xref: /illumos-gate/usr/src/uts/common/os/kmem.c (revision d7db73d165ff4802d277d375e93877471457fed7)
17c478bd9Sstevel@tonic-gate /*
27c478bd9Sstevel@tonic-gate  * CDDL HEADER START
37c478bd9Sstevel@tonic-gate  *
47c478bd9Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
57d692464Sdp  * Common Development and Distribution License (the "License").
67d692464Sdp  * You may not use this file except in compliance with the License.
77c478bd9Sstevel@tonic-gate  *
87c478bd9Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97c478bd9Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
107c478bd9Sstevel@tonic-gate  * See the License for the specific language governing permissions
117c478bd9Sstevel@tonic-gate  * and limitations under the License.
127c478bd9Sstevel@tonic-gate  *
137c478bd9Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
147c478bd9Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157c478bd9Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
167c478bd9Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
177c478bd9Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
187c478bd9Sstevel@tonic-gate  *
197c478bd9Sstevel@tonic-gate  * CDDL HEADER END
207c478bd9Sstevel@tonic-gate  */
217c478bd9Sstevel@tonic-gate /*
22b942e89bSDavid Valin  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23929d5b43SMatthew Ahrens  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
240c833d64SJosef 'Jeff' Sipek  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
257c478bd9Sstevel@tonic-gate  */
267c478bd9Sstevel@tonic-gate 
277c478bd9Sstevel@tonic-gate /*
28b5fca8f8Stomee  * Kernel memory allocator, as described in the following two papers and a
29b5fca8f8Stomee  * statement about the consolidator:
307c478bd9Sstevel@tonic-gate  *
317c478bd9Sstevel@tonic-gate  * Jeff Bonwick,
327c478bd9Sstevel@tonic-gate  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
337c478bd9Sstevel@tonic-gate  * Proceedings of the Summer 1994 Usenix Conference.
347c478bd9Sstevel@tonic-gate  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
357c478bd9Sstevel@tonic-gate  *
367c478bd9Sstevel@tonic-gate  * Jeff Bonwick and Jonathan Adams,
377c478bd9Sstevel@tonic-gate  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
387c478bd9Sstevel@tonic-gate  * Arbitrary Resources.
397c478bd9Sstevel@tonic-gate  * Proceedings of the 2001 Usenix Conference.
407c478bd9Sstevel@tonic-gate  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
41b5fca8f8Stomee  *
42b5fca8f8Stomee  * kmem Slab Consolidator Big Theory Statement:
43b5fca8f8Stomee  *
44b5fca8f8Stomee  * 1. Motivation
45b5fca8f8Stomee  *
46b5fca8f8Stomee  * As stated in Bonwick94, slabs provide the following advantages over other
47b5fca8f8Stomee  * allocation structures in terms of memory fragmentation:
48b5fca8f8Stomee  *
49b5fca8f8Stomee  *  - Internal fragmentation (per-buffer wasted space) is minimal.
50b5fca8f8Stomee  *  - Severe external fragmentation (unused buffers on the free list) is
51b5fca8f8Stomee  *    unlikely.
52b5fca8f8Stomee  *
53b5fca8f8Stomee  * Segregating objects by size eliminates one source of external fragmentation,
54b5fca8f8Stomee  * and according to Bonwick:
55b5fca8f8Stomee  *
56b5fca8f8Stomee  *   The other reason that slabs reduce external fragmentation is that all
57b5fca8f8Stomee  *   objects in a slab are of the same type, so they have the same lifetime
58b5fca8f8Stomee  *   distribution. The resulting segregation of short-lived and long-lived
59b5fca8f8Stomee  *   objects at slab granularity reduces the likelihood of an entire page being
60b5fca8f8Stomee  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
61b5fca8f8Stomee  *
62b5fca8f8Stomee  * While unlikely, severe external fragmentation remains possible. Clients that
63b5fca8f8Stomee  * allocate both short- and long-lived objects from the same cache cannot
64b5fca8f8Stomee  * anticipate the distribution of long-lived objects within the allocator's slab
65b5fca8f8Stomee  * implementation. Even a small percentage of long-lived objects distributed
66b5fca8f8Stomee  * randomly across many slabs can lead to a worst case scenario where the client
67b5fca8f8Stomee  * frees the majority of its objects and the system gets back almost none of the
68b5fca8f8Stomee  * slabs. Despite the client doing what it reasonably can to help the system
69b5fca8f8Stomee  * reclaim memory, the allocator cannot shake free enough slabs because of
70b5fca8f8Stomee  * lonely allocations stubbornly hanging on. Although the allocator is in a
71b5fca8f8Stomee  * position to diagnose the fragmentation, there is nothing that the allocator
72b5fca8f8Stomee  * by itself can do about it. It only takes a single allocated object to prevent
73b5fca8f8Stomee  * an entire slab from being reclaimed, and any object handed out by
74b5fca8f8Stomee  * kmem_cache_alloc() is by definition in the client's control. Conversely,
75b5fca8f8Stomee  * although the client is in a position to move a long-lived object, it has no
76b5fca8f8Stomee  * way of knowing if the object is causing fragmentation, and if so, where to
77b5fca8f8Stomee  * move it. A solution necessarily requires further cooperation between the
78b5fca8f8Stomee  * allocator and the client.
79b5fca8f8Stomee  *
80b5fca8f8Stomee  * 2. Move Callback
81b5fca8f8Stomee  *
82b5fca8f8Stomee  * The kmem slab consolidator therefore adds a move callback to the
83b5fca8f8Stomee  * allocator/client interface, improving worst-case external fragmentation in
84b5fca8f8Stomee  * kmem caches that supply a function to move objects from one memory location
85b5fca8f8Stomee  * to another. In a situation of low memory kmem attempts to consolidate all of
86b5fca8f8Stomee  * a cache's slabs at once; otherwise it works slowly to bring external
87b5fca8f8Stomee  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
88b5fca8f8Stomee  * thereby helping to avoid a low memory situation in the future.
89b5fca8f8Stomee  *
90b5fca8f8Stomee  * The callback has the following signature:
91b5fca8f8Stomee  *
92b5fca8f8Stomee  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
93b5fca8f8Stomee  *
94b5fca8f8Stomee  * It supplies the kmem client with two addresses: the allocated object that
95b5fca8f8Stomee  * kmem wants to move and a buffer selected by kmem for the client to use as the
96b5fca8f8Stomee  * copy destination. The callback is kmem's way of saying "Please get off of
97b5fca8f8Stomee  * this buffer and use this one instead." kmem knows where it wants to move the
98b5fca8f8Stomee  * object in order to best reduce fragmentation. All the client needs to know
99b5fca8f8Stomee  * about the second argument (void *new) is that it is an allocated, constructed
100b5fca8f8Stomee  * object ready to take the contents of the old object. When the move function
101b5fca8f8Stomee  * is called, the system is likely to be low on memory, and the new object
102b5fca8f8Stomee  * spares the client from having to worry about allocating memory for the
103b5fca8f8Stomee  * requested move. The third argument supplies the size of the object, in case a
104b5fca8f8Stomee  * single move function handles multiple caches whose objects differ only in
105b5fca8f8Stomee  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
106b5fca8f8Stomee  * user argument passed to the constructor, destructor, and reclaim functions is
107b5fca8f8Stomee  * also passed to the move callback.
108b5fca8f8Stomee  *
109b5fca8f8Stomee  * 2.1 Setting the Move Callback
110b5fca8f8Stomee  *
111b5fca8f8Stomee  * The client sets the move callback after creating the cache and before
112b5fca8f8Stomee  * allocating from it:
113b5fca8f8Stomee  *
114b5fca8f8Stomee  *	object_cache = kmem_cache_create(...);
115b5fca8f8Stomee  *      kmem_cache_set_move(object_cache, object_move);
116b5fca8f8Stomee  *
117b5fca8f8Stomee  * 2.2 Move Callback Return Values
118b5fca8f8Stomee  *
119b5fca8f8Stomee  * Only the client knows about its own data and when is a good time to move it.
120b5fca8f8Stomee  * The client is cooperating with kmem to return unused memory to the system,
121b5fca8f8Stomee  * and kmem respectfully accepts this help at the client's convenience. When
122b5fca8f8Stomee  * asked to move an object, the client can respond with any of the following:
123b5fca8f8Stomee  *
124b5fca8f8Stomee  *   typedef enum kmem_cbrc {
125b5fca8f8Stomee  *           KMEM_CBRC_YES,
126b5fca8f8Stomee  *           KMEM_CBRC_NO,
127b5fca8f8Stomee  *           KMEM_CBRC_LATER,
128b5fca8f8Stomee  *           KMEM_CBRC_DONT_NEED,
129b5fca8f8Stomee  *           KMEM_CBRC_DONT_KNOW
130b5fca8f8Stomee  *   } kmem_cbrc_t;
131b5fca8f8Stomee  *
132b5fca8f8Stomee  * The client must not explicitly kmem_cache_free() either of the objects passed
133b5fca8f8Stomee  * to the callback, since kmem wants to free them directly to the slab layer
134b5fca8f8Stomee  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
135b5fca8f8Stomee  * objects to free:
136b5fca8f8Stomee  *
137b5fca8f8Stomee  *       YES: (Did it) The client moved the object, so kmem frees the old one.
138b5fca8f8Stomee  *        NO: (Never) The client refused, so kmem frees the new object (the
139b5fca8f8Stomee  *            unused copy destination). kmem also marks the slab of the old
140b5fca8f8Stomee  *            object so as not to bother the client with further callbacks for
141b5fca8f8Stomee  *            that object as long as the slab remains on the partial slab list.
142b5fca8f8Stomee  *            (The system won't be getting the slab back as long as the
143b5fca8f8Stomee  *            immovable object holds it hostage, so there's no point in moving
144b5fca8f8Stomee  *            any of its objects.)
145b5fca8f8Stomee  *     LATER: The client is using the object and cannot move it now, so kmem
146b5fca8f8Stomee  *            frees the new object (the unused copy destination). kmem still
147b5fca8f8Stomee  *            attempts to move other objects off the slab, since it expects to
148b5fca8f8Stomee  *            succeed in clearing the slab in a later callback. The client
149b5fca8f8Stomee  *            should use LATER instead of NO if the object is likely to become
150b5fca8f8Stomee  *            movable very soon.
151b5fca8f8Stomee  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
152b5fca8f8Stomee  *            with the new object (the unused copy destination). This response
153b5fca8f8Stomee  *            is the client's opportunity to be a model citizen and give back as
154b5fca8f8Stomee  *            much as it can.
155b5fca8f8Stomee  * DONT_KNOW: The client does not know about the object because
156b5fca8f8Stomee  *            a) the client has just allocated the object and not yet put it
157b5fca8f8Stomee  *               wherever it expects to find known objects
158b5fca8f8Stomee  *            b) the client has removed the object from wherever it expects to
159b5fca8f8Stomee  *               find known objects and is about to free it, or
160b5fca8f8Stomee  *            c) the client has freed the object.
161b5fca8f8Stomee  *            In all these cases (a, b, and c) kmem frees the new object (the
162*d7db73d1SBryan Cantrill  *            unused copy destination).  In the first case, the object is in
163*d7db73d1SBryan Cantrill  *            use and the correct action is that for LATER; in the latter two
164*d7db73d1SBryan Cantrill  *            cases, we know that the object is either freed or about to be
165*d7db73d1SBryan Cantrill  *            freed, in which case it is either already in a magazine or about
166*d7db73d1SBryan Cantrill  *            to be in one.  In these cases, we know that the object will either
167*d7db73d1SBryan Cantrill  *            be reallocated and reused, or it will end up in a full magazine
168*d7db73d1SBryan Cantrill  *            that will be reaped (thereby liberating the slab).  Because it
169*d7db73d1SBryan Cantrill  *            is prohibitively expensive to differentiate these cases, and
170*d7db73d1SBryan Cantrill  *            because the defrag code is executed when we're low on memory
171*d7db73d1SBryan Cantrill  *            (thereby biasing the system to reclaim full magazines) we treat
172*d7db73d1SBryan Cantrill  *            all DONT_KNOW cases as LATER and rely on cache reaping to
173*d7db73d1SBryan Cantrill  *            generally clean up full magazines.  While we take the same action
174*d7db73d1SBryan Cantrill  *            for these cases, we maintain their semantic distinction:  if
175*d7db73d1SBryan Cantrill  *            defragmentation is not occurring, it is useful to know if this
176*d7db73d1SBryan Cantrill  *            is due to objects in use (LATER) or objects in an unknown state
177*d7db73d1SBryan Cantrill  *            of transition (DONT_KNOW).
178b5fca8f8Stomee  *
179b5fca8f8Stomee  * 2.3 Object States
180b5fca8f8Stomee  *
181b5fca8f8Stomee  * Neither kmem nor the client can be assumed to know the object's whereabouts
182b5fca8f8Stomee  * at the time of the callback. An object belonging to a kmem cache may be in
183b5fca8f8Stomee  * any of the following states:
184b5fca8f8Stomee  *
185b5fca8f8Stomee  * 1. Uninitialized on the slab
186b5fca8f8Stomee  * 2. Allocated from the slab but not constructed (still uninitialized)
187b5fca8f8Stomee  * 3. Allocated from the slab, constructed, but not yet ready for business
188b5fca8f8Stomee  *    (not in a valid state for the move callback)
189b5fca8f8Stomee  * 4. In use (valid and known to the client)
190b5fca8f8Stomee  * 5. About to be freed (no longer in a valid state for the move callback)
191b5fca8f8Stomee  * 6. Freed to a magazine (still constructed)
192b5fca8f8Stomee  * 7. Allocated from a magazine, not yet ready for business (not in a valid
193b5fca8f8Stomee  *    state for the move callback), and about to return to state #4
194b5fca8f8Stomee  * 8. Deconstructed on a magazine that is about to be freed
195b5fca8f8Stomee  * 9. Freed to the slab
196b5fca8f8Stomee  *
197b5fca8f8Stomee  * Since the move callback may be called at any time while the object is in any
198b5fca8f8Stomee  * of the above states (except state #1), the client needs a safe way to
199b5fca8f8Stomee  * determine whether or not it knows about the object. Specifically, the client
200b5fca8f8Stomee  * needs to know whether or not the object is in state #4, the only state in
201b5fca8f8Stomee  * which a move is valid. If the object is in any other state, the client should
202b5fca8f8Stomee  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
203b5fca8f8Stomee  * the object's fields.
204b5fca8f8Stomee  *
205b5fca8f8Stomee  * Note that although an object may be in state #4 when kmem initiates the move
206b5fca8f8Stomee  * request, the object may no longer be in that state by the time kmem actually
207b5fca8f8Stomee  * calls the move function. Not only does the client free objects
208b5fca8f8Stomee  * asynchronously, kmem itself puts move requests on a queue where thay are
209b5fca8f8Stomee  * pending until kmem processes them from another context. Also, objects freed
210b5fca8f8Stomee  * to a magazine appear allocated from the point of view of the slab layer, so
211b5fca8f8Stomee  * kmem may even initiate requests for objects in a state other than state #4.
212b5fca8f8Stomee  *
213b5fca8f8Stomee  * 2.3.1 Magazine Layer
214b5fca8f8Stomee  *
215b5fca8f8Stomee  * An important insight revealed by the states listed above is that the magazine
216b5fca8f8Stomee  * layer is populated only by kmem_cache_free(). Magazines of constructed
217b5fca8f8Stomee  * objects are never populated directly from the slab layer (which contains raw,
218b5fca8f8Stomee  * unconstructed objects). Whenever an allocation request cannot be satisfied
219b5fca8f8Stomee  * from the magazine layer, the magazines are bypassed and the request is
220b5fca8f8Stomee  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
221b5fca8f8Stomee  * the object constructor only when allocating from the slab layer, and only in
222b5fca8f8Stomee  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
223b5fca8f8Stomee  * the move callback. kmem does not preconstruct objects in anticipation of
224b5fca8f8Stomee  * kmem_cache_alloc().
225b5fca8f8Stomee  *
226b5fca8f8Stomee  * 2.3.2 Object Constructor and Destructor
227b5fca8f8Stomee  *
228b5fca8f8Stomee  * If the client supplies a destructor, it must be valid to call the destructor
229b5fca8f8Stomee  * on a newly created object (immediately after the constructor).
230b5fca8f8Stomee  *
231b5fca8f8Stomee  * 2.4 Recognizing Known Objects
232b5fca8f8Stomee  *
233b5fca8f8Stomee  * There is a simple test to determine safely whether or not the client knows
234b5fca8f8Stomee  * about a given object in the move callback. It relies on the fact that kmem
235b5fca8f8Stomee  * guarantees that the object of the move callback has only been touched by the
236b5fca8f8Stomee  * client itself or else by kmem. kmem does this by ensuring that none of the
237b5fca8f8Stomee  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
238b5fca8f8Stomee  * callback is pending. When the last object on a slab is freed, if there is a
239b5fca8f8Stomee  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
240b5fca8f8Stomee  * slabs on that list until all pending callbacks are completed. That way,
241b5fca8f8Stomee  * clients can be certain that the object of a move callback is in one of the
242b5fca8f8Stomee  * states listed above, making it possible to distinguish known objects (in
243b5fca8f8Stomee  * state #4) using the two low order bits of any pointer member (with the
244b5fca8f8Stomee  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
245b5fca8f8Stomee  * platforms).
246b5fca8f8Stomee  *
247b5fca8f8Stomee  * The test works as long as the client always transitions objects from state #4
248b5fca8f8Stomee  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
249b5fca8f8Stomee  * order bit of the client-designated pointer member. Since kmem only writes
250b5fca8f8Stomee  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
251b5fca8f8Stomee  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
252b5fca8f8Stomee  * guaranteed to set at least one of the two low order bits. Therefore, given an
253b5fca8f8Stomee  * object with a back pointer to a 'container_t *o_container', the client can
254b5fca8f8Stomee  * test
255b5fca8f8Stomee  *
256b5fca8f8Stomee  *      container_t *container = object->o_container;
257b5fca8f8Stomee  *      if ((uintptr_t)container & 0x3) {
258b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
259b5fca8f8Stomee  *      }
260b5fca8f8Stomee  *
261b5fca8f8Stomee  * Typically, an object will have a pointer to some structure with a list or
262b5fca8f8Stomee  * hash where objects from the cache are kept while in use. Assuming that the
263b5fca8f8Stomee  * client has some way of knowing that the container structure is valid and will
264b5fca8f8Stomee  * not go away during the move, and assuming that the structure includes a lock
265b5fca8f8Stomee  * to protect whatever collection is used, then the client would continue as
266b5fca8f8Stomee  * follows:
267b5fca8f8Stomee  *
268b5fca8f8Stomee  *	// Ensure that the container structure does not go away.
269b5fca8f8Stomee  *      if (container_hold(container) == 0) {
270b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
271b5fca8f8Stomee  *      }
272b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
273b5fca8f8Stomee  *      if (container != object->o_container) {
274b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
275b5fca8f8Stomee  *              container_rele(container);
276b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
277b5fca8f8Stomee  *      }
278b5fca8f8Stomee  *
279b5fca8f8Stomee  * At this point the client knows that the object cannot be freed as long as
280b5fca8f8Stomee  * c_objects_lock is held. Note that after acquiring the lock, the client must
281b5fca8f8Stomee  * recheck the o_container pointer in case the object was removed just before
282b5fca8f8Stomee  * acquiring the lock.
283b5fca8f8Stomee  *
284b5fca8f8Stomee  * When the client is about to free an object, it must first remove that object
285b5fca8f8Stomee  * from the list, hash, or other structure where it is kept. At that time, to
286b5fca8f8Stomee  * mark the object so it can be distinguished from the remaining, known objects,
287b5fca8f8Stomee  * the client sets the designated low order bit:
288b5fca8f8Stomee  *
289b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
290b5fca8f8Stomee  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
291b5fca8f8Stomee  *      list_remove(&container->c_objects, object);
292b5fca8f8Stomee  *      mutex_exit(&container->c_objects_lock);
293b5fca8f8Stomee  *
294b5fca8f8Stomee  * In the common case, the object is freed to the magazine layer, where it may
295b5fca8f8Stomee  * be reused on a subsequent allocation without the overhead of calling the
296b5fca8f8Stomee  * constructor. While in the magazine it appears allocated from the point of
297b5fca8f8Stomee  * view of the slab layer, making it a candidate for the move callback. Most
298b5fca8f8Stomee  * objects unrecognized by the client in the move callback fall into this
299b5fca8f8Stomee  * category and are cheaply distinguished from known objects by the test
300*d7db73d1SBryan Cantrill  * described earlier. Because searching magazines is prohibitively expensive
301*d7db73d1SBryan Cantrill  * for kmem, clients that do not mark freed objects (and therefore return
302*d7db73d1SBryan Cantrill  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
303*d7db73d1SBryan Cantrill  * efficacy reduced.
304b5fca8f8Stomee  *
305b5fca8f8Stomee  * Invalidating the designated pointer member before freeing the object marks
306b5fca8f8Stomee  * the object to be avoided in the callback, and conversely, assigning a valid
307b5fca8f8Stomee  * value to the designated pointer member after allocating the object makes the
308b5fca8f8Stomee  * object fair game for the callback:
309b5fca8f8Stomee  *
310b5fca8f8Stomee  *      ... allocate object ...
311b5fca8f8Stomee  *      ... set any initial state not set by the constructor ...
312b5fca8f8Stomee  *
313b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
314b5fca8f8Stomee  *      list_insert_tail(&container->c_objects, object);
315b5fca8f8Stomee  *      membar_producer();
316b5fca8f8Stomee  *      object->o_container = container;
317b5fca8f8Stomee  *      mutex_exit(&container->c_objects_lock);
318b5fca8f8Stomee  *
319b5fca8f8Stomee  * Note that everything else must be valid before setting o_container makes the
320b5fca8f8Stomee  * object fair game for the move callback. The membar_producer() call ensures
321b5fca8f8Stomee  * that all the object's state is written to memory before setting the pointer
322b5fca8f8Stomee  * that transitions the object from state #3 or #7 (allocated, constructed, not
323b5fca8f8Stomee  * yet in use) to state #4 (in use, valid). That's important because the move
324b5fca8f8Stomee  * function has to check the validity of the pointer before it can safely
325b5fca8f8Stomee  * acquire the lock protecting the collection where it expects to find known
326b5fca8f8Stomee  * objects.
327b5fca8f8Stomee  *
328b5fca8f8Stomee  * This method of distinguishing known objects observes the usual symmetry:
329b5fca8f8Stomee  * invalidating the designated pointer is the first thing the client does before
330b5fca8f8Stomee  * freeing the object, and setting the designated pointer is the last thing the
331b5fca8f8Stomee  * client does after allocating the object. Of course, the client is not
332b5fca8f8Stomee  * required to use this method. Fundamentally, how the client recognizes known
333b5fca8f8Stomee  * objects is completely up to the client, but this method is recommended as an
334b5fca8f8Stomee  * efficient and safe way to take advantage of the guarantees made by kmem. If
335b5fca8f8Stomee  * the entire object is arbitrary data without any markable bits from a suitable
336b5fca8f8Stomee  * pointer member, then the client must find some other method, such as
337b5fca8f8Stomee  * searching a hash table of known objects.
338b5fca8f8Stomee  *
339b5fca8f8Stomee  * 2.5 Preventing Objects From Moving
340b5fca8f8Stomee  *
341b5fca8f8Stomee  * Besides a way to distinguish known objects, the other thing that the client
342b5fca8f8Stomee  * needs is a strategy to ensure that an object will not move while the client
343b5fca8f8Stomee  * is actively using it. The details of satisfying this requirement tend to be
344b5fca8f8Stomee  * highly cache-specific. It might seem that the same rules that let a client
345b5fca8f8Stomee  * remove an object safely should also decide when an object can be moved
346b5fca8f8Stomee  * safely. However, any object state that makes a removal attempt invalid is
347b5fca8f8Stomee  * likely to be long-lasting for objects that the client does not expect to
348b5fca8f8Stomee  * remove. kmem knows nothing about the object state and is equally likely (from
349b5fca8f8Stomee  * the client's point of view) to request a move for any object in the cache,
350b5fca8f8Stomee  * whether prepared for removal or not. Even a low percentage of objects stuck
351b5fca8f8Stomee  * in place by unremovability will defeat the consolidator if the stuck objects
352b5fca8f8Stomee  * are the same long-lived allocations likely to hold slabs hostage.
353b5fca8f8Stomee  * Fundamentally, the consolidator is not aimed at common cases. Severe external
354b5fca8f8Stomee  * fragmentation is a worst case scenario manifested as sparsely allocated
355b5fca8f8Stomee  * slabs, by definition a low percentage of the cache's objects. When deciding
356b5fca8f8Stomee  * what makes an object movable, keep in mind the goal of the consolidator: to
357b5fca8f8Stomee  * bring worst-case external fragmentation within the limits guaranteed for
358b5fca8f8Stomee  * internal fragmentation. Removability is a poor criterion if it is likely to
359b5fca8f8Stomee  * exclude more than an insignificant percentage of objects for long periods of
360b5fca8f8Stomee  * time.
361b5fca8f8Stomee  *
362b5fca8f8Stomee  * A tricky general solution exists, and it has the advantage of letting you
363b5fca8f8Stomee  * move any object at almost any moment, practically eliminating the likelihood
364b5fca8f8Stomee  * that an object can hold a slab hostage. However, if there is a cache-specific
365b5fca8f8Stomee  * way to ensure that an object is not actively in use in the vast majority of
366b5fca8f8Stomee  * cases, a simpler solution that leverages this cache-specific knowledge is
367b5fca8f8Stomee  * preferred.
368b5fca8f8Stomee  *
369b5fca8f8Stomee  * 2.5.1 Cache-Specific Solution
370b5fca8f8Stomee  *
371b5fca8f8Stomee  * As an example of a cache-specific solution, the ZFS znode cache takes
372b5fca8f8Stomee  * advantage of the fact that the vast majority of znodes are only being
373b5fca8f8Stomee  * referenced from the DNLC. (A typical case might be a few hundred in active
374b5fca8f8Stomee  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
375b5fca8f8Stomee  * client has established that it recognizes the znode and can access its fields
376b5fca8f8Stomee  * safely (using the method described earlier), it then tests whether the znode
377b5fca8f8Stomee  * is referenced by anything other than the DNLC. If so, it assumes that the
378b5fca8f8Stomee  * znode may be in active use and is unsafe to move, so it drops its locks and
379b5fca8f8Stomee  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
380b5fca8f8Stomee  * else znodes are used, no change is needed to protect against the possibility
381b5fca8f8Stomee  * of the znode moving. The disadvantage is that it remains possible for an
382b5fca8f8Stomee  * application to hold a znode slab hostage with an open file descriptor.
383b5fca8f8Stomee  * However, this case ought to be rare and the consolidator has a way to deal
384b5fca8f8Stomee  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
385b5fca8f8Stomee  * object, kmem eventually stops believing it and treats the slab as if the
386b5fca8f8Stomee  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
387b5fca8f8Stomee  * then focus on getting it off of the partial slab list by allocating rather
388b5fca8f8Stomee  * than freeing all of its objects. (Either way of getting a slab off the
389b5fca8f8Stomee  * free list reduces fragmentation.)
390b5fca8f8Stomee  *
391b5fca8f8Stomee  * 2.5.2 General Solution
392b5fca8f8Stomee  *
393b5fca8f8Stomee  * The general solution, on the other hand, requires an explicit hold everywhere
394b5fca8f8Stomee  * the object is used to prevent it from moving. To keep the client locking
395b5fca8f8Stomee  * strategy as uncomplicated as possible, kmem guarantees the simplifying
396b5fca8f8Stomee  * assumption that move callbacks are sequential, even across multiple caches.
397b5fca8f8Stomee  * Internally, a global queue processed by a single thread supports all caches
398b5fca8f8Stomee  * implementing the callback function. No matter how many caches supply a move
399b5fca8f8Stomee  * function, the consolidator never moves more than one object at a time, so the
400b5fca8f8Stomee  * client does not have to worry about tricky lock ordering involving several
401b5fca8f8Stomee  * related objects from different kmem caches.
402b5fca8f8Stomee  *
403b5fca8f8Stomee  * The general solution implements the explicit hold as a read-write lock, which
404b5fca8f8Stomee  * allows multiple readers to access an object from the cache simultaneously
405b5fca8f8Stomee  * while a single writer is excluded from moving it. A single rwlock for the
406b5fca8f8Stomee  * entire cache would lock out all threads from using any of the cache's objects
407b5fca8f8Stomee  * even though only a single object is being moved, so to reduce contention,
408b5fca8f8Stomee  * the client can fan out the single rwlock into an array of rwlocks hashed by
409b5fca8f8Stomee  * the object address, making it probable that moving one object will not
410b5fca8f8Stomee  * prevent other threads from using a different object. The rwlock cannot be a
411b5fca8f8Stomee  * member of the object itself, because the possibility of the object moving
412b5fca8f8Stomee  * makes it unsafe to access any of the object's fields until the lock is
413b5fca8f8Stomee  * acquired.
414b5fca8f8Stomee  *
415b5fca8f8Stomee  * Assuming a small, fixed number of locks, it's possible that multiple objects
416b5fca8f8Stomee  * will hash to the same lock. A thread that needs to use multiple objects in
417b5fca8f8Stomee  * the same function may acquire the same lock multiple times. Since rwlocks are
418b5fca8f8Stomee  * reentrant for readers, and since there is never more than a single writer at
419b5fca8f8Stomee  * a time (assuming that the client acquires the lock as a writer only when
420b5fca8f8Stomee  * moving an object inside the callback), there would seem to be no problem.
421b5fca8f8Stomee  * However, a client locking multiple objects in the same function must handle
422b5fca8f8Stomee  * one case of potential deadlock: Assume that thread A needs to prevent both
423b5fca8f8Stomee  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
424b5fca8f8Stomee  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
425b5fca8f8Stomee  * same lock, that thread A will acquire the lock for object 1 as a reader
426b5fca8f8Stomee  * before thread B sets the lock's write-wanted bit, preventing thread A from
427b5fca8f8Stomee  * reacquiring the lock for object 2 as a reader. Unable to make forward
428b5fca8f8Stomee  * progress, thread A will never release the lock for object 1, resulting in
429b5fca8f8Stomee  * deadlock.
430b5fca8f8Stomee  *
431b5fca8f8Stomee  * There are two ways of avoiding the deadlock just described. The first is to
432b5fca8f8Stomee  * use rw_tryenter() rather than rw_enter() in the callback function when
433b5fca8f8Stomee  * attempting to acquire the lock as a writer. If tryenter discovers that the
434b5fca8f8Stomee  * same object (or another object hashed to the same lock) is already in use, it
435b5fca8f8Stomee  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
436b5fca8f8Stomee  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
437b5fca8f8Stomee  * since it allows a thread to acquire the lock as a reader in spite of a
438b5fca8f8Stomee  * waiting writer. This second approach insists on moving the object now, no
439b5fca8f8Stomee  * matter how many readers the move function must wait for in order to do so,
440b5fca8f8Stomee  * and could delay the completion of the callback indefinitely (blocking
441b5fca8f8Stomee  * callbacks to other clients). In practice, a less insistent callback using
442b5fca8f8Stomee  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
443b5fca8f8Stomee  * little reason to use anything else.
444b5fca8f8Stomee  *
445b5fca8f8Stomee  * Avoiding deadlock is not the only problem that an implementation using an
446b5fca8f8Stomee  * explicit hold needs to solve. Locking the object in the first place (to
447b5fca8f8Stomee  * prevent it from moving) remains a problem, since the object could move
448b5fca8f8Stomee  * between the time you obtain a pointer to the object and the time you acquire
449b5fca8f8Stomee  * the rwlock hashed to that pointer value. Therefore the client needs to
450b5fca8f8Stomee  * recheck the value of the pointer after acquiring the lock, drop the lock if
451b5fca8f8Stomee  * the value has changed, and try again. This requires a level of indirection:
452b5fca8f8Stomee  * something that points to the object rather than the object itself, that the
453b5fca8f8Stomee  * client can access safely while attempting to acquire the lock. (The object
454b5fca8f8Stomee  * itself cannot be referenced safely because it can move at any time.)
455b5fca8f8Stomee  * The following lock-acquisition function takes whatever is safe to reference
456b5fca8f8Stomee  * (arg), follows its pointer to the object (using function f), and tries as
457b5fca8f8Stomee  * often as necessary to acquire the hashed lock and verify that the object
458b5fca8f8Stomee  * still has not moved:
459b5fca8f8Stomee  *
460b5fca8f8Stomee  *      object_t *
461b5fca8f8Stomee  *      object_hold(object_f f, void *arg)
462b5fca8f8Stomee  *      {
463b5fca8f8Stomee  *              object_t *op;
464b5fca8f8Stomee  *
465b5fca8f8Stomee  *              op = f(arg);
466b5fca8f8Stomee  *              if (op == NULL) {
467b5fca8f8Stomee  *                      return (NULL);
468b5fca8f8Stomee  *              }
469b5fca8f8Stomee  *
470b5fca8f8Stomee  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
471b5fca8f8Stomee  *              while (op != f(arg)) {
472b5fca8f8Stomee  *                      rw_exit(OBJECT_RWLOCK(op));
473b5fca8f8Stomee  *                      op = f(arg);
474b5fca8f8Stomee  *                      if (op == NULL) {
475b5fca8f8Stomee  *                              break;
476b5fca8f8Stomee  *                      }
477b5fca8f8Stomee  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
478b5fca8f8Stomee  *              }
479b5fca8f8Stomee  *
480b5fca8f8Stomee  *              return (op);
481b5fca8f8Stomee  *      }
482b5fca8f8Stomee  *
483b5fca8f8Stomee  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
484b5fca8f8Stomee  * lock reacquisition loop, while necessary, almost never executes. The function
485b5fca8f8Stomee  * pointer f (used to obtain the object pointer from arg) has the following type
486b5fca8f8Stomee  * definition:
487b5fca8f8Stomee  *
488b5fca8f8Stomee  *      typedef object_t *(*object_f)(void *arg);
489b5fca8f8Stomee  *
490b5fca8f8Stomee  * An object_f implementation is likely to be as simple as accessing a structure
491b5fca8f8Stomee  * member:
492b5fca8f8Stomee  *
493b5fca8f8Stomee  *      object_t *
494b5fca8f8Stomee  *      s_object(void *arg)
495b5fca8f8Stomee  *      {
496b5fca8f8Stomee  *              something_t *sp = arg;
497b5fca8f8Stomee  *              return (sp->s_object);
498b5fca8f8Stomee  *      }
499b5fca8f8Stomee  *
500b5fca8f8Stomee  * The flexibility of a function pointer allows the path to the object to be
501b5fca8f8Stomee  * arbitrarily complex and also supports the notion that depending on where you
502b5fca8f8Stomee  * are using the object, you may need to get it from someplace different.
503b5fca8f8Stomee  *
504b5fca8f8Stomee  * The function that releases the explicit hold is simpler because it does not
505b5fca8f8Stomee  * have to worry about the object moving:
506b5fca8f8Stomee  *
507b5fca8f8Stomee  *      void
508b5fca8f8Stomee  *      object_rele(object_t *op)
509b5fca8f8Stomee  *      {
510b5fca8f8Stomee  *              rw_exit(OBJECT_RWLOCK(op));
511b5fca8f8Stomee  *      }
512b5fca8f8Stomee  *
513b5fca8f8Stomee  * The caller is spared these details so that obtaining and releasing an
514b5fca8f8Stomee  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
515b5fca8f8Stomee  * of object_hold() only needs to know that the returned object pointer is valid
516b5fca8f8Stomee  * if not NULL and that the object will not move until released.
517b5fca8f8Stomee  *
518b5fca8f8Stomee  * Although object_hold() prevents an object from moving, it does not prevent it
519b5fca8f8Stomee  * from being freed. The caller must take measures before calling object_hold()
520b5fca8f8Stomee  * (afterwards is too late) to ensure that the held object cannot be freed. The
521b5fca8f8Stomee  * caller must do so without accessing the unsafe object reference, so any lock
522b5fca8f8Stomee  * or reference count used to ensure the continued existence of the object must
523b5fca8f8Stomee  * live outside the object itself.
524b5fca8f8Stomee  *
525b5fca8f8Stomee  * Obtaining a new object is a special case where an explicit hold is impossible
526b5fca8f8Stomee  * for the caller. Any function that returns a newly allocated object (either as
527b5fca8f8Stomee  * a return value, or as an in-out paramter) must return it already held; after
528b5fca8f8Stomee  * the caller gets it is too late, since the object cannot be safely accessed
529b5fca8f8Stomee  * without the level of indirection described earlier. The following
530b5fca8f8Stomee  * object_alloc() example uses the same code shown earlier to transition a new
531b5fca8f8Stomee  * object into the state of being recognized (by the client) as a known object.
532b5fca8f8Stomee  * The function must acquire the hold (rw_enter) before that state transition
533b5fca8f8Stomee  * makes the object movable:
534b5fca8f8Stomee  *
535b5fca8f8Stomee  *      static object_t *
536b5fca8f8Stomee  *      object_alloc(container_t *container)
537b5fca8f8Stomee  *      {
5384d4c4c43STom Erickson  *              object_t *object = kmem_cache_alloc(object_cache, 0);
539b5fca8f8Stomee  *              ... set any initial state not set by the constructor ...
540b5fca8f8Stomee  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
541b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
542b5fca8f8Stomee  *              list_insert_tail(&container->c_objects, object);
543b5fca8f8Stomee  *              membar_producer();
544b5fca8f8Stomee  *              object->o_container = container;
545b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
546b5fca8f8Stomee  *              return (object);
547b5fca8f8Stomee  *      }
548b5fca8f8Stomee  *
549b5fca8f8Stomee  * Functions that implicitly acquire an object hold (any function that calls
550b5fca8f8Stomee  * object_alloc() to supply an object for the caller) need to be carefully noted
551b5fca8f8Stomee  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
552b5fca8f8Stomee  * prevent all objects hashed to the affected rwlocks from ever being moved.
553b5fca8f8Stomee  *
554b5fca8f8Stomee  * The pointer to a held object can be hashed to the holding rwlock even after
555b5fca8f8Stomee  * the object has been freed. Although it is possible to release the hold
556b5fca8f8Stomee  * after freeing the object, you may decide to release the hold implicitly in
557b5fca8f8Stomee  * whatever function frees the object, so as to release the hold as soon as
558b5fca8f8Stomee  * possible, and for the sake of symmetry with the function that implicitly
559b5fca8f8Stomee  * acquires the hold when it allocates the object. Here, object_free() releases
560b5fca8f8Stomee  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
561b5fca8f8Stomee  * matching pair with object_hold():
562b5fca8f8Stomee  *
563b5fca8f8Stomee  *      void
564b5fca8f8Stomee  *      object_free(object_t *object)
565b5fca8f8Stomee  *      {
566b5fca8f8Stomee  *              container_t *container;
567b5fca8f8Stomee  *
568b5fca8f8Stomee  *              ASSERT(object_held(object));
569b5fca8f8Stomee  *              container = object->o_container;
570b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
571b5fca8f8Stomee  *              object->o_container =
572b5fca8f8Stomee  *                  (void *)((uintptr_t)object->o_container | 0x1);
573b5fca8f8Stomee  *              list_remove(&container->c_objects, object);
574b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
575b5fca8f8Stomee  *              object_rele(object);
576b5fca8f8Stomee  *              kmem_cache_free(object_cache, object);
577b5fca8f8Stomee  *      }
578b5fca8f8Stomee  *
579b5fca8f8Stomee  * Note that object_free() cannot safely accept an object pointer as an argument
580b5fca8f8Stomee  * unless the object is already held. Any function that calls object_free()
581b5fca8f8Stomee  * needs to be carefully noted since it similarly forms a matching pair with
582b5fca8f8Stomee  * object_hold().
583b5fca8f8Stomee  *
584b5fca8f8Stomee  * To complete the picture, the following callback function implements the
585b5fca8f8Stomee  * general solution by moving objects only if they are currently unheld:
586b5fca8f8Stomee  *
587b5fca8f8Stomee  *      static kmem_cbrc_t
588b5fca8f8Stomee  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
589b5fca8f8Stomee  *      {
590b5fca8f8Stomee  *              object_t *op = buf, *np = newbuf;
591b5fca8f8Stomee  *              container_t *container;
592b5fca8f8Stomee  *
593b5fca8f8Stomee  *              container = op->o_container;
594b5fca8f8Stomee  *              if ((uintptr_t)container & 0x3) {
595b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
596b5fca8f8Stomee  *              }
597b5fca8f8Stomee  *
598b5fca8f8Stomee  *	        // Ensure that the container structure does not go away.
599b5fca8f8Stomee  *              if (container_hold(container) == 0) {
600b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
601b5fca8f8Stomee  *              }
602b5fca8f8Stomee  *
603b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
604b5fca8f8Stomee  *              if (container != op->o_container) {
605b5fca8f8Stomee  *                      mutex_exit(&container->c_objects_lock);
606b5fca8f8Stomee  *                      container_rele(container);
607b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
608b5fca8f8Stomee  *              }
609b5fca8f8Stomee  *
610b5fca8f8Stomee  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
611b5fca8f8Stomee  *                      mutex_exit(&container->c_objects_lock);
612b5fca8f8Stomee  *                      container_rele(container);
613b5fca8f8Stomee  *                      return (KMEM_CBRC_LATER);
614b5fca8f8Stomee  *              }
615b5fca8f8Stomee  *
616b5fca8f8Stomee  *              object_move_impl(op, np); // critical section
617b5fca8f8Stomee  *              rw_exit(OBJECT_RWLOCK(op));
618b5fca8f8Stomee  *
619b5fca8f8Stomee  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
620b5fca8f8Stomee  *              list_link_replace(&op->o_link_node, &np->o_link_node);
621b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
622b5fca8f8Stomee  *              container_rele(container);
623b5fca8f8Stomee  *              return (KMEM_CBRC_YES);
624b5fca8f8Stomee  *      }
625b5fca8f8Stomee  *
626b5fca8f8Stomee  * Note that object_move() must invalidate the designated o_container pointer of
627b5fca8f8Stomee  * the old object in the same way that object_free() does, since kmem will free
628b5fca8f8Stomee  * the object in response to the KMEM_CBRC_YES return value.
629b5fca8f8Stomee  *
630b5fca8f8Stomee  * The lock order in object_move() differs from object_alloc(), which locks
631b5fca8f8Stomee  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
632b5fca8f8Stomee  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
633b5fca8f8Stomee  * not a problem. Holding the lock on the object list in the example above
634b5fca8f8Stomee  * through the entire callback not only prevents the object from going away, it
635b5fca8f8Stomee  * also allows you to lock the list elsewhere and know that none of its elements
636b5fca8f8Stomee  * will move during iteration.
637b5fca8f8Stomee  *
638b5fca8f8Stomee  * Adding an explicit hold everywhere an object from the cache is used is tricky
639b5fca8f8Stomee  * and involves much more change to client code than a cache-specific solution
640b5fca8f8Stomee  * that leverages existing state to decide whether or not an object is
641b5fca8f8Stomee  * movable. However, this approach has the advantage that no object remains
642b5fca8f8Stomee  * immovable for any significant length of time, making it extremely unlikely
643b5fca8f8Stomee  * that long-lived allocations can continue holding slabs hostage; and it works
644b5fca8f8Stomee  * for any cache.
645b5fca8f8Stomee  *
646b5fca8f8Stomee  * 3. Consolidator Implementation
647b5fca8f8Stomee  *
648b5fca8f8Stomee  * Once the client supplies a move function that a) recognizes known objects and
649b5fca8f8Stomee  * b) avoids moving objects that are actively in use, the remaining work is up
650b5fca8f8Stomee  * to the consolidator to decide which objects to move and when to issue
651b5fca8f8Stomee  * callbacks.
652b5fca8f8Stomee  *
653b5fca8f8Stomee  * The consolidator relies on the fact that a cache's slabs are ordered by
654b5fca8f8Stomee  * usage. Each slab has a fixed number of objects. Depending on the slab's
655b5fca8f8Stomee  * "color" (the offset of the first object from the beginning of the slab;
656b5fca8f8Stomee  * offsets are staggered to mitigate false sharing of cache lines) it is either
657b5fca8f8Stomee  * the maximum number of objects per slab determined at cache creation time or
658b5fca8f8Stomee  * else the number closest to the maximum that fits within the space remaining
659b5fca8f8Stomee  * after the initial offset. A completely allocated slab may contribute some
660b5fca8f8Stomee  * internal fragmentation (per-slab overhead) but no external fragmentation, so
661b5fca8f8Stomee  * it is of no interest to the consolidator. At the other extreme, slabs whose
662b5fca8f8Stomee  * objects have all been freed to the slab are released to the virtual memory
663b5fca8f8Stomee  * (VM) subsystem (objects freed to magazines are still allocated as far as the
664b5fca8f8Stomee  * slab is concerned). External fragmentation exists when there are slabs
665b5fca8f8Stomee  * somewhere between these extremes. A partial slab has at least one but not all
666b5fca8f8Stomee  * of its objects allocated. The more partial slabs, and the fewer allocated
667b5fca8f8Stomee  * objects on each of them, the higher the fragmentation. Hence the
668b5fca8f8Stomee  * consolidator's overall strategy is to reduce the number of partial slabs by
669b5fca8f8Stomee  * moving allocated objects from the least allocated slabs to the most allocated
670b5fca8f8Stomee  * slabs.
671b5fca8f8Stomee  *
672b5fca8f8Stomee  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
673b5fca8f8Stomee  * slabs are kept separately in an unordered list. Since the majority of slabs
674b5fca8f8Stomee  * tend to be completely allocated (a typical unfragmented cache may have
675b5fca8f8Stomee  * thousands of complete slabs and only a single partial slab), separating
676b5fca8f8Stomee  * complete slabs improves the efficiency of partial slab ordering, since the
677b5fca8f8Stomee  * complete slabs do not affect the depth or balance of the AVL tree. This
678b5fca8f8Stomee  * ordered sequence of partial slabs acts as a "free list" supplying objects for
679b5fca8f8Stomee  * allocation requests.
680b5fca8f8Stomee  *
681b5fca8f8Stomee  * Objects are always allocated from the first partial slab in the free list,
682b5fca8f8Stomee  * where the allocation is most likely to eliminate a partial slab (by
683b5fca8f8Stomee  * completely allocating it). Conversely, when a single object from a completely
684b5fca8f8Stomee  * allocated slab is freed to the slab, that slab is added to the front of the
685b5fca8f8Stomee  * free list. Since most free list activity involves highly allocated slabs
686b5fca8f8Stomee  * coming and going at the front of the list, slabs tend naturally toward the
687b5fca8f8Stomee  * ideal order: highly allocated at the front, sparsely allocated at the back.
688b5fca8f8Stomee  * Slabs with few allocated objects are likely to become completely free if they
689b5fca8f8Stomee  * keep a safe distance away from the front of the free list. Slab misorders
690b5fca8f8Stomee  * interfere with the natural tendency of slabs to become completely free or
691b5fca8f8Stomee  * completely allocated. For example, a slab with a single allocated object
692b5fca8f8Stomee  * needs only a single free to escape the cache; its natural desire is
693b5fca8f8Stomee  * frustrated when it finds itself at the front of the list where a second
694b5fca8f8Stomee  * allocation happens just before the free could have released it. Another slab
695b5fca8f8Stomee  * with all but one object allocated might have supplied the buffer instead, so
696b5fca8f8Stomee  * that both (as opposed to neither) of the slabs would have been taken off the
697b5fca8f8Stomee  * free list.
698b5fca8f8Stomee  *
699b5fca8f8Stomee  * Although slabs tend naturally toward the ideal order, misorders allowed by a
700b5fca8f8Stomee  * simple list implementation defeat the consolidator's strategy of merging
701b5fca8f8Stomee  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
702b5fca8f8Stomee  * needs another way to fix misorders to optimize its callback strategy. One
703b5fca8f8Stomee  * approach is to periodically scan a limited number of slabs, advancing a
704b5fca8f8Stomee  * marker to hold the current scan position, and to move extreme misorders to
705b5fca8f8Stomee  * the front or back of the free list and to the front or back of the current
706b5fca8f8Stomee  * scan range. By making consecutive scan ranges overlap by one slab, the least
707b5fca8f8Stomee  * allocated slab in the current range can be carried along from the end of one
708b5fca8f8Stomee  * scan to the start of the next.
709b5fca8f8Stomee  *
710b5fca8f8Stomee  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
711b5fca8f8Stomee  * task, however. Since most of the cache's activity is in the magazine layer,
712b5fca8f8Stomee  * and allocations from the slab layer represent only a startup cost, the
713b5fca8f8Stomee  * overhead of maintaining a balanced tree is not a significant concern compared
714b5fca8f8Stomee  * to the opportunity of reducing complexity by eliminating the partial slab
715b5fca8f8Stomee  * scanner just described. The overhead of an AVL tree is minimized by
716b5fca8f8Stomee  * maintaining only partial slabs in the tree and keeping completely allocated
717b5fca8f8Stomee  * slabs separately in a list. To avoid increasing the size of the slab
718b5fca8f8Stomee  * structure the AVL linkage pointers are reused for the slab's list linkage,
719b5fca8f8Stomee  * since the slab will always be either partial or complete, never stored both
720b5fca8f8Stomee  * ways at the same time. To further minimize the overhead of the AVL tree the
721b5fca8f8Stomee  * compare function that orders partial slabs by usage divides the range of
722b5fca8f8Stomee  * allocated object counts into bins such that counts within the same bin are
723b5fca8f8Stomee  * considered equal. Binning partial slabs makes it less likely that allocating
724b5fca8f8Stomee  * or freeing a single object will change the slab's order, requiring a tree
725b5fca8f8Stomee  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
726b5fca8f8Stomee  * requiring some rebalancing of the tree). Allocation counts closest to
727b5fca8f8Stomee  * completely free and completely allocated are left unbinned (finely sorted) to
728b5fca8f8Stomee  * better support the consolidator's strategy of merging slabs at either
729b5fca8f8Stomee  * extreme.
730b5fca8f8Stomee  *
731b5fca8f8Stomee  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
732b5fca8f8Stomee  *
733b5fca8f8Stomee  * The consolidator piggybacks on the kmem maintenance thread and is called on
734b5fca8f8Stomee  * the same interval as kmem_cache_update(), once per cache every fifteen
735b5fca8f8Stomee  * seconds. kmem maintains a running count of unallocated objects in the slab
736b5fca8f8Stomee  * layer (cache_bufslab). The consolidator checks whether that number exceeds
737b5fca8f8Stomee  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
738b5fca8f8Stomee  * there is a significant number of slabs in the cache (arbitrarily a minimum
739b5fca8f8Stomee  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
740b5fca8f8Stomee  * working set are included in the assessment, and magazines in the depot are
741b5fca8f8Stomee  * reaped if those objects would lift cache_bufslab above the fragmentation
742b5fca8f8Stomee  * threshold. Once the consolidator decides that a cache is fragmented, it looks
743b5fca8f8Stomee  * for a candidate slab to reclaim, starting at the end of the partial slab free
744b5fca8f8Stomee  * list and scanning backwards. At first the consolidator is choosy: only a slab
745b5fca8f8Stomee  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
746b5fca8f8Stomee  * single allocated object, regardless of percentage). If there is difficulty
747b5fca8f8Stomee  * finding a candidate slab, kmem raises the allocation threshold incrementally,
748b5fca8f8Stomee  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
749b5fca8f8Stomee  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
750b5fca8f8Stomee  * even in the worst case of every slab in the cache being almost 7/8 allocated.
751b5fca8f8Stomee  * The threshold can also be lowered incrementally when candidate slabs are easy
752b5fca8f8Stomee  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
753b5fca8f8Stomee  * is no longer fragmented.
754b5fca8f8Stomee  *
755b5fca8f8Stomee  * 3.2 Generating Callbacks
756b5fca8f8Stomee  *
757b5fca8f8Stomee  * Once an eligible slab is chosen, a callback is generated for every allocated
758b5fca8f8Stomee  * object on the slab, in the hope that the client will move everything off the
759b5fca8f8Stomee  * slab and make it reclaimable. Objects selected as move destinations are
760b5fca8f8Stomee  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
761b5fca8f8Stomee  * order (most allocated at the front, least allocated at the back) and a
762b5fca8f8Stomee  * cooperative client, the consolidator will succeed in removing slabs from both
763b5fca8f8Stomee  * ends of the free list, completely allocating on the one hand and completely
764b5fca8f8Stomee  * freeing on the other. Objects selected as move destinations are allocated in
765b5fca8f8Stomee  * the kmem maintenance thread where move requests are enqueued. A separate
766b5fca8f8Stomee  * callback thread removes pending callbacks from the queue and calls the
767b5fca8f8Stomee  * client. The separate thread ensures that client code (the move function) does
768b5fca8f8Stomee  * not interfere with internal kmem maintenance tasks. A map of pending
769b5fca8f8Stomee  * callbacks keyed by object address (the object to be moved) is checked to
770b5fca8f8Stomee  * ensure that duplicate callbacks are not generated for the same object.
771b5fca8f8Stomee  * Allocating the move destination (the object to move to) prevents subsequent
772b5fca8f8Stomee  * callbacks from selecting the same destination as an earlier pending callback.
773b5fca8f8Stomee  *
774b5fca8f8Stomee  * Move requests can also be generated by kmem_cache_reap() when the system is
775b5fca8f8Stomee  * desperate for memory and by kmem_cache_move_notify(), called by the client to
776b5fca8f8Stomee  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
777b5fca8f8Stomee  * The map of pending callbacks is protected by the same lock that protects the
778b5fca8f8Stomee  * slab layer.
779b5fca8f8Stomee  *
780b5fca8f8Stomee  * When the system is desperate for memory, kmem does not bother to determine
781b5fca8f8Stomee  * whether or not the cache exceeds the fragmentation threshold, but tries to
782b5fca8f8Stomee  * consolidate as many slabs as possible. Normally, the consolidator chews
783b5fca8f8Stomee  * slowly, one sparsely allocated slab at a time during each maintenance
784b5fca8f8Stomee  * interval that the cache is fragmented. When desperate, the consolidator
785b5fca8f8Stomee  * starts at the last partial slab and enqueues callbacks for every allocated
786b5fca8f8Stomee  * object on every partial slab, working backwards until it reaches the first
787b5fca8f8Stomee  * partial slab. The first partial slab, meanwhile, advances in pace with the
788b5fca8f8Stomee  * consolidator as allocations to supply move destinations for the enqueued
789b5fca8f8Stomee  * callbacks use up the highly allocated slabs at the front of the free list.
790b5fca8f8Stomee  * Ideally, the overgrown free list collapses like an accordion, starting at
791b5fca8f8Stomee  * both ends and ending at the center with a single partial slab.
792b5fca8f8Stomee  *
793b5fca8f8Stomee  * 3.3 Client Responses
794b5fca8f8Stomee  *
795b5fca8f8Stomee  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
796b5fca8f8Stomee  * marks the slab that supplied the stuck object non-reclaimable and moves it to
797b5fca8f8Stomee  * front of the free list. The slab remains marked as long as it remains on the
798b5fca8f8Stomee  * free list, and it appears more allocated to the partial slab compare function
799b5fca8f8Stomee  * than any unmarked slab, no matter how many of its objects are allocated.
800b5fca8f8Stomee  * Since even one immovable object ties up the entire slab, the goal is to
801b5fca8f8Stomee  * completely allocate any slab that cannot be completely freed. kmem does not
802b5fca8f8Stomee  * bother generating callbacks to move objects from a marked slab unless the
803b5fca8f8Stomee  * system is desperate.
804b5fca8f8Stomee  *
805b5fca8f8Stomee  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
806b5fca8f8Stomee  * slab. If the client responds LATER too many times, kmem disbelieves and
807b5fca8f8Stomee  * treats the response as a NO. The count is cleared when the slab is taken off
808b5fca8f8Stomee  * the partial slab list or when the client moves one of the slab's objects.
809b5fca8f8Stomee  *
810b5fca8f8Stomee  * 4. Observability
811b5fca8f8Stomee  *
812b5fca8f8Stomee  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
813b5fca8f8Stomee  * the ::kmem_slabs dcmd. For a complete description of the command, enter
814b5fca8f8Stomee  * '::help kmem_slabs' at the mdb prompt.
8157c478bd9Sstevel@tonic-gate  */
8167c478bd9Sstevel@tonic-gate 
8177c478bd9Sstevel@tonic-gate #include <sys/kmem_impl.h>
8187c478bd9Sstevel@tonic-gate #include <sys/vmem_impl.h>
8197c478bd9Sstevel@tonic-gate #include <sys/param.h>
8207c478bd9Sstevel@tonic-gate #include <sys/sysmacros.h>
8217c478bd9Sstevel@tonic-gate #include <sys/vm.h>
8227c478bd9Sstevel@tonic-gate #include <sys/proc.h>
8237c478bd9Sstevel@tonic-gate #include <sys/tuneable.h>
8247c478bd9Sstevel@tonic-gate #include <sys/systm.h>
8257c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h>
8267c478bd9Sstevel@tonic-gate #include <sys/debug.h>
827b5fca8f8Stomee #include <sys/sdt.h>
8287c478bd9Sstevel@tonic-gate #include <sys/mutex.h>
8297c478bd9Sstevel@tonic-gate #include <sys/bitmap.h>
8307c478bd9Sstevel@tonic-gate #include <sys/atomic.h>
8317c478bd9Sstevel@tonic-gate #include <sys/kobj.h>
8327c478bd9Sstevel@tonic-gate #include <sys/disp.h>
8337c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h>
8347c478bd9Sstevel@tonic-gate #include <sys/log.h>
8357c478bd9Sstevel@tonic-gate #include <sys/callb.h>
8367c478bd9Sstevel@tonic-gate #include <sys/taskq.h>
8377c478bd9Sstevel@tonic-gate #include <sys/modctl.h>
8387c478bd9Sstevel@tonic-gate #include <sys/reboot.h>
8397c478bd9Sstevel@tonic-gate #include <sys/id32.h>
8407c478bd9Sstevel@tonic-gate #include <sys/zone.h>
841f4b3ec61Sdh #include <sys/netstack.h>
842b5fca8f8Stomee #ifdef	DEBUG
843b5fca8f8Stomee #include <sys/random.h>
844b5fca8f8Stomee #endif
8457c478bd9Sstevel@tonic-gate 
8467c478bd9Sstevel@tonic-gate extern void streams_msg_init(void);
8477c478bd9Sstevel@tonic-gate extern int segkp_fromheap;
8487c478bd9Sstevel@tonic-gate extern void segkp_cache_free(void);
8496e00b116SPeter Telford extern int callout_init_done;
8507c478bd9Sstevel@tonic-gate 
8517c478bd9Sstevel@tonic-gate struct kmem_cache_kstat {
8527c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_size;
8537c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_align;
8547c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_chunk_size;
8557c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_size;
8567c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_alloc;
8577c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_alloc_fail;
8587c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_free;
8597c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_alloc;
8607c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_free;
8617c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_contention;
8627c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_alloc;
8637c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_free;
8647c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_constructed;
8657c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_avail;
8667c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_inuse;
8677c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_total;
8687c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_max;
8697c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_create;
8707c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_destroy;
8717c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_vmem_source;
8727c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_size;
8737c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_lookup_depth;
8747c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_rescale;
8757c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_full_magazines;
8767c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_empty_magazines;
8777c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_magazine_size;
878686031edSTom Erickson 	kstat_named_t	kmc_reap; /* number of kmem_cache_reap() calls */
879686031edSTom Erickson 	kstat_named_t	kmc_defrag; /* attempts to defrag all partial slabs */
880686031edSTom Erickson 	kstat_named_t	kmc_scan; /* attempts to defrag one partial slab */
881686031edSTom Erickson 	kstat_named_t	kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
882b5fca8f8Stomee 	kstat_named_t	kmc_move_yes;
883b5fca8f8Stomee 	kstat_named_t	kmc_move_no;
884b5fca8f8Stomee 	kstat_named_t	kmc_move_later;
885b5fca8f8Stomee 	kstat_named_t	kmc_move_dont_need;
886686031edSTom Erickson 	kstat_named_t	kmc_move_dont_know; /* obj unrecognized by client ... */
887686031edSTom Erickson 	kstat_named_t	kmc_move_hunt_found; /* ... but found in mag layer */
888686031edSTom Erickson 	kstat_named_t	kmc_move_slabs_freed; /* slabs freed by consolidator */
889686031edSTom Erickson 	kstat_named_t	kmc_move_reclaimable; /* buffers, if consolidator ran */
8907c478bd9Sstevel@tonic-gate } kmem_cache_kstat = {
8917c478bd9Sstevel@tonic-gate 	{ "buf_size",		KSTAT_DATA_UINT64 },
8927c478bd9Sstevel@tonic-gate 	{ "align",		KSTAT_DATA_UINT64 },
8937c478bd9Sstevel@tonic-gate 	{ "chunk_size",		KSTAT_DATA_UINT64 },
8947c478bd9Sstevel@tonic-gate 	{ "slab_size",		KSTAT_DATA_UINT64 },
8957c478bd9Sstevel@tonic-gate 	{ "alloc",		KSTAT_DATA_UINT64 },
8967c478bd9Sstevel@tonic-gate 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
8977c478bd9Sstevel@tonic-gate 	{ "free",		KSTAT_DATA_UINT64 },
8987c478bd9Sstevel@tonic-gate 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
8997c478bd9Sstevel@tonic-gate 	{ "depot_free",		KSTAT_DATA_UINT64 },
9007c478bd9Sstevel@tonic-gate 	{ "depot_contention",	KSTAT_DATA_UINT64 },
9017c478bd9Sstevel@tonic-gate 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
9027c478bd9Sstevel@tonic-gate 	{ "slab_free",		KSTAT_DATA_UINT64 },
9037c478bd9Sstevel@tonic-gate 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
9047c478bd9Sstevel@tonic-gate 	{ "buf_avail",		KSTAT_DATA_UINT64 },
9057c478bd9Sstevel@tonic-gate 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
9067c478bd9Sstevel@tonic-gate 	{ "buf_total",		KSTAT_DATA_UINT64 },
9077c478bd9Sstevel@tonic-gate 	{ "buf_max",		KSTAT_DATA_UINT64 },
9087c478bd9Sstevel@tonic-gate 	{ "slab_create",	KSTAT_DATA_UINT64 },
9097c478bd9Sstevel@tonic-gate 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
9107c478bd9Sstevel@tonic-gate 	{ "vmem_source",	KSTAT_DATA_UINT64 },
9117c478bd9Sstevel@tonic-gate 	{ "hash_size",		KSTAT_DATA_UINT64 },
9127c478bd9Sstevel@tonic-gate 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
9137c478bd9Sstevel@tonic-gate 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
9147c478bd9Sstevel@tonic-gate 	{ "full_magazines",	KSTAT_DATA_UINT64 },
9157c478bd9Sstevel@tonic-gate 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
9167c478bd9Sstevel@tonic-gate 	{ "magazine_size",	KSTAT_DATA_UINT64 },
917686031edSTom Erickson 	{ "reap",		KSTAT_DATA_UINT64 },
918686031edSTom Erickson 	{ "defrag",		KSTAT_DATA_UINT64 },
919686031edSTom Erickson 	{ "scan",		KSTAT_DATA_UINT64 },
920b5fca8f8Stomee 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
921b5fca8f8Stomee 	{ "move_yes",		KSTAT_DATA_UINT64 },
922b5fca8f8Stomee 	{ "move_no",		KSTAT_DATA_UINT64 },
923b5fca8f8Stomee 	{ "move_later",		KSTAT_DATA_UINT64 },
924b5fca8f8Stomee 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
925b5fca8f8Stomee 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
926b5fca8f8Stomee 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
927686031edSTom Erickson 	{ "move_slabs_freed",	KSTAT_DATA_UINT64 },
928686031edSTom Erickson 	{ "move_reclaimable",	KSTAT_DATA_UINT64 },
9297c478bd9Sstevel@tonic-gate };
9307c478bd9Sstevel@tonic-gate 
9317c478bd9Sstevel@tonic-gate static kmutex_t kmem_cache_kstat_lock;
9327c478bd9Sstevel@tonic-gate 
9337c478bd9Sstevel@tonic-gate /*
9347c478bd9Sstevel@tonic-gate  * The default set of caches to back kmem_alloc().
9357c478bd9Sstevel@tonic-gate  * These sizes should be reevaluated periodically.
9367c478bd9Sstevel@tonic-gate  *
9377c478bd9Sstevel@tonic-gate  * We want allocations that are multiples of the coherency granularity
9387c478bd9Sstevel@tonic-gate  * (64 bytes) to be satisfied from a cache which is a multiple of 64
9397c478bd9Sstevel@tonic-gate  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
9407c478bd9Sstevel@tonic-gate  * the next kmem_cache_size greater than or equal to it must be a
9417c478bd9Sstevel@tonic-gate  * multiple of 64.
942dce01e3fSJonathan W Adams  *
943dce01e3fSJonathan W Adams  * We split the table into two sections:  size <= 4k and size > 4k.  This
944dce01e3fSJonathan W Adams  * saves a lot of space and cache footprint in our cache tables.
9457c478bd9Sstevel@tonic-gate  */
9467c478bd9Sstevel@tonic-gate static const int kmem_alloc_sizes[] = {
9477c478bd9Sstevel@tonic-gate 	1 * 8,
9487c478bd9Sstevel@tonic-gate 	2 * 8,
9497c478bd9Sstevel@tonic-gate 	3 * 8,
9507c478bd9Sstevel@tonic-gate 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
9517c478bd9Sstevel@tonic-gate 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
9527c478bd9Sstevel@tonic-gate 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
9537c478bd9Sstevel@tonic-gate 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
9547c478bd9Sstevel@tonic-gate 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
9557c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 7, 64),
9567c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 6, 64),
9577c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 5, 64),
9587c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 4, 64),
9597c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 3, 64),
9607c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 2, 64),
9617c478bd9Sstevel@tonic-gate };
9627c478bd9Sstevel@tonic-gate 
963dce01e3fSJonathan W Adams static const int kmem_big_alloc_sizes[] = {
964dce01e3fSJonathan W Adams 	2 * 4096,	3 * 4096,
965dce01e3fSJonathan W Adams 	2 * 8192,	3 * 8192,
966dce01e3fSJonathan W Adams 	4 * 8192,	5 * 8192,	6 * 8192,	7 * 8192,
967dce01e3fSJonathan W Adams 	8 * 8192,	9 * 8192,	10 * 8192,	11 * 8192,
968dce01e3fSJonathan W Adams 	12 * 8192,	13 * 8192,	14 * 8192,	15 * 8192,
969dce01e3fSJonathan W Adams 	16 * 8192
970dce01e3fSJonathan W Adams };
971dce01e3fSJonathan W Adams 
972dce01e3fSJonathan W Adams #define	KMEM_MAXBUF		4096
973dce01e3fSJonathan W Adams #define	KMEM_BIG_MAXBUF_32BIT	32768
974dce01e3fSJonathan W Adams #define	KMEM_BIG_MAXBUF		131072
975dce01e3fSJonathan W Adams 
976dce01e3fSJonathan W Adams #define	KMEM_BIG_MULTIPLE	4096	/* big_alloc_sizes must be a multiple */
977dce01e3fSJonathan W Adams #define	KMEM_BIG_SHIFT		12	/* lg(KMEM_BIG_MULTIPLE) */
9787c478bd9Sstevel@tonic-gate 
9797c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
980dce01e3fSJonathan W Adams static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
981dce01e3fSJonathan W Adams 
982dce01e3fSJonathan W Adams #define	KMEM_ALLOC_TABLE_MAX	(KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
983dce01e3fSJonathan W Adams static size_t kmem_big_alloc_table_max = 0;	/* # of filled elements */
9847c478bd9Sstevel@tonic-gate 
9857c478bd9Sstevel@tonic-gate static kmem_magtype_t kmem_magtype[] = {
9867c478bd9Sstevel@tonic-gate 	{ 1,	8,	3200,	65536	},
9877c478bd9Sstevel@tonic-gate 	{ 3,	16,	256,	32768	},
9887c478bd9Sstevel@tonic-gate 	{ 7,	32,	64,	16384	},
9897c478bd9Sstevel@tonic-gate 	{ 15,	64,	0,	8192	},
9907c478bd9Sstevel@tonic-gate 	{ 31,	64,	0,	4096	},
9917c478bd9Sstevel@tonic-gate 	{ 47,	64,	0,	2048	},
9927c478bd9Sstevel@tonic-gate 	{ 63,	64,	0,	1024	},
9937c478bd9Sstevel@tonic-gate 	{ 95,	64,	0,	512	},
9947c478bd9Sstevel@tonic-gate 	{ 143,	64,	0,	0	},
9957c478bd9Sstevel@tonic-gate };
9967c478bd9Sstevel@tonic-gate 
9977c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping;
9987c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping_idspace;
9997c478bd9Sstevel@tonic-gate 
10007c478bd9Sstevel@tonic-gate /*
10017c478bd9Sstevel@tonic-gate  * kmem tunables
10027c478bd9Sstevel@tonic-gate  */
10037c478bd9Sstevel@tonic-gate clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
10047c478bd9Sstevel@tonic-gate int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
10057c478bd9Sstevel@tonic-gate pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
10067c478bd9Sstevel@tonic-gate int kmem_panic = 1;		/* whether to panic on error */
10077c478bd9Sstevel@tonic-gate int kmem_logging = 1;		/* kmem_log_enter() override */
10087c478bd9Sstevel@tonic-gate uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
10097c478bd9Sstevel@tonic-gate size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
10107c478bd9Sstevel@tonic-gate size_t kmem_content_log_size;	/* content log size [2% of memory] */
10117c478bd9Sstevel@tonic-gate size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
10127c478bd9Sstevel@tonic-gate size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
10137c478bd9Sstevel@tonic-gate size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
10147c478bd9Sstevel@tonic-gate size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
10157c478bd9Sstevel@tonic-gate size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
10167c478bd9Sstevel@tonic-gate int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
10177c478bd9Sstevel@tonic-gate size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
10187c478bd9Sstevel@tonic-gate size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
10197c478bd9Sstevel@tonic-gate 
1020dce01e3fSJonathan W Adams #ifdef _LP64
1021dce01e3fSJonathan W Adams size_t	kmem_max_cached = KMEM_BIG_MAXBUF;	/* maximum kmem_alloc cache */
1022dce01e3fSJonathan W Adams #else
1023dce01e3fSJonathan W Adams size_t	kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1024dce01e3fSJonathan W Adams #endif
1025dce01e3fSJonathan W Adams 
10267c478bd9Sstevel@tonic-gate #ifdef DEBUG
10277c478bd9Sstevel@tonic-gate int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
10287c478bd9Sstevel@tonic-gate #else
10297c478bd9Sstevel@tonic-gate int kmem_flags = 0;
10307c478bd9Sstevel@tonic-gate #endif
10317c478bd9Sstevel@tonic-gate int kmem_ready;
10327c478bd9Sstevel@tonic-gate 
10337c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_slab_cache;
10347c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_bufctl_cache;
10357c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_bufctl_audit_cache;
10367c478bd9Sstevel@tonic-gate 
10377c478bd9Sstevel@tonic-gate static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
1038b5fca8f8Stomee static list_t		kmem_caches;
10397c478bd9Sstevel@tonic-gate 
10407c478bd9Sstevel@tonic-gate static taskq_t		*kmem_taskq;
10417c478bd9Sstevel@tonic-gate static kmutex_t		kmem_flags_lock;
10427c478bd9Sstevel@tonic-gate static vmem_t		*kmem_metadata_arena;
10437c478bd9Sstevel@tonic-gate static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
10447c478bd9Sstevel@tonic-gate static vmem_t		*kmem_cache_arena;
10457c478bd9Sstevel@tonic-gate static vmem_t		*kmem_hash_arena;
10467c478bd9Sstevel@tonic-gate static vmem_t		*kmem_log_arena;
10477c478bd9Sstevel@tonic-gate static vmem_t		*kmem_oversize_arena;
10487c478bd9Sstevel@tonic-gate static vmem_t		*kmem_va_arena;
10497c478bd9Sstevel@tonic-gate static vmem_t		*kmem_default_arena;
10507c478bd9Sstevel@tonic-gate static vmem_t		*kmem_firewall_va_arena;
10517c478bd9Sstevel@tonic-gate static vmem_t		*kmem_firewall_arena;
10527c478bd9Sstevel@tonic-gate 
1053b5fca8f8Stomee /*
1054b5fca8f8Stomee  * kmem slab consolidator thresholds (tunables)
1055b5fca8f8Stomee  */
1056686031edSTom Erickson size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1057686031edSTom Erickson size_t kmem_frag_numer = 1;		/* free buffers (numerator) */
1058686031edSTom Erickson size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1059b5fca8f8Stomee /*
1060b5fca8f8Stomee  * Maximum number of slabs from which to move buffers during a single
1061b5fca8f8Stomee  * maintenance interval while the system is not low on memory.
1062b5fca8f8Stomee  */
1063686031edSTom Erickson size_t kmem_reclaim_max_slabs = 1;
1064b5fca8f8Stomee /*
1065b5fca8f8Stomee  * Number of slabs to scan backwards from the end of the partial slab list
1066b5fca8f8Stomee  * when searching for buffers to relocate.
1067b5fca8f8Stomee  */
1068686031edSTom Erickson size_t kmem_reclaim_scan_range = 12;
1069b5fca8f8Stomee 
1070b5fca8f8Stomee /* consolidator knobs */
1071929d5b43SMatthew Ahrens boolean_t kmem_move_noreap;
1072929d5b43SMatthew Ahrens boolean_t kmem_move_blocked;
1073929d5b43SMatthew Ahrens boolean_t kmem_move_fulltilt;
1074929d5b43SMatthew Ahrens boolean_t kmem_move_any_partial;
1075b5fca8f8Stomee 
1076b5fca8f8Stomee #ifdef	DEBUG
1077b5fca8f8Stomee /*
1078686031edSTom Erickson  * kmem consolidator debug tunables:
1079b5fca8f8Stomee  * Ensure code coverage by occasionally running the consolidator even when the
1080b5fca8f8Stomee  * caches are not fragmented (they may never be). These intervals are mean time
1081b5fca8f8Stomee  * in cache maintenance intervals (kmem_cache_update).
1082b5fca8f8Stomee  */
1083686031edSTom Erickson uint32_t kmem_mtb_move = 60;	/* defrag 1 slab (~15min) */
1084686031edSTom Erickson uint32_t kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1085b5fca8f8Stomee #endif	/* DEBUG */
1086b5fca8f8Stomee 
1087b5fca8f8Stomee static kmem_cache_t	*kmem_defrag_cache;
1088b5fca8f8Stomee static kmem_cache_t	*kmem_move_cache;
1089b5fca8f8Stomee static taskq_t		*kmem_move_taskq;
1090b5fca8f8Stomee 
1091b5fca8f8Stomee static void kmem_cache_scan(kmem_cache_t *);
1092b5fca8f8Stomee static void kmem_cache_defrag(kmem_cache_t *);
1093b942e89bSDavid Valin static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1094b5fca8f8Stomee 
1095b5fca8f8Stomee 
10967c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_transaction_log;
10977c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_content_log;
10987c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_failure_log;
10997c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_slab_log;
11007c478bd9Sstevel@tonic-gate 
11017c478bd9Sstevel@tonic-gate static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
11027c478bd9Sstevel@tonic-gate 
11037c478bd9Sstevel@tonic-gate #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
11047c478bd9Sstevel@tonic-gate 	if ((count) > 0) {						\
11057c478bd9Sstevel@tonic-gate 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
11067c478bd9Sstevel@tonic-gate 		pc_t *_e;						\
11077c478bd9Sstevel@tonic-gate 		/* memmove() the old entries down one notch */		\
11087c478bd9Sstevel@tonic-gate 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
11097c478bd9Sstevel@tonic-gate 			*_e = *(_e - 1);				\
11107c478bd9Sstevel@tonic-gate 		*_s = (uintptr_t)(caller);				\
11117c478bd9Sstevel@tonic-gate 	}
11127c478bd9Sstevel@tonic-gate 
11137c478bd9Sstevel@tonic-gate #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
11147c478bd9Sstevel@tonic-gate #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
11157c478bd9Sstevel@tonic-gate #define	KMERR_DUPFREE	2	/* freed a buffer twice */
11167c478bd9Sstevel@tonic-gate #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
11177c478bd9Sstevel@tonic-gate #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
11187c478bd9Sstevel@tonic-gate #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
11197c478bd9Sstevel@tonic-gate #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
11207c478bd9Sstevel@tonic-gate #define	KMERR_BADSIZE	7	/* alloc size != free size */
11217c478bd9Sstevel@tonic-gate #define	KMERR_BADBASE	8	/* buffer base address wrong */
11227c478bd9Sstevel@tonic-gate 
11237c478bd9Sstevel@tonic-gate struct {
11247c478bd9Sstevel@tonic-gate 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
11257c478bd9Sstevel@tonic-gate 	int		kmp_error;	/* type of kmem error */
11267c478bd9Sstevel@tonic-gate 	void		*kmp_buffer;	/* buffer that induced panic */
11277c478bd9Sstevel@tonic-gate 	void		*kmp_realbuf;	/* real start address for buffer */
11287c478bd9Sstevel@tonic-gate 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
11297c478bd9Sstevel@tonic-gate 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
11307c478bd9Sstevel@tonic-gate 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
11317c478bd9Sstevel@tonic-gate 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
11327c478bd9Sstevel@tonic-gate } kmem_panic_info;
11337c478bd9Sstevel@tonic-gate 
11347c478bd9Sstevel@tonic-gate 
11357c478bd9Sstevel@tonic-gate static void
11367c478bd9Sstevel@tonic-gate copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
11377c478bd9Sstevel@tonic-gate {
11387c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11397c478bd9Sstevel@tonic-gate 	uint64_t *buf = buf_arg;
11407c478bd9Sstevel@tonic-gate 
11417c478bd9Sstevel@tonic-gate 	while (buf < bufend)
11427c478bd9Sstevel@tonic-gate 		*buf++ = pattern;
11437c478bd9Sstevel@tonic-gate }
11447c478bd9Sstevel@tonic-gate 
11457c478bd9Sstevel@tonic-gate static void *
11467c478bd9Sstevel@tonic-gate verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
11477c478bd9Sstevel@tonic-gate {
11487c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11497c478bd9Sstevel@tonic-gate 	uint64_t *buf;
11507c478bd9Sstevel@tonic-gate 
11517c478bd9Sstevel@tonic-gate 	for (buf = buf_arg; buf < bufend; buf++)
11527c478bd9Sstevel@tonic-gate 		if (*buf != pattern)
11537c478bd9Sstevel@tonic-gate 			return (buf);
11547c478bd9Sstevel@tonic-gate 	return (NULL);
11557c478bd9Sstevel@tonic-gate }
11567c478bd9Sstevel@tonic-gate 
11577c478bd9Sstevel@tonic-gate static void *
11587c478bd9Sstevel@tonic-gate verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
11597c478bd9Sstevel@tonic-gate {
11607c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11617c478bd9Sstevel@tonic-gate 	uint64_t *buf;
11627c478bd9Sstevel@tonic-gate 
11637c478bd9Sstevel@tonic-gate 	for (buf = buf_arg; buf < bufend; buf++) {
11647c478bd9Sstevel@tonic-gate 		if (*buf != old) {
11657c478bd9Sstevel@tonic-gate 			copy_pattern(old, buf_arg,
11669f1b636aStomee 			    (char *)buf - (char *)buf_arg);
11677c478bd9Sstevel@tonic-gate 			return (buf);
11687c478bd9Sstevel@tonic-gate 		}
11697c478bd9Sstevel@tonic-gate 		*buf = new;
11707c478bd9Sstevel@tonic-gate 	}
11717c478bd9Sstevel@tonic-gate 
11727c478bd9Sstevel@tonic-gate 	return (NULL);
11737c478bd9Sstevel@tonic-gate }
11747c478bd9Sstevel@tonic-gate 
11757c478bd9Sstevel@tonic-gate static void
11767c478bd9Sstevel@tonic-gate kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
11777c478bd9Sstevel@tonic-gate {
11787c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
11797c478bd9Sstevel@tonic-gate 
11807c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
1181b5fca8f8Stomee 	for (cp = list_head(&kmem_caches); cp != NULL;
1182b5fca8f8Stomee 	    cp = list_next(&kmem_caches, cp))
11837c478bd9Sstevel@tonic-gate 		if (tq != NULL)
11847c478bd9Sstevel@tonic-gate 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
11857c478bd9Sstevel@tonic-gate 			    tqflag);
11867c478bd9Sstevel@tonic-gate 		else
11877c478bd9Sstevel@tonic-gate 			func(cp);
11887c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
11897c478bd9Sstevel@tonic-gate }
11907c478bd9Sstevel@tonic-gate 
11917c478bd9Sstevel@tonic-gate static void
11927c478bd9Sstevel@tonic-gate kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
11937c478bd9Sstevel@tonic-gate {
11947c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
11957c478bd9Sstevel@tonic-gate 
11967c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
1197b5fca8f8Stomee 	for (cp = list_head(&kmem_caches); cp != NULL;
1198b5fca8f8Stomee 	    cp = list_next(&kmem_caches, cp)) {
11997c478bd9Sstevel@tonic-gate 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
12007c478bd9Sstevel@tonic-gate 			continue;
12017c478bd9Sstevel@tonic-gate 		if (tq != NULL)
12027c478bd9Sstevel@tonic-gate 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
12037c478bd9Sstevel@tonic-gate 			    tqflag);
12047c478bd9Sstevel@tonic-gate 		else
12057c478bd9Sstevel@tonic-gate 			func(cp);
12067c478bd9Sstevel@tonic-gate 	}
12077c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
12087c478bd9Sstevel@tonic-gate }
12097c478bd9Sstevel@tonic-gate 
12107c478bd9Sstevel@tonic-gate /*
12117c478bd9Sstevel@tonic-gate  * Debugging support.  Given a buffer address, find its slab.
12127c478bd9Sstevel@tonic-gate  */
12137c478bd9Sstevel@tonic-gate static kmem_slab_t *
12147c478bd9Sstevel@tonic-gate kmem_findslab(kmem_cache_t *cp, void *buf)
12157c478bd9Sstevel@tonic-gate {
12167c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
12177c478bd9Sstevel@tonic-gate 
12187c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
1219b5fca8f8Stomee 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1220b5fca8f8Stomee 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1221b5fca8f8Stomee 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1222b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1223b5fca8f8Stomee 			return (sp);
1224b5fca8f8Stomee 		}
1225b5fca8f8Stomee 	}
1226b5fca8f8Stomee 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1227b5fca8f8Stomee 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
12287c478bd9Sstevel@tonic-gate 		if (KMEM_SLAB_MEMBER(sp, buf)) {
12297c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
12307c478bd9Sstevel@tonic-gate 			return (sp);
12317c478bd9Sstevel@tonic-gate 		}
12327c478bd9Sstevel@tonic-gate 	}
12337c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
12347c478bd9Sstevel@tonic-gate 
12357c478bd9Sstevel@tonic-gate 	return (NULL);
12367c478bd9Sstevel@tonic-gate }
12377c478bd9Sstevel@tonic-gate 
12387c478bd9Sstevel@tonic-gate static void
12397c478bd9Sstevel@tonic-gate kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
12407c478bd9Sstevel@tonic-gate {
12417c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = NULL;
12427c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp = NULL;
12437c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp = cparg;
12447c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
12457c478bd9Sstevel@tonic-gate 	uint64_t *off;
12467c478bd9Sstevel@tonic-gate 	void *buf = bufarg;
12477c478bd9Sstevel@tonic-gate 
12487c478bd9Sstevel@tonic-gate 	kmem_logging = 0;	/* stop logging when a bad thing happens */
12497c478bd9Sstevel@tonic-gate 
12507c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_timestamp = gethrtime();
12517c478bd9Sstevel@tonic-gate 
12527c478bd9Sstevel@tonic-gate 	sp = kmem_findslab(cp, buf);
12537c478bd9Sstevel@tonic-gate 	if (sp == NULL) {
1254b5fca8f8Stomee 		for (cp = list_tail(&kmem_caches); cp != NULL;
1255b5fca8f8Stomee 		    cp = list_prev(&kmem_caches, cp)) {
12567c478bd9Sstevel@tonic-gate 			if ((sp = kmem_findslab(cp, buf)) != NULL)
12577c478bd9Sstevel@tonic-gate 				break;
12587c478bd9Sstevel@tonic-gate 		}
12597c478bd9Sstevel@tonic-gate 	}
12607c478bd9Sstevel@tonic-gate 
12617c478bd9Sstevel@tonic-gate 	if (sp == NULL) {
12627c478bd9Sstevel@tonic-gate 		cp = NULL;
12637c478bd9Sstevel@tonic-gate 		error = KMERR_BADADDR;
12647c478bd9Sstevel@tonic-gate 	} else {
12657c478bd9Sstevel@tonic-gate 		if (cp != cparg)
12667c478bd9Sstevel@tonic-gate 			error = KMERR_BADCACHE;
12677c478bd9Sstevel@tonic-gate 		else
12687c478bd9Sstevel@tonic-gate 			buf = (char *)bufarg - ((uintptr_t)bufarg -
12697c478bd9Sstevel@tonic-gate 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
12707c478bd9Sstevel@tonic-gate 		if (buf != bufarg)
12717c478bd9Sstevel@tonic-gate 			error = KMERR_BADBASE;
12727c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_BUFTAG)
12737c478bd9Sstevel@tonic-gate 			btp = KMEM_BUFTAG(cp, buf);
12747c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_HASH) {
12757c478bd9Sstevel@tonic-gate 			mutex_enter(&cp->cache_lock);
12767c478bd9Sstevel@tonic-gate 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
12777c478bd9Sstevel@tonic-gate 				if (bcp->bc_addr == buf)
12787c478bd9Sstevel@tonic-gate 					break;
12797c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
12807c478bd9Sstevel@tonic-gate 			if (bcp == NULL && btp != NULL)
12817c478bd9Sstevel@tonic-gate 				bcp = btp->bt_bufctl;
12827c478bd9Sstevel@tonic-gate 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
12837c478bd9Sstevel@tonic-gate 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
12847c478bd9Sstevel@tonic-gate 			    bcp->bc_addr != buf) {
12857c478bd9Sstevel@tonic-gate 				error = KMERR_BADBUFCTL;
12867c478bd9Sstevel@tonic-gate 				bcp = NULL;
12877c478bd9Sstevel@tonic-gate 			}
12887c478bd9Sstevel@tonic-gate 		}
12897c478bd9Sstevel@tonic-gate 	}
12907c478bd9Sstevel@tonic-gate 
12917c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_error = error;
12927c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_buffer = bufarg;
12937c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_realbuf = buf;
12947c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_cache = cparg;
12957c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_realcache = cp;
12967c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_slab = sp;
12977c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_bufctl = bcp;
12987c478bd9Sstevel@tonic-gate 
12997c478bd9Sstevel@tonic-gate 	printf("kernel memory allocator: ");
13007c478bd9Sstevel@tonic-gate 
13017c478bd9Sstevel@tonic-gate 	switch (error) {
13027c478bd9Sstevel@tonic-gate 
13037c478bd9Sstevel@tonic-gate 	case KMERR_MODIFIED:
13047c478bd9Sstevel@tonic-gate 		printf("buffer modified after being freed\n");
13057c478bd9Sstevel@tonic-gate 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
13067c478bd9Sstevel@tonic-gate 		if (off == NULL)	/* shouldn't happen */
13077c478bd9Sstevel@tonic-gate 			off = buf;
13087c478bd9Sstevel@tonic-gate 		printf("modification occurred at offset 0x%lx "
13097c478bd9Sstevel@tonic-gate 		    "(0x%llx replaced by 0x%llx)\n",
13107c478bd9Sstevel@tonic-gate 		    (uintptr_t)off - (uintptr_t)buf,
13117c478bd9Sstevel@tonic-gate 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
13127c478bd9Sstevel@tonic-gate 		break;
13137c478bd9Sstevel@tonic-gate 
13147c478bd9Sstevel@tonic-gate 	case KMERR_REDZONE:
13157c478bd9Sstevel@tonic-gate 		printf("redzone violation: write past end of buffer\n");
13167c478bd9Sstevel@tonic-gate 		break;
13177c478bd9Sstevel@tonic-gate 
13187c478bd9Sstevel@tonic-gate 	case KMERR_BADADDR:
13197c478bd9Sstevel@tonic-gate 		printf("invalid free: buffer not in cache\n");
13207c478bd9Sstevel@tonic-gate 		break;
13217c478bd9Sstevel@tonic-gate 
13227c478bd9Sstevel@tonic-gate 	case KMERR_DUPFREE:
13237c478bd9Sstevel@tonic-gate 		printf("duplicate free: buffer freed twice\n");
13247c478bd9Sstevel@tonic-gate 		break;
13257c478bd9Sstevel@tonic-gate 
13267c478bd9Sstevel@tonic-gate 	case KMERR_BADBUFTAG:
13277c478bd9Sstevel@tonic-gate 		printf("boundary tag corrupted\n");
13287c478bd9Sstevel@tonic-gate 		printf("bcp ^ bxstat = %lx, should be %lx\n",
13297c478bd9Sstevel@tonic-gate 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
13307c478bd9Sstevel@tonic-gate 		    KMEM_BUFTAG_FREE);
13317c478bd9Sstevel@tonic-gate 		break;
13327c478bd9Sstevel@tonic-gate 
13337c478bd9Sstevel@tonic-gate 	case KMERR_BADBUFCTL:
13347c478bd9Sstevel@tonic-gate 		printf("bufctl corrupted\n");
13357c478bd9Sstevel@tonic-gate 		break;
13367c478bd9Sstevel@tonic-gate 
13377c478bd9Sstevel@tonic-gate 	case KMERR_BADCACHE:
13387c478bd9Sstevel@tonic-gate 		printf("buffer freed to wrong cache\n");
13397c478bd9Sstevel@tonic-gate 		printf("buffer was allocated from %s,\n", cp->cache_name);
13407c478bd9Sstevel@tonic-gate 		printf("caller attempting free to %s.\n", cparg->cache_name);
13417c478bd9Sstevel@tonic-gate 		break;
13427c478bd9Sstevel@tonic-gate 
13437c478bd9Sstevel@tonic-gate 	case KMERR_BADSIZE:
13447c478bd9Sstevel@tonic-gate 		printf("bad free: free size (%u) != alloc size (%u)\n",
13457c478bd9Sstevel@tonic-gate 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
13467c478bd9Sstevel@tonic-gate 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
13477c478bd9Sstevel@tonic-gate 		break;
13487c478bd9Sstevel@tonic-gate 
13497c478bd9Sstevel@tonic-gate 	case KMERR_BADBASE:
13507c478bd9Sstevel@tonic-gate 		printf("bad free: free address (%p) != alloc address (%p)\n",
13517c478bd9Sstevel@tonic-gate 		    bufarg, buf);
13527c478bd9Sstevel@tonic-gate 		break;
13537c478bd9Sstevel@tonic-gate 	}
13547c478bd9Sstevel@tonic-gate 
13557c478bd9Sstevel@tonic-gate 	printf("buffer=%p  bufctl=%p  cache: %s\n",
13567c478bd9Sstevel@tonic-gate 	    bufarg, (void *)bcp, cparg->cache_name);
13577c478bd9Sstevel@tonic-gate 
13587c478bd9Sstevel@tonic-gate 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
13597c478bd9Sstevel@tonic-gate 	    error != KMERR_BADBUFCTL) {
13607c478bd9Sstevel@tonic-gate 		int d;
13617c478bd9Sstevel@tonic-gate 		timestruc_t ts;
13627c478bd9Sstevel@tonic-gate 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
13637c478bd9Sstevel@tonic-gate 
13647c478bd9Sstevel@tonic-gate 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
13657c478bd9Sstevel@tonic-gate 		printf("previous transaction on buffer %p:\n", buf);
13667c478bd9Sstevel@tonic-gate 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
13677c478bd9Sstevel@tonic-gate 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
13687c478bd9Sstevel@tonic-gate 		    (void *)sp, cp->cache_name);
13697c478bd9Sstevel@tonic-gate 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
13707c478bd9Sstevel@tonic-gate 			ulong_t off;
13717c478bd9Sstevel@tonic-gate 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
13727c478bd9Sstevel@tonic-gate 			printf("%s+%lx\n", sym ? sym : "?", off);
13737c478bd9Sstevel@tonic-gate 		}
13747c478bd9Sstevel@tonic-gate 	}
13757c478bd9Sstevel@tonic-gate 	if (kmem_panic > 0)
13767c478bd9Sstevel@tonic-gate 		panic("kernel heap corruption detected");
13777c478bd9Sstevel@tonic-gate 	if (kmem_panic == 0)
13787c478bd9Sstevel@tonic-gate 		debug_enter(NULL);
13797c478bd9Sstevel@tonic-gate 	kmem_logging = 1;	/* resume logging */
13807c478bd9Sstevel@tonic-gate }
13817c478bd9Sstevel@tonic-gate 
13827c478bd9Sstevel@tonic-gate static kmem_log_header_t *
13837c478bd9Sstevel@tonic-gate kmem_log_init(size_t logsize)
13847c478bd9Sstevel@tonic-gate {
13857c478bd9Sstevel@tonic-gate 	kmem_log_header_t *lhp;
13867c478bd9Sstevel@tonic-gate 	int nchunks = 4 * max_ncpus;
13877c478bd9Sstevel@tonic-gate 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
13887c478bd9Sstevel@tonic-gate 	int i;
13897c478bd9Sstevel@tonic-gate 
13907c478bd9Sstevel@tonic-gate 	/*
13917c478bd9Sstevel@tonic-gate 	 * Make sure that lhp->lh_cpu[] is nicely aligned
13927c478bd9Sstevel@tonic-gate 	 * to prevent false sharing of cache lines.
13937c478bd9Sstevel@tonic-gate 	 */
13947c478bd9Sstevel@tonic-gate 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
13957c478bd9Sstevel@tonic-gate 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
13967c478bd9Sstevel@tonic-gate 	    NULL, NULL, VM_SLEEP);
13977c478bd9Sstevel@tonic-gate 	bzero(lhp, lhsize);
13987c478bd9Sstevel@tonic-gate 
13997c478bd9Sstevel@tonic-gate 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
14007c478bd9Sstevel@tonic-gate 	lhp->lh_nchunks = nchunks;
14017c478bd9Sstevel@tonic-gate 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
14027c478bd9Sstevel@tonic-gate 	lhp->lh_base = vmem_alloc(kmem_log_arena,
14037c478bd9Sstevel@tonic-gate 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
14047c478bd9Sstevel@tonic-gate 	lhp->lh_free = vmem_alloc(kmem_log_arena,
14057c478bd9Sstevel@tonic-gate 	    nchunks * sizeof (int), VM_SLEEP);
14067c478bd9Sstevel@tonic-gate 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
14077c478bd9Sstevel@tonic-gate 
14087c478bd9Sstevel@tonic-gate 	for (i = 0; i < max_ncpus; i++) {
14097c478bd9Sstevel@tonic-gate 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
14107c478bd9Sstevel@tonic-gate 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
14117c478bd9Sstevel@tonic-gate 		clhp->clh_chunk = i;
14127c478bd9Sstevel@tonic-gate 	}
14137c478bd9Sstevel@tonic-gate 
14147c478bd9Sstevel@tonic-gate 	for (i = max_ncpus; i < nchunks; i++)
14157c478bd9Sstevel@tonic-gate 		lhp->lh_free[i] = i;
14167c478bd9Sstevel@tonic-gate 
14177c478bd9Sstevel@tonic-gate 	lhp->lh_head = max_ncpus;
14187c478bd9Sstevel@tonic-gate 	lhp->lh_tail = 0;
14197c478bd9Sstevel@tonic-gate 
14207c478bd9Sstevel@tonic-gate 	return (lhp);
14217c478bd9Sstevel@tonic-gate }
14227c478bd9Sstevel@tonic-gate 
14237c478bd9Sstevel@tonic-gate static void *
14247c478bd9Sstevel@tonic-gate kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
14257c478bd9Sstevel@tonic-gate {
14267c478bd9Sstevel@tonic-gate 	void *logspace;
14277c478bd9Sstevel@tonic-gate 	kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
14287c478bd9Sstevel@tonic-gate 
14297c478bd9Sstevel@tonic-gate 	if (lhp == NULL || kmem_logging == 0 || panicstr)
14307c478bd9Sstevel@tonic-gate 		return (NULL);
14317c478bd9Sstevel@tonic-gate 
14327c478bd9Sstevel@tonic-gate 	mutex_enter(&clhp->clh_lock);
14337c478bd9Sstevel@tonic-gate 	clhp->clh_hits++;
14347c478bd9Sstevel@tonic-gate 	if (size > clhp->clh_avail) {
14357c478bd9Sstevel@tonic-gate 		mutex_enter(&lhp->lh_lock);
14367c478bd9Sstevel@tonic-gate 		lhp->lh_hits++;
14377c478bd9Sstevel@tonic-gate 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
14387c478bd9Sstevel@tonic-gate 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
14397c478bd9Sstevel@tonic-gate 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
14407c478bd9Sstevel@tonic-gate 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
14417c478bd9Sstevel@tonic-gate 		clhp->clh_current = lhp->lh_base +
14429f1b636aStomee 		    clhp->clh_chunk * lhp->lh_chunksize;
14437c478bd9Sstevel@tonic-gate 		clhp->clh_avail = lhp->lh_chunksize;
14447c478bd9Sstevel@tonic-gate 		if (size > lhp->lh_chunksize)
14457c478bd9Sstevel@tonic-gate 			size = lhp->lh_chunksize;
14467c478bd9Sstevel@tonic-gate 		mutex_exit(&lhp->lh_lock);
14477c478bd9Sstevel@tonic-gate 	}
14487c478bd9Sstevel@tonic-gate 	logspace = clhp->clh_current;
14497c478bd9Sstevel@tonic-gate 	clhp->clh_current += size;
14507c478bd9Sstevel@tonic-gate 	clhp->clh_avail -= size;
14517c478bd9Sstevel@tonic-gate 	bcopy(data, logspace, size);
14527c478bd9Sstevel@tonic-gate 	mutex_exit(&clhp->clh_lock);
14537c478bd9Sstevel@tonic-gate 	return (logspace);
14547c478bd9Sstevel@tonic-gate }
14557c478bd9Sstevel@tonic-gate 
14567c478bd9Sstevel@tonic-gate #define	KMEM_AUDIT(lp, cp, bcp)						\
14577c478bd9Sstevel@tonic-gate {									\
14587c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
14597c478bd9Sstevel@tonic-gate 	_bcp->bc_timestamp = gethrtime();				\
14607c478bd9Sstevel@tonic-gate 	_bcp->bc_thread = curthread;					\
14617c478bd9Sstevel@tonic-gate 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
14627c478bd9Sstevel@tonic-gate 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
14637c478bd9Sstevel@tonic-gate }
14647c478bd9Sstevel@tonic-gate 
14657c478bd9Sstevel@tonic-gate static void
14667c478bd9Sstevel@tonic-gate kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
14671c207ae9SMatthew Ahrens     kmem_slab_t *sp, void *addr)
14687c478bd9Sstevel@tonic-gate {
14697c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t bca;
14707c478bd9Sstevel@tonic-gate 
14717c478bd9Sstevel@tonic-gate 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
14727c478bd9Sstevel@tonic-gate 	bca.bc_addr = addr;
14737c478bd9Sstevel@tonic-gate 	bca.bc_slab = sp;
14747c478bd9Sstevel@tonic-gate 	bca.bc_cache = cp;
14757c478bd9Sstevel@tonic-gate 	KMEM_AUDIT(lp, cp, &bca);
14767c478bd9Sstevel@tonic-gate }
14777c478bd9Sstevel@tonic-gate 
14787c478bd9Sstevel@tonic-gate /*
14797c478bd9Sstevel@tonic-gate  * Create a new slab for cache cp.
14807c478bd9Sstevel@tonic-gate  */
14817c478bd9Sstevel@tonic-gate static kmem_slab_t *
14827c478bd9Sstevel@tonic-gate kmem_slab_create(kmem_cache_t *cp, int kmflag)
14837c478bd9Sstevel@tonic-gate {
14847c478bd9Sstevel@tonic-gate 	size_t slabsize = cp->cache_slabsize;
14857c478bd9Sstevel@tonic-gate 	size_t chunksize = cp->cache_chunksize;
14867c478bd9Sstevel@tonic-gate 	int cache_flags = cp->cache_flags;
14877c478bd9Sstevel@tonic-gate 	size_t color, chunks;
14887c478bd9Sstevel@tonic-gate 	char *buf, *slab;
14897c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
14907c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp;
14917c478bd9Sstevel@tonic-gate 	vmem_t *vmp = cp->cache_arena;
14927c478bd9Sstevel@tonic-gate 
1493b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1494b5fca8f8Stomee 
14957c478bd9Sstevel@tonic-gate 	color = cp->cache_color + cp->cache_align;
14967c478bd9Sstevel@tonic-gate 	if (color > cp->cache_maxcolor)
14977c478bd9Sstevel@tonic-gate 		color = cp->cache_mincolor;
14987c478bd9Sstevel@tonic-gate 	cp->cache_color = color;
14997c478bd9Sstevel@tonic-gate 
15007c478bd9Sstevel@tonic-gate 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
15017c478bd9Sstevel@tonic-gate 
15027c478bd9Sstevel@tonic-gate 	if (slab == NULL)
15037c478bd9Sstevel@tonic-gate 		goto vmem_alloc_failure;
15047c478bd9Sstevel@tonic-gate 
15057c478bd9Sstevel@tonic-gate 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
15067c478bd9Sstevel@tonic-gate 
1507b5fca8f8Stomee 	/*
1508b5fca8f8Stomee 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1509b5fca8f8Stomee 	 * consolidator depends (for correctness) on slabs being initialized
1510b5fca8f8Stomee 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1511b5fca8f8Stomee 	 * clients to distinguish uninitialized memory from known objects).
1512b5fca8f8Stomee 	 */
1513b5fca8f8Stomee 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
15147c478bd9Sstevel@tonic-gate 	if (!(cp->cache_cflags & KMC_NOTOUCH))
15157c478bd9Sstevel@tonic-gate 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
15167c478bd9Sstevel@tonic-gate 
15177c478bd9Sstevel@tonic-gate 	if (cache_flags & KMF_HASH) {
15187c478bd9Sstevel@tonic-gate 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
15197c478bd9Sstevel@tonic-gate 			goto slab_alloc_failure;
15207c478bd9Sstevel@tonic-gate 		chunks = (slabsize - color) / chunksize;
15217c478bd9Sstevel@tonic-gate 	} else {
15227c478bd9Sstevel@tonic-gate 		sp = KMEM_SLAB(cp, slab);
15237c478bd9Sstevel@tonic-gate 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
15247c478bd9Sstevel@tonic-gate 	}
15257c478bd9Sstevel@tonic-gate 
15267c478bd9Sstevel@tonic-gate 	sp->slab_cache	= cp;
15277c478bd9Sstevel@tonic-gate 	sp->slab_head	= NULL;
15287c478bd9Sstevel@tonic-gate 	sp->slab_refcnt	= 0;
15297c478bd9Sstevel@tonic-gate 	sp->slab_base	= buf = slab + color;
15307c478bd9Sstevel@tonic-gate 	sp->slab_chunks	= chunks;
1531b5fca8f8Stomee 	sp->slab_stuck_offset = (uint32_t)-1;
1532b5fca8f8Stomee 	sp->slab_later_count = 0;
1533b5fca8f8Stomee 	sp->slab_flags = 0;
15347c478bd9Sstevel@tonic-gate 
15357c478bd9Sstevel@tonic-gate 	ASSERT(chunks > 0);
15367c478bd9Sstevel@tonic-gate 	while (chunks-- != 0) {
15377c478bd9Sstevel@tonic-gate 		if (cache_flags & KMF_HASH) {
15387c478bd9Sstevel@tonic-gate 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
15397c478bd9Sstevel@tonic-gate 			if (bcp == NULL)
15407c478bd9Sstevel@tonic-gate 				goto bufctl_alloc_failure;
15417c478bd9Sstevel@tonic-gate 			if (cache_flags & KMF_AUDIT) {
15427c478bd9Sstevel@tonic-gate 				kmem_bufctl_audit_t *bcap =
15437c478bd9Sstevel@tonic-gate 				    (kmem_bufctl_audit_t *)bcp;
15447c478bd9Sstevel@tonic-gate 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
15457c478bd9Sstevel@tonic-gate 				bcap->bc_cache = cp;
15467c478bd9Sstevel@tonic-gate 			}
15477c478bd9Sstevel@tonic-gate 			bcp->bc_addr = buf;
15487c478bd9Sstevel@tonic-gate 			bcp->bc_slab = sp;
15497c478bd9Sstevel@tonic-gate 		} else {
15507c478bd9Sstevel@tonic-gate 			bcp = KMEM_BUFCTL(cp, buf);
15517c478bd9Sstevel@tonic-gate 		}
15527c478bd9Sstevel@tonic-gate 		if (cache_flags & KMF_BUFTAG) {
15537c478bd9Sstevel@tonic-gate 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
15547c478bd9Sstevel@tonic-gate 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
15557c478bd9Sstevel@tonic-gate 			btp->bt_bufctl = bcp;
15567c478bd9Sstevel@tonic-gate 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
15577c478bd9Sstevel@tonic-gate 			if (cache_flags & KMF_DEADBEEF) {
15587c478bd9Sstevel@tonic-gate 				copy_pattern(KMEM_FREE_PATTERN, buf,
15597c478bd9Sstevel@tonic-gate 				    cp->cache_verify);
15607c478bd9Sstevel@tonic-gate 			}
15617c478bd9Sstevel@tonic-gate 		}
15627c478bd9Sstevel@tonic-gate 		bcp->bc_next = sp->slab_head;
15637c478bd9Sstevel@tonic-gate 		sp->slab_head = bcp;
15647c478bd9Sstevel@tonic-gate 		buf += chunksize;
15657c478bd9Sstevel@tonic-gate 	}
15667c478bd9Sstevel@tonic-gate 
15677c478bd9Sstevel@tonic-gate 	kmem_log_event(kmem_slab_log, cp, sp, slab);
15687c478bd9Sstevel@tonic-gate 
15697c478bd9Sstevel@tonic-gate 	return (sp);
15707c478bd9Sstevel@tonic-gate 
15717c478bd9Sstevel@tonic-gate bufctl_alloc_failure:
15727c478bd9Sstevel@tonic-gate 
15737c478bd9Sstevel@tonic-gate 	while ((bcp = sp->slab_head) != NULL) {
15747c478bd9Sstevel@tonic-gate 		sp->slab_head = bcp->bc_next;
15757c478bd9Sstevel@tonic-gate 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
15767c478bd9Sstevel@tonic-gate 	}
15777c478bd9Sstevel@tonic-gate 	kmem_cache_free(kmem_slab_cache, sp);
15787c478bd9Sstevel@tonic-gate 
15797c478bd9Sstevel@tonic-gate slab_alloc_failure:
15807c478bd9Sstevel@tonic-gate 
15817c478bd9Sstevel@tonic-gate 	vmem_free(vmp, slab, slabsize);
15827c478bd9Sstevel@tonic-gate 
15837c478bd9Sstevel@tonic-gate vmem_alloc_failure:
15847c478bd9Sstevel@tonic-gate 
15857c478bd9Sstevel@tonic-gate 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
15861a5e258fSJosef 'Jeff' Sipek 	atomic_inc_64(&cp->cache_alloc_fail);
15877c478bd9Sstevel@tonic-gate 
15887c478bd9Sstevel@tonic-gate 	return (NULL);
15897c478bd9Sstevel@tonic-gate }
15907c478bd9Sstevel@tonic-gate 
15917c478bd9Sstevel@tonic-gate /*
15927c478bd9Sstevel@tonic-gate  * Destroy a slab.
15937c478bd9Sstevel@tonic-gate  */
15947c478bd9Sstevel@tonic-gate static void
15957c478bd9Sstevel@tonic-gate kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
15967c478bd9Sstevel@tonic-gate {
15977c478bd9Sstevel@tonic-gate 	vmem_t *vmp = cp->cache_arena;
15987c478bd9Sstevel@tonic-gate 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
15997c478bd9Sstevel@tonic-gate 
1600b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1601b5fca8f8Stomee 	ASSERT(sp->slab_refcnt == 0);
1602b5fca8f8Stomee 
16037c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
16047c478bd9Sstevel@tonic-gate 		kmem_bufctl_t *bcp;
16057c478bd9Sstevel@tonic-gate 		while ((bcp = sp->slab_head) != NULL) {
16067c478bd9Sstevel@tonic-gate 			sp->slab_head = bcp->bc_next;
16077c478bd9Sstevel@tonic-gate 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
16087c478bd9Sstevel@tonic-gate 		}
16097c478bd9Sstevel@tonic-gate 		kmem_cache_free(kmem_slab_cache, sp);
16107c478bd9Sstevel@tonic-gate 	}
16117c478bd9Sstevel@tonic-gate 	vmem_free(vmp, slab, cp->cache_slabsize);
16127c478bd9Sstevel@tonic-gate }
16137c478bd9Sstevel@tonic-gate 
16147c478bd9Sstevel@tonic-gate static void *
1615b942e89bSDavid Valin kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
16167c478bd9Sstevel@tonic-gate {
16177c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp, **hash_bucket;
16187c478bd9Sstevel@tonic-gate 	void *buf;
1619b942e89bSDavid Valin 	boolean_t new_slab = (sp->slab_refcnt == 0);
16207c478bd9Sstevel@tonic-gate 
1621b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1622b5fca8f8Stomee 	/*
1623b5fca8f8Stomee 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1624b5fca8f8Stomee 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1625b942e89bSDavid Valin 	 * slab is newly created.
1626b5fca8f8Stomee 	 */
1627b942e89bSDavid Valin 	ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1628b5fca8f8Stomee 	    (sp == avl_first(&cp->cache_partial_slabs))));
16297c478bd9Sstevel@tonic-gate 	ASSERT(sp->slab_cache == cp);
16307c478bd9Sstevel@tonic-gate 
1631b5fca8f8Stomee 	cp->cache_slab_alloc++;
16329f1b636aStomee 	cp->cache_bufslab--;
16337c478bd9Sstevel@tonic-gate 	sp->slab_refcnt++;
16347c478bd9Sstevel@tonic-gate 
16357c478bd9Sstevel@tonic-gate 	bcp = sp->slab_head;
1636b942e89bSDavid Valin 	sp->slab_head = bcp->bc_next;
16377c478bd9Sstevel@tonic-gate 
16387c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
16397c478bd9Sstevel@tonic-gate 		/*
16407c478bd9Sstevel@tonic-gate 		 * Add buffer to allocated-address hash table.
16417c478bd9Sstevel@tonic-gate 		 */
16427c478bd9Sstevel@tonic-gate 		buf = bcp->bc_addr;
16437c478bd9Sstevel@tonic-gate 		hash_bucket = KMEM_HASH(cp, buf);
16447c478bd9Sstevel@tonic-gate 		bcp->bc_next = *hash_bucket;
16457c478bd9Sstevel@tonic-gate 		*hash_bucket = bcp;
16467c478bd9Sstevel@tonic-gate 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
16477c478bd9Sstevel@tonic-gate 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
16487c478bd9Sstevel@tonic-gate 		}
16497c478bd9Sstevel@tonic-gate 	} else {
16507c478bd9Sstevel@tonic-gate 		buf = KMEM_BUF(cp, bcp);
16517c478bd9Sstevel@tonic-gate 	}
16527c478bd9Sstevel@tonic-gate 
16537c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1654b942e89bSDavid Valin 
1655b942e89bSDavid Valin 	if (sp->slab_head == NULL) {
1656b942e89bSDavid Valin 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1657b942e89bSDavid Valin 		if (new_slab) {
1658b942e89bSDavid Valin 			ASSERT(sp->slab_chunks == 1);
1659b942e89bSDavid Valin 		} else {
1660b942e89bSDavid Valin 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1661b942e89bSDavid Valin 			avl_remove(&cp->cache_partial_slabs, sp);
1662b942e89bSDavid Valin 			sp->slab_later_count = 0; /* clear history */
1663b942e89bSDavid Valin 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1664b942e89bSDavid Valin 			sp->slab_stuck_offset = (uint32_t)-1;
1665b942e89bSDavid Valin 		}
1666b942e89bSDavid Valin 		list_insert_head(&cp->cache_complete_slabs, sp);
1667b942e89bSDavid Valin 		cp->cache_complete_slab_count++;
1668b942e89bSDavid Valin 		return (buf);
1669b942e89bSDavid Valin 	}
1670b942e89bSDavid Valin 
1671b942e89bSDavid Valin 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1672b942e89bSDavid Valin 	/*
1673b942e89bSDavid Valin 	 * Peek to see if the magazine layer is enabled before
1674b942e89bSDavid Valin 	 * we prefill.  We're not holding the cpu cache lock,
1675b942e89bSDavid Valin 	 * so the peek could be wrong, but there's no harm in it.
1676b942e89bSDavid Valin 	 */
1677b942e89bSDavid Valin 	if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1678b942e89bSDavid Valin 	    (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1679b942e89bSDavid Valin 		kmem_slab_prefill(cp, sp);
1680b942e89bSDavid Valin 		return (buf);
1681b942e89bSDavid Valin 	}
1682b942e89bSDavid Valin 
1683b942e89bSDavid Valin 	if (new_slab) {
1684b942e89bSDavid Valin 		avl_add(&cp->cache_partial_slabs, sp);
1685b942e89bSDavid Valin 		return (buf);
1686b942e89bSDavid Valin 	}
1687b942e89bSDavid Valin 
1688b942e89bSDavid Valin 	/*
1689b942e89bSDavid Valin 	 * The slab is now more allocated than it was, so the
1690b942e89bSDavid Valin 	 * order remains unchanged.
1691b942e89bSDavid Valin 	 */
1692b942e89bSDavid Valin 	ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1693b5fca8f8Stomee 	return (buf);
1694b5fca8f8Stomee }
1695b5fca8f8Stomee 
1696b5fca8f8Stomee /*
1697b5fca8f8Stomee  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1698b5fca8f8Stomee  */
1699b5fca8f8Stomee static void *
1700b5fca8f8Stomee kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1701b5fca8f8Stomee {
1702b5fca8f8Stomee 	kmem_slab_t *sp;
1703b5fca8f8Stomee 	void *buf;
17044d4c4c43STom Erickson 	boolean_t test_destructor;
1705b5fca8f8Stomee 
1706b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
17074d4c4c43STom Erickson 	test_destructor = (cp->cache_slab_alloc == 0);
1708b5fca8f8Stomee 	sp = avl_first(&cp->cache_partial_slabs);
1709b5fca8f8Stomee 	if (sp == NULL) {
1710b5fca8f8Stomee 		ASSERT(cp->cache_bufslab == 0);
1711b5fca8f8Stomee 
1712b5fca8f8Stomee 		/*
1713b5fca8f8Stomee 		 * The freelist is empty.  Create a new slab.
1714b5fca8f8Stomee 		 */
1715b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
1716b5fca8f8Stomee 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1717b5fca8f8Stomee 			return (NULL);
1718b5fca8f8Stomee 		}
1719b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
1720b5fca8f8Stomee 		cp->cache_slab_create++;
1721b5fca8f8Stomee 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1722b5fca8f8Stomee 			cp->cache_bufmax = cp->cache_buftotal;
1723b5fca8f8Stomee 		cp->cache_bufslab += sp->slab_chunks;
1724b5fca8f8Stomee 	}
17257c478bd9Sstevel@tonic-gate 
1726b942e89bSDavid Valin 	buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1727b5fca8f8Stomee 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1728b5fca8f8Stomee 	    (cp->cache_complete_slab_count +
1729b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs) +
1730b5fca8f8Stomee 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
17317c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
17327c478bd9Sstevel@tonic-gate 
17334d4c4c43STom Erickson 	if (test_destructor && cp->cache_destructor != NULL) {
17344d4c4c43STom Erickson 		/*
17354d4c4c43STom Erickson 		 * On the first kmem_slab_alloc(), assert that it is valid to
17364d4c4c43STom Erickson 		 * call the destructor on a newly constructed object without any
17374d4c4c43STom Erickson 		 * client involvement.
17384d4c4c43STom Erickson 		 */
17394d4c4c43STom Erickson 		if ((cp->cache_constructor == NULL) ||
17404d4c4c43STom Erickson 		    cp->cache_constructor(buf, cp->cache_private,
17414d4c4c43STom Erickson 		    kmflag) == 0) {
17424d4c4c43STom Erickson 			cp->cache_destructor(buf, cp->cache_private);
17434d4c4c43STom Erickson 		}
17444d4c4c43STom Erickson 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
17454d4c4c43STom Erickson 		    cp->cache_bufsize);
17464d4c4c43STom Erickson 		if (cp->cache_flags & KMF_DEADBEEF) {
17474d4c4c43STom Erickson 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
17484d4c4c43STom Erickson 		}
17494d4c4c43STom Erickson 	}
17504d4c4c43STom Erickson 
17517c478bd9Sstevel@tonic-gate 	return (buf);
17527c478bd9Sstevel@tonic-gate }
17537c478bd9Sstevel@tonic-gate 
1754b5fca8f8Stomee static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1755b5fca8f8Stomee 
17567c478bd9Sstevel@tonic-gate /*
17577c478bd9Sstevel@tonic-gate  * Free a raw (unconstructed) buffer to cp's slab layer.
17587c478bd9Sstevel@tonic-gate  */
17597c478bd9Sstevel@tonic-gate static void
17607c478bd9Sstevel@tonic-gate kmem_slab_free(kmem_cache_t *cp, void *buf)
17617c478bd9Sstevel@tonic-gate {
17627c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
17637c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp, **prev_bcpp;
17647c478bd9Sstevel@tonic-gate 
17657c478bd9Sstevel@tonic-gate 	ASSERT(buf != NULL);
17667c478bd9Sstevel@tonic-gate 
17677c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
17687c478bd9Sstevel@tonic-gate 	cp->cache_slab_free++;
17697c478bd9Sstevel@tonic-gate 
17707c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
17717c478bd9Sstevel@tonic-gate 		/*
17727c478bd9Sstevel@tonic-gate 		 * Look up buffer in allocated-address hash table.
17737c478bd9Sstevel@tonic-gate 		 */
17747c478bd9Sstevel@tonic-gate 		prev_bcpp = KMEM_HASH(cp, buf);
17757c478bd9Sstevel@tonic-gate 		while ((bcp = *prev_bcpp) != NULL) {
17767c478bd9Sstevel@tonic-gate 			if (bcp->bc_addr == buf) {
17777c478bd9Sstevel@tonic-gate 				*prev_bcpp = bcp->bc_next;
17787c478bd9Sstevel@tonic-gate 				sp = bcp->bc_slab;
17797c478bd9Sstevel@tonic-gate 				break;
17807c478bd9Sstevel@tonic-gate 			}
17817c478bd9Sstevel@tonic-gate 			cp->cache_lookup_depth++;
17827c478bd9Sstevel@tonic-gate 			prev_bcpp = &bcp->bc_next;
17837c478bd9Sstevel@tonic-gate 		}
17847c478bd9Sstevel@tonic-gate 	} else {
17857c478bd9Sstevel@tonic-gate 		bcp = KMEM_BUFCTL(cp, buf);
17867c478bd9Sstevel@tonic-gate 		sp = KMEM_SLAB(cp, buf);
17877c478bd9Sstevel@tonic-gate 	}
17887c478bd9Sstevel@tonic-gate 
17897c478bd9Sstevel@tonic-gate 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
17907c478bd9Sstevel@tonic-gate 		mutex_exit(&cp->cache_lock);
17917c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADADDR, cp, buf);
17927c478bd9Sstevel@tonic-gate 		return;
17937c478bd9Sstevel@tonic-gate 	}
17947c478bd9Sstevel@tonic-gate 
1795b5fca8f8Stomee 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1796b5fca8f8Stomee 		/*
1797b5fca8f8Stomee 		 * If this is the buffer that prevented the consolidator from
1798b5fca8f8Stomee 		 * clearing the slab, we can reset the slab flags now that the
1799b5fca8f8Stomee 		 * buffer is freed. (It makes sense to do this in
1800b5fca8f8Stomee 		 * kmem_cache_free(), where the client gives up ownership of the
1801b5fca8f8Stomee 		 * buffer, but on the hot path the test is too expensive.)
1802b5fca8f8Stomee 		 */
1803b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
1804b5fca8f8Stomee 	}
1805b5fca8f8Stomee 
18067c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
18077c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_CONTENTS)
18087c478bd9Sstevel@tonic-gate 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
18097c478bd9Sstevel@tonic-gate 			    kmem_log_enter(kmem_content_log, buf,
18109f1b636aStomee 			    cp->cache_contents);
18117c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
18127c478bd9Sstevel@tonic-gate 	}
18137c478bd9Sstevel@tonic-gate 
18147c478bd9Sstevel@tonic-gate 	bcp->bc_next = sp->slab_head;
18157c478bd9Sstevel@tonic-gate 	sp->slab_head = bcp;
18167c478bd9Sstevel@tonic-gate 
18179f1b636aStomee 	cp->cache_bufslab++;
18187c478bd9Sstevel@tonic-gate 	ASSERT(sp->slab_refcnt >= 1);
1819b5fca8f8Stomee 
18207c478bd9Sstevel@tonic-gate 	if (--sp->slab_refcnt == 0) {
18217c478bd9Sstevel@tonic-gate 		/*
18227c478bd9Sstevel@tonic-gate 		 * There are no outstanding allocations from this slab,
18237c478bd9Sstevel@tonic-gate 		 * so we can reclaim the memory.
18247c478bd9Sstevel@tonic-gate 		 */
1825b5fca8f8Stomee 		if (sp->slab_chunks == 1) {
1826b5fca8f8Stomee 			list_remove(&cp->cache_complete_slabs, sp);
1827b5fca8f8Stomee 			cp->cache_complete_slab_count--;
1828b5fca8f8Stomee 		} else {
1829b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
1830b5fca8f8Stomee 		}
1831b5fca8f8Stomee 
18327c478bd9Sstevel@tonic-gate 		cp->cache_buftotal -= sp->slab_chunks;
18339f1b636aStomee 		cp->cache_bufslab -= sp->slab_chunks;
1834b5fca8f8Stomee 		/*
1835b5fca8f8Stomee 		 * Defer releasing the slab to the virtual memory subsystem
1836b5fca8f8Stomee 		 * while there is a pending move callback, since we guarantee
1837b5fca8f8Stomee 		 * that buffers passed to the move callback have only been
1838b5fca8f8Stomee 		 * touched by kmem or by the client itself. Since the memory
1839b5fca8f8Stomee 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1840b5fca8f8Stomee 		 * set at least one of the two lowest order bits, the client can
1841b5fca8f8Stomee 		 * test those bits in the move callback to determine whether or
1842b5fca8f8Stomee 		 * not it knows about the buffer (assuming that the client also
1843b5fca8f8Stomee 		 * sets one of those low order bits whenever it frees a buffer).
1844b5fca8f8Stomee 		 */
1845b5fca8f8Stomee 		if (cp->cache_defrag == NULL ||
1846b5fca8f8Stomee 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1847b5fca8f8Stomee 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1848b5fca8f8Stomee 			cp->cache_slab_destroy++;
1849b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1850b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
1851b5fca8f8Stomee 		} else {
1852b5fca8f8Stomee 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1853b5fca8f8Stomee 			/*
1854b5fca8f8Stomee 			 * Slabs are inserted at both ends of the deadlist to
1855b5fca8f8Stomee 			 * distinguish between slabs freed while move callbacks
1856b5fca8f8Stomee 			 * are pending (list head) and a slab freed while the
1857b5fca8f8Stomee 			 * lock is dropped in kmem_move_buffers() (list tail) so
1858b5fca8f8Stomee 			 * that in both cases slab_destroy() is called from the
1859b5fca8f8Stomee 			 * right context.
1860b5fca8f8Stomee 			 */
1861b5fca8f8Stomee 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1862b5fca8f8Stomee 				list_insert_tail(deadlist, sp);
1863b5fca8f8Stomee 			} else {
1864b5fca8f8Stomee 				list_insert_head(deadlist, sp);
1865b5fca8f8Stomee 			}
1866b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount++;
1867b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1868b5fca8f8Stomee 		}
18697c478bd9Sstevel@tonic-gate 		return;
18707c478bd9Sstevel@tonic-gate 	}
1871b5fca8f8Stomee 
1872b5fca8f8Stomee 	if (bcp->bc_next == NULL) {
1873b5fca8f8Stomee 		/* Transition the slab from completely allocated to partial. */
1874b5fca8f8Stomee 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1875b5fca8f8Stomee 		ASSERT(sp->slab_chunks > 1);
1876b5fca8f8Stomee 		list_remove(&cp->cache_complete_slabs, sp);
1877b5fca8f8Stomee 		cp->cache_complete_slab_count--;
1878b5fca8f8Stomee 		avl_add(&cp->cache_partial_slabs, sp);
1879b5fca8f8Stomee 	} else {
1880b5fca8f8Stomee 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1881b5fca8f8Stomee 	}
1882b5fca8f8Stomee 
1883b5fca8f8Stomee 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1884b5fca8f8Stomee 	    (cp->cache_complete_slab_count +
1885b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs) +
1886b5fca8f8Stomee 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
18877c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
18887c478bd9Sstevel@tonic-gate }
18897c478bd9Sstevel@tonic-gate 
1890b5fca8f8Stomee /*
1891b5fca8f8Stomee  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1892b5fca8f8Stomee  */
18937c478bd9Sstevel@tonic-gate static int
18947c478bd9Sstevel@tonic-gate kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
18957c478bd9Sstevel@tonic-gate     caddr_t caller)
18967c478bd9Sstevel@tonic-gate {
18977c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
18987c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
18997c478bd9Sstevel@tonic-gate 	uint32_t mtbf;
19007c478bd9Sstevel@tonic-gate 
19017c478bd9Sstevel@tonic-gate 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
19027c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFTAG, cp, buf);
19037c478bd9Sstevel@tonic-gate 		return (-1);
19047c478bd9Sstevel@tonic-gate 	}
19057c478bd9Sstevel@tonic-gate 
19067c478bd9Sstevel@tonic-gate 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
19077c478bd9Sstevel@tonic-gate 
19087c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
19097c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFCTL, cp, buf);
19107c478bd9Sstevel@tonic-gate 		return (-1);
19117c478bd9Sstevel@tonic-gate 	}
19127c478bd9Sstevel@tonic-gate 
19137c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
19147c478bd9Sstevel@tonic-gate 		if (!construct && (cp->cache_flags & KMF_LITE)) {
19157c478bd9Sstevel@tonic-gate 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
19167c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
19177c478bd9Sstevel@tonic-gate 				return (-1);
19187c478bd9Sstevel@tonic-gate 			}
19197c478bd9Sstevel@tonic-gate 			if (cp->cache_constructor != NULL)
19207c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = btp->bt_redzone;
19217c478bd9Sstevel@tonic-gate 			else
19227c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
19237c478bd9Sstevel@tonic-gate 		} else {
19247c478bd9Sstevel@tonic-gate 			construct = 1;
19257c478bd9Sstevel@tonic-gate 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
19267c478bd9Sstevel@tonic-gate 			    KMEM_UNINITIALIZED_PATTERN, buf,
19277c478bd9Sstevel@tonic-gate 			    cp->cache_verify)) {
19287c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
19297c478bd9Sstevel@tonic-gate 				return (-1);
19307c478bd9Sstevel@tonic-gate 			}
19317c478bd9Sstevel@tonic-gate 		}
19327c478bd9Sstevel@tonic-gate 	}
19337c478bd9Sstevel@tonic-gate 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
19347c478bd9Sstevel@tonic-gate 
19357c478bd9Sstevel@tonic-gate 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
19367c478bd9Sstevel@tonic-gate 	    gethrtime() % mtbf == 0 &&
19377c478bd9Sstevel@tonic-gate 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
19387c478bd9Sstevel@tonic-gate 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
19397c478bd9Sstevel@tonic-gate 		if (!construct && cp->cache_destructor != NULL)
19407c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
19417c478bd9Sstevel@tonic-gate 	} else {
19427c478bd9Sstevel@tonic-gate 		mtbf = 0;
19437c478bd9Sstevel@tonic-gate 	}
19447c478bd9Sstevel@tonic-gate 
19457c478bd9Sstevel@tonic-gate 	if (mtbf || (construct && cp->cache_constructor != NULL &&
19467c478bd9Sstevel@tonic-gate 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
19471a5e258fSJosef 'Jeff' Sipek 		atomic_inc_64(&cp->cache_alloc_fail);
19487c478bd9Sstevel@tonic-gate 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
19497c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_DEADBEEF)
19507c478bd9Sstevel@tonic-gate 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
19517c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
1952b5fca8f8Stomee 		return (1);
19537c478bd9Sstevel@tonic-gate 	}
19547c478bd9Sstevel@tonic-gate 
19557c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_AUDIT) {
19567c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
19577c478bd9Sstevel@tonic-gate 	}
19587c478bd9Sstevel@tonic-gate 
19597c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_LITE) &&
19607c478bd9Sstevel@tonic-gate 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
19617c478bd9Sstevel@tonic-gate 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
19627c478bd9Sstevel@tonic-gate 	}
19637c478bd9Sstevel@tonic-gate 
19647c478bd9Sstevel@tonic-gate 	return (0);
19657c478bd9Sstevel@tonic-gate }
19667c478bd9Sstevel@tonic-gate 
19677c478bd9Sstevel@tonic-gate static int
19687c478bd9Sstevel@tonic-gate kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
19697c478bd9Sstevel@tonic-gate {
19707c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
19717c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
19727c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
19737c478bd9Sstevel@tonic-gate 
19747c478bd9Sstevel@tonic-gate 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
19757c478bd9Sstevel@tonic-gate 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
19767c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_DUPFREE, cp, buf);
19777c478bd9Sstevel@tonic-gate 			return (-1);
19787c478bd9Sstevel@tonic-gate 		}
19797c478bd9Sstevel@tonic-gate 		sp = kmem_findslab(cp, buf);
19807c478bd9Sstevel@tonic-gate 		if (sp == NULL || sp->slab_cache != cp)
19817c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_BADADDR, cp, buf);
19827c478bd9Sstevel@tonic-gate 		else
19837c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_REDZONE, cp, buf);
19847c478bd9Sstevel@tonic-gate 		return (-1);
19857c478bd9Sstevel@tonic-gate 	}
19867c478bd9Sstevel@tonic-gate 
19877c478bd9Sstevel@tonic-gate 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
19887c478bd9Sstevel@tonic-gate 
19897c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
19907c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFCTL, cp, buf);
19917c478bd9Sstevel@tonic-gate 		return (-1);
19927c478bd9Sstevel@tonic-gate 	}
19937c478bd9Sstevel@tonic-gate 
19947c478bd9Sstevel@tonic-gate 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
19957c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_REDZONE, cp, buf);
19967c478bd9Sstevel@tonic-gate 		return (-1);
19977c478bd9Sstevel@tonic-gate 	}
19987c478bd9Sstevel@tonic-gate 
19997c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_AUDIT) {
20007c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_CONTENTS)
20017c478bd9Sstevel@tonic-gate 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
20027c478bd9Sstevel@tonic-gate 			    buf, cp->cache_contents);
20037c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
20047c478bd9Sstevel@tonic-gate 	}
20057c478bd9Sstevel@tonic-gate 
20067c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_LITE) &&
20077c478bd9Sstevel@tonic-gate 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
20087c478bd9Sstevel@tonic-gate 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
20097c478bd9Sstevel@tonic-gate 	}
20107c478bd9Sstevel@tonic-gate 
20117c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
20127c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
20137c478bd9Sstevel@tonic-gate 			btp->bt_redzone = *(uint64_t *)buf;
20147c478bd9Sstevel@tonic-gate 		else if (cp->cache_destructor != NULL)
20157c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
20167c478bd9Sstevel@tonic-gate 
20177c478bd9Sstevel@tonic-gate 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
20187c478bd9Sstevel@tonic-gate 	}
20197c478bd9Sstevel@tonic-gate 
20207c478bd9Sstevel@tonic-gate 	return (0);
20217c478bd9Sstevel@tonic-gate }
20227c478bd9Sstevel@tonic-gate 
20237c478bd9Sstevel@tonic-gate /*
20247c478bd9Sstevel@tonic-gate  * Free each object in magazine mp to cp's slab layer, and free mp itself.
20257c478bd9Sstevel@tonic-gate  */
20267c478bd9Sstevel@tonic-gate static void
20277c478bd9Sstevel@tonic-gate kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
20287c478bd9Sstevel@tonic-gate {
20297c478bd9Sstevel@tonic-gate 	int round;
20307c478bd9Sstevel@tonic-gate 
2031b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2032b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
20337c478bd9Sstevel@tonic-gate 
20347c478bd9Sstevel@tonic-gate 	for (round = 0; round < nrounds; round++) {
20357c478bd9Sstevel@tonic-gate 		void *buf = mp->mag_round[round];
20367c478bd9Sstevel@tonic-gate 
20377c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_DEADBEEF) {
20387c478bd9Sstevel@tonic-gate 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
20397c478bd9Sstevel@tonic-gate 			    cp->cache_verify) != NULL) {
20407c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
20417c478bd9Sstevel@tonic-gate 				continue;
20427c478bd9Sstevel@tonic-gate 			}
20437c478bd9Sstevel@tonic-gate 			if ((cp->cache_flags & KMF_LITE) &&
20447c478bd9Sstevel@tonic-gate 			    cp->cache_destructor != NULL) {
20457c478bd9Sstevel@tonic-gate 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
20467c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = btp->bt_redzone;
20477c478bd9Sstevel@tonic-gate 				cp->cache_destructor(buf, cp->cache_private);
20487c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
20497c478bd9Sstevel@tonic-gate 			}
20507c478bd9Sstevel@tonic-gate 		} else if (cp->cache_destructor != NULL) {
20517c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
20527c478bd9Sstevel@tonic-gate 		}
20537c478bd9Sstevel@tonic-gate 
20547c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
20557c478bd9Sstevel@tonic-gate 	}
20567c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
20577c478bd9Sstevel@tonic-gate 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
20587c478bd9Sstevel@tonic-gate }
20597c478bd9Sstevel@tonic-gate 
20607c478bd9Sstevel@tonic-gate /*
20617c478bd9Sstevel@tonic-gate  * Allocate a magazine from the depot.
20627c478bd9Sstevel@tonic-gate  */
20637c478bd9Sstevel@tonic-gate static kmem_magazine_t *
20647c478bd9Sstevel@tonic-gate kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
20657c478bd9Sstevel@tonic-gate {
20667c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp;
20677c478bd9Sstevel@tonic-gate 
20687c478bd9Sstevel@tonic-gate 	/*
20697c478bd9Sstevel@tonic-gate 	 * If we can't get the depot lock without contention,
20707c478bd9Sstevel@tonic-gate 	 * update our contention count.  We use the depot
20717c478bd9Sstevel@tonic-gate 	 * contention rate to determine whether we need to
20727c478bd9Sstevel@tonic-gate 	 * increase the magazine size for better scalability.
20737c478bd9Sstevel@tonic-gate 	 */
20747c478bd9Sstevel@tonic-gate 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
20757c478bd9Sstevel@tonic-gate 		mutex_enter(&cp->cache_depot_lock);
20767c478bd9Sstevel@tonic-gate 		cp->cache_depot_contention++;
20777c478bd9Sstevel@tonic-gate 	}
20787c478bd9Sstevel@tonic-gate 
20797c478bd9Sstevel@tonic-gate 	if ((mp = mlp->ml_list) != NULL) {
20807c478bd9Sstevel@tonic-gate 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
20817c478bd9Sstevel@tonic-gate 		mlp->ml_list = mp->mag_next;
20827c478bd9Sstevel@tonic-gate 		if (--mlp->ml_total < mlp->ml_min)
20837c478bd9Sstevel@tonic-gate 			mlp->ml_min = mlp->ml_total;
20847c478bd9Sstevel@tonic-gate 		mlp->ml_alloc++;
20857c478bd9Sstevel@tonic-gate 	}
20867c478bd9Sstevel@tonic-gate 
20877c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
20887c478bd9Sstevel@tonic-gate 
20897c478bd9Sstevel@tonic-gate 	return (mp);
20907c478bd9Sstevel@tonic-gate }
20917c478bd9Sstevel@tonic-gate 
20927c478bd9Sstevel@tonic-gate /*
20937c478bd9Sstevel@tonic-gate  * Free a magazine to the depot.
20947c478bd9Sstevel@tonic-gate  */
20957c478bd9Sstevel@tonic-gate static void
20967c478bd9Sstevel@tonic-gate kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
20977c478bd9Sstevel@tonic-gate {
20987c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
20997c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
21007c478bd9Sstevel@tonic-gate 	mp->mag_next = mlp->ml_list;
21017c478bd9Sstevel@tonic-gate 	mlp->ml_list = mp;
21027c478bd9Sstevel@tonic-gate 	mlp->ml_total++;
21037c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
21047c478bd9Sstevel@tonic-gate }
21057c478bd9Sstevel@tonic-gate 
21067c478bd9Sstevel@tonic-gate /*
21077c478bd9Sstevel@tonic-gate  * Update the working set statistics for cp's depot.
21087c478bd9Sstevel@tonic-gate  */
21097c478bd9Sstevel@tonic-gate static void
21107c478bd9Sstevel@tonic-gate kmem_depot_ws_update(kmem_cache_t *cp)
21117c478bd9Sstevel@tonic-gate {
21127c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
21137c478bd9Sstevel@tonic-gate 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
21147c478bd9Sstevel@tonic-gate 	cp->cache_full.ml_min = cp->cache_full.ml_total;
21157c478bd9Sstevel@tonic-gate 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
21167c478bd9Sstevel@tonic-gate 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
21177c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
21187c478bd9Sstevel@tonic-gate }
21197c478bd9Sstevel@tonic-gate 
21200c833d64SJosef 'Jeff' Sipek /*
21210c833d64SJosef 'Jeff' Sipek  * Set the working set statistics for cp's depot to zero.  (Everything is
21220c833d64SJosef 'Jeff' Sipek  * eligible for reaping.)
21230c833d64SJosef 'Jeff' Sipek  */
21240c833d64SJosef 'Jeff' Sipek static void
21250c833d64SJosef 'Jeff' Sipek kmem_depot_ws_zero(kmem_cache_t *cp)
21260c833d64SJosef 'Jeff' Sipek {
21270c833d64SJosef 'Jeff' Sipek 	mutex_enter(&cp->cache_depot_lock);
21280c833d64SJosef 'Jeff' Sipek 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
21290c833d64SJosef 'Jeff' Sipek 	cp->cache_full.ml_min = cp->cache_full.ml_total;
21300c833d64SJosef 'Jeff' Sipek 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
21310c833d64SJosef 'Jeff' Sipek 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
21320c833d64SJosef 'Jeff' Sipek 	mutex_exit(&cp->cache_depot_lock);
21330c833d64SJosef 'Jeff' Sipek }
21340c833d64SJosef 'Jeff' Sipek 
21351c207ae9SMatthew Ahrens /*
21361c207ae9SMatthew Ahrens  * The number of bytes to reap before we call kpreempt(). The default (1MB)
21371c207ae9SMatthew Ahrens  * causes us to preempt reaping up to hundreds of times per second. Using a
21381c207ae9SMatthew Ahrens  * larger value (1GB) causes this to have virtually no effect.
21391c207ae9SMatthew Ahrens  */
21401c207ae9SMatthew Ahrens size_t kmem_reap_preempt_bytes = 1024 * 1024;
21411c207ae9SMatthew Ahrens 
21427c478bd9Sstevel@tonic-gate /*
21437c478bd9Sstevel@tonic-gate  * Reap all magazines that have fallen out of the depot's working set.
21447c478bd9Sstevel@tonic-gate  */
21457c478bd9Sstevel@tonic-gate static void
21467c478bd9Sstevel@tonic-gate kmem_depot_ws_reap(kmem_cache_t *cp)
21477c478bd9Sstevel@tonic-gate {
21481c207ae9SMatthew Ahrens 	size_t bytes = 0;
21497c478bd9Sstevel@tonic-gate 	long reap;
21507c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp;
21517c478bd9Sstevel@tonic-gate 
2152b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2153b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
21547c478bd9Sstevel@tonic-gate 
21557c478bd9Sstevel@tonic-gate 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
21561c207ae9SMatthew Ahrens 	while (reap-- &&
21571c207ae9SMatthew Ahrens 	    (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
21587c478bd9Sstevel@tonic-gate 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
21591c207ae9SMatthew Ahrens 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
21601c207ae9SMatthew Ahrens 		if (bytes > kmem_reap_preempt_bytes) {
21611c207ae9SMatthew Ahrens 			kpreempt(KPREEMPT_SYNC);
21621c207ae9SMatthew Ahrens 			bytes = 0;
21631c207ae9SMatthew Ahrens 		}
21641c207ae9SMatthew Ahrens 	}
21657c478bd9Sstevel@tonic-gate 
21667c478bd9Sstevel@tonic-gate 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
21671c207ae9SMatthew Ahrens 	while (reap-- &&
21681c207ae9SMatthew Ahrens 	    (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
21697c478bd9Sstevel@tonic-gate 		kmem_magazine_destroy(cp, mp, 0);
21701c207ae9SMatthew Ahrens 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
21711c207ae9SMatthew Ahrens 		if (bytes > kmem_reap_preempt_bytes) {
21721c207ae9SMatthew Ahrens 			kpreempt(KPREEMPT_SYNC);
21731c207ae9SMatthew Ahrens 			bytes = 0;
21741c207ae9SMatthew Ahrens 		}
21751c207ae9SMatthew Ahrens 	}
21767c478bd9Sstevel@tonic-gate }
21777c478bd9Sstevel@tonic-gate 
21787c478bd9Sstevel@tonic-gate static void
21797c478bd9Sstevel@tonic-gate kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
21807c478bd9Sstevel@tonic-gate {
21817c478bd9Sstevel@tonic-gate 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
21827c478bd9Sstevel@tonic-gate 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
21837c478bd9Sstevel@tonic-gate 	ASSERT(ccp->cc_magsize > 0);
21847c478bd9Sstevel@tonic-gate 
21857c478bd9Sstevel@tonic-gate 	ccp->cc_ploaded = ccp->cc_loaded;
21867c478bd9Sstevel@tonic-gate 	ccp->cc_prounds = ccp->cc_rounds;
21877c478bd9Sstevel@tonic-gate 	ccp->cc_loaded = mp;
21887c478bd9Sstevel@tonic-gate 	ccp->cc_rounds = rounds;
21897c478bd9Sstevel@tonic-gate }
21907c478bd9Sstevel@tonic-gate 
21919dd77bc8SDave Plauger /*
21929dd77bc8SDave Plauger  * Intercept kmem alloc/free calls during crash dump in order to avoid
21939dd77bc8SDave Plauger  * changing kmem state while memory is being saved to the dump device.
21949dd77bc8SDave Plauger  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
21959dd77bc8SDave Plauger  * there are no locks because only one CPU calls kmem during a crash
21969dd77bc8SDave Plauger  * dump. To enable this feature, first create the associated vmem
21979dd77bc8SDave Plauger  * arena with VMC_DUMPSAFE.
21989dd77bc8SDave Plauger  */
21999dd77bc8SDave Plauger static void *kmem_dump_start;	/* start of pre-reserved heap */
22009dd77bc8SDave Plauger static void *kmem_dump_end;	/* end of heap area */
22019dd77bc8SDave Plauger static void *kmem_dump_curr;	/* current free heap pointer */
22029dd77bc8SDave Plauger static size_t kmem_dump_size;	/* size of heap area */
22039dd77bc8SDave Plauger 
22049dd77bc8SDave Plauger /* append to each buf created in the pre-reserved heap */
22059dd77bc8SDave Plauger typedef struct kmem_dumpctl {
22069dd77bc8SDave Plauger 	void	*kdc_next;	/* cache dump free list linkage */
22079dd77bc8SDave Plauger } kmem_dumpctl_t;
22089dd77bc8SDave Plauger 
22099dd77bc8SDave Plauger #define	KMEM_DUMPCTL(cp, buf)	\
22109dd77bc8SDave Plauger 	((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
22119dd77bc8SDave Plauger 	    sizeof (void *)))
22129dd77bc8SDave Plauger 
22139dd77bc8SDave Plauger /* Keep some simple stats. */
22149dd77bc8SDave Plauger #define	KMEM_DUMP_LOGS	(100)
22159dd77bc8SDave Plauger 
22169dd77bc8SDave Plauger typedef struct kmem_dump_log {
22179dd77bc8SDave Plauger 	kmem_cache_t	*kdl_cache;
22189dd77bc8SDave Plauger 	uint_t		kdl_allocs;		/* # of dump allocations */
22199dd77bc8SDave Plauger 	uint_t		kdl_frees;		/* # of dump frees */
22209dd77bc8SDave Plauger 	uint_t		kdl_alloc_fails;	/* # of allocation failures */
22219dd77bc8SDave Plauger 	uint_t		kdl_free_nondump;	/* # of non-dump frees */
22229dd77bc8SDave Plauger 	uint_t		kdl_unsafe;		/* cache was used, but unsafe */
22239dd77bc8SDave Plauger } kmem_dump_log_t;
22249dd77bc8SDave Plauger 
22259dd77bc8SDave Plauger static kmem_dump_log_t *kmem_dump_log;
22269dd77bc8SDave Plauger static int kmem_dump_log_idx;
22279dd77bc8SDave Plauger 
22289dd77bc8SDave Plauger #define	KDI_LOG(cp, stat) {						\
22299dd77bc8SDave Plauger 	kmem_dump_log_t *kdl;						\
22309dd77bc8SDave Plauger 	if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) {	\
22319dd77bc8SDave Plauger 		kdl->stat++;						\
22329dd77bc8SDave Plauger 	} else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {		\
22339dd77bc8SDave Plauger 		kdl = &kmem_dump_log[kmem_dump_log_idx++];		\
22349dd77bc8SDave Plauger 		kdl->stat++;						\
22359dd77bc8SDave Plauger 		kdl->kdl_cache = (cp);					\
22369dd77bc8SDave Plauger 		(cp)->cache_dumplog = kdl;				\
22379dd77bc8SDave Plauger 	}								\
22389dd77bc8SDave Plauger }
22399dd77bc8SDave Plauger 
22409dd77bc8SDave Plauger /* set non zero for full report */
22419dd77bc8SDave Plauger uint_t kmem_dump_verbose = 0;
22429dd77bc8SDave Plauger 
22439dd77bc8SDave Plauger /* stats for overize heap */
22449dd77bc8SDave Plauger uint_t kmem_dump_oversize_allocs = 0;
22459dd77bc8SDave Plauger uint_t kmem_dump_oversize_max = 0;
22469dd77bc8SDave Plauger 
22479dd77bc8SDave Plauger static void
22489dd77bc8SDave Plauger kmem_dumppr(char **pp, char *e, const char *format, ...)
22499dd77bc8SDave Plauger {
22509dd77bc8SDave Plauger 	char *p = *pp;
22519dd77bc8SDave Plauger 
22529dd77bc8SDave Plauger 	if (p < e) {
22539dd77bc8SDave Plauger 		int n;
22549dd77bc8SDave Plauger 		va_list ap;
22559dd77bc8SDave Plauger 
22569dd77bc8SDave Plauger 		va_start(ap, format);
22579dd77bc8SDave Plauger 		n = vsnprintf(p, e - p, format, ap);
22589dd77bc8SDave Plauger 		va_end(ap);
22599dd77bc8SDave Plauger 		*pp = p + n;
22609dd77bc8SDave Plauger 	}
22619dd77bc8SDave Plauger }
22629dd77bc8SDave Plauger 
22639dd77bc8SDave Plauger /*
22649dd77bc8SDave Plauger  * Called when dumpadm(1M) configures dump parameters.
22659dd77bc8SDave Plauger  */
22669dd77bc8SDave Plauger void
22679dd77bc8SDave Plauger kmem_dump_init(size_t size)
22689dd77bc8SDave Plauger {
22699dd77bc8SDave Plauger 	if (kmem_dump_start != NULL)
22709dd77bc8SDave Plauger 		kmem_free(kmem_dump_start, kmem_dump_size);
22719dd77bc8SDave Plauger 
22729dd77bc8SDave Plauger 	if (kmem_dump_log == NULL)
22739dd77bc8SDave Plauger 		kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
22749dd77bc8SDave Plauger 		    sizeof (kmem_dump_log_t), KM_SLEEP);
22759dd77bc8SDave Plauger 
22769dd77bc8SDave Plauger 	kmem_dump_start = kmem_alloc(size, KM_SLEEP);
22779dd77bc8SDave Plauger 
22789dd77bc8SDave Plauger 	if (kmem_dump_start != NULL) {
22799dd77bc8SDave Plauger 		kmem_dump_size = size;
22809dd77bc8SDave Plauger 		kmem_dump_curr = kmem_dump_start;
22819dd77bc8SDave Plauger 		kmem_dump_end = (void *)((char *)kmem_dump_start + size);
22829dd77bc8SDave Plauger 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
22839dd77bc8SDave Plauger 	} else {
22849dd77bc8SDave Plauger 		kmem_dump_size = 0;
22859dd77bc8SDave Plauger 		kmem_dump_curr = NULL;
22869dd77bc8SDave Plauger 		kmem_dump_end = NULL;
22879dd77bc8SDave Plauger 	}
22889dd77bc8SDave Plauger }
22899dd77bc8SDave Plauger 
22909dd77bc8SDave Plauger /*
22919dd77bc8SDave Plauger  * Set flag for each kmem_cache_t if is safe to use alternate dump
22929dd77bc8SDave Plauger  * memory. Called just before panic crash dump starts. Set the flag
22939dd77bc8SDave Plauger  * for the calling CPU.
22949dd77bc8SDave Plauger  */
22959dd77bc8SDave Plauger void
22969dd77bc8SDave Plauger kmem_dump_begin(void)
22979dd77bc8SDave Plauger {
22989dd77bc8SDave Plauger 	ASSERT(panicstr != NULL);
22999dd77bc8SDave Plauger 	if (kmem_dump_start != NULL) {
23009dd77bc8SDave Plauger 		kmem_cache_t *cp;
23019dd77bc8SDave Plauger 
23029dd77bc8SDave Plauger 		for (cp = list_head(&kmem_caches); cp != NULL;
23039dd77bc8SDave Plauger 		    cp = list_next(&kmem_caches, cp)) {
23049dd77bc8SDave Plauger 			kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
23059dd77bc8SDave Plauger 
23069dd77bc8SDave Plauger 			if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
23079dd77bc8SDave Plauger 				cp->cache_flags |= KMF_DUMPDIVERT;
23089dd77bc8SDave Plauger 				ccp->cc_flags |= KMF_DUMPDIVERT;
23099dd77bc8SDave Plauger 				ccp->cc_dump_rounds = ccp->cc_rounds;
23109dd77bc8SDave Plauger 				ccp->cc_dump_prounds = ccp->cc_prounds;
23119dd77bc8SDave Plauger 				ccp->cc_rounds = ccp->cc_prounds = -1;
23129dd77bc8SDave Plauger 			} else {
23139dd77bc8SDave Plauger 				cp->cache_flags |= KMF_DUMPUNSAFE;
23149dd77bc8SDave Plauger 				ccp->cc_flags |= KMF_DUMPUNSAFE;
23159dd77bc8SDave Plauger 			}
23169dd77bc8SDave Plauger 		}
23179dd77bc8SDave Plauger 	}
23189dd77bc8SDave Plauger }
23199dd77bc8SDave Plauger 
23209dd77bc8SDave Plauger /*
23219dd77bc8SDave Plauger  * finished dump intercept
23229dd77bc8SDave Plauger  * print any warnings on the console
23239dd77bc8SDave Plauger  * return verbose information to dumpsys() in the given buffer
23249dd77bc8SDave Plauger  */
23259dd77bc8SDave Plauger size_t
23269dd77bc8SDave Plauger kmem_dump_finish(char *buf, size_t size)
23279dd77bc8SDave Plauger {
23289dd77bc8SDave Plauger 	int kdi_idx;
23299dd77bc8SDave Plauger 	int kdi_end = kmem_dump_log_idx;
23309dd77bc8SDave Plauger 	int percent = 0;
23319dd77bc8SDave Plauger 	int header = 0;
23329dd77bc8SDave Plauger 	int warn = 0;
23339dd77bc8SDave Plauger 	size_t used;
23349dd77bc8SDave Plauger 	kmem_cache_t *cp;
23359dd77bc8SDave Plauger 	kmem_dump_log_t *kdl;
23369dd77bc8SDave Plauger 	char *e = buf + size;
23379dd77bc8SDave Plauger 	char *p = buf;
23389dd77bc8SDave Plauger 
23399dd77bc8SDave Plauger 	if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
23409dd77bc8SDave Plauger 		return (0);
23419dd77bc8SDave Plauger 
23429dd77bc8SDave Plauger 	used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
23439dd77bc8SDave Plauger 	percent = (used * 100) / kmem_dump_size;
23449dd77bc8SDave Plauger 
23459dd77bc8SDave Plauger 	kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
23469dd77bc8SDave Plauger 	kmem_dumppr(&p, e, "used bytes,%ld\n", used);
23479dd77bc8SDave Plauger 	kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
23489dd77bc8SDave Plauger 	kmem_dumppr(&p, e, "Oversize allocs,%d\n",
23499dd77bc8SDave Plauger 	    kmem_dump_oversize_allocs);
23509dd77bc8SDave Plauger 	kmem_dumppr(&p, e, "Oversize max size,%ld\n",
23519dd77bc8SDave Plauger 	    kmem_dump_oversize_max);
23529dd77bc8SDave Plauger 
23539dd77bc8SDave Plauger 	for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
23549dd77bc8SDave Plauger 		kdl = &kmem_dump_log[kdi_idx];
23559dd77bc8SDave Plauger 		cp = kdl->kdl_cache;
23569dd77bc8SDave Plauger 		if (cp == NULL)
23579dd77bc8SDave Plauger 			break;
23589dd77bc8SDave Plauger 		if (kdl->kdl_alloc_fails)
23599dd77bc8SDave Plauger 			++warn;
23609dd77bc8SDave Plauger 		if (header == 0) {
23619dd77bc8SDave Plauger 			kmem_dumppr(&p, e,
23629dd77bc8SDave Plauger 			    "Cache Name,Allocs,Frees,Alloc Fails,"
23639dd77bc8SDave Plauger 			    "Nondump Frees,Unsafe Allocs/Frees\n");
23649dd77bc8SDave Plauger 			header = 1;
23659dd77bc8SDave Plauger 		}
23669dd77bc8SDave Plauger 		kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
23679dd77bc8SDave Plauger 		    cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
23689dd77bc8SDave Plauger 		    kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
23699dd77bc8SDave Plauger 		    kdl->kdl_unsafe);
23709dd77bc8SDave Plauger 	}
23719dd77bc8SDave Plauger 
23729dd77bc8SDave Plauger 	/* return buffer size used */
23739dd77bc8SDave Plauger 	if (p < e)
23749dd77bc8SDave Plauger 		bzero(p, e - p);
23759dd77bc8SDave Plauger 	return (p - buf);
23769dd77bc8SDave Plauger }
23779dd77bc8SDave Plauger 
23789dd77bc8SDave Plauger /*
23799dd77bc8SDave Plauger  * Allocate a constructed object from alternate dump memory.
23809dd77bc8SDave Plauger  */
23819dd77bc8SDave Plauger void *
23829dd77bc8SDave Plauger kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
23839dd77bc8SDave Plauger {
23849dd77bc8SDave Plauger 	void *buf;
23859dd77bc8SDave Plauger 	void *curr;
23869dd77bc8SDave Plauger 	char *bufend;
23879dd77bc8SDave Plauger 
23889dd77bc8SDave Plauger 	/* return a constructed object */
23899dd77bc8SDave Plauger 	if ((buf = cp->cache_dumpfreelist) != NULL) {
23909dd77bc8SDave Plauger 		cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
23919dd77bc8SDave Plauger 		KDI_LOG(cp, kdl_allocs);
23929dd77bc8SDave Plauger 		return (buf);
23939dd77bc8SDave Plauger 	}
23949dd77bc8SDave Plauger 
23959dd77bc8SDave Plauger 	/* create a new constructed object */
23969dd77bc8SDave Plauger 	curr = kmem_dump_curr;
23979dd77bc8SDave Plauger 	buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
23989dd77bc8SDave Plauger 	bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
23999dd77bc8SDave Plauger 
24009dd77bc8SDave Plauger 	/* hat layer objects cannot cross a page boundary */
24019dd77bc8SDave Plauger 	if (cp->cache_align < PAGESIZE) {
24029dd77bc8SDave Plauger 		char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
24039dd77bc8SDave Plauger 		if (bufend > page) {
24049dd77bc8SDave Plauger 			bufend += page - (char *)buf;
24059dd77bc8SDave Plauger 			buf = (void *)page;
24069dd77bc8SDave Plauger 		}
24079dd77bc8SDave Plauger 	}
24089dd77bc8SDave Plauger 
24099dd77bc8SDave Plauger 	/* fall back to normal alloc if reserved area is used up */
24109dd77bc8SDave Plauger 	if (bufend > (char *)kmem_dump_end) {
24119dd77bc8SDave Plauger 		kmem_dump_curr = kmem_dump_end;
24129dd77bc8SDave Plauger 		KDI_LOG(cp, kdl_alloc_fails);
24139dd77bc8SDave Plauger 		return (NULL);
24149dd77bc8SDave Plauger 	}
24159dd77bc8SDave Plauger 
24169dd77bc8SDave Plauger 	/*
24179dd77bc8SDave Plauger 	 * Must advance curr pointer before calling a constructor that
24189dd77bc8SDave Plauger 	 * may also allocate memory.
24199dd77bc8SDave Plauger 	 */
24209dd77bc8SDave Plauger 	kmem_dump_curr = bufend;
24219dd77bc8SDave Plauger 
24229dd77bc8SDave Plauger 	/* run constructor */
24239dd77bc8SDave Plauger 	if (cp->cache_constructor != NULL &&
24249dd77bc8SDave Plauger 	    cp->cache_constructor(buf, cp->cache_private, kmflag)
24259dd77bc8SDave Plauger 	    != 0) {
24269dd77bc8SDave Plauger #ifdef DEBUG
24279dd77bc8SDave Plauger 		printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
24289dd77bc8SDave Plauger 		    cp->cache_name, (void *)cp);
24299dd77bc8SDave Plauger #endif
24309dd77bc8SDave Plauger 		/* reset curr pointer iff no allocs were done */
24319dd77bc8SDave Plauger 		if (kmem_dump_curr == bufend)
24329dd77bc8SDave Plauger 			kmem_dump_curr = curr;
24339dd77bc8SDave Plauger 
24349dd77bc8SDave Plauger 		/* fall back to normal alloc if the constructor fails */
24359dd77bc8SDave Plauger 		KDI_LOG(cp, kdl_alloc_fails);
24369dd77bc8SDave Plauger 		return (NULL);
24379dd77bc8SDave Plauger 	}
24389dd77bc8SDave Plauger 
24399dd77bc8SDave Plauger 	KDI_LOG(cp, kdl_allocs);
24409dd77bc8SDave Plauger 	return (buf);
24419dd77bc8SDave Plauger }
24429dd77bc8SDave Plauger 
24439dd77bc8SDave Plauger /*
24449dd77bc8SDave Plauger  * Free a constructed object in alternate dump memory.
24459dd77bc8SDave Plauger  */
24469dd77bc8SDave Plauger int
24479dd77bc8SDave Plauger kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
24489dd77bc8SDave Plauger {
24499dd77bc8SDave Plauger 	/* save constructed buffers for next time */
24509dd77bc8SDave Plauger 	if ((char *)buf >= (char *)kmem_dump_start &&
24519dd77bc8SDave Plauger 	    (char *)buf < (char *)kmem_dump_end) {
24529dd77bc8SDave Plauger 		KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
24539dd77bc8SDave Plauger 		cp->cache_dumpfreelist = buf;
24549dd77bc8SDave Plauger 		KDI_LOG(cp, kdl_frees);
24559dd77bc8SDave Plauger 		return (0);
24569dd77bc8SDave Plauger 	}
24579dd77bc8SDave Plauger 
24589dd77bc8SDave Plauger 	/* count all non-dump buf frees */
24599dd77bc8SDave Plauger 	KDI_LOG(cp, kdl_free_nondump);
24609dd77bc8SDave Plauger 
24619dd77bc8SDave Plauger 	/* just drop buffers that were allocated before dump started */
24629dd77bc8SDave Plauger 	if (kmem_dump_curr < kmem_dump_end)
24639dd77bc8SDave Plauger 		return (0);
24649dd77bc8SDave Plauger 
24659dd77bc8SDave Plauger 	/* fall back to normal free if reserved area is used up */
24669dd77bc8SDave Plauger 	return (1);
24679dd77bc8SDave Plauger }
24689dd77bc8SDave Plauger 
24697c478bd9Sstevel@tonic-gate /*
24707c478bd9Sstevel@tonic-gate  * Allocate a constructed object from cache cp.
24717c478bd9Sstevel@tonic-gate  */
24727c478bd9Sstevel@tonic-gate void *
24737c478bd9Sstevel@tonic-gate kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
24747c478bd9Sstevel@tonic-gate {
24757c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
24767c478bd9Sstevel@tonic-gate 	kmem_magazine_t *fmp;
24777c478bd9Sstevel@tonic-gate 	void *buf;
24787c478bd9Sstevel@tonic-gate 
24797c478bd9Sstevel@tonic-gate 	mutex_enter(&ccp->cc_lock);
24807c478bd9Sstevel@tonic-gate 	for (;;) {
24817c478bd9Sstevel@tonic-gate 		/*
24827c478bd9Sstevel@tonic-gate 		 * If there's an object available in the current CPU's
24837c478bd9Sstevel@tonic-gate 		 * loaded magazine, just take it and return.
24847c478bd9Sstevel@tonic-gate 		 */
24857c478bd9Sstevel@tonic-gate 		if (ccp->cc_rounds > 0) {
24867c478bd9Sstevel@tonic-gate 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
24877c478bd9Sstevel@tonic-gate 			ccp->cc_alloc++;
24887c478bd9Sstevel@tonic-gate 			mutex_exit(&ccp->cc_lock);
24899dd77bc8SDave Plauger 			if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
24909dd77bc8SDave Plauger 				if (ccp->cc_flags & KMF_DUMPUNSAFE) {
24919dd77bc8SDave Plauger 					ASSERT(!(ccp->cc_flags &
24929dd77bc8SDave Plauger 					    KMF_DUMPDIVERT));
24939dd77bc8SDave Plauger 					KDI_LOG(cp, kdl_unsafe);
24949dd77bc8SDave Plauger 				}
24959dd77bc8SDave Plauger 				if ((ccp->cc_flags & KMF_BUFTAG) &&
24969dd77bc8SDave Plauger 				    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
24979dd77bc8SDave Plauger 				    caller()) != 0) {
24989dd77bc8SDave Plauger 					if (kmflag & KM_NOSLEEP)
24999dd77bc8SDave Plauger 						return (NULL);
25009dd77bc8SDave Plauger 					mutex_enter(&ccp->cc_lock);
25019dd77bc8SDave Plauger 					continue;
25029dd77bc8SDave Plauger 				}
25037c478bd9Sstevel@tonic-gate 			}
25047c478bd9Sstevel@tonic-gate 			return (buf);
25057c478bd9Sstevel@tonic-gate 		}
25067c478bd9Sstevel@tonic-gate 
25077c478bd9Sstevel@tonic-gate 		/*
25087c478bd9Sstevel@tonic-gate 		 * The loaded magazine is empty.  If the previously loaded
25097c478bd9Sstevel@tonic-gate 		 * magazine was full, exchange them and try again.
25107c478bd9Sstevel@tonic-gate 		 */
25117c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds > 0) {
25127c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
25137c478bd9Sstevel@tonic-gate 			continue;
25147c478bd9Sstevel@tonic-gate 		}
25157c478bd9Sstevel@tonic-gate 
25169dd77bc8SDave Plauger 		/*
25179dd77bc8SDave Plauger 		 * Return an alternate buffer at dump time to preserve
25189dd77bc8SDave Plauger 		 * the heap.
25199dd77bc8SDave Plauger 		 */
25209dd77bc8SDave Plauger 		if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
25219dd77bc8SDave Plauger 			if (ccp->cc_flags & KMF_DUMPUNSAFE) {
25229dd77bc8SDave Plauger 				ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
25239dd77bc8SDave Plauger 				/* log it so that we can warn about it */
25249dd77bc8SDave Plauger 				KDI_LOG(cp, kdl_unsafe);
25259dd77bc8SDave Plauger 			} else {
25269dd77bc8SDave Plauger 				if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
25279dd77bc8SDave Plauger 				    NULL) {
25289dd77bc8SDave Plauger 					mutex_exit(&ccp->cc_lock);
25299dd77bc8SDave Plauger 					return (buf);
25309dd77bc8SDave Plauger 				}
25319dd77bc8SDave Plauger 				break;		/* fall back to slab layer */
25329dd77bc8SDave Plauger 			}
25339dd77bc8SDave Plauger 		}
25349dd77bc8SDave Plauger 
25357c478bd9Sstevel@tonic-gate 		/*
25367c478bd9Sstevel@tonic-gate 		 * If the magazine layer is disabled, break out now.
25377c478bd9Sstevel@tonic-gate 		 */
25387c478bd9Sstevel@tonic-gate 		if (ccp->cc_magsize == 0)
25397c478bd9Sstevel@tonic-gate 			break;
25407c478bd9Sstevel@tonic-gate 
25417c478bd9Sstevel@tonic-gate 		/*
25427c478bd9Sstevel@tonic-gate 		 * Try to get a full magazine from the depot.
25437c478bd9Sstevel@tonic-gate 		 */
25447c478bd9Sstevel@tonic-gate 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
25457c478bd9Sstevel@tonic-gate 		if (fmp != NULL) {
25467c478bd9Sstevel@tonic-gate 			if (ccp->cc_ploaded != NULL)
25477c478bd9Sstevel@tonic-gate 				kmem_depot_free(cp, &cp->cache_empty,
25487c478bd9Sstevel@tonic-gate 				    ccp->cc_ploaded);
25497c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
25507c478bd9Sstevel@tonic-gate 			continue;
25517c478bd9Sstevel@tonic-gate 		}
25527c478bd9Sstevel@tonic-gate 
25537c478bd9Sstevel@tonic-gate 		/*
25547c478bd9Sstevel@tonic-gate 		 * There are no full magazines in the depot,
25557c478bd9Sstevel@tonic-gate 		 * so fall through to the slab layer.
25567c478bd9Sstevel@tonic-gate 		 */
25577c478bd9Sstevel@tonic-gate 		break;
25587c478bd9Sstevel@tonic-gate 	}
25597c478bd9Sstevel@tonic-gate 	mutex_exit(&ccp->cc_lock);
25607c478bd9Sstevel@tonic-gate 
25617c478bd9Sstevel@tonic-gate 	/*
25627c478bd9Sstevel@tonic-gate 	 * We couldn't allocate a constructed object from the magazine layer,
25637c478bd9Sstevel@tonic-gate 	 * so get a raw buffer from the slab layer and apply its constructor.
25647c478bd9Sstevel@tonic-gate 	 */
25657c478bd9Sstevel@tonic-gate 	buf = kmem_slab_alloc(cp, kmflag);
25667c478bd9Sstevel@tonic-gate 
25677c478bd9Sstevel@tonic-gate 	if (buf == NULL)
25687c478bd9Sstevel@tonic-gate 		return (NULL);
25697c478bd9Sstevel@tonic-gate 
25707c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_BUFTAG) {
25717c478bd9Sstevel@tonic-gate 		/*
25727c478bd9Sstevel@tonic-gate 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
25737c478bd9Sstevel@tonic-gate 		 */
2574b5fca8f8Stomee 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2575b5fca8f8Stomee 		if (rc != 0) {
25767c478bd9Sstevel@tonic-gate 			if (kmflag & KM_NOSLEEP)
25777c478bd9Sstevel@tonic-gate 				return (NULL);
25787c478bd9Sstevel@tonic-gate 			/*
25797c478bd9Sstevel@tonic-gate 			 * kmem_cache_alloc_debug() detected corruption
2580b5fca8f8Stomee 			 * but didn't panic (kmem_panic <= 0). We should not be
2581b5fca8f8Stomee 			 * here because the constructor failed (indicated by a
2582b5fca8f8Stomee 			 * return code of 1). Try again.
25837c478bd9Sstevel@tonic-gate 			 */
2584b5fca8f8Stomee 			ASSERT(rc == -1);
25857c478bd9Sstevel@tonic-gate 			return (kmem_cache_alloc(cp, kmflag));
25867c478bd9Sstevel@tonic-gate 		}
25877c478bd9Sstevel@tonic-gate 		return (buf);
25887c478bd9Sstevel@tonic-gate 	}
25897c478bd9Sstevel@tonic-gate 
25907c478bd9Sstevel@tonic-gate 	if (cp->cache_constructor != NULL &&
25917c478bd9Sstevel@tonic-gate 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
25921a5e258fSJosef 'Jeff' Sipek 		atomic_inc_64(&cp->cache_alloc_fail);
25937c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
25947c478bd9Sstevel@tonic-gate 		return (NULL);
25957c478bd9Sstevel@tonic-gate 	}
25967c478bd9Sstevel@tonic-gate 
25977c478bd9Sstevel@tonic-gate 	return (buf);
25987c478bd9Sstevel@tonic-gate }
25997c478bd9Sstevel@tonic-gate 
26007c478bd9Sstevel@tonic-gate /*
2601b5fca8f8Stomee  * The freed argument tells whether or not kmem_cache_free_debug() has already
2602b5fca8f8Stomee  * been called so that we can avoid the duplicate free error. For example, a
2603b5fca8f8Stomee  * buffer on a magazine has already been freed by the client but is still
2604b5fca8f8Stomee  * constructed.
26057c478bd9Sstevel@tonic-gate  */
2606b5fca8f8Stomee static void
2607b5fca8f8Stomee kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
26087c478bd9Sstevel@tonic-gate {
2609b5fca8f8Stomee 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
26107c478bd9Sstevel@tonic-gate 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
26117c478bd9Sstevel@tonic-gate 			return;
26127c478bd9Sstevel@tonic-gate 
2613b5fca8f8Stomee 	/*
2614b5fca8f8Stomee 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2615b5fca8f8Stomee 	 * kmem_cache_free_debug() will have already applied the destructor.
2616b5fca8f8Stomee 	 */
2617b5fca8f8Stomee 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2618b5fca8f8Stomee 	    cp->cache_destructor != NULL) {
2619b5fca8f8Stomee 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2620b5fca8f8Stomee 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2621b5fca8f8Stomee 			*(uint64_t *)buf = btp->bt_redzone;
2622b5fca8f8Stomee 			cp->cache_destructor(buf, cp->cache_private);
2623b5fca8f8Stomee 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2624b5fca8f8Stomee 		} else {
2625b5fca8f8Stomee 			cp->cache_destructor(buf, cp->cache_private);
2626b5fca8f8Stomee 		}
2627b5fca8f8Stomee 	}
2628b5fca8f8Stomee 
2629b5fca8f8Stomee 	kmem_slab_free(cp, buf);
2630b5fca8f8Stomee }
2631b5fca8f8Stomee 
2632b942e89bSDavid Valin /*
2633b942e89bSDavid Valin  * Used when there's no room to free a buffer to the per-CPU cache.
2634b942e89bSDavid Valin  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2635b942e89bSDavid Valin  * caller should try freeing to the per-CPU cache again.
2636b942e89bSDavid Valin  * Note that we don't directly install the magazine in the cpu cache,
2637b942e89bSDavid Valin  * since its state may have changed wildly while the lock was dropped.
2638b942e89bSDavid Valin  */
2639b942e89bSDavid Valin static int
2640b942e89bSDavid Valin kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2641b942e89bSDavid Valin {
2642b942e89bSDavid Valin 	kmem_magazine_t *emp;
2643b942e89bSDavid Valin 	kmem_magtype_t *mtp;
2644b942e89bSDavid Valin 
2645b942e89bSDavid Valin 	ASSERT(MUTEX_HELD(&ccp->cc_lock));
2646b942e89bSDavid Valin 	ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2647b942e89bSDavid Valin 	    ((uint_t)ccp->cc_rounds == -1)) &&
2648b942e89bSDavid Valin 	    ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2649b942e89bSDavid Valin 	    ((uint_t)ccp->cc_prounds == -1)));
2650b942e89bSDavid Valin 
2651b942e89bSDavid Valin 	emp = kmem_depot_alloc(cp, &cp->cache_empty);
2652b942e89bSDavid Valin 	if (emp != NULL) {
2653b942e89bSDavid Valin 		if (ccp->cc_ploaded != NULL)
2654b942e89bSDavid Valin 			kmem_depot_free(cp, &cp->cache_full,
2655b942e89bSDavid Valin 			    ccp->cc_ploaded);
2656b942e89bSDavid Valin 		kmem_cpu_reload(ccp, emp, 0);
2657b942e89bSDavid Valin 		return (1);
2658b942e89bSDavid Valin 	}
2659b942e89bSDavid Valin 	/*
2660b942e89bSDavid Valin 	 * There are no empty magazines in the depot,
2661b942e89bSDavid Valin 	 * so try to allocate a new one.  We must drop all locks
2662b942e89bSDavid Valin 	 * across kmem_cache_alloc() because lower layers may
2663b942e89bSDavid Valin 	 * attempt to allocate from this cache.
2664b942e89bSDavid Valin 	 */
2665b942e89bSDavid Valin 	mtp = cp->cache_magtype;
2666b942e89bSDavid Valin 	mutex_exit(&ccp->cc_lock);
2667b942e89bSDavid Valin 	emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2668b942e89bSDavid Valin 	mutex_enter(&ccp->cc_lock);
2669b942e89bSDavid Valin 
2670b942e89bSDavid Valin 	if (emp != NULL) {
2671b942e89bSDavid Valin 		/*
2672b942e89bSDavid Valin 		 * We successfully allocated an empty magazine.
2673b942e89bSDavid Valin 		 * However, we had to drop ccp->cc_lock to do it,
2674b942e89bSDavid Valin 		 * so the cache's magazine size may have changed.
2675b942e89bSDavid Valin 		 * If so, free the magazine and try again.
2676b942e89bSDavid Valin 		 */
2677b942e89bSDavid Valin 		if (ccp->cc_magsize != mtp->mt_magsize) {
2678b942e89bSDavid Valin 			mutex_exit(&ccp->cc_lock);
2679b942e89bSDavid Valin 			kmem_cache_free(mtp->mt_cache, emp);
2680b942e89bSDavid Valin 			mutex_enter(&ccp->cc_lock);
2681b942e89bSDavid Valin 			return (1);
2682b942e89bSDavid Valin 		}
2683b942e89bSDavid Valin 
2684b942e89bSDavid Valin 		/*
2685b942e89bSDavid Valin 		 * We got a magazine of the right size.  Add it to
2686b942e89bSDavid Valin 		 * the depot and try the whole dance again.
2687b942e89bSDavid Valin 		 */
2688b942e89bSDavid Valin 		kmem_depot_free(cp, &cp->cache_empty, emp);
2689b942e89bSDavid Valin 		return (1);
2690b942e89bSDavid Valin 	}
2691b942e89bSDavid Valin 
2692b942e89bSDavid Valin 	/*
2693b942e89bSDavid Valin 	 * We couldn't allocate an empty magazine,
2694b942e89bSDavid Valin 	 * so fall through to the slab layer.
2695b942e89bSDavid Valin 	 */
2696b942e89bSDavid Valin 	return (0);
2697b942e89bSDavid Valin }
2698b942e89bSDavid Valin 
2699b5fca8f8Stomee /*
2700b5fca8f8Stomee  * Free a constructed object to cache cp.
2701b5fca8f8Stomee  */
2702b5fca8f8Stomee void
2703b5fca8f8Stomee kmem_cache_free(kmem_cache_t *cp, void *buf)
2704b5fca8f8Stomee {
2705b5fca8f8Stomee 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2706b5fca8f8Stomee 
2707b5fca8f8Stomee 	/*
2708b5fca8f8Stomee 	 * The client must not free either of the buffers passed to the move
2709b5fca8f8Stomee 	 * callback function.
2710b5fca8f8Stomee 	 */
2711b5fca8f8Stomee 	ASSERT(cp->cache_defrag == NULL ||
2712b5fca8f8Stomee 	    cp->cache_defrag->kmd_thread != curthread ||
2713b5fca8f8Stomee 	    (buf != cp->cache_defrag->kmd_from_buf &&
2714b5fca8f8Stomee 	    buf != cp->cache_defrag->kmd_to_buf));
2715b5fca8f8Stomee 
27169dd77bc8SDave Plauger 	if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
27179dd77bc8SDave Plauger 		if (ccp->cc_flags & KMF_DUMPUNSAFE) {
27189dd77bc8SDave Plauger 			ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
27199dd77bc8SDave Plauger 			/* log it so that we can warn about it */
27209dd77bc8SDave Plauger 			KDI_LOG(cp, kdl_unsafe);
27219dd77bc8SDave Plauger 		} else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2722b5fca8f8Stomee 			return;
27239dd77bc8SDave Plauger 		}
27249dd77bc8SDave Plauger 		if (ccp->cc_flags & KMF_BUFTAG) {
27259dd77bc8SDave Plauger 			if (kmem_cache_free_debug(cp, buf, caller()) == -1)
27269dd77bc8SDave Plauger 				return;
27279dd77bc8SDave Plauger 		}
27289dd77bc8SDave Plauger 	}
2729b5fca8f8Stomee 
2730b5fca8f8Stomee 	mutex_enter(&ccp->cc_lock);
2731b942e89bSDavid Valin 	/*
2732b942e89bSDavid Valin 	 * Any changes to this logic should be reflected in kmem_slab_prefill()
2733b942e89bSDavid Valin 	 */
2734b5fca8f8Stomee 	for (;;) {
2735b5fca8f8Stomee 		/*
2736b5fca8f8Stomee 		 * If there's a slot available in the current CPU's
2737b5fca8f8Stomee 		 * loaded magazine, just put the object there and return.
2738b5fca8f8Stomee 		 */
2739b5fca8f8Stomee 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2740b5fca8f8Stomee 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2741b5fca8f8Stomee 			ccp->cc_free++;
2742b5fca8f8Stomee 			mutex_exit(&ccp->cc_lock);
2743b5fca8f8Stomee 			return;
2744b5fca8f8Stomee 		}
2745b5fca8f8Stomee 
27467c478bd9Sstevel@tonic-gate 		/*
27477c478bd9Sstevel@tonic-gate 		 * The loaded magazine is full.  If the previously loaded
27487c478bd9Sstevel@tonic-gate 		 * magazine was empty, exchange them and try again.
27497c478bd9Sstevel@tonic-gate 		 */
27507c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds == 0) {
27517c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
27527c478bd9Sstevel@tonic-gate 			continue;
27537c478bd9Sstevel@tonic-gate 		}
27547c478bd9Sstevel@tonic-gate 
27557c478bd9Sstevel@tonic-gate 		/*
27567c478bd9Sstevel@tonic-gate 		 * If the magazine layer is disabled, break out now.
27577c478bd9Sstevel@tonic-gate 		 */
27587c478bd9Sstevel@tonic-gate 		if (ccp->cc_magsize == 0)
27597c478bd9Sstevel@tonic-gate 			break;
27607c478bd9Sstevel@tonic-gate 
2761b942e89bSDavid Valin 		if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2762b942e89bSDavid Valin 			/*
2763b942e89bSDavid Valin 			 * We couldn't free our constructed object to the
2764b942e89bSDavid Valin 			 * magazine layer, so apply its destructor and free it
2765b942e89bSDavid Valin 			 * to the slab layer.
2766b942e89bSDavid Valin 			 */
2767b942e89bSDavid Valin 			break;
2768b942e89bSDavid Valin 		}
2769b942e89bSDavid Valin 	}
2770b942e89bSDavid Valin 	mutex_exit(&ccp->cc_lock);
2771b942e89bSDavid Valin 	kmem_slab_free_constructed(cp, buf, B_TRUE);
2772b942e89bSDavid Valin }
2773b942e89bSDavid Valin 
2774b942e89bSDavid Valin static void
2775b942e89bSDavid Valin kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2776b942e89bSDavid Valin {
2777b942e89bSDavid Valin 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2778b942e89bSDavid Valin 	int cache_flags = cp->cache_flags;
2779b942e89bSDavid Valin 
2780b942e89bSDavid Valin 	kmem_bufctl_t *next, *head;
2781b942e89bSDavid Valin 	size_t nbufs;
2782b942e89bSDavid Valin 
2783b942e89bSDavid Valin 	/*
2784b942e89bSDavid Valin 	 * Completely allocate the newly created slab and put the pre-allocated
2785b942e89bSDavid Valin 	 * buffers in magazines. Any of the buffers that cannot be put in
2786b942e89bSDavid Valin 	 * magazines must be returned to the slab.
2787b942e89bSDavid Valin 	 */
2788b942e89bSDavid Valin 	ASSERT(MUTEX_HELD(&cp->cache_lock));
2789b942e89bSDavid Valin 	ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2790b942e89bSDavid Valin 	ASSERT(cp->cache_constructor == NULL);
2791b942e89bSDavid Valin 	ASSERT(sp->slab_cache == cp);
2792b942e89bSDavid Valin 	ASSERT(sp->slab_refcnt == 1);
2793b942e89bSDavid Valin 	ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2794b942e89bSDavid Valin 	ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2795b942e89bSDavid Valin 
2796b942e89bSDavid Valin 	head = sp->slab_head;
2797b942e89bSDavid Valin 	nbufs = (sp->slab_chunks - sp->slab_refcnt);
2798b942e89bSDavid Valin 	sp->slab_head = NULL;
2799b942e89bSDavid Valin 	sp->slab_refcnt += nbufs;
2800b942e89bSDavid Valin 	cp->cache_bufslab -= nbufs;
2801b942e89bSDavid Valin 	cp->cache_slab_alloc += nbufs;
2802b942e89bSDavid Valin 	list_insert_head(&cp->cache_complete_slabs, sp);
2803b942e89bSDavid Valin 	cp->cache_complete_slab_count++;
2804b942e89bSDavid Valin 	mutex_exit(&cp->cache_lock);
2805b942e89bSDavid Valin 	mutex_enter(&ccp->cc_lock);
2806b942e89bSDavid Valin 
2807b942e89bSDavid Valin 	while (head != NULL) {
2808b942e89bSDavid Valin 		void *buf = KMEM_BUF(cp, head);
28097c478bd9Sstevel@tonic-gate 		/*
2810b942e89bSDavid Valin 		 * If there's a slot available in the current CPU's
2811b942e89bSDavid Valin 		 * loaded magazine, just put the object there and
2812b942e89bSDavid Valin 		 * continue.
28137c478bd9Sstevel@tonic-gate 		 */
2814b942e89bSDavid Valin 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2815b942e89bSDavid Valin 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2816b942e89bSDavid Valin 			    buf;
2817b942e89bSDavid Valin 			ccp->cc_free++;
2818b942e89bSDavid Valin 			nbufs--;
2819b942e89bSDavid Valin 			head = head->bc_next;
28207c478bd9Sstevel@tonic-gate 			continue;
28217c478bd9Sstevel@tonic-gate 		}
28227c478bd9Sstevel@tonic-gate 
28237c478bd9Sstevel@tonic-gate 		/*
2824b942e89bSDavid Valin 		 * The loaded magazine is full.  If the previously
2825b942e89bSDavid Valin 		 * loaded magazine was empty, exchange them and try
2826b942e89bSDavid Valin 		 * again.
28277c478bd9Sstevel@tonic-gate 		 */
2828b942e89bSDavid Valin 		if (ccp->cc_prounds == 0) {
2829b942e89bSDavid Valin 			kmem_cpu_reload(ccp, ccp->cc_ploaded,
2830b942e89bSDavid Valin 			    ccp->cc_prounds);
28317c478bd9Sstevel@tonic-gate 			continue;
28327c478bd9Sstevel@tonic-gate 		}
28337c478bd9Sstevel@tonic-gate 
28347c478bd9Sstevel@tonic-gate 		/*
2835b942e89bSDavid Valin 		 * If the magazine layer is disabled, break out now.
28367c478bd9Sstevel@tonic-gate 		 */
2837b942e89bSDavid Valin 
2838b942e89bSDavid Valin 		if (ccp->cc_magsize == 0) {
2839b942e89bSDavid Valin 			break;
2840b942e89bSDavid Valin 		}
2841b942e89bSDavid Valin 
2842b942e89bSDavid Valin 		if (!kmem_cpucache_magazine_alloc(ccp, cp))
2843b942e89bSDavid Valin 			break;
28447c478bd9Sstevel@tonic-gate 	}
28457c478bd9Sstevel@tonic-gate 	mutex_exit(&ccp->cc_lock);
2846b942e89bSDavid Valin 	if (nbufs != 0) {
2847b942e89bSDavid Valin 		ASSERT(head != NULL);
28487c478bd9Sstevel@tonic-gate 
2849b942e89bSDavid Valin 		/*
2850b942e89bSDavid Valin 		 * If there was a failure, return remaining objects to
2851b942e89bSDavid Valin 		 * the slab
2852b942e89bSDavid Valin 		 */
2853b942e89bSDavid Valin 		while (head != NULL) {
2854b942e89bSDavid Valin 			ASSERT(nbufs != 0);
2855b942e89bSDavid Valin 			next = head->bc_next;
2856b942e89bSDavid Valin 			head->bc_next = NULL;
2857b942e89bSDavid Valin 			kmem_slab_free(cp, KMEM_BUF(cp, head));
2858b942e89bSDavid Valin 			head = next;
2859b942e89bSDavid Valin 			nbufs--;
2860b942e89bSDavid Valin 		}
2861b942e89bSDavid Valin 	}
2862b942e89bSDavid Valin 	ASSERT(head == NULL);
2863b942e89bSDavid Valin 	ASSERT(nbufs == 0);
2864b942e89bSDavid Valin 	mutex_enter(&cp->cache_lock);
28657c478bd9Sstevel@tonic-gate }
28667c478bd9Sstevel@tonic-gate 
28677c478bd9Sstevel@tonic-gate void *
28687c478bd9Sstevel@tonic-gate kmem_zalloc(size_t size, int kmflag)
28697c478bd9Sstevel@tonic-gate {
2870dce01e3fSJonathan W Adams 	size_t index;
28717c478bd9Sstevel@tonic-gate 	void *buf;
28727c478bd9Sstevel@tonic-gate 
2873dce01e3fSJonathan W Adams 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
28747c478bd9Sstevel@tonic-gate 		kmem_cache_t *cp = kmem_alloc_table[index];
28757c478bd9Sstevel@tonic-gate 		buf = kmem_cache_alloc(cp, kmflag);
28767c478bd9Sstevel@tonic-gate 		if (buf != NULL) {
28779dd77bc8SDave Plauger 			if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
28787c478bd9Sstevel@tonic-gate 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
28797c478bd9Sstevel@tonic-gate 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
28807c478bd9Sstevel@tonic-gate 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
28817c478bd9Sstevel@tonic-gate 
28827c478bd9Sstevel@tonic-gate 				if (cp->cache_flags & KMF_LITE) {
28837c478bd9Sstevel@tonic-gate 					KMEM_BUFTAG_LITE_ENTER(btp,
28847c478bd9Sstevel@tonic-gate 					    kmem_lite_count, caller());
28857c478bd9Sstevel@tonic-gate 				}
28867c478bd9Sstevel@tonic-gate 			}
28877c478bd9Sstevel@tonic-gate 			bzero(buf, size);
28887c478bd9Sstevel@tonic-gate 		}
28897c478bd9Sstevel@tonic-gate 	} else {
28907c478bd9Sstevel@tonic-gate 		buf = kmem_alloc(size, kmflag);
28917c478bd9Sstevel@tonic-gate 		if (buf != NULL)
28927c478bd9Sstevel@tonic-gate 			bzero(buf, size);
28937c478bd9Sstevel@tonic-gate 	}
28947c478bd9Sstevel@tonic-gate 	return (buf);
28957c478bd9Sstevel@tonic-gate }
28967c478bd9Sstevel@tonic-gate 
28977c478bd9Sstevel@tonic-gate void *
28987c478bd9Sstevel@tonic-gate kmem_alloc(size_t size, int kmflag)
28997c478bd9Sstevel@tonic-gate {
2900dce01e3fSJonathan W Adams 	size_t index;
2901dce01e3fSJonathan W Adams 	kmem_cache_t *cp;
29027c478bd9Sstevel@tonic-gate 	void *buf;
29037c478bd9Sstevel@tonic-gate 
2904dce01e3fSJonathan W Adams 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2905dce01e3fSJonathan W Adams 		cp = kmem_alloc_table[index];
2906dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_alloc() */
29077c478bd9Sstevel@tonic-gate 
2908dce01e3fSJonathan W Adams 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2909dce01e3fSJonathan W Adams 	    kmem_big_alloc_table_max) {
2910dce01e3fSJonathan W Adams 		cp = kmem_big_alloc_table[index];
2911dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_alloc() */
2912dce01e3fSJonathan W Adams 
2913dce01e3fSJonathan W Adams 	} else {
2914dce01e3fSJonathan W Adams 		if (size == 0)
2915dce01e3fSJonathan W Adams 			return (NULL);
2916dce01e3fSJonathan W Adams 
2917dce01e3fSJonathan W Adams 		buf = vmem_alloc(kmem_oversize_arena, size,
2918dce01e3fSJonathan W Adams 		    kmflag & KM_VMFLAGS);
2919dce01e3fSJonathan W Adams 		if (buf == NULL)
2920dce01e3fSJonathan W Adams 			kmem_log_event(kmem_failure_log, NULL, NULL,
2921dce01e3fSJonathan W Adams 			    (void *)size);
29229dd77bc8SDave Plauger 		else if (KMEM_DUMP(kmem_slab_cache)) {
29239dd77bc8SDave Plauger 			/* stats for dump intercept */
29249dd77bc8SDave Plauger 			kmem_dump_oversize_allocs++;
29259dd77bc8SDave Plauger 			if (size > kmem_dump_oversize_max)
29269dd77bc8SDave Plauger 				kmem_dump_oversize_max = size;
29279dd77bc8SDave Plauger 		}
29287c478bd9Sstevel@tonic-gate 		return (buf);
29297c478bd9Sstevel@tonic-gate 	}
2930dce01e3fSJonathan W Adams 
2931dce01e3fSJonathan W Adams 	buf = kmem_cache_alloc(cp, kmflag);
29329dd77bc8SDave Plauger 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2933dce01e3fSJonathan W Adams 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2934dce01e3fSJonathan W Adams 		((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2935dce01e3fSJonathan W Adams 		((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2936dce01e3fSJonathan W Adams 
2937dce01e3fSJonathan W Adams 		if (cp->cache_flags & KMF_LITE) {
2938dce01e3fSJonathan W Adams 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2939dce01e3fSJonathan W Adams 		}
2940dce01e3fSJonathan W Adams 	}
29417c478bd9Sstevel@tonic-gate 	return (buf);
29427c478bd9Sstevel@tonic-gate }
29437c478bd9Sstevel@tonic-gate 
29447c478bd9Sstevel@tonic-gate void
29457c478bd9Sstevel@tonic-gate kmem_free(void *buf, size_t size)
29467c478bd9Sstevel@tonic-gate {
2947dce01e3fSJonathan W Adams 	size_t index;
2948dce01e3fSJonathan W Adams 	kmem_cache_t *cp;
29497c478bd9Sstevel@tonic-gate 
2950dce01e3fSJonathan W Adams 	if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2951dce01e3fSJonathan W Adams 		cp = kmem_alloc_table[index];
2952dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_free() */
2953dce01e3fSJonathan W Adams 
2954dce01e3fSJonathan W Adams 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2955dce01e3fSJonathan W Adams 	    kmem_big_alloc_table_max) {
2956dce01e3fSJonathan W Adams 		cp = kmem_big_alloc_table[index];
2957dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_free() */
2958dce01e3fSJonathan W Adams 
2959dce01e3fSJonathan W Adams 	} else {
296096992ee7SEthindra Ramamurthy 		EQUIV(buf == NULL, size == 0);
2961dce01e3fSJonathan W Adams 		if (buf == NULL && size == 0)
2962dce01e3fSJonathan W Adams 			return;
2963dce01e3fSJonathan W Adams 		vmem_free(kmem_oversize_arena, buf, size);
2964dce01e3fSJonathan W Adams 		return;
2965dce01e3fSJonathan W Adams 	}
2966dce01e3fSJonathan W Adams 
29679dd77bc8SDave Plauger 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2968dce01e3fSJonathan W Adams 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2969dce01e3fSJonathan W Adams 		uint32_t *ip = (uint32_t *)btp;
2970dce01e3fSJonathan W Adams 		if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2971dce01e3fSJonathan W Adams 			if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2972dce01e3fSJonathan W Adams 				kmem_error(KMERR_DUPFREE, cp, buf);
29737c478bd9Sstevel@tonic-gate 				return;
29747c478bd9Sstevel@tonic-gate 			}
2975dce01e3fSJonathan W Adams 			if (KMEM_SIZE_VALID(ip[1])) {
2976dce01e3fSJonathan W Adams 				ip[0] = KMEM_SIZE_ENCODE(size);
2977dce01e3fSJonathan W Adams 				kmem_error(KMERR_BADSIZE, cp, buf);
2978dce01e3fSJonathan W Adams 			} else {
29797c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_REDZONE, cp, buf);
29807c478bd9Sstevel@tonic-gate 			}
2981dce01e3fSJonathan W Adams 			return;
29827c478bd9Sstevel@tonic-gate 		}
2983dce01e3fSJonathan W Adams 		if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2984dce01e3fSJonathan W Adams 			kmem_error(KMERR_REDZONE, cp, buf);
29857c478bd9Sstevel@tonic-gate 			return;
2986dce01e3fSJonathan W Adams 		}
2987dce01e3fSJonathan W Adams 		btp->bt_redzone = KMEM_REDZONE_PATTERN;
2988dce01e3fSJonathan W Adams 		if (cp->cache_flags & KMF_LITE) {
2989dce01e3fSJonathan W Adams 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2990dce01e3fSJonathan W Adams 			    caller());
2991dce01e3fSJonathan W Adams 		}
29927c478bd9Sstevel@tonic-gate 	}
2993dce01e3fSJonathan W Adams 	kmem_cache_free(cp, buf);
29947c478bd9Sstevel@tonic-gate }
29957c478bd9Sstevel@tonic-gate 
29967c478bd9Sstevel@tonic-gate void *
29977c478bd9Sstevel@tonic-gate kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
29987c478bd9Sstevel@tonic-gate {
29997c478bd9Sstevel@tonic-gate 	size_t realsize = size + vmp->vm_quantum;
30007c478bd9Sstevel@tonic-gate 	void *addr;
30017c478bd9Sstevel@tonic-gate 
30027c478bd9Sstevel@tonic-gate 	/*
30037c478bd9Sstevel@tonic-gate 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
30047c478bd9Sstevel@tonic-gate 	 * vm_quantum will cause integer wraparound.  Check for this, and
30057c478bd9Sstevel@tonic-gate 	 * blow off the firewall page in this case.  Note that such a
30067c478bd9Sstevel@tonic-gate 	 * giant allocation (the entire kernel address space) can never
30077c478bd9Sstevel@tonic-gate 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
30087c478bd9Sstevel@tonic-gate 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
30097c478bd9Sstevel@tonic-gate 	 * corresponding check in kmem_firewall_va_free().
30107c478bd9Sstevel@tonic-gate 	 */
30117c478bd9Sstevel@tonic-gate 	if (realsize < size)
30127c478bd9Sstevel@tonic-gate 		realsize = size;
30137c478bd9Sstevel@tonic-gate 
30147c478bd9Sstevel@tonic-gate 	/*
30157c478bd9Sstevel@tonic-gate 	 * While boot still owns resource management, make sure that this
30167c478bd9Sstevel@tonic-gate 	 * redzone virtual address allocation is properly accounted for in
30177c478bd9Sstevel@tonic-gate 	 * OBPs "virtual-memory" "available" lists because we're
30187c478bd9Sstevel@tonic-gate 	 * effectively claiming them for a red zone.  If we don't do this,
30197c478bd9Sstevel@tonic-gate 	 * the available lists become too fragmented and too large for the
30207c478bd9Sstevel@tonic-gate 	 * current boot/kernel memory list interface.
30217c478bd9Sstevel@tonic-gate 	 */
30227c478bd9Sstevel@tonic-gate 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
30237c478bd9Sstevel@tonic-gate 
30247c478bd9Sstevel@tonic-gate 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
30257c478bd9Sstevel@tonic-gate 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
30267c478bd9Sstevel@tonic-gate 
30277c478bd9Sstevel@tonic-gate 	return (addr);
30287c478bd9Sstevel@tonic-gate }
30297c478bd9Sstevel@tonic-gate 
30307c478bd9Sstevel@tonic-gate void
30317c478bd9Sstevel@tonic-gate kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
30327c478bd9Sstevel@tonic-gate {
30337c478bd9Sstevel@tonic-gate 	ASSERT((kvseg.s_base == NULL ?
30347c478bd9Sstevel@tonic-gate 	    va_to_pfn((char *)addr + size) :
30357c478bd9Sstevel@tonic-gate 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
30367c478bd9Sstevel@tonic-gate 
30377c478bd9Sstevel@tonic-gate 	vmem_free(vmp, addr, size + vmp->vm_quantum);
30387c478bd9Sstevel@tonic-gate }
30397c478bd9Sstevel@tonic-gate 
30407c478bd9Sstevel@tonic-gate /*
30417c478bd9Sstevel@tonic-gate  * Try to allocate at least `size' bytes of memory without sleeping or
30427c478bd9Sstevel@tonic-gate  * panicking. Return actual allocated size in `asize'. If allocation failed,
30437c478bd9Sstevel@tonic-gate  * try final allocation with sleep or panic allowed.
30447c478bd9Sstevel@tonic-gate  */
30457c478bd9Sstevel@tonic-gate void *
30467c478bd9Sstevel@tonic-gate kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
30477c478bd9Sstevel@tonic-gate {
30487c478bd9Sstevel@tonic-gate 	void *p;
30497c478bd9Sstevel@tonic-gate 
30507c478bd9Sstevel@tonic-gate 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
30517c478bd9Sstevel@tonic-gate 	do {
30527c478bd9Sstevel@tonic-gate 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
30537c478bd9Sstevel@tonic-gate 		if (p != NULL)
30547c478bd9Sstevel@tonic-gate 			return (p);
30557c478bd9Sstevel@tonic-gate 		*asize += KMEM_ALIGN;
30567c478bd9Sstevel@tonic-gate 	} while (*asize <= PAGESIZE);
30577c478bd9Sstevel@tonic-gate 
30587c478bd9Sstevel@tonic-gate 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
30597c478bd9Sstevel@tonic-gate 	return (kmem_alloc(*asize, kmflag));
30607c478bd9Sstevel@tonic-gate }
30617c478bd9Sstevel@tonic-gate 
30627c478bd9Sstevel@tonic-gate /*
30637c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from a cache.
30647c478bd9Sstevel@tonic-gate  */
30657c478bd9Sstevel@tonic-gate static void
30667c478bd9Sstevel@tonic-gate kmem_cache_reap(kmem_cache_t *cp)
30677c478bd9Sstevel@tonic-gate {
3068b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
3069686031edSTom Erickson 	cp->cache_reap++;
3070b5fca8f8Stomee 
30717c478bd9Sstevel@tonic-gate 	/*
30727c478bd9Sstevel@tonic-gate 	 * Ask the cache's owner to free some memory if possible.
30737c478bd9Sstevel@tonic-gate 	 * The idea is to handle things like the inode cache, which
30747c478bd9Sstevel@tonic-gate 	 * typically sits on a bunch of memory that it doesn't truly
30757c478bd9Sstevel@tonic-gate 	 * *need*.  Reclaim policy is entirely up to the owner; this
30767c478bd9Sstevel@tonic-gate 	 * callback is just an advisory plea for help.
30777c478bd9Sstevel@tonic-gate 	 */
3078b5fca8f8Stomee 	if (cp->cache_reclaim != NULL) {
3079b5fca8f8Stomee 		long delta;
3080b5fca8f8Stomee 
3081b5fca8f8Stomee 		/*
3082b5fca8f8Stomee 		 * Reclaimed memory should be reapable (not included in the
3083b5fca8f8Stomee 		 * depot's working set).
3084b5fca8f8Stomee 		 */
3085b5fca8f8Stomee 		delta = cp->cache_full.ml_total;
30867c478bd9Sstevel@tonic-gate 		cp->cache_reclaim(cp->cache_private);
3087b5fca8f8Stomee 		delta = cp->cache_full.ml_total - delta;
3088b5fca8f8Stomee 		if (delta > 0) {
3089b5fca8f8Stomee 			mutex_enter(&cp->cache_depot_lock);
3090b5fca8f8Stomee 			cp->cache_full.ml_reaplimit += delta;
3091b5fca8f8Stomee 			cp->cache_full.ml_min += delta;
3092b5fca8f8Stomee 			mutex_exit(&cp->cache_depot_lock);
3093b5fca8f8Stomee 		}
3094b5fca8f8Stomee 	}
30957c478bd9Sstevel@tonic-gate 
30967c478bd9Sstevel@tonic-gate 	kmem_depot_ws_reap(cp);
3097b5fca8f8Stomee 
3098b5fca8f8Stomee 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3099b5fca8f8Stomee 		kmem_cache_defrag(cp);
3100b5fca8f8Stomee 	}
31017c478bd9Sstevel@tonic-gate }
31027c478bd9Sstevel@tonic-gate 
31037c478bd9Sstevel@tonic-gate static void
31047c478bd9Sstevel@tonic-gate kmem_reap_timeout(void *flag_arg)
31057c478bd9Sstevel@tonic-gate {
31067c478bd9Sstevel@tonic-gate 	uint32_t *flag = (uint32_t *)flag_arg;
31077c478bd9Sstevel@tonic-gate 
31087c478bd9Sstevel@tonic-gate 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
31097c478bd9Sstevel@tonic-gate 	*flag = 0;
31107c478bd9Sstevel@tonic-gate }
31117c478bd9Sstevel@tonic-gate 
31127c478bd9Sstevel@tonic-gate static void
31137c478bd9Sstevel@tonic-gate kmem_reap_done(void *flag)
31147c478bd9Sstevel@tonic-gate {
31156e00b116SPeter Telford 	if (!callout_init_done) {
31166e00b116SPeter Telford 		/* can't schedule a timeout at this point */
31176e00b116SPeter Telford 		kmem_reap_timeout(flag);
31186e00b116SPeter Telford 	} else {
31196e00b116SPeter Telford 		(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
31206e00b116SPeter Telford 	}
31217c478bd9Sstevel@tonic-gate }
31227c478bd9Sstevel@tonic-gate 
31237c478bd9Sstevel@tonic-gate static void
31247c478bd9Sstevel@tonic-gate kmem_reap_start(void *flag)
31257c478bd9Sstevel@tonic-gate {
31267c478bd9Sstevel@tonic-gate 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
31277c478bd9Sstevel@tonic-gate 
31287c478bd9Sstevel@tonic-gate 	if (flag == &kmem_reaping) {
31297c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
31307c478bd9Sstevel@tonic-gate 		/*
31317c478bd9Sstevel@tonic-gate 		 * if we have segkp under heap, reap segkp cache.
31327c478bd9Sstevel@tonic-gate 		 */
31337c478bd9Sstevel@tonic-gate 		if (segkp_fromheap)
31347c478bd9Sstevel@tonic-gate 			segkp_cache_free();
31357c478bd9Sstevel@tonic-gate 	}
31367c478bd9Sstevel@tonic-gate 	else
31377c478bd9Sstevel@tonic-gate 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
31387c478bd9Sstevel@tonic-gate 
31397c478bd9Sstevel@tonic-gate 	/*
31407c478bd9Sstevel@tonic-gate 	 * We use taskq_dispatch() to schedule a timeout to clear
31417c478bd9Sstevel@tonic-gate 	 * the flag so that kmem_reap() becomes self-throttling:
31427c478bd9Sstevel@tonic-gate 	 * we won't reap again until the current reap completes *and*
31437c478bd9Sstevel@tonic-gate 	 * at least kmem_reap_interval ticks have elapsed.
31447c478bd9Sstevel@tonic-gate 	 */
31457c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
31467c478bd9Sstevel@tonic-gate 		kmem_reap_done(flag);
31477c478bd9Sstevel@tonic-gate }
31487c478bd9Sstevel@tonic-gate 
31497c478bd9Sstevel@tonic-gate static void
31507c478bd9Sstevel@tonic-gate kmem_reap_common(void *flag_arg)
31517c478bd9Sstevel@tonic-gate {
31527c478bd9Sstevel@tonic-gate 	uint32_t *flag = (uint32_t *)flag_arg;
31537c478bd9Sstevel@tonic-gate 
31547c478bd9Sstevel@tonic-gate 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
315575d94465SJosef 'Jeff' Sipek 	    atomic_cas_32(flag, 0, 1) != 0)
31567c478bd9Sstevel@tonic-gate 		return;
31577c478bd9Sstevel@tonic-gate 
31587c478bd9Sstevel@tonic-gate 	/*
31597c478bd9Sstevel@tonic-gate 	 * It may not be kosher to do memory allocation when a reap is called
31609321cd04SJosef 'Jeff' Sipek 	 * (for example, if vmem_populate() is in the call chain).  So we
31619321cd04SJosef 'Jeff' Sipek 	 * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
31629321cd04SJosef 'Jeff' Sipek 	 * fails, we reset the flag, and the next reap will try again.
31637c478bd9Sstevel@tonic-gate 	 */
31647c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
31657c478bd9Sstevel@tonic-gate 		*flag = 0;
31667c478bd9Sstevel@tonic-gate }
31677c478bd9Sstevel@tonic-gate 
31687c478bd9Sstevel@tonic-gate /*
31697c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from all caches.  Called from the VM system
31707c478bd9Sstevel@tonic-gate  * when memory gets tight.
31717c478bd9Sstevel@tonic-gate  */
31727c478bd9Sstevel@tonic-gate void
31737c478bd9Sstevel@tonic-gate kmem_reap(void)
31747c478bd9Sstevel@tonic-gate {
31757c478bd9Sstevel@tonic-gate 	kmem_reap_common(&kmem_reaping);
31767c478bd9Sstevel@tonic-gate }
31777c478bd9Sstevel@tonic-gate 
31787c478bd9Sstevel@tonic-gate /*
31797c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from identifier arenas, called when a vmem
31807c478bd9Sstevel@tonic-gate  * arena not back by memory is exhausted.  Since reaping memory-backed caches
31817c478bd9Sstevel@tonic-gate  * cannot help with identifier exhaustion, we avoid both a large amount of
31827c478bd9Sstevel@tonic-gate  * work and unwanted side-effects from reclaim callbacks.
31837c478bd9Sstevel@tonic-gate  */
31847c478bd9Sstevel@tonic-gate void
31857c478bd9Sstevel@tonic-gate kmem_reap_idspace(void)
31867c478bd9Sstevel@tonic-gate {
31877c478bd9Sstevel@tonic-gate 	kmem_reap_common(&kmem_reaping_idspace);
31887c478bd9Sstevel@tonic-gate }
31897c478bd9Sstevel@tonic-gate 
31907c478bd9Sstevel@tonic-gate /*
31917c478bd9Sstevel@tonic-gate  * Purge all magazines from a cache and set its magazine limit to zero.
31927c478bd9Sstevel@tonic-gate  * All calls are serialized by the kmem_taskq lock, except for the final
31937c478bd9Sstevel@tonic-gate  * call from kmem_cache_destroy().
31947c478bd9Sstevel@tonic-gate  */
31957c478bd9Sstevel@tonic-gate static void
31967c478bd9Sstevel@tonic-gate kmem_cache_magazine_purge(kmem_cache_t *cp)
31977c478bd9Sstevel@tonic-gate {
31987c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp;
31997c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp, *pmp;
32007c478bd9Sstevel@tonic-gate 	int rounds, prounds, cpu_seqid;
32017c478bd9Sstevel@tonic-gate 
3202b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
3203b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
32047c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
32057c478bd9Sstevel@tonic-gate 
32067c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
32077c478bd9Sstevel@tonic-gate 		ccp = &cp->cache_cpu[cpu_seqid];
32087c478bd9Sstevel@tonic-gate 
32097c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
32107c478bd9Sstevel@tonic-gate 		mp = ccp->cc_loaded;
32117c478bd9Sstevel@tonic-gate 		pmp = ccp->cc_ploaded;
32127c478bd9Sstevel@tonic-gate 		rounds = ccp->cc_rounds;
32137c478bd9Sstevel@tonic-gate 		prounds = ccp->cc_prounds;
32147c478bd9Sstevel@tonic-gate 		ccp->cc_loaded = NULL;
32157c478bd9Sstevel@tonic-gate 		ccp->cc_ploaded = NULL;
32167c478bd9Sstevel@tonic-gate 		ccp->cc_rounds = -1;
32177c478bd9Sstevel@tonic-gate 		ccp->cc_prounds = -1;
32187c478bd9Sstevel@tonic-gate 		ccp->cc_magsize = 0;
32197c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
32207c478bd9Sstevel@tonic-gate 
32217c478bd9Sstevel@tonic-gate 		if (mp)
32227c478bd9Sstevel@tonic-gate 			kmem_magazine_destroy(cp, mp, rounds);
32237c478bd9Sstevel@tonic-gate 		if (pmp)
32247c478bd9Sstevel@tonic-gate 			kmem_magazine_destroy(cp, pmp, prounds);
32257c478bd9Sstevel@tonic-gate 	}
32267c478bd9Sstevel@tonic-gate 
32270c833d64SJosef 'Jeff' Sipek 	kmem_depot_ws_zero(cp);
32287c478bd9Sstevel@tonic-gate 	kmem_depot_ws_reap(cp);
32297c478bd9Sstevel@tonic-gate }
32307c478bd9Sstevel@tonic-gate 
32317c478bd9Sstevel@tonic-gate /*
32327c478bd9Sstevel@tonic-gate  * Enable per-cpu magazines on a cache.
32337c478bd9Sstevel@tonic-gate  */
32347c478bd9Sstevel@tonic-gate static void
32357c478bd9Sstevel@tonic-gate kmem_cache_magazine_enable(kmem_cache_t *cp)
32367c478bd9Sstevel@tonic-gate {
32377c478bd9Sstevel@tonic-gate 	int cpu_seqid;
32387c478bd9Sstevel@tonic-gate 
32397c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_NOMAGAZINE)
32407c478bd9Sstevel@tonic-gate 		return;
32417c478bd9Sstevel@tonic-gate 
32427c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
32437c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
32447c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
32457c478bd9Sstevel@tonic-gate 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
32467c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
32477c478bd9Sstevel@tonic-gate 	}
32487c478bd9Sstevel@tonic-gate 
32497c478bd9Sstevel@tonic-gate }
32507c478bd9Sstevel@tonic-gate 
3251fa9e4066Sahrens /*
32520c833d64SJosef 'Jeff' Sipek  * Reap (almost) everything right now.
3253fa9e4066Sahrens  */
3254fa9e4066Sahrens void
3255fa9e4066Sahrens kmem_cache_reap_now(kmem_cache_t *cp)
3256fa9e4066Sahrens {
3257b5fca8f8Stomee 	ASSERT(list_link_active(&cp->cache_link));
3258b5fca8f8Stomee 
32590c833d64SJosef 'Jeff' Sipek 	kmem_depot_ws_zero(cp);
3260fa9e4066Sahrens 
3261fa9e4066Sahrens 	(void) taskq_dispatch(kmem_taskq,
3262fa9e4066Sahrens 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3263fa9e4066Sahrens 	taskq_wait(kmem_taskq);
3264fa9e4066Sahrens }
3265fa9e4066Sahrens 
32667c478bd9Sstevel@tonic-gate /*
32677c478bd9Sstevel@tonic-gate  * Recompute a cache's magazine size.  The trade-off is that larger magazines
32687c478bd9Sstevel@tonic-gate  * provide a higher transfer rate with the depot, while smaller magazines
32697c478bd9Sstevel@tonic-gate  * reduce memory consumption.  Magazine resizing is an expensive operation;
32707c478bd9Sstevel@tonic-gate  * it should not be done frequently.
32717c478bd9Sstevel@tonic-gate  *
32727c478bd9Sstevel@tonic-gate  * Changes to the magazine size are serialized by the kmem_taskq lock.
32737c478bd9Sstevel@tonic-gate  *
32747c478bd9Sstevel@tonic-gate  * Note: at present this only grows the magazine size.  It might be useful
32757c478bd9Sstevel@tonic-gate  * to allow shrinkage too.
32767c478bd9Sstevel@tonic-gate  */
32777c478bd9Sstevel@tonic-gate static void
32787c478bd9Sstevel@tonic-gate kmem_cache_magazine_resize(kmem_cache_t *cp)
32797c478bd9Sstevel@tonic-gate {
32807c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp = cp->cache_magtype;
32817c478bd9Sstevel@tonic-gate 
32827c478bd9Sstevel@tonic-gate 	ASSERT(taskq_member(kmem_taskq, curthread));
32837c478bd9Sstevel@tonic-gate 
32847c478bd9Sstevel@tonic-gate 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
32857c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_purge(cp);
32867c478bd9Sstevel@tonic-gate 		mutex_enter(&cp->cache_depot_lock);
32877c478bd9Sstevel@tonic-gate 		cp->cache_magtype = ++mtp;
32887c478bd9Sstevel@tonic-gate 		cp->cache_depot_contention_prev =
32897c478bd9Sstevel@tonic-gate 		    cp->cache_depot_contention + INT_MAX;
32907c478bd9Sstevel@tonic-gate 		mutex_exit(&cp->cache_depot_lock);
32917c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_enable(cp);
32927c478bd9Sstevel@tonic-gate 	}
32937c478bd9Sstevel@tonic-gate }
32947c478bd9Sstevel@tonic-gate 
32957c478bd9Sstevel@tonic-gate /*
32967c478bd9Sstevel@tonic-gate  * Rescale a cache's hash table, so that the table size is roughly the
32977c478bd9Sstevel@tonic-gate  * cache size.  We want the average lookup time to be extremely small.
32987c478bd9Sstevel@tonic-gate  */
32997c478bd9Sstevel@tonic-gate static void
33007c478bd9Sstevel@tonic-gate kmem_hash_rescale(kmem_cache_t *cp)
33017c478bd9Sstevel@tonic-gate {
33027c478bd9Sstevel@tonic-gate 	kmem_bufctl_t **old_table, **new_table, *bcp;
33037c478bd9Sstevel@tonic-gate 	size_t old_size, new_size, h;
33047c478bd9Sstevel@tonic-gate 
33057c478bd9Sstevel@tonic-gate 	ASSERT(taskq_member(kmem_taskq, curthread));
33067c478bd9Sstevel@tonic-gate 
33077c478bd9Sstevel@tonic-gate 	new_size = MAX(KMEM_HASH_INITIAL,
33087c478bd9Sstevel@tonic-gate 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
33097c478bd9Sstevel@tonic-gate 	old_size = cp->cache_hash_mask + 1;
33107c478bd9Sstevel@tonic-gate 
33117c478bd9Sstevel@tonic-gate 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
33127c478bd9Sstevel@tonic-gate 		return;
33137c478bd9Sstevel@tonic-gate 
33147c478bd9Sstevel@tonic-gate 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
33157c478bd9Sstevel@tonic-gate 	    VM_NOSLEEP);
33167c478bd9Sstevel@tonic-gate 	if (new_table == NULL)
33177c478bd9Sstevel@tonic-gate 		return;
33187c478bd9Sstevel@tonic-gate 	bzero(new_table, new_size * sizeof (void *));
33197c478bd9Sstevel@tonic-gate 
33207c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
33217c478bd9Sstevel@tonic-gate 
33227c478bd9Sstevel@tonic-gate 	old_size = cp->cache_hash_mask + 1;
33237c478bd9Sstevel@tonic-gate 	old_table = cp->cache_hash_table;
33247c478bd9Sstevel@tonic-gate 
33257c478bd9Sstevel@tonic-gate 	cp->cache_hash_mask = new_size - 1;
33267c478bd9Sstevel@tonic-gate 	cp->cache_hash_table = new_table;
33277c478bd9Sstevel@tonic-gate 	cp->cache_rescale++;
33287c478bd9Sstevel@tonic-gate 
33297c478bd9Sstevel@tonic-gate 	for (h = 0; h < old_size; h++) {
33307c478bd9Sstevel@tonic-gate 		bcp = old_table[h];
33317c478bd9Sstevel@tonic-gate 		while (bcp != NULL) {
33327c478bd9Sstevel@tonic-gate 			void *addr = bcp->bc_addr;
33337c478bd9Sstevel@tonic-gate 			kmem_bufctl_t *next_bcp = bcp->bc_next;
33347c478bd9Sstevel@tonic-gate 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
33357c478bd9Sstevel@tonic-gate 			bcp->bc_next = *hash_bucket;
33367c478bd9Sstevel@tonic-gate 			*hash_bucket = bcp;
33377c478bd9Sstevel@tonic-gate 			bcp = next_bcp;
33387c478bd9Sstevel@tonic-gate 		}
33397c478bd9Sstevel@tonic-gate 	}
33407c478bd9Sstevel@tonic-gate 
33417c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
33427c478bd9Sstevel@tonic-gate 
33437c478bd9Sstevel@tonic-gate 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
33447c478bd9Sstevel@tonic-gate }
33457c478bd9Sstevel@tonic-gate 
33467c478bd9Sstevel@tonic-gate /*
3347b5fca8f8Stomee  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3348b5fca8f8Stomee  * update, magazine resizing, and slab consolidation.
33497c478bd9Sstevel@tonic-gate  */
33507c478bd9Sstevel@tonic-gate static void
33517c478bd9Sstevel@tonic-gate kmem_cache_update(kmem_cache_t *cp)
33527c478bd9Sstevel@tonic-gate {
33537c478bd9Sstevel@tonic-gate 	int need_hash_rescale = 0;
33547c478bd9Sstevel@tonic-gate 	int need_magazine_resize = 0;
33557c478bd9Sstevel@tonic-gate 
33567c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
33577c478bd9Sstevel@tonic-gate 
33587c478bd9Sstevel@tonic-gate 	/*
33597c478bd9Sstevel@tonic-gate 	 * If the cache has become much larger or smaller than its hash table,
33607c478bd9Sstevel@tonic-gate 	 * fire off a request to rescale the hash table.
33617c478bd9Sstevel@tonic-gate 	 */
33627c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
33637c478bd9Sstevel@tonic-gate 
33647c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) &&
33657c478bd9Sstevel@tonic-gate 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
33667c478bd9Sstevel@tonic-gate 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
33677c478bd9Sstevel@tonic-gate 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
33687c478bd9Sstevel@tonic-gate 		need_hash_rescale = 1;
33697c478bd9Sstevel@tonic-gate 
33707c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
33717c478bd9Sstevel@tonic-gate 
33727c478bd9Sstevel@tonic-gate 	/*
33737c478bd9Sstevel@tonic-gate 	 * Update the depot working set statistics.
33747c478bd9Sstevel@tonic-gate 	 */
33757c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
33767c478bd9Sstevel@tonic-gate 
33777c478bd9Sstevel@tonic-gate 	/*
33787c478bd9Sstevel@tonic-gate 	 * If there's a lot of contention in the depot,
33797c478bd9Sstevel@tonic-gate 	 * increase the magazine size.
33807c478bd9Sstevel@tonic-gate 	 */
33817c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
33827c478bd9Sstevel@tonic-gate 
33837c478bd9Sstevel@tonic-gate 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
33847c478bd9Sstevel@tonic-gate 	    (int)(cp->cache_depot_contention -
33857c478bd9Sstevel@tonic-gate 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
33867c478bd9Sstevel@tonic-gate 		need_magazine_resize = 1;
33877c478bd9Sstevel@tonic-gate 
33887c478bd9Sstevel@tonic-gate 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
33897c478bd9Sstevel@tonic-gate 
33907c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
33917c478bd9Sstevel@tonic-gate 
33927c478bd9Sstevel@tonic-gate 	if (need_hash_rescale)
33937c478bd9Sstevel@tonic-gate 		(void) taskq_dispatch(kmem_taskq,
33947c478bd9Sstevel@tonic-gate 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
33957c478bd9Sstevel@tonic-gate 
33967c478bd9Sstevel@tonic-gate 	if (need_magazine_resize)
33977c478bd9Sstevel@tonic-gate 		(void) taskq_dispatch(kmem_taskq,
33987c478bd9Sstevel@tonic-gate 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3399b5fca8f8Stomee 
3400b5fca8f8Stomee 	if (cp->cache_defrag != NULL)
3401b5fca8f8Stomee 		(void) taskq_dispatch(kmem_taskq,
3402b5fca8f8Stomee 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
34037c478bd9Sstevel@tonic-gate }
34047c478bd9Sstevel@tonic-gate 
3405d67944fbSScott Rotondo static void kmem_update(void *);
3406d67944fbSScott Rotondo 
34077c478bd9Sstevel@tonic-gate static void
34087c478bd9Sstevel@tonic-gate kmem_update_timeout(void *dummy)
34097c478bd9Sstevel@tonic-gate {
34107c478bd9Sstevel@tonic-gate 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
34117c478bd9Sstevel@tonic-gate }
34127c478bd9Sstevel@tonic-gate 
34137c478bd9Sstevel@tonic-gate static void
34147c478bd9Sstevel@tonic-gate kmem_update(void *dummy)
34157c478bd9Sstevel@tonic-gate {
34167c478bd9Sstevel@tonic-gate 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
34177c478bd9Sstevel@tonic-gate 
34187c478bd9Sstevel@tonic-gate 	/*
34197c478bd9Sstevel@tonic-gate 	 * We use taskq_dispatch() to reschedule the timeout so that
34207c478bd9Sstevel@tonic-gate 	 * kmem_update() becomes self-throttling: it won't schedule
34217c478bd9Sstevel@tonic-gate 	 * new tasks until all previous tasks have completed.
34227c478bd9Sstevel@tonic-gate 	 */
34237c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
34247c478bd9Sstevel@tonic-gate 		kmem_update_timeout(NULL);
34257c478bd9Sstevel@tonic-gate }
34267c478bd9Sstevel@tonic-gate 
34277c478bd9Sstevel@tonic-gate static int
34287c478bd9Sstevel@tonic-gate kmem_cache_kstat_update(kstat_t *ksp, int rw)
34297c478bd9Sstevel@tonic-gate {
34307c478bd9Sstevel@tonic-gate 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
34317c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp = ksp->ks_private;
34327c478bd9Sstevel@tonic-gate 	uint64_t cpu_buf_avail;
34337c478bd9Sstevel@tonic-gate 	uint64_t buf_avail = 0;
34347c478bd9Sstevel@tonic-gate 	int cpu_seqid;
3435686031edSTom Erickson 	long reap;
34367c478bd9Sstevel@tonic-gate 
34377c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
34387c478bd9Sstevel@tonic-gate 
34397c478bd9Sstevel@tonic-gate 	if (rw == KSTAT_WRITE)
34407c478bd9Sstevel@tonic-gate 		return (EACCES);
34417c478bd9Sstevel@tonic-gate 
34427c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
34437c478bd9Sstevel@tonic-gate 
34447c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
34457c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
34467c478bd9Sstevel@tonic-gate 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
34477c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
34487c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
34497c478bd9Sstevel@tonic-gate 
34507c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
34517c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
34527c478bd9Sstevel@tonic-gate 
34537c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
34547c478bd9Sstevel@tonic-gate 
34557c478bd9Sstevel@tonic-gate 		cpu_buf_avail = 0;
34567c478bd9Sstevel@tonic-gate 		if (ccp->cc_rounds > 0)
34577c478bd9Sstevel@tonic-gate 			cpu_buf_avail += ccp->cc_rounds;
34587c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds > 0)
34597c478bd9Sstevel@tonic-gate 			cpu_buf_avail += ccp->cc_prounds;
34607c478bd9Sstevel@tonic-gate 
34617c478bd9Sstevel@tonic-gate 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
34627c478bd9Sstevel@tonic-gate 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
34637c478bd9Sstevel@tonic-gate 		buf_avail			+= cpu_buf_avail;
34647c478bd9Sstevel@tonic-gate 
34657c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
34667c478bd9Sstevel@tonic-gate 	}
34677c478bd9Sstevel@tonic-gate 
34687c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
34697c478bd9Sstevel@tonic-gate 
34707c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
34717c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
34727c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
34737c478bd9Sstevel@tonic-gate 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
34747c478bd9Sstevel@tonic-gate 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
34757c478bd9Sstevel@tonic-gate 	kmcp->kmc_magazine_size.value.ui64	=
34767c478bd9Sstevel@tonic-gate 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
34777c478bd9Sstevel@tonic-gate 	    0 : cp->cache_magtype->mt_magsize;
34787c478bd9Sstevel@tonic-gate 
34797c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
34807c478bd9Sstevel@tonic-gate 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
34817c478bd9Sstevel@tonic-gate 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
34827c478bd9Sstevel@tonic-gate 
3483686031edSTom Erickson 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3484686031edSTom Erickson 	reap = MIN(reap, cp->cache_full.ml_total);
3485686031edSTom Erickson 
34867c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
34877c478bd9Sstevel@tonic-gate 
34887c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
34897c478bd9Sstevel@tonic-gate 	kmcp->kmc_align.value.ui64	= cp->cache_align;
34907c478bd9Sstevel@tonic-gate 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
34917c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
34927c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
34939f1b636aStomee 	buf_avail += cp->cache_bufslab;
34947c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
34957c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
34967c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
34977c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
34987c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
34997c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
35007c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
35017c478bd9Sstevel@tonic-gate 	    cp->cache_hash_mask + 1 : 0;
35027c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
35037c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
35047c478bd9Sstevel@tonic-gate 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
3505686031edSTom Erickson 	kmcp->kmc_reap.value.ui64	= cp->cache_reap;
35067c478bd9Sstevel@tonic-gate 
3507b5fca8f8Stomee 	if (cp->cache_defrag == NULL) {
3508b5fca8f8Stomee 		kmcp->kmc_move_callbacks.value.ui64	= 0;
3509b5fca8f8Stomee 		kmcp->kmc_move_yes.value.ui64		= 0;
3510b5fca8f8Stomee 		kmcp->kmc_move_no.value.ui64		= 0;
3511b5fca8f8Stomee 		kmcp->kmc_move_later.value.ui64		= 0;
3512b5fca8f8Stomee 		kmcp->kmc_move_dont_need.value.ui64	= 0;
3513b5fca8f8Stomee 		kmcp->kmc_move_dont_know.value.ui64	= 0;
3514b5fca8f8Stomee 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3515686031edSTom Erickson 		kmcp->kmc_move_slabs_freed.value.ui64	= 0;
3516686031edSTom Erickson 		kmcp->kmc_defrag.value.ui64		= 0;
3517686031edSTom Erickson 		kmcp->kmc_scan.value.ui64		= 0;
3518686031edSTom Erickson 		kmcp->kmc_move_reclaimable.value.ui64	= 0;
3519b5fca8f8Stomee 	} else {
3520686031edSTom Erickson 		int64_t reclaimable;
3521686031edSTom Erickson 
3522b5fca8f8Stomee 		kmem_defrag_t *kd = cp->cache_defrag;
3523b5fca8f8Stomee 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3524b5fca8f8Stomee 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3525b5fca8f8Stomee 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3526b5fca8f8Stomee 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3527b5fca8f8Stomee 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3528b5fca8f8Stomee 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3529*d7db73d1SBryan Cantrill 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3530686031edSTom Erickson 		kmcp->kmc_move_slabs_freed.value.ui64	= kd->kmd_slabs_freed;
3531686031edSTom Erickson 		kmcp->kmc_defrag.value.ui64		= kd->kmd_defrags;
3532686031edSTom Erickson 		kmcp->kmc_scan.value.ui64		= kd->kmd_scans;
3533686031edSTom Erickson 
3534686031edSTom Erickson 		reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3535686031edSTom Erickson 		reclaimable = MAX(reclaimable, 0);
3536686031edSTom Erickson 		reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3537686031edSTom Erickson 		kmcp->kmc_move_reclaimable.value.ui64	= reclaimable;
3538b5fca8f8Stomee 	}
3539b5fca8f8Stomee 
35407c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
35417c478bd9Sstevel@tonic-gate 	return (0);
35427c478bd9Sstevel@tonic-gate }
35437c478bd9Sstevel@tonic-gate 
35447c478bd9Sstevel@tonic-gate /*
35457c478bd9Sstevel@tonic-gate  * Return a named statistic about a particular cache.
35467c478bd9Sstevel@tonic-gate  * This shouldn't be called very often, so it's currently designed for
35477c478bd9Sstevel@tonic-gate  * simplicity (leverages existing kstat support) rather than efficiency.
35487c478bd9Sstevel@tonic-gate  */
35497c478bd9Sstevel@tonic-gate uint64_t
35507c478bd9Sstevel@tonic-gate kmem_cache_stat(kmem_cache_t *cp, char *name)
35517c478bd9Sstevel@tonic-gate {
35527c478bd9Sstevel@tonic-gate 	int i;
35537c478bd9Sstevel@tonic-gate 	kstat_t *ksp = cp->cache_kstat;
35547c478bd9Sstevel@tonic-gate 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
35557c478bd9Sstevel@tonic-gate 	uint64_t value = 0;
35567c478bd9Sstevel@tonic-gate 
35577c478bd9Sstevel@tonic-gate 	if (ksp != NULL) {
35587c478bd9Sstevel@tonic-gate 		mutex_enter(&kmem_cache_kstat_lock);
35597c478bd9Sstevel@tonic-gate 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
35607c478bd9Sstevel@tonic-gate 		for (i = 0; i < ksp->ks_ndata; i++) {
35617c478bd9Sstevel@tonic-gate 			if (strcmp(knp[i].name, name) == 0) {
35627c478bd9Sstevel@tonic-gate 				value = knp[i].value.ui64;
35637c478bd9Sstevel@tonic-gate 				break;
35647c478bd9Sstevel@tonic-gate 			}
35657c478bd9Sstevel@tonic-gate 		}
35667c478bd9Sstevel@tonic-gate 		mutex_exit(&kmem_cache_kstat_lock);
35677c478bd9Sstevel@tonic-gate 	}
35687c478bd9Sstevel@tonic-gate 	return (value);
35697c478bd9Sstevel@tonic-gate }
35707c478bd9Sstevel@tonic-gate 
35717c478bd9Sstevel@tonic-gate /*
35727c478bd9Sstevel@tonic-gate  * Return an estimate of currently available kernel heap memory.
35737c478bd9Sstevel@tonic-gate  * On 32-bit systems, physical memory may exceed virtual memory,
35747c478bd9Sstevel@tonic-gate  * we just truncate the result at 1GB.
35757c478bd9Sstevel@tonic-gate  */
35767c478bd9Sstevel@tonic-gate size_t
35777c478bd9Sstevel@tonic-gate kmem_avail(void)
35787c478bd9Sstevel@tonic-gate {
35797c478bd9Sstevel@tonic-gate 	spgcnt_t rmem = availrmem - tune.t_minarmem;
35807c478bd9Sstevel@tonic-gate 	spgcnt_t fmem = freemem - minfree;
35817c478bd9Sstevel@tonic-gate 
35827c478bd9Sstevel@tonic-gate 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
35837c478bd9Sstevel@tonic-gate 	    1 << (30 - PAGESHIFT))));
35847c478bd9Sstevel@tonic-gate }
35857c478bd9Sstevel@tonic-gate 
35867c478bd9Sstevel@tonic-gate /*
35877c478bd9Sstevel@tonic-gate  * Return the maximum amount of memory that is (in theory) allocatable
35887c478bd9Sstevel@tonic-gate  * from the heap. This may be used as an estimate only since there
35897c478bd9Sstevel@tonic-gate  * is no guarentee this space will still be available when an allocation
35907c478bd9Sstevel@tonic-gate  * request is made, nor that the space may be allocated in one big request
35917c478bd9Sstevel@tonic-gate  * due to kernel heap fragmentation.
35927c478bd9Sstevel@tonic-gate  */
35937c478bd9Sstevel@tonic-gate size_t
35947c478bd9Sstevel@tonic-gate kmem_maxavail(void)
35957c478bd9Sstevel@tonic-gate {
35967c478bd9Sstevel@tonic-gate 	spgcnt_t pmem = availrmem - tune.t_minarmem;
35977c478bd9Sstevel@tonic-gate 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
35987c478bd9Sstevel@tonic-gate 
35997c478bd9Sstevel@tonic-gate 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
36007c478bd9Sstevel@tonic-gate }
36017c478bd9Sstevel@tonic-gate 
3602fa9e4066Sahrens /*
3603fa9e4066Sahrens  * Indicate whether memory-intensive kmem debugging is enabled.
3604fa9e4066Sahrens  */
3605fa9e4066Sahrens int
3606fa9e4066Sahrens kmem_debugging(void)
3607fa9e4066Sahrens {
3608fa9e4066Sahrens 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3609fa9e4066Sahrens }
3610fa9e4066Sahrens 
3611b5fca8f8Stomee /* binning function, sorts finely at the two extremes */
3612b5fca8f8Stomee #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3613b5fca8f8Stomee 	((((sp)->slab_refcnt <= (binshift)) ||				\
3614b5fca8f8Stomee 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3615b5fca8f8Stomee 	    ? -(sp)->slab_refcnt					\
3616b5fca8f8Stomee 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3617b5fca8f8Stomee 
3618b5fca8f8Stomee /*
3619b5fca8f8Stomee  * Minimizing the number of partial slabs on the freelist minimizes
3620b5fca8f8Stomee  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3621b5fca8f8Stomee  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3622b5fca8f8Stomee  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3623b5fca8f8Stomee  * the most-used slabs at the front of the list where they have the best chance
3624b5fca8f8Stomee  * of being completely allocated, and the least-used slabs at a safe distance
3625b5fca8f8Stomee  * from the front to improve the odds that the few remaining buffers will all be
3626b5fca8f8Stomee  * freed before another allocation can tie up the slab. For that reason a slab
3627b5fca8f8Stomee  * with a higher slab_refcnt sorts less than than a slab with a lower
3628b5fca8f8Stomee  * slab_refcnt.
3629b5fca8f8Stomee  *
3630b5fca8f8Stomee  * However, if a slab has at least one buffer that is deemed unfreeable, we
3631b5fca8f8Stomee  * would rather have that slab at the front of the list regardless of
3632b5fca8f8Stomee  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3633b5fca8f8Stomee  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3634b5fca8f8Stomee  * callback, the slab is marked unfreeable for as long as it remains on the
3635b5fca8f8Stomee  * freelist.
3636b5fca8f8Stomee  */
3637b5fca8f8Stomee static int
3638b5fca8f8Stomee kmem_partial_slab_cmp(const void *p0, const void *p1)
3639b5fca8f8Stomee {
3640b5fca8f8Stomee 	const kmem_cache_t *cp;
3641b5fca8f8Stomee 	const kmem_slab_t *s0 = p0;
3642b5fca8f8Stomee 	const kmem_slab_t *s1 = p1;
3643b5fca8f8Stomee 	int w0, w1;
3644b5fca8f8Stomee 	size_t binshift;
3645b5fca8f8Stomee 
3646b5fca8f8Stomee 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3647b5fca8f8Stomee 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3648b5fca8f8Stomee 	ASSERT(s0->slab_cache == s1->slab_cache);
3649b5fca8f8Stomee 	cp = s1->slab_cache;
3650b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3651b5fca8f8Stomee 	binshift = cp->cache_partial_binshift;
3652b5fca8f8Stomee 
3653b5fca8f8Stomee 	/* weight of first slab */
3654b5fca8f8Stomee 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3655b5fca8f8Stomee 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3656b5fca8f8Stomee 		w0 -= cp->cache_maxchunks;
3657b5fca8f8Stomee 	}
3658b5fca8f8Stomee 
3659b5fca8f8Stomee 	/* weight of second slab */
3660b5fca8f8Stomee 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3661b5fca8f8Stomee 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3662b5fca8f8Stomee 		w1 -= cp->cache_maxchunks;
3663b5fca8f8Stomee 	}
3664b5fca8f8Stomee 
3665b5fca8f8Stomee 	if (w0 < w1)
3666b5fca8f8Stomee 		return (-1);
3667b5fca8f8Stomee 	if (w0 > w1)
3668b5fca8f8Stomee 		return (1);
3669b5fca8f8Stomee 
3670b5fca8f8Stomee 	/* compare pointer values */
3671b5fca8f8Stomee 	if ((uintptr_t)s0 < (uintptr_t)s1)
3672b5fca8f8Stomee 		return (-1);
3673b5fca8f8Stomee 	if ((uintptr_t)s0 > (uintptr_t)s1)
3674b5fca8f8Stomee 		return (1);
3675b5fca8f8Stomee 
3676b5fca8f8Stomee 	return (0);
3677b5fca8f8Stomee }
3678b5fca8f8Stomee 
3679b5fca8f8Stomee /*
3680b5fca8f8Stomee  * It must be valid to call the destructor (if any) on a newly created object.
3681b5fca8f8Stomee  * That is, the constructor (if any) must leave the object in a valid state for
3682b5fca8f8Stomee  * the destructor.
3683b5fca8f8Stomee  */
36847c478bd9Sstevel@tonic-gate kmem_cache_t *
36857c478bd9Sstevel@tonic-gate kmem_cache_create(
36867c478bd9Sstevel@tonic-gate 	char *name,		/* descriptive name for this cache */
36877c478bd9Sstevel@tonic-gate 	size_t bufsize,		/* size of the objects it manages */
36887c478bd9Sstevel@tonic-gate 	size_t align,		/* required object alignment */
36897c478bd9Sstevel@tonic-gate 	int (*constructor)(void *, void *, int), /* object constructor */
36907c478bd9Sstevel@tonic-gate 	void (*destructor)(void *, void *),	/* object destructor */
36917c478bd9Sstevel@tonic-gate 	void (*reclaim)(void *), /* memory reclaim callback */
36927c478bd9Sstevel@tonic-gate 	void *private,		/* pass-thru arg for constr/destr/reclaim */
36937c478bd9Sstevel@tonic-gate 	vmem_t *vmp,		/* vmem source for slab allocation */
36947c478bd9Sstevel@tonic-gate 	int cflags)		/* cache creation flags */
36957c478bd9Sstevel@tonic-gate {
36967c478bd9Sstevel@tonic-gate 	int cpu_seqid;
36977c478bd9Sstevel@tonic-gate 	size_t chunksize;
3698b5fca8f8Stomee 	kmem_cache_t *cp;
36997c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
37007c478bd9Sstevel@tonic-gate 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
37017c478bd9Sstevel@tonic-gate 
37027c478bd9Sstevel@tonic-gate #ifdef	DEBUG
37037c478bd9Sstevel@tonic-gate 	/*
37047c478bd9Sstevel@tonic-gate 	 * Cache names should conform to the rules for valid C identifiers
37057c478bd9Sstevel@tonic-gate 	 */
37067c478bd9Sstevel@tonic-gate 	if (!strident_valid(name)) {
37077c478bd9Sstevel@tonic-gate 		cmn_err(CE_CONT,
37087c478bd9Sstevel@tonic-gate 		    "kmem_cache_create: '%s' is an invalid cache name\n"
37097c478bd9Sstevel@tonic-gate 		    "cache names must conform to the rules for "
37107c478bd9Sstevel@tonic-gate 		    "C identifiers\n", name);
37117c478bd9Sstevel@tonic-gate 	}
37127c478bd9Sstevel@tonic-gate #endif	/* DEBUG */
37137c478bd9Sstevel@tonic-gate 
37147c478bd9Sstevel@tonic-gate 	if (vmp == NULL)
37157c478bd9Sstevel@tonic-gate 		vmp = kmem_default_arena;
37167c478bd9Sstevel@tonic-gate 
37177c478bd9Sstevel@tonic-gate 	/*
37187c478bd9Sstevel@tonic-gate 	 * If this kmem cache has an identifier vmem arena as its source, mark
37197c478bd9Sstevel@tonic-gate 	 * it such to allow kmem_reap_idspace().
37207c478bd9Sstevel@tonic-gate 	 */
37217c478bd9Sstevel@tonic-gate 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
37227c478bd9Sstevel@tonic-gate 	if (vmp->vm_cflags & VMC_IDENTIFIER)
37237c478bd9Sstevel@tonic-gate 		cflags |= KMC_IDENTIFIER;
37247c478bd9Sstevel@tonic-gate 
37257c478bd9Sstevel@tonic-gate 	/*
37267c478bd9Sstevel@tonic-gate 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
37277c478bd9Sstevel@tonic-gate 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
37287c478bd9Sstevel@tonic-gate 	 * false sharing of per-CPU data.
37297c478bd9Sstevel@tonic-gate 	 */
37307c478bd9Sstevel@tonic-gate 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
37317c478bd9Sstevel@tonic-gate 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
37327c478bd9Sstevel@tonic-gate 	bzero(cp, csize);
3733b5fca8f8Stomee 	list_link_init(&cp->cache_link);
37347c478bd9Sstevel@tonic-gate 
37357c478bd9Sstevel@tonic-gate 	if (align == 0)
37367c478bd9Sstevel@tonic-gate 		align = KMEM_ALIGN;
37377c478bd9Sstevel@tonic-gate 
37387c478bd9Sstevel@tonic-gate 	/*
37397c478bd9Sstevel@tonic-gate 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
37407c478bd9Sstevel@tonic-gate 	 * memory to hold bufctl information (because we can't safely
37417c478bd9Sstevel@tonic-gate 	 * perform word loads and stores on it).
37427c478bd9Sstevel@tonic-gate 	 */
37437c478bd9Sstevel@tonic-gate 	if (align < KMEM_ALIGN)
37447c478bd9Sstevel@tonic-gate 		cflags |= KMC_NOTOUCH;
37457c478bd9Sstevel@tonic-gate 
3746de710d24SJosef 'Jeff' Sipek 	if (!ISP2(align) || align > vmp->vm_quantum)
37477c478bd9Sstevel@tonic-gate 		panic("kmem_cache_create: bad alignment %lu", align);
37487c478bd9Sstevel@tonic-gate 
37497c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_flags_lock);
37507c478bd9Sstevel@tonic-gate 	if (kmem_flags & KMF_RANDOMIZE)
37517c478bd9Sstevel@tonic-gate 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
37527c478bd9Sstevel@tonic-gate 		    KMF_RANDOMIZE;
37537c478bd9Sstevel@tonic-gate 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
37547c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_flags_lock);
37557c478bd9Sstevel@tonic-gate 
37567c478bd9Sstevel@tonic-gate 	/*
37577c478bd9Sstevel@tonic-gate 	 * Make sure all the various flags are reasonable.
37587c478bd9Sstevel@tonic-gate 	 */
37597c478bd9Sstevel@tonic-gate 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
37607c478bd9Sstevel@tonic-gate 
37617c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_LITE) {
37627c478bd9Sstevel@tonic-gate 		if (bufsize >= kmem_lite_minsize &&
37637c478bd9Sstevel@tonic-gate 		    align <= kmem_lite_maxalign &&
37647c478bd9Sstevel@tonic-gate 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
37657c478bd9Sstevel@tonic-gate 			cp->cache_flags |= KMF_BUFTAG;
37667c478bd9Sstevel@tonic-gate 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
37677c478bd9Sstevel@tonic-gate 		} else {
37687c478bd9Sstevel@tonic-gate 			cp->cache_flags &= ~KMF_DEBUG;
37697c478bd9Sstevel@tonic-gate 		}
37707c478bd9Sstevel@tonic-gate 	}
37717c478bd9Sstevel@tonic-gate 
37727c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF)
37737c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_REDZONE;
37747c478bd9Sstevel@tonic-gate 
37757c478bd9Sstevel@tonic-gate 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
37767c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
37777c478bd9Sstevel@tonic-gate 
37787c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NODEBUG)
37797c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_DEBUG;
37807c478bd9Sstevel@tonic-gate 
37817c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOTOUCH)
37827c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_TOUCH;
37837c478bd9Sstevel@tonic-gate 
3784b942e89bSDavid Valin 	if (cflags & KMC_PREFILL)
3785b942e89bSDavid Valin 		cp->cache_flags |= KMF_PREFILL;
3786b942e89bSDavid Valin 
37877c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOHASH)
37887c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
37897c478bd9Sstevel@tonic-gate 
37907c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOMAGAZINE)
37917c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
37927c478bd9Sstevel@tonic-gate 
37937c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
37947c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_REDZONE;
37957c478bd9Sstevel@tonic-gate 
37967c478bd9Sstevel@tonic-gate 	if (!(cp->cache_flags & KMF_AUDIT))
37977c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_CONTENTS;
37987c478bd9Sstevel@tonic-gate 
37997c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
38007c478bd9Sstevel@tonic-gate 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
38017c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_FIREWALL;
38027c478bd9Sstevel@tonic-gate 
38037c478bd9Sstevel@tonic-gate 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
38047c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_FIREWALL;
38057c478bd9Sstevel@tonic-gate 
38067c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_FIREWALL) {
38077c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_BUFTAG;
38087c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
38097c478bd9Sstevel@tonic-gate 		ASSERT(vmp == kmem_default_arena);
38107c478bd9Sstevel@tonic-gate 		vmp = kmem_firewall_arena;
38117c478bd9Sstevel@tonic-gate 	}
38127c478bd9Sstevel@tonic-gate 
38137c478bd9Sstevel@tonic-gate 	/*
38147c478bd9Sstevel@tonic-gate 	 * Set cache properties.
38157c478bd9Sstevel@tonic-gate 	 */
38167c478bd9Sstevel@tonic-gate 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3817b5fca8f8Stomee 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
38187c478bd9Sstevel@tonic-gate 	cp->cache_bufsize = bufsize;
38197c478bd9Sstevel@tonic-gate 	cp->cache_align = align;
38207c478bd9Sstevel@tonic-gate 	cp->cache_constructor = constructor;
38217c478bd9Sstevel@tonic-gate 	cp->cache_destructor = destructor;
38227c478bd9Sstevel@tonic-gate 	cp->cache_reclaim = reclaim;
38237c478bd9Sstevel@tonic-gate 	cp->cache_private = private;
38247c478bd9Sstevel@tonic-gate 	cp->cache_arena = vmp;
38257c478bd9Sstevel@tonic-gate 	cp->cache_cflags = cflags;
38267c478bd9Sstevel@tonic-gate 
38277c478bd9Sstevel@tonic-gate 	/*
38287c478bd9Sstevel@tonic-gate 	 * Determine the chunk size.
38297c478bd9Sstevel@tonic-gate 	 */
38307c478bd9Sstevel@tonic-gate 	chunksize = bufsize;
38317c478bd9Sstevel@tonic-gate 
38327c478bd9Sstevel@tonic-gate 	if (align >= KMEM_ALIGN) {
38337c478bd9Sstevel@tonic-gate 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
38347c478bd9Sstevel@tonic-gate 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
38357c478bd9Sstevel@tonic-gate 	}
38367c478bd9Sstevel@tonic-gate 
38377c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_BUFTAG) {
38387c478bd9Sstevel@tonic-gate 		cp->cache_bufctl = chunksize;
38397c478bd9Sstevel@tonic-gate 		cp->cache_buftag = chunksize;
38407c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
38417c478bd9Sstevel@tonic-gate 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
38427c478bd9Sstevel@tonic-gate 		else
38437c478bd9Sstevel@tonic-gate 			chunksize += sizeof (kmem_buftag_t);
38447c478bd9Sstevel@tonic-gate 	}
38457c478bd9Sstevel@tonic-gate 
38467c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
38477c478bd9Sstevel@tonic-gate 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
38487c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
38497c478bd9Sstevel@tonic-gate 			cp->cache_verify = sizeof (uint64_t);
38507c478bd9Sstevel@tonic-gate 	}
38517c478bd9Sstevel@tonic-gate 
38527c478bd9Sstevel@tonic-gate 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
38537c478bd9Sstevel@tonic-gate 
38547c478bd9Sstevel@tonic-gate 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
38557c478bd9Sstevel@tonic-gate 
38567c478bd9Sstevel@tonic-gate 	/*
38577c478bd9Sstevel@tonic-gate 	 * Now that we know the chunk size, determine the optimal slab size.
38587c478bd9Sstevel@tonic-gate 	 */
38597c478bd9Sstevel@tonic-gate 	if (vmp == kmem_firewall_arena) {
38607c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
38617c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
38627c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = cp->cache_mincolor;
38637c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_HASH;
38647c478bd9Sstevel@tonic-gate 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
38657c478bd9Sstevel@tonic-gate 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
38667c478bd9Sstevel@tonic-gate 	    !(cp->cache_flags & KMF_AUDIT) &&
38677c478bd9Sstevel@tonic-gate 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
38687c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = vmp->vm_quantum;
38697c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = 0;
38707c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor =
38717c478bd9Sstevel@tonic-gate 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
38727c478bd9Sstevel@tonic-gate 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
38737c478bd9Sstevel@tonic-gate 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
38747c478bd9Sstevel@tonic-gate 	} else {
38757c478bd9Sstevel@tonic-gate 		size_t chunks, bestfit, waste, slabsize;
38767c478bd9Sstevel@tonic-gate 		size_t minwaste = LONG_MAX;
38777c478bd9Sstevel@tonic-gate 
38787c478bd9Sstevel@tonic-gate 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
38797c478bd9Sstevel@tonic-gate 			slabsize = P2ROUNDUP(chunksize * chunks,
38807c478bd9Sstevel@tonic-gate 			    vmp->vm_quantum);
38817c478bd9Sstevel@tonic-gate 			chunks = slabsize / chunksize;
38827c478bd9Sstevel@tonic-gate 			waste = (slabsize % chunksize) / chunks;
38837c478bd9Sstevel@tonic-gate 			if (waste < minwaste) {
38847c478bd9Sstevel@tonic-gate 				minwaste = waste;
38857c478bd9Sstevel@tonic-gate 				bestfit = slabsize;
38867c478bd9Sstevel@tonic-gate 			}
38877c478bd9Sstevel@tonic-gate 		}
38887c478bd9Sstevel@tonic-gate 		if (cflags & KMC_QCACHE)
38897c478bd9Sstevel@tonic-gate 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
38907c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = bestfit;
38917c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = 0;
38927c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = bestfit % chunksize;
38937c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_HASH;
38947c478bd9Sstevel@tonic-gate 	}
38957c478bd9Sstevel@tonic-gate 
3896b5fca8f8Stomee 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3897b5fca8f8Stomee 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3898b5fca8f8Stomee 
3899b942e89bSDavid Valin 	/*
3900b942e89bSDavid Valin 	 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3901b942e89bSDavid Valin 	 * there is a constructor avoids some tricky issues with debug setup
3902b942e89bSDavid Valin 	 * that may be revisited later. We cannot allow prefill in a
3903b942e89bSDavid Valin 	 * metadata cache because of potential recursion.
3904b942e89bSDavid Valin 	 */
3905b942e89bSDavid Valin 	if (vmp == kmem_msb_arena ||
3906b942e89bSDavid Valin 	    cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3907b942e89bSDavid Valin 	    cp->cache_constructor != NULL)
3908b942e89bSDavid Valin 		cp->cache_flags &= ~KMF_PREFILL;
3909b942e89bSDavid Valin 
39107c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
39117c478bd9Sstevel@tonic-gate 		ASSERT(!(cflags & KMC_NOHASH));
39127c478bd9Sstevel@tonic-gate 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
39137c478bd9Sstevel@tonic-gate 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
39147c478bd9Sstevel@tonic-gate 	}
39157c478bd9Sstevel@tonic-gate 
39167c478bd9Sstevel@tonic-gate 	if (cp->cache_maxcolor >= vmp->vm_quantum)
39177c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = vmp->vm_quantum - 1;
39187c478bd9Sstevel@tonic-gate 
39197c478bd9Sstevel@tonic-gate 	cp->cache_color = cp->cache_mincolor;
39207c478bd9Sstevel@tonic-gate 
39217c478bd9Sstevel@tonic-gate 	/*
39227c478bd9Sstevel@tonic-gate 	 * Initialize the rest of the slab layer.
39237c478bd9Sstevel@tonic-gate 	 */
39247c478bd9Sstevel@tonic-gate 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
39257c478bd9Sstevel@tonic-gate 
3926b5fca8f8Stomee 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3927b5fca8f8Stomee 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3928b5fca8f8Stomee 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3929b5fca8f8Stomee 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3930b5fca8f8Stomee 	/* reuse partial slab AVL linkage for complete slab list linkage */
3931b5fca8f8Stomee 	list_create(&cp->cache_complete_slabs,
3932b5fca8f8Stomee 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
39337c478bd9Sstevel@tonic-gate 
39347c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
39357c478bd9Sstevel@tonic-gate 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
39367c478bd9Sstevel@tonic-gate 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
39377c478bd9Sstevel@tonic-gate 		bzero(cp->cache_hash_table,
39387c478bd9Sstevel@tonic-gate 		    KMEM_HASH_INITIAL * sizeof (void *));
39397c478bd9Sstevel@tonic-gate 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
39407c478bd9Sstevel@tonic-gate 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
39417c478bd9Sstevel@tonic-gate 	}
39427c478bd9Sstevel@tonic-gate 
39437c478bd9Sstevel@tonic-gate 	/*
39447c478bd9Sstevel@tonic-gate 	 * Initialize the depot.
39457c478bd9Sstevel@tonic-gate 	 */
39467c478bd9Sstevel@tonic-gate 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
39477c478bd9Sstevel@tonic-gate 
39487c478bd9Sstevel@tonic-gate 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
39497c478bd9Sstevel@tonic-gate 		continue;
39507c478bd9Sstevel@tonic-gate 
39517c478bd9Sstevel@tonic-gate 	cp->cache_magtype = mtp;
39527c478bd9Sstevel@tonic-gate 
39537c478bd9Sstevel@tonic-gate 	/*
39547c478bd9Sstevel@tonic-gate 	 * Initialize the CPU layer.
39557c478bd9Sstevel@tonic-gate 	 */
39567c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
39577c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
39587c478bd9Sstevel@tonic-gate 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
39597c478bd9Sstevel@tonic-gate 		ccp->cc_flags = cp->cache_flags;
39607c478bd9Sstevel@tonic-gate 		ccp->cc_rounds = -1;
39617c478bd9Sstevel@tonic-gate 		ccp->cc_prounds = -1;
39627c478bd9Sstevel@tonic-gate 	}
39637c478bd9Sstevel@tonic-gate 
39647c478bd9Sstevel@tonic-gate 	/*
39657c478bd9Sstevel@tonic-gate 	 * Create the cache's kstats.
39667c478bd9Sstevel@tonic-gate 	 */
39677c478bd9Sstevel@tonic-gate 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
39687c478bd9Sstevel@tonic-gate 	    "kmem_cache", KSTAT_TYPE_NAMED,
39697c478bd9Sstevel@tonic-gate 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
39707c478bd9Sstevel@tonic-gate 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
39717c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
39727c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
39737c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_private = cp;
39747c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
39757c478bd9Sstevel@tonic-gate 		kstat_install(cp->cache_kstat);
39767c478bd9Sstevel@tonic-gate 	}
39777c478bd9Sstevel@tonic-gate 
39787c478bd9Sstevel@tonic-gate 	/*
39797c478bd9Sstevel@tonic-gate 	 * Add the cache to the global list.  This makes it visible
39807c478bd9Sstevel@tonic-gate 	 * to kmem_update(), so the cache must be ready for business.
39817c478bd9Sstevel@tonic-gate 	 */
39827c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
3983b5fca8f8Stomee 	list_insert_tail(&kmem_caches, cp);
39847c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
39857c478bd9Sstevel@tonic-gate 
39867c478bd9Sstevel@tonic-gate 	if (kmem_ready)
39877c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_enable(cp);
39887c478bd9Sstevel@tonic-gate 
39897c478bd9Sstevel@tonic-gate 	return (cp);
39907c478bd9Sstevel@tonic-gate }
39917c478bd9Sstevel@tonic-gate 
3992b5fca8f8Stomee static int
3993b5fca8f8Stomee kmem_move_cmp(const void *buf, const void *p)
3994b5fca8f8Stomee {
3995b5fca8f8Stomee 	const kmem_move_t *kmm = p;
3996b5fca8f8Stomee 	uintptr_t v1 = (uintptr_t)buf;
3997b5fca8f8Stomee 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3998b5fca8f8Stomee 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3999b5fca8f8Stomee }
4000b5fca8f8Stomee 
4001b5fca8f8Stomee static void
4002b5fca8f8Stomee kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4003b5fca8f8Stomee {
4004b5fca8f8Stomee 	kmd->kmd_reclaim_numer = 1;
4005b5fca8f8Stomee }
4006b5fca8f8Stomee 
4007b5fca8f8Stomee /*
4008b5fca8f8Stomee  * Initially, when choosing candidate slabs for buffers to move, we want to be
4009b5fca8f8Stomee  * very selective and take only slabs that are less than
4010b5fca8f8Stomee  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4011b5fca8f8Stomee  * slabs, then we raise the allocation ceiling incrementally. The reclaim
4012b5fca8f8Stomee  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4013b5fca8f8Stomee  * longer fragmented.
4014b5fca8f8Stomee  */
4015b5fca8f8Stomee static void
4016b5fca8f8Stomee kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4017b5fca8f8Stomee {
4018b5fca8f8Stomee 	if (direction > 0) {
4019b5fca8f8Stomee 		/* make it easier to find a candidate slab */
4020b5fca8f8Stomee 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4021b5fca8f8Stomee 			kmd->kmd_reclaim_numer++;
4022b5fca8f8Stomee 		}
4023b5fca8f8Stomee 	} else {
4024b5fca8f8Stomee 		/* be more selective */
4025b5fca8f8Stomee 		if (kmd->kmd_reclaim_numer > 1) {
4026b5fca8f8Stomee 			kmd->kmd_reclaim_numer--;
4027b5fca8f8Stomee 		}
4028b5fca8f8Stomee 	}
4029b5fca8f8Stomee }
4030b5fca8f8Stomee 
4031b5fca8f8Stomee void
4032b5fca8f8Stomee kmem_cache_set_move(kmem_cache_t *cp,
4033b5fca8f8Stomee     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4034b5fca8f8Stomee {
4035b5fca8f8Stomee 	kmem_defrag_t *defrag;
4036b5fca8f8Stomee 
4037b5fca8f8Stomee 	ASSERT(move != NULL);
4038b5fca8f8Stomee 	/*
4039b5fca8f8Stomee 	 * The consolidator does not support NOTOUCH caches because kmem cannot
4040b5fca8f8Stomee 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4041b5fca8f8Stomee 	 * a low order bit usable by clients to distinguish uninitialized memory
4042b5fca8f8Stomee 	 * from known objects (see kmem_slab_create).
4043b5fca8f8Stomee 	 */
4044b5fca8f8Stomee 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4045b5fca8f8Stomee 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4046b5fca8f8Stomee 
4047b5fca8f8Stomee 	/*
4048b5fca8f8Stomee 	 * We should not be holding anyone's cache lock when calling
4049b5fca8f8Stomee 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4050b5fca8f8Stomee 	 * lock.
4051b5fca8f8Stomee 	 */
4052b5fca8f8Stomee 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4053b5fca8f8Stomee 
4054b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4055b5fca8f8Stomee 
4056b5fca8f8Stomee 	if (KMEM_IS_MOVABLE(cp)) {
4057b5fca8f8Stomee 		if (cp->cache_move == NULL) {
40584d4c4c43STom Erickson 			ASSERT(cp->cache_slab_alloc == 0);
4059b5fca8f8Stomee 
4060b5fca8f8Stomee 			cp->cache_defrag = defrag;
4061b5fca8f8Stomee 			defrag = NULL; /* nothing to free */
4062b5fca8f8Stomee 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4063b5fca8f8Stomee 			avl_create(&cp->cache_defrag->kmd_moves_pending,
4064b5fca8f8Stomee 			    kmem_move_cmp, sizeof (kmem_move_t),
4065b5fca8f8Stomee 			    offsetof(kmem_move_t, kmm_entry));
4066b5fca8f8Stomee 			/* LINTED: E_TRUE_LOGICAL_EXPR */
4067b5fca8f8Stomee 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4068b5fca8f8Stomee 			/* reuse the slab's AVL linkage for deadlist linkage */
4069b5fca8f8Stomee 			list_create(&cp->cache_defrag->kmd_deadlist,
4070b5fca8f8Stomee 			    sizeof (kmem_slab_t),
4071b5fca8f8Stomee 			    offsetof(kmem_slab_t, slab_link));
4072b5fca8f8Stomee 			kmem_reset_reclaim_threshold(cp->cache_defrag);
4073b5fca8f8Stomee 		}
4074b5fca8f8Stomee 		cp->cache_move = move;
4075b5fca8f8Stomee 	}
4076b5fca8f8Stomee 
4077b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4078b5fca8f8Stomee 
4079b5fca8f8Stomee 	if (defrag != NULL) {
4080b5fca8f8Stomee 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4081b5fca8f8Stomee 	}
4082b5fca8f8Stomee }
4083b5fca8f8Stomee 
40847c478bd9Sstevel@tonic-gate void
40857c478bd9Sstevel@tonic-gate kmem_cache_destroy(kmem_cache_t *cp)
40867c478bd9Sstevel@tonic-gate {
40877c478bd9Sstevel@tonic-gate 	int cpu_seqid;
40887c478bd9Sstevel@tonic-gate 
40897c478bd9Sstevel@tonic-gate 	/*
40907c478bd9Sstevel@tonic-gate 	 * Remove the cache from the global cache list so that no one else
40917c478bd9Sstevel@tonic-gate 	 * can schedule tasks on its behalf, wait for any pending tasks to
40927c478bd9Sstevel@tonic-gate 	 * complete, purge the cache, and then destroy it.
40937c478bd9Sstevel@tonic-gate 	 */
40947c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
4095b5fca8f8Stomee 	list_remove(&kmem_caches, cp);
40967c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
40977c478bd9Sstevel@tonic-gate 
40987c478bd9Sstevel@tonic-gate 	if (kmem_taskq != NULL)
40997c478bd9Sstevel@tonic-gate 		taskq_wait(kmem_taskq);
4100*d7db73d1SBryan Cantrill 
4101*d7db73d1SBryan Cantrill 	if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4102b5fca8f8Stomee 		taskq_wait(kmem_move_taskq);
41037c478bd9Sstevel@tonic-gate 
41047c478bd9Sstevel@tonic-gate 	kmem_cache_magazine_purge(cp);
41057c478bd9Sstevel@tonic-gate 
41067c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
41077c478bd9Sstevel@tonic-gate 	if (cp->cache_buftotal != 0)
41087c478bd9Sstevel@tonic-gate 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
41097c478bd9Sstevel@tonic-gate 		    cp->cache_name, (void *)cp);
4110b5fca8f8Stomee 	if (cp->cache_defrag != NULL) {
4111b5fca8f8Stomee 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4112b5fca8f8Stomee 		list_destroy(&cp->cache_defrag->kmd_deadlist);
4113b5fca8f8Stomee 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4114b5fca8f8Stomee 		cp->cache_defrag = NULL;
4115b5fca8f8Stomee 	}
41167c478bd9Sstevel@tonic-gate 	/*
4117b5fca8f8Stomee 	 * The cache is now dead.  There should be no further activity.  We
4118b5fca8f8Stomee 	 * enforce this by setting land mines in the constructor, destructor,
4119b5fca8f8Stomee 	 * reclaim, and move routines that induce a kernel text fault if
4120b5fca8f8Stomee 	 * invoked.
41217c478bd9Sstevel@tonic-gate 	 */
41227c478bd9Sstevel@tonic-gate 	cp->cache_constructor = (int (*)(void *, void *, int))1;
41237c478bd9Sstevel@tonic-gate 	cp->cache_destructor = (void (*)(void *, void *))2;
4124b5fca8f8Stomee 	cp->cache_reclaim = (void (*)(void *))3;
4125b5fca8f8Stomee 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
41267c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
41277c478bd9Sstevel@tonic-gate 
41287c478bd9Sstevel@tonic-gate 	kstat_delete(cp->cache_kstat);
41297c478bd9Sstevel@tonic-gate 
41307c478bd9Sstevel@tonic-gate 	if (cp->cache_hash_table != NULL)
41317c478bd9Sstevel@tonic-gate 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
41327c478bd9Sstevel@tonic-gate 		    (cp->cache_hash_mask + 1) * sizeof (void *));
41337c478bd9Sstevel@tonic-gate 
41347c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
41357c478bd9Sstevel@tonic-gate 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
41367c478bd9Sstevel@tonic-gate 
41377c478bd9Sstevel@tonic-gate 	mutex_destroy(&cp->cache_depot_lock);
41387c478bd9Sstevel@tonic-gate 	mutex_destroy(&cp->cache_lock);
41397c478bd9Sstevel@tonic-gate 
41407c478bd9Sstevel@tonic-gate 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
41417c478bd9Sstevel@tonic-gate }
41427c478bd9Sstevel@tonic-gate 
41437c478bd9Sstevel@tonic-gate /*ARGSUSED*/
41447c478bd9Sstevel@tonic-gate static int
41457c478bd9Sstevel@tonic-gate kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
41467c478bd9Sstevel@tonic-gate {
41477c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
41487c478bd9Sstevel@tonic-gate 	if (what == CPU_UNCONFIG) {
41497c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_magazine_purge,
41507c478bd9Sstevel@tonic-gate 		    kmem_taskq, TQ_SLEEP);
41517c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_magazine_enable,
41527c478bd9Sstevel@tonic-gate 		    kmem_taskq, TQ_SLEEP);
41537c478bd9Sstevel@tonic-gate 	}
41547c478bd9Sstevel@tonic-gate 	return (0);
41557c478bd9Sstevel@tonic-gate }
41567c478bd9Sstevel@tonic-gate 
4157dce01e3fSJonathan W Adams static void
4158dce01e3fSJonathan W Adams kmem_alloc_caches_create(const int *array, size_t count,
4159dce01e3fSJonathan W Adams     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4160dce01e3fSJonathan W Adams {
4161dce01e3fSJonathan W Adams 	char name[KMEM_CACHE_NAMELEN + 1];
4162dce01e3fSJonathan W Adams 	size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4163dce01e3fSJonathan W Adams 	size_t size = table_unit;
4164dce01e3fSJonathan W Adams 	int i;
4165dce01e3fSJonathan W Adams 
4166dce01e3fSJonathan W Adams 	for (i = 0; i < count; i++) {
4167dce01e3fSJonathan W Adams 		size_t cache_size = array[i];
4168dce01e3fSJonathan W Adams 		size_t align = KMEM_ALIGN;
4169dce01e3fSJonathan W Adams 		kmem_cache_t *cp;
4170dce01e3fSJonathan W Adams 
4171dce01e3fSJonathan W Adams 		/* if the table has an entry for maxbuf, we're done */
4172dce01e3fSJonathan W Adams 		if (size > maxbuf)
4173dce01e3fSJonathan W Adams 			break;
4174dce01e3fSJonathan W Adams 
4175dce01e3fSJonathan W Adams 		/* cache size must be a multiple of the table unit */
4176dce01e3fSJonathan W Adams 		ASSERT(P2PHASE(cache_size, table_unit) == 0);
4177dce01e3fSJonathan W Adams 
4178dce01e3fSJonathan W Adams 		/*
4179dce01e3fSJonathan W Adams 		 * If they allocate a multiple of the coherency granularity,
4180dce01e3fSJonathan W Adams 		 * they get a coherency-granularity-aligned address.
4181dce01e3fSJonathan W Adams 		 */
4182dce01e3fSJonathan W Adams 		if (IS_P2ALIGNED(cache_size, 64))
4183dce01e3fSJonathan W Adams 			align = 64;
4184dce01e3fSJonathan W Adams 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
4185dce01e3fSJonathan W Adams 			align = PAGESIZE;
4186dce01e3fSJonathan W Adams 		(void) snprintf(name, sizeof (name),
4187dce01e3fSJonathan W Adams 		    "kmem_alloc_%lu", cache_size);
4188dce01e3fSJonathan W Adams 		cp = kmem_cache_create(name, cache_size, align,
4189dce01e3fSJonathan W Adams 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4190dce01e3fSJonathan W Adams 
4191dce01e3fSJonathan W Adams 		while (size <= cache_size) {
4192dce01e3fSJonathan W Adams 			alloc_table[(size - 1) >> shift] = cp;
4193dce01e3fSJonathan W Adams 			size += table_unit;
4194dce01e3fSJonathan W Adams 		}
4195dce01e3fSJonathan W Adams 	}
4196dce01e3fSJonathan W Adams 
4197dce01e3fSJonathan W Adams 	ASSERT(size > maxbuf);		/* i.e. maxbuf <= max(cache_size) */
4198dce01e3fSJonathan W Adams }
4199dce01e3fSJonathan W Adams 
42007c478bd9Sstevel@tonic-gate static void
42017c478bd9Sstevel@tonic-gate kmem_cache_init(int pass, int use_large_pages)
42027c478bd9Sstevel@tonic-gate {
42037c478bd9Sstevel@tonic-gate 	int i;
4204dce01e3fSJonathan W Adams 	size_t maxbuf;
42057c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
42067c478bd9Sstevel@tonic-gate 
42077c478bd9Sstevel@tonic-gate 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4208dce01e3fSJonathan W Adams 		char name[KMEM_CACHE_NAMELEN + 1];
4209dce01e3fSJonathan W Adams 
42107c478bd9Sstevel@tonic-gate 		mtp = &kmem_magtype[i];
42117c478bd9Sstevel@tonic-gate 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
42127c478bd9Sstevel@tonic-gate 		mtp->mt_cache = kmem_cache_create(name,
42137c478bd9Sstevel@tonic-gate 		    (mtp->mt_magsize + 1) * sizeof (void *),
42147c478bd9Sstevel@tonic-gate 		    mtp->mt_align, NULL, NULL, NULL, NULL,
42157c478bd9Sstevel@tonic-gate 		    kmem_msb_arena, KMC_NOHASH);
42167c478bd9Sstevel@tonic-gate 	}
42177c478bd9Sstevel@tonic-gate 
42187c478bd9Sstevel@tonic-gate 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
42197c478bd9Sstevel@tonic-gate 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
42207c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
42217c478bd9Sstevel@tonic-gate 
42227c478bd9Sstevel@tonic-gate 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
42237c478bd9Sstevel@tonic-gate 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
42247c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
42257c478bd9Sstevel@tonic-gate 
42267c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
42277c478bd9Sstevel@tonic-gate 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
42287c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
42297c478bd9Sstevel@tonic-gate 
42307c478bd9Sstevel@tonic-gate 	if (pass == 2) {
42317c478bd9Sstevel@tonic-gate 		kmem_va_arena = vmem_create("kmem_va",
42327c478bd9Sstevel@tonic-gate 		    NULL, 0, PAGESIZE,
42337c478bd9Sstevel@tonic-gate 		    vmem_alloc, vmem_free, heap_arena,
42347c478bd9Sstevel@tonic-gate 		    8 * PAGESIZE, VM_SLEEP);
42357c478bd9Sstevel@tonic-gate 
42367c478bd9Sstevel@tonic-gate 		if (use_large_pages) {
42377c478bd9Sstevel@tonic-gate 			kmem_default_arena = vmem_xcreate("kmem_default",
42387c478bd9Sstevel@tonic-gate 			    NULL, 0, PAGESIZE,
42397c478bd9Sstevel@tonic-gate 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
42409dd77bc8SDave Plauger 			    0, VMC_DUMPSAFE | VM_SLEEP);
42417c478bd9Sstevel@tonic-gate 		} else {
42427c478bd9Sstevel@tonic-gate 			kmem_default_arena = vmem_create("kmem_default",
42437c478bd9Sstevel@tonic-gate 			    NULL, 0, PAGESIZE,
42447c478bd9Sstevel@tonic-gate 			    segkmem_alloc, segkmem_free, kmem_va_arena,
42459dd77bc8SDave Plauger 			    0, VMC_DUMPSAFE | VM_SLEEP);
42467c478bd9Sstevel@tonic-gate 		}
4247dce01e3fSJonathan W Adams 
4248dce01e3fSJonathan W Adams 		/* Figure out what our maximum cache size is */
4249dce01e3fSJonathan W Adams 		maxbuf = kmem_max_cached;
4250dce01e3fSJonathan W Adams 		if (maxbuf <= KMEM_MAXBUF) {
4251dce01e3fSJonathan W Adams 			maxbuf = 0;
4252dce01e3fSJonathan W Adams 			kmem_max_cached = KMEM_MAXBUF;
4253dce01e3fSJonathan W Adams 		} else {
4254dce01e3fSJonathan W Adams 			size_t size = 0;
4255dce01e3fSJonathan W Adams 			size_t max =
4256dce01e3fSJonathan W Adams 			    sizeof (kmem_big_alloc_sizes) / sizeof (int);
4257dce01e3fSJonathan W Adams 			/*
4258dce01e3fSJonathan W Adams 			 * Round maxbuf up to an existing cache size.  If maxbuf
4259dce01e3fSJonathan W Adams 			 * is larger than the largest cache, we truncate it to
4260dce01e3fSJonathan W Adams 			 * the largest cache's size.
4261dce01e3fSJonathan W Adams 			 */
4262dce01e3fSJonathan W Adams 			for (i = 0; i < max; i++) {
4263dce01e3fSJonathan W Adams 				size = kmem_big_alloc_sizes[i];
4264dce01e3fSJonathan W Adams 				if (maxbuf <= size)
4265dce01e3fSJonathan W Adams 					break;
4266dce01e3fSJonathan W Adams 			}
4267dce01e3fSJonathan W Adams 			kmem_max_cached = maxbuf = size;
4268dce01e3fSJonathan W Adams 		}
4269dce01e3fSJonathan W Adams 
4270dce01e3fSJonathan W Adams 		/*
4271dce01e3fSJonathan W Adams 		 * The big alloc table may not be completely overwritten, so
4272dce01e3fSJonathan W Adams 		 * we clear out any stale cache pointers from the first pass.
4273dce01e3fSJonathan W Adams 		 */
4274dce01e3fSJonathan W Adams 		bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
42757c478bd9Sstevel@tonic-gate 	} else {
42767c478bd9Sstevel@tonic-gate 		/*
42777c478bd9Sstevel@tonic-gate 		 * During the first pass, the kmem_alloc_* caches
42787c478bd9Sstevel@tonic-gate 		 * are treated as metadata.
42797c478bd9Sstevel@tonic-gate 		 */
42807c478bd9Sstevel@tonic-gate 		kmem_default_arena = kmem_msb_arena;
4281dce01e3fSJonathan W Adams 		maxbuf = KMEM_BIG_MAXBUF_32BIT;
42827c478bd9Sstevel@tonic-gate 	}
42837c478bd9Sstevel@tonic-gate 
42847c478bd9Sstevel@tonic-gate 	/*
42857c478bd9Sstevel@tonic-gate 	 * Set up the default caches to back kmem_alloc()
42867c478bd9Sstevel@tonic-gate 	 */
4287dce01e3fSJonathan W Adams 	kmem_alloc_caches_create(
4288dce01e3fSJonathan W Adams 	    kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4289dce01e3fSJonathan W Adams 	    kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4290dce01e3fSJonathan W Adams 
4291dce01e3fSJonathan W Adams 	kmem_alloc_caches_create(
4292dce01e3fSJonathan W Adams 	    kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4293dce01e3fSJonathan W Adams 	    kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4294dce01e3fSJonathan W Adams 
4295dce01e3fSJonathan W Adams 	kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
42967c478bd9Sstevel@tonic-gate }
42977c478bd9Sstevel@tonic-gate 
42987c478bd9Sstevel@tonic-gate void
42997c478bd9Sstevel@tonic-gate kmem_init(void)
43007c478bd9Sstevel@tonic-gate {
43017c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
43027c478bd9Sstevel@tonic-gate 	int old_kmem_flags = kmem_flags;
43037c478bd9Sstevel@tonic-gate 	int use_large_pages = 0;
43047c478bd9Sstevel@tonic-gate 	size_t maxverify, minfirewall;
43057c478bd9Sstevel@tonic-gate 
43067c478bd9Sstevel@tonic-gate 	kstat_init();
43077c478bd9Sstevel@tonic-gate 
43087c478bd9Sstevel@tonic-gate 	/*
43097c478bd9Sstevel@tonic-gate 	 * Don't do firewalled allocations if the heap is less than 1TB
43107c478bd9Sstevel@tonic-gate 	 * (i.e. on a 32-bit kernel)
43117c478bd9Sstevel@tonic-gate 	 * The resulting VM_NEXTFIT allocations would create too much
43127c478bd9Sstevel@tonic-gate 	 * fragmentation in a small heap.
43137c478bd9Sstevel@tonic-gate 	 */
43147c478bd9Sstevel@tonic-gate #if defined(_LP64)
43157c478bd9Sstevel@tonic-gate 	maxverify = minfirewall = PAGESIZE / 2;
43167c478bd9Sstevel@tonic-gate #else
43177c478bd9Sstevel@tonic-gate 	maxverify = minfirewall = ULONG_MAX;
43187c478bd9Sstevel@tonic-gate #endif
43197c478bd9Sstevel@tonic-gate 
43207c478bd9Sstevel@tonic-gate 	/* LINTED */
43217c478bd9Sstevel@tonic-gate 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
43227c478bd9Sstevel@tonic-gate 
4323b5fca8f8Stomee 	list_create(&kmem_caches, sizeof (kmem_cache_t),
4324b5fca8f8Stomee 	    offsetof(kmem_cache_t, cache_link));
43257c478bd9Sstevel@tonic-gate 
43267c478bd9Sstevel@tonic-gate 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
43277c478bd9Sstevel@tonic-gate 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
43287c478bd9Sstevel@tonic-gate 	    VM_SLEEP | VMC_NO_QCACHE);
43297c478bd9Sstevel@tonic-gate 
43307c478bd9Sstevel@tonic-gate 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
43317c478bd9Sstevel@tonic-gate 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
43329dd77bc8SDave Plauger 	    VMC_DUMPSAFE | VM_SLEEP);
43337c478bd9Sstevel@tonic-gate 
43347c478bd9Sstevel@tonic-gate 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
43357c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
43367c478bd9Sstevel@tonic-gate 
43377c478bd9Sstevel@tonic-gate 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
43387c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
43397c478bd9Sstevel@tonic-gate 
43407c478bd9Sstevel@tonic-gate 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
43417c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
43427c478bd9Sstevel@tonic-gate 
43437c478bd9Sstevel@tonic-gate 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
43447c478bd9Sstevel@tonic-gate 	    NULL, 0, PAGESIZE,
43457c478bd9Sstevel@tonic-gate 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
43467c478bd9Sstevel@tonic-gate 	    0, VM_SLEEP);
43477c478bd9Sstevel@tonic-gate 
43487c478bd9Sstevel@tonic-gate 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
43499dd77bc8SDave Plauger 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
43509dd77bc8SDave Plauger 	    VMC_DUMPSAFE | VM_SLEEP);
43517c478bd9Sstevel@tonic-gate 
43527c478bd9Sstevel@tonic-gate 	/* temporary oversize arena for mod_read_system_file */
43537c478bd9Sstevel@tonic-gate 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
43547c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
43557c478bd9Sstevel@tonic-gate 
43567c478bd9Sstevel@tonic-gate 	kmem_reap_interval = 15 * hz;
43577c478bd9Sstevel@tonic-gate 
43587c478bd9Sstevel@tonic-gate 	/*
43597c478bd9Sstevel@tonic-gate 	 * Read /etc/system.  This is a chicken-and-egg problem because
43607c478bd9Sstevel@tonic-gate 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
43617c478bd9Sstevel@tonic-gate 	 * needs to use the allocator.  The simplest solution is to create
43627c478bd9Sstevel@tonic-gate 	 * all the standard kmem caches, read /etc/system, destroy all the
43637c478bd9Sstevel@tonic-gate 	 * caches we just created, and then create them all again in light
43647c478bd9Sstevel@tonic-gate 	 * of the (possibly) new kmem_flags and other kmem tunables.
43657c478bd9Sstevel@tonic-gate 	 */
43667c478bd9Sstevel@tonic-gate 	kmem_cache_init(1, 0);
43677c478bd9Sstevel@tonic-gate 
43687c478bd9Sstevel@tonic-gate 	mod_read_system_file(boothowto & RB_ASKNAME);
43697c478bd9Sstevel@tonic-gate 
4370b5fca8f8Stomee 	while ((cp = list_tail(&kmem_caches)) != NULL)
43717c478bd9Sstevel@tonic-gate 		kmem_cache_destroy(cp);
43727c478bd9Sstevel@tonic-gate 
43737c478bd9Sstevel@tonic-gate 	vmem_destroy(kmem_oversize_arena);
43747c478bd9Sstevel@tonic-gate 
43757c478bd9Sstevel@tonic-gate 	if (old_kmem_flags & KMF_STICKY)
43767c478bd9Sstevel@tonic-gate 		kmem_flags = old_kmem_flags;
43777c478bd9Sstevel@tonic-gate 
43787c478bd9Sstevel@tonic-gate 	if (!(kmem_flags & KMF_AUDIT))
43797c478bd9Sstevel@tonic-gate 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
43807c478bd9Sstevel@tonic-gate 
43817c478bd9Sstevel@tonic-gate 	if (kmem_maxverify == 0)
43827c478bd9Sstevel@tonic-gate 		kmem_maxverify = maxverify;
43837c478bd9Sstevel@tonic-gate 
43847c478bd9Sstevel@tonic-gate 	if (kmem_minfirewall == 0)
43857c478bd9Sstevel@tonic-gate 		kmem_minfirewall = minfirewall;
43867c478bd9Sstevel@tonic-gate 
43877c478bd9Sstevel@tonic-gate 	/*
43887c478bd9Sstevel@tonic-gate 	 * give segkmem a chance to figure out if we are using large pages
43897c478bd9Sstevel@tonic-gate 	 * for the kernel heap
43907c478bd9Sstevel@tonic-gate 	 */
43917c478bd9Sstevel@tonic-gate 	use_large_pages = segkmem_lpsetup();
43927c478bd9Sstevel@tonic-gate 
43937c478bd9Sstevel@tonic-gate 	/*
43947c478bd9Sstevel@tonic-gate 	 * To protect against corruption, we keep the actual number of callers
43957c478bd9Sstevel@tonic-gate 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
43967c478bd9Sstevel@tonic-gate 	 * to 16, since the overhead for small buffers quickly gets out of
43977c478bd9Sstevel@tonic-gate 	 * hand.
43987c478bd9Sstevel@tonic-gate 	 *
43997c478bd9Sstevel@tonic-gate 	 * The real limit would depend on the needs of the largest KMC_NOHASH
44007c478bd9Sstevel@tonic-gate 	 * cache.
44017c478bd9Sstevel@tonic-gate 	 */
44027c478bd9Sstevel@tonic-gate 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
44037c478bd9Sstevel@tonic-gate 	kmem_lite_pcs = kmem_lite_count;
44047c478bd9Sstevel@tonic-gate 
44057c478bd9Sstevel@tonic-gate 	/*
44067c478bd9Sstevel@tonic-gate 	 * Normally, we firewall oversized allocations when possible, but
44077c478bd9Sstevel@tonic-gate 	 * if we are using large pages for kernel memory, and we don't have
44087c478bd9Sstevel@tonic-gate 	 * any non-LITE debugging flags set, we want to allocate oversized
44097c478bd9Sstevel@tonic-gate 	 * buffers from large pages, and so skip the firewalling.
44107c478bd9Sstevel@tonic-gate 	 */
44117c478bd9Sstevel@tonic-gate 	if (use_large_pages &&
44127c478bd9Sstevel@tonic-gate 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
44137c478bd9Sstevel@tonic-gate 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
44147c478bd9Sstevel@tonic-gate 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
44159dd77bc8SDave Plauger 		    0, VMC_DUMPSAFE | VM_SLEEP);
44167c478bd9Sstevel@tonic-gate 	} else {
44177c478bd9Sstevel@tonic-gate 		kmem_oversize_arena = vmem_create("kmem_oversize",
44187c478bd9Sstevel@tonic-gate 		    NULL, 0, PAGESIZE,
44197c478bd9Sstevel@tonic-gate 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
44209dd77bc8SDave Plauger 		    kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
44219dd77bc8SDave Plauger 		    VM_SLEEP);
44227c478bd9Sstevel@tonic-gate 	}
44237c478bd9Sstevel@tonic-gate 
44247c478bd9Sstevel@tonic-gate 	kmem_cache_init(2, use_large_pages);
44257c478bd9Sstevel@tonic-gate 
44267c478bd9Sstevel@tonic-gate 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
44277c478bd9Sstevel@tonic-gate 		if (kmem_transaction_log_size == 0)
44287c478bd9Sstevel@tonic-gate 			kmem_transaction_log_size = kmem_maxavail() / 50;
44297c478bd9Sstevel@tonic-gate 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
44307c478bd9Sstevel@tonic-gate 	}
44317c478bd9Sstevel@tonic-gate 
44327c478bd9Sstevel@tonic-gate 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
44337c478bd9Sstevel@tonic-gate 		if (kmem_content_log_size == 0)
44347c478bd9Sstevel@tonic-gate 			kmem_content_log_size = kmem_maxavail() / 50;
44357c478bd9Sstevel@tonic-gate 		kmem_content_log = kmem_log_init(kmem_content_log_size);
44367c478bd9Sstevel@tonic-gate 	}
44377c478bd9Sstevel@tonic-gate 
44387c478bd9Sstevel@tonic-gate 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
44397c478bd9Sstevel@tonic-gate 
44407c478bd9Sstevel@tonic-gate 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
44417c478bd9Sstevel@tonic-gate 
44427c478bd9Sstevel@tonic-gate 	/*
44437c478bd9Sstevel@tonic-gate 	 * Initialize STREAMS message caches so allocb() is available.
44447c478bd9Sstevel@tonic-gate 	 * This allows us to initialize the logging framework (cmn_err(9F),
44457c478bd9Sstevel@tonic-gate 	 * strlog(9F), etc) so we can start recording messages.
44467c478bd9Sstevel@tonic-gate 	 */
44477c478bd9Sstevel@tonic-gate 	streams_msg_init();
44487d692464Sdp 
44497c478bd9Sstevel@tonic-gate 	/*
44507c478bd9Sstevel@tonic-gate 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
44517c478bd9Sstevel@tonic-gate 	 * can register their callbacks.
44527c478bd9Sstevel@tonic-gate 	 */
44537c478bd9Sstevel@tonic-gate 	zone_zsd_init();
4454f4b3ec61Sdh 
44557c478bd9Sstevel@tonic-gate 	log_init();
44567c478bd9Sstevel@tonic-gate 	taskq_init();
44577c478bd9Sstevel@tonic-gate 
44587d692464Sdp 	/*
44597d692464Sdp 	 * Warn about invalid or dangerous values of kmem_flags.
44607d692464Sdp 	 * Always warn about unsupported values.
44617d692464Sdp 	 */
44627d692464Sdp 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
44637d692464Sdp 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
44647d692464Sdp 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
44657d692464Sdp 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
44667d692464Sdp 		    "See the Solaris Tunable Parameters Reference Manual.",
44677d692464Sdp 		    kmem_flags);
44687d692464Sdp 
44697d692464Sdp #ifdef DEBUG
44707d692464Sdp 	if ((kmem_flags & KMF_DEBUG) == 0)
44717d692464Sdp 		cmn_err(CE_NOTE, "kmem debugging disabled.");
44727d692464Sdp #else
44737d692464Sdp 	/*
44747d692464Sdp 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
44757d692464Sdp 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
44767d692464Sdp 	 * if KMF_AUDIT is set). We should warn the user about the performance
44777d692464Sdp 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
44787d692464Sdp 	 * isn't set (since that disables AUDIT).
44797d692464Sdp 	 */
44807d692464Sdp 	if (!(kmem_flags & KMF_LITE) &&
44817d692464Sdp 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
44827d692464Sdp 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
44837d692464Sdp 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
44847d692464Sdp 		    "and large memory overhead possible. See the Solaris "
44857d692464Sdp 		    "Tunable Parameters Reference Manual.", kmem_flags);
44867d692464Sdp #endif /* not DEBUG */
44877d692464Sdp 
44887c478bd9Sstevel@tonic-gate 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
44897c478bd9Sstevel@tonic-gate 
44907c478bd9Sstevel@tonic-gate 	kmem_ready = 1;
44917c478bd9Sstevel@tonic-gate 
44927c478bd9Sstevel@tonic-gate 	/*
44937c478bd9Sstevel@tonic-gate 	 * Initialize the platform-specific aligned/DMA memory allocator.
44947c478bd9Sstevel@tonic-gate 	 */
44957c478bd9Sstevel@tonic-gate 	ka_init();
44967c478bd9Sstevel@tonic-gate 
44977c478bd9Sstevel@tonic-gate 	/*
44987c478bd9Sstevel@tonic-gate 	 * Initialize 32-bit ID cache.
44997c478bd9Sstevel@tonic-gate 	 */
45007c478bd9Sstevel@tonic-gate 	id32_init();
4501f4b3ec61Sdh 
4502f4b3ec61Sdh 	/*
4503f4b3ec61Sdh 	 * Initialize the networking stack so modules loaded can
4504f4b3ec61Sdh 	 * register their callbacks.
4505f4b3ec61Sdh 	 */
4506f4b3ec61Sdh 	netstack_init();
45077c478bd9Sstevel@tonic-gate }
45087c478bd9Sstevel@tonic-gate 
4509b5fca8f8Stomee static void
4510b5fca8f8Stomee kmem_move_init(void)
4511b5fca8f8Stomee {
4512b5fca8f8Stomee 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4513b5fca8f8Stomee 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4514b5fca8f8Stomee 	    kmem_msb_arena, KMC_NOHASH);
4515b5fca8f8Stomee 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
4516b5fca8f8Stomee 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4517b5fca8f8Stomee 	    kmem_msb_arena, KMC_NOHASH);
4518b5fca8f8Stomee 
4519b5fca8f8Stomee 	/*
4520b5fca8f8Stomee 	 * kmem guarantees that move callbacks are sequential and that even
4521b5fca8f8Stomee 	 * across multiple caches no two moves ever execute simultaneously.
4522b5fca8f8Stomee 	 * Move callbacks are processed on a separate taskq so that client code
4523b5fca8f8Stomee 	 * does not interfere with internal maintenance tasks.
4524b5fca8f8Stomee 	 */
4525b5fca8f8Stomee 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4526b5fca8f8Stomee 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4527b5fca8f8Stomee }
4528b5fca8f8Stomee 
45297c478bd9Sstevel@tonic-gate void
45307c478bd9Sstevel@tonic-gate kmem_thread_init(void)
45317c478bd9Sstevel@tonic-gate {
4532b5fca8f8Stomee 	kmem_move_init();
45337c478bd9Sstevel@tonic-gate 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
45347c478bd9Sstevel@tonic-gate 	    300, INT_MAX, TASKQ_PREPOPULATE);
45357c478bd9Sstevel@tonic-gate }
45367c478bd9Sstevel@tonic-gate 
45377c478bd9Sstevel@tonic-gate void
45387c478bd9Sstevel@tonic-gate kmem_mp_init(void)
45397c478bd9Sstevel@tonic-gate {
45407c478bd9Sstevel@tonic-gate 	mutex_enter(&cpu_lock);
45417c478bd9Sstevel@tonic-gate 	register_cpu_setup_func(kmem_cpu_setup, NULL);
45427c478bd9Sstevel@tonic-gate 	mutex_exit(&cpu_lock);
45437c478bd9Sstevel@tonic-gate 
45447c478bd9Sstevel@tonic-gate 	kmem_update_timeout(NULL);
45452e0c549eSJonathan Adams 
45462e0c549eSJonathan Adams 	taskq_mp_init();
45477c478bd9Sstevel@tonic-gate }
4548b5fca8f8Stomee 
4549b5fca8f8Stomee /*
4550b5fca8f8Stomee  * Return the slab of the allocated buffer, or NULL if the buffer is not
4551b5fca8f8Stomee  * allocated. This function may be called with a known slab address to determine
4552b5fca8f8Stomee  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4553b5fca8f8Stomee  * an allocated buffer's slab.
4554b5fca8f8Stomee  */
4555b5fca8f8Stomee static kmem_slab_t *
4556b5fca8f8Stomee kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4557b5fca8f8Stomee {
4558b5fca8f8Stomee 	kmem_bufctl_t *bcp, *bufbcp;
4559b5fca8f8Stomee 
4560b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4561b5fca8f8Stomee 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4562b5fca8f8Stomee 
4563b5fca8f8Stomee 	if (cp->cache_flags & KMF_HASH) {
4564b5fca8f8Stomee 		for (bcp = *KMEM_HASH(cp, buf);
4565b5fca8f8Stomee 		    (bcp != NULL) && (bcp->bc_addr != buf);
4566b5fca8f8Stomee 		    bcp = bcp->bc_next) {
4567b5fca8f8Stomee 			continue;
4568b5fca8f8Stomee 		}
4569b5fca8f8Stomee 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4570b5fca8f8Stomee 		return (bcp == NULL ? NULL : bcp->bc_slab);
4571b5fca8f8Stomee 	}
4572b5fca8f8Stomee 
4573b5fca8f8Stomee 	if (sp == NULL) {
4574b5fca8f8Stomee 		sp = KMEM_SLAB(cp, buf);
4575b5fca8f8Stomee 	}
4576b5fca8f8Stomee 	bufbcp = KMEM_BUFCTL(cp, buf);
4577b5fca8f8Stomee 	for (bcp = sp->slab_head;
4578b5fca8f8Stomee 	    (bcp != NULL) && (bcp != bufbcp);
4579b5fca8f8Stomee 	    bcp = bcp->bc_next) {
4580b5fca8f8Stomee 		continue;
4581b5fca8f8Stomee 	}
4582b5fca8f8Stomee 	return (bcp == NULL ? sp : NULL);
4583b5fca8f8Stomee }
4584b5fca8f8Stomee 
4585b5fca8f8Stomee static boolean_t
4586b5fca8f8Stomee kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4587b5fca8f8Stomee {
4588686031edSTom Erickson 	long refcnt = sp->slab_refcnt;
4589b5fca8f8Stomee 
4590b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4591b5fca8f8Stomee 
4592686031edSTom Erickson 	/*
4593686031edSTom Erickson 	 * For code coverage we want to be able to move an object within the
4594686031edSTom Erickson 	 * same slab (the only partial slab) even if allocating the destination
4595686031edSTom Erickson 	 * buffer resulted in a completely allocated slab.
4596686031edSTom Erickson 	 */
4597686031edSTom Erickson 	if (flags & KMM_DEBUG) {
4598686031edSTom Erickson 		return ((flags & KMM_DESPERATE) ||
4599686031edSTom Erickson 		    ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4600686031edSTom Erickson 	}
4601686031edSTom Erickson 
4602b5fca8f8Stomee 	/* If we're desperate, we don't care if the client said NO. */
4603b5fca8f8Stomee 	if (flags & KMM_DESPERATE) {
4604b5fca8f8Stomee 		return (refcnt < sp->slab_chunks); /* any partial */
4605b5fca8f8Stomee 	}
4606b5fca8f8Stomee 
4607b5fca8f8Stomee 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4608b5fca8f8Stomee 		return (B_FALSE);
4609b5fca8f8Stomee 	}
4610b5fca8f8Stomee 
4611686031edSTom Erickson 	if ((refcnt == 1) || kmem_move_any_partial) {
4612b5fca8f8Stomee 		return (refcnt < sp->slab_chunks);
4613b5fca8f8Stomee 	}
4614b5fca8f8Stomee 
4615b5fca8f8Stomee 	/*
4616b5fca8f8Stomee 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4617b5fca8f8Stomee 	 * slabs with a progressively higher percentage of used buffers can be
4618b5fca8f8Stomee 	 * reclaimed until the cache as a whole is no longer fragmented.
4619b5fca8f8Stomee 	 *
4620b5fca8f8Stomee 	 *	sp->slab_refcnt   kmd_reclaim_numer
4621b5fca8f8Stomee 	 *	--------------- < ------------------
4622b5fca8f8Stomee 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4623b5fca8f8Stomee 	 */
4624b5fca8f8Stomee 	return ((refcnt * KMEM_VOID_FRACTION) <
4625b5fca8f8Stomee 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4626b5fca8f8Stomee }
4627b5fca8f8Stomee 
4628b5fca8f8Stomee /*
4629b5fca8f8Stomee  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4630b5fca8f8Stomee  * or when the buffer is freed.
4631b5fca8f8Stomee  */
4632b5fca8f8Stomee static void
4633b5fca8f8Stomee kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4634b5fca8f8Stomee {
4635b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4636b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4637b5fca8f8Stomee 
4638b5fca8f8Stomee 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4639b5fca8f8Stomee 		return;
4640b5fca8f8Stomee 	}
4641b5fca8f8Stomee 
4642b5fca8f8Stomee 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4643b5fca8f8Stomee 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4644b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
4645b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4646b5fca8f8Stomee 			sp->slab_stuck_offset = (uint32_t)-1;
4647b5fca8f8Stomee 			avl_add(&cp->cache_partial_slabs, sp);
4648b5fca8f8Stomee 		}
4649b5fca8f8Stomee 	} else {
4650b5fca8f8Stomee 		sp->slab_later_count = 0;
4651b5fca8f8Stomee 		sp->slab_stuck_offset = (uint32_t)-1;
4652b5fca8f8Stomee 	}
4653b5fca8f8Stomee }
4654b5fca8f8Stomee 
4655b5fca8f8Stomee static void
4656b5fca8f8Stomee kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4657b5fca8f8Stomee {
4658b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4659b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4660b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4661b5fca8f8Stomee 
4662b5fca8f8Stomee 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4663b5fca8f8Stomee 		return;
4664b5fca8f8Stomee 	}
4665b5fca8f8Stomee 
4666b5fca8f8Stomee 	avl_remove(&cp->cache_partial_slabs, sp);
4667b5fca8f8Stomee 	sp->slab_later_count = 0;
4668b5fca8f8Stomee 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4669b5fca8f8Stomee 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4670b5fca8f8Stomee 	avl_add(&cp->cache_partial_slabs, sp);
4671b5fca8f8Stomee }
4672b5fca8f8Stomee 
4673b5fca8f8Stomee static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4674b5fca8f8Stomee 
4675b5fca8f8Stomee /*
4676b5fca8f8Stomee  * The move callback takes two buffer addresses, the buffer to be moved, and a
4677b5fca8f8Stomee  * newly allocated and constructed buffer selected by kmem as the destination.
4678b5fca8f8Stomee  * It also takes the size of the buffer and an optional user argument specified
4679b5fca8f8Stomee  * at cache creation time. kmem guarantees that the buffer to be moved has not
4680b5fca8f8Stomee  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4681b5fca8f8Stomee  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4682b5fca8f8Stomee  * the client to safely determine whether or not it is still using the buffer.
4683b5fca8f8Stomee  * The client must not free either of the buffers passed to the move callback,
4684b5fca8f8Stomee  * since kmem wants to free them directly to the slab layer. The client response
4685b5fca8f8Stomee  * tells kmem which of the two buffers to free:
4686b5fca8f8Stomee  *
4687b5fca8f8Stomee  * YES		kmem frees the old buffer (the move was successful)
4688b5fca8f8Stomee  * NO		kmem frees the new buffer, marks the slab of the old buffer
4689b5fca8f8Stomee  *              non-reclaimable to avoid bothering the client again
4690b5fca8f8Stomee  * LATER	kmem frees the new buffer, increments slab_later_count
4691*d7db73d1SBryan Cantrill  * DONT_KNOW	kmem frees the new buffer
4692b5fca8f8Stomee  * DONT_NEED	kmem frees both the old buffer and the new buffer
4693b5fca8f8Stomee  *
4694b5fca8f8Stomee  * The pending callback argument now being processed contains both of the
4695b5fca8f8Stomee  * buffers (old and new) passed to the move callback function, the slab of the
4696b5fca8f8Stomee  * old buffer, and flags related to the move request, such as whether or not the
4697b5fca8f8Stomee  * system was desperate for memory.
4698686031edSTom Erickson  *
4699686031edSTom Erickson  * Slabs are not freed while there is a pending callback, but instead are kept
4700686031edSTom Erickson  * on a deadlist, which is drained after the last callback completes. This means
4701686031edSTom Erickson  * that slabs are safe to access until kmem_move_end(), no matter how many of
4702686031edSTom Erickson  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4703686031edSTom Erickson  * zero for as long as the slab remains on the deadlist and until the slab is
4704686031edSTom Erickson  * freed.
4705b5fca8f8Stomee  */
4706b5fca8f8Stomee static void
4707b5fca8f8Stomee kmem_move_buffer(kmem_move_t *callback)
4708b5fca8f8Stomee {
4709b5fca8f8Stomee 	kmem_cbrc_t response;
4710b5fca8f8Stomee 	kmem_slab_t *sp = callback->kmm_from_slab;
4711b5fca8f8Stomee 	kmem_cache_t *cp = sp->slab_cache;
4712b5fca8f8Stomee 	boolean_t free_on_slab;
4713b5fca8f8Stomee 
4714b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4715b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4716b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4717b5fca8f8Stomee 
4718b5fca8f8Stomee 	/*
4719b5fca8f8Stomee 	 * The number of allocated buffers on the slab may have changed since we
4720b5fca8f8Stomee 	 * last checked the slab's reclaimability (when the pending move was
4721b5fca8f8Stomee 	 * enqueued), or the client may have responded NO when asked to move
4722b5fca8f8Stomee 	 * another buffer on the same slab.
4723b5fca8f8Stomee 	 */
4724b5fca8f8Stomee 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4725b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4726b5fca8f8Stomee 		kmem_move_end(cp, callback);
4727b5fca8f8Stomee 		return;
4728b5fca8f8Stomee 	}
4729b5fca8f8Stomee 
4730b5fca8f8Stomee 	/*
4731*d7db73d1SBryan Cantrill 	 * Checking the slab layer is easy, so we might as well do that here
4732*d7db73d1SBryan Cantrill 	 * in case we can avoid bothering the client.
4733b5fca8f8Stomee 	 */
4734b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4735b5fca8f8Stomee 	free_on_slab = (kmem_slab_allocated(cp, sp,
4736b5fca8f8Stomee 	    callback->kmm_from_buf) == NULL);
4737b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4738b5fca8f8Stomee 
4739b5fca8f8Stomee 	if (free_on_slab) {
4740b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4741b5fca8f8Stomee 		kmem_move_end(cp, callback);
4742b5fca8f8Stomee 		return;
4743b5fca8f8Stomee 	}
4744b5fca8f8Stomee 
4745b5fca8f8Stomee 	if (cp->cache_flags & KMF_BUFTAG) {
4746b5fca8f8Stomee 		/*
4747b5fca8f8Stomee 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4748b5fca8f8Stomee 		 */
4749b5fca8f8Stomee 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4750b5fca8f8Stomee 		    KM_NOSLEEP, 1, caller()) != 0) {
4751b5fca8f8Stomee 			kmem_move_end(cp, callback);
4752b5fca8f8Stomee 			return;
4753b5fca8f8Stomee 		}
4754b5fca8f8Stomee 	} else if (cp->cache_constructor != NULL &&
4755b5fca8f8Stomee 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4756b5fca8f8Stomee 	    KM_NOSLEEP) != 0) {
47571a5e258fSJosef 'Jeff' Sipek 		atomic_inc_64(&cp->cache_alloc_fail);
4758b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4759b5fca8f8Stomee 		kmem_move_end(cp, callback);
4760b5fca8f8Stomee 		return;
4761b5fca8f8Stomee 	}
4762b5fca8f8Stomee 
4763b5fca8f8Stomee 	cp->cache_defrag->kmd_callbacks++;
4764b5fca8f8Stomee 	cp->cache_defrag->kmd_thread = curthread;
4765b5fca8f8Stomee 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4766b5fca8f8Stomee 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4767b5fca8f8Stomee 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4768b5fca8f8Stomee 	    callback);
4769b5fca8f8Stomee 
4770b5fca8f8Stomee 	response = cp->cache_move(callback->kmm_from_buf,
4771b5fca8f8Stomee 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4772b5fca8f8Stomee 
4773b5fca8f8Stomee 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4774b5fca8f8Stomee 	    callback, kmem_cbrc_t, response);
4775b5fca8f8Stomee 	cp->cache_defrag->kmd_thread = NULL;
4776b5fca8f8Stomee 	cp->cache_defrag->kmd_from_buf = NULL;
4777b5fca8f8Stomee 	cp->cache_defrag->kmd_to_buf = NULL;
4778b5fca8f8Stomee 
4779b5fca8f8Stomee 	if (response == KMEM_CBRC_YES) {
4780b5fca8f8Stomee 		cp->cache_defrag->kmd_yes++;
4781b5fca8f8Stomee 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4782686031edSTom Erickson 		/* slab safe to access until kmem_move_end() */
4783686031edSTom Erickson 		if (sp->slab_refcnt == 0)
4784686031edSTom Erickson 			cp->cache_defrag->kmd_slabs_freed++;
4785b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4786b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4787b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4788b5fca8f8Stomee 		kmem_move_end(cp, callback);
4789b5fca8f8Stomee 		return;
4790b5fca8f8Stomee 	}
4791b5fca8f8Stomee 
4792b5fca8f8Stomee 	switch (response) {
4793b5fca8f8Stomee 	case KMEM_CBRC_NO:
4794b5fca8f8Stomee 		cp->cache_defrag->kmd_no++;
4795b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4796b5fca8f8Stomee 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4797b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4798b5fca8f8Stomee 		break;
4799b5fca8f8Stomee 	case KMEM_CBRC_LATER:
4800b5fca8f8Stomee 		cp->cache_defrag->kmd_later++;
4801b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4802b5fca8f8Stomee 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4803b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4804b5fca8f8Stomee 			break;
4805b5fca8f8Stomee 		}
4806b5fca8f8Stomee 
4807b5fca8f8Stomee 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4808b5fca8f8Stomee 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4809b5fca8f8Stomee 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4810b5fca8f8Stomee 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4811b5fca8f8Stomee 			    callback->kmm_from_buf);
4812b5fca8f8Stomee 		}
4813b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4814b5fca8f8Stomee 		break;
4815b5fca8f8Stomee 	case KMEM_CBRC_DONT_NEED:
4816b5fca8f8Stomee 		cp->cache_defrag->kmd_dont_need++;
4817b5fca8f8Stomee 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4818686031edSTom Erickson 		if (sp->slab_refcnt == 0)
4819686031edSTom Erickson 			cp->cache_defrag->kmd_slabs_freed++;
4820b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4821b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4822b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4823b5fca8f8Stomee 		break;
4824b5fca8f8Stomee 	case KMEM_CBRC_DONT_KNOW:
4825*d7db73d1SBryan Cantrill 		/*
4826*d7db73d1SBryan Cantrill 		 * If we don't know if we can move this buffer or not, we'll
4827*d7db73d1SBryan Cantrill 		 * just assume that we can't:  if the buffer is in fact free,
4828*d7db73d1SBryan Cantrill 		 * then it is sitting in one of the per-CPU magazines or in
4829*d7db73d1SBryan Cantrill 		 * a full magazine in the depot layer.  Either way, because
4830*d7db73d1SBryan Cantrill 		 * defrag is induced in the same logic that reaps a cache,
4831*d7db73d1SBryan Cantrill 		 * it's likely that full magazines will be returned to the
4832*d7db73d1SBryan Cantrill 		 * system soon (thereby accomplishing what we're trying to
4833*d7db73d1SBryan Cantrill 		 * accomplish here: return those magazines to their slabs).
4834*d7db73d1SBryan Cantrill 		 * Given this, any work that we might do now to locate a buffer
4835*d7db73d1SBryan Cantrill 		 * in a magazine is wasted (and expensive!) work; we bump
4836*d7db73d1SBryan Cantrill 		 * a counter in this case and otherwise assume that we can't
4837*d7db73d1SBryan Cantrill 		 * move it.
4838*d7db73d1SBryan Cantrill 		 */
4839b5fca8f8Stomee 		cp->cache_defrag->kmd_dont_know++;
4840b5fca8f8Stomee 		break;
4841b5fca8f8Stomee 	default:
4842b5fca8f8Stomee 		panic("'%s' (%p) unexpected move callback response %d\n",
4843b5fca8f8Stomee 		    cp->cache_name, (void *)cp, response);
4844b5fca8f8Stomee 	}
4845b5fca8f8Stomee 
4846b5fca8f8Stomee 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4847b5fca8f8Stomee 	kmem_move_end(cp, callback);
4848b5fca8f8Stomee }
4849b5fca8f8Stomee 
4850b5fca8f8Stomee /* Return B_FALSE if there is insufficient memory for the move request. */
4851b5fca8f8Stomee static boolean_t
4852b5fca8f8Stomee kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4853b5fca8f8Stomee {
4854b5fca8f8Stomee 	void *to_buf;
4855b5fca8f8Stomee 	avl_index_t index;
4856b5fca8f8Stomee 	kmem_move_t *callback, *pending;
4857686031edSTom Erickson 	ulong_t n;
4858b5fca8f8Stomee 
4859b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4860b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4861b5fca8f8Stomee 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4862b5fca8f8Stomee 
4863b5fca8f8Stomee 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4864*d7db73d1SBryan Cantrill 
4865*d7db73d1SBryan Cantrill 	if (callback == NULL)
4866b5fca8f8Stomee 		return (B_FALSE);
4867b5fca8f8Stomee 
4868b5fca8f8Stomee 	callback->kmm_from_slab = sp;
4869b5fca8f8Stomee 	callback->kmm_from_buf = buf;
4870b5fca8f8Stomee 	callback->kmm_flags = flags;
4871b5fca8f8Stomee 
4872b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4873b5fca8f8Stomee 
4874686031edSTom Erickson 	n = avl_numnodes(&cp->cache_partial_slabs);
4875686031edSTom Erickson 	if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4876b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4877b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4878b5fca8f8Stomee 		return (B_TRUE); /* there is no need for the move request */
4879b5fca8f8Stomee 	}
4880b5fca8f8Stomee 
4881b5fca8f8Stomee 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4882b5fca8f8Stomee 	if (pending != NULL) {
4883b5fca8f8Stomee 		/*
4884b5fca8f8Stomee 		 * If the move is already pending and we're desperate now,
4885b5fca8f8Stomee 		 * update the move flags.
4886b5fca8f8Stomee 		 */
4887b5fca8f8Stomee 		if (flags & KMM_DESPERATE) {
4888b5fca8f8Stomee 			pending->kmm_flags |= KMM_DESPERATE;
4889b5fca8f8Stomee 		}
4890b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4891b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4892b5fca8f8Stomee 		return (B_TRUE);
4893b5fca8f8Stomee 	}
4894b5fca8f8Stomee 
4895b942e89bSDavid Valin 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4896b942e89bSDavid Valin 	    B_FALSE);
4897b5fca8f8Stomee 	callback->kmm_to_buf = to_buf;
4898b5fca8f8Stomee 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4899b5fca8f8Stomee 
4900b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4901b5fca8f8Stomee 
4902b5fca8f8Stomee 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4903b5fca8f8Stomee 	    callback, TQ_NOSLEEP)) {
4904b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4905b5fca8f8Stomee 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4906b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
490725e2c9cfStomee 		kmem_slab_free(cp, to_buf);
4908b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4909b5fca8f8Stomee 		return (B_FALSE);
4910b5fca8f8Stomee 	}
4911b5fca8f8Stomee 
4912b5fca8f8Stomee 	return (B_TRUE);
4913b5fca8f8Stomee }
4914b5fca8f8Stomee 
4915b5fca8f8Stomee static void
4916b5fca8f8Stomee kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4917b5fca8f8Stomee {
4918b5fca8f8Stomee 	avl_index_t index;
4919b5fca8f8Stomee 
4920b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4921b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4922b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4923b5fca8f8Stomee 
4924b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4925b5fca8f8Stomee 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4926b5fca8f8Stomee 	    callback->kmm_from_buf, &index) != NULL);
4927b5fca8f8Stomee 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4928b5fca8f8Stomee 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4929b5fca8f8Stomee 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4930b5fca8f8Stomee 		kmem_slab_t *sp;
4931b5fca8f8Stomee 
4932b5fca8f8Stomee 		/*
4933b5fca8f8Stomee 		 * The last pending move completed. Release all slabs from the
4934b5fca8f8Stomee 		 * front of the dead list except for any slab at the tail that
4935b5fca8f8Stomee 		 * needs to be released from the context of kmem_move_buffers().
4936b5fca8f8Stomee 		 * kmem deferred unmapping the buffers on these slabs in order
4937b5fca8f8Stomee 		 * to guarantee that buffers passed to the move callback have
4938b5fca8f8Stomee 		 * been touched only by kmem or by the client itself.
4939b5fca8f8Stomee 		 */
4940b5fca8f8Stomee 		while ((sp = list_remove_head(deadlist)) != NULL) {
4941b5fca8f8Stomee 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4942b5fca8f8Stomee 				list_insert_tail(deadlist, sp);
4943b5fca8f8Stomee 				break;
4944b5fca8f8Stomee 			}
4945b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount--;
4946b5fca8f8Stomee 			cp->cache_slab_destroy++;
4947b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4948b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
4949b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4950b5fca8f8Stomee 		}
4951b5fca8f8Stomee 	}
4952b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4953b5fca8f8Stomee 	kmem_cache_free(kmem_move_cache, callback);
4954b5fca8f8Stomee }
4955b5fca8f8Stomee 
4956b5fca8f8Stomee /*
4957b5fca8f8Stomee  * Move buffers from least used slabs first by scanning backwards from the end
4958b5fca8f8Stomee  * of the partial slab list. Scan at most max_scan candidate slabs and move
4959b5fca8f8Stomee  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4960b5fca8f8Stomee  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4961b5fca8f8Stomee  * skip slabs with a ratio of allocated buffers at or above the current
4962b5fca8f8Stomee  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4963b5fca8f8Stomee  * scan is aborted) so that the caller can adjust the reclaimability threshold
4964b5fca8f8Stomee  * depending on how many reclaimable slabs it finds.
4965b5fca8f8Stomee  *
4966b5fca8f8Stomee  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4967b5fca8f8Stomee  * move request, since it is not valid for kmem_move_begin() to call
4968b5fca8f8Stomee  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4969b5fca8f8Stomee  */
4970b5fca8f8Stomee static int
4971b5fca8f8Stomee kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4972b5fca8f8Stomee     int flags)
4973b5fca8f8Stomee {
4974b5fca8f8Stomee 	kmem_slab_t *sp;
4975b5fca8f8Stomee 	void *buf;
4976b5fca8f8Stomee 	int i, j; /* slab index, buffer index */
4977b5fca8f8Stomee 	int s; /* reclaimable slabs */
4978b5fca8f8Stomee 	int b; /* allocated (movable) buffers on reclaimable slab */
4979b5fca8f8Stomee 	boolean_t success;
4980b5fca8f8Stomee 	int refcnt;
4981b5fca8f8Stomee 	int nomove;
4982b5fca8f8Stomee 
4983b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4984b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4985b5fca8f8Stomee 	ASSERT(kmem_move_cache != NULL);
4986b5fca8f8Stomee 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4987686031edSTom Erickson 	ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4988686031edSTom Erickson 	    avl_numnodes(&cp->cache_partial_slabs) > 1);
4989b5fca8f8Stomee 
4990b5fca8f8Stomee 	if (kmem_move_blocked) {
4991b5fca8f8Stomee 		return (0);
4992b5fca8f8Stomee 	}
4993b5fca8f8Stomee 
4994b5fca8f8Stomee 	if (kmem_move_fulltilt) {
4995b5fca8f8Stomee 		flags |= KMM_DESPERATE;
4996b5fca8f8Stomee 	}
4997b5fca8f8Stomee 
4998b5fca8f8Stomee 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4999b5fca8f8Stomee 		/*
5000b5fca8f8Stomee 		 * Scan as many slabs as needed to find the desired number of
5001b5fca8f8Stomee 		 * candidate slabs.
5002b5fca8f8Stomee 		 */
5003b5fca8f8Stomee 		max_scan = (size_t)-1;
5004b5fca8f8Stomee 	}
5005b5fca8f8Stomee 
5006b5fca8f8Stomee 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5007b5fca8f8Stomee 		/* Find as many candidate slabs as possible. */
5008b5fca8f8Stomee 		max_slabs = (size_t)-1;
5009b5fca8f8Stomee 	}
5010b5fca8f8Stomee 
5011b5fca8f8Stomee 	sp = avl_last(&cp->cache_partial_slabs);
5012686031edSTom Erickson 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5013686031edSTom Erickson 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5014686031edSTom Erickson 	    ((sp != avl_first(&cp->cache_partial_slabs)) ||
5015686031edSTom Erickson 	    (flags & KMM_DEBUG));
5016b5fca8f8Stomee 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5017b5fca8f8Stomee 
5018b5fca8f8Stomee 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5019b5fca8f8Stomee 			continue;
5020b5fca8f8Stomee 		}
5021b5fca8f8Stomee 		s++;
5022b5fca8f8Stomee 
5023b5fca8f8Stomee 		/* Look for allocated buffers to move. */
5024b5fca8f8Stomee 		for (j = 0, b = 0, buf = sp->slab_base;
5025b5fca8f8Stomee 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5026b5fca8f8Stomee 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
5027b5fca8f8Stomee 
5028b5fca8f8Stomee 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5029b5fca8f8Stomee 				continue;
5030b5fca8f8Stomee 			}
5031b5fca8f8Stomee 
5032b5fca8f8Stomee 			b++;
5033b5fca8f8Stomee 
5034b5fca8f8Stomee 			/*
5035b5fca8f8Stomee 			 * Prevent the slab from being destroyed while we drop
5036b5fca8f8Stomee 			 * cache_lock and while the pending move is not yet
5037b5fca8f8Stomee 			 * registered. Flag the pending move while
5038b5fca8f8Stomee 			 * kmd_moves_pending may still be empty, since we can't
5039b5fca8f8Stomee 			 * yet rely on a non-zero pending move count to prevent
5040b5fca8f8Stomee 			 * the slab from being destroyed.
5041b5fca8f8Stomee 			 */
5042b5fca8f8Stomee 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5043b5fca8f8Stomee 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5044b5fca8f8Stomee 			/*
5045b5fca8f8Stomee 			 * Recheck refcnt and nomove after reacquiring the lock,
5046b5fca8f8Stomee 			 * since these control the order of partial slabs, and
5047b5fca8f8Stomee 			 * we want to know if we can pick up the scan where we
5048b5fca8f8Stomee 			 * left off.
5049b5fca8f8Stomee 			 */
5050b5fca8f8Stomee 			refcnt = sp->slab_refcnt;
5051b5fca8f8Stomee 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5052b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
5053b5fca8f8Stomee 
5054b5fca8f8Stomee 			success = kmem_move_begin(cp, sp, buf, flags);
5055b5fca8f8Stomee 
5056b5fca8f8Stomee 			/*
5057b5fca8f8Stomee 			 * Now, before the lock is reacquired, kmem could
5058b5fca8f8Stomee 			 * process all pending move requests and purge the
5059b5fca8f8Stomee 			 * deadlist, so that upon reacquiring the lock, sp has
5060686031edSTom Erickson 			 * been remapped. Or, the client may free all the
5061686031edSTom Erickson 			 * objects on the slab while the pending moves are still
5062686031edSTom Erickson 			 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5063b5fca8f8Stomee 			 * flag causes the slab to be put at the end of the
5064686031edSTom Erickson 			 * deadlist and prevents it from being destroyed, since
5065686031edSTom Erickson 			 * we plan to destroy it here after reacquiring the
5066686031edSTom Erickson 			 * lock.
5067b5fca8f8Stomee 			 */
5068b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
5069b5fca8f8Stomee 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5070b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5071b5fca8f8Stomee 
5072b5fca8f8Stomee 			if (sp->slab_refcnt == 0) {
5073b5fca8f8Stomee 				list_t *deadlist =
5074b5fca8f8Stomee 				    &cp->cache_defrag->kmd_deadlist;
5075686031edSTom Erickson 				list_remove(deadlist, sp);
5076b5fca8f8Stomee 
5077686031edSTom Erickson 				if (!avl_is_empty(
5078686031edSTom Erickson 				    &cp->cache_defrag->kmd_moves_pending)) {
5079686031edSTom Erickson 					/*
5080686031edSTom Erickson 					 * A pending move makes it unsafe to
5081686031edSTom Erickson 					 * destroy the slab, because even though
5082686031edSTom Erickson 					 * the move is no longer needed, the
5083686031edSTom Erickson 					 * context where that is determined
5084686031edSTom Erickson 					 * requires the slab to exist.
5085686031edSTom Erickson 					 * Fortunately, a pending move also
5086686031edSTom Erickson 					 * means we don't need to destroy the
5087686031edSTom Erickson 					 * slab here, since it will get
5088686031edSTom Erickson 					 * destroyed along with any other slabs
5089686031edSTom Erickson 					 * on the deadlist after the last
5090686031edSTom Erickson 					 * pending move completes.
5091686031edSTom Erickson 					 */
5092686031edSTom Erickson 					list_insert_head(deadlist, sp);
5093686031edSTom Erickson 					return (-1);
5094686031edSTom Erickson 				}
5095b5fca8f8Stomee 
5096686031edSTom Erickson 				/*
5097686031edSTom Erickson 				 * Destroy the slab now if it was completely
5098686031edSTom Erickson 				 * freed while we dropped cache_lock and there
5099686031edSTom Erickson 				 * are no pending moves. Since slab_refcnt
5100686031edSTom Erickson 				 * cannot change once it reaches zero, no new
5101686031edSTom Erickson 				 * pending moves from that slab are possible.
5102686031edSTom Erickson 				 */
5103b5fca8f8Stomee 				cp->cache_defrag->kmd_deadcount--;
5104b5fca8f8Stomee 				cp->cache_slab_destroy++;
5105b5fca8f8Stomee 				mutex_exit(&cp->cache_lock);
5106b5fca8f8Stomee 				kmem_slab_destroy(cp, sp);
5107b5fca8f8Stomee 				mutex_enter(&cp->cache_lock);
5108b5fca8f8Stomee 				/*
5109b5fca8f8Stomee 				 * Since we can't pick up the scan where we left
5110b5fca8f8Stomee 				 * off, abort the scan and say nothing about the
5111b5fca8f8Stomee 				 * number of reclaimable slabs.
5112b5fca8f8Stomee 				 */
5113b5fca8f8Stomee 				return (-1);
5114b5fca8f8Stomee 			}
5115b5fca8f8Stomee 
5116b5fca8f8Stomee 			if (!success) {
5117b5fca8f8Stomee 				/*
5118b5fca8f8Stomee 				 * Abort the scan if there is not enough memory
5119b5fca8f8Stomee 				 * for the request and say nothing about the
5120b5fca8f8Stomee 				 * number of reclaimable slabs.
5121b5fca8f8Stomee 				 */
5122b5fca8f8Stomee 				return (-1);
5123b5fca8f8Stomee 			}
5124b5fca8f8Stomee 
5125b5fca8f8Stomee 			/*
5126b5fca8f8Stomee 			 * The slab's position changed while the lock was
5127b5fca8f8Stomee 			 * dropped, so we don't know where we are in the
5128b5fca8f8Stomee 			 * sequence any more.
5129b5fca8f8Stomee 			 */
5130b5fca8f8Stomee 			if (sp->slab_refcnt != refcnt) {
5131686031edSTom Erickson 				/*
5132686031edSTom Erickson 				 * If this is a KMM_DEBUG move, the slab_refcnt
5133686031edSTom Erickson 				 * may have changed because we allocated a
5134686031edSTom Erickson 				 * destination buffer on the same slab. In that
5135686031edSTom Erickson 				 * case, we're not interested in counting it.
5136686031edSTom Erickson 				 */
5137b5fca8f8Stomee 				return (-1);
5138b5fca8f8Stomee 			}
5139*d7db73d1SBryan Cantrill 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5140b5fca8f8Stomee 				return (-1);
5141b5fca8f8Stomee 
5142b5fca8f8Stomee 			/*
5143b5fca8f8Stomee 			 * Generating a move request allocates a destination
5144686031edSTom Erickson 			 * buffer from the slab layer, bumping the first partial
5145686031edSTom Erickson 			 * slab if it is completely allocated. If the current
5146686031edSTom Erickson 			 * slab becomes the first partial slab as a result, we
5147686031edSTom Erickson 			 * can't continue to scan backwards.
5148686031edSTom Erickson 			 *
5149686031edSTom Erickson 			 * If this is a KMM_DEBUG move and we allocated the
5150686031edSTom Erickson 			 * destination buffer from the last partial slab, then
5151686031edSTom Erickson 			 * the buffer we're moving is on the same slab and our
5152686031edSTom Erickson 			 * slab_refcnt has changed, causing us to return before
5153686031edSTom Erickson 			 * reaching here if there are no partial slabs left.
5154b5fca8f8Stomee 			 */
5155b5fca8f8Stomee 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5156b5fca8f8Stomee 			if (sp == avl_first(&cp->cache_partial_slabs)) {
5157686031edSTom Erickson 				/*
5158686031edSTom Erickson 				 * We're not interested in a second KMM_DEBUG
5159686031edSTom Erickson 				 * move.
5160686031edSTom Erickson 				 */
5161b5fca8f8Stomee 				goto end_scan;
5162b5fca8f8Stomee 			}
5163b5fca8f8Stomee 		}
5164b5fca8f8Stomee 	}
5165b5fca8f8Stomee end_scan:
5166b5fca8f8Stomee 
5167b5fca8f8Stomee 	return (s);
5168b5fca8f8Stomee }
5169b5fca8f8Stomee 
5170b5fca8f8Stomee typedef struct kmem_move_notify_args {
5171b5fca8f8Stomee 	kmem_cache_t *kmna_cache;
5172b5fca8f8Stomee 	void *kmna_buf;
5173b5fca8f8Stomee } kmem_move_notify_args_t;
5174b5fca8f8Stomee 
5175b5fca8f8Stomee static void
5176b5fca8f8Stomee kmem_cache_move_notify_task(void *arg)
5177b5fca8f8Stomee {
5178b5fca8f8Stomee 	kmem_move_notify_args_t *args = arg;
5179b5fca8f8Stomee 	kmem_cache_t *cp = args->kmna_cache;
5180b5fca8f8Stomee 	void *buf = args->kmna_buf;
5181b5fca8f8Stomee 	kmem_slab_t *sp;
5182b5fca8f8Stomee 
5183b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
5184b5fca8f8Stomee 	ASSERT(list_link_active(&cp->cache_link));
5185b5fca8f8Stomee 
5186b5fca8f8Stomee 	kmem_free(args, sizeof (kmem_move_notify_args_t));
5187b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
5188b5fca8f8Stomee 	sp = kmem_slab_allocated(cp, NULL, buf);
5189b5fca8f8Stomee 
5190b5fca8f8Stomee 	/* Ignore the notification if the buffer is no longer allocated. */
5191b5fca8f8Stomee 	if (sp == NULL) {
5192b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
5193b5fca8f8Stomee 		return;
5194b5fca8f8Stomee 	}
5195b5fca8f8Stomee 
5196b5fca8f8Stomee 	/* Ignore the notification if there's no reason to move the buffer. */
5197b5fca8f8Stomee 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5198b5fca8f8Stomee 		/*
5199b5fca8f8Stomee 		 * So far the notification is not ignored. Ignore the
5200b5fca8f8Stomee 		 * notification if the slab is not marked by an earlier refusal
5201b5fca8f8Stomee 		 * to move a buffer.
5202b5fca8f8Stomee 		 */
5203b5fca8f8Stomee 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5204b5fca8f8Stomee 		    (sp->slab_later_count == 0)) {
5205b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
5206b5fca8f8Stomee 			return;
5207b5fca8f8Stomee 		}
5208b5fca8f8Stomee 
5209b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
5210b5fca8f8Stomee 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5211b5fca8f8Stomee 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5212b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
5213b5fca8f8Stomee 		/* see kmem_move_buffers() about dropping the lock */
5214b5fca8f8Stomee 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5215b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
5216b5fca8f8Stomee 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5217b5fca8f8Stomee 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5218b5fca8f8Stomee 		if (sp->slab_refcnt == 0) {
5219b5fca8f8Stomee 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5220686031edSTom Erickson 			list_remove(deadlist, sp);
5221b5fca8f8Stomee 
5222686031edSTom Erickson 			if (!avl_is_empty(
5223686031edSTom Erickson 			    &cp->cache_defrag->kmd_moves_pending)) {
5224686031edSTom Erickson 				list_insert_head(deadlist, sp);
5225686031edSTom Erickson 				mutex_exit(&cp->cache_lock);
5226686031edSTom Erickson 				return;
5227686031edSTom Erickson 			}
5228b5fca8f8Stomee 
5229b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount--;
5230b5fca8f8Stomee 			cp->cache_slab_destroy++;
5231b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
5232b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
5233b5fca8f8Stomee 			return;
5234b5fca8f8Stomee 		}
5235b5fca8f8Stomee 	} else {
5236b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
5237b5fca8f8Stomee 	}
5238b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
5239b5fca8f8Stomee }
5240b5fca8f8Stomee 
5241b5fca8f8Stomee void
5242b5fca8f8Stomee kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5243b5fca8f8Stomee {
5244b5fca8f8Stomee 	kmem_move_notify_args_t *args;
5245b5fca8f8Stomee 
5246b5fca8f8Stomee 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5247b5fca8f8Stomee 	if (args != NULL) {
5248b5fca8f8Stomee 		args->kmna_cache = cp;
5249b5fca8f8Stomee 		args->kmna_buf = buf;
5250eb697d4eStomee 		if (!taskq_dispatch(kmem_taskq,
5251b5fca8f8Stomee 		    (task_func_t *)kmem_cache_move_notify_task, args,
5252eb697d4eStomee 		    TQ_NOSLEEP))
5253eb697d4eStomee 			kmem_free(args, sizeof (kmem_move_notify_args_t));
5254b5fca8f8Stomee 	}
5255b5fca8f8Stomee }
5256b5fca8f8Stomee 
5257b5fca8f8Stomee static void
5258b5fca8f8Stomee kmem_cache_defrag(kmem_cache_t *cp)
5259b5fca8f8Stomee {
5260b5fca8f8Stomee 	size_t n;
5261b5fca8f8Stomee 
5262b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
5263b5fca8f8Stomee 
5264b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
5265b5fca8f8Stomee 	n = avl_numnodes(&cp->cache_partial_slabs);
5266b5fca8f8Stomee 	if (n > 1) {
5267b5fca8f8Stomee 		/* kmem_move_buffers() drops and reacquires cache_lock */
5268686031edSTom Erickson 		cp->cache_defrag->kmd_defrags++;
5269686031edSTom Erickson 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5270b5fca8f8Stomee 	}
5271b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
5272b5fca8f8Stomee }
5273b5fca8f8Stomee 
5274b5fca8f8Stomee /* Is this cache above the fragmentation threshold? */
5275b5fca8f8Stomee static boolean_t
5276b5fca8f8Stomee kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5277b5fca8f8Stomee {
5278b5fca8f8Stomee 	/*
5279b5fca8f8Stomee 	 *	nfree		kmem_frag_numer
5280b5fca8f8Stomee 	 * ------------------ > ---------------
5281b5fca8f8Stomee 	 * cp->cache_buftotal	kmem_frag_denom
5282b5fca8f8Stomee 	 */
5283b5fca8f8Stomee 	return ((nfree * kmem_frag_denom) >
5284b5fca8f8Stomee 	    (cp->cache_buftotal * kmem_frag_numer));
5285b5fca8f8Stomee }
5286b5fca8f8Stomee 
5287b5fca8f8Stomee static boolean_t
5288b5fca8f8Stomee kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5289b5fca8f8Stomee {
5290b5fca8f8Stomee 	boolean_t fragmented;
5291b5fca8f8Stomee 	uint64_t nfree;
5292b5fca8f8Stomee 
5293b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
5294b5fca8f8Stomee 	*doreap = B_FALSE;
5295b5fca8f8Stomee 
5296686031edSTom Erickson 	if (kmem_move_fulltilt) {
5297686031edSTom Erickson 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5298686031edSTom Erickson 			return (B_TRUE);
5299686031edSTom Erickson 		}
5300686031edSTom Erickson 	} else {
5301686031edSTom Erickson 		if ((cp->cache_complete_slab_count + avl_numnodes(
5302686031edSTom Erickson 		    &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5303686031edSTom Erickson 			return (B_FALSE);
5304686031edSTom Erickson 		}
5305686031edSTom Erickson 	}
5306b5fca8f8Stomee 
5307b5fca8f8Stomee 	nfree = cp->cache_bufslab;
5308686031edSTom Erickson 	fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5309686031edSTom Erickson 	    kmem_cache_frag_threshold(cp, nfree));
5310686031edSTom Erickson 
5311b5fca8f8Stomee 	/*
5312b5fca8f8Stomee 	 * Free buffers in the magazine layer appear allocated from the point of
5313b5fca8f8Stomee 	 * view of the slab layer. We want to know if the slab layer would
5314b5fca8f8Stomee 	 * appear fragmented if we included free buffers from magazines that
5315b5fca8f8Stomee 	 * have fallen out of the working set.
5316b5fca8f8Stomee 	 */
5317b5fca8f8Stomee 	if (!fragmented) {
5318b5fca8f8Stomee 		long reap;
5319b5fca8f8Stomee 
5320b5fca8f8Stomee 		mutex_enter(&cp->cache_depot_lock);
5321b5fca8f8Stomee 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5322b5fca8f8Stomee 		reap = MIN(reap, cp->cache_full.ml_total);
5323b5fca8f8Stomee 		mutex_exit(&cp->cache_depot_lock);
5324b5fca8f8Stomee 
5325b5fca8f8Stomee 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5326b5fca8f8Stomee 		if (kmem_cache_frag_threshold(cp, nfree)) {
5327b5fca8f8Stomee 			*doreap = B_TRUE;
5328b5fca8f8Stomee 		}
5329b5fca8f8Stomee 	}
5330b5fca8f8Stomee 
5331b5fca8f8Stomee 	return (fragmented);
5332b5fca8f8Stomee }
5333b5fca8f8Stomee 
5334b5fca8f8Stomee /* Called periodically from kmem_taskq */
5335b5fca8f8Stomee static void
5336b5fca8f8Stomee kmem_cache_scan(kmem_cache_t *cp)
5337b5fca8f8Stomee {
5338b5fca8f8Stomee 	boolean_t reap = B_FALSE;
5339686031edSTom Erickson 	kmem_defrag_t *kmd;
5340b5fca8f8Stomee 
5341b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
5342b5fca8f8Stomee 
5343b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
5344b5fca8f8Stomee 
5345686031edSTom Erickson 	kmd = cp->cache_defrag;
5346686031edSTom Erickson 	if (kmd->kmd_consolidate > 0) {
5347686031edSTom Erickson 		kmd->kmd_consolidate--;
5348686031edSTom Erickson 		mutex_exit(&cp->cache_lock);
5349686031edSTom Erickson 		kmem_cache_reap(cp);
5350686031edSTom Erickson 		return;
5351686031edSTom Erickson 	}
5352686031edSTom Erickson 
5353b5fca8f8Stomee 	if (kmem_cache_is_fragmented(cp, &reap)) {
5354b5fca8f8Stomee 		size_t slabs_found;
5355b5fca8f8Stomee 
5356b5fca8f8Stomee 		/*
5357b5fca8f8Stomee 		 * Consolidate reclaimable slabs from the end of the partial
5358b5fca8f8Stomee 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5359b5fca8f8Stomee 		 * reclaimable slabs). Keep track of how many candidate slabs we
5360b5fca8f8Stomee 		 * looked for and how many we actually found so we can adjust
5361b5fca8f8Stomee 		 * the definition of a candidate slab if we're having trouble
5362b5fca8f8Stomee 		 * finding them.
5363b5fca8f8Stomee 		 *
5364b5fca8f8Stomee 		 * kmem_move_buffers() drops and reacquires cache_lock.
5365b5fca8f8Stomee 		 */
5366686031edSTom Erickson 		kmd->kmd_scans++;
5367b5fca8f8Stomee 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5368b5fca8f8Stomee 		    kmem_reclaim_max_slabs, 0);
5369b5fca8f8Stomee 		if (slabs_found >= 0) {
5370b5fca8f8Stomee 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5371b5fca8f8Stomee 			kmd->kmd_slabs_found += slabs_found;
5372b5fca8f8Stomee 		}
5373b5fca8f8Stomee 
5374686031edSTom Erickson 		if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5375686031edSTom Erickson 			kmd->kmd_tries = 0;
5376b5fca8f8Stomee 
5377b5fca8f8Stomee 			/*
5378b5fca8f8Stomee 			 * If we had difficulty finding candidate slabs in
5379b5fca8f8Stomee 			 * previous scans, adjust the threshold so that
5380b5fca8f8Stomee 			 * candidates are easier to find.
5381b5fca8f8Stomee 			 */
5382b5fca8f8Stomee 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5383b5fca8f8Stomee 				kmem_adjust_reclaim_threshold(kmd, -1);
5384b5fca8f8Stomee 			} else if ((kmd->kmd_slabs_found * 2) <
5385b5fca8f8Stomee 			    kmd->kmd_slabs_sought) {
5386b5fca8f8Stomee 				kmem_adjust_reclaim_threshold(kmd, 1);
5387b5fca8f8Stomee 			}
5388b5fca8f8Stomee 			kmd->kmd_slabs_sought = 0;
5389b5fca8f8Stomee 			kmd->kmd_slabs_found = 0;
5390b5fca8f8Stomee 		}
5391b5fca8f8Stomee 	} else {
5392b5fca8f8Stomee 		kmem_reset_reclaim_threshold(cp->cache_defrag);
5393b5fca8f8Stomee #ifdef	DEBUG
5394686031edSTom Erickson 		if (!avl_is_empty(&cp->cache_partial_slabs)) {
5395b5fca8f8Stomee 			/*
5396b5fca8f8Stomee 			 * In a debug kernel we want the consolidator to
5397b5fca8f8Stomee 			 * run occasionally even when there is plenty of
5398b5fca8f8Stomee 			 * memory.
5399b5fca8f8Stomee 			 */
5400686031edSTom Erickson 			uint16_t debug_rand;
5401b5fca8f8Stomee 
5402686031edSTom Erickson 			(void) random_get_bytes((uint8_t *)&debug_rand, 2);
5403b5fca8f8Stomee 			if (!kmem_move_noreap &&
5404b5fca8f8Stomee 			    ((debug_rand % kmem_mtb_reap) == 0)) {
5405b5fca8f8Stomee 				mutex_exit(&cp->cache_lock);
5406686031edSTom Erickson 				kmem_cache_reap(cp);
5407b5fca8f8Stomee 				return;
5408b5fca8f8Stomee 			} else if ((debug_rand % kmem_mtb_move) == 0) {
5409686031edSTom Erickson 				kmd->kmd_scans++;
5410b5fca8f8Stomee 				(void) kmem_move_buffers(cp,
5411686031edSTom Erickson 				    kmem_reclaim_scan_range, 1, KMM_DEBUG);
5412b5fca8f8Stomee 			}
5413b5fca8f8Stomee 		}
5414b5fca8f8Stomee #endif	/* DEBUG */
5415b5fca8f8Stomee 	}
5416b5fca8f8Stomee 
5417b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
5418b5fca8f8Stomee 
5419*d7db73d1SBryan Cantrill 	if (reap)
5420b5fca8f8Stomee 		kmem_depot_ws_reap(cp);
5421b5fca8f8Stomee }
5422