == M_PROTO ||
5044 		    mp->b_datap->db_type == M_DATA);
5045 
5046 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
5047 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
5048 		} else {
5049 			STRUCT_FSET(strpeek, flags, 0);
5050 		}
5051 
5052 
5053 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
5054 			mutex_exit(QLOCK(rdq));
5055 			return (ENOSR);
5056 		}
5057 		mutex_exit(QLOCK(rdq));
5058 
5059 		/*
5060 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
5061 		 * tmp_mp is used to free the dup'd message.
5062 		 */
5063 		mp = tmp_mp;
5064 
5065 		uio.uio_fmode = 0;
5066 		uio.uio_extflg = UIO_COPY_CACHED;
5067 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5068 		    UIO_SYSSPACE;
5069 		uio.uio_limit = 0;
5070 		/*
5071 		 * First process PROTO blocks, if any.
5072 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
5073 		 * then set len to -1/0 and skip control blocks part.
5074 		 */
5075 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
5076 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
5077 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
5078 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
5079 		else {
5080 			int	ctl_part = 0;
5081 
5082 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
5083 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
5084 			uio.uio_iov = &iov;
5085 			uio.uio_resid = iov.iov_len;
5086 			uio.uio_loffset = 0;
5087 			uio.uio_iovcnt = 1;
5088 			while (mp && mp->b_datap->db_type != M_DATA &&
5089 			    uio.uio_resid >= 0) {
5090 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5091 				    mp->b_datap->db_type == M_PROTO :
5092 				    mp->b_datap->db_type == M_PCPROTO);
5093 
5094 				if ((n = MIN(uio.uio_resid,
5095 				    mp->b_wptr - mp->b_rptr)) != 0 &&
5096 				    (error = uiomove((char *)mp->b_rptr, n,
5097 				    UIO_READ, &uio)) != 0) {
5098 					freemsg(tmp_mp);
5099 					return (error);
5100 				}
5101 				ctl_part = 1;
5102 				mp = mp->b_cont;
5103 			}
5104 			/* No ctl message */
5105 			if (ctl_part == 0)
5106 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
5107 			else
5108 				STRUCT_FSET(strpeek, ctlbuf.len,
5109 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5110 				    uio.uio_resid);
5111 		}
5112 
5113 		/*
5114 		 * Now process DATA blocks, if any.
5115 		 * If user doesn't want to get data info by setting maxlen <= 0,
5116 		 * then set len to -1/0 and skip data blocks part.
5117 		 */
5118 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5119 			STRUCT_FSET(strpeek, databuf.len, -1);
5120 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5121 			STRUCT_FSET(strpeek, databuf.len, 0);
5122 		else {
5123 			int	data_part = 0;
5124 
5125 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5126 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5127 			uio.uio_iov = &iov;
5128 			uio.uio_resid = iov.iov_len;
5129 			uio.uio_loffset = 0;
5130 			uio.uio_iovcnt = 1;
5131 			while (mp && uio.uio_resid) {
5132 				if (mp->b_datap->db_type == M_DATA) {
5133 					if ((n = MIN(uio.uio_resid,
5134 					    mp->b_wptr - mp->b_rptr)) != 0 &&
5135 					    (error = uiomove((char *)mp->b_rptr,
5136 					    n, UIO_READ, &uio)) != 0) {
5137 						freemsg(tmp_mp);
5138 						return (error);
5139 					}
5140 					data_part = 1;
5141 				}
5142 				ASSERT(data_part == 0 ||
5143 				    mp->b_datap->db_type == M_DATA);
5144 				mp = mp->b_cont;
5145 			}
5146 			/* No data message */
5147 			if (data_part == 0)
5148 				STRUCT_FSET(strpeek, databuf.len, -1);
5149 			else
5150 				STRUCT_FSET(strpeek, databuf.len,
5151 				    STRUCT_FGET(strpeek, databuf.maxlen) -
5152 				    uio.uio_resid);
5153 		}
5154 		freemsg(tmp_mp);
5155 
5156 		/*
5157 		 * It is a synch stream and user wants to get
5158 		 * data (maxlen > 0).
5159 		 * uio setup is done by the codes that process DATA
5160 		 * blocks above.
5161 		 */
5162 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5163 			infod_t infod;
5164 
5165 			infod.d_cmd = INFOD_COPYOUT;
5166 			infod.d_res = 0;
5167 			infod.d_uiop = &uio;
5168 			error = infonext(rdq, &infod);
5169 			if (error == EINVAL || error == EBUSY)
5170 				error = 0;
5171 			if (error)
5172 				return (error);
5173 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5174 			    databuf.maxlen) - uio.uio_resid);
5175 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5176 				/*
5177 				 * No data found by the infonext().
5178 				 */
5179 				STRUCT_FSET(strpeek, databuf.len, -1);
5180 			}
5181 		}
5182 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5183 		    STRUCT_SIZE(strpeek), copyflag);
5184 		if (error) {
5185 			return (error);
5186 		}
5187 		/*
5188 		 * If there is no message retrieved, set return code to 0
5189 		 * otherwise, set it to 1.
5190 		 */
5191 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5192 		    STRUCT_FGET(strpeek, databuf.len) == -1)
5193 			*rvalp = 0;
5194 		else
5195 			*rvalp = 1;
5196 		return (0);
5197 	}
5198 
5199 	case I_FDINSERT:
5200 	{
5201 		STRUCT_DECL(strfdinsert, strfdinsert);
5202 		struct file *resftp;
5203 		struct stdata *resstp;
5204 		t_uscalar_t	ival;
5205 		ssize_t msgsize;
5206 		struct strbuf mctl;
5207 
5208 		STRUCT_INIT(strfdinsert, flag);
5209 		if (stp->sd_flag & STRHUP)
5210 			return (ENXIO);
5211 		/*
5212 		 * STRDERR, STWRERR and STPLEX tested above.
5213 		 */
5214 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5215 		    STRUCT_SIZE(strfdinsert), copyflag);
5216 		if (error)
5217 			return (error);
5218 
5219 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5220 		    (STRUCT_FGET(strfdinsert, offset) %
5221 		    sizeof (t_uscalar_t)) != 0)
5222 			return (EINVAL);
5223 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5224 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5225 				releasef(STRUCT_FGET(strfdinsert, fildes));
5226 				return (EINVAL);
5227 			}
5228 		} else
5229 			return (EINVAL);
5230 
5231 		mutex_enter(&resstp->sd_lock);
5232 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5233 			error = strgeterr(resstp,
5234 			    STRDERR|STWRERR|STRHUP|STPLEX, 0);
5235 			if (error != 0) {
5236 				mutex_exit(&resstp->sd_lock);
5237 				releasef(STRUCT_FGET(strfdinsert, fildes));
5238 				return (error);
5239 			}
5240 		}
5241 		mutex_exit(&resstp->sd_lock);
5242 
5243 #ifdef	_ILP32
5244 		{
5245 			queue_t	*q;
5246 			queue_t	*mate = NULL;
5247 
5248 			/* get read queue of stream terminus */
5249 			claimstr(resstp->sd_wrq);
5250 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5251 			    q = q->q_next)
5252 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5253 				    mate == NULL) {
5254 					ASSERT(q->q_qinfo->qi_srvp);
5255 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5256 					claimstr(q);
5257 					mate = q;
5258 				}
5259 			q = _RD(q);
5260 			if (mate)
5261 				releasestr(mate);
5262 			releasestr(resstp->sd_wrq);
5263 			ival = (t_uscalar_t)q;
5264 		}
5265 #else
5266 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5267 #endif	/* _ILP32 */
5268 
5269 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5270 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5271 			releasef(STRUCT_FGET(strfdinsert, fildes));
5272 			return (EINVAL);
5273 		}
5274 
5275 		/*
5276 		 * Check for legal flag value.
5277 		 */
5278 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5279 			releasef(STRUCT_FGET(strfdinsert, fildes));
5280 			return (EINVAL);
5281 		}
5282 
5283 		/* get these values from those cached in the stream head */
5284 		mutex_enter(QLOCK(stp->sd_wrq));
5285 		rmin = stp->sd_qn_minpsz;
5286 		rmax = stp->sd_qn_maxpsz;
5287 		mutex_exit(QLOCK(stp->sd_wrq));
5288 
5289 		/*
5290 		 * Make sure ctl and data sizes together fall within
5291 		 * the limits of the max and min receive packet sizes
5292 		 * and do not exceed system limit.  A negative data
5293 		 * length means that no data part is to be sent.
5294 		 */
5295 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5296 		if (rmax == 0) {
5297 			releasef(STRUCT_FGET(strfdinsert, fildes));
5298 			return (ERANGE);
5299 		}
5300 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5301 			msgsize = 0;
5302 		if ((msgsize < rmin) ||
5303 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5304 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5305 			releasef(STRUCT_FGET(strfdinsert, fildes));
5306 			return (ERANGE);
5307 		}
5308 
5309 		mutex_enter(&stp->sd_lock);
5310 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5311 		    !canputnext(stp->sd_wrq)) {
5312 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5313 			    flag, -1, &done)) != 0 || done) {
5314 				mutex_exit(&stp->sd_lock);
5315 				releasef(STRUCT_FGET(strfdinsert, fildes));
5316 				return (error);
5317 			}
5318 			if ((error = i_straccess(stp, access)) != 0) {
5319 				mutex_exit(&stp->sd_lock);
5320 				releasef(
5321 				    STRUCT_FGET(strfdinsert, fildes));
5322 				return (error);
5323 			}
5324 		}
5325 		mutex_exit(&stp->sd_lock);
5326 
5327 		/*
5328 		 * Copy strfdinsert.ctlbuf into native form of
5329 		 * ctlbuf to pass down into strmakemsg().
5330 		 */
5331 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5332 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5333 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5334 
5335 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5336 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5337 		uio.uio_iov = &iov;
5338 		uio.uio_iovcnt = 1;
5339 		uio.uio_loffset = 0;
5340 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5341 		    UIO_SYSSPACE;
5342 		uio.uio_fmode = 0;
5343 		uio.uio_extflg = UIO_COPY_CACHED;
5344 		uio.uio_resid = iov.iov_len;
5345 		if ((error = strmakemsg(&mctl,
5346 		    &msgsize, &uio, stp,
5347 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5348 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5349 			releasef(STRUCT_FGET(strfdinsert, fildes));
5350 			return (error);
5351 		}
5352 
5353 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5354 
5355 		/*
5356 		 * Place the possibly reencoded queue pointer 'offset' bytes
5357 		 * from the start of the control portion of the message.
5358 		 */
5359 		*((t_uscalar_t *)(mp->b_rptr +
5360 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5361 
5362 		/*
5363 		 * Put message downstream.
5364 		 */
5365 		stream_willservice(stp);
5366 		putnext(stp->sd_wrq, mp);
5367 		stream_runservice(stp);
5368 		releasef(STRUCT_FGET(strfdinsert, fildes));
5369 		return (error);
5370 	}
5371 
5372 	case I_SENDFD:
5373 	{
5374 		struct file *fp;
5375 
5376 		if ((fp = getf((int)arg)) == NULL)
5377 			return (EBADF);
5378 		error = do_sendfp(stp, fp, crp);
5379 		if (auditing) {
5380 			audit_fdsend((int)arg, fp, error);
5381 		}
5382 		releasef((int)arg);
5383 		return (error);
5384 	}
5385 
5386 	case I_RECVFD:
5387 	case I_E_RECVFD:
5388 	{
5389 		struct k_strrecvfd *srf;
5390 		int i, fd;
5391 
5392 		mutex_enter(&stp->sd_lock);
5393 		while (!(mp = getq(rdq))) {
5394 			if (stp->sd_flag & (STRHUP|STREOF)) {
5395 				mutex_exit(&stp->sd_lock);
5396 				return (ENXIO);
5397 			}
5398 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5399 			    flag, -1, &done)) != 0 || done) {
5400 				mutex_exit(&stp->sd_lock);
5401 				return (error);
5402 			}
5403 			if ((error = i_straccess(stp, access)) != 0) {
5404 				mutex_exit(&stp->sd_lock);
5405 				return (error);
5406 			}
5407 		}
5408 		if (mp->b_datap->db_type != M_PASSFP) {
5409 			putback(stp, rdq, mp, mp->b_band);
5410 			mutex_exit(&stp->sd_lock);
5411 			return (EBADMSG);
5412 		}
5413 		mutex_exit(&stp->sd_lock);
5414 
5415 		srf = (struct k_strrecvfd *)mp->b_rptr;
5416 		if ((fd = ufalloc(0)) == -1) {
5417 			mutex_enter(&stp->sd_lock);
5418 			putback(stp, rdq, mp, mp->b_band);
5419 			mutex_exit(&stp->sd_lock);
5420 			return (EMFILE);
5421 		}
5422 		if (cmd == I_RECVFD) {
5423 			struct o_strrecvfd	ostrfd;
5424 
5425 			/* check to see if uid/gid values are too large. */
5426 
5427 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5428 			    srf->gid > (o_gid_t)USHRT_MAX) {
5429 				mutex_enter(&stp->sd_lock);
5430 				putback(stp, rdq, mp, mp->b_band);
5431 				mutex_exit(&stp->sd_lock);
5432 				setf(fd, NULL);	/* release fd entry */
5433 				return (EOVERFLOW);
5434 			}
5435 
5436 			ostrfd.fd = fd;
5437 			ostrfd.uid = (o_uid_t)srf->uid;
5438 			ostrfd.gid = (o_gid_t)srf->gid;
5439 
5440 			/* Null the filler bits */
5441 			for (i = 0; i < 8; i++)
5442 				ostrfd.fill[i] = 0;
5443 
5444 			error = strcopyout(&ostrfd, (void *)arg,
5445 			    sizeof (struct o_strrecvfd), copyflag);
5446 		} else {		/* I_E_RECVFD */
5447 			struct strrecvfd	strfd;
5448 
5449 			strfd.fd = fd;
5450 			strfd.uid = srf->uid;
5451 			strfd.gid = srf->gid;
5452 
5453 			/* null the filler bits */
5454 			for (i = 0; i < 8; i++)
5455 				strfd.fill[i] = 0;
5456 
5457 			error = strcopyout(&strfd, (void *)arg,
5458 			    sizeof (struct strrecvfd), copyflag);
5459 		}
5460 
5461 		if (error) {
5462 			setf(fd, NULL);	/* release fd entry */
5463 			mutex_enter(&stp->sd_lock);
5464 			putback(stp, rdq, mp, mp->b_band);
5465 			mutex_exit(&stp->sd_lock);
5466 			return (error);
5467 		}
5468 		if (auditing) {
5469 			audit_fdrecv(fd, srf->fp);
5470 		}
5471 
5472 		/*
5473 		 * Always increment f_count since the freemsg() below will
5474 		 * always call free_passfp() which performs a closef().
5475 		 */
5476 		mutex_enter(&srf->fp->f_tlock);
5477 		srf->fp->f_count++;
5478 		mutex_exit(&srf->fp->f_tlock);
5479 		setf(fd, srf->fp);
5480 		freemsg(mp);
5481 		return (0);
5482 	}
5483 
5484 	case I_SWROPT:
5485 		/*
5486 		 * Set/clear the write options. arg is a bit
5487 		 * mask with any of the following bits set...
5488 		 *	SNDZERO - send zero length message
5489 		 *	SNDPIPE - send sigpipe to process if
5490 		 *		sd_werror is set and process is
5491 		 *		doing a write or putmsg.
5492 		 * The new stream head write options should reflect
5493 		 * what is in arg.
5494 		 */
5495 		if (arg & ~(SNDZERO|SNDPIPE))
5496 			return (EINVAL);
5497 
5498 		mutex_enter(&stp->sd_lock);
5499 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5500 		if (arg & SNDZERO)
5501 			stp->sd_wput_opt |= SW_SNDZERO;
5502 		if (arg & SNDPIPE)
5503 			stp->sd_wput_opt |= SW_SIGPIPE;
5504 		mutex_exit(&stp->sd_lock);
5505 		return (0);
5506 
5507 	case I_GWROPT:
5508 	{
5509 		int wropt = 0;
5510 
5511 		if (stp->sd_wput_opt & SW_SNDZERO)
5512 			wropt |= SNDZERO;
5513 		if (stp->sd_wput_opt & SW_SIGPIPE)
5514 			wropt |= SNDPIPE;
5515 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5516 		    copyflag));
5517 	}
5518 
5519 	case I_LIST:
5520 		/*
5521 		 * Returns all the modules found on this stream,
5522 		 * upto the driver. If argument is NULL, return the
5523 		 * number of modules (including driver). If argument
5524 		 * is not NULL, copy the names into the structure
5525 		 * provided.
5526 		 */
5527 
5528 	{
5529 		queue_t *q;
5530 		char *qname;
5531 		int i, nmods;
5532 		struct str_mlist *mlist;
5533 		STRUCT_DECL(str_list, strlist);
5534 
5535 		if (arg == 0) { /* Return number of modules plus driver */
5536 			if (stp->sd_vnode->v_type == VFIFO)
5537 				*rvalp = stp->sd_pushcnt;
5538 			else
5539 				*rvalp = stp->sd_pushcnt + 1;
5540 			return (0);
5541 		}
5542 
5543 		STRUCT_INIT(strlist, flag);
5544 
5545 		error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5546 		    STRUCT_SIZE(strlist), copyflag);
5547 		if (error != 0)
5548 			return (error);
5549 
5550 		mlist = STRUCT_FGETP(strlist, sl_modlist);
5551 		nmods = STRUCT_FGET(strlist, sl_nmods);
5552 		if (nmods <= 0)
5553 			return (EINVAL);
5554 
5555 		claimstr(stp->sd_wrq);
5556 		q = stp->sd_wrq;
5557 		for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5558 			qname = Q2NAME(q->q_next);
5559 			error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5560 			    copyflag);
5561 			if (error != 0) {
5562 				releasestr(stp->sd_wrq);
5563 				return (error);
5564 			}
5565 		}
5566 		releasestr(stp->sd_wrq);
5567 		return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5568 	}
5569 
5570 	case I_CKBAND:
5571 	{
5572 		queue_t *q;
5573 		qband_t *qbp;
5574 
5575 		if ((arg < 0) || (arg >= NBAND))
5576 			return (EINVAL);
5577 		q = _RD(stp->sd_wrq);
5578 		mutex_enter(QLOCK(q));
5579 		if (arg > (int)q->q_nband) {
5580 			*rvalp = 0;
5581 		} else {
5582 			if (arg == 0) {
5583 				if (q->q_first)
5584 					*rvalp = 1;
5585 				else
5586 					*rvalp = 0;
5587 			} else {
5588 				qbp = q->q_bandp;
5589 				while (--arg > 0)
5590 					qbp = qbp->qb_next;
5591 				if (qbp->qb_first)
5592 					*rvalp = 1;
5593 				else
5594 					*rvalp = 0;
5595 			}
5596 		}
5597 		mutex_exit(QLOCK(q));
5598 		return (0);
5599 	}
5600 
5601 	case I_GETBAND:
5602 	{
5603 		int intpri;
5604 		queue_t *q;
5605 
5606 		q = _RD(stp->sd_wrq);
5607 		mutex_enter(QLOCK(q));
5608 		mp = q->q_first;
5609 		if (!mp) {
5610 			mutex_exit(QLOCK(q));
5611 			return (ENODATA);
5612 		}
5613 		intpri = (int)mp->b_band;
5614 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5615 		    copyflag);
5616 		mutex_exit(QLOCK(q));
5617 		return (error);
5618 	}
5619 
5620 	case I_ATMARK:
5621 	{
5622 		queue_t *q;
5623 
5624 		if (arg & ~(ANYMARK|LASTMARK))
5625 			return (EINVAL);
5626 		q = _RD(stp->sd_wrq);
5627 		mutex_enter(&stp->sd_lock);
5628 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5629 			*rvalp = 1;
5630 		} else {
5631 			mutex_enter(QLOCK(q));
5632 			mp = q->q_first;
5633 
5634 			if (mp == NULL)
5635 				*rvalp = 0;
5636 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5637 				*rvalp = 1;
5638 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5639 				*rvalp = 1;
5640 			else
5641 				*rvalp = 0;
5642 			mutex_exit(QLOCK(q));
5643 		}
5644 		mutex_exit(&stp->sd_lock);
5645 		return (0);
5646 	}
5647 
5648 	case I_CANPUT:
5649 	{
5650 		char band;
5651 
5652 		if ((arg < 0) || (arg >= NBAND))
5653 			return (EINVAL);
5654 		band = (char)arg;
5655 		*rvalp = bcanputnext(stp->sd_wrq, band);
5656 		return (0);
5657 	}
5658 
5659 	case I_SETCLTIME:
5660 	{
5661 		int closetime;
5662 
5663 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5664 		    copyflag);
5665 		if (error)
5666 			return (error);
5667 		if (closetime < 0)
5668 			return (EINVAL);
5669 
5670 		stp->sd_closetime = closetime;
5671 		return (0);
5672 	}
5673 
5674 	case I_GETCLTIME:
5675 	{
5676 		int closetime;
5677 
5678 		closetime = stp->sd_closetime;
5679 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5680 		    copyflag));
5681 	}
5682 
5683 	case TIOCGSID:
5684 	{
5685 		pid_t sid;
5686 
5687 		mutex_enter(&stp->sd_lock);
5688 		if (stp->sd_sidp == NULL) {
5689 			mutex_exit(&stp->sd_lock);
5690 			return (ENOTTY);
5691 		}
5692 		sid = stp->sd_sidp->pid_id;
5693 		mutex_exit(&stp->sd_lock);
5694 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5695 		    copyflag));
5696 	}
5697 
5698 	case TIOCSPGRP:
5699 	{
5700 		pid_t pgrp;
5701 		proc_t *q;
5702 		pid_t	sid, fg_pgid, bg_pgid;
5703 
5704 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5705 		    copyflag))
5706 			return (error);
5707 		mutex_enter(&stp->sd_lock);
5708 		mutex_enter(&pidlock);
5709 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5710 			mutex_exit(&pidlock);
5711 			mutex_exit(&stp->sd_lock);
5712 			return (ENOTTY);
5713 		}
5714 		if (pgrp == stp->sd_pgidp->pid_id) {
5715 			mutex_exit(&pidlock);
5716 			mutex_exit(&stp->sd_lock);
5717 			return (0);
5718 		}
5719 		if (pgrp <= 0 || pgrp >= maxpid) {
5720 			mutex_exit(&pidlock);
5721 			mutex_exit(&stp->sd_lock);
5722 			return (EINVAL);
5723 		}
5724 		if ((q = pgfind(pgrp)) == NULL ||
5725 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5726 			mutex_exit(&pidlock);
5727 			mutex_exit(&stp->sd_lock);
5728 			return (EPERM);
5729 		}
5730 		sid = stp->sd_sidp->pid_id;
5731 		fg_pgid = q->p_pgrp;
5732 		bg_pgid = stp->sd_pgidp->pid_id;
5733 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5734 		PID_RELE(stp->sd_pgidp);
5735 		ctty_clear_sighuped();
5736 		stp->sd_pgidp = q->p_pgidp;
5737 		PID_HOLD(stp->sd_pgidp);
5738 		mutex_exit(&pidlock);
5739 		mutex_exit(&stp->sd_lock);
5740 		return (0);
5741 	}
5742 
5743 	case TIOCGPGRP:
5744 	{
5745 		pid_t pgrp;
5746 
5747 		mutex_enter(&stp->sd_lock);
5748 		if (stp->sd_sidp == NULL) {
5749 			mutex_exit(&stp->sd_lock);
5750 			return (ENOTTY);
5751 		}
5752 		pgrp = stp->sd_pgidp->pid_id;
5753 		mutex_exit(&stp->sd_lock);
5754 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5755 		    copyflag));
5756 	}
5757 
5758 	case TIOCSCTTY:
5759 	{
5760 		return (strctty(stp));
5761 	}
5762 
5763 	case TIOCNOTTY:
5764 	{
5765 		/* freectty() always assumes curproc. */
5766 		if (freectty(B_FALSE) != 0)
5767 			return (0);
5768 		return (ENOTTY);
5769 	}
5770 
5771 	case FIONBIO:
5772 	case FIOASYNC:
5773 		return (0);	/* handled by the upper layer */
5774 	}
5775 }
5776 
5777 /*
5778  * Custom free routine used for M_PASSFP messages.
5779  */
5780 static void
5781 free_passfp(struct k_strrecvfd *srf)
5782 {
5783 	(void) closef(srf->fp);
5784 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5785 }
5786 
5787 /* ARGSUSED */
5788 int
5789 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5790 {
5791 	queue_t *qp, *nextqp;
5792 	struct k_strrecvfd *srf;
5793 	mblk_t *mp;
5794 	frtn_t *frtnp;
5795 	size_t bufsize;
5796 	queue_t	*mate = NULL;
5797 	syncq_t	*sq = NULL;
5798 	int retval = 0;
5799 
5800 	if (stp->sd_flag & STRHUP)
5801 		return (ENXIO);
5802 
5803 	claimstr(stp->sd_wrq);
5804 
5805 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5806 	if (STRMATED(stp)) {
5807 		qp = _RD(stp->sd_mate->sd_wrq);
5808 		claimstr(qp);
5809 		mate = qp;
5810 	} else { /* Not already mated. */
5811 
5812 		/*
5813 		 * Walk the stream to the end of this one.
5814 		 * assumes that the claimstr() will prevent
5815 		 * plumbing between the stream head and the
5816 		 * driver from changing
5817 		 */
5818 		qp = stp->sd_wrq;
5819 
5820 		/*
5821 		 * Loop until we reach the end of this stream.
5822 		 * On completion, qp points to the write queue
5823 		 * at the end of the stream, or the read queue
5824 		 * at the stream head if this is a fifo.
5825 		 */
5826 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5827 			;
5828 
5829 		/*
5830 		 * Just in case we get a q_next which is NULL, but
5831 		 * not at the end of the stream.  This is actually
5832 		 * broken, so we set an assert to catch it in
5833 		 * debug, and set an error and return if not debug.
5834 		 */
5835 		ASSERT(qp);
5836 		if (qp == NULL) {
5837 			releasestr(stp->sd_wrq);
5838 			return (EINVAL);
5839 		}
5840 
5841 		/*
5842 		 * Enter the syncq for the driver, so (hopefully)
5843 		 * the queue values will not change on us.
5844 		 * XXXX - This will only prevent the race IFF only
5845 		 *   the write side modifies the q_next member, and
5846 		 *   the put procedure is protected by at least
5847 		 *   MT_PERQ.
5848 		 */
5849 		if ((sq = qp->q_syncq) != NULL)
5850 			entersq(sq, SQ_PUT);
5851 
5852 		/* Now get the q_next value from this qp. */
5853 		nextqp = qp->q_next;
5854 
5855 		/*
5856 		 * If nextqp exists and the other stream is different
5857 		 * from this one claim the stream, set the mate, and
5858 		 * get the read queue at the stream head of the other
5859 		 * stream.  Assumes that nextqp was at least valid when
5860 		 * we got it.  Hopefully the entersq of the driver
5861 		 * will prevent it from changing on us.
5862 		 */
5863 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5864 			ASSERT(qp->q_qinfo->qi_srvp);
5865 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5866 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5867 			claimstr(nextqp);
5868 
5869 			/* Make sure we still have a q_next */
5870 			if (nextqp != qp->q_next) {
5871 				releasestr(stp->sd_wrq);
5872 				releasestr(nextqp);
5873 				return (EINVAL);
5874 			}
5875 
5876 			qp = _RD(STREAM(nextqp)->sd_wrq);
5877 			mate = qp;
5878 		}
5879 		/* If we entered the synq above, leave it. */
5880 		if (sq != NULL)
5881 			leavesq(sq, SQ_PUT);
5882 	} /*  STRMATED(STP)  */
5883 
5884 	/* XXX prevents substitution of the ops vector */
5885 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5886 		retval = EINVAL;
5887 		goto out;
5888 	}
5889 
5890 	if (qp->q_flag & QFULL) {
5891 		retval = EAGAIN;
5892 		goto out;
5893 	}
5894 
5895 	/*
5896 	 * Since M_PASSFP messages include a file descriptor, we use
5897 	 * esballoc() and specify a custom free routine (free_passfp()) that
5898 	 * will close the descriptor as part of freeing the message.  For
5899 	 * convenience, we stash the frtn_t right after the data block.
5900 	 */
5901 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5902 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5903 	if (srf == NULL) {
5904 		retval = EAGAIN;
5905 		goto out;
5906 	}
5907 
5908 	frtnp = (frtn_t *)(srf + 1);
5909 	frtnp->free_arg = (caddr_t)srf;
5910 	frtnp->free_func = free_passfp;
5911 
5912 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5913 	if (mp == NULL) {
5914 		kmem_free(srf, bufsize);
5915 		retval = EAGAIN;
5916 		goto out;
5917 	}
5918 	mp->b_wptr += sizeof (struct k_strrecvfd);
5919 	mp->b_datap->db_type = M_PASSFP;
5920 
5921 	srf->fp = fp;
5922 	srf->uid = crgetuid(curthread->t_cred);
5923 	srf->gid = crgetgid(curthread->t_cred);
5924 	mutex_enter(&fp->f_tlock);
5925 	fp->f_count++;
5926 	mutex_exit(&fp->f_tlock);
5927 
5928 	put(qp, mp);
5929 out:
5930 	releasestr(stp->sd_wrq);
5931 	if (mate)
5932 		releasestr(mate);
5933 	return (retval);
5934 }
5935 
5936 /*
5937  * Send an ioctl message downstream and wait for acknowledgement.
5938  * flags may be set to either U_TO_K or K_TO_K and a combination
5939  * of STR_NOERROR or STR_NOSIG
5940  * STR_NOSIG: Signals are essentially ignored or held and have
5941  *	no effect for the duration of the call.
5942  * STR_NOERROR: Ignores stream head read, write and hup errors.
5943  *	Additionally, if an existing ioctl times out, it is assumed
5944  *	lost and and this ioctl will continue as if the previous ioctl had
5945  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5946  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5947  *	the ioc_error indicates that the driver/module had problems,
5948  *	an EFAULT was found when accessing user data, a lack of
5949  *	resources, etc.
5950  */
5951 int
5952 strdoioctl(
5953 	struct stdata *stp,
5954 	struct strioctl *strioc,
5955 	int fflags,		/* file flags with model info */
5956 	int flag,
5957 	cred_t *crp,
5958 	int *rvalp)
5959 {
5960 	mblk_t *bp;
5961 	struct iocblk *iocbp;
5962 	struct copyreq *reqp;
5963 	struct copyresp *resp;
5964 	int id;
5965 	int transparent = 0;
5966 	int error = 0;
5967 	int len = 0;
5968 	caddr_t taddr;
5969 	int copyflag = (flag & (U_TO_K | K_TO_K));
5970 	int sigflag = (flag & STR_NOSIG);
5971 	int errs;
5972 	uint_t waitflags;
5973 	boolean_t set_iocwaitne = B_FALSE;
5974 
5975 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5976 	ASSERT((fflags & FMODELS) != 0);
5977 
5978 	TRACE_2(TR_FAC_STREAMS_FR,
5979 	    TR_STRDOIOCTL,
5980 	    "strdoioctl:stp %p strioc %p", stp, strioc);
5981 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
5982 		transparent = 1;
5983 		strioc->ic_len = sizeof (intptr_t);
5984 	}
5985 
5986 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5987 		return (EINVAL);
5988 
5989 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5990 	    crp, curproc->p_pid)) == NULL)
5991 			return (error);
5992 
5993 	bzero(bp->b_wptr, sizeof (union ioctypes));
5994 
5995 	iocbp = (struct iocblk *)bp->b_wptr;
5996 	iocbp->ioc_count = strioc->ic_len;
5997 	iocbp->ioc_cmd = strioc->ic_cmd;
5998 	iocbp->ioc_flag = (fflags & FMODELS);
5999 
6000 	crhold(crp);
6001 	iocbp->ioc_cr = crp;
6002 	DB_TYPE(bp) = M_IOCTL;
6003 	bp->b_wptr += sizeof (struct iocblk);
6004 
6005 	if (flag & STR_NOERROR)
6006 		errs = STPLEX;
6007 	else
6008 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
6009 
6010 	/*
6011 	 * If there is data to copy into ioctl block, do so.
6012 	 */
6013 	if (iocbp->ioc_count > 0) {
6014 		if (transparent)
6015 			/*
6016 			 * Note: STR_NOERROR does not have an effect
6017 			 * in putiocd()
6018 			 */
6019 			id = K_TO_K | sigflag;
6020 		else
6021 			id = flag;
6022 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
6023 			freemsg(bp);
6024 			crfree(crp);
6025 			return (error);
6026 		}
6027 
6028 		/*
6029 		 * We could have slept copying in user pages.
6030 		 * Recheck the stream head state (the other end
6031 		 * of a pipe could have gone away).
6032 		 */
6033 		if (stp->sd_flag & errs) {
6034 			mutex_enter(&stp->sd_lock);
6035 			error = strgeterr(stp, errs, 0);
6036 			mutex_exit(&stp->sd_lock);
6037 			if (error != 0) {
6038 				freemsg(bp);
6039 				crfree(crp);
6040 				return (error);
6041 			}
6042 		}
6043 	}
6044 	if (transparent)
6045 		iocbp->ioc_count = TRANSPARENT;
6046 
6047 	/*
6048 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
6049 	 * ioctl for this stream already running.  All processes
6050 	 * sleeping here will be awakened as a result of an ACK
6051 	 * or NAK being received for the outstanding ioctl, or
6052 	 * as a result of the timer expiring on the outstanding
6053 	 * ioctl (a failure), or as a result of any waiting
6054 	 * process's timer expiring (also a failure).
6055 	 */
6056 
6057 	error = 0;
6058 	mutex_enter(&stp->sd_lock);
6059 	while ((stp->sd_flag & IOCWAIT) ||
6060 	    (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
6061 		clock_t cv_rval;
6062 
6063 		TRACE_0(TR_FAC_STREAMS_FR,
6064 		    TR_STRDOIOCTL_WAIT,
6065 		    "strdoioctl sleeps - IOCWAIT");
6066 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
6067 		    STRTIMOUT, sigflag);
6068 		if (cv_rval <= 0) {
6069 			if (cv_rval == 0) {
6070 				error = EINTR;
6071 			} else {
6072 				if (flag & STR_NOERROR) {
6073 					/*
6074 					 * Terminating current ioctl in
6075 					 * progress -- assume it got lost and
6076 					 * wake up the other thread so that the
6077 					 * operation completes.
6078 					 */
6079 					if (!(stp->sd_flag & IOCWAITNE)) {
6080 						set_iocwaitne = B_TRUE;
6081 						stp->sd_flag |= IOCWAITNE;
6082 						cv_broadcast(&stp->sd_monitor);
6083 					}
6084 					/*
6085 					 * Otherwise, there's a running
6086 					 * STR_NOERROR -- we have no choice
6087 					 * here but to wait forever (or until
6088 					 * interrupted).
6089 					 */
6090 				} else {
6091 					/*
6092 					 * pending ioctl has caused
6093 					 * us to time out
6094 					 */
6095 					error = ETIME;
6096 				}
6097 			}
6098 		} else if ((stp->sd_flag & errs)) {
6099 			error = strgeterr(stp, errs, 0);
6100 		}
6101 		if (error) {
6102 			mutex_exit(&stp->sd_lock);
6103 			freemsg(bp);
6104 			crfree(crp);
6105 			return (error);
6106 		}
6107 	}
6108 
6109 	/*
6110 	 * Have control of ioctl mechanism.
6111 	 * Send down ioctl packet and wait for response.
6112 	 */
6113 	if (stp->sd_iocblk != (mblk_t *)-1) {
6114 		freemsg(stp->sd_iocblk);
6115 	}
6116 	stp->sd_iocblk = NULL;
6117 
6118 	/*
6119 	 * If this is marked with 'noerror' (internal; mostly
6120 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6121 	 * in here by setting IOCWAITNE.
6122 	 */
6123 	waitflags = IOCWAIT;
6124 	if (flag & STR_NOERROR)
6125 		waitflags |= IOCWAITNE;
6126 
6127 	stp->sd_flag |= waitflags;
6128 
6129 	/*
6130 	 * Assign sequence number.
6131 	 */
6132 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6133 
6134 	mutex_exit(&stp->sd_lock);
6135 
6136 	TRACE_1(TR_FAC_STREAMS_FR,
6137 	    TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6138 	stream_willservice(stp);
6139 	putnext(stp->sd_wrq, bp);
6140 	stream_runservice(stp);
6141 
6142 	/*
6143 	 * Timed wait for acknowledgment.  The wait time is limited by the
6144 	 * timeout value, which must be a positive integer (number of
6145 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6146 	 * milliseconds), or -1 (wait forever).  This will be awakened
6147 	 * either by an ACK/NAK message arriving, the timer expiring, or
6148 	 * the timer expiring on another ioctl waiting for control of the
6149 	 * mechanism.
6150 	 */
6151 waitioc:
6152 	mutex_enter(&stp->sd_lock);
6153 
6154 
6155 	/*
6156 	 * If the reply has already arrived, don't sleep.  If awakened from
6157 	 * the sleep, fail only if the reply has not arrived by then.
6158 	 * Otherwise, process the reply.
6159 	 */
6160 	while (!stp->sd_iocblk) {
6161 		clock_t cv_rval;
6162 
6163 		if (stp->sd_flag & errs) {
6164 			error = strgeterr(stp, errs, 0);
6165 			if (error != 0) {
6166 				stp->sd_flag &= ~waitflags;
6167 				cv_broadcast(&stp->sd_iocmonitor);
6168 				mutex_exit(&stp->sd_lock);
6169 				crfree(crp);
6170 				return (error);
6171 			}
6172 		}
6173 
6174 		TRACE_0(TR_FAC_STREAMS_FR,
6175 		    TR_STRDOIOCTL_WAIT2,
6176 		    "strdoioctl sleeps awaiting reply");
6177 		ASSERT(error == 0);
6178 
6179 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6180 		    (strioc->ic_timout ?
6181 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6182 
6183 		/*
6184 		 * There are four possible cases here: interrupt, timeout,
6185 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6186 		 * valid M_IOCTL reply).
6187 		 *
6188 		 * If we've been awakened by a STR_NOERROR ioctl on some other
6189 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6190 		 * will be set.  Pretend as if we just timed out.  Note that
6191 		 * this other thread waited at least STRTIMOUT before trying to
6192 		 * awaken our thread, so this is indistinguishable (even for
6193 		 * INFTIM) from the case where we failed with ETIME waiting on
6194 		 * IOCWAIT in the prior loop.
6195 		 */
6196 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6197 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6198 			cv_rval = -1;
6199 		}
6200 
6201 		/*
6202 		 * note: STR_NOERROR does not protect
6203 		 * us here.. use ic_timout < 0
6204 		 */
6205 		if (cv_rval <= 0) {
6206 			if (cv_rval == 0) {
6207 				error = EINTR;
6208 			} else {
6209 				error =  ETIME;
6210 			}
6211 			/*
6212 			 * A message could have come in after we were scheduled
6213 			 * but before we were actually run.
6214 			 */
6215 			bp = stp->sd_iocblk;
6216 			stp->sd_iocblk = NULL;
6217 			if (bp != NULL) {
6218 				if ((bp->b_datap->db_type == M_COPYIN) ||
6219 				    (bp->b_datap->db_type == M_COPYOUT)) {
6220 					mutex_exit(&stp->sd_lock);
6221 					if (bp->b_cont) {
6222 						freemsg(bp->b_cont);
6223 						bp->b_cont = NULL;
6224 					}
6225 					bp->b_datap->db_type = M_IOCDATA;
6226 					bp->b_wptr = bp->b_rptr +
6227 					    sizeof (struct copyresp);
6228 					resp = (struct copyresp *)bp->b_rptr;
6229 					resp->cp_rval =
6230 					    (caddr_t)1; /* failure */
6231 					stream_willservice(stp);
6232 					putnext(stp->sd_wrq, bp);
6233 					stream_runservice(stp);
6234 					mutex_enter(&stp->sd_lock);
6235 				} else {
6236 					freemsg(bp);
6237 				}
6238 			}
6239 			stp->sd_flag &= ~waitflags;
6240 			cv_broadcast(&stp->sd_iocmonitor);
6241 			mutex_exit(&stp->sd_lock);
6242 			crfree(crp);
6243 			return (error);
6244 		}
6245 	}
6246 	bp = stp->sd_iocblk;
6247 	/*
6248 	 * Note: it is strictly impossible to get here with sd_iocblk set to
6249 	 * -1.  This is because the initial loop above doesn't allow any new
6250 	 * ioctls into the fray until all others have passed this point.
6251 	 */
6252 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6253 	TRACE_1(TR_FAC_STREAMS_FR,
6254 	    TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6255 	if ((bp->b_datap->db_type == M_IOCACK) ||
6256 	    (bp->b_datap->db_type == M_IOCNAK)) {
6257 		/* for detection of duplicate ioctl replies */
6258 		stp->sd_iocblk = (mblk_t *)-1;
6259 		stp->sd_flag &= ~waitflags;
6260 		cv_broadcast(&stp->sd_iocmonitor);
6261 		mutex_exit(&stp->sd_lock);
6262 	} else {
6263 		/*
6264 		 * flags not cleared here because we're still doing
6265 		 * copy in/out for ioctl.
6266 		 */
6267 		stp->sd_iocblk = NULL;
6268 		mutex_exit(&stp->sd_lock);
6269 	}
6270 
6271 
6272 	/*
6273 	 * Have received acknowledgment.
6274 	 */
6275 
6276 	switch (bp->b_datap->db_type) {
6277 	case M_IOCACK:
6278 		/*
6279 		 * Positive ack.
6280 		 */
6281 		iocbp = (struct iocblk *)bp->b_rptr;
6282 
6283 		/*
6284 		 * Set error if indicated.
6285 		 */
6286 		if (iocbp->ioc_error) {
6287 			error = iocbp->ioc_error;
6288 			break;
6289 		}
6290 
6291 		/*
6292 		 * Set return value.
6293 		 */
6294 		*rvalp = iocbp->ioc_rval;
6295 
6296 		/*
6297 		 * Data may have been returned in ACK message (ioc_count > 0).
6298 		 * If so, copy it out to the user's buffer.
6299 		 */
6300 		if (iocbp->ioc_count && !transparent) {
6301 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6302 				break;
6303 		}
6304 		if (!transparent) {
6305 			if (len)	/* an M_COPYOUT was used with I_STR */
6306 				strioc->ic_len = len;
6307 			else
6308 				strioc->ic_len = (int)iocbp->ioc_count;
6309 		}
6310 		break;
6311 
6312 	case M_IOCNAK:
6313 		/*
6314 		 * Negative ack.
6315 		 *
6316 		 * The only thing to do is set error as specified
6317 		 * in neg ack packet.
6318 		 */
6319 		iocbp = (struct iocblk *)bp->b_rptr;
6320 
6321 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6322 		break;
6323 
6324 	case M_COPYIN:
6325 		/*
6326 		 * Driver or module has requested user ioctl data.
6327 		 */
6328 		reqp = (struct copyreq *)bp->b_rptr;
6329 
6330 		/*
6331 		 * M_COPYIN should *never* have a message attached, though
6332 		 * it's harmless if it does -- thus, panic on a DEBUG
6333 		 * kernel and just free it on a non-DEBUG build.
6334 		 */
6335 		ASSERT(bp->b_cont == NULL);
6336 		if (bp->b_cont != NULL) {
6337 			freemsg(bp->b_cont);
6338 			bp->b_cont = NULL;
6339 		}
6340 
6341 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6342 		if (error && bp->b_cont) {
6343 			freemsg(bp->b_cont);
6344 			bp->b_cont = NULL;
6345 		}
6346 
6347 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6348 		bp->b_datap->db_type = M_IOCDATA;
6349 
6350 		mblk_setcred(bp, crp, curproc->p_pid);
6351 		resp = (struct copyresp *)bp->b_rptr;
6352 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6353 		resp->cp_flag = (fflags & FMODELS);
6354 
6355 		stream_willservice(stp);
6356 		putnext(stp->sd_wrq, bp);
6357 		stream_runservice(stp);
6358 
6359 		if (error) {
6360 			mutex_enter(&stp->sd_lock);
6361 			stp->sd_flag &= ~waitflags;
6362 			cv_broadcast(&stp->sd_iocmonitor);
6363 			mutex_exit(&stp->sd_lock);
6364 			crfree(crp);
6365 			return (error);
6366 		}
6367 
6368 		goto waitioc;
6369 
6370 	case M_COPYOUT:
6371 		/*
6372 		 * Driver or module has ioctl data for a user.
6373 		 */
6374 		reqp = (struct copyreq *)bp->b_rptr;
6375 		ASSERT(bp->b_cont != NULL);
6376 
6377 		/*
6378 		 * Always (transparent or non-transparent )
6379 		 * use the address specified in the request
6380 		 */
6381 		taddr = reqp->cq_addr;
6382 		if (!transparent)
6383 			len = (int)reqp->cq_size;
6384 
6385 		/* copyout data to the provided address */
6386 		error = getiocd(bp, taddr, copyflag);
6387 
6388 		freemsg(bp->b_cont);
6389 		bp->b_cont = NULL;
6390 
6391 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6392 		bp->b_datap->db_type = M_IOCDATA;
6393 
6394 		mblk_setcred(bp, crp, curproc->p_pid);
6395 		resp = (struct copyresp *)bp->b_rptr;
6396 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6397 		resp->cp_flag = (fflags & FMODELS);
6398 
6399 		stream_willservice(stp);
6400 		putnext(stp->sd_wrq, bp);
6401 		stream_runservice(stp);
6402 
6403 		if (error) {
6404 			mutex_enter(&stp->sd_lock);
6405 			stp->sd_flag &= ~waitflags;
6406 			cv_broadcast(&stp->sd_iocmonitor);
6407 			mutex_exit(&stp->sd_lock);
6408 			crfree(crp);
6409 			return (error);
6410 		}
6411 		goto waitioc;
6412 
6413 	default:
6414 		ASSERT(0);
6415 		mutex_enter(&stp->sd_lock);
6416 		stp->sd_flag &= ~waitflags;
6417 		cv_broadcast(&stp->sd_iocmonitor);
6418 		mutex_exit(&stp->sd_lock);
6419 		break;
6420 	}
6421 
6422 	freemsg(bp);
6423 	crfree(crp);
6424 	return (error);
6425 }
6426 
6427 /*
6428  * Send an M_CMD message downstream and wait for a reply.  This is a ptools
6429  * special used to retrieve information from modules/drivers a stream without
6430  * being subjected to flow control or interfering with pending messages on the
6431  * stream (e.g. an ioctl in flight).
6432  */
6433 int
6434 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6435 {
6436 	mblk_t *mp;
6437 	struct cmdblk *cmdp;
6438 	int error = 0;
6439 	int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6440 	clock_t rval, timeout = STRTIMOUT;
6441 
6442 	if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6443 	    scp->sc_timeout < -1)
6444 		return (EINVAL);
6445 
6446 	if (scp->sc_timeout > 0)
6447 		timeout = scp->sc_timeout * MILLISEC;
6448 
6449 	if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6450 	    curproc->p_pid)) == NULL)
6451 		return (ENOMEM);
6452 
6453 	crhold(crp);
6454 
6455 	cmdp = (struct cmdblk *)mp->b_wptr;
6456 	cmdp->cb_cr = crp;
6457 	cmdp->cb_cmd = scp->sc_cmd;
6458 	cmdp->cb_len = scp->sc_len;
6459 	cmdp->cb_error = 0;
6460 	mp->b_wptr += sizeof (struct cmdblk);
6461 
6462 	DB_TYPE(mp) = M_CMD;
6463 	DB_CPID(mp) = curproc->p_pid;
6464 
6465 	/*
6466 	 * Copy in the payload.
6467 	 */
6468 	if (cmdp->cb_len > 0) {
6469 		mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6470 		    curproc->p_pid);
6471 		if (mp->b_cont == NULL) {
6472 			error = ENOMEM;
6473 			goto out;
6474 		}
6475 
6476 		/* cb_len comes from sc_len, which has already been checked */
6477 		ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6478 		(void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6479 		mp->b_cont->b_wptr += cmdp->cb_len;
6480 		DB_CPID(mp->b_cont) = curproc->p_pid;
6481 	}
6482 
6483 	/*
6484 	 * Since this mechanism is strictly for ptools, and since only one
6485 	 * process can be grabbed at a time, we simply fail if there's
6486 	 * currently an operation pending.
6487 	 */
6488 	mutex_enter(&stp->sd_lock);
6489 	if (stp->sd_flag & STRCMDWAIT) {
6490 		mutex_exit(&stp->sd_lock);
6491 		error = EBUSY;
6492 		goto out;
6493 	}
6494 	stp->sd_flag |= STRCMDWAIT;
6495 	ASSERT(stp->sd_cmdblk == NULL);
6496 	mutex_exit(&stp->sd_lock);
6497 
6498 	putnext(stp->sd_wrq, mp);
6499 	mp = NULL;
6500 
6501 	/*
6502 	 * Timed wait for acknowledgment.  If the reply has already arrived,
6503 	 * don't sleep.  If awakened from the sleep, fail only if the reply
6504 	 * has not arrived by then.  Otherwise, process the reply.
6505 	 */
6506 	mutex_enter(&stp->sd_lock);
6507 	while (stp->sd_cmdblk == NULL) {
6508 		if (stp->sd_flag & errs) {
6509 			if ((error = strgeterr(stp, errs, 0)) != 0)
6510 				goto waitout;
6511 		}
6512 
6513 		rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6514 		if (stp->sd_cmdblk != NULL)
6515 			break;
6516 
6517 		if (rval <= 0) {
6518 			error = (rval == 0) ? EINTR : ETIME;
6519 			goto waitout;
6520 		}
6521 	}
6522 
6523 	/*
6524 	 * We received a reply.
6525 	 */
6526 	mp = stp->sd_cmdblk;
6527 	stp->sd_cmdblk = NULL;
6528 	ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6529 	ASSERT(stp->sd_flag & STRCMDWAIT);
6530 	stp->sd_flag &= ~STRCMDWAIT;
6531 	mutex_exit(&stp->sd_lock);
6532 
6533 	cmdp = (struct cmdblk *)mp->b_rptr;
6534 	if ((error = cmdp->cb_error) != 0)
6535 		goto out;
6536 
6537 	/*
6538 	 * Data may have been returned in the reply (cb_len > 0).
6539 	 * If so, copy it out to the user's buffer.
6540 	 */
6541 	if (cmdp->cb_len > 0) {
6542 		if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6543 			error = EPROTO;
6544 			goto out;
6545 		}
6546 
6547 		cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6548 		(void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6549 	}
6550 	scp->sc_len = cmdp->cb_len;
6551 out:
6552 	freemsg(mp);
6553 	crfree(crp);
6554 	return (error);
6555 waitout:
6556 	ASSERT(stp->sd_cmdblk == NULL);
6557 	stp->sd_flag &= ~STRCMDWAIT;
6558 	mutex_exit(&stp->sd_lock);
6559 	crfree(crp);
6560 	return (error);
6561 }
6562 
6563 /*
6564  * For the SunOS keyboard driver.
6565  * Return the next available "ioctl" sequence number.
6566  * Exported, so that streams modules can send "ioctl" messages
6567  * downstream from their open routine.
6568  */
6569 int
6570 getiocseqno(void)
6571 {
6572 	int	i;
6573 
6574 	mutex_enter(&strresources);
6575 	i = ++ioc_id;
6576 	mutex_exit(&strresources);
6577 	return (i);
6578 }
6579 
6580 /*
6581  * Get the next message from the read queue.  If the message is
6582  * priority, STRPRI will have been set by strrput().  This flag
6583  * should be reset only when the entire message at the front of the
6584  * queue as been consumed.
6585  *
6586  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6587  */
6588 int
6589 strgetmsg(
6590 	struct vnode *vp,
6591 	struct strbuf *mctl,
6592 	struct strbuf *mdata,
6593 	unsigned char *prip,
6594 	int *flagsp,
6595 	int fmode,
6596 	rval_t *rvp)
6597 {
6598 	struct stdata *stp;
6599 	mblk_t *bp, *nbp;
6600 	mblk_t *savemp = NULL;
6601 	mblk_t *savemptail = NULL;
6602 	uint_t old_sd_flag;
6603 	int flg = MSG_BAND;
6604 	int more = 0;
6605 	int error = 0;
6606 	char first = 1;
6607 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6608 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6609 	unsigned char pri = 0;
6610 	queue_t *q;
6611 	int	pr = 0;			/* Partial read successful */
6612 	struct uio uios;
6613 	struct uio *uiop = &uios;
6614 	struct iovec iovs;
6615 	unsigned char type;
6616 
6617 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6618 	    "strgetmsg:%p", vp);
6619 
6620 	ASSERT(vp->v_stream);
6621 	stp = vp->v_stream;
6622 	rvp->r_val1 = 0;
6623 
6624 	mutex_enter(&stp->sd_lock);
6625 
6626 	if ((error = i_straccess(stp, JCREAD)) != 0) {
6627 		mutex_exit(&stp->sd_lock);
6628 		return (error);
6629 	}
6630 
6631 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6632 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6633 		if (error != 0) {
6634 			mutex_exit(&stp->sd_lock);
6635 			return (error);
6636 		}
6637 	}
6638 	mutex_exit(&stp->sd_lock);
6639 
6640 	switch (*flagsp) {
6641 	case MSG_HIPRI:
6642 		if (*prip != 0)
6643 			return (EINVAL);
6644 		break;
6645 
6646 	case MSG_ANY:
6647 	case MSG_BAND:
6648 		break;
6649 
6650 	default:
6651 		return (EINVAL);
6652 	}
6653 	/*
6654 	 * Setup uio and iov for data part
6655 	 */
6656 	iovs.iov_base = mdata->buf;
6657 	iovs.iov_len = mdata->maxlen;
6658 	uios.uio_iov = &iovs;
6659 	uios.uio_iovcnt = 1;
6660 	uios.uio_loffset = 0;
6661 	uios.uio_segflg = UIO_USERSPACE;
6662 	uios.uio_fmode = 0;
6663 	uios.uio_extflg = UIO_COPY_CACHED;
6664 	uios.uio_resid = mdata->maxlen;
6665 	uios.uio_offset = 0;
6666 
6667 	q = _RD(stp->sd_wrq);
6668 	mutex_enter(&stp->sd_lock);
6669 	old_sd_flag = stp->sd_flag;
6670 	mark = 0;
6671 	for (;;) {
6672 		int done = 0;
6673 		mblk_t *q_first = q->q_first;
6674 
6675 		/*
6676 		 * Get the next message of appropriate priority
6677 		 * from the stream head.  If the caller is interested
6678 		 * in band or hipri messages, then they should already
6679 		 * be enqueued at the stream head.  On the other hand
6680 		 * if the caller wants normal (band 0) messages, they
6681 		 * might be deferred in a synchronous stream and they
6682 		 * will need to be pulled up.
6683 		 *
6684 		 * After we have dequeued a message, we might find that
6685 		 * it was a deferred M_SIG that was enqueued at the
6686 		 * stream head.  It must now be posted as part of the
6687 		 * read by calling strsignal_nolock().
6688 		 *
6689 		 * Also note that strrput does not enqueue an M_PCSIG,
6690 		 * and there cannot be more than one hipri message,
6691 		 * so there was no need to have the M_PCSIG case.
6692 		 *
6693 		 * At some time it might be nice to try and wrap the
6694 		 * functionality of kstrgetmsg() and strgetmsg() into
6695 		 * a common routine so to reduce the amount of replicated
6696 		 * code (since they are extremely similar).
6697 		 */
6698 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6699 			/* Asking for normal, band0 data */
6700 			bp = strget(stp, q, uiop, first, &error);
6701 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6702 			if (bp != NULL) {
6703 				if (DB_TYPE(bp) == M_SIG) {
6704 					strsignal_nolock(stp, *bp->b_rptr,
6705 					    bp->b_band);
6706 					freemsg(bp);
6707 					continue;
6708 				} else {
6709 					break;
6710 				}
6711 			}
6712 			if (error != 0)
6713 				goto getmout;
6714 
6715 		/*
6716 		 * We can't depend on the value of STRPRI here because
6717 		 * the stream head may be in transit. Therefore, we
6718 		 * must look at the type of the first message to
6719 		 * determine if a high priority messages is waiting
6720 		 */
6721 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6722 		    DB_TYPE(q_first) >= QPCTL &&
6723 		    (bp = getq_noenab(q, 0)) != NULL) {
6724 			/* Asked for HIPRI and got one */
6725 			ASSERT(DB_TYPE(bp) >= QPCTL);
6726 			break;
6727 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6728 		    ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6729 		    (bp = getq_noenab(q, 0)) != NULL) {
6730 			/*
6731 			 * Asked for at least band "prip" and got either at
6732 			 * least that band or a hipri message.
6733 			 */
6734 			ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6735 			if (DB_TYPE(bp) == M_SIG) {
6736 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6737 				freemsg(bp);
6738 				continue;
6739 			} else {
6740 				break;
6741 			}
6742 		}
6743 
6744 		/* No data. Time to sleep? */
6745 		qbackenable(q, 0);
6746 
6747 		/*
6748 		 * If STRHUP or STREOF, return 0 length control and data.
6749 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6750 		 * sleep to satisfy this request because by default we have
6751 		 * zero bytes to return.
6752 		 */
6753 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6754 		    mdata->maxlen == 0)) {
6755 			mctl->len = mdata->len = 0;
6756 			*flagsp = 0;
6757 			mutex_exit(&stp->sd_lock);
6758 			return (0);
6759 		}
6760 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6761 		    "strgetmsg calls strwaitq:%p, %p",
6762 		    vp, uiop);
6763 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6764 		    &done)) != 0) || done) {
6765 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6766 			    "strgetmsg error or done:%p, %p",
6767 			    vp, uiop);
6768 			mutex_exit(&stp->sd_lock);
6769 			return (error);
6770 		}
6771 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6772 		    "strgetmsg awakes:%p, %p", vp, uiop);
6773 		if ((error = i_straccess(stp, JCREAD)) != 0) {
6774 			mutex_exit(&stp->sd_lock);
6775 			return (error);
6776 		}
6777 		first = 0;
6778 	}
6779 	ASSERT(bp != NULL);
6780 	/*
6781 	 * Extract any mark information. If the message is not completely
6782 	 * consumed this information will be put in the mblk
6783 	 * that is putback.
6784 	 * If MSGMARKNEXT is set and the message is completely consumed
6785 	 * the STRATMARK flag will be set below. Likewise, if
6786 	 * MSGNOTMARKNEXT is set and the message is
6787 	 * completely consumed STRNOTATMARK will be set.
6788 	 */
6789 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6790 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6791 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
6792 	if (mark != 0 && bp == stp->sd_mark) {
6793 		mark |= _LASTMARK;
6794 		stp->sd_mark = NULL;
6795 	}
6796 	/*
6797 	 * keep track of the original message type and priority
6798 	 */
6799 	pri = bp->b_band;
6800 	type = bp->b_datap->db_type;
6801 	if (type == M_PASSFP) {
6802 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6803 			stp->sd_mark = bp;
6804 		bp->b_flag |= mark & ~_LASTMARK;
6805 		putback(stp, q, bp, pri);
6806 		qbackenable(q, pri);
6807 		mutex_exit(&stp->sd_lock);
6808 		return (EBADMSG);
6809 	}
6810 	ASSERT(type != M_SIG);
6811 
6812 	/*
6813 	 * Set this flag so strrput will not generate signals. Need to
6814 	 * make sure this flag is cleared before leaving this routine
6815 	 * else signals will stop being sent.
6816 	 */
6817 	stp->sd_flag |= STRGETINPROG;
6818 	mutex_exit(&stp->sd_lock);
6819 
6820 	if (STREAM_NEEDSERVICE(stp))
6821 		stream_runservice(stp);
6822 
6823 	/*
6824 	 * Set HIPRI flag if message is priority.
6825 	 */
6826 	if (type >= QPCTL)
6827 		flg = MSG_HIPRI;
6828 	else
6829 		flg = MSG_BAND;
6830 
6831 	/*
6832 	 * First process PROTO or PCPROTO blocks, if any.
6833 	 */
6834 	if (mctl->maxlen >= 0 && type != M_DATA) {
6835 		size_t	n, bcnt;
6836 		char	*ubuf;
6837 
6838 		bcnt = mctl->maxlen;
6839 		ubuf = mctl->buf;
6840 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6841 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6842 			    copyout(bp->b_rptr, ubuf, n)) {
6843 				error = EFAULT;
6844 				mutex_enter(&stp->sd_lock);
6845 				/*
6846 				 * clear stream head pri flag based on
6847 				 * first message type
6848 				 */
6849 				if (type >= QPCTL) {
6850 					ASSERT(type == M_PCPROTO);
6851 					stp->sd_flag &= ~STRPRI;
6852 				}
6853 				more = 0;
6854 				freemsg(bp);
6855 				goto getmout;
6856 			}
6857 			ubuf += n;
6858 			bp->b_rptr += n;
6859 			if (bp->b_rptr >= bp->b_wptr) {
6860 				nbp = bp;
6861 				bp = bp->b_cont;
6862 				freeb(nbp);
6863 			}
6864 			ASSERT(n <= bcnt);
6865 			bcnt -= n;
6866 			if (bcnt == 0)
6867 				break;
6868 		}
6869 		mctl->len = mctl->maxlen - bcnt;
6870 	} else
6871 		mctl->len = -1;
6872 
6873 	if (bp && bp->b_datap->db_type != M_DATA) {
6874 		/*
6875 		 * More PROTO blocks in msg.
6876 		 */
6877 		more |= MORECTL;
6878 		savemp = bp;
6879 		while (bp && bp->b_datap->db_type != M_DATA) {
6880 			savemptail = bp;
6881 			bp = bp->b_cont;
6882 		}
6883 		savemptail->b_cont = NULL;
6884 	}
6885 
6886 	/*
6887 	 * Now process DATA blocks, if any.
6888 	 */
6889 	if (mdata->maxlen >= 0 && bp) {
6890 		/*
6891 		 * struiocopyout will consume a potential zero-length
6892 		 * M_DATA even if uio_resid is zero.
6893 		 */
6894 		size_t oldresid = uiop->uio_resid;
6895 
6896 		bp = struiocopyout(bp, uiop, &error);
6897 		if (error != 0) {
6898 			mutex_enter(&stp->sd_lock);
6899 			/*
6900 			 * clear stream head hi pri flag based on
6901 			 * first message
6902 			 */
6903 			if (type >= QPCTL) {
6904 				ASSERT(type == M_PCPROTO);
6905 				stp->sd_flag &= ~STRPRI;
6906 			}
6907 			more = 0;
6908 			freemsg(savemp);
6909 			goto getmout;
6910 		}
6911 		/*
6912 		 * (pr == 1) indicates a partial read.
6913 		 */
6914 		if (oldresid > uiop->uio_resid)
6915 			pr = 1;
6916 		mdata->len = mdata->maxlen - uiop->uio_resid;
6917 	} else
6918 		mdata->len = -1;
6919 
6920 	if (bp) {			/* more data blocks in msg */
6921 		more |= MOREDATA;
6922 		if (savemp)
6923 			savemptail->b_cont = bp;
6924 		else
6925 			savemp = bp;
6926 	}
6927 
6928 	mutex_enter(&stp->sd_lock);
6929 	if (savemp) {
6930 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6931 		    msgnodata(savemp)) {
6932 			/*
6933 			 * Avoid queuing a zero-length tail part of
6934 			 * a message. pr=1 indicates that we read some of
6935 			 * the message.
6936 			 */
6937 			freemsg(savemp);
6938 			more &= ~MOREDATA;
6939 			/*
6940 			 * clear stream head hi pri flag based on
6941 			 * first message
6942 			 */
6943 			if (type >= QPCTL) {
6944 				ASSERT(type == M_PCPROTO);
6945 				stp->sd_flag &= ~STRPRI;
6946 			}
6947 		} else {
6948 			savemp->b_band = pri;
6949 			/*
6950 			 * If the first message was HIPRI and the one we're
6951 			 * putting back isn't, then clear STRPRI, otherwise
6952 			 * set STRPRI again.  Note that we must set STRPRI
6953 			 * again since the flush logic in strrput_nondata()
6954 			 * may have cleared it while we had sd_lock dropped.
6955 			 */
6956 			if (type >= QPCTL) {
6957 				ASSERT(type == M_PCPROTO);
6958 				if (queclass(savemp) < QPCTL)
6959 					stp->sd_flag &= ~STRPRI;
6960 				else
6961 					stp->sd_flag |= STRPRI;
6962 			} else if (queclass(savemp) >= QPCTL) {
6963 				/*
6964 				 * The first message was not a HIPRI message,
6965 				 * but the one we are about to putback is.
6966 				 * For simplicitly, we do not allow for HIPRI
6967 				 * messages to be embedded in the message
6968 				 * body, so just force it to same type as
6969 				 * first message.
6970 				 */
6971 				ASSERT(type == M_DATA || type == M_PROTO);
6972 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6973 				savemp->b_datap->db_type = type;
6974 			}
6975 			if (mark != 0) {
6976 				savemp->b_flag |= mark & ~_LASTMARK;
6977 				if ((mark & _LASTMARK) &&
6978 				    (stp->sd_mark == NULL)) {
6979 					/*
6980 					 * If another marked message arrived
6981 					 * while sd_lock was not held sd_mark
6982 					 * would be non-NULL.
6983 					 */
6984 					stp->sd_mark = savemp;
6985 				}
6986 			}
6987 			putback(stp, q, savemp, pri);
6988 		}
6989 	} else {
6990 		/*
6991 		 * The complete message was consumed.
6992 		 *
6993 		 * If another M_PCPROTO arrived while sd_lock was not held
6994 		 * it would have been discarded since STRPRI was still set.
6995 		 *
6996 		 * Move the MSG*MARKNEXT information
6997 		 * to the stream head just in case
6998 		 * the read queue becomes empty.
6999 		 * clear stream head hi pri flag based on
7000 		 * first message
7001 		 *
7002 		 * If the stream head was at the mark
7003 		 * (STRATMARK) before we dropped sd_lock above
7004 		 * and some data was consumed then we have
7005 		 * moved past the mark thus STRATMARK is
7006 		 * cleared. However, if a message arrived in
7007 		 * strrput during the copyout above causing
7008 		 * STRATMARK to be set we can not clear that
7009 		 * flag.
7010 		 */
7011 		if (type >= QPCTL) {
7012 			ASSERT(type == M_PCPROTO);
7013 			stp->sd_flag &= ~STRPRI;
7014 		}
7015 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7016 			if (mark & MSGMARKNEXT) {
7017 				stp->sd_flag &= ~STRNOTATMARK;
7018 				stp->sd_flag |= STRATMARK;
7019 			} else if (mark & MSGNOTMARKNEXT) {
7020 				stp->sd_flag &= ~STRATMARK;
7021 				stp->sd_flag |= STRNOTATMARK;
7022 			} else {
7023 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7024 			}
7025 		} else if (pr && (old_sd_flag & STRATMARK)) {
7026 			stp->sd_flag &= ~STRATMARK;
7027 		}
7028 	}
7029 
7030 	*flagsp = flg;
7031 	*prip = pri;
7032 
7033 	/*
7034 	 * Getmsg cleanup processing - if the state of the queue has changed
7035 	 * some signals may need to be sent and/or poll awakened.
7036 	 */
7037 getmout:
7038 	qbackenable(q, pri);
7039 
7040 	/*
7041 	 * We dropped the stream head lock above. Send all M_SIG messages
7042 	 * before processing stream head for SIGPOLL messages.
7043 	 */
7044 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7045 	while ((bp = q->q_first) != NULL &&
7046 	    (bp->b_datap->db_type == M_SIG)) {
7047 		/*
7048 		 * sd_lock is held so the content of the read queue can not
7049 		 * change.
7050 		 */
7051 		bp = getq(q);
7052 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7053 
7054 		strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7055 		mutex_exit(&stp->sd_lock);
7056 		freemsg(bp);
7057 		if (STREAM_NEEDSERVICE(stp))
7058 			stream_runservice(stp);
7059 		mutex_enter(&stp->sd_lock);
7060 	}
7061 
7062 	/*
7063 	 * stream head cannot change while we make the determination
7064 	 * whether or not to send a signal. Drop the flag to allow strrput
7065 	 * to send firstmsgsigs again.
7066 	 */
7067 	stp->sd_flag &= ~STRGETINPROG;
7068 
7069 	/*
7070 	 * If the type of message at the front of the queue changed
7071 	 * due to the receive the appropriate signals and pollwakeup events
7072 	 * are generated. The type of changes are:
7073 	 *	Processed a hipri message, q_first is not hipri.
7074 	 *	Processed a band X message, and q_first is band Y.
7075 	 * The generated signals and pollwakeups are identical to what
7076 	 * strrput() generates should the message that is now on q_first
7077 	 * arrive to an empty read queue.
7078 	 *
7079 	 * Note: only strrput will send a signal for a hipri message.
7080 	 */
7081 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7082 		strsigset_t signals = 0;
7083 		strpollset_t pollwakeups = 0;
7084 
7085 		if (flg & MSG_HIPRI) {
7086 			/*
7087 			 * Removed a hipri message. Regular data at
7088 			 * the front of  the queue.
7089 			 */
7090 			if (bp->b_band == 0) {
7091 				signals = S_INPUT | S_RDNORM;
7092 				pollwakeups = POLLIN | POLLRDNORM;
7093 			} else {
7094 				signals = S_INPUT | S_RDBAND;
7095 				pollwakeups = POLLIN | POLLRDBAND;
7096 			}
7097 		} else if (pri != bp->b_band) {
7098 			/*
7099 			 * The band is different for the new q_first.
7100 			 */
7101 			if (bp->b_band == 0) {
7102 				signals = S_RDNORM;
7103 				pollwakeups = POLLIN | POLLRDNORM;
7104 			} else {
7105 				signals = S_RDBAND;
7106 				pollwakeups = POLLIN | POLLRDBAND;
7107 			}
7108 		}
7109 
7110 		if (pollwakeups != 0) {
7111 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7112 				if (!(stp->sd_rput_opt & SR_POLLIN))
7113 					goto no_pollwake;
7114 				stp->sd_rput_opt &= ~SR_POLLIN;
7115 			}
7116 			mutex_exit(&stp->sd_lock);
7117 			pollwakeup(&stp->sd_pollist, pollwakeups);
7118 			mutex_enter(&stp->sd_lock);
7119 		}
7120 no_pollwake:
7121 
7122 		if (stp->sd_sigflags & signals)
7123 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7124 	}
7125 	mutex_exit(&stp->sd_lock);
7126 
7127 	rvp->r_val1 = more;
7128 	return (error);
7129 #undef	_LASTMARK
7130 }
7131 
7132 /*
7133  * Get the next message from the read queue.  If the message is
7134  * priority, STRPRI will have been set by strrput().  This flag
7135  * should be reset only when the entire message at the front of the
7136  * queue as been consumed.
7137  *
7138  * If uiop is NULL all data is returned in mctlp.
7139  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7140  * not enabled.
7141  * The timeout parameter is in milliseconds; -1 for infinity.
7142  * This routine handles the consolidation private flags:
7143  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7144  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
7145  *	MSG_HOLDSIG	Hold signals while waiting for data.
7146  *	MSG_IPEEK	Only peek at messages.
7147  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
7148  *			that doesn't fit.
7149  *	MSG_NOMARK	If the message is marked leave it on the queue.
7150  *
7151  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7152  */
7153 int
7154 kstrgetmsg(
7155 	struct vnode *vp,
7156 	mblk_t **mctlp,
7157 	struct uio *uiop,
7158 	unsigned char *prip,
7159 	int *flagsp,
7160 	clock_t timout,
7161 	rval_t *rvp)
7162 {
7163 	struct stdata *stp;
7164 	mblk_t *bp, *nbp;
7165 	mblk_t *savemp = NULL;
7166 	mblk_t *savemptail = NULL;
7167 	int flags;
7168 	uint_t old_sd_flag;
7169 	int flg = MSG_BAND;
7170 	int more = 0;
7171 	int error = 0;
7172 	char first = 1;
7173 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
7174 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
7175 	unsigned char pri = 0;
7176 	queue_t *q;
7177 	int	pr = 0;			/* Partial read successful */
7178 	unsigned char type;
7179 
7180 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7181 	    "kstrgetmsg:%p", vp);
7182 
7183 	ASSERT(vp->v_stream);
7184 	stp = vp->v_stream;
7185 	rvp->r_val1 = 0;
7186 
7187 	mutex_enter(&stp->sd_lock);
7188 
7189 	if ((error = i_straccess(stp, JCREAD)) != 0) {
7190 		mutex_exit(&stp->sd_lock);
7191 		return (error);
7192 	}
7193 
7194 	flags = *flagsp;
7195 	if (stp->sd_flag & (STRDERR|STPLEX)) {
7196 		if ((stp->sd_flag & STPLEX) ||
7197 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7198 			error = strgeterr(stp, STRDERR|STPLEX,
7199 			    (flags & MSG_IPEEK));
7200 			if (error != 0) {
7201 				mutex_exit(&stp->sd_lock);
7202 				return (error);
7203 			}
7204 		}
7205 	}
7206 	mutex_exit(&stp->sd_lock);
7207 
7208 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7209 	case MSG_HIPRI:
7210 		if (*prip != 0)
7211 			return (EINVAL);
7212 		break;
7213 
7214 	case MSG_ANY:
7215 	case MSG_BAND:
7216 		break;
7217 
7218 	default:
7219 		return (EINVAL);
7220 	}
7221 
7222 retry:
7223 	q = _RD(stp->sd_wrq);
7224 	mutex_enter(&stp->sd_lock);
7225 	old_sd_flag = stp->sd_flag;
7226 	mark = 0;
7227 	for (;;) {
7228 		int done = 0;
7229 		int waitflag;
7230 		int fmode;
7231 		mblk_t *q_first = q->q_first;
7232 
7233 		/*
7234 		 * This section of the code operates just like the code
7235 		 * in strgetmsg().  There is a comment there about what
7236 		 * is going on here.
7237 		 */
7238 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7239 			/* Asking for normal, band0 data */
7240 			bp = strget(stp, q, uiop, first, &error);
7241 			ASSERT(MUTEX_HELD(&stp->sd_lock));
7242 			if (bp != NULL) {
7243 				if (DB_TYPE(bp) == M_SIG) {
7244 					strsignal_nolock(stp, *bp->b_rptr,
7245 					    bp->b_band);
7246 					freemsg(bp);
7247 					continue;
7248 				} else {
7249 					break;
7250 				}
7251 			}
7252 			if (error != 0) {
7253 				goto getmout;
7254 			}
7255 		/*
7256 		 * We can't depend on the value of STRPRI here because
7257 		 * the stream head may be in transit. Therefore, we
7258 		 * must look at the type of the first message to
7259 		 * determine if a high priority messages is waiting
7260 		 */
7261 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
7262 		    DB_TYPE(q_first) >= QPCTL &&
7263 		    (bp = getq_noenab(q, 0)) != NULL) {
7264 			ASSERT(DB_TYPE(bp) >= QPCTL);
7265 			break;
7266 		} else if ((flags & MSG_BAND) && q_first != NULL &&
7267 		    ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7268 		    (bp = getq_noenab(q, 0)) != NULL) {
7269 			/*
7270 			 * Asked for at least band "prip" and got either at
7271 			 * least that band or a hipri message.
7272 			 */
7273 			ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7274 			if (DB_TYPE(bp) == M_SIG) {
7275 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7276 				freemsg(bp);
7277 				continue;
7278 			} else {
7279 				break;
7280 			}
7281 		}
7282 
7283 		/* No data. Time to sleep? */
7284 		qbackenable(q, 0);
7285 
7286 		/*
7287 		 * Delayed error notification?
7288 		 */
7289 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7290 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7291 			error = strgeterr(stp, STRDERR|STPLEX,
7292 			    (flags & MSG_IPEEK));
7293 			if (error != 0) {
7294 				mutex_exit(&stp->sd_lock);
7295 				return (error);
7296 			}
7297 		}
7298 
7299 		/*
7300 		 * If STRHUP or STREOF, return 0 length control and data.
7301 		 * If a read(fd,buf,0) has been done, do not sleep, just
7302 		 * return.
7303 		 *
7304 		 * If mctlp == NULL and uiop == NULL, then the code will
7305 		 * do the strwaitq. This is an understood way of saying
7306 		 * sleep "polling" until a message is received.
7307 		 */
7308 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7309 		    (uiop != NULL && uiop->uio_resid == 0)) {
7310 			if (mctlp != NULL)
7311 				*mctlp = NULL;
7312 			*flagsp = 0;
7313 			mutex_exit(&stp->sd_lock);
7314 			return (0);
7315 		}
7316 
7317 		waitflag = GETWAIT;
7318 		if (flags &
7319 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7320 			if (flags & MSG_HOLDSIG)
7321 				waitflag |= STR_NOSIG;
7322 			if (flags & MSG_IGNERROR)
7323 				waitflag |= STR_NOERROR;
7324 			if (flags & MSG_IPEEK)
7325 				waitflag |= STR_PEEK;
7326 			if (flags & MSG_DELAYERROR)
7327 				waitflag |= STR_DELAYERR;
7328 		}
7329 		if (uiop != NULL)
7330 			fmode = uiop->uio_fmode;
7331 		else
7332 			fmode = 0;
7333 
7334 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7335 		    "kstrgetmsg calls strwaitq:%p, %p",
7336 		    vp, uiop);
7337 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7338 		    fmode, timout, &done))) != 0 || done) {
7339 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7340 			    "kstrgetmsg error or done:%p, %p",
7341 			    vp, uiop);
7342 			mutex_exit(&stp->sd_lock);
7343 			return (error);
7344 		}
7345 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7346 		    "kstrgetmsg awakes:%p, %p", vp, uiop);
7347 		if ((error = i_straccess(stp, JCREAD)) != 0) {
7348 			mutex_exit(&stp->sd_lock);
7349 			return (error);
7350 		}
7351 		first = 0;
7352 	}
7353 	ASSERT(bp != NULL);
7354 	/*
7355 	 * Extract any mark information. If the message is not completely
7356 	 * consumed this information will be put in the mblk
7357 	 * that is putback.
7358 	 * If MSGMARKNEXT is set and the message is completely consumed
7359 	 * the STRATMARK flag will be set below. Likewise, if
7360 	 * MSGNOTMARKNEXT is set and the message is
7361 	 * completely consumed STRNOTATMARK will be set.
7362 	 */
7363 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7364 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7365 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
7366 	pri = bp->b_band;
7367 	if (mark != 0) {
7368 		/*
7369 		 * If the caller doesn't want the mark return.
7370 		 * Used to implement MSG_WAITALL in sockets.
7371 		 */
7372 		if (flags & MSG_NOMARK) {
7373 			putback(stp, q, bp, pri);
7374 			qbackenable(q, pri);
7375 			mutex_exit(&stp->sd_lock);
7376 			return (EWOULDBLOCK);
7377 		}
7378 		if (bp == stp->sd_mark) {
7379 			mark |= _LASTMARK;
7380 			stp->sd_mark = NULL;
7381 		}
7382 	}
7383 
7384 	/*
7385 	 * keep track of the first message type
7386 	 */
7387 	type = bp->b_datap->db_type;
7388 
7389 	if (bp->b_datap->db_type == M_PASSFP) {
7390 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7391 			stp->sd_mark = bp;
7392 		bp->b_flag |= mark & ~_LASTMARK;
7393 		putback(stp, q, bp, pri);
7394 		qbackenable(q, pri);
7395 		mutex_exit(&stp->sd_lock);
7396 		return (EBADMSG);
7397 	}
7398 	ASSERT(type != M_SIG);
7399 
7400 	if (flags & MSG_IPEEK) {
7401 		/*
7402 		 * Clear any struioflag - we do the uiomove over again
7403 		 * when peeking since it simplifies the code.
7404 		 *
7405 		 * Dup the message and put the original back on the queue.
7406 		 * If dupmsg() fails, try again with copymsg() to see if
7407 		 * there is indeed a shortage of memory.  dupmsg() may fail
7408 		 * if db_ref in any of the messages reaches its limit.
7409 		 */
7410 
7411 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7412 			/*
7413 			 * Restore the state of the stream head since we
7414 			 * need to drop sd_lock (strwaitbuf is sleeping).
7415 			 */
7416 			size_t size = msgdsize(bp);
7417 
7418 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7419 				stp->sd_mark = bp;
7420 			bp->b_flag |= mark & ~_LASTMARK;
7421 			putback(stp, q, bp, pri);
7422 			mutex_exit(&stp->sd_lock);
7423 			error = strwaitbuf(size, BPRI_HI);
7424 			if (error) {
7425 				/*
7426 				 * There is no net change to the queue thus
7427 				 * no need to qbackenable.
7428 				 */
7429 				return (error);
7430 			}
7431 			goto retry;
7432 		}
7433 
7434 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7435 			stp->sd_mark = bp;
7436 		bp->b_flag |= mark & ~_LASTMARK;
7437 		putback(stp, q, bp, pri);
7438 		bp = nbp;
7439 	}
7440 
7441 	/*
7442 	 * Set this flag so strrput will not generate signals. Need to
7443 	 * make sure this flag is cleared before leaving this routine
7444 	 * else signals will stop being sent.
7445 	 */
7446 	stp->sd_flag |= STRGETINPROG;
7447 	mutex_exit(&stp->sd_lock);
7448 
7449 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7450 		mblk_t *tmp, *prevmp;
7451 
7452 		/*
7453 		 * Put first non-data mblk back to stream head and
7454 		 * cut the mblk chain so sd_rputdatafunc only sees
7455 		 * M_DATA mblks. We can skip the first mblk since it
7456 		 * is M_DATA according to the condition above.
7457 		 */
7458 		for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7459 		    prevmp = tmp, tmp = tmp->b_cont) {
7460 			if (DB_TYPE(tmp) != M_DATA) {
7461 				prevmp->b_cont = NULL;
7462 				mutex_enter(&stp->sd_lock);
7463 				putback(stp, q, tmp, tmp->b_band);
7464 				mutex_exit(&stp->sd_lock);
7465 				break;
7466 			}
7467 		}
7468 
7469 		bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7470 		    NULL, NULL, NULL, NULL);
7471 
7472 		if (bp == NULL)
7473 			goto retry;
7474 	}
7475 
7476 	if (STREAM_NEEDSERVICE(stp))
7477 		stream_runservice(stp);
7478 
7479 	/*
7480 	 * Set HIPRI flag if message is priority.
7481 	 */
7482 	if (type >= QPCTL)
7483 		flg = MSG_HIPRI;
7484 	else
7485 		flg = MSG_BAND;
7486 
7487 	/*
7488 	 * First process PROTO or PCPROTO blocks, if any.
7489 	 */
7490 	if (mctlp != NULL && type != M_DATA) {
7491 		mblk_t *nbp;
7492 
7493 		*mctlp = bp;
7494 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7495 			bp = bp->b_cont;
7496 		nbp = bp->b_cont;
7497 		bp->b_cont = NULL;
7498 		bp = nbp;
7499 	}
7500 
7501 	if (bp && bp->b_datap->db_type != M_DATA) {
7502 		/*
7503 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7504 		 */
7505 		more |= MORECTL;
7506 		savemp = bp;
7507 		while (bp && bp->b_datap->db_type != M_DATA) {
7508 			savemptail = bp;
7509 			bp = bp->b_cont;
7510 		}
7511 		savemptail->b_cont = NULL;
7512 	}
7513 
7514 	/*
7515 	 * Now process DATA blocks, if any.
7516 	 */
7517 	if (uiop == NULL) {
7518 		/* Append data to tail of mctlp */
7519 
7520 		if (mctlp != NULL) {
7521 			mblk_t **mpp = mctlp;
7522 
7523 			while (*mpp != NULL)
7524 				mpp = &((*mpp)->b_cont);
7525 			*mpp = bp;
7526 			bp = NULL;
7527 		}
7528 	} else if (uiop->uio_resid >= 0 && bp) {
7529 		size_t oldresid = uiop->uio_resid;
7530 
7531 		/*
7532 		 * If a streams message is likely to consist
7533 		 * of many small mblks, it is pulled up into
7534 		 * one continuous chunk of memory.
7535 		 * The size of the first mblk may be bogus because
7536 		 * successive read() calls on the socket reduce
7537 		 * the size of this mblk until it is exhausted
7538 		 * and then the code walks on to the next. Thus
7539 		 * the size of the mblk may not be the original size
7540 		 * that was passed up, it's simply a remainder
7541 		 * and hence can be very small without any
7542 		 * implication that the packet is badly fragmented.
7543 		 * So the size of the possible second mblk is
7544 		 * used to spot a badly fragmented packet.
7545 		 * see longer comment at top of page
7546 		 * by mblk_pull_len declaration.
7547 		 */
7548 
7549 		if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7550 			(void) pullupmsg(bp, -1);
7551 		}
7552 
7553 		bp = struiocopyout(bp, uiop, &error);
7554 		if (error != 0) {
7555 			if (mctlp != NULL) {
7556 				freemsg(*mctlp);
7557 				*mctlp = NULL;
7558 			} else
7559 				freemsg(savemp);
7560 			mutex_enter(&stp->sd_lock);
7561 			/*
7562 			 * clear stream head hi pri flag based on
7563 			 * first message
7564 			 */
7565 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7566 				ASSERT(type == M_PCPROTO);
7567 				stp->sd_flag &= ~STRPRI;
7568 			}
7569 			more = 0;
7570 			goto getmout;
7571 		}
7572 		/*
7573 		 * (pr == 1) indicates a partial read.
7574 		 */
7575 		if (oldresid > uiop->uio_resid)
7576 			pr = 1;
7577 	}
7578 
7579 	if (bp) {			/* more data blocks in msg */
7580 		more |= MOREDATA;
7581 		if (savemp)
7582 			savemptail->b_cont = bp;
7583 		else
7584 			savemp = bp;
7585 	}
7586 
7587 	mutex_enter(&stp->sd_lock);
7588 	if (savemp) {
7589 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7590 			/*
7591 			 * When MSG_DISCARDTAIL is set or
7592 			 * when peeking discard any tail. When peeking this
7593 			 * is the tail of the dup that was copied out - the
7594 			 * message has already been putback on the queue.
7595 			 * Return MOREDATA to the caller even though the data
7596 			 * is discarded. This is used by sockets (to
7597 			 * set MSG_TRUNC).
7598 			 */
7599 			freemsg(savemp);
7600 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7601 				ASSERT(type == M_PCPROTO);
7602 				stp->sd_flag &= ~STRPRI;
7603 			}
7604 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7605 		    msgnodata(savemp)) {
7606 			/*
7607 			 * Avoid queuing a zero-length tail part of
7608 			 * a message. pr=1 indicates that we read some of
7609 			 * the message.
7610 			 */
7611 			freemsg(savemp);
7612 			more &= ~MOREDATA;
7613 			if (type >= QPCTL) {
7614 				ASSERT(type == M_PCPROTO);
7615 				stp->sd_flag &= ~STRPRI;
7616 			}
7617 		} else {
7618 			savemp->b_band = pri;
7619 			/*
7620 			 * If the first message was HIPRI and the one we're
7621 			 * putting back isn't, then clear STRPRI, otherwise
7622 			 * set STRPRI again.  Note that we must set STRPRI
7623 			 * again since the flush logic in strrput_nondata()
7624 			 * may have cleared it while we had sd_lock dropped.
7625 			 */
7626 
7627 			if (type >= QPCTL) {
7628 				ASSERT(type == M_PCPROTO);
7629 				if (queclass(savemp) < QPCTL)
7630 					stp->sd_flag &= ~STRPRI;
7631 				else
7632 					stp->sd_flag |= STRPRI;
7633 			} else if (queclass(savemp) >= QPCTL) {
7634 				/*
7635 				 * The first message was not a HIPRI message,
7636 				 * but the one we are about to putback is.
7637 				 * For simplicitly, we do not allow for HIPRI
7638 				 * messages to be embedded in the message
7639 				 * body, so just force it to same type as
7640 				 * first message.
7641 				 */
7642 				ASSERT(type == M_DATA || type == M_PROTO);
7643 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7644 				savemp->b_datap->db_type = type;
7645 			}
7646 			if (mark != 0) {
7647 				if ((mark & _LASTMARK) &&
7648 				    (stp->sd_mark == NULL)) {
7649 					/*
7650 					 * If another marked message arrived
7651 					 * while sd_lock was not held sd_mark
7652 					 * would be non-NULL.
7653 					 */
7654 					stp->sd_mark = savemp;
7655 				}
7656 				savemp->b_flag |= mark & ~_LASTMARK;
7657 			}
7658 			putback(stp, q, savemp, pri);
7659 		}
7660 	} else if (!(flags & MSG_IPEEK)) {
7661 		/*
7662 		 * The complete message was consumed.
7663 		 *
7664 		 * If another M_PCPROTO arrived while sd_lock was not held
7665 		 * it would have been discarded since STRPRI was still set.
7666 		 *
7667 		 * Move the MSG*MARKNEXT information
7668 		 * to the stream head just in case
7669 		 * the read queue becomes empty.
7670 		 * clear stream head hi pri flag based on
7671 		 * first message
7672 		 *
7673 		 * If the stream head was at the mark
7674 		 * (STRATMARK) before we dropped sd_lock above
7675 		 * and some data was consumed then we have
7676 		 * moved past the mark thus STRATMARK is
7677 		 * cleared. However, if a message arrived in
7678 		 * strrput during the copyout above causing
7679 		 * STRATMARK to be set we can not clear that
7680 		 * flag.
7681 		 * XXX A "perimeter" would help by single-threading strrput,
7682 		 * strread, strgetmsg and kstrgetmsg.
7683 		 */
7684 		if (type >= QPCTL) {
7685 			ASSERT(type == M_PCPROTO);
7686 			stp->sd_flag &= ~STRPRI;
7687 		}
7688 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7689 			if (mark & MSGMARKNEXT) {
7690 				stp->sd_flag &= ~STRNOTATMARK;
7691 				stp->sd_flag |= STRATMARK;
7692 			} else if (mark & MSGNOTMARKNEXT) {
7693 				stp->sd_flag &= ~STRATMARK;
7694 				stp->sd_flag |= STRNOTATMARK;
7695 			} else {
7696 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7697 			}
7698 		} else if (pr && (old_sd_flag & STRATMARK)) {
7699 			stp->sd_flag &= ~STRATMARK;
7700 		}
7701 	}
7702 
7703 	*flagsp = flg;
7704 	*prip = pri;
7705 
7706 	/*
7707 	 * Getmsg cleanup processing - if the state of the queue has changed
7708 	 * some signals may need to be sent and/or poll awakened.
7709 	 */
7710 getmout:
7711 	qbackenable(q, pri);
7712 
7713 	/*
7714 	 * We dropped the stream head lock above. Send all M_SIG messages
7715 	 * before processing stream head for SIGPOLL messages.
7716 	 */
7717 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7718 	while ((bp = q->q_first) != NULL &&
7719 	    (bp->b_datap->db_type == M_SIG)) {
7720 		/*
7721 		 * sd_lock is held so the content of the read queue can not
7722 		 * change.
7723 		 */
7724 		bp = getq(q);
7725 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7726 
7727 		strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7728 		mutex_exit(&stp->sd_lock);
7729 		freemsg(bp);
7730 		if (STREAM_NEEDSERVICE(stp))
7731 			stream_runservice(stp);
7732 		mutex_enter(&stp->sd_lock);
7733 	}
7734 
7735 	/*
7736 	 * stream head cannot change while we make the determination
7737 	 * whether or not to send a signal. Drop the flag to allow strrput
7738 	 * to send firstmsgsigs again.
7739 	 */
7740 	stp->sd_flag &= ~STRGETINPROG;
7741 
7742 	/*
7743 	 * If the type of message at the front of the queue changed
7744 	 * due to the receive the appropriate signals and pollwakeup events
7745 	 * are generated. The type of changes are:
7746 	 *	Processed a hipri message, q_first is not hipri.
7747 	 *	Processed a band X message, and q_first is band Y.
7748 	 * The generated signals and pollwakeups are identical to what
7749 	 * strrput() generates should the message that is now on q_first
7750 	 * arrive to an empty read queue.
7751 	 *
7752 	 * Note: only strrput will send a signal for a hipri message.
7753 	 */
7754 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7755 		strsigset_t signals = 0;
7756 		strpollset_t pollwakeups = 0;
7757 
7758 		if (flg & MSG_HIPRI) {
7759 			/*
7760 			 * Removed a hipri message. Regular data at
7761 			 * the front of  the queue.
7762 			 */
7763 			if (bp->b_band == 0) {
7764 				signals = S_INPUT | S_RDNORM;
7765 				pollwakeups = POLLIN | POLLRDNORM;
7766 			} else {
7767 				signals = S_INPUT | S_RDBAND;
7768 				pollwakeups = POLLIN | POLLRDBAND;
7769 			}
7770 		} else if (pri != bp->b_band) {
7771 			/*
7772 			 * The band is different for the new q_first.
7773 			 */
7774 			if (bp->b_band == 0) {
7775 				signals = S_RDNORM;
7776 				pollwakeups = POLLIN | POLLRDNORM;
7777 			} else {
7778 				signals = S_RDBAND;
7779 				pollwakeups = POLLIN | POLLRDBAND;
7780 			}
7781 		}
7782 
7783 		if (pollwakeups != 0) {
7784 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7785 				if (!(stp->sd_rput_opt & SR_POLLIN))
7786 					goto no_pollwake;
7787 				stp->sd_rput_opt &= ~SR_POLLIN;
7788 			}
7789 			mutex_exit(&stp->sd_lock);
7790 			pollwakeup(&stp->sd_pollist, pollwakeups);
7791 			mutex_enter(&stp->sd_lock);
7792 		}
7793 no_pollwake:
7794 
7795 		if (stp->sd_sigflags & signals)
7796 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7797 	}
7798 	mutex_exit(&stp->sd_lock);
7799 
7800 	rvp->r_val1 = more;
7801 	return (error);
7802 #undef	_LASTMARK
7803 }
7804 
7805 /*
7806  * Put a message downstream.
7807  *
7808  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7809  */
7810 int
7811 strputmsg(
7812 	struct vnode *vp,
7813 	struct strbuf *mctl,
7814 	struct strbuf *mdata,
7815 	unsigned char pri,
7816 	int flag,
7817 	int fmode)
7818 {
7819 	struct stdata *stp;
7820 	queue_t *wqp;
7821 	mblk_t *mp;
7822 	ssize_t msgsize;
7823 	ssize_t rmin, rmax;
7824 	int error;
7825 	struct uio uios;
7826 	struct uio *uiop = &uios;
7827 	struct iovec iovs;
7828 	int xpg4 = 0;
7829 
7830 	ASSERT(vp->v_stream);
7831 	stp = vp->v_stream;
7832 	wqp = stp->sd_wrq;
7833 
7834 	/*
7835 	 * If it is an XPG4 application, we need to send
7836 	 * SIGPIPE below
7837 	 */
7838 
7839 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7840 	flag &= ~MSG_XPG4;
7841 
7842 	if (AU_AUDITING())
7843 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7844 
7845 	mutex_enter(&stp->sd_lock);
7846 
7847 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7848 		mutex_exit(&stp->sd_lock);
7849 		return (error);
7850 	}
7851 
7852 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7853 		error = strwriteable(stp, B_FALSE, xpg4);
7854 		if (error != 0) {
7855 			mutex_exit(&stp->sd_lock);
7856 			return (error);
7857 		}
7858 	}
7859 
7860 	mutex_exit(&stp->sd_lock);
7861 
7862 	/*
7863 	 * Check for legal flag value.
7864 	 */
7865 	switch (flag) {
7866 	case MSG_HIPRI:
7867 		if ((mctl->len < 0) || (pri != 0))
7868 			return (EINVAL);
7869 		break;
7870 	case MSG_BAND:
7871 		break;
7872 
7873 	default:
7874 		return (EINVAL);
7875 	}
7876 
7877 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7878 	    "strputmsg in:stp %p", stp);
7879 
7880 	/* get these values from those cached in the stream head */
7881 	rmin = stp->sd_qn_minpsz;
7882 	rmax = stp->sd_qn_maxpsz;
7883 
7884 	/*
7885 	 * Make sure ctl and data sizes together fall within the
7886 	 * limits of the max and min receive packet sizes and do
7887 	 * not exceed system limit.
7888 	 */
7889 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7890 	if (rmax == 0) {
7891 		return (ERANGE);
7892 	}
7893 	/*
7894 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7895 	 * Needed to prevent partial failures in the strmakedata loop.
7896 	 */
7897 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7898 		rmax = stp->sd_maxblk;
7899 
7900 	if ((msgsize = mdata->len) < 0) {
7901 		msgsize = 0;
7902 		rmin = 0;	/* no range check for NULL data part */
7903 	}
7904 	if ((msgsize < rmin) ||
7905 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7906 	    (mctl->len > strctlsz)) {
7907 		return (ERANGE);
7908 	}
7909 
7910 	/*
7911 	 * Setup uio and iov for data part
7912 	 */
7913 	iovs.iov_base = mdata->buf;
7914 	iovs.iov_len = msgsize;
7915 	uios.uio_iov = &iovs;
7916 	uios.uio_iovcnt = 1;
7917 	uios.uio_loffset = 0;
7918 	uios.uio_segflg = UIO_USERSPACE;
7919 	uios.uio_fmode = fmode;
7920 	uios.uio_extflg = UIO_COPY_DEFAULT;
7921 	uios.uio_resid = msgsize;
7922 	uios.uio_offset = 0;
7923 
7924 	/* Ignore flow control in strput for HIPRI */
7925 	if (flag & MSG_HIPRI)
7926 		flag |= MSG_IGNFLOW;
7927 
7928 	for (;;) {
7929 		int done = 0;
7930 
7931 		/*
7932 		 * strput will always free the ctl mblk - even when strput
7933 		 * fails.
7934 		 */
7935 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7936 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7937 			    "strputmsg out:stp %p out %d error %d",
7938 			    stp, 1, error);
7939 			return (error);
7940 		}
7941 		/*
7942 		 * Verify that the whole message can be transferred by
7943 		 * strput.
7944 		 */
7945 		ASSERT(stp->sd_maxblk == INFPSZ ||
7946 		    stp->sd_maxblk >= mdata->len);
7947 
7948 		msgsize = mdata->len;
7949 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7950 		mdata->len = msgsize;
7951 
7952 		if (error == 0)
7953 			break;
7954 
7955 		if (error != EWOULDBLOCK)
7956 			goto out;
7957 
7958 		mutex_enter(&stp->sd_lock);
7959 		/*
7960 		 * Check for a missed wakeup.
7961 		 * Needed since strput did not hold sd_lock across
7962 		 * the canputnext.
7963 		 */
7964 		if (bcanputnext(wqp, pri)) {
7965 			/* Try again */
7966 			mutex_exit(&stp->sd_lock);
7967 			continue;
7968 		}
7969 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7970 		    "strputmsg wait:stp %p waits pri %d", stp, pri);
7971 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7972 		    &done)) != 0) || done) {
7973 			mutex_exit(&stp->sd_lock);
7974 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7975 			    "strputmsg out:q %p out %d error %d",
7976 			    stp, 0, error);
7977 			return (error);
7978 		}
7979 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7980 		    "strputmsg wake:stp %p wakes", stp);
7981 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
7982 			mutex_exit(&stp->sd_lock);
7983 			return (error);
7984 		}
7985 		mutex_exit(&stp->sd_lock);
7986 	}
7987 out:
7988 	/*
7989 	 * For historic reasons, applications expect EAGAIN
7990 	 * when data mblk could not be allocated. so change
7991 	 * ENOMEM back to EAGAIN
7992 	 */
7993 	if (error == ENOMEM)
7994 		error = EAGAIN;
7995 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7996 	    "strputmsg out:stp %p out %d error %d", stp, 2, error);
7997 	return (error);
7998 }
7999 
8000 /*
8001  * Put a message downstream.
8002  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
8003  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
8004  * and the fmode parameter.
8005  *
8006  * This routine handles the consolidation private flags:
8007  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
8008  *	MSG_HOLDSIG	Hold signals while waiting for data.
8009  *	MSG_IGNFLOW	Don't check streams flow control.
8010  *
8011  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
8012  */
8013 int
8014 kstrputmsg(
8015 	struct vnode *vp,
8016 	mblk_t *mctl,
8017 	struct uio *uiop,
8018 	ssize_t msgsize,
8019 	unsigned char pri,
8020 	int flag,
8021 	int fmode)
8022 {
8023 	struct stdata *stp;
8024 	queue_t *wqp;
8025 	ssize_t rmin, rmax;
8026 	int error;
8027 
8028 	ASSERT(vp->v_stream);
8029 	stp = vp->v_stream;
8030 	wqp = stp->sd_wrq;
8031 	if (AU_AUDITING())
8032 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
8033 	if (mctl == NULL)
8034 		return (EINVAL);
8035 
8036 	mutex_enter(&stp->sd_lock);
8037 
8038 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
8039 		mutex_exit(&stp->sd_lock);
8040 		freemsg(mctl);
8041 		return (error);
8042 	}
8043 
8044 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
8045 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
8046 			error = strwriteable(stp, B_FALSE, B_TRUE);
8047 			if (error != 0) {
8048 				mutex_exit(&stp->sd_lock);
8049 				freemsg(mctl);
8050 				return (error);
8051 			}
8052 		}
8053 	}
8054 
8055 	mutex_exit(&stp->sd_lock);
8056 
8057 	/*
8058 	 * Check for legal flag value.
8059 	 */
8060 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
8061 	case MSG_HIPRI:
8062 		if (pri != 0) {
8063 			freemsg(mctl);
8064 			return (EINVAL);
8065 		}
8066 		break;
8067 	case MSG_BAND:
8068 		break;
8069 	default:
8070 		freemsg(mctl);
8071 		return (EINVAL);
8072 	}
8073 
8074 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
8075 	    "kstrputmsg in:stp %p", stp);
8076 
8077 	/* get these values from those cached in the stream head */
8078 	rmin = stp->sd_qn_minpsz;
8079 	rmax = stp->sd_qn_maxpsz;
8080 
8081 	/*
8082 	 * Make sure ctl and data sizes together fall within the
8083 	 * limits of the max and min receive packet sizes and do
8084 	 * not exceed system limit.
8085 	 */
8086 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
8087 	if (rmax == 0) {
8088 		freemsg(mctl);
8089 		return (ERANGE);
8090 	}
8091 	/*
8092 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8093 	 * Needed to prevent partial failures in the strmakedata loop.
8094 	 */
8095 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8096 		rmax = stp->sd_maxblk;
8097 
8098 	if (uiop == NULL) {
8099 		msgsize = -1;
8100 		rmin = -1;	/* no range check for NULL data part */
8101 	} else {
8102 		/* Use uio flags as well as the fmode parameter flags */
8103 		fmode |= uiop->uio_fmode;
8104 
8105 		if ((msgsize < rmin) ||
8106 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
8107 			freemsg(mctl);
8108 			return (ERANGE);
8109 		}
8110 	}
8111 
8112 	/* Ignore flow control in strput for HIPRI */
8113 	if (flag & MSG_HIPRI)
8114 		flag |= MSG_IGNFLOW;
8115 
8116 	for (;;) {
8117 		int done = 0;
8118 		int waitflag;
8119 		mblk_t *mp;
8120 
8121 		/*
8122 		 * strput will always free the ctl mblk - even when strput
8123 		 * fails. If MSG_IGNFLOW is set then any error returned
8124 		 * will cause us to break the loop, so we don't need a copy
8125 		 * of the message. If MSG_IGNFLOW is not set, then we can
8126 		 * get hit by flow control and be forced to try again. In
8127 		 * this case we need to have a copy of the message. We
8128 		 * do this using copymsg since the message may get modified
8129 		 * by something below us.
8130 		 *
8131 		 * We've observed that many TPI providers do not check db_ref
8132 		 * on the control messages but blindly reuse them for the
8133 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8134 		 * friendly to such providers than using dupmsg. Also, note
8135 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8136 		 * Only data messages are subject to flow control, hence
8137 		 * subject to this copymsg.
8138 		 */
8139 		if (flag & MSG_IGNFLOW) {
8140 			mp = mctl;
8141 			mctl = NULL;
8142 		} else {
8143 			do {
8144 				/*
8145 				 * If a message has a free pointer, the message
8146 				 * must be dupmsg to maintain this pointer.
8147 				 * Code using this facility must be sure
8148 				 * that modules below will not change the
8149 				 * contents of the dblk without checking db_ref
8150 				 * first. If db_ref is > 1, then the module
8151 				 * needs to do a copymsg first. Otherwise,
8152 				 * the contents of the dblk may become
8153 				 * inconsistent because the freesmg/freeb below
8154 				 * may end up calling atomic_add_32_nv.
8155 				 * The atomic_add_32_nv in freeb (accessing
8156 				 * all of db_ref, db_type, db_flags, and
8157 				 * db_struioflag) does not prevent other threads
8158 				 * from concurrently trying to modify e.g.
8159 				 * db_type.
8160 				 */
8161 				if (mctl->b_datap->db_frtnp != NULL)
8162 					mp = dupmsg(mctl);
8163 				else
8164 					mp = copymsg(mctl);
8165 
8166 				if (mp != NULL)
8167 					break;
8168 
8169 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8170 				if (error) {
8171 					freemsg(mctl);
8172 					return (error);
8173 				}
8174 			} while (mp == NULL);
8175 		}
8176 		/*
8177 		 * Verify that all of msgsize can be transferred by
8178 		 * strput.
8179 		 */
8180 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8181 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8182 		if (error == 0)
8183 			break;
8184 
8185 		if (error != EWOULDBLOCK)
8186 			goto out;
8187 
8188 		/*
8189 		 * IF MSG_IGNFLOW is set we should have broken out of loop
8190 		 * above.
8191 		 */
8192 		ASSERT(!(flag & MSG_IGNFLOW));
8193 		mutex_enter(&stp->sd_lock);
8194 		/*
8195 		 * Check for a missed wakeup.
8196 		 * Needed since strput did not hold sd_lock across
8197 		 * the canputnext.
8198 		 */
8199 		if (bcanputnext(wqp, pri)) {
8200 			/* Try again */
8201 			mutex_exit(&stp->sd_lock);
8202 			continue;
8203 		}
8204 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8205 		    "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8206 
8207 		waitflag = WRITEWAIT;
8208 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8209 			if (flag & MSG_HOLDSIG)
8210 				waitflag |= STR_NOSIG;
8211 			if (flag & MSG_IGNERROR)
8212 				waitflag |= STR_NOERROR;
8213 		}
8214 		if (((error = strwaitq(stp, waitflag,
8215 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8216 			mutex_exit(&stp->sd_lock);
8217 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8218 			    "kstrputmsg out:stp %p out %d error %d",
8219 			    stp, 0, error);
8220 			freemsg(mctl);
8221 			return (error);
8222 		}
8223 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8224 		    "kstrputmsg wake:stp %p wakes", stp);
8225 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8226 			mutex_exit(&stp->sd_lock);
8227 			freemsg(mctl);
8228 			return (error);
8229 		}
8230 		mutex_exit(&stp->sd_lock);
8231 	}
8232 out:
8233 	freemsg(mctl);
8234 	/*
8235 	 * For historic reasons, applications expect EAGAIN
8236 	 * when data mblk could not be allocated. so change
8237 	 * ENOMEM back to EAGAIN
8238 	 */
8239 	if (error == ENOMEM)
8240 		error = EAGAIN;
8241 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8242 	    "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8243 	return (error);
8244 }
8245 
8246 /*
8247  * Determines whether the necessary conditions are set on a stream
8248  * for it to be readable, writeable, or have exceptions.
8249  *
8250  * strpoll handles the consolidation private events:
8251  *	POLLNOERR	Do not return POLLERR even if there are stream
8252  *			head errors.
8253  *			Used by sockfs.
8254  *	POLLRDDATA	Do not return POLLIN unless at least one message on
8255  *			the queue contains one or more M_DATA mblks. Thus
8256  *			when this flag is set a queue with only
8257  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
8258  *			Used by sockfs to ignore T_EXDATA_IND messages.
8259  *
8260  * Note: POLLRDDATA assumes that synch streams only return messages with
8261  * an M_DATA attached (i.e. not messages consisting of only
8262  * an M_PROTO/M_PCPROTO part).
8263  */
8264 int
8265 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp,
8266     struct pollhead **phpp)
8267 {
8268 	int events = (ushort_t)events_arg;
8269 	int retevents = 0;
8270 	mblk_t *mp;
8271 	qband_t *qbp;
8272 	long sd_flags = stp->sd_flag;
8273 	int headlocked = 0;
8274 
8275 	/*
8276 	 * For performance, a single 'if' tests for most possible edge
8277 	 * conditions in one shot
8278 	 */
8279 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8280 		if (sd_flags & STPLEX) {
8281 			*reventsp = POLLNVAL;
8282 			return (EINVAL);
8283 		}
8284 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8285 		    (sd_flags & STRDERR)) ||
8286 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8287 		    (sd_flags & STWRERR))) {
8288 			if (!(events & POLLNOERR)) {
8289 				*reventsp = POLLERR;
8290 				return (0);
8291 			}
8292 		}
8293 	}
8294 	if (sd_flags & STRHUP) {
8295 		retevents |= POLLHUP;
8296 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8297 		queue_t *tq;
8298 		queue_t	*qp = stp->sd_wrq;
8299 
8300 		claimstr(qp);
8301 		/* Find next module forward that has a service procedure */
8302 		tq = qp->q_next->q_nfsrv;
8303 		ASSERT(tq != NULL);
8304 
8305 		if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) {
8306 			releasestr(qp);
8307 			*reventsp = POLLNVAL;
8308 			return (0);
8309 		}
8310 		if (events & POLLWRNORM) {
8311 			queue_t *sqp;
8312 
8313 			if (tq->q_flag & QFULL)
8314 				/* ensure backq svc procedure runs */
8315 				tq->q_flag |= QWANTW;
8316 			else if ((sqp = stp->sd_struiowrq) != NULL) {
8317 				/* Check sync stream barrier write q */
8318 				mutex_exit(QLOCK(tq));
8319 				if (polllock(&stp->sd_pollist,
8320 				    QLOCK(sqp)) != 0) {
8321 					releasestr(qp);
8322 					*reventsp = POLLNVAL;
8323 					return (0);
8324 				}
8325 				if (sqp->q_flag & QFULL)
8326 					/* ensure pollwakeup() is done */
8327 					sqp->q_flag |= QWANTWSYNC;
8328 				else
8329 					retevents |= POLLOUT;
8330 				/* More write events to process ??? */
8331 				if (! (events & POLLWRBAND)) {
8332 					mutex_exit(QLOCK(sqp));
8333 					releasestr(qp);
8334 					goto chkrd;
8335 				}
8336 				mutex_exit(QLOCK(sqp));
8337 				if (polllock(&stp->sd_pollist,
8338 				    QLOCK(tq)) != 0) {
8339 					releasestr(qp);
8340 					*reventsp = POLLNVAL;
8341 					return (0);
8342 				}
8343 			} else
8344 				retevents |= POLLOUT;
8345 		}
8346 		if (events & POLLWRBAND) {
8347 			qbp = tq->q_bandp;
8348 			if (qbp) {
8349 				while (qbp) {
8350 					if (qbp->qb_flag & QB_FULL)
8351 						qbp->qb_flag |= QB_WANTW;
8352 					else
8353 						retevents |= POLLWRBAND;
8354 					qbp = qbp->qb_next;
8355 				}
8356 			} else {
8357 				retevents |= POLLWRBAND;
8358 			}
8359 		}
8360 		mutex_exit(QLOCK(tq));
8361 		releasestr(qp);
8362 	}
8363 chkrd:
8364 	if (sd_flags & STRPRI) {
8365 		retevents |= (events & POLLPRI);
8366 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8367 		queue_t	*qp = _RD(stp->sd_wrq);
8368 		int normevents = (events & (POLLIN | POLLRDNORM));
8369 
8370 		/*
8371 		 * Note: Need to do polllock() here since ps_lock may be
8372 		 * held. See bug 4191544.
8373 		 */
8374 		if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8375 			*reventsp = POLLNVAL;
8376 			return (0);
8377 		}
8378 		headlocked = 1;
8379 		mp = qp->q_first;
8380 		while (mp) {
8381 			/*
8382 			 * For POLLRDDATA we scan b_cont and b_next until we
8383 			 * find an M_DATA.
8384 			 */
8385 			if ((events & POLLRDDATA) &&
8386 			    mp->b_datap->db_type != M_DATA) {
8387 				mblk_t *nmp = mp->b_cont;
8388 
8389 				while (nmp != NULL &&
8390 				    nmp->b_datap->db_type != M_DATA)
8391 					nmp = nmp->b_cont;
8392 				if (nmp == NULL) {
8393 					mp = mp->b_next;
8394 					continue;
8395 				}
8396 			}
8397 			if (mp->b_band == 0)
8398 				retevents |= normevents;
8399 			else
8400 				retevents |= (events & (POLLIN | POLLRDBAND));
8401 			break;
8402 		}
8403 		if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) {
8404 			/*
8405 			 * Sync stream barrier read queue has data.
8406 			 */
8407 			retevents |= normevents;
8408 		}
8409 		/* Treat eof as normal data */
8410 		if (sd_flags & STREOF)
8411 			retevents |= normevents;
8412 	}
8413 
8414 	/*
8415 	 * Pass back a pollhead if no events are pending or if edge-triggering
8416 	 * has been configured on this resource.
8417 	 */
8418 	if ((retevents == 0 && !anyyet) || (events & POLLET)) {
8419 		*phpp = &stp->sd_pollist;
8420 		if (headlocked == 0) {
8421 			if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8422 				*reventsp = POLLNVAL;
8423 				return (0);
8424 			}
8425 			headlocked = 1;
8426 		}
8427 		stp->sd_rput_opt |= SR_POLLIN;
8428 	}
8429 
8430 	*reventsp = (short)retevents;
8431 	if (headlocked)
8432 		mutex_exit(&stp->sd_lock);
8433 	return (0);
8434 }
8435 
8436 /*
8437  * The purpose of putback() is to assure sleeping polls/reads
8438  * are awakened when there are no new messages arriving at the,
8439  * stream head, and a message is placed back on the read queue.
8440  *
8441  * sd_lock must be held when messages are placed back on stream
8442  * head.  (getq() holds sd_lock when it removes messages from
8443  * the queue)
8444  */
8445 
8446 static void
8447 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8448 {
8449 	mblk_t	*qfirst;
8450 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8451 
8452 	/*
8453 	 * As a result of lock-step ordering around q_lock and sd_lock,
8454 	 * it's possible for function calls like putnext() and
8455 	 * canputnext() to get an inaccurate picture of how much
8456 	 * data is really being processed at the stream head.
8457 	 * We only consolidate with existing messages on the queue
8458 	 * if the length of the message we want to put back is smaller
8459 	 * than the queue hiwater mark.
8460 	 */
8461 	if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8462 	    (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8463 	    (DB_TYPE(qfirst) == M_DATA) &&
8464 	    ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8465 	    ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8466 	    (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8467 		/*
8468 		 * We use the same logic as defined in strrput()
8469 		 * but in reverse as we are putting back onto the
8470 		 * queue and want to retain byte ordering.
8471 		 * Consolidate M_DATA messages with M_DATA ONLY.
8472 		 * strrput() allows the consolidation of M_DATA onto
8473 		 * M_PROTO | M_PCPROTO but not the other way round.
8474 		 *
8475 		 * The consolidation does not take place if the message
8476 		 * we are returning to the queue is marked with either
8477 		 * of the marks or the delim flag or if q_first
8478 		 * is marked with MSGMARK. The MSGMARK check is needed to
8479 		 * handle the odd semantics of MSGMARK where essentially
8480 		 * the whole message is to be treated as marked.
8481 		 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8482 		 * to the front of the b_cont chain.
8483 		 */
8484 		rmvq_noenab(q, qfirst);
8485 
8486 		/*
8487 		 * The first message in the b_cont list
8488 		 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8489 		 * We need to handle the case where we
8490 		 * are appending:
8491 		 *
8492 		 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8493 		 * 2) a MSGMARKNEXT to a plain message.
8494 		 * 3) a MSGNOTMARKNEXT to a plain message
8495 		 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8496 		 *    message.
8497 		 *
8498 		 * Thus we never append a MSGMARKNEXT or
8499 		 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8500 		 */
8501 		if (qfirst->b_flag & MSGMARKNEXT) {
8502 			bp->b_flag |= MSGMARKNEXT;
8503 			bp->b_flag &= ~MSGNOTMARKNEXT;
8504 			qfirst->b_flag &= ~MSGMARKNEXT;
8505 		} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8506 			bp->b_flag |= MSGNOTMARKNEXT;
8507 			qfirst->b_flag &= ~MSGNOTMARKNEXT;
8508 		}
8509 
8510 		linkb(bp, qfirst);
8511 	}
8512 	(void) putbq(q, bp);
8513 
8514 	/*
8515 	 * A message may have come in when the sd_lock was dropped in the
8516 	 * calling routine. If this is the case and STR*ATMARK info was
8517 	 * received, need to move that from the stream head to the q_last
8518 	 * so that SIOCATMARK can return the proper value.
8519 	 */
8520 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8521 		unsigned short *flagp = &q->q_last->b_flag;
8522 		uint_t b_flag = (uint_t)*flagp;
8523 
8524 		if (stp->sd_flag & STRATMARK) {
8525 			b_flag &= ~MSGNOTMARKNEXT;
8526 			b_flag |= MSGMARKNEXT;
8527 			stp->sd_flag &= ~STRATMARK;
8528 		} else {
8529 			b_flag &= ~MSGMARKNEXT;
8530 			b_flag |= MSGNOTMARKNEXT;
8531 			stp->sd_flag &= ~STRNOTATMARK;
8532 		}
8533 		*flagp = (unsigned short) b_flag;
8534 	}
8535 
8536 #ifdef	DEBUG
8537 	/*
8538 	 * Make sure that the flags are not messed up.
8539 	 */
8540 	{
8541 		mblk_t *mp;
8542 		mp = q->q_last;
8543 		while (mp != NULL) {
8544 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8545 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8546 			mp = mp->b_cont;
8547 		}
8548 	}
8549 #endif
8550 	if (q->q_first == bp) {
8551 		short pollevents;
8552 
8553 		if (stp->sd_flag & RSLEEP) {
8554 			stp->sd_flag &= ~RSLEEP;
8555 			cv_broadcast(&q->q_wait);
8556 		}
8557 		if (stp->sd_flag & STRPRI) {
8558 			pollevents = POLLPRI;
8559 		} else {
8560 			if (band == 0) {
8561 				if (!(stp->sd_rput_opt & SR_POLLIN))
8562 					return;
8563 				stp->sd_rput_opt &= ~SR_POLLIN;
8564 				pollevents = POLLIN | POLLRDNORM;
8565 			} else {
8566 				pollevents = POLLIN | POLLRDBAND;
8567 			}
8568 		}
8569 		mutex_exit(&stp->sd_lock);
8570 		pollwakeup(&stp->sd_pollist, pollevents);
8571 		mutex_enter(&stp->sd_lock);
8572 	}
8573 }
8574 
8575 /*
8576  * Return the held vnode attached to the stream head of a
8577  * given queue
8578  * It is the responsibility of the calling routine to ensure
8579  * that the queue does not go away (e.g. pop).
8580  */
8581 vnode_t *
8582 strq2vp(queue_t *qp)
8583 {
8584 	vnode_t *vp;
8585 	vp = STREAM(qp)->sd_vnode;
8586 	ASSERT(vp != NULL);
8587 	VN_HOLD(vp);
8588 	return (vp);
8589 }
8590 
8591 /*
8592  * return the stream head write queue for the given vp
8593  * It is the responsibility of the calling routine to ensure
8594  * that the stream or vnode do not close.
8595  */
8596 queue_t *
8597 strvp2wq(vnode_t *vp)
8598 {
8599 	ASSERT(vp->v_stream != NULL);
8600 	return (vp->v_stream->sd_wrq);
8601 }
8602 
8603 /*
8604  * pollwakeup stream head
8605  * It is the responsibility of the calling routine to ensure
8606  * that the stream or vnode do not close.
8607  */
8608 void
8609 strpollwakeup(vnode_t *vp, short event)
8610 {
8611 	ASSERT(vp->v_stream);
8612 	pollwakeup(&vp->v_stream->sd_pollist, event);
8613 }
8614 
8615 /*
8616  * Mate the stream heads of two vnodes together. If the two vnodes are the
8617  * same, we just make the write-side point at the read-side -- otherwise,
8618  * we do a full mate.  Only works on vnodes associated with streams that are
8619  * still being built and thus have only a stream head.
8620  */
8621 void
8622 strmate(vnode_t *vp1, vnode_t *vp2)
8623 {
8624 	queue_t *wrq1 = strvp2wq(vp1);
8625 	queue_t *wrq2 = strvp2wq(vp2);
8626 
8627 	/*
8628 	 * Verify that there are no modules on the stream yet.  We also
8629 	 * rely on the stream head always having a service procedure to
8630 	 * avoid tweaking q_nfsrv.
8631 	 */
8632 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8633 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8634 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8635 
8636 	/*
8637 	 * If the queues are the same, just twist; otherwise do a full mate.
8638 	 */
8639 	if (wrq1 == wrq2) {
8640 		wrq1->q_next = _RD(wrq1);
8641 	} else {
8642 		wrq1->q_next = _RD(wrq2);
8643 		wrq2->q_next = _RD(wrq1);
8644 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8645 		STREAM(wrq1)->sd_flag |= STRMATE;
8646 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8647 		STREAM(wrq2)->sd_flag |= STRMATE;
8648 	}
8649 }
8650 
8651 /*
8652  * XXX will go away when console is correctly fixed.
8653  * Clean up the console PIDS, from previous I_SETSIG,
8654  * called only for cnopen which never calls strclean().
8655  */
8656 void
8657 str_cn_clean(struct vnode *vp)
8658 {
8659 	strsig_t *ssp, *pssp, *tssp;
8660 	struct stdata *stp;
8661 	struct pid  *pidp;
8662 	int update = 0;
8663 
8664 	ASSERT(vp->v_stream);
8665 	stp = vp->v_stream;
8666 	pssp = NULL;
8667 	mutex_enter(&stp->sd_lock);
8668 	ssp = stp->sd_siglist;
8669 	while (ssp) {
8670 		mutex_enter(&pidlock);
8671 		pidp = ssp->ss_pidp;
8672 		/*
8673 		 * Get rid of PID if the proc is gone.
8674 		 */
8675 		if (pidp->pid_prinactive) {
8676 			tssp = ssp->ss_next;
8677 			if (pssp)
8678 				pssp->ss_next = tssp;
8679 			else
8680 				stp->sd_siglist = tssp;
8681 			ASSERT(pidp->pid_ref <= 1);
8682 			PID_RELE(ssp->ss_pidp);
8683 			mutex_exit(&pidlock);
8684 			kmem_free(ssp, sizeof (strsig_t));
8685 			update = 1;
8686 			ssp = tssp;
8687 			continue;
8688 		} else
8689 			mutex_exit(&pidlock);
8690 		pssp = ssp;
8691 		ssp = ssp->ss_next;
8692 	}
8693 	if (update) {
8694 		stp->sd_sigflags = 0;
8695 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8696 			stp->sd_sigflags |= ssp->ss_events;
8697 	}
8698 	mutex_exit(&stp->sd_lock);
8699 }
8700 
8701 /*
8702  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8703  */
8704 static boolean_t
8705 msghasdata(mblk_t *bp)
8706 {
8707 	for (; bp; bp = bp->b_cont)
8708 		if (bp->b_datap->db_type == M_DATA) {
8709 			ASSERT(bp->b_wptr >= bp->b_rptr);
8710 			if (bp->b_wptr > bp->b_rptr)
8711 				return (B_TRUE);
8712 		}
8713 	return (B_FALSE);
8714 }
8715