xref: /illumos-gate/usr/src/uts/common/os/kmem.c (revision 686031eda63fae2c10a35c679a6120334f697e0e)
17c478bd9Sstevel@tonic-gate /*
27c478bd9Sstevel@tonic-gate  * CDDL HEADER START
37c478bd9Sstevel@tonic-gate  *
47c478bd9Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
57d692464Sdp  * Common Development and Distribution License (the "License").
67d692464Sdp  * You may not use this file except in compliance with the License.
77c478bd9Sstevel@tonic-gate  *
87c478bd9Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97c478bd9Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
107c478bd9Sstevel@tonic-gate  * See the License for the specific language governing permissions
117c478bd9Sstevel@tonic-gate  * and limitations under the License.
127c478bd9Sstevel@tonic-gate  *
137c478bd9Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
147c478bd9Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157c478bd9Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
167c478bd9Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
177c478bd9Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
187c478bd9Sstevel@tonic-gate  *
197c478bd9Sstevel@tonic-gate  * CDDL HEADER END
207c478bd9Sstevel@tonic-gate  */
217c478bd9Sstevel@tonic-gate /*
22dce01e3fSJonathan W Adams  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
237c478bd9Sstevel@tonic-gate  * Use is subject to license terms.
247c478bd9Sstevel@tonic-gate  */
257c478bd9Sstevel@tonic-gate 
267c478bd9Sstevel@tonic-gate /*
27b5fca8f8Stomee  * Kernel memory allocator, as described in the following two papers and a
28b5fca8f8Stomee  * statement about the consolidator:
297c478bd9Sstevel@tonic-gate  *
307c478bd9Sstevel@tonic-gate  * Jeff Bonwick,
317c478bd9Sstevel@tonic-gate  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
327c478bd9Sstevel@tonic-gate  * Proceedings of the Summer 1994 Usenix Conference.
337c478bd9Sstevel@tonic-gate  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
347c478bd9Sstevel@tonic-gate  *
357c478bd9Sstevel@tonic-gate  * Jeff Bonwick and Jonathan Adams,
367c478bd9Sstevel@tonic-gate  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
377c478bd9Sstevel@tonic-gate  * Arbitrary Resources.
387c478bd9Sstevel@tonic-gate  * Proceedings of the 2001 Usenix Conference.
397c478bd9Sstevel@tonic-gate  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
40b5fca8f8Stomee  *
41b5fca8f8Stomee  * kmem Slab Consolidator Big Theory Statement:
42b5fca8f8Stomee  *
43b5fca8f8Stomee  * 1. Motivation
44b5fca8f8Stomee  *
45b5fca8f8Stomee  * As stated in Bonwick94, slabs provide the following advantages over other
46b5fca8f8Stomee  * allocation structures in terms of memory fragmentation:
47b5fca8f8Stomee  *
48b5fca8f8Stomee  *  - Internal fragmentation (per-buffer wasted space) is minimal.
49b5fca8f8Stomee  *  - Severe external fragmentation (unused buffers on the free list) is
50b5fca8f8Stomee  *    unlikely.
51b5fca8f8Stomee  *
52b5fca8f8Stomee  * Segregating objects by size eliminates one source of external fragmentation,
53b5fca8f8Stomee  * and according to Bonwick:
54b5fca8f8Stomee  *
55b5fca8f8Stomee  *   The other reason that slabs reduce external fragmentation is that all
56b5fca8f8Stomee  *   objects in a slab are of the same type, so they have the same lifetime
57b5fca8f8Stomee  *   distribution. The resulting segregation of short-lived and long-lived
58b5fca8f8Stomee  *   objects at slab granularity reduces the likelihood of an entire page being
59b5fca8f8Stomee  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
60b5fca8f8Stomee  *
61b5fca8f8Stomee  * While unlikely, severe external fragmentation remains possible. Clients that
62b5fca8f8Stomee  * allocate both short- and long-lived objects from the same cache cannot
63b5fca8f8Stomee  * anticipate the distribution of long-lived objects within the allocator's slab
64b5fca8f8Stomee  * implementation. Even a small percentage of long-lived objects distributed
65b5fca8f8Stomee  * randomly across many slabs can lead to a worst case scenario where the client
66b5fca8f8Stomee  * frees the majority of its objects and the system gets back almost none of the
67b5fca8f8Stomee  * slabs. Despite the client doing what it reasonably can to help the system
68b5fca8f8Stomee  * reclaim memory, the allocator cannot shake free enough slabs because of
69b5fca8f8Stomee  * lonely allocations stubbornly hanging on. Although the allocator is in a
70b5fca8f8Stomee  * position to diagnose the fragmentation, there is nothing that the allocator
71b5fca8f8Stomee  * by itself can do about it. It only takes a single allocated object to prevent
72b5fca8f8Stomee  * an entire slab from being reclaimed, and any object handed out by
73b5fca8f8Stomee  * kmem_cache_alloc() is by definition in the client's control. Conversely,
74b5fca8f8Stomee  * although the client is in a position to move a long-lived object, it has no
75b5fca8f8Stomee  * way of knowing if the object is causing fragmentation, and if so, where to
76b5fca8f8Stomee  * move it. A solution necessarily requires further cooperation between the
77b5fca8f8Stomee  * allocator and the client.
78b5fca8f8Stomee  *
79b5fca8f8Stomee  * 2. Move Callback
80b5fca8f8Stomee  *
81b5fca8f8Stomee  * The kmem slab consolidator therefore adds a move callback to the
82b5fca8f8Stomee  * allocator/client interface, improving worst-case external fragmentation in
83b5fca8f8Stomee  * kmem caches that supply a function to move objects from one memory location
84b5fca8f8Stomee  * to another. In a situation of low memory kmem attempts to consolidate all of
85b5fca8f8Stomee  * a cache's slabs at once; otherwise it works slowly to bring external
86b5fca8f8Stomee  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
87b5fca8f8Stomee  * thereby helping to avoid a low memory situation in the future.
88b5fca8f8Stomee  *
89b5fca8f8Stomee  * The callback has the following signature:
90b5fca8f8Stomee  *
91b5fca8f8Stomee  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
92b5fca8f8Stomee  *
93b5fca8f8Stomee  * It supplies the kmem client with two addresses: the allocated object that
94b5fca8f8Stomee  * kmem wants to move and a buffer selected by kmem for the client to use as the
95b5fca8f8Stomee  * copy destination. The callback is kmem's way of saying "Please get off of
96b5fca8f8Stomee  * this buffer and use this one instead." kmem knows where it wants to move the
97b5fca8f8Stomee  * object in order to best reduce fragmentation. All the client needs to know
98b5fca8f8Stomee  * about the second argument (void *new) is that it is an allocated, constructed
99b5fca8f8Stomee  * object ready to take the contents of the old object. When the move function
100b5fca8f8Stomee  * is called, the system is likely to be low on memory, and the new object
101b5fca8f8Stomee  * spares the client from having to worry about allocating memory for the
102b5fca8f8Stomee  * requested move. The third argument supplies the size of the object, in case a
103b5fca8f8Stomee  * single move function handles multiple caches whose objects differ only in
104b5fca8f8Stomee  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
105b5fca8f8Stomee  * user argument passed to the constructor, destructor, and reclaim functions is
106b5fca8f8Stomee  * also passed to the move callback.
107b5fca8f8Stomee  *
108b5fca8f8Stomee  * 2.1 Setting the Move Callback
109b5fca8f8Stomee  *
110b5fca8f8Stomee  * The client sets the move callback after creating the cache and before
111b5fca8f8Stomee  * allocating from it:
112b5fca8f8Stomee  *
113b5fca8f8Stomee  *	object_cache = kmem_cache_create(...);
114b5fca8f8Stomee  *      kmem_cache_set_move(object_cache, object_move);
115b5fca8f8Stomee  *
116b5fca8f8Stomee  * 2.2 Move Callback Return Values
117b5fca8f8Stomee  *
118b5fca8f8Stomee  * Only the client knows about its own data and when is a good time to move it.
119b5fca8f8Stomee  * The client is cooperating with kmem to return unused memory to the system,
120b5fca8f8Stomee  * and kmem respectfully accepts this help at the client's convenience. When
121b5fca8f8Stomee  * asked to move an object, the client can respond with any of the following:
122b5fca8f8Stomee  *
123b5fca8f8Stomee  *   typedef enum kmem_cbrc {
124b5fca8f8Stomee  *           KMEM_CBRC_YES,
125b5fca8f8Stomee  *           KMEM_CBRC_NO,
126b5fca8f8Stomee  *           KMEM_CBRC_LATER,
127b5fca8f8Stomee  *           KMEM_CBRC_DONT_NEED,
128b5fca8f8Stomee  *           KMEM_CBRC_DONT_KNOW
129b5fca8f8Stomee  *   } kmem_cbrc_t;
130b5fca8f8Stomee  *
131b5fca8f8Stomee  * The client must not explicitly kmem_cache_free() either of the objects passed
132b5fca8f8Stomee  * to the callback, since kmem wants to free them directly to the slab layer
133b5fca8f8Stomee  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
134b5fca8f8Stomee  * objects to free:
135b5fca8f8Stomee  *
136b5fca8f8Stomee  *       YES: (Did it) The client moved the object, so kmem frees the old one.
137b5fca8f8Stomee  *        NO: (Never) The client refused, so kmem frees the new object (the
138b5fca8f8Stomee  *            unused copy destination). kmem also marks the slab of the old
139b5fca8f8Stomee  *            object so as not to bother the client with further callbacks for
140b5fca8f8Stomee  *            that object as long as the slab remains on the partial slab list.
141b5fca8f8Stomee  *            (The system won't be getting the slab back as long as the
142b5fca8f8Stomee  *            immovable object holds it hostage, so there's no point in moving
143b5fca8f8Stomee  *            any of its objects.)
144b5fca8f8Stomee  *     LATER: The client is using the object and cannot move it now, so kmem
145b5fca8f8Stomee  *            frees the new object (the unused copy destination). kmem still
146b5fca8f8Stomee  *            attempts to move other objects off the slab, since it expects to
147b5fca8f8Stomee  *            succeed in clearing the slab in a later callback. The client
148b5fca8f8Stomee  *            should use LATER instead of NO if the object is likely to become
149b5fca8f8Stomee  *            movable very soon.
150b5fca8f8Stomee  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
151b5fca8f8Stomee  *            with the new object (the unused copy destination). This response
152b5fca8f8Stomee  *            is the client's opportunity to be a model citizen and give back as
153b5fca8f8Stomee  *            much as it can.
154b5fca8f8Stomee  * DONT_KNOW: The client does not know about the object because
155b5fca8f8Stomee  *            a) the client has just allocated the object and not yet put it
156b5fca8f8Stomee  *               wherever it expects to find known objects
157b5fca8f8Stomee  *            b) the client has removed the object from wherever it expects to
158b5fca8f8Stomee  *               find known objects and is about to free it, or
159b5fca8f8Stomee  *            c) the client has freed the object.
160b5fca8f8Stomee  *            In all these cases (a, b, and c) kmem frees the new object (the
161b5fca8f8Stomee  *            unused copy destination) and searches for the old object in the
162b5fca8f8Stomee  *            magazine layer. If found, the object is removed from the magazine
163b5fca8f8Stomee  *            layer and freed to the slab layer so it will no longer hold the
164b5fca8f8Stomee  *            slab hostage.
165b5fca8f8Stomee  *
166b5fca8f8Stomee  * 2.3 Object States
167b5fca8f8Stomee  *
168b5fca8f8Stomee  * Neither kmem nor the client can be assumed to know the object's whereabouts
169b5fca8f8Stomee  * at the time of the callback. An object belonging to a kmem cache may be in
170b5fca8f8Stomee  * any of the following states:
171b5fca8f8Stomee  *
172b5fca8f8Stomee  * 1. Uninitialized on the slab
173b5fca8f8Stomee  * 2. Allocated from the slab but not constructed (still uninitialized)
174b5fca8f8Stomee  * 3. Allocated from the slab, constructed, but not yet ready for business
175b5fca8f8Stomee  *    (not in a valid state for the move callback)
176b5fca8f8Stomee  * 4. In use (valid and known to the client)
177b5fca8f8Stomee  * 5. About to be freed (no longer in a valid state for the move callback)
178b5fca8f8Stomee  * 6. Freed to a magazine (still constructed)
179b5fca8f8Stomee  * 7. Allocated from a magazine, not yet ready for business (not in a valid
180b5fca8f8Stomee  *    state for the move callback), and about to return to state #4
181b5fca8f8Stomee  * 8. Deconstructed on a magazine that is about to be freed
182b5fca8f8Stomee  * 9. Freed to the slab
183b5fca8f8Stomee  *
184b5fca8f8Stomee  * Since the move callback may be called at any time while the object is in any
185b5fca8f8Stomee  * of the above states (except state #1), the client needs a safe way to
186b5fca8f8Stomee  * determine whether or not it knows about the object. Specifically, the client
187b5fca8f8Stomee  * needs to know whether or not the object is in state #4, the only state in
188b5fca8f8Stomee  * which a move is valid. If the object is in any other state, the client should
189b5fca8f8Stomee  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
190b5fca8f8Stomee  * the object's fields.
191b5fca8f8Stomee  *
192b5fca8f8Stomee  * Note that although an object may be in state #4 when kmem initiates the move
193b5fca8f8Stomee  * request, the object may no longer be in that state by the time kmem actually
194b5fca8f8Stomee  * calls the move function. Not only does the client free objects
195b5fca8f8Stomee  * asynchronously, kmem itself puts move requests on a queue where thay are
196b5fca8f8Stomee  * pending until kmem processes them from another context. Also, objects freed
197b5fca8f8Stomee  * to a magazine appear allocated from the point of view of the slab layer, so
198b5fca8f8Stomee  * kmem may even initiate requests for objects in a state other than state #4.
199b5fca8f8Stomee  *
200b5fca8f8Stomee  * 2.3.1 Magazine Layer
201b5fca8f8Stomee  *
202b5fca8f8Stomee  * An important insight revealed by the states listed above is that the magazine
203b5fca8f8Stomee  * layer is populated only by kmem_cache_free(). Magazines of constructed
204b5fca8f8Stomee  * objects are never populated directly from the slab layer (which contains raw,
205b5fca8f8Stomee  * unconstructed objects). Whenever an allocation request cannot be satisfied
206b5fca8f8Stomee  * from the magazine layer, the magazines are bypassed and the request is
207b5fca8f8Stomee  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
208b5fca8f8Stomee  * the object constructor only when allocating from the slab layer, and only in
209b5fca8f8Stomee  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
210b5fca8f8Stomee  * the move callback. kmem does not preconstruct objects in anticipation of
211b5fca8f8Stomee  * kmem_cache_alloc().
212b5fca8f8Stomee  *
213b5fca8f8Stomee  * 2.3.2 Object Constructor and Destructor
214b5fca8f8Stomee  *
215b5fca8f8Stomee  * If the client supplies a destructor, it must be valid to call the destructor
216b5fca8f8Stomee  * on a newly created object (immediately after the constructor).
217b5fca8f8Stomee  *
218b5fca8f8Stomee  * 2.4 Recognizing Known Objects
219b5fca8f8Stomee  *
220b5fca8f8Stomee  * There is a simple test to determine safely whether or not the client knows
221b5fca8f8Stomee  * about a given object in the move callback. It relies on the fact that kmem
222b5fca8f8Stomee  * guarantees that the object of the move callback has only been touched by the
223b5fca8f8Stomee  * client itself or else by kmem. kmem does this by ensuring that none of the
224b5fca8f8Stomee  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
225b5fca8f8Stomee  * callback is pending. When the last object on a slab is freed, if there is a
226b5fca8f8Stomee  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
227b5fca8f8Stomee  * slabs on that list until all pending callbacks are completed. That way,
228b5fca8f8Stomee  * clients can be certain that the object of a move callback is in one of the
229b5fca8f8Stomee  * states listed above, making it possible to distinguish known objects (in
230b5fca8f8Stomee  * state #4) using the two low order bits of any pointer member (with the
231b5fca8f8Stomee  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
232b5fca8f8Stomee  * platforms).
233b5fca8f8Stomee  *
234b5fca8f8Stomee  * The test works as long as the client always transitions objects from state #4
235b5fca8f8Stomee  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
236b5fca8f8Stomee  * order bit of the client-designated pointer member. Since kmem only writes
237b5fca8f8Stomee  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
238b5fca8f8Stomee  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
239b5fca8f8Stomee  * guaranteed to set at least one of the two low order bits. Therefore, given an
240b5fca8f8Stomee  * object with a back pointer to a 'container_t *o_container', the client can
241b5fca8f8Stomee  * test
242b5fca8f8Stomee  *
243b5fca8f8Stomee  *      container_t *container = object->o_container;
244b5fca8f8Stomee  *      if ((uintptr_t)container & 0x3) {
245b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
246b5fca8f8Stomee  *      }
247b5fca8f8Stomee  *
248b5fca8f8Stomee  * Typically, an object will have a pointer to some structure with a list or
249b5fca8f8Stomee  * hash where objects from the cache are kept while in use. Assuming that the
250b5fca8f8Stomee  * client has some way of knowing that the container structure is valid and will
251b5fca8f8Stomee  * not go away during the move, and assuming that the structure includes a lock
252b5fca8f8Stomee  * to protect whatever collection is used, then the client would continue as
253b5fca8f8Stomee  * follows:
254b5fca8f8Stomee  *
255b5fca8f8Stomee  *	// Ensure that the container structure does not go away.
256b5fca8f8Stomee  *      if (container_hold(container) == 0) {
257b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
258b5fca8f8Stomee  *      }
259b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
260b5fca8f8Stomee  *      if (container != object->o_container) {
261b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
262b5fca8f8Stomee  *              container_rele(container);
263b5fca8f8Stomee  *              return (KMEM_CBRC_DONT_KNOW);
264b5fca8f8Stomee  *      }
265b5fca8f8Stomee  *
266b5fca8f8Stomee  * At this point the client knows that the object cannot be freed as long as
267b5fca8f8Stomee  * c_objects_lock is held. Note that after acquiring the lock, the client must
268b5fca8f8Stomee  * recheck the o_container pointer in case the object was removed just before
269b5fca8f8Stomee  * acquiring the lock.
270b5fca8f8Stomee  *
271b5fca8f8Stomee  * When the client is about to free an object, it must first remove that object
272b5fca8f8Stomee  * from the list, hash, or other structure where it is kept. At that time, to
273b5fca8f8Stomee  * mark the object so it can be distinguished from the remaining, known objects,
274b5fca8f8Stomee  * the client sets the designated low order bit:
275b5fca8f8Stomee  *
276b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
277b5fca8f8Stomee  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
278b5fca8f8Stomee  *      list_remove(&container->c_objects, object);
279b5fca8f8Stomee  *      mutex_exit(&container->c_objects_lock);
280b5fca8f8Stomee  *
281b5fca8f8Stomee  * In the common case, the object is freed to the magazine layer, where it may
282b5fca8f8Stomee  * be reused on a subsequent allocation without the overhead of calling the
283b5fca8f8Stomee  * constructor. While in the magazine it appears allocated from the point of
284b5fca8f8Stomee  * view of the slab layer, making it a candidate for the move callback. Most
285b5fca8f8Stomee  * objects unrecognized by the client in the move callback fall into this
286b5fca8f8Stomee  * category and are cheaply distinguished from known objects by the test
287b5fca8f8Stomee  * described earlier. Since recognition is cheap for the client, and searching
288b5fca8f8Stomee  * magazines is expensive for kmem, kmem defers searching until the client first
289b5fca8f8Stomee  * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
290b5fca8f8Stomee  * elsewhere does what it can to avoid bothering the client unnecessarily.
291b5fca8f8Stomee  *
292b5fca8f8Stomee  * Invalidating the designated pointer member before freeing the object marks
293b5fca8f8Stomee  * the object to be avoided in the callback, and conversely, assigning a valid
294b5fca8f8Stomee  * value to the designated pointer member after allocating the object makes the
295b5fca8f8Stomee  * object fair game for the callback:
296b5fca8f8Stomee  *
297b5fca8f8Stomee  *      ... allocate object ...
298b5fca8f8Stomee  *      ... set any initial state not set by the constructor ...
299b5fca8f8Stomee  *
300b5fca8f8Stomee  *      mutex_enter(&container->c_objects_lock);
301b5fca8f8Stomee  *      list_insert_tail(&container->c_objects, object);
302b5fca8f8Stomee  *      membar_producer();
303b5fca8f8Stomee  *      object->o_container = container;
304b5fca8f8Stomee  *      mutex_exit(&container->c_objects_lock);
305b5fca8f8Stomee  *
306b5fca8f8Stomee  * Note that everything else must be valid before setting o_container makes the
307b5fca8f8Stomee  * object fair game for the move callback. The membar_producer() call ensures
308b5fca8f8Stomee  * that all the object's state is written to memory before setting the pointer
309b5fca8f8Stomee  * that transitions the object from state #3 or #7 (allocated, constructed, not
310b5fca8f8Stomee  * yet in use) to state #4 (in use, valid). That's important because the move
311b5fca8f8Stomee  * function has to check the validity of the pointer before it can safely
312b5fca8f8Stomee  * acquire the lock protecting the collection where it expects to find known
313b5fca8f8Stomee  * objects.
314b5fca8f8Stomee  *
315b5fca8f8Stomee  * This method of distinguishing known objects observes the usual symmetry:
316b5fca8f8Stomee  * invalidating the designated pointer is the first thing the client does before
317b5fca8f8Stomee  * freeing the object, and setting the designated pointer is the last thing the
318b5fca8f8Stomee  * client does after allocating the object. Of course, the client is not
319b5fca8f8Stomee  * required to use this method. Fundamentally, how the client recognizes known
320b5fca8f8Stomee  * objects is completely up to the client, but this method is recommended as an
321b5fca8f8Stomee  * efficient and safe way to take advantage of the guarantees made by kmem. If
322b5fca8f8Stomee  * the entire object is arbitrary data without any markable bits from a suitable
323b5fca8f8Stomee  * pointer member, then the client must find some other method, such as
324b5fca8f8Stomee  * searching a hash table of known objects.
325b5fca8f8Stomee  *
326b5fca8f8Stomee  * 2.5 Preventing Objects From Moving
327b5fca8f8Stomee  *
328b5fca8f8Stomee  * Besides a way to distinguish known objects, the other thing that the client
329b5fca8f8Stomee  * needs is a strategy to ensure that an object will not move while the client
330b5fca8f8Stomee  * is actively using it. The details of satisfying this requirement tend to be
331b5fca8f8Stomee  * highly cache-specific. It might seem that the same rules that let a client
332b5fca8f8Stomee  * remove an object safely should also decide when an object can be moved
333b5fca8f8Stomee  * safely. However, any object state that makes a removal attempt invalid is
334b5fca8f8Stomee  * likely to be long-lasting for objects that the client does not expect to
335b5fca8f8Stomee  * remove. kmem knows nothing about the object state and is equally likely (from
336b5fca8f8Stomee  * the client's point of view) to request a move for any object in the cache,
337b5fca8f8Stomee  * whether prepared for removal or not. Even a low percentage of objects stuck
338b5fca8f8Stomee  * in place by unremovability will defeat the consolidator if the stuck objects
339b5fca8f8Stomee  * are the same long-lived allocations likely to hold slabs hostage.
340b5fca8f8Stomee  * Fundamentally, the consolidator is not aimed at common cases. Severe external
341b5fca8f8Stomee  * fragmentation is a worst case scenario manifested as sparsely allocated
342b5fca8f8Stomee  * slabs, by definition a low percentage of the cache's objects. When deciding
343b5fca8f8Stomee  * what makes an object movable, keep in mind the goal of the consolidator: to
344b5fca8f8Stomee  * bring worst-case external fragmentation within the limits guaranteed for
345b5fca8f8Stomee  * internal fragmentation. Removability is a poor criterion if it is likely to
346b5fca8f8Stomee  * exclude more than an insignificant percentage of objects for long periods of
347b5fca8f8Stomee  * time.
348b5fca8f8Stomee  *
349b5fca8f8Stomee  * A tricky general solution exists, and it has the advantage of letting you
350b5fca8f8Stomee  * move any object at almost any moment, practically eliminating the likelihood
351b5fca8f8Stomee  * that an object can hold a slab hostage. However, if there is a cache-specific
352b5fca8f8Stomee  * way to ensure that an object is not actively in use in the vast majority of
353b5fca8f8Stomee  * cases, a simpler solution that leverages this cache-specific knowledge is
354b5fca8f8Stomee  * preferred.
355b5fca8f8Stomee  *
356b5fca8f8Stomee  * 2.5.1 Cache-Specific Solution
357b5fca8f8Stomee  *
358b5fca8f8Stomee  * As an example of a cache-specific solution, the ZFS znode cache takes
359b5fca8f8Stomee  * advantage of the fact that the vast majority of znodes are only being
360b5fca8f8Stomee  * referenced from the DNLC. (A typical case might be a few hundred in active
361b5fca8f8Stomee  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
362b5fca8f8Stomee  * client has established that it recognizes the znode and can access its fields
363b5fca8f8Stomee  * safely (using the method described earlier), it then tests whether the znode
364b5fca8f8Stomee  * is referenced by anything other than the DNLC. If so, it assumes that the
365b5fca8f8Stomee  * znode may be in active use and is unsafe to move, so it drops its locks and
366b5fca8f8Stomee  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
367b5fca8f8Stomee  * else znodes are used, no change is needed to protect against the possibility
368b5fca8f8Stomee  * of the znode moving. The disadvantage is that it remains possible for an
369b5fca8f8Stomee  * application to hold a znode slab hostage with an open file descriptor.
370b5fca8f8Stomee  * However, this case ought to be rare and the consolidator has a way to deal
371b5fca8f8Stomee  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
372b5fca8f8Stomee  * object, kmem eventually stops believing it and treats the slab as if the
373b5fca8f8Stomee  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
374b5fca8f8Stomee  * then focus on getting it off of the partial slab list by allocating rather
375b5fca8f8Stomee  * than freeing all of its objects. (Either way of getting a slab off the
376b5fca8f8Stomee  * free list reduces fragmentation.)
377b5fca8f8Stomee  *
378b5fca8f8Stomee  * 2.5.2 General Solution
379b5fca8f8Stomee  *
380b5fca8f8Stomee  * The general solution, on the other hand, requires an explicit hold everywhere
381b5fca8f8Stomee  * the object is used to prevent it from moving. To keep the client locking
382b5fca8f8Stomee  * strategy as uncomplicated as possible, kmem guarantees the simplifying
383b5fca8f8Stomee  * assumption that move callbacks are sequential, even across multiple caches.
384b5fca8f8Stomee  * Internally, a global queue processed by a single thread supports all caches
385b5fca8f8Stomee  * implementing the callback function. No matter how many caches supply a move
386b5fca8f8Stomee  * function, the consolidator never moves more than one object at a time, so the
387b5fca8f8Stomee  * client does not have to worry about tricky lock ordering involving several
388b5fca8f8Stomee  * related objects from different kmem caches.
389b5fca8f8Stomee  *
390b5fca8f8Stomee  * The general solution implements the explicit hold as a read-write lock, which
391b5fca8f8Stomee  * allows multiple readers to access an object from the cache simultaneously
392b5fca8f8Stomee  * while a single writer is excluded from moving it. A single rwlock for the
393b5fca8f8Stomee  * entire cache would lock out all threads from using any of the cache's objects
394b5fca8f8Stomee  * even though only a single object is being moved, so to reduce contention,
395b5fca8f8Stomee  * the client can fan out the single rwlock into an array of rwlocks hashed by
396b5fca8f8Stomee  * the object address, making it probable that moving one object will not
397b5fca8f8Stomee  * prevent other threads from using a different object. The rwlock cannot be a
398b5fca8f8Stomee  * member of the object itself, because the possibility of the object moving
399b5fca8f8Stomee  * makes it unsafe to access any of the object's fields until the lock is
400b5fca8f8Stomee  * acquired.
401b5fca8f8Stomee  *
402b5fca8f8Stomee  * Assuming a small, fixed number of locks, it's possible that multiple objects
403b5fca8f8Stomee  * will hash to the same lock. A thread that needs to use multiple objects in
404b5fca8f8Stomee  * the same function may acquire the same lock multiple times. Since rwlocks are
405b5fca8f8Stomee  * reentrant for readers, and since there is never more than a single writer at
406b5fca8f8Stomee  * a time (assuming that the client acquires the lock as a writer only when
407b5fca8f8Stomee  * moving an object inside the callback), there would seem to be no problem.
408b5fca8f8Stomee  * However, a client locking multiple objects in the same function must handle
409b5fca8f8Stomee  * one case of potential deadlock: Assume that thread A needs to prevent both
410b5fca8f8Stomee  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
411b5fca8f8Stomee  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
412b5fca8f8Stomee  * same lock, that thread A will acquire the lock for object 1 as a reader
413b5fca8f8Stomee  * before thread B sets the lock's write-wanted bit, preventing thread A from
414b5fca8f8Stomee  * reacquiring the lock for object 2 as a reader. Unable to make forward
415b5fca8f8Stomee  * progress, thread A will never release the lock for object 1, resulting in
416b5fca8f8Stomee  * deadlock.
417b5fca8f8Stomee  *
418b5fca8f8Stomee  * There are two ways of avoiding the deadlock just described. The first is to
419b5fca8f8Stomee  * use rw_tryenter() rather than rw_enter() in the callback function when
420b5fca8f8Stomee  * attempting to acquire the lock as a writer. If tryenter discovers that the
421b5fca8f8Stomee  * same object (or another object hashed to the same lock) is already in use, it
422b5fca8f8Stomee  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
423b5fca8f8Stomee  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
424b5fca8f8Stomee  * since it allows a thread to acquire the lock as a reader in spite of a
425b5fca8f8Stomee  * waiting writer. This second approach insists on moving the object now, no
426b5fca8f8Stomee  * matter how many readers the move function must wait for in order to do so,
427b5fca8f8Stomee  * and could delay the completion of the callback indefinitely (blocking
428b5fca8f8Stomee  * callbacks to other clients). In practice, a less insistent callback using
429b5fca8f8Stomee  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
430b5fca8f8Stomee  * little reason to use anything else.
431b5fca8f8Stomee  *
432b5fca8f8Stomee  * Avoiding deadlock is not the only problem that an implementation using an
433b5fca8f8Stomee  * explicit hold needs to solve. Locking the object in the first place (to
434b5fca8f8Stomee  * prevent it from moving) remains a problem, since the object could move
435b5fca8f8Stomee  * between the time you obtain a pointer to the object and the time you acquire
436b5fca8f8Stomee  * the rwlock hashed to that pointer value. Therefore the client needs to
437b5fca8f8Stomee  * recheck the value of the pointer after acquiring the lock, drop the lock if
438b5fca8f8Stomee  * the value has changed, and try again. This requires a level of indirection:
439b5fca8f8Stomee  * something that points to the object rather than the object itself, that the
440b5fca8f8Stomee  * client can access safely while attempting to acquire the lock. (The object
441b5fca8f8Stomee  * itself cannot be referenced safely because it can move at any time.)
442b5fca8f8Stomee  * The following lock-acquisition function takes whatever is safe to reference
443b5fca8f8Stomee  * (arg), follows its pointer to the object (using function f), and tries as
444b5fca8f8Stomee  * often as necessary to acquire the hashed lock and verify that the object
445b5fca8f8Stomee  * still has not moved:
446b5fca8f8Stomee  *
447b5fca8f8Stomee  *      object_t *
448b5fca8f8Stomee  *      object_hold(object_f f, void *arg)
449b5fca8f8Stomee  *      {
450b5fca8f8Stomee  *              object_t *op;
451b5fca8f8Stomee  *
452b5fca8f8Stomee  *              op = f(arg);
453b5fca8f8Stomee  *              if (op == NULL) {
454b5fca8f8Stomee  *                      return (NULL);
455b5fca8f8Stomee  *              }
456b5fca8f8Stomee  *
457b5fca8f8Stomee  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
458b5fca8f8Stomee  *              while (op != f(arg)) {
459b5fca8f8Stomee  *                      rw_exit(OBJECT_RWLOCK(op));
460b5fca8f8Stomee  *                      op = f(arg);
461b5fca8f8Stomee  *                      if (op == NULL) {
462b5fca8f8Stomee  *                              break;
463b5fca8f8Stomee  *                      }
464b5fca8f8Stomee  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
465b5fca8f8Stomee  *              }
466b5fca8f8Stomee  *
467b5fca8f8Stomee  *              return (op);
468b5fca8f8Stomee  *      }
469b5fca8f8Stomee  *
470b5fca8f8Stomee  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
471b5fca8f8Stomee  * lock reacquisition loop, while necessary, almost never executes. The function
472b5fca8f8Stomee  * pointer f (used to obtain the object pointer from arg) has the following type
473b5fca8f8Stomee  * definition:
474b5fca8f8Stomee  *
475b5fca8f8Stomee  *      typedef object_t *(*object_f)(void *arg);
476b5fca8f8Stomee  *
477b5fca8f8Stomee  * An object_f implementation is likely to be as simple as accessing a structure
478b5fca8f8Stomee  * member:
479b5fca8f8Stomee  *
480b5fca8f8Stomee  *      object_t *
481b5fca8f8Stomee  *      s_object(void *arg)
482b5fca8f8Stomee  *      {
483b5fca8f8Stomee  *              something_t *sp = arg;
484b5fca8f8Stomee  *              return (sp->s_object);
485b5fca8f8Stomee  *      }
486b5fca8f8Stomee  *
487b5fca8f8Stomee  * The flexibility of a function pointer allows the path to the object to be
488b5fca8f8Stomee  * arbitrarily complex and also supports the notion that depending on where you
489b5fca8f8Stomee  * are using the object, you may need to get it from someplace different.
490b5fca8f8Stomee  *
491b5fca8f8Stomee  * The function that releases the explicit hold is simpler because it does not
492b5fca8f8Stomee  * have to worry about the object moving:
493b5fca8f8Stomee  *
494b5fca8f8Stomee  *      void
495b5fca8f8Stomee  *      object_rele(object_t *op)
496b5fca8f8Stomee  *      {
497b5fca8f8Stomee  *              rw_exit(OBJECT_RWLOCK(op));
498b5fca8f8Stomee  *      }
499b5fca8f8Stomee  *
500b5fca8f8Stomee  * The caller is spared these details so that obtaining and releasing an
501b5fca8f8Stomee  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
502b5fca8f8Stomee  * of object_hold() only needs to know that the returned object pointer is valid
503b5fca8f8Stomee  * if not NULL and that the object will not move until released.
504b5fca8f8Stomee  *
505b5fca8f8Stomee  * Although object_hold() prevents an object from moving, it does not prevent it
506b5fca8f8Stomee  * from being freed. The caller must take measures before calling object_hold()
507b5fca8f8Stomee  * (afterwards is too late) to ensure that the held object cannot be freed. The
508b5fca8f8Stomee  * caller must do so without accessing the unsafe object reference, so any lock
509b5fca8f8Stomee  * or reference count used to ensure the continued existence of the object must
510b5fca8f8Stomee  * live outside the object itself.
511b5fca8f8Stomee  *
512b5fca8f8Stomee  * Obtaining a new object is a special case where an explicit hold is impossible
513b5fca8f8Stomee  * for the caller. Any function that returns a newly allocated object (either as
514b5fca8f8Stomee  * a return value, or as an in-out paramter) must return it already held; after
515b5fca8f8Stomee  * the caller gets it is too late, since the object cannot be safely accessed
516b5fca8f8Stomee  * without the level of indirection described earlier. The following
517b5fca8f8Stomee  * object_alloc() example uses the same code shown earlier to transition a new
518b5fca8f8Stomee  * object into the state of being recognized (by the client) as a known object.
519b5fca8f8Stomee  * The function must acquire the hold (rw_enter) before that state transition
520b5fca8f8Stomee  * makes the object movable:
521b5fca8f8Stomee  *
522b5fca8f8Stomee  *      static object_t *
523b5fca8f8Stomee  *      object_alloc(container_t *container)
524b5fca8f8Stomee  *      {
5254d4c4c43STom Erickson  *              object_t *object = kmem_cache_alloc(object_cache, 0);
526b5fca8f8Stomee  *              ... set any initial state not set by the constructor ...
527b5fca8f8Stomee  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
528b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
529b5fca8f8Stomee  *              list_insert_tail(&container->c_objects, object);
530b5fca8f8Stomee  *              membar_producer();
531b5fca8f8Stomee  *              object->o_container = container;
532b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
533b5fca8f8Stomee  *              return (object);
534b5fca8f8Stomee  *      }
535b5fca8f8Stomee  *
536b5fca8f8Stomee  * Functions that implicitly acquire an object hold (any function that calls
537b5fca8f8Stomee  * object_alloc() to supply an object for the caller) need to be carefully noted
538b5fca8f8Stomee  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
539b5fca8f8Stomee  * prevent all objects hashed to the affected rwlocks from ever being moved.
540b5fca8f8Stomee  *
541b5fca8f8Stomee  * The pointer to a held object can be hashed to the holding rwlock even after
542b5fca8f8Stomee  * the object has been freed. Although it is possible to release the hold
543b5fca8f8Stomee  * after freeing the object, you may decide to release the hold implicitly in
544b5fca8f8Stomee  * whatever function frees the object, so as to release the hold as soon as
545b5fca8f8Stomee  * possible, and for the sake of symmetry with the function that implicitly
546b5fca8f8Stomee  * acquires the hold when it allocates the object. Here, object_free() releases
547b5fca8f8Stomee  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
548b5fca8f8Stomee  * matching pair with object_hold():
549b5fca8f8Stomee  *
550b5fca8f8Stomee  *      void
551b5fca8f8Stomee  *      object_free(object_t *object)
552b5fca8f8Stomee  *      {
553b5fca8f8Stomee  *              container_t *container;
554b5fca8f8Stomee  *
555b5fca8f8Stomee  *              ASSERT(object_held(object));
556b5fca8f8Stomee  *              container = object->o_container;
557b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
558b5fca8f8Stomee  *              object->o_container =
559b5fca8f8Stomee  *                  (void *)((uintptr_t)object->o_container | 0x1);
560b5fca8f8Stomee  *              list_remove(&container->c_objects, object);
561b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
562b5fca8f8Stomee  *              object_rele(object);
563b5fca8f8Stomee  *              kmem_cache_free(object_cache, object);
564b5fca8f8Stomee  *      }
565b5fca8f8Stomee  *
566b5fca8f8Stomee  * Note that object_free() cannot safely accept an object pointer as an argument
567b5fca8f8Stomee  * unless the object is already held. Any function that calls object_free()
568b5fca8f8Stomee  * needs to be carefully noted since it similarly forms a matching pair with
569b5fca8f8Stomee  * object_hold().
570b5fca8f8Stomee  *
571b5fca8f8Stomee  * To complete the picture, the following callback function implements the
572b5fca8f8Stomee  * general solution by moving objects only if they are currently unheld:
573b5fca8f8Stomee  *
574b5fca8f8Stomee  *      static kmem_cbrc_t
575b5fca8f8Stomee  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
576b5fca8f8Stomee  *      {
577b5fca8f8Stomee  *              object_t *op = buf, *np = newbuf;
578b5fca8f8Stomee  *              container_t *container;
579b5fca8f8Stomee  *
580b5fca8f8Stomee  *              container = op->o_container;
581b5fca8f8Stomee  *              if ((uintptr_t)container & 0x3) {
582b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
583b5fca8f8Stomee  *              }
584b5fca8f8Stomee  *
585b5fca8f8Stomee  *	        // Ensure that the container structure does not go away.
586b5fca8f8Stomee  *              if (container_hold(container) == 0) {
587b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
588b5fca8f8Stomee  *              }
589b5fca8f8Stomee  *
590b5fca8f8Stomee  *              mutex_enter(&container->c_objects_lock);
591b5fca8f8Stomee  *              if (container != op->o_container) {
592b5fca8f8Stomee  *                      mutex_exit(&container->c_objects_lock);
593b5fca8f8Stomee  *                      container_rele(container);
594b5fca8f8Stomee  *                      return (KMEM_CBRC_DONT_KNOW);
595b5fca8f8Stomee  *              }
596b5fca8f8Stomee  *
597b5fca8f8Stomee  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
598b5fca8f8Stomee  *                      mutex_exit(&container->c_objects_lock);
599b5fca8f8Stomee  *                      container_rele(container);
600b5fca8f8Stomee  *                      return (KMEM_CBRC_LATER);
601b5fca8f8Stomee  *              }
602b5fca8f8Stomee  *
603b5fca8f8Stomee  *              object_move_impl(op, np); // critical section
604b5fca8f8Stomee  *              rw_exit(OBJECT_RWLOCK(op));
605b5fca8f8Stomee  *
606b5fca8f8Stomee  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
607b5fca8f8Stomee  *              list_link_replace(&op->o_link_node, &np->o_link_node);
608b5fca8f8Stomee  *              mutex_exit(&container->c_objects_lock);
609b5fca8f8Stomee  *              container_rele(container);
610b5fca8f8Stomee  *              return (KMEM_CBRC_YES);
611b5fca8f8Stomee  *      }
612b5fca8f8Stomee  *
613b5fca8f8Stomee  * Note that object_move() must invalidate the designated o_container pointer of
614b5fca8f8Stomee  * the old object in the same way that object_free() does, since kmem will free
615b5fca8f8Stomee  * the object in response to the KMEM_CBRC_YES return value.
616b5fca8f8Stomee  *
617b5fca8f8Stomee  * The lock order in object_move() differs from object_alloc(), which locks
618b5fca8f8Stomee  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
619b5fca8f8Stomee  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
620b5fca8f8Stomee  * not a problem. Holding the lock on the object list in the example above
621b5fca8f8Stomee  * through the entire callback not only prevents the object from going away, it
622b5fca8f8Stomee  * also allows you to lock the list elsewhere and know that none of its elements
623b5fca8f8Stomee  * will move during iteration.
624b5fca8f8Stomee  *
625b5fca8f8Stomee  * Adding an explicit hold everywhere an object from the cache is used is tricky
626b5fca8f8Stomee  * and involves much more change to client code than a cache-specific solution
627b5fca8f8Stomee  * that leverages existing state to decide whether or not an object is
628b5fca8f8Stomee  * movable. However, this approach has the advantage that no object remains
629b5fca8f8Stomee  * immovable for any significant length of time, making it extremely unlikely
630b5fca8f8Stomee  * that long-lived allocations can continue holding slabs hostage; and it works
631b5fca8f8Stomee  * for any cache.
632b5fca8f8Stomee  *
633b5fca8f8Stomee  * 3. Consolidator Implementation
634b5fca8f8Stomee  *
635b5fca8f8Stomee  * Once the client supplies a move function that a) recognizes known objects and
636b5fca8f8Stomee  * b) avoids moving objects that are actively in use, the remaining work is up
637b5fca8f8Stomee  * to the consolidator to decide which objects to move and when to issue
638b5fca8f8Stomee  * callbacks.
639b5fca8f8Stomee  *
640b5fca8f8Stomee  * The consolidator relies on the fact that a cache's slabs are ordered by
641b5fca8f8Stomee  * usage. Each slab has a fixed number of objects. Depending on the slab's
642b5fca8f8Stomee  * "color" (the offset of the first object from the beginning of the slab;
643b5fca8f8Stomee  * offsets are staggered to mitigate false sharing of cache lines) it is either
644b5fca8f8Stomee  * the maximum number of objects per slab determined at cache creation time or
645b5fca8f8Stomee  * else the number closest to the maximum that fits within the space remaining
646b5fca8f8Stomee  * after the initial offset. A completely allocated slab may contribute some
647b5fca8f8Stomee  * internal fragmentation (per-slab overhead) but no external fragmentation, so
648b5fca8f8Stomee  * it is of no interest to the consolidator. At the other extreme, slabs whose
649b5fca8f8Stomee  * objects have all been freed to the slab are released to the virtual memory
650b5fca8f8Stomee  * (VM) subsystem (objects freed to magazines are still allocated as far as the
651b5fca8f8Stomee  * slab is concerned). External fragmentation exists when there are slabs
652b5fca8f8Stomee  * somewhere between these extremes. A partial slab has at least one but not all
653b5fca8f8Stomee  * of its objects allocated. The more partial slabs, and the fewer allocated
654b5fca8f8Stomee  * objects on each of them, the higher the fragmentation. Hence the
655b5fca8f8Stomee  * consolidator's overall strategy is to reduce the number of partial slabs by
656b5fca8f8Stomee  * moving allocated objects from the least allocated slabs to the most allocated
657b5fca8f8Stomee  * slabs.
658b5fca8f8Stomee  *
659b5fca8f8Stomee  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
660b5fca8f8Stomee  * slabs are kept separately in an unordered list. Since the majority of slabs
661b5fca8f8Stomee  * tend to be completely allocated (a typical unfragmented cache may have
662b5fca8f8Stomee  * thousands of complete slabs and only a single partial slab), separating
663b5fca8f8Stomee  * complete slabs improves the efficiency of partial slab ordering, since the
664b5fca8f8Stomee  * complete slabs do not affect the depth or balance of the AVL tree. This
665b5fca8f8Stomee  * ordered sequence of partial slabs acts as a "free list" supplying objects for
666b5fca8f8Stomee  * allocation requests.
667b5fca8f8Stomee  *
668b5fca8f8Stomee  * Objects are always allocated from the first partial slab in the free list,
669b5fca8f8Stomee  * where the allocation is most likely to eliminate a partial slab (by
670b5fca8f8Stomee  * completely allocating it). Conversely, when a single object from a completely
671b5fca8f8Stomee  * allocated slab is freed to the slab, that slab is added to the front of the
672b5fca8f8Stomee  * free list. Since most free list activity involves highly allocated slabs
673b5fca8f8Stomee  * coming and going at the front of the list, slabs tend naturally toward the
674b5fca8f8Stomee  * ideal order: highly allocated at the front, sparsely allocated at the back.
675b5fca8f8Stomee  * Slabs with few allocated objects are likely to become completely free if they
676b5fca8f8Stomee  * keep a safe distance away from the front of the free list. Slab misorders
677b5fca8f8Stomee  * interfere with the natural tendency of slabs to become completely free or
678b5fca8f8Stomee  * completely allocated. For example, a slab with a single allocated object
679b5fca8f8Stomee  * needs only a single free to escape the cache; its natural desire is
680b5fca8f8Stomee  * frustrated when it finds itself at the front of the list where a second
681b5fca8f8Stomee  * allocation happens just before the free could have released it. Another slab
682b5fca8f8Stomee  * with all but one object allocated might have supplied the buffer instead, so
683b5fca8f8Stomee  * that both (as opposed to neither) of the slabs would have been taken off the
684b5fca8f8Stomee  * free list.
685b5fca8f8Stomee  *
686b5fca8f8Stomee  * Although slabs tend naturally toward the ideal order, misorders allowed by a
687b5fca8f8Stomee  * simple list implementation defeat the consolidator's strategy of merging
688b5fca8f8Stomee  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
689b5fca8f8Stomee  * needs another way to fix misorders to optimize its callback strategy. One
690b5fca8f8Stomee  * approach is to periodically scan a limited number of slabs, advancing a
691b5fca8f8Stomee  * marker to hold the current scan position, and to move extreme misorders to
692b5fca8f8Stomee  * the front or back of the free list and to the front or back of the current
693b5fca8f8Stomee  * scan range. By making consecutive scan ranges overlap by one slab, the least
694b5fca8f8Stomee  * allocated slab in the current range can be carried along from the end of one
695b5fca8f8Stomee  * scan to the start of the next.
696b5fca8f8Stomee  *
697b5fca8f8Stomee  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
698b5fca8f8Stomee  * task, however. Since most of the cache's activity is in the magazine layer,
699b5fca8f8Stomee  * and allocations from the slab layer represent only a startup cost, the
700b5fca8f8Stomee  * overhead of maintaining a balanced tree is not a significant concern compared
701b5fca8f8Stomee  * to the opportunity of reducing complexity by eliminating the partial slab
702b5fca8f8Stomee  * scanner just described. The overhead of an AVL tree is minimized by
703b5fca8f8Stomee  * maintaining only partial slabs in the tree and keeping completely allocated
704b5fca8f8Stomee  * slabs separately in a list. To avoid increasing the size of the slab
705b5fca8f8Stomee  * structure the AVL linkage pointers are reused for the slab's list linkage,
706b5fca8f8Stomee  * since the slab will always be either partial or complete, never stored both
707b5fca8f8Stomee  * ways at the same time. To further minimize the overhead of the AVL tree the
708b5fca8f8Stomee  * compare function that orders partial slabs by usage divides the range of
709b5fca8f8Stomee  * allocated object counts into bins such that counts within the same bin are
710b5fca8f8Stomee  * considered equal. Binning partial slabs makes it less likely that allocating
711b5fca8f8Stomee  * or freeing a single object will change the slab's order, requiring a tree
712b5fca8f8Stomee  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
713b5fca8f8Stomee  * requiring some rebalancing of the tree). Allocation counts closest to
714b5fca8f8Stomee  * completely free and completely allocated are left unbinned (finely sorted) to
715b5fca8f8Stomee  * better support the consolidator's strategy of merging slabs at either
716b5fca8f8Stomee  * extreme.
717b5fca8f8Stomee  *
718b5fca8f8Stomee  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
719b5fca8f8Stomee  *
720b5fca8f8Stomee  * The consolidator piggybacks on the kmem maintenance thread and is called on
721b5fca8f8Stomee  * the same interval as kmem_cache_update(), once per cache every fifteen
722b5fca8f8Stomee  * seconds. kmem maintains a running count of unallocated objects in the slab
723b5fca8f8Stomee  * layer (cache_bufslab). The consolidator checks whether that number exceeds
724b5fca8f8Stomee  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
725b5fca8f8Stomee  * there is a significant number of slabs in the cache (arbitrarily a minimum
726b5fca8f8Stomee  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
727b5fca8f8Stomee  * working set are included in the assessment, and magazines in the depot are
728b5fca8f8Stomee  * reaped if those objects would lift cache_bufslab above the fragmentation
729b5fca8f8Stomee  * threshold. Once the consolidator decides that a cache is fragmented, it looks
730b5fca8f8Stomee  * for a candidate slab to reclaim, starting at the end of the partial slab free
731b5fca8f8Stomee  * list and scanning backwards. At first the consolidator is choosy: only a slab
732b5fca8f8Stomee  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
733b5fca8f8Stomee  * single allocated object, regardless of percentage). If there is difficulty
734b5fca8f8Stomee  * finding a candidate slab, kmem raises the allocation threshold incrementally,
735b5fca8f8Stomee  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
736b5fca8f8Stomee  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
737b5fca8f8Stomee  * even in the worst case of every slab in the cache being almost 7/8 allocated.
738b5fca8f8Stomee  * The threshold can also be lowered incrementally when candidate slabs are easy
739b5fca8f8Stomee  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
740b5fca8f8Stomee  * is no longer fragmented.
741b5fca8f8Stomee  *
742b5fca8f8Stomee  * 3.2 Generating Callbacks
743b5fca8f8Stomee  *
744b5fca8f8Stomee  * Once an eligible slab is chosen, a callback is generated for every allocated
745b5fca8f8Stomee  * object on the slab, in the hope that the client will move everything off the
746b5fca8f8Stomee  * slab and make it reclaimable. Objects selected as move destinations are
747b5fca8f8Stomee  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
748b5fca8f8Stomee  * order (most allocated at the front, least allocated at the back) and a
749b5fca8f8Stomee  * cooperative client, the consolidator will succeed in removing slabs from both
750b5fca8f8Stomee  * ends of the free list, completely allocating on the one hand and completely
751b5fca8f8Stomee  * freeing on the other. Objects selected as move destinations are allocated in
752b5fca8f8Stomee  * the kmem maintenance thread where move requests are enqueued. A separate
753b5fca8f8Stomee  * callback thread removes pending callbacks from the queue and calls the
754b5fca8f8Stomee  * client. The separate thread ensures that client code (the move function) does
755b5fca8f8Stomee  * not interfere with internal kmem maintenance tasks. A map of pending
756b5fca8f8Stomee  * callbacks keyed by object address (the object to be moved) is checked to
757b5fca8f8Stomee  * ensure that duplicate callbacks are not generated for the same object.
758b5fca8f8Stomee  * Allocating the move destination (the object to move to) prevents subsequent
759b5fca8f8Stomee  * callbacks from selecting the same destination as an earlier pending callback.
760b5fca8f8Stomee  *
761b5fca8f8Stomee  * Move requests can also be generated by kmem_cache_reap() when the system is
762b5fca8f8Stomee  * desperate for memory and by kmem_cache_move_notify(), called by the client to
763b5fca8f8Stomee  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
764b5fca8f8Stomee  * The map of pending callbacks is protected by the same lock that protects the
765b5fca8f8Stomee  * slab layer.
766b5fca8f8Stomee  *
767b5fca8f8Stomee  * When the system is desperate for memory, kmem does not bother to determine
768b5fca8f8Stomee  * whether or not the cache exceeds the fragmentation threshold, but tries to
769b5fca8f8Stomee  * consolidate as many slabs as possible. Normally, the consolidator chews
770b5fca8f8Stomee  * slowly, one sparsely allocated slab at a time during each maintenance
771b5fca8f8Stomee  * interval that the cache is fragmented. When desperate, the consolidator
772b5fca8f8Stomee  * starts at the last partial slab and enqueues callbacks for every allocated
773b5fca8f8Stomee  * object on every partial slab, working backwards until it reaches the first
774b5fca8f8Stomee  * partial slab. The first partial slab, meanwhile, advances in pace with the
775b5fca8f8Stomee  * consolidator as allocations to supply move destinations for the enqueued
776b5fca8f8Stomee  * callbacks use up the highly allocated slabs at the front of the free list.
777b5fca8f8Stomee  * Ideally, the overgrown free list collapses like an accordion, starting at
778b5fca8f8Stomee  * both ends and ending at the center with a single partial slab.
779b5fca8f8Stomee  *
780b5fca8f8Stomee  * 3.3 Client Responses
781b5fca8f8Stomee  *
782b5fca8f8Stomee  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
783b5fca8f8Stomee  * marks the slab that supplied the stuck object non-reclaimable and moves it to
784b5fca8f8Stomee  * front of the free list. The slab remains marked as long as it remains on the
785b5fca8f8Stomee  * free list, and it appears more allocated to the partial slab compare function
786b5fca8f8Stomee  * than any unmarked slab, no matter how many of its objects are allocated.
787b5fca8f8Stomee  * Since even one immovable object ties up the entire slab, the goal is to
788b5fca8f8Stomee  * completely allocate any slab that cannot be completely freed. kmem does not
789b5fca8f8Stomee  * bother generating callbacks to move objects from a marked slab unless the
790b5fca8f8Stomee  * system is desperate.
791b5fca8f8Stomee  *
792b5fca8f8Stomee  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
793b5fca8f8Stomee  * slab. If the client responds LATER too many times, kmem disbelieves and
794b5fca8f8Stomee  * treats the response as a NO. The count is cleared when the slab is taken off
795b5fca8f8Stomee  * the partial slab list or when the client moves one of the slab's objects.
796b5fca8f8Stomee  *
797b5fca8f8Stomee  * 4. Observability
798b5fca8f8Stomee  *
799b5fca8f8Stomee  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
800b5fca8f8Stomee  * the ::kmem_slabs dcmd. For a complete description of the command, enter
801b5fca8f8Stomee  * '::help kmem_slabs' at the mdb prompt.
8027c478bd9Sstevel@tonic-gate  */
8037c478bd9Sstevel@tonic-gate 
8047c478bd9Sstevel@tonic-gate #include <sys/kmem_impl.h>
8057c478bd9Sstevel@tonic-gate #include <sys/vmem_impl.h>
8067c478bd9Sstevel@tonic-gate #include <sys/param.h>
8077c478bd9Sstevel@tonic-gate #include <sys/sysmacros.h>
8087c478bd9Sstevel@tonic-gate #include <sys/vm.h>
8097c478bd9Sstevel@tonic-gate #include <sys/proc.h>
8107c478bd9Sstevel@tonic-gate #include <sys/tuneable.h>
8117c478bd9Sstevel@tonic-gate #include <sys/systm.h>
8127c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h>
8137c478bd9Sstevel@tonic-gate #include <sys/debug.h>
814b5fca8f8Stomee #include <sys/sdt.h>
8157c478bd9Sstevel@tonic-gate #include <sys/mutex.h>
8167c478bd9Sstevel@tonic-gate #include <sys/bitmap.h>
8177c478bd9Sstevel@tonic-gate #include <sys/atomic.h>
8187c478bd9Sstevel@tonic-gate #include <sys/kobj.h>
8197c478bd9Sstevel@tonic-gate #include <sys/disp.h>
8207c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h>
8217c478bd9Sstevel@tonic-gate #include <sys/log.h>
8227c478bd9Sstevel@tonic-gate #include <sys/callb.h>
8237c478bd9Sstevel@tonic-gate #include <sys/taskq.h>
8247c478bd9Sstevel@tonic-gate #include <sys/modctl.h>
8257c478bd9Sstevel@tonic-gate #include <sys/reboot.h>
8267c478bd9Sstevel@tonic-gate #include <sys/id32.h>
8277c478bd9Sstevel@tonic-gate #include <sys/zone.h>
828f4b3ec61Sdh #include <sys/netstack.h>
829b5fca8f8Stomee #ifdef	DEBUG
830b5fca8f8Stomee #include <sys/random.h>
831b5fca8f8Stomee #endif
8327c478bd9Sstevel@tonic-gate 
8337c478bd9Sstevel@tonic-gate extern void streams_msg_init(void);
8347c478bd9Sstevel@tonic-gate extern int segkp_fromheap;
8357c478bd9Sstevel@tonic-gate extern void segkp_cache_free(void);
8367c478bd9Sstevel@tonic-gate 
8377c478bd9Sstevel@tonic-gate struct kmem_cache_kstat {
8387c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_size;
8397c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_align;
8407c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_chunk_size;
8417c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_size;
8427c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_alloc;
8437c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_alloc_fail;
8447c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_free;
8457c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_alloc;
8467c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_free;
8477c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_depot_contention;
8487c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_alloc;
8497c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_free;
8507c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_constructed;
8517c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_avail;
8527c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_inuse;
8537c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_total;
8547c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_buf_max;
8557c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_create;
8567c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_slab_destroy;
8577c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_vmem_source;
8587c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_size;
8597c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_lookup_depth;
8607c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_hash_rescale;
8617c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_full_magazines;
8627c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_empty_magazines;
8637c478bd9Sstevel@tonic-gate 	kstat_named_t	kmc_magazine_size;
864*686031edSTom Erickson 	kstat_named_t	kmc_reap; /* number of kmem_cache_reap() calls */
865*686031edSTom Erickson 	kstat_named_t	kmc_defrag; /* attempts to defrag all partial slabs */
866*686031edSTom Erickson 	kstat_named_t	kmc_scan; /* attempts to defrag one partial slab */
867*686031edSTom Erickson 	kstat_named_t	kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
868b5fca8f8Stomee 	kstat_named_t	kmc_move_yes;
869b5fca8f8Stomee 	kstat_named_t	kmc_move_no;
870b5fca8f8Stomee 	kstat_named_t	kmc_move_later;
871b5fca8f8Stomee 	kstat_named_t	kmc_move_dont_need;
872*686031edSTom Erickson 	kstat_named_t	kmc_move_dont_know; /* obj unrecognized by client ... */
873*686031edSTom Erickson 	kstat_named_t	kmc_move_hunt_found; /* ... but found in mag layer */
874*686031edSTom Erickson 	kstat_named_t	kmc_move_slabs_freed; /* slabs freed by consolidator */
875*686031edSTom Erickson 	kstat_named_t	kmc_move_reclaimable; /* buffers, if consolidator ran */
8767c478bd9Sstevel@tonic-gate } kmem_cache_kstat = {
8777c478bd9Sstevel@tonic-gate 	{ "buf_size",		KSTAT_DATA_UINT64 },
8787c478bd9Sstevel@tonic-gate 	{ "align",		KSTAT_DATA_UINT64 },
8797c478bd9Sstevel@tonic-gate 	{ "chunk_size",		KSTAT_DATA_UINT64 },
8807c478bd9Sstevel@tonic-gate 	{ "slab_size",		KSTAT_DATA_UINT64 },
8817c478bd9Sstevel@tonic-gate 	{ "alloc",		KSTAT_DATA_UINT64 },
8827c478bd9Sstevel@tonic-gate 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
8837c478bd9Sstevel@tonic-gate 	{ "free",		KSTAT_DATA_UINT64 },
8847c478bd9Sstevel@tonic-gate 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
8857c478bd9Sstevel@tonic-gate 	{ "depot_free",		KSTAT_DATA_UINT64 },
8867c478bd9Sstevel@tonic-gate 	{ "depot_contention",	KSTAT_DATA_UINT64 },
8877c478bd9Sstevel@tonic-gate 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
8887c478bd9Sstevel@tonic-gate 	{ "slab_free",		KSTAT_DATA_UINT64 },
8897c478bd9Sstevel@tonic-gate 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
8907c478bd9Sstevel@tonic-gate 	{ "buf_avail",		KSTAT_DATA_UINT64 },
8917c478bd9Sstevel@tonic-gate 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
8927c478bd9Sstevel@tonic-gate 	{ "buf_total",		KSTAT_DATA_UINT64 },
8937c478bd9Sstevel@tonic-gate 	{ "buf_max",		KSTAT_DATA_UINT64 },
8947c478bd9Sstevel@tonic-gate 	{ "slab_create",	KSTAT_DATA_UINT64 },
8957c478bd9Sstevel@tonic-gate 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
8967c478bd9Sstevel@tonic-gate 	{ "vmem_source",	KSTAT_DATA_UINT64 },
8977c478bd9Sstevel@tonic-gate 	{ "hash_size",		KSTAT_DATA_UINT64 },
8987c478bd9Sstevel@tonic-gate 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
8997c478bd9Sstevel@tonic-gate 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
9007c478bd9Sstevel@tonic-gate 	{ "full_magazines",	KSTAT_DATA_UINT64 },
9017c478bd9Sstevel@tonic-gate 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
9027c478bd9Sstevel@tonic-gate 	{ "magazine_size",	KSTAT_DATA_UINT64 },
903*686031edSTom Erickson 	{ "reap",		KSTAT_DATA_UINT64 },
904*686031edSTom Erickson 	{ "defrag",		KSTAT_DATA_UINT64 },
905*686031edSTom Erickson 	{ "scan",		KSTAT_DATA_UINT64 },
906b5fca8f8Stomee 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
907b5fca8f8Stomee 	{ "move_yes",		KSTAT_DATA_UINT64 },
908b5fca8f8Stomee 	{ "move_no",		KSTAT_DATA_UINT64 },
909b5fca8f8Stomee 	{ "move_later",		KSTAT_DATA_UINT64 },
910b5fca8f8Stomee 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
911b5fca8f8Stomee 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
912b5fca8f8Stomee 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
913*686031edSTom Erickson 	{ "move_slabs_freed",	KSTAT_DATA_UINT64 },
914*686031edSTom Erickson 	{ "move_reclaimable",	KSTAT_DATA_UINT64 },
9157c478bd9Sstevel@tonic-gate };
9167c478bd9Sstevel@tonic-gate 
9177c478bd9Sstevel@tonic-gate static kmutex_t kmem_cache_kstat_lock;
9187c478bd9Sstevel@tonic-gate 
9197c478bd9Sstevel@tonic-gate /*
9207c478bd9Sstevel@tonic-gate  * The default set of caches to back kmem_alloc().
9217c478bd9Sstevel@tonic-gate  * These sizes should be reevaluated periodically.
9227c478bd9Sstevel@tonic-gate  *
9237c478bd9Sstevel@tonic-gate  * We want allocations that are multiples of the coherency granularity
9247c478bd9Sstevel@tonic-gate  * (64 bytes) to be satisfied from a cache which is a multiple of 64
9257c478bd9Sstevel@tonic-gate  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
9267c478bd9Sstevel@tonic-gate  * the next kmem_cache_size greater than or equal to it must be a
9277c478bd9Sstevel@tonic-gate  * multiple of 64.
928dce01e3fSJonathan W Adams  *
929dce01e3fSJonathan W Adams  * We split the table into two sections:  size <= 4k and size > 4k.  This
930dce01e3fSJonathan W Adams  * saves a lot of space and cache footprint in our cache tables.
9317c478bd9Sstevel@tonic-gate  */
9327c478bd9Sstevel@tonic-gate static const int kmem_alloc_sizes[] = {
9337c478bd9Sstevel@tonic-gate 	1 * 8,
9347c478bd9Sstevel@tonic-gate 	2 * 8,
9357c478bd9Sstevel@tonic-gate 	3 * 8,
9367c478bd9Sstevel@tonic-gate 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
9377c478bd9Sstevel@tonic-gate 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
9387c478bd9Sstevel@tonic-gate 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
9397c478bd9Sstevel@tonic-gate 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
9407c478bd9Sstevel@tonic-gate 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
9417c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 7, 64),
9427c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 6, 64),
9437c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 5, 64),
9447c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 4, 64),
9457c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 3, 64),
9467c478bd9Sstevel@tonic-gate 	P2ALIGN(8192 / 2, 64),
9477c478bd9Sstevel@tonic-gate };
9487c478bd9Sstevel@tonic-gate 
949dce01e3fSJonathan W Adams static const int kmem_big_alloc_sizes[] = {
950dce01e3fSJonathan W Adams 	2 * 4096,	3 * 4096,
951dce01e3fSJonathan W Adams 	2 * 8192,	3 * 8192,
952dce01e3fSJonathan W Adams 	4 * 8192,	5 * 8192,	6 * 8192,	7 * 8192,
953dce01e3fSJonathan W Adams 	8 * 8192,	9 * 8192,	10 * 8192,	11 * 8192,
954dce01e3fSJonathan W Adams 	12 * 8192,	13 * 8192,	14 * 8192,	15 * 8192,
955dce01e3fSJonathan W Adams 	16 * 8192
956dce01e3fSJonathan W Adams };
957dce01e3fSJonathan W Adams 
958dce01e3fSJonathan W Adams #define	KMEM_MAXBUF		4096
959dce01e3fSJonathan W Adams #define	KMEM_BIG_MAXBUF_32BIT	32768
960dce01e3fSJonathan W Adams #define	KMEM_BIG_MAXBUF		131072
961dce01e3fSJonathan W Adams 
962dce01e3fSJonathan W Adams #define	KMEM_BIG_MULTIPLE	4096	/* big_alloc_sizes must be a multiple */
963dce01e3fSJonathan W Adams #define	KMEM_BIG_SHIFT		12	/* lg(KMEM_BIG_MULTIPLE) */
9647c478bd9Sstevel@tonic-gate 
9657c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
966dce01e3fSJonathan W Adams static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
967dce01e3fSJonathan W Adams 
968dce01e3fSJonathan W Adams #define	KMEM_ALLOC_TABLE_MAX	(KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
969dce01e3fSJonathan W Adams static size_t kmem_big_alloc_table_max = 0;	/* # of filled elements */
9707c478bd9Sstevel@tonic-gate 
9717c478bd9Sstevel@tonic-gate static kmem_magtype_t kmem_magtype[] = {
9727c478bd9Sstevel@tonic-gate 	{ 1,	8,	3200,	65536	},
9737c478bd9Sstevel@tonic-gate 	{ 3,	16,	256,	32768	},
9747c478bd9Sstevel@tonic-gate 	{ 7,	32,	64,	16384	},
9757c478bd9Sstevel@tonic-gate 	{ 15,	64,	0,	8192	},
9767c478bd9Sstevel@tonic-gate 	{ 31,	64,	0,	4096	},
9777c478bd9Sstevel@tonic-gate 	{ 47,	64,	0,	2048	},
9787c478bd9Sstevel@tonic-gate 	{ 63,	64,	0,	1024	},
9797c478bd9Sstevel@tonic-gate 	{ 95,	64,	0,	512	},
9807c478bd9Sstevel@tonic-gate 	{ 143,	64,	0,	0	},
9817c478bd9Sstevel@tonic-gate };
9827c478bd9Sstevel@tonic-gate 
9837c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping;
9847c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping_idspace;
9857c478bd9Sstevel@tonic-gate 
9867c478bd9Sstevel@tonic-gate /*
9877c478bd9Sstevel@tonic-gate  * kmem tunables
9887c478bd9Sstevel@tonic-gate  */
9897c478bd9Sstevel@tonic-gate clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
9907c478bd9Sstevel@tonic-gate int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
9917c478bd9Sstevel@tonic-gate pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
9927c478bd9Sstevel@tonic-gate int kmem_panic = 1;		/* whether to panic on error */
9937c478bd9Sstevel@tonic-gate int kmem_logging = 1;		/* kmem_log_enter() override */
9947c478bd9Sstevel@tonic-gate uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
9957c478bd9Sstevel@tonic-gate size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
9967c478bd9Sstevel@tonic-gate size_t kmem_content_log_size;	/* content log size [2% of memory] */
9977c478bd9Sstevel@tonic-gate size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
9987c478bd9Sstevel@tonic-gate size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
9997c478bd9Sstevel@tonic-gate size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
10007c478bd9Sstevel@tonic-gate size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
10017c478bd9Sstevel@tonic-gate size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
10027c478bd9Sstevel@tonic-gate int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
10037c478bd9Sstevel@tonic-gate size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
10047c478bd9Sstevel@tonic-gate size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
10057c478bd9Sstevel@tonic-gate 
1006dce01e3fSJonathan W Adams #ifdef _LP64
1007dce01e3fSJonathan W Adams size_t	kmem_max_cached = KMEM_BIG_MAXBUF;	/* maximum kmem_alloc cache */
1008dce01e3fSJonathan W Adams #else
1009dce01e3fSJonathan W Adams size_t	kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1010dce01e3fSJonathan W Adams #endif
1011dce01e3fSJonathan W Adams 
10127c478bd9Sstevel@tonic-gate #ifdef DEBUG
10137c478bd9Sstevel@tonic-gate int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
10147c478bd9Sstevel@tonic-gate #else
10157c478bd9Sstevel@tonic-gate int kmem_flags = 0;
10167c478bd9Sstevel@tonic-gate #endif
10177c478bd9Sstevel@tonic-gate int kmem_ready;
10187c478bd9Sstevel@tonic-gate 
10197c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_slab_cache;
10207c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_bufctl_cache;
10217c478bd9Sstevel@tonic-gate static kmem_cache_t	*kmem_bufctl_audit_cache;
10227c478bd9Sstevel@tonic-gate 
10237c478bd9Sstevel@tonic-gate static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
1024b5fca8f8Stomee static list_t		kmem_caches;
10257c478bd9Sstevel@tonic-gate 
10267c478bd9Sstevel@tonic-gate static taskq_t		*kmem_taskq;
10277c478bd9Sstevel@tonic-gate static kmutex_t		kmem_flags_lock;
10287c478bd9Sstevel@tonic-gate static vmem_t		*kmem_metadata_arena;
10297c478bd9Sstevel@tonic-gate static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
10307c478bd9Sstevel@tonic-gate static vmem_t		*kmem_cache_arena;
10317c478bd9Sstevel@tonic-gate static vmem_t		*kmem_hash_arena;
10327c478bd9Sstevel@tonic-gate static vmem_t		*kmem_log_arena;
10337c478bd9Sstevel@tonic-gate static vmem_t		*kmem_oversize_arena;
10347c478bd9Sstevel@tonic-gate static vmem_t		*kmem_va_arena;
10357c478bd9Sstevel@tonic-gate static vmem_t		*kmem_default_arena;
10367c478bd9Sstevel@tonic-gate static vmem_t		*kmem_firewall_va_arena;
10377c478bd9Sstevel@tonic-gate static vmem_t		*kmem_firewall_arena;
10387c478bd9Sstevel@tonic-gate 
1039b5fca8f8Stomee /*
1040b5fca8f8Stomee  * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1041b5fca8f8Stomee  * turned on when DEBUG is also defined.
1042b5fca8f8Stomee  */
1043b5fca8f8Stomee #ifdef	DEBUG
1044b5fca8f8Stomee #define	KMEM_STATS
1045b5fca8f8Stomee #endif	/* DEBUG */
1046b5fca8f8Stomee 
1047b5fca8f8Stomee #ifdef	KMEM_STATS
1048b5fca8f8Stomee #define	KMEM_STAT_ADD(stat)			((stat)++)
1049b5fca8f8Stomee #define	KMEM_STAT_COND_ADD(cond, stat)		((void) (!(cond) || (stat)++))
1050b5fca8f8Stomee #else
1051b5fca8f8Stomee #define	KMEM_STAT_ADD(stat)			/* nothing */
1052b5fca8f8Stomee #define	KMEM_STAT_COND_ADD(cond, stat)		/* nothing */
1053b5fca8f8Stomee #endif	/* KMEM_STATS */
1054b5fca8f8Stomee 
1055b5fca8f8Stomee /*
1056b5fca8f8Stomee  * kmem slab consolidator thresholds (tunables)
1057b5fca8f8Stomee  */
1058*686031edSTom Erickson size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1059*686031edSTom Erickson size_t kmem_frag_numer = 1;		/* free buffers (numerator) */
1060*686031edSTom Erickson size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1061b5fca8f8Stomee /*
1062b5fca8f8Stomee  * Maximum number of slabs from which to move buffers during a single
1063b5fca8f8Stomee  * maintenance interval while the system is not low on memory.
1064b5fca8f8Stomee  */
1065*686031edSTom Erickson size_t kmem_reclaim_max_slabs = 1;
1066b5fca8f8Stomee /*
1067b5fca8f8Stomee  * Number of slabs to scan backwards from the end of the partial slab list
1068b5fca8f8Stomee  * when searching for buffers to relocate.
1069b5fca8f8Stomee  */
1070*686031edSTom Erickson size_t kmem_reclaim_scan_range = 12;
1071b5fca8f8Stomee 
1072b5fca8f8Stomee #ifdef	KMEM_STATS
1073b5fca8f8Stomee static struct {
1074b5fca8f8Stomee 	uint64_t kms_callbacks;
1075b5fca8f8Stomee 	uint64_t kms_yes;
1076b5fca8f8Stomee 	uint64_t kms_no;
1077b5fca8f8Stomee 	uint64_t kms_later;
1078b5fca8f8Stomee 	uint64_t kms_dont_need;
1079b5fca8f8Stomee 	uint64_t kms_dont_know;
1080b5fca8f8Stomee 	uint64_t kms_hunt_found_mag;
1081*686031edSTom Erickson 	uint64_t kms_hunt_found_slab;
1082b5fca8f8Stomee 	uint64_t kms_hunt_alloc_fail;
1083b5fca8f8Stomee 	uint64_t kms_hunt_lucky;
1084b5fca8f8Stomee 	uint64_t kms_notify;
1085b5fca8f8Stomee 	uint64_t kms_notify_callbacks;
1086b5fca8f8Stomee 	uint64_t kms_disbelief;
1087b5fca8f8Stomee 	uint64_t kms_already_pending;
1088b5fca8f8Stomee 	uint64_t kms_callback_alloc_fail;
108925e2c9cfStomee 	uint64_t kms_callback_taskq_fail;
1090*686031edSTom Erickson 	uint64_t kms_endscan_slab_dead;
1091b5fca8f8Stomee 	uint64_t kms_endscan_slab_destroyed;
1092b5fca8f8Stomee 	uint64_t kms_endscan_nomem;
1093b5fca8f8Stomee 	uint64_t kms_endscan_refcnt_changed;
1094b5fca8f8Stomee 	uint64_t kms_endscan_nomove_changed;
1095b5fca8f8Stomee 	uint64_t kms_endscan_freelist;
1096b5fca8f8Stomee 	uint64_t kms_avl_update;
1097b5fca8f8Stomee 	uint64_t kms_avl_noupdate;
1098b5fca8f8Stomee 	uint64_t kms_no_longer_reclaimable;
1099b5fca8f8Stomee 	uint64_t kms_notify_no_longer_reclaimable;
1100*686031edSTom Erickson 	uint64_t kms_notify_slab_dead;
1101*686031edSTom Erickson 	uint64_t kms_notify_slab_destroyed;
1102b5fca8f8Stomee 	uint64_t kms_alloc_fail;
1103b5fca8f8Stomee 	uint64_t kms_constructor_fail;
1104b5fca8f8Stomee 	uint64_t kms_dead_slabs_freed;
1105b5fca8f8Stomee 	uint64_t kms_defrags;
1106*686031edSTom Erickson 	uint64_t kms_scans;
1107b5fca8f8Stomee 	uint64_t kms_scan_depot_ws_reaps;
1108b5fca8f8Stomee 	uint64_t kms_debug_reaps;
1109*686031edSTom Erickson 	uint64_t kms_debug_scans;
1110b5fca8f8Stomee } kmem_move_stats;
1111b5fca8f8Stomee #endif	/* KMEM_STATS */
1112b5fca8f8Stomee 
1113b5fca8f8Stomee /* consolidator knobs */
1114b5fca8f8Stomee static boolean_t kmem_move_noreap;
1115b5fca8f8Stomee static boolean_t kmem_move_blocked;
1116b5fca8f8Stomee static boolean_t kmem_move_fulltilt;
1117b5fca8f8Stomee static boolean_t kmem_move_any_partial;
1118b5fca8f8Stomee 
1119b5fca8f8Stomee #ifdef	DEBUG
1120b5fca8f8Stomee /*
1121*686031edSTom Erickson  * kmem consolidator debug tunables:
1122b5fca8f8Stomee  * Ensure code coverage by occasionally running the consolidator even when the
1123b5fca8f8Stomee  * caches are not fragmented (they may never be). These intervals are mean time
1124b5fca8f8Stomee  * in cache maintenance intervals (kmem_cache_update).
1125b5fca8f8Stomee  */
1126*686031edSTom Erickson uint32_t kmem_mtb_move = 60;	/* defrag 1 slab (~15min) */
1127*686031edSTom Erickson uint32_t kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1128b5fca8f8Stomee #endif	/* DEBUG */
1129b5fca8f8Stomee 
1130b5fca8f8Stomee static kmem_cache_t	*kmem_defrag_cache;
1131b5fca8f8Stomee static kmem_cache_t	*kmem_move_cache;
1132b5fca8f8Stomee static taskq_t		*kmem_move_taskq;
1133b5fca8f8Stomee 
1134b5fca8f8Stomee static void kmem_cache_scan(kmem_cache_t *);
1135b5fca8f8Stomee static void kmem_cache_defrag(kmem_cache_t *);
1136b5fca8f8Stomee 
1137b5fca8f8Stomee 
11387c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_transaction_log;
11397c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_content_log;
11407c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_failure_log;
11417c478bd9Sstevel@tonic-gate kmem_log_header_t	*kmem_slab_log;
11427c478bd9Sstevel@tonic-gate 
11437c478bd9Sstevel@tonic-gate static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
11447c478bd9Sstevel@tonic-gate 
11457c478bd9Sstevel@tonic-gate #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
11467c478bd9Sstevel@tonic-gate 	if ((count) > 0) {						\
11477c478bd9Sstevel@tonic-gate 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
11487c478bd9Sstevel@tonic-gate 		pc_t *_e;						\
11497c478bd9Sstevel@tonic-gate 		/* memmove() the old entries down one notch */		\
11507c478bd9Sstevel@tonic-gate 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
11517c478bd9Sstevel@tonic-gate 			*_e = *(_e - 1);				\
11527c478bd9Sstevel@tonic-gate 		*_s = (uintptr_t)(caller);				\
11537c478bd9Sstevel@tonic-gate 	}
11547c478bd9Sstevel@tonic-gate 
11557c478bd9Sstevel@tonic-gate #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
11567c478bd9Sstevel@tonic-gate #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
11577c478bd9Sstevel@tonic-gate #define	KMERR_DUPFREE	2	/* freed a buffer twice */
11587c478bd9Sstevel@tonic-gate #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
11597c478bd9Sstevel@tonic-gate #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
11607c478bd9Sstevel@tonic-gate #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
11617c478bd9Sstevel@tonic-gate #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
11627c478bd9Sstevel@tonic-gate #define	KMERR_BADSIZE	7	/* alloc size != free size */
11637c478bd9Sstevel@tonic-gate #define	KMERR_BADBASE	8	/* buffer base address wrong */
11647c478bd9Sstevel@tonic-gate 
11657c478bd9Sstevel@tonic-gate struct {
11667c478bd9Sstevel@tonic-gate 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
11677c478bd9Sstevel@tonic-gate 	int		kmp_error;	/* type of kmem error */
11687c478bd9Sstevel@tonic-gate 	void		*kmp_buffer;	/* buffer that induced panic */
11697c478bd9Sstevel@tonic-gate 	void		*kmp_realbuf;	/* real start address for buffer */
11707c478bd9Sstevel@tonic-gate 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
11717c478bd9Sstevel@tonic-gate 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
11727c478bd9Sstevel@tonic-gate 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
11737c478bd9Sstevel@tonic-gate 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
11747c478bd9Sstevel@tonic-gate } kmem_panic_info;
11757c478bd9Sstevel@tonic-gate 
11767c478bd9Sstevel@tonic-gate 
11777c478bd9Sstevel@tonic-gate static void
11787c478bd9Sstevel@tonic-gate copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
11797c478bd9Sstevel@tonic-gate {
11807c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11817c478bd9Sstevel@tonic-gate 	uint64_t *buf = buf_arg;
11827c478bd9Sstevel@tonic-gate 
11837c478bd9Sstevel@tonic-gate 	while (buf < bufend)
11847c478bd9Sstevel@tonic-gate 		*buf++ = pattern;
11857c478bd9Sstevel@tonic-gate }
11867c478bd9Sstevel@tonic-gate 
11877c478bd9Sstevel@tonic-gate static void *
11887c478bd9Sstevel@tonic-gate verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
11897c478bd9Sstevel@tonic-gate {
11907c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
11917c478bd9Sstevel@tonic-gate 	uint64_t *buf;
11927c478bd9Sstevel@tonic-gate 
11937c478bd9Sstevel@tonic-gate 	for (buf = buf_arg; buf < bufend; buf++)
11947c478bd9Sstevel@tonic-gate 		if (*buf != pattern)
11957c478bd9Sstevel@tonic-gate 			return (buf);
11967c478bd9Sstevel@tonic-gate 	return (NULL);
11977c478bd9Sstevel@tonic-gate }
11987c478bd9Sstevel@tonic-gate 
11997c478bd9Sstevel@tonic-gate static void *
12007c478bd9Sstevel@tonic-gate verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
12017c478bd9Sstevel@tonic-gate {
12027c478bd9Sstevel@tonic-gate 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
12037c478bd9Sstevel@tonic-gate 	uint64_t *buf;
12047c478bd9Sstevel@tonic-gate 
12057c478bd9Sstevel@tonic-gate 	for (buf = buf_arg; buf < bufend; buf++) {
12067c478bd9Sstevel@tonic-gate 		if (*buf != old) {
12077c478bd9Sstevel@tonic-gate 			copy_pattern(old, buf_arg,
12089f1b636aStomee 			    (char *)buf - (char *)buf_arg);
12097c478bd9Sstevel@tonic-gate 			return (buf);
12107c478bd9Sstevel@tonic-gate 		}
12117c478bd9Sstevel@tonic-gate 		*buf = new;
12127c478bd9Sstevel@tonic-gate 	}
12137c478bd9Sstevel@tonic-gate 
12147c478bd9Sstevel@tonic-gate 	return (NULL);
12157c478bd9Sstevel@tonic-gate }
12167c478bd9Sstevel@tonic-gate 
12177c478bd9Sstevel@tonic-gate static void
12187c478bd9Sstevel@tonic-gate kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
12197c478bd9Sstevel@tonic-gate {
12207c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
12217c478bd9Sstevel@tonic-gate 
12227c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
1223b5fca8f8Stomee 	for (cp = list_head(&kmem_caches); cp != NULL;
1224b5fca8f8Stomee 	    cp = list_next(&kmem_caches, cp))
12257c478bd9Sstevel@tonic-gate 		if (tq != NULL)
12267c478bd9Sstevel@tonic-gate 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
12277c478bd9Sstevel@tonic-gate 			    tqflag);
12287c478bd9Sstevel@tonic-gate 		else
12297c478bd9Sstevel@tonic-gate 			func(cp);
12307c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
12317c478bd9Sstevel@tonic-gate }
12327c478bd9Sstevel@tonic-gate 
12337c478bd9Sstevel@tonic-gate static void
12347c478bd9Sstevel@tonic-gate kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
12357c478bd9Sstevel@tonic-gate {
12367c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
12377c478bd9Sstevel@tonic-gate 
12387c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
1239b5fca8f8Stomee 	for (cp = list_head(&kmem_caches); cp != NULL;
1240b5fca8f8Stomee 	    cp = list_next(&kmem_caches, cp)) {
12417c478bd9Sstevel@tonic-gate 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
12427c478bd9Sstevel@tonic-gate 			continue;
12437c478bd9Sstevel@tonic-gate 		if (tq != NULL)
12447c478bd9Sstevel@tonic-gate 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
12457c478bd9Sstevel@tonic-gate 			    tqflag);
12467c478bd9Sstevel@tonic-gate 		else
12477c478bd9Sstevel@tonic-gate 			func(cp);
12487c478bd9Sstevel@tonic-gate 	}
12497c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
12507c478bd9Sstevel@tonic-gate }
12517c478bd9Sstevel@tonic-gate 
12527c478bd9Sstevel@tonic-gate /*
12537c478bd9Sstevel@tonic-gate  * Debugging support.  Given a buffer address, find its slab.
12547c478bd9Sstevel@tonic-gate  */
12557c478bd9Sstevel@tonic-gate static kmem_slab_t *
12567c478bd9Sstevel@tonic-gate kmem_findslab(kmem_cache_t *cp, void *buf)
12577c478bd9Sstevel@tonic-gate {
12587c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
12597c478bd9Sstevel@tonic-gate 
12607c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
1261b5fca8f8Stomee 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1262b5fca8f8Stomee 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1263b5fca8f8Stomee 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1264b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1265b5fca8f8Stomee 			return (sp);
1266b5fca8f8Stomee 		}
1267b5fca8f8Stomee 	}
1268b5fca8f8Stomee 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1269b5fca8f8Stomee 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
12707c478bd9Sstevel@tonic-gate 		if (KMEM_SLAB_MEMBER(sp, buf)) {
12717c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
12727c478bd9Sstevel@tonic-gate 			return (sp);
12737c478bd9Sstevel@tonic-gate 		}
12747c478bd9Sstevel@tonic-gate 	}
12757c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
12767c478bd9Sstevel@tonic-gate 
12777c478bd9Sstevel@tonic-gate 	return (NULL);
12787c478bd9Sstevel@tonic-gate }
12797c478bd9Sstevel@tonic-gate 
12807c478bd9Sstevel@tonic-gate static void
12817c478bd9Sstevel@tonic-gate kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
12827c478bd9Sstevel@tonic-gate {
12837c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = NULL;
12847c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp = NULL;
12857c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp = cparg;
12867c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
12877c478bd9Sstevel@tonic-gate 	uint64_t *off;
12887c478bd9Sstevel@tonic-gate 	void *buf = bufarg;
12897c478bd9Sstevel@tonic-gate 
12907c478bd9Sstevel@tonic-gate 	kmem_logging = 0;	/* stop logging when a bad thing happens */
12917c478bd9Sstevel@tonic-gate 
12927c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_timestamp = gethrtime();
12937c478bd9Sstevel@tonic-gate 
12947c478bd9Sstevel@tonic-gate 	sp = kmem_findslab(cp, buf);
12957c478bd9Sstevel@tonic-gate 	if (sp == NULL) {
1296b5fca8f8Stomee 		for (cp = list_tail(&kmem_caches); cp != NULL;
1297b5fca8f8Stomee 		    cp = list_prev(&kmem_caches, cp)) {
12987c478bd9Sstevel@tonic-gate 			if ((sp = kmem_findslab(cp, buf)) != NULL)
12997c478bd9Sstevel@tonic-gate 				break;
13007c478bd9Sstevel@tonic-gate 		}
13017c478bd9Sstevel@tonic-gate 	}
13027c478bd9Sstevel@tonic-gate 
13037c478bd9Sstevel@tonic-gate 	if (sp == NULL) {
13047c478bd9Sstevel@tonic-gate 		cp = NULL;
13057c478bd9Sstevel@tonic-gate 		error = KMERR_BADADDR;
13067c478bd9Sstevel@tonic-gate 	} else {
13077c478bd9Sstevel@tonic-gate 		if (cp != cparg)
13087c478bd9Sstevel@tonic-gate 			error = KMERR_BADCACHE;
13097c478bd9Sstevel@tonic-gate 		else
13107c478bd9Sstevel@tonic-gate 			buf = (char *)bufarg - ((uintptr_t)bufarg -
13117c478bd9Sstevel@tonic-gate 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
13127c478bd9Sstevel@tonic-gate 		if (buf != bufarg)
13137c478bd9Sstevel@tonic-gate 			error = KMERR_BADBASE;
13147c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_BUFTAG)
13157c478bd9Sstevel@tonic-gate 			btp = KMEM_BUFTAG(cp, buf);
13167c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_HASH) {
13177c478bd9Sstevel@tonic-gate 			mutex_enter(&cp->cache_lock);
13187c478bd9Sstevel@tonic-gate 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
13197c478bd9Sstevel@tonic-gate 				if (bcp->bc_addr == buf)
13207c478bd9Sstevel@tonic-gate 					break;
13217c478bd9Sstevel@tonic-gate 			mutex_exit(&cp->cache_lock);
13227c478bd9Sstevel@tonic-gate 			if (bcp == NULL && btp != NULL)
13237c478bd9Sstevel@tonic-gate 				bcp = btp->bt_bufctl;
13247c478bd9Sstevel@tonic-gate 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
13257c478bd9Sstevel@tonic-gate 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
13267c478bd9Sstevel@tonic-gate 			    bcp->bc_addr != buf) {
13277c478bd9Sstevel@tonic-gate 				error = KMERR_BADBUFCTL;
13287c478bd9Sstevel@tonic-gate 				bcp = NULL;
13297c478bd9Sstevel@tonic-gate 			}
13307c478bd9Sstevel@tonic-gate 		}
13317c478bd9Sstevel@tonic-gate 	}
13327c478bd9Sstevel@tonic-gate 
13337c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_error = error;
13347c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_buffer = bufarg;
13357c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_realbuf = buf;
13367c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_cache = cparg;
13377c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_realcache = cp;
13387c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_slab = sp;
13397c478bd9Sstevel@tonic-gate 	kmem_panic_info.kmp_bufctl = bcp;
13407c478bd9Sstevel@tonic-gate 
13417c478bd9Sstevel@tonic-gate 	printf("kernel memory allocator: ");
13427c478bd9Sstevel@tonic-gate 
13437c478bd9Sstevel@tonic-gate 	switch (error) {
13447c478bd9Sstevel@tonic-gate 
13457c478bd9Sstevel@tonic-gate 	case KMERR_MODIFIED:
13467c478bd9Sstevel@tonic-gate 		printf("buffer modified after being freed\n");
13477c478bd9Sstevel@tonic-gate 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
13487c478bd9Sstevel@tonic-gate 		if (off == NULL)	/* shouldn't happen */
13497c478bd9Sstevel@tonic-gate 			off = buf;
13507c478bd9Sstevel@tonic-gate 		printf("modification occurred at offset 0x%lx "
13517c478bd9Sstevel@tonic-gate 		    "(0x%llx replaced by 0x%llx)\n",
13527c478bd9Sstevel@tonic-gate 		    (uintptr_t)off - (uintptr_t)buf,
13537c478bd9Sstevel@tonic-gate 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
13547c478bd9Sstevel@tonic-gate 		break;
13557c478bd9Sstevel@tonic-gate 
13567c478bd9Sstevel@tonic-gate 	case KMERR_REDZONE:
13577c478bd9Sstevel@tonic-gate 		printf("redzone violation: write past end of buffer\n");
13587c478bd9Sstevel@tonic-gate 		break;
13597c478bd9Sstevel@tonic-gate 
13607c478bd9Sstevel@tonic-gate 	case KMERR_BADADDR:
13617c478bd9Sstevel@tonic-gate 		printf("invalid free: buffer not in cache\n");
13627c478bd9Sstevel@tonic-gate 		break;
13637c478bd9Sstevel@tonic-gate 
13647c478bd9Sstevel@tonic-gate 	case KMERR_DUPFREE:
13657c478bd9Sstevel@tonic-gate 		printf("duplicate free: buffer freed twice\n");
13667c478bd9Sstevel@tonic-gate 		break;
13677c478bd9Sstevel@tonic-gate 
13687c478bd9Sstevel@tonic-gate 	case KMERR_BADBUFTAG:
13697c478bd9Sstevel@tonic-gate 		printf("boundary tag corrupted\n");
13707c478bd9Sstevel@tonic-gate 		printf("bcp ^ bxstat = %lx, should be %lx\n",
13717c478bd9Sstevel@tonic-gate 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
13727c478bd9Sstevel@tonic-gate 		    KMEM_BUFTAG_FREE);
13737c478bd9Sstevel@tonic-gate 		break;
13747c478bd9Sstevel@tonic-gate 
13757c478bd9Sstevel@tonic-gate 	case KMERR_BADBUFCTL:
13767c478bd9Sstevel@tonic-gate 		printf("bufctl corrupted\n");
13777c478bd9Sstevel@tonic-gate 		break;
13787c478bd9Sstevel@tonic-gate 
13797c478bd9Sstevel@tonic-gate 	case KMERR_BADCACHE:
13807c478bd9Sstevel@tonic-gate 		printf("buffer freed to wrong cache\n");
13817c478bd9Sstevel@tonic-gate 		printf("buffer was allocated from %s,\n", cp->cache_name);
13827c478bd9Sstevel@tonic-gate 		printf("caller attempting free to %s.\n", cparg->cache_name);
13837c478bd9Sstevel@tonic-gate 		break;
13847c478bd9Sstevel@tonic-gate 
13857c478bd9Sstevel@tonic-gate 	case KMERR_BADSIZE:
13867c478bd9Sstevel@tonic-gate 		printf("bad free: free size (%u) != alloc size (%u)\n",
13877c478bd9Sstevel@tonic-gate 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
13887c478bd9Sstevel@tonic-gate 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
13897c478bd9Sstevel@tonic-gate 		break;
13907c478bd9Sstevel@tonic-gate 
13917c478bd9Sstevel@tonic-gate 	case KMERR_BADBASE:
13927c478bd9Sstevel@tonic-gate 		printf("bad free: free address (%p) != alloc address (%p)\n",
13937c478bd9Sstevel@tonic-gate 		    bufarg, buf);
13947c478bd9Sstevel@tonic-gate 		break;
13957c478bd9Sstevel@tonic-gate 	}
13967c478bd9Sstevel@tonic-gate 
13977c478bd9Sstevel@tonic-gate 	printf("buffer=%p  bufctl=%p  cache: %s\n",
13987c478bd9Sstevel@tonic-gate 	    bufarg, (void *)bcp, cparg->cache_name);
13997c478bd9Sstevel@tonic-gate 
14007c478bd9Sstevel@tonic-gate 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
14017c478bd9Sstevel@tonic-gate 	    error != KMERR_BADBUFCTL) {
14027c478bd9Sstevel@tonic-gate 		int d;
14037c478bd9Sstevel@tonic-gate 		timestruc_t ts;
14047c478bd9Sstevel@tonic-gate 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
14057c478bd9Sstevel@tonic-gate 
14067c478bd9Sstevel@tonic-gate 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
14077c478bd9Sstevel@tonic-gate 		printf("previous transaction on buffer %p:\n", buf);
14087c478bd9Sstevel@tonic-gate 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
14097c478bd9Sstevel@tonic-gate 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
14107c478bd9Sstevel@tonic-gate 		    (void *)sp, cp->cache_name);
14117c478bd9Sstevel@tonic-gate 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
14127c478bd9Sstevel@tonic-gate 			ulong_t off;
14137c478bd9Sstevel@tonic-gate 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
14147c478bd9Sstevel@tonic-gate 			printf("%s+%lx\n", sym ? sym : "?", off);
14157c478bd9Sstevel@tonic-gate 		}
14167c478bd9Sstevel@tonic-gate 	}
14177c478bd9Sstevel@tonic-gate 	if (kmem_panic > 0)
14187c478bd9Sstevel@tonic-gate 		panic("kernel heap corruption detected");
14197c478bd9Sstevel@tonic-gate 	if (kmem_panic == 0)
14207c478bd9Sstevel@tonic-gate 		debug_enter(NULL);
14217c478bd9Sstevel@tonic-gate 	kmem_logging = 1;	/* resume logging */
14227c478bd9Sstevel@tonic-gate }
14237c478bd9Sstevel@tonic-gate 
14247c478bd9Sstevel@tonic-gate static kmem_log_header_t *
14257c478bd9Sstevel@tonic-gate kmem_log_init(size_t logsize)
14267c478bd9Sstevel@tonic-gate {
14277c478bd9Sstevel@tonic-gate 	kmem_log_header_t *lhp;
14287c478bd9Sstevel@tonic-gate 	int nchunks = 4 * max_ncpus;
14297c478bd9Sstevel@tonic-gate 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
14307c478bd9Sstevel@tonic-gate 	int i;
14317c478bd9Sstevel@tonic-gate 
14327c478bd9Sstevel@tonic-gate 	/*
14337c478bd9Sstevel@tonic-gate 	 * Make sure that lhp->lh_cpu[] is nicely aligned
14347c478bd9Sstevel@tonic-gate 	 * to prevent false sharing of cache lines.
14357c478bd9Sstevel@tonic-gate 	 */
14367c478bd9Sstevel@tonic-gate 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
14377c478bd9Sstevel@tonic-gate 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
14387c478bd9Sstevel@tonic-gate 	    NULL, NULL, VM_SLEEP);
14397c478bd9Sstevel@tonic-gate 	bzero(lhp, lhsize);
14407c478bd9Sstevel@tonic-gate 
14417c478bd9Sstevel@tonic-gate 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
14427c478bd9Sstevel@tonic-gate 	lhp->lh_nchunks = nchunks;
14437c478bd9Sstevel@tonic-gate 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
14447c478bd9Sstevel@tonic-gate 	lhp->lh_base = vmem_alloc(kmem_log_arena,
14457c478bd9Sstevel@tonic-gate 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
14467c478bd9Sstevel@tonic-gate 	lhp->lh_free = vmem_alloc(kmem_log_arena,
14477c478bd9Sstevel@tonic-gate 	    nchunks * sizeof (int), VM_SLEEP);
14487c478bd9Sstevel@tonic-gate 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
14497c478bd9Sstevel@tonic-gate 
14507c478bd9Sstevel@tonic-gate 	for (i = 0; i < max_ncpus; i++) {
14517c478bd9Sstevel@tonic-gate 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
14527c478bd9Sstevel@tonic-gate 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
14537c478bd9Sstevel@tonic-gate 		clhp->clh_chunk = i;
14547c478bd9Sstevel@tonic-gate 	}
14557c478bd9Sstevel@tonic-gate 
14567c478bd9Sstevel@tonic-gate 	for (i = max_ncpus; i < nchunks; i++)
14577c478bd9Sstevel@tonic-gate 		lhp->lh_free[i] = i;
14587c478bd9Sstevel@tonic-gate 
14597c478bd9Sstevel@tonic-gate 	lhp->lh_head = max_ncpus;
14607c478bd9Sstevel@tonic-gate 	lhp->lh_tail = 0;
14617c478bd9Sstevel@tonic-gate 
14627c478bd9Sstevel@tonic-gate 	return (lhp);
14637c478bd9Sstevel@tonic-gate }
14647c478bd9Sstevel@tonic-gate 
14657c478bd9Sstevel@tonic-gate static void *
14667c478bd9Sstevel@tonic-gate kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
14677c478bd9Sstevel@tonic-gate {
14687c478bd9Sstevel@tonic-gate 	void *logspace;
14697c478bd9Sstevel@tonic-gate 	kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
14707c478bd9Sstevel@tonic-gate 
14717c478bd9Sstevel@tonic-gate 	if (lhp == NULL || kmem_logging == 0 || panicstr)
14727c478bd9Sstevel@tonic-gate 		return (NULL);
14737c478bd9Sstevel@tonic-gate 
14747c478bd9Sstevel@tonic-gate 	mutex_enter(&clhp->clh_lock);
14757c478bd9Sstevel@tonic-gate 	clhp->clh_hits++;
14767c478bd9Sstevel@tonic-gate 	if (size > clhp->clh_avail) {
14777c478bd9Sstevel@tonic-gate 		mutex_enter(&lhp->lh_lock);
14787c478bd9Sstevel@tonic-gate 		lhp->lh_hits++;
14797c478bd9Sstevel@tonic-gate 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
14807c478bd9Sstevel@tonic-gate 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
14817c478bd9Sstevel@tonic-gate 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
14827c478bd9Sstevel@tonic-gate 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
14837c478bd9Sstevel@tonic-gate 		clhp->clh_current = lhp->lh_base +
14849f1b636aStomee 		    clhp->clh_chunk * lhp->lh_chunksize;
14857c478bd9Sstevel@tonic-gate 		clhp->clh_avail = lhp->lh_chunksize;
14867c478bd9Sstevel@tonic-gate 		if (size > lhp->lh_chunksize)
14877c478bd9Sstevel@tonic-gate 			size = lhp->lh_chunksize;
14887c478bd9Sstevel@tonic-gate 		mutex_exit(&lhp->lh_lock);
14897c478bd9Sstevel@tonic-gate 	}
14907c478bd9Sstevel@tonic-gate 	logspace = clhp->clh_current;
14917c478bd9Sstevel@tonic-gate 	clhp->clh_current += size;
14927c478bd9Sstevel@tonic-gate 	clhp->clh_avail -= size;
14937c478bd9Sstevel@tonic-gate 	bcopy(data, logspace, size);
14947c478bd9Sstevel@tonic-gate 	mutex_exit(&clhp->clh_lock);
14957c478bd9Sstevel@tonic-gate 	return (logspace);
14967c478bd9Sstevel@tonic-gate }
14977c478bd9Sstevel@tonic-gate 
14987c478bd9Sstevel@tonic-gate #define	KMEM_AUDIT(lp, cp, bcp)						\
14997c478bd9Sstevel@tonic-gate {									\
15007c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
15017c478bd9Sstevel@tonic-gate 	_bcp->bc_timestamp = gethrtime();				\
15027c478bd9Sstevel@tonic-gate 	_bcp->bc_thread = curthread;					\
15037c478bd9Sstevel@tonic-gate 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
15047c478bd9Sstevel@tonic-gate 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
15057c478bd9Sstevel@tonic-gate }
15067c478bd9Sstevel@tonic-gate 
15077c478bd9Sstevel@tonic-gate static void
15087c478bd9Sstevel@tonic-gate kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
15097c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp, void *addr)
15107c478bd9Sstevel@tonic-gate {
15117c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t bca;
15127c478bd9Sstevel@tonic-gate 
15137c478bd9Sstevel@tonic-gate 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
15147c478bd9Sstevel@tonic-gate 	bca.bc_addr = addr;
15157c478bd9Sstevel@tonic-gate 	bca.bc_slab = sp;
15167c478bd9Sstevel@tonic-gate 	bca.bc_cache = cp;
15177c478bd9Sstevel@tonic-gate 	KMEM_AUDIT(lp, cp, &bca);
15187c478bd9Sstevel@tonic-gate }
15197c478bd9Sstevel@tonic-gate 
15207c478bd9Sstevel@tonic-gate /*
15217c478bd9Sstevel@tonic-gate  * Create a new slab for cache cp.
15227c478bd9Sstevel@tonic-gate  */
15237c478bd9Sstevel@tonic-gate static kmem_slab_t *
15247c478bd9Sstevel@tonic-gate kmem_slab_create(kmem_cache_t *cp, int kmflag)
15257c478bd9Sstevel@tonic-gate {
15267c478bd9Sstevel@tonic-gate 	size_t slabsize = cp->cache_slabsize;
15277c478bd9Sstevel@tonic-gate 	size_t chunksize = cp->cache_chunksize;
15287c478bd9Sstevel@tonic-gate 	int cache_flags = cp->cache_flags;
15297c478bd9Sstevel@tonic-gate 	size_t color, chunks;
15307c478bd9Sstevel@tonic-gate 	char *buf, *slab;
15317c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
15327c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp;
15337c478bd9Sstevel@tonic-gate 	vmem_t *vmp = cp->cache_arena;
15347c478bd9Sstevel@tonic-gate 
1535b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1536b5fca8f8Stomee 
15377c478bd9Sstevel@tonic-gate 	color = cp->cache_color + cp->cache_align;
15387c478bd9Sstevel@tonic-gate 	if (color > cp->cache_maxcolor)
15397c478bd9Sstevel@tonic-gate 		color = cp->cache_mincolor;
15407c478bd9Sstevel@tonic-gate 	cp->cache_color = color;
15417c478bd9Sstevel@tonic-gate 
15427c478bd9Sstevel@tonic-gate 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
15437c478bd9Sstevel@tonic-gate 
15447c478bd9Sstevel@tonic-gate 	if (slab == NULL)
15457c478bd9Sstevel@tonic-gate 		goto vmem_alloc_failure;
15467c478bd9Sstevel@tonic-gate 
15477c478bd9Sstevel@tonic-gate 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
15487c478bd9Sstevel@tonic-gate 
1549b5fca8f8Stomee 	/*
1550b5fca8f8Stomee 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1551b5fca8f8Stomee 	 * consolidator depends (for correctness) on slabs being initialized
1552b5fca8f8Stomee 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1553b5fca8f8Stomee 	 * clients to distinguish uninitialized memory from known objects).
1554b5fca8f8Stomee 	 */
1555b5fca8f8Stomee 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
15567c478bd9Sstevel@tonic-gate 	if (!(cp->cache_cflags & KMC_NOTOUCH))
15577c478bd9Sstevel@tonic-gate 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
15587c478bd9Sstevel@tonic-gate 
15597c478bd9Sstevel@tonic-gate 	if (cache_flags & KMF_HASH) {
15607c478bd9Sstevel@tonic-gate 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
15617c478bd9Sstevel@tonic-gate 			goto slab_alloc_failure;
15627c478bd9Sstevel@tonic-gate 		chunks = (slabsize - color) / chunksize;
15637c478bd9Sstevel@tonic-gate 	} else {
15647c478bd9Sstevel@tonic-gate 		sp = KMEM_SLAB(cp, slab);
15657c478bd9Sstevel@tonic-gate 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
15667c478bd9Sstevel@tonic-gate 	}
15677c478bd9Sstevel@tonic-gate 
15687c478bd9Sstevel@tonic-gate 	sp->slab_cache	= cp;
15697c478bd9Sstevel@tonic-gate 	sp->slab_head	= NULL;
15707c478bd9Sstevel@tonic-gate 	sp->slab_refcnt	= 0;
15717c478bd9Sstevel@tonic-gate 	sp->slab_base	= buf = slab + color;
15727c478bd9Sstevel@tonic-gate 	sp->slab_chunks	= chunks;
1573b5fca8f8Stomee 	sp->slab_stuck_offset = (uint32_t)-1;
1574b5fca8f8Stomee 	sp->slab_later_count = 0;
1575b5fca8f8Stomee 	sp->slab_flags = 0;
15767c478bd9Sstevel@tonic-gate 
15777c478bd9Sstevel@tonic-gate 	ASSERT(chunks > 0);
15787c478bd9Sstevel@tonic-gate 	while (chunks-- != 0) {
15797c478bd9Sstevel@tonic-gate 		if (cache_flags & KMF_HASH) {
15807c478bd9Sstevel@tonic-gate 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
15817c478bd9Sstevel@tonic-gate 			if (bcp == NULL)
15827c478bd9Sstevel@tonic-gate 				goto bufctl_alloc_failure;
15837c478bd9Sstevel@tonic-gate 			if (cache_flags & KMF_AUDIT) {
15847c478bd9Sstevel@tonic-gate 				kmem_bufctl_audit_t *bcap =
15857c478bd9Sstevel@tonic-gate 				    (kmem_bufctl_audit_t *)bcp;
15867c478bd9Sstevel@tonic-gate 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
15877c478bd9Sstevel@tonic-gate 				bcap->bc_cache = cp;
15887c478bd9Sstevel@tonic-gate 			}
15897c478bd9Sstevel@tonic-gate 			bcp->bc_addr = buf;
15907c478bd9Sstevel@tonic-gate 			bcp->bc_slab = sp;
15917c478bd9Sstevel@tonic-gate 		} else {
15927c478bd9Sstevel@tonic-gate 			bcp = KMEM_BUFCTL(cp, buf);
15937c478bd9Sstevel@tonic-gate 		}
15947c478bd9Sstevel@tonic-gate 		if (cache_flags & KMF_BUFTAG) {
15957c478bd9Sstevel@tonic-gate 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
15967c478bd9Sstevel@tonic-gate 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
15977c478bd9Sstevel@tonic-gate 			btp->bt_bufctl = bcp;
15987c478bd9Sstevel@tonic-gate 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
15997c478bd9Sstevel@tonic-gate 			if (cache_flags & KMF_DEADBEEF) {
16007c478bd9Sstevel@tonic-gate 				copy_pattern(KMEM_FREE_PATTERN, buf,
16017c478bd9Sstevel@tonic-gate 				    cp->cache_verify);
16027c478bd9Sstevel@tonic-gate 			}
16037c478bd9Sstevel@tonic-gate 		}
16047c478bd9Sstevel@tonic-gate 		bcp->bc_next = sp->slab_head;
16057c478bd9Sstevel@tonic-gate 		sp->slab_head = bcp;
16067c478bd9Sstevel@tonic-gate 		buf += chunksize;
16077c478bd9Sstevel@tonic-gate 	}
16087c478bd9Sstevel@tonic-gate 
16097c478bd9Sstevel@tonic-gate 	kmem_log_event(kmem_slab_log, cp, sp, slab);
16107c478bd9Sstevel@tonic-gate 
16117c478bd9Sstevel@tonic-gate 	return (sp);
16127c478bd9Sstevel@tonic-gate 
16137c478bd9Sstevel@tonic-gate bufctl_alloc_failure:
16147c478bd9Sstevel@tonic-gate 
16157c478bd9Sstevel@tonic-gate 	while ((bcp = sp->slab_head) != NULL) {
16167c478bd9Sstevel@tonic-gate 		sp->slab_head = bcp->bc_next;
16177c478bd9Sstevel@tonic-gate 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
16187c478bd9Sstevel@tonic-gate 	}
16197c478bd9Sstevel@tonic-gate 	kmem_cache_free(kmem_slab_cache, sp);
16207c478bd9Sstevel@tonic-gate 
16217c478bd9Sstevel@tonic-gate slab_alloc_failure:
16227c478bd9Sstevel@tonic-gate 
16237c478bd9Sstevel@tonic-gate 	vmem_free(vmp, slab, slabsize);
16247c478bd9Sstevel@tonic-gate 
16257c478bd9Sstevel@tonic-gate vmem_alloc_failure:
16267c478bd9Sstevel@tonic-gate 
16277c478bd9Sstevel@tonic-gate 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
16287c478bd9Sstevel@tonic-gate 	atomic_add_64(&cp->cache_alloc_fail, 1);
16297c478bd9Sstevel@tonic-gate 
16307c478bd9Sstevel@tonic-gate 	return (NULL);
16317c478bd9Sstevel@tonic-gate }
16327c478bd9Sstevel@tonic-gate 
16337c478bd9Sstevel@tonic-gate /*
16347c478bd9Sstevel@tonic-gate  * Destroy a slab.
16357c478bd9Sstevel@tonic-gate  */
16367c478bd9Sstevel@tonic-gate static void
16377c478bd9Sstevel@tonic-gate kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
16387c478bd9Sstevel@tonic-gate {
16397c478bd9Sstevel@tonic-gate 	vmem_t *vmp = cp->cache_arena;
16407c478bd9Sstevel@tonic-gate 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
16417c478bd9Sstevel@tonic-gate 
1642b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1643b5fca8f8Stomee 	ASSERT(sp->slab_refcnt == 0);
1644b5fca8f8Stomee 
16457c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
16467c478bd9Sstevel@tonic-gate 		kmem_bufctl_t *bcp;
16477c478bd9Sstevel@tonic-gate 		while ((bcp = sp->slab_head) != NULL) {
16487c478bd9Sstevel@tonic-gate 			sp->slab_head = bcp->bc_next;
16497c478bd9Sstevel@tonic-gate 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
16507c478bd9Sstevel@tonic-gate 		}
16517c478bd9Sstevel@tonic-gate 		kmem_cache_free(kmem_slab_cache, sp);
16527c478bd9Sstevel@tonic-gate 	}
16537c478bd9Sstevel@tonic-gate 	vmem_free(vmp, slab, cp->cache_slabsize);
16547c478bd9Sstevel@tonic-gate }
16557c478bd9Sstevel@tonic-gate 
16567c478bd9Sstevel@tonic-gate static void *
1657b5fca8f8Stomee kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp)
16587c478bd9Sstevel@tonic-gate {
16597c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp, **hash_bucket;
16607c478bd9Sstevel@tonic-gate 	void *buf;
16617c478bd9Sstevel@tonic-gate 
1662b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1663b5fca8f8Stomee 	/*
1664b5fca8f8Stomee 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1665b5fca8f8Stomee 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1666b5fca8f8Stomee 	 * slab is newly created (sp->slab_refcnt == 0).
1667b5fca8f8Stomee 	 */
1668b5fca8f8Stomee 	ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) &&
1669b5fca8f8Stomee 	    (sp == avl_first(&cp->cache_partial_slabs))));
16707c478bd9Sstevel@tonic-gate 	ASSERT(sp->slab_cache == cp);
16717c478bd9Sstevel@tonic-gate 
1672b5fca8f8Stomee 	cp->cache_slab_alloc++;
16739f1b636aStomee 	cp->cache_bufslab--;
16747c478bd9Sstevel@tonic-gate 	sp->slab_refcnt++;
16757c478bd9Sstevel@tonic-gate 
16767c478bd9Sstevel@tonic-gate 	bcp = sp->slab_head;
16777c478bd9Sstevel@tonic-gate 	if ((sp->slab_head = bcp->bc_next) == NULL) {
1678b5fca8f8Stomee 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1679b5fca8f8Stomee 		if (sp->slab_refcnt == 1) {
1680b5fca8f8Stomee 			ASSERT(sp->slab_chunks == 1);
1681b5fca8f8Stomee 		} else {
1682b5fca8f8Stomee 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1683b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
1684b5fca8f8Stomee 			sp->slab_later_count = 0; /* clear history */
1685b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1686b5fca8f8Stomee 			sp->slab_stuck_offset = (uint32_t)-1;
1687b5fca8f8Stomee 		}
1688b5fca8f8Stomee 		list_insert_head(&cp->cache_complete_slabs, sp);
1689b5fca8f8Stomee 		cp->cache_complete_slab_count++;
1690b5fca8f8Stomee 	} else {
1691b5fca8f8Stomee 		ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1692b5fca8f8Stomee 		if (sp->slab_refcnt == 1) {
1693b5fca8f8Stomee 			avl_add(&cp->cache_partial_slabs, sp);
1694b5fca8f8Stomee 		} else {
1695b5fca8f8Stomee 			/*
1696b5fca8f8Stomee 			 * The slab is now more allocated than it was, so the
1697b5fca8f8Stomee 			 * order remains unchanged.
1698b5fca8f8Stomee 			 */
1699b5fca8f8Stomee 			ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1700b5fca8f8Stomee 		}
17017c478bd9Sstevel@tonic-gate 	}
17027c478bd9Sstevel@tonic-gate 
17037c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
17047c478bd9Sstevel@tonic-gate 		/*
17057c478bd9Sstevel@tonic-gate 		 * Add buffer to allocated-address hash table.
17067c478bd9Sstevel@tonic-gate 		 */
17077c478bd9Sstevel@tonic-gate 		buf = bcp->bc_addr;
17087c478bd9Sstevel@tonic-gate 		hash_bucket = KMEM_HASH(cp, buf);
17097c478bd9Sstevel@tonic-gate 		bcp->bc_next = *hash_bucket;
17107c478bd9Sstevel@tonic-gate 		*hash_bucket = bcp;
17117c478bd9Sstevel@tonic-gate 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
17127c478bd9Sstevel@tonic-gate 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
17137c478bd9Sstevel@tonic-gate 		}
17147c478bd9Sstevel@tonic-gate 	} else {
17157c478bd9Sstevel@tonic-gate 		buf = KMEM_BUF(cp, bcp);
17167c478bd9Sstevel@tonic-gate 	}
17177c478bd9Sstevel@tonic-gate 
17187c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1719b5fca8f8Stomee 	return (buf);
1720b5fca8f8Stomee }
1721b5fca8f8Stomee 
1722b5fca8f8Stomee /*
1723b5fca8f8Stomee  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1724b5fca8f8Stomee  */
1725b5fca8f8Stomee static void *
1726b5fca8f8Stomee kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1727b5fca8f8Stomee {
1728b5fca8f8Stomee 	kmem_slab_t *sp;
1729b5fca8f8Stomee 	void *buf;
17304d4c4c43STom Erickson 	boolean_t test_destructor;
1731b5fca8f8Stomee 
1732b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
17334d4c4c43STom Erickson 	test_destructor = (cp->cache_slab_alloc == 0);
1734b5fca8f8Stomee 	sp = avl_first(&cp->cache_partial_slabs);
1735b5fca8f8Stomee 	if (sp == NULL) {
1736b5fca8f8Stomee 		ASSERT(cp->cache_bufslab == 0);
1737b5fca8f8Stomee 
1738b5fca8f8Stomee 		/*
1739b5fca8f8Stomee 		 * The freelist is empty.  Create a new slab.
1740b5fca8f8Stomee 		 */
1741b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
1742b5fca8f8Stomee 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1743b5fca8f8Stomee 			return (NULL);
1744b5fca8f8Stomee 		}
1745b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
1746b5fca8f8Stomee 		cp->cache_slab_create++;
1747b5fca8f8Stomee 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1748b5fca8f8Stomee 			cp->cache_bufmax = cp->cache_buftotal;
1749b5fca8f8Stomee 		cp->cache_bufslab += sp->slab_chunks;
1750b5fca8f8Stomee 	}
17517c478bd9Sstevel@tonic-gate 
1752b5fca8f8Stomee 	buf = kmem_slab_alloc_impl(cp, sp);
1753b5fca8f8Stomee 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1754b5fca8f8Stomee 	    (cp->cache_complete_slab_count +
1755b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs) +
1756b5fca8f8Stomee 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
17577c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
17587c478bd9Sstevel@tonic-gate 
17594d4c4c43STom Erickson 	if (test_destructor && cp->cache_destructor != NULL) {
17604d4c4c43STom Erickson 		/*
17614d4c4c43STom Erickson 		 * On the first kmem_slab_alloc(), assert that it is valid to
17624d4c4c43STom Erickson 		 * call the destructor on a newly constructed object without any
17634d4c4c43STom Erickson 		 * client involvement.
17644d4c4c43STom Erickson 		 */
17654d4c4c43STom Erickson 		if ((cp->cache_constructor == NULL) ||
17664d4c4c43STom Erickson 		    cp->cache_constructor(buf, cp->cache_private,
17674d4c4c43STom Erickson 		    kmflag) == 0) {
17684d4c4c43STom Erickson 			cp->cache_destructor(buf, cp->cache_private);
17694d4c4c43STom Erickson 		}
17704d4c4c43STom Erickson 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
17714d4c4c43STom Erickson 		    cp->cache_bufsize);
17724d4c4c43STom Erickson 		if (cp->cache_flags & KMF_DEADBEEF) {
17734d4c4c43STom Erickson 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
17744d4c4c43STom Erickson 		}
17754d4c4c43STom Erickson 	}
17764d4c4c43STom Erickson 
17777c478bd9Sstevel@tonic-gate 	return (buf);
17787c478bd9Sstevel@tonic-gate }
17797c478bd9Sstevel@tonic-gate 
1780b5fca8f8Stomee static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1781b5fca8f8Stomee 
17827c478bd9Sstevel@tonic-gate /*
17837c478bd9Sstevel@tonic-gate  * Free a raw (unconstructed) buffer to cp's slab layer.
17847c478bd9Sstevel@tonic-gate  */
17857c478bd9Sstevel@tonic-gate static void
17867c478bd9Sstevel@tonic-gate kmem_slab_free(kmem_cache_t *cp, void *buf)
17877c478bd9Sstevel@tonic-gate {
17887c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
17897c478bd9Sstevel@tonic-gate 	kmem_bufctl_t *bcp, **prev_bcpp;
17907c478bd9Sstevel@tonic-gate 
17917c478bd9Sstevel@tonic-gate 	ASSERT(buf != NULL);
17927c478bd9Sstevel@tonic-gate 
17937c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
17947c478bd9Sstevel@tonic-gate 	cp->cache_slab_free++;
17957c478bd9Sstevel@tonic-gate 
17967c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
17977c478bd9Sstevel@tonic-gate 		/*
17987c478bd9Sstevel@tonic-gate 		 * Look up buffer in allocated-address hash table.
17997c478bd9Sstevel@tonic-gate 		 */
18007c478bd9Sstevel@tonic-gate 		prev_bcpp = KMEM_HASH(cp, buf);
18017c478bd9Sstevel@tonic-gate 		while ((bcp = *prev_bcpp) != NULL) {
18027c478bd9Sstevel@tonic-gate 			if (bcp->bc_addr == buf) {
18037c478bd9Sstevel@tonic-gate 				*prev_bcpp = bcp->bc_next;
18047c478bd9Sstevel@tonic-gate 				sp = bcp->bc_slab;
18057c478bd9Sstevel@tonic-gate 				break;
18067c478bd9Sstevel@tonic-gate 			}
18077c478bd9Sstevel@tonic-gate 			cp->cache_lookup_depth++;
18087c478bd9Sstevel@tonic-gate 			prev_bcpp = &bcp->bc_next;
18097c478bd9Sstevel@tonic-gate 		}
18107c478bd9Sstevel@tonic-gate 	} else {
18117c478bd9Sstevel@tonic-gate 		bcp = KMEM_BUFCTL(cp, buf);
18127c478bd9Sstevel@tonic-gate 		sp = KMEM_SLAB(cp, buf);
18137c478bd9Sstevel@tonic-gate 	}
18147c478bd9Sstevel@tonic-gate 
18157c478bd9Sstevel@tonic-gate 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
18167c478bd9Sstevel@tonic-gate 		mutex_exit(&cp->cache_lock);
18177c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADADDR, cp, buf);
18187c478bd9Sstevel@tonic-gate 		return;
18197c478bd9Sstevel@tonic-gate 	}
18207c478bd9Sstevel@tonic-gate 
1821b5fca8f8Stomee 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1822b5fca8f8Stomee 		/*
1823b5fca8f8Stomee 		 * If this is the buffer that prevented the consolidator from
1824b5fca8f8Stomee 		 * clearing the slab, we can reset the slab flags now that the
1825b5fca8f8Stomee 		 * buffer is freed. (It makes sense to do this in
1826b5fca8f8Stomee 		 * kmem_cache_free(), where the client gives up ownership of the
1827b5fca8f8Stomee 		 * buffer, but on the hot path the test is too expensive.)
1828b5fca8f8Stomee 		 */
1829b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
1830b5fca8f8Stomee 	}
1831b5fca8f8Stomee 
18327c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
18337c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_CONTENTS)
18347c478bd9Sstevel@tonic-gate 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
18357c478bd9Sstevel@tonic-gate 			    kmem_log_enter(kmem_content_log, buf,
18369f1b636aStomee 			    cp->cache_contents);
18377c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
18387c478bd9Sstevel@tonic-gate 	}
18397c478bd9Sstevel@tonic-gate 
18407c478bd9Sstevel@tonic-gate 	bcp->bc_next = sp->slab_head;
18417c478bd9Sstevel@tonic-gate 	sp->slab_head = bcp;
18427c478bd9Sstevel@tonic-gate 
18439f1b636aStomee 	cp->cache_bufslab++;
18447c478bd9Sstevel@tonic-gate 	ASSERT(sp->slab_refcnt >= 1);
1845b5fca8f8Stomee 
18467c478bd9Sstevel@tonic-gate 	if (--sp->slab_refcnt == 0) {
18477c478bd9Sstevel@tonic-gate 		/*
18487c478bd9Sstevel@tonic-gate 		 * There are no outstanding allocations from this slab,
18497c478bd9Sstevel@tonic-gate 		 * so we can reclaim the memory.
18507c478bd9Sstevel@tonic-gate 		 */
1851b5fca8f8Stomee 		if (sp->slab_chunks == 1) {
1852b5fca8f8Stomee 			list_remove(&cp->cache_complete_slabs, sp);
1853b5fca8f8Stomee 			cp->cache_complete_slab_count--;
1854b5fca8f8Stomee 		} else {
1855b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
1856b5fca8f8Stomee 		}
1857b5fca8f8Stomee 
18587c478bd9Sstevel@tonic-gate 		cp->cache_buftotal -= sp->slab_chunks;
18599f1b636aStomee 		cp->cache_bufslab -= sp->slab_chunks;
1860b5fca8f8Stomee 		/*
1861b5fca8f8Stomee 		 * Defer releasing the slab to the virtual memory subsystem
1862b5fca8f8Stomee 		 * while there is a pending move callback, since we guarantee
1863b5fca8f8Stomee 		 * that buffers passed to the move callback have only been
1864b5fca8f8Stomee 		 * touched by kmem or by the client itself. Since the memory
1865b5fca8f8Stomee 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1866b5fca8f8Stomee 		 * set at least one of the two lowest order bits, the client can
1867b5fca8f8Stomee 		 * test those bits in the move callback to determine whether or
1868b5fca8f8Stomee 		 * not it knows about the buffer (assuming that the client also
1869b5fca8f8Stomee 		 * sets one of those low order bits whenever it frees a buffer).
1870b5fca8f8Stomee 		 */
1871b5fca8f8Stomee 		if (cp->cache_defrag == NULL ||
1872b5fca8f8Stomee 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1873b5fca8f8Stomee 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1874b5fca8f8Stomee 			cp->cache_slab_destroy++;
1875b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1876b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
1877b5fca8f8Stomee 		} else {
1878b5fca8f8Stomee 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1879b5fca8f8Stomee 			/*
1880b5fca8f8Stomee 			 * Slabs are inserted at both ends of the deadlist to
1881b5fca8f8Stomee 			 * distinguish between slabs freed while move callbacks
1882b5fca8f8Stomee 			 * are pending (list head) and a slab freed while the
1883b5fca8f8Stomee 			 * lock is dropped in kmem_move_buffers() (list tail) so
1884b5fca8f8Stomee 			 * that in both cases slab_destroy() is called from the
1885b5fca8f8Stomee 			 * right context.
1886b5fca8f8Stomee 			 */
1887b5fca8f8Stomee 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1888b5fca8f8Stomee 				list_insert_tail(deadlist, sp);
1889b5fca8f8Stomee 			} else {
1890b5fca8f8Stomee 				list_insert_head(deadlist, sp);
1891b5fca8f8Stomee 			}
1892b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount++;
1893b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
1894b5fca8f8Stomee 		}
18957c478bd9Sstevel@tonic-gate 		return;
18967c478bd9Sstevel@tonic-gate 	}
1897b5fca8f8Stomee 
1898b5fca8f8Stomee 	if (bcp->bc_next == NULL) {
1899b5fca8f8Stomee 		/* Transition the slab from completely allocated to partial. */
1900b5fca8f8Stomee 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1901b5fca8f8Stomee 		ASSERT(sp->slab_chunks > 1);
1902b5fca8f8Stomee 		list_remove(&cp->cache_complete_slabs, sp);
1903b5fca8f8Stomee 		cp->cache_complete_slab_count--;
1904b5fca8f8Stomee 		avl_add(&cp->cache_partial_slabs, sp);
1905b5fca8f8Stomee 	} else {
1906b5fca8f8Stomee #ifdef	DEBUG
1907b5fca8f8Stomee 		if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1908b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1909b5fca8f8Stomee 		} else {
1910b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1911b5fca8f8Stomee 		}
1912b5fca8f8Stomee #else
1913b5fca8f8Stomee 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1914b5fca8f8Stomee #endif
1915b5fca8f8Stomee 	}
1916b5fca8f8Stomee 
1917b5fca8f8Stomee 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1918b5fca8f8Stomee 	    (cp->cache_complete_slab_count +
1919b5fca8f8Stomee 	    avl_numnodes(&cp->cache_partial_slabs) +
1920b5fca8f8Stomee 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
19217c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
19227c478bd9Sstevel@tonic-gate }
19237c478bd9Sstevel@tonic-gate 
1924b5fca8f8Stomee /*
1925b5fca8f8Stomee  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1926b5fca8f8Stomee  */
19277c478bd9Sstevel@tonic-gate static int
19287c478bd9Sstevel@tonic-gate kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
19297c478bd9Sstevel@tonic-gate     caddr_t caller)
19307c478bd9Sstevel@tonic-gate {
19317c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
19327c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
19337c478bd9Sstevel@tonic-gate 	uint32_t mtbf;
19347c478bd9Sstevel@tonic-gate 
19357c478bd9Sstevel@tonic-gate 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
19367c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFTAG, cp, buf);
19377c478bd9Sstevel@tonic-gate 		return (-1);
19387c478bd9Sstevel@tonic-gate 	}
19397c478bd9Sstevel@tonic-gate 
19407c478bd9Sstevel@tonic-gate 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
19417c478bd9Sstevel@tonic-gate 
19427c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
19437c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFCTL, cp, buf);
19447c478bd9Sstevel@tonic-gate 		return (-1);
19457c478bd9Sstevel@tonic-gate 	}
19467c478bd9Sstevel@tonic-gate 
19477c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
19487c478bd9Sstevel@tonic-gate 		if (!construct && (cp->cache_flags & KMF_LITE)) {
19497c478bd9Sstevel@tonic-gate 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
19507c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
19517c478bd9Sstevel@tonic-gate 				return (-1);
19527c478bd9Sstevel@tonic-gate 			}
19537c478bd9Sstevel@tonic-gate 			if (cp->cache_constructor != NULL)
19547c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = btp->bt_redzone;
19557c478bd9Sstevel@tonic-gate 			else
19567c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
19577c478bd9Sstevel@tonic-gate 		} else {
19587c478bd9Sstevel@tonic-gate 			construct = 1;
19597c478bd9Sstevel@tonic-gate 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
19607c478bd9Sstevel@tonic-gate 			    KMEM_UNINITIALIZED_PATTERN, buf,
19617c478bd9Sstevel@tonic-gate 			    cp->cache_verify)) {
19627c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
19637c478bd9Sstevel@tonic-gate 				return (-1);
19647c478bd9Sstevel@tonic-gate 			}
19657c478bd9Sstevel@tonic-gate 		}
19667c478bd9Sstevel@tonic-gate 	}
19677c478bd9Sstevel@tonic-gate 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
19687c478bd9Sstevel@tonic-gate 
19697c478bd9Sstevel@tonic-gate 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
19707c478bd9Sstevel@tonic-gate 	    gethrtime() % mtbf == 0 &&
19717c478bd9Sstevel@tonic-gate 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
19727c478bd9Sstevel@tonic-gate 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
19737c478bd9Sstevel@tonic-gate 		if (!construct && cp->cache_destructor != NULL)
19747c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
19757c478bd9Sstevel@tonic-gate 	} else {
19767c478bd9Sstevel@tonic-gate 		mtbf = 0;
19777c478bd9Sstevel@tonic-gate 	}
19787c478bd9Sstevel@tonic-gate 
19797c478bd9Sstevel@tonic-gate 	if (mtbf || (construct && cp->cache_constructor != NULL &&
19807c478bd9Sstevel@tonic-gate 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
19817c478bd9Sstevel@tonic-gate 		atomic_add_64(&cp->cache_alloc_fail, 1);
19827c478bd9Sstevel@tonic-gate 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
19837c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_DEADBEEF)
19847c478bd9Sstevel@tonic-gate 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
19857c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
1986b5fca8f8Stomee 		return (1);
19877c478bd9Sstevel@tonic-gate 	}
19887c478bd9Sstevel@tonic-gate 
19897c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_AUDIT) {
19907c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
19917c478bd9Sstevel@tonic-gate 	}
19927c478bd9Sstevel@tonic-gate 
19937c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_LITE) &&
19947c478bd9Sstevel@tonic-gate 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
19957c478bd9Sstevel@tonic-gate 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
19967c478bd9Sstevel@tonic-gate 	}
19977c478bd9Sstevel@tonic-gate 
19987c478bd9Sstevel@tonic-gate 	return (0);
19997c478bd9Sstevel@tonic-gate }
20007c478bd9Sstevel@tonic-gate 
20017c478bd9Sstevel@tonic-gate static int
20027c478bd9Sstevel@tonic-gate kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
20037c478bd9Sstevel@tonic-gate {
20047c478bd9Sstevel@tonic-gate 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
20057c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
20067c478bd9Sstevel@tonic-gate 	kmem_slab_t *sp;
20077c478bd9Sstevel@tonic-gate 
20087c478bd9Sstevel@tonic-gate 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
20097c478bd9Sstevel@tonic-gate 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
20107c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_DUPFREE, cp, buf);
20117c478bd9Sstevel@tonic-gate 			return (-1);
20127c478bd9Sstevel@tonic-gate 		}
20137c478bd9Sstevel@tonic-gate 		sp = kmem_findslab(cp, buf);
20147c478bd9Sstevel@tonic-gate 		if (sp == NULL || sp->slab_cache != cp)
20157c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_BADADDR, cp, buf);
20167c478bd9Sstevel@tonic-gate 		else
20177c478bd9Sstevel@tonic-gate 			kmem_error(KMERR_REDZONE, cp, buf);
20187c478bd9Sstevel@tonic-gate 		return (-1);
20197c478bd9Sstevel@tonic-gate 	}
20207c478bd9Sstevel@tonic-gate 
20217c478bd9Sstevel@tonic-gate 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
20227c478bd9Sstevel@tonic-gate 
20237c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
20247c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_BADBUFCTL, cp, buf);
20257c478bd9Sstevel@tonic-gate 		return (-1);
20267c478bd9Sstevel@tonic-gate 	}
20277c478bd9Sstevel@tonic-gate 
20287c478bd9Sstevel@tonic-gate 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
20297c478bd9Sstevel@tonic-gate 		kmem_error(KMERR_REDZONE, cp, buf);
20307c478bd9Sstevel@tonic-gate 		return (-1);
20317c478bd9Sstevel@tonic-gate 	}
20327c478bd9Sstevel@tonic-gate 
20337c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_AUDIT) {
20347c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_CONTENTS)
20357c478bd9Sstevel@tonic-gate 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
20367c478bd9Sstevel@tonic-gate 			    buf, cp->cache_contents);
20377c478bd9Sstevel@tonic-gate 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
20387c478bd9Sstevel@tonic-gate 	}
20397c478bd9Sstevel@tonic-gate 
20407c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_LITE) &&
20417c478bd9Sstevel@tonic-gate 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
20427c478bd9Sstevel@tonic-gate 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
20437c478bd9Sstevel@tonic-gate 	}
20447c478bd9Sstevel@tonic-gate 
20457c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
20467c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
20477c478bd9Sstevel@tonic-gate 			btp->bt_redzone = *(uint64_t *)buf;
20487c478bd9Sstevel@tonic-gate 		else if (cp->cache_destructor != NULL)
20497c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
20507c478bd9Sstevel@tonic-gate 
20517c478bd9Sstevel@tonic-gate 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
20527c478bd9Sstevel@tonic-gate 	}
20537c478bd9Sstevel@tonic-gate 
20547c478bd9Sstevel@tonic-gate 	return (0);
20557c478bd9Sstevel@tonic-gate }
20567c478bd9Sstevel@tonic-gate 
20577c478bd9Sstevel@tonic-gate /*
20587c478bd9Sstevel@tonic-gate  * Free each object in magazine mp to cp's slab layer, and free mp itself.
20597c478bd9Sstevel@tonic-gate  */
20607c478bd9Sstevel@tonic-gate static void
20617c478bd9Sstevel@tonic-gate kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
20627c478bd9Sstevel@tonic-gate {
20637c478bd9Sstevel@tonic-gate 	int round;
20647c478bd9Sstevel@tonic-gate 
2065b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2066b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
20677c478bd9Sstevel@tonic-gate 
20687c478bd9Sstevel@tonic-gate 	for (round = 0; round < nrounds; round++) {
20697c478bd9Sstevel@tonic-gate 		void *buf = mp->mag_round[round];
20707c478bd9Sstevel@tonic-gate 
20717c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_DEADBEEF) {
20727c478bd9Sstevel@tonic-gate 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
20737c478bd9Sstevel@tonic-gate 			    cp->cache_verify) != NULL) {
20747c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_MODIFIED, cp, buf);
20757c478bd9Sstevel@tonic-gate 				continue;
20767c478bd9Sstevel@tonic-gate 			}
20777c478bd9Sstevel@tonic-gate 			if ((cp->cache_flags & KMF_LITE) &&
20787c478bd9Sstevel@tonic-gate 			    cp->cache_destructor != NULL) {
20797c478bd9Sstevel@tonic-gate 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
20807c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = btp->bt_redzone;
20817c478bd9Sstevel@tonic-gate 				cp->cache_destructor(buf, cp->cache_private);
20827c478bd9Sstevel@tonic-gate 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
20837c478bd9Sstevel@tonic-gate 			}
20847c478bd9Sstevel@tonic-gate 		} else if (cp->cache_destructor != NULL) {
20857c478bd9Sstevel@tonic-gate 			cp->cache_destructor(buf, cp->cache_private);
20867c478bd9Sstevel@tonic-gate 		}
20877c478bd9Sstevel@tonic-gate 
20887c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
20897c478bd9Sstevel@tonic-gate 	}
20907c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
20917c478bd9Sstevel@tonic-gate 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
20927c478bd9Sstevel@tonic-gate }
20937c478bd9Sstevel@tonic-gate 
20947c478bd9Sstevel@tonic-gate /*
20957c478bd9Sstevel@tonic-gate  * Allocate a magazine from the depot.
20967c478bd9Sstevel@tonic-gate  */
20977c478bd9Sstevel@tonic-gate static kmem_magazine_t *
20987c478bd9Sstevel@tonic-gate kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
20997c478bd9Sstevel@tonic-gate {
21007c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp;
21017c478bd9Sstevel@tonic-gate 
21027c478bd9Sstevel@tonic-gate 	/*
21037c478bd9Sstevel@tonic-gate 	 * If we can't get the depot lock without contention,
21047c478bd9Sstevel@tonic-gate 	 * update our contention count.  We use the depot
21057c478bd9Sstevel@tonic-gate 	 * contention rate to determine whether we need to
21067c478bd9Sstevel@tonic-gate 	 * increase the magazine size for better scalability.
21077c478bd9Sstevel@tonic-gate 	 */
21087c478bd9Sstevel@tonic-gate 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
21097c478bd9Sstevel@tonic-gate 		mutex_enter(&cp->cache_depot_lock);
21107c478bd9Sstevel@tonic-gate 		cp->cache_depot_contention++;
21117c478bd9Sstevel@tonic-gate 	}
21127c478bd9Sstevel@tonic-gate 
21137c478bd9Sstevel@tonic-gate 	if ((mp = mlp->ml_list) != NULL) {
21147c478bd9Sstevel@tonic-gate 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
21157c478bd9Sstevel@tonic-gate 		mlp->ml_list = mp->mag_next;
21167c478bd9Sstevel@tonic-gate 		if (--mlp->ml_total < mlp->ml_min)
21177c478bd9Sstevel@tonic-gate 			mlp->ml_min = mlp->ml_total;
21187c478bd9Sstevel@tonic-gate 		mlp->ml_alloc++;
21197c478bd9Sstevel@tonic-gate 	}
21207c478bd9Sstevel@tonic-gate 
21217c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
21227c478bd9Sstevel@tonic-gate 
21237c478bd9Sstevel@tonic-gate 	return (mp);
21247c478bd9Sstevel@tonic-gate }
21257c478bd9Sstevel@tonic-gate 
21267c478bd9Sstevel@tonic-gate /*
21277c478bd9Sstevel@tonic-gate  * Free a magazine to the depot.
21287c478bd9Sstevel@tonic-gate  */
21297c478bd9Sstevel@tonic-gate static void
21307c478bd9Sstevel@tonic-gate kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
21317c478bd9Sstevel@tonic-gate {
21327c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
21337c478bd9Sstevel@tonic-gate 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
21347c478bd9Sstevel@tonic-gate 	mp->mag_next = mlp->ml_list;
21357c478bd9Sstevel@tonic-gate 	mlp->ml_list = mp;
21367c478bd9Sstevel@tonic-gate 	mlp->ml_total++;
21377c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
21387c478bd9Sstevel@tonic-gate }
21397c478bd9Sstevel@tonic-gate 
21407c478bd9Sstevel@tonic-gate /*
21417c478bd9Sstevel@tonic-gate  * Update the working set statistics for cp's depot.
21427c478bd9Sstevel@tonic-gate  */
21437c478bd9Sstevel@tonic-gate static void
21447c478bd9Sstevel@tonic-gate kmem_depot_ws_update(kmem_cache_t *cp)
21457c478bd9Sstevel@tonic-gate {
21467c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
21477c478bd9Sstevel@tonic-gate 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
21487c478bd9Sstevel@tonic-gate 	cp->cache_full.ml_min = cp->cache_full.ml_total;
21497c478bd9Sstevel@tonic-gate 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
21507c478bd9Sstevel@tonic-gate 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
21517c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
21527c478bd9Sstevel@tonic-gate }
21537c478bd9Sstevel@tonic-gate 
21547c478bd9Sstevel@tonic-gate /*
21557c478bd9Sstevel@tonic-gate  * Reap all magazines that have fallen out of the depot's working set.
21567c478bd9Sstevel@tonic-gate  */
21577c478bd9Sstevel@tonic-gate static void
21587c478bd9Sstevel@tonic-gate kmem_depot_ws_reap(kmem_cache_t *cp)
21597c478bd9Sstevel@tonic-gate {
21607c478bd9Sstevel@tonic-gate 	long reap;
21617c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp;
21627c478bd9Sstevel@tonic-gate 
2163b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2164b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
21657c478bd9Sstevel@tonic-gate 
21667c478bd9Sstevel@tonic-gate 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
21677c478bd9Sstevel@tonic-gate 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
21687c478bd9Sstevel@tonic-gate 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
21697c478bd9Sstevel@tonic-gate 
21707c478bd9Sstevel@tonic-gate 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
21717c478bd9Sstevel@tonic-gate 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
21727c478bd9Sstevel@tonic-gate 		kmem_magazine_destroy(cp, mp, 0);
21737c478bd9Sstevel@tonic-gate }
21747c478bd9Sstevel@tonic-gate 
21757c478bd9Sstevel@tonic-gate static void
21767c478bd9Sstevel@tonic-gate kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
21777c478bd9Sstevel@tonic-gate {
21787c478bd9Sstevel@tonic-gate 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
21797c478bd9Sstevel@tonic-gate 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
21807c478bd9Sstevel@tonic-gate 	ASSERT(ccp->cc_magsize > 0);
21817c478bd9Sstevel@tonic-gate 
21827c478bd9Sstevel@tonic-gate 	ccp->cc_ploaded = ccp->cc_loaded;
21837c478bd9Sstevel@tonic-gate 	ccp->cc_prounds = ccp->cc_rounds;
21847c478bd9Sstevel@tonic-gate 	ccp->cc_loaded = mp;
21857c478bd9Sstevel@tonic-gate 	ccp->cc_rounds = rounds;
21867c478bd9Sstevel@tonic-gate }
21877c478bd9Sstevel@tonic-gate 
21887c478bd9Sstevel@tonic-gate /*
21897c478bd9Sstevel@tonic-gate  * Allocate a constructed object from cache cp.
21907c478bd9Sstevel@tonic-gate  */
21917c478bd9Sstevel@tonic-gate void *
21927c478bd9Sstevel@tonic-gate kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
21937c478bd9Sstevel@tonic-gate {
21947c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
21957c478bd9Sstevel@tonic-gate 	kmem_magazine_t *fmp;
21967c478bd9Sstevel@tonic-gate 	void *buf;
21977c478bd9Sstevel@tonic-gate 
21987c478bd9Sstevel@tonic-gate 	mutex_enter(&ccp->cc_lock);
21997c478bd9Sstevel@tonic-gate 	for (;;) {
22007c478bd9Sstevel@tonic-gate 		/*
22017c478bd9Sstevel@tonic-gate 		 * If there's an object available in the current CPU's
22027c478bd9Sstevel@tonic-gate 		 * loaded magazine, just take it and return.
22037c478bd9Sstevel@tonic-gate 		 */
22047c478bd9Sstevel@tonic-gate 		if (ccp->cc_rounds > 0) {
22057c478bd9Sstevel@tonic-gate 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
22067c478bd9Sstevel@tonic-gate 			ccp->cc_alloc++;
22077c478bd9Sstevel@tonic-gate 			mutex_exit(&ccp->cc_lock);
22087c478bd9Sstevel@tonic-gate 			if ((ccp->cc_flags & KMF_BUFTAG) &&
22097c478bd9Sstevel@tonic-gate 			    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2210b5fca8f8Stomee 			    caller()) != 0) {
22117c478bd9Sstevel@tonic-gate 				if (kmflag & KM_NOSLEEP)
22127c478bd9Sstevel@tonic-gate 					return (NULL);
22137c478bd9Sstevel@tonic-gate 				mutex_enter(&ccp->cc_lock);
22147c478bd9Sstevel@tonic-gate 				continue;
22157c478bd9Sstevel@tonic-gate 			}
22167c478bd9Sstevel@tonic-gate 			return (buf);
22177c478bd9Sstevel@tonic-gate 		}
22187c478bd9Sstevel@tonic-gate 
22197c478bd9Sstevel@tonic-gate 		/*
22207c478bd9Sstevel@tonic-gate 		 * The loaded magazine is empty.  If the previously loaded
22217c478bd9Sstevel@tonic-gate 		 * magazine was full, exchange them and try again.
22227c478bd9Sstevel@tonic-gate 		 */
22237c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds > 0) {
22247c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
22257c478bd9Sstevel@tonic-gate 			continue;
22267c478bd9Sstevel@tonic-gate 		}
22277c478bd9Sstevel@tonic-gate 
22287c478bd9Sstevel@tonic-gate 		/*
22297c478bd9Sstevel@tonic-gate 		 * If the magazine layer is disabled, break out now.
22307c478bd9Sstevel@tonic-gate 		 */
22317c478bd9Sstevel@tonic-gate 		if (ccp->cc_magsize == 0)
22327c478bd9Sstevel@tonic-gate 			break;
22337c478bd9Sstevel@tonic-gate 
22347c478bd9Sstevel@tonic-gate 		/*
22357c478bd9Sstevel@tonic-gate 		 * Try to get a full magazine from the depot.
22367c478bd9Sstevel@tonic-gate 		 */
22377c478bd9Sstevel@tonic-gate 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
22387c478bd9Sstevel@tonic-gate 		if (fmp != NULL) {
22397c478bd9Sstevel@tonic-gate 			if (ccp->cc_ploaded != NULL)
22407c478bd9Sstevel@tonic-gate 				kmem_depot_free(cp, &cp->cache_empty,
22417c478bd9Sstevel@tonic-gate 				    ccp->cc_ploaded);
22427c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
22437c478bd9Sstevel@tonic-gate 			continue;
22447c478bd9Sstevel@tonic-gate 		}
22457c478bd9Sstevel@tonic-gate 
22467c478bd9Sstevel@tonic-gate 		/*
22477c478bd9Sstevel@tonic-gate 		 * There are no full magazines in the depot,
22487c478bd9Sstevel@tonic-gate 		 * so fall through to the slab layer.
22497c478bd9Sstevel@tonic-gate 		 */
22507c478bd9Sstevel@tonic-gate 		break;
22517c478bd9Sstevel@tonic-gate 	}
22527c478bd9Sstevel@tonic-gate 	mutex_exit(&ccp->cc_lock);
22537c478bd9Sstevel@tonic-gate 
22547c478bd9Sstevel@tonic-gate 	/*
22557c478bd9Sstevel@tonic-gate 	 * We couldn't allocate a constructed object from the magazine layer,
22567c478bd9Sstevel@tonic-gate 	 * so get a raw buffer from the slab layer and apply its constructor.
22577c478bd9Sstevel@tonic-gate 	 */
22587c478bd9Sstevel@tonic-gate 	buf = kmem_slab_alloc(cp, kmflag);
22597c478bd9Sstevel@tonic-gate 
22607c478bd9Sstevel@tonic-gate 	if (buf == NULL)
22617c478bd9Sstevel@tonic-gate 		return (NULL);
22627c478bd9Sstevel@tonic-gate 
22637c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_BUFTAG) {
22647c478bd9Sstevel@tonic-gate 		/*
22657c478bd9Sstevel@tonic-gate 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
22667c478bd9Sstevel@tonic-gate 		 */
2267b5fca8f8Stomee 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2268b5fca8f8Stomee 		if (rc != 0) {
22697c478bd9Sstevel@tonic-gate 			if (kmflag & KM_NOSLEEP)
22707c478bd9Sstevel@tonic-gate 				return (NULL);
22717c478bd9Sstevel@tonic-gate 			/*
22727c478bd9Sstevel@tonic-gate 			 * kmem_cache_alloc_debug() detected corruption
2273b5fca8f8Stomee 			 * but didn't panic (kmem_panic <= 0). We should not be
2274b5fca8f8Stomee 			 * here because the constructor failed (indicated by a
2275b5fca8f8Stomee 			 * return code of 1). Try again.
22767c478bd9Sstevel@tonic-gate 			 */
2277b5fca8f8Stomee 			ASSERT(rc == -1);
22787c478bd9Sstevel@tonic-gate 			return (kmem_cache_alloc(cp, kmflag));
22797c478bd9Sstevel@tonic-gate 		}
22807c478bd9Sstevel@tonic-gate 		return (buf);
22817c478bd9Sstevel@tonic-gate 	}
22827c478bd9Sstevel@tonic-gate 
22837c478bd9Sstevel@tonic-gate 	if (cp->cache_constructor != NULL &&
22847c478bd9Sstevel@tonic-gate 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
22857c478bd9Sstevel@tonic-gate 		atomic_add_64(&cp->cache_alloc_fail, 1);
22867c478bd9Sstevel@tonic-gate 		kmem_slab_free(cp, buf);
22877c478bd9Sstevel@tonic-gate 		return (NULL);
22887c478bd9Sstevel@tonic-gate 	}
22897c478bd9Sstevel@tonic-gate 
22907c478bd9Sstevel@tonic-gate 	return (buf);
22917c478bd9Sstevel@tonic-gate }
22927c478bd9Sstevel@tonic-gate 
22937c478bd9Sstevel@tonic-gate /*
2294b5fca8f8Stomee  * The freed argument tells whether or not kmem_cache_free_debug() has already
2295b5fca8f8Stomee  * been called so that we can avoid the duplicate free error. For example, a
2296b5fca8f8Stomee  * buffer on a magazine has already been freed by the client but is still
2297b5fca8f8Stomee  * constructed.
22987c478bd9Sstevel@tonic-gate  */
2299b5fca8f8Stomee static void
2300b5fca8f8Stomee kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
23017c478bd9Sstevel@tonic-gate {
2302b5fca8f8Stomee 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
23037c478bd9Sstevel@tonic-gate 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
23047c478bd9Sstevel@tonic-gate 			return;
23057c478bd9Sstevel@tonic-gate 
2306b5fca8f8Stomee 	/*
2307b5fca8f8Stomee 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2308b5fca8f8Stomee 	 * kmem_cache_free_debug() will have already applied the destructor.
2309b5fca8f8Stomee 	 */
2310b5fca8f8Stomee 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2311b5fca8f8Stomee 	    cp->cache_destructor != NULL) {
2312b5fca8f8Stomee 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2313b5fca8f8Stomee 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2314b5fca8f8Stomee 			*(uint64_t *)buf = btp->bt_redzone;
2315b5fca8f8Stomee 			cp->cache_destructor(buf, cp->cache_private);
2316b5fca8f8Stomee 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2317b5fca8f8Stomee 		} else {
2318b5fca8f8Stomee 			cp->cache_destructor(buf, cp->cache_private);
2319b5fca8f8Stomee 		}
2320b5fca8f8Stomee 	}
2321b5fca8f8Stomee 
2322b5fca8f8Stomee 	kmem_slab_free(cp, buf);
2323b5fca8f8Stomee }
2324b5fca8f8Stomee 
2325b5fca8f8Stomee /*
2326b5fca8f8Stomee  * Free a constructed object to cache cp.
2327b5fca8f8Stomee  */
2328b5fca8f8Stomee void
2329b5fca8f8Stomee kmem_cache_free(kmem_cache_t *cp, void *buf)
2330b5fca8f8Stomee {
2331b5fca8f8Stomee 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2332b5fca8f8Stomee 	kmem_magazine_t *emp;
2333b5fca8f8Stomee 	kmem_magtype_t *mtp;
2334b5fca8f8Stomee 
2335b5fca8f8Stomee 	/*
2336b5fca8f8Stomee 	 * The client must not free either of the buffers passed to the move
2337b5fca8f8Stomee 	 * callback function.
2338b5fca8f8Stomee 	 */
2339b5fca8f8Stomee 	ASSERT(cp->cache_defrag == NULL ||
2340b5fca8f8Stomee 	    cp->cache_defrag->kmd_thread != curthread ||
2341b5fca8f8Stomee 	    (buf != cp->cache_defrag->kmd_from_buf &&
2342b5fca8f8Stomee 	    buf != cp->cache_defrag->kmd_to_buf));
2343b5fca8f8Stomee 
2344b5fca8f8Stomee 	if (ccp->cc_flags & KMF_BUFTAG)
2345b5fca8f8Stomee 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2346b5fca8f8Stomee 			return;
2347b5fca8f8Stomee 
2348b5fca8f8Stomee 	mutex_enter(&ccp->cc_lock);
2349b5fca8f8Stomee 	for (;;) {
2350b5fca8f8Stomee 		/*
2351b5fca8f8Stomee 		 * If there's a slot available in the current CPU's
2352b5fca8f8Stomee 		 * loaded magazine, just put the object there and return.
2353b5fca8f8Stomee 		 */
2354b5fca8f8Stomee 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2355b5fca8f8Stomee 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2356b5fca8f8Stomee 			ccp->cc_free++;
2357b5fca8f8Stomee 			mutex_exit(&ccp->cc_lock);
2358b5fca8f8Stomee 			return;
2359b5fca8f8Stomee 		}
2360b5fca8f8Stomee 
23617c478bd9Sstevel@tonic-gate 		/*
23627c478bd9Sstevel@tonic-gate 		 * The loaded magazine is full.  If the previously loaded
23637c478bd9Sstevel@tonic-gate 		 * magazine was empty, exchange them and try again.
23647c478bd9Sstevel@tonic-gate 		 */
23657c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds == 0) {
23667c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
23677c478bd9Sstevel@tonic-gate 			continue;
23687c478bd9Sstevel@tonic-gate 		}
23697c478bd9Sstevel@tonic-gate 
23707c478bd9Sstevel@tonic-gate 		/*
23717c478bd9Sstevel@tonic-gate 		 * If the magazine layer is disabled, break out now.
23727c478bd9Sstevel@tonic-gate 		 */
23737c478bd9Sstevel@tonic-gate 		if (ccp->cc_magsize == 0)
23747c478bd9Sstevel@tonic-gate 			break;
23757c478bd9Sstevel@tonic-gate 
23767c478bd9Sstevel@tonic-gate 		/*
23777c478bd9Sstevel@tonic-gate 		 * Try to get an empty magazine from the depot.
23787c478bd9Sstevel@tonic-gate 		 */
23797c478bd9Sstevel@tonic-gate 		emp = kmem_depot_alloc(cp, &cp->cache_empty);
23807c478bd9Sstevel@tonic-gate 		if (emp != NULL) {
23817c478bd9Sstevel@tonic-gate 			if (ccp->cc_ploaded != NULL)
23827c478bd9Sstevel@tonic-gate 				kmem_depot_free(cp, &cp->cache_full,
23837c478bd9Sstevel@tonic-gate 				    ccp->cc_ploaded);
23847c478bd9Sstevel@tonic-gate 			kmem_cpu_reload(ccp, emp, 0);
23857c478bd9Sstevel@tonic-gate 			continue;
23867c478bd9Sstevel@tonic-gate 		}
23877c478bd9Sstevel@tonic-gate 
23887c478bd9Sstevel@tonic-gate 		/*
23897c478bd9Sstevel@tonic-gate 		 * There are no empty magazines in the depot,
23907c478bd9Sstevel@tonic-gate 		 * so try to allocate a new one.  We must drop all locks
23917c478bd9Sstevel@tonic-gate 		 * across kmem_cache_alloc() because lower layers may
23927c478bd9Sstevel@tonic-gate 		 * attempt to allocate from this cache.
23937c478bd9Sstevel@tonic-gate 		 */
23947c478bd9Sstevel@tonic-gate 		mtp = cp->cache_magtype;
23957c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
23967c478bd9Sstevel@tonic-gate 		emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
23977c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
23987c478bd9Sstevel@tonic-gate 
23997c478bd9Sstevel@tonic-gate 		if (emp != NULL) {
24007c478bd9Sstevel@tonic-gate 			/*
24017c478bd9Sstevel@tonic-gate 			 * We successfully allocated an empty magazine.
24027c478bd9Sstevel@tonic-gate 			 * However, we had to drop ccp->cc_lock to do it,
24037c478bd9Sstevel@tonic-gate 			 * so the cache's magazine size may have changed.
24047c478bd9Sstevel@tonic-gate 			 * If so, free the magazine and try again.
24057c478bd9Sstevel@tonic-gate 			 */
24067c478bd9Sstevel@tonic-gate 			if (ccp->cc_magsize != mtp->mt_magsize) {
24077c478bd9Sstevel@tonic-gate 				mutex_exit(&ccp->cc_lock);
24087c478bd9Sstevel@tonic-gate 				kmem_cache_free(mtp->mt_cache, emp);
24097c478bd9Sstevel@tonic-gate 				mutex_enter(&ccp->cc_lock);
24107c478bd9Sstevel@tonic-gate 				continue;
24117c478bd9Sstevel@tonic-gate 			}
24127c478bd9Sstevel@tonic-gate 
24137c478bd9Sstevel@tonic-gate 			/*
24147c478bd9Sstevel@tonic-gate 			 * We got a magazine of the right size.  Add it to
24157c478bd9Sstevel@tonic-gate 			 * the depot and try the whole dance again.
24167c478bd9Sstevel@tonic-gate 			 */
24177c478bd9Sstevel@tonic-gate 			kmem_depot_free(cp, &cp->cache_empty, emp);
24187c478bd9Sstevel@tonic-gate 			continue;
24197c478bd9Sstevel@tonic-gate 		}
24207c478bd9Sstevel@tonic-gate 
24217c478bd9Sstevel@tonic-gate 		/*
24227c478bd9Sstevel@tonic-gate 		 * We couldn't allocate an empty magazine,
24237c478bd9Sstevel@tonic-gate 		 * so fall through to the slab layer.
24247c478bd9Sstevel@tonic-gate 		 */
24257c478bd9Sstevel@tonic-gate 		break;
24267c478bd9Sstevel@tonic-gate 	}
24277c478bd9Sstevel@tonic-gate 	mutex_exit(&ccp->cc_lock);
24287c478bd9Sstevel@tonic-gate 
24297c478bd9Sstevel@tonic-gate 	/*
24307c478bd9Sstevel@tonic-gate 	 * We couldn't free our constructed object to the magazine layer,
24317c478bd9Sstevel@tonic-gate 	 * so apply its destructor and free it to the slab layer.
24327c478bd9Sstevel@tonic-gate 	 */
2433b5fca8f8Stomee 	kmem_slab_free_constructed(cp, buf, B_TRUE);
24347c478bd9Sstevel@tonic-gate }
24357c478bd9Sstevel@tonic-gate 
24367c478bd9Sstevel@tonic-gate void *
24377c478bd9Sstevel@tonic-gate kmem_zalloc(size_t size, int kmflag)
24387c478bd9Sstevel@tonic-gate {
2439dce01e3fSJonathan W Adams 	size_t index;
24407c478bd9Sstevel@tonic-gate 	void *buf;
24417c478bd9Sstevel@tonic-gate 
2442dce01e3fSJonathan W Adams 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
24437c478bd9Sstevel@tonic-gate 		kmem_cache_t *cp = kmem_alloc_table[index];
24447c478bd9Sstevel@tonic-gate 		buf = kmem_cache_alloc(cp, kmflag);
24457c478bd9Sstevel@tonic-gate 		if (buf != NULL) {
24467c478bd9Sstevel@tonic-gate 			if (cp->cache_flags & KMF_BUFTAG) {
24477c478bd9Sstevel@tonic-gate 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
24487c478bd9Sstevel@tonic-gate 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
24497c478bd9Sstevel@tonic-gate 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
24507c478bd9Sstevel@tonic-gate 
24517c478bd9Sstevel@tonic-gate 				if (cp->cache_flags & KMF_LITE) {
24527c478bd9Sstevel@tonic-gate 					KMEM_BUFTAG_LITE_ENTER(btp,
24537c478bd9Sstevel@tonic-gate 					    kmem_lite_count, caller());
24547c478bd9Sstevel@tonic-gate 				}
24557c478bd9Sstevel@tonic-gate 			}
24567c478bd9Sstevel@tonic-gate 			bzero(buf, size);
24577c478bd9Sstevel@tonic-gate 		}
24587c478bd9Sstevel@tonic-gate 	} else {
24597c478bd9Sstevel@tonic-gate 		buf = kmem_alloc(size, kmflag);
24607c478bd9Sstevel@tonic-gate 		if (buf != NULL)
24617c478bd9Sstevel@tonic-gate 			bzero(buf, size);
24627c478bd9Sstevel@tonic-gate 	}
24637c478bd9Sstevel@tonic-gate 	return (buf);
24647c478bd9Sstevel@tonic-gate }
24657c478bd9Sstevel@tonic-gate 
24667c478bd9Sstevel@tonic-gate void *
24677c478bd9Sstevel@tonic-gate kmem_alloc(size_t size, int kmflag)
24687c478bd9Sstevel@tonic-gate {
2469dce01e3fSJonathan W Adams 	size_t index;
2470dce01e3fSJonathan W Adams 	kmem_cache_t *cp;
24717c478bd9Sstevel@tonic-gate 	void *buf;
24727c478bd9Sstevel@tonic-gate 
2473dce01e3fSJonathan W Adams 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2474dce01e3fSJonathan W Adams 		cp = kmem_alloc_table[index];
2475dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_alloc() */
24767c478bd9Sstevel@tonic-gate 
2477dce01e3fSJonathan W Adams 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2478dce01e3fSJonathan W Adams 	    kmem_big_alloc_table_max) {
2479dce01e3fSJonathan W Adams 		cp = kmem_big_alloc_table[index];
2480dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_alloc() */
2481dce01e3fSJonathan W Adams 
2482dce01e3fSJonathan W Adams 	} else {
2483dce01e3fSJonathan W Adams 		if (size == 0)
2484dce01e3fSJonathan W Adams 			return (NULL);
2485dce01e3fSJonathan W Adams 
2486dce01e3fSJonathan W Adams 		buf = vmem_alloc(kmem_oversize_arena, size,
2487dce01e3fSJonathan W Adams 		    kmflag & KM_VMFLAGS);
2488dce01e3fSJonathan W Adams 		if (buf == NULL)
2489dce01e3fSJonathan W Adams 			kmem_log_event(kmem_failure_log, NULL, NULL,
2490dce01e3fSJonathan W Adams 			    (void *)size);
24917c478bd9Sstevel@tonic-gate 		return (buf);
24927c478bd9Sstevel@tonic-gate 	}
2493dce01e3fSJonathan W Adams 
2494dce01e3fSJonathan W Adams 	buf = kmem_cache_alloc(cp, kmflag);
2495dce01e3fSJonathan W Adams 	if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) {
2496dce01e3fSJonathan W Adams 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2497dce01e3fSJonathan W Adams 		((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2498dce01e3fSJonathan W Adams 		((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2499dce01e3fSJonathan W Adams 
2500dce01e3fSJonathan W Adams 		if (cp->cache_flags & KMF_LITE) {
2501dce01e3fSJonathan W Adams 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2502dce01e3fSJonathan W Adams 		}
2503dce01e3fSJonathan W Adams 	}
25047c478bd9Sstevel@tonic-gate 	return (buf);
25057c478bd9Sstevel@tonic-gate }
25067c478bd9Sstevel@tonic-gate 
25077c478bd9Sstevel@tonic-gate void
25087c478bd9Sstevel@tonic-gate kmem_free(void *buf, size_t size)
25097c478bd9Sstevel@tonic-gate {
2510dce01e3fSJonathan W Adams 	size_t index;
2511dce01e3fSJonathan W Adams 	kmem_cache_t *cp;
25127c478bd9Sstevel@tonic-gate 
2513dce01e3fSJonathan W Adams 	if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2514dce01e3fSJonathan W Adams 		cp = kmem_alloc_table[index];
2515dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_free() */
2516dce01e3fSJonathan W Adams 
2517dce01e3fSJonathan W Adams 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2518dce01e3fSJonathan W Adams 	    kmem_big_alloc_table_max) {
2519dce01e3fSJonathan W Adams 		cp = kmem_big_alloc_table[index];
2520dce01e3fSJonathan W Adams 		/* fall through to kmem_cache_free() */
2521dce01e3fSJonathan W Adams 
2522dce01e3fSJonathan W Adams 	} else {
2523dce01e3fSJonathan W Adams 		if (buf == NULL && size == 0)
2524dce01e3fSJonathan W Adams 			return;
2525dce01e3fSJonathan W Adams 		vmem_free(kmem_oversize_arena, buf, size);
2526dce01e3fSJonathan W Adams 		return;
2527dce01e3fSJonathan W Adams 	}
2528dce01e3fSJonathan W Adams 
2529dce01e3fSJonathan W Adams 	if (cp->cache_flags & KMF_BUFTAG) {
2530dce01e3fSJonathan W Adams 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2531dce01e3fSJonathan W Adams 		uint32_t *ip = (uint32_t *)btp;
2532dce01e3fSJonathan W Adams 		if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2533dce01e3fSJonathan W Adams 			if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2534dce01e3fSJonathan W Adams 				kmem_error(KMERR_DUPFREE, cp, buf);
25357c478bd9Sstevel@tonic-gate 				return;
25367c478bd9Sstevel@tonic-gate 			}
2537dce01e3fSJonathan W Adams 			if (KMEM_SIZE_VALID(ip[1])) {
2538dce01e3fSJonathan W Adams 				ip[0] = KMEM_SIZE_ENCODE(size);
2539dce01e3fSJonathan W Adams 				kmem_error(KMERR_BADSIZE, cp, buf);
2540dce01e3fSJonathan W Adams 			} else {
25417c478bd9Sstevel@tonic-gate 				kmem_error(KMERR_REDZONE, cp, buf);
25427c478bd9Sstevel@tonic-gate 			}
2543dce01e3fSJonathan W Adams 			return;
25447c478bd9Sstevel@tonic-gate 		}
2545dce01e3fSJonathan W Adams 		if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2546dce01e3fSJonathan W Adams 			kmem_error(KMERR_REDZONE, cp, buf);
25477c478bd9Sstevel@tonic-gate 			return;
2548dce01e3fSJonathan W Adams 		}
2549dce01e3fSJonathan W Adams 		btp->bt_redzone = KMEM_REDZONE_PATTERN;
2550dce01e3fSJonathan W Adams 		if (cp->cache_flags & KMF_LITE) {
2551dce01e3fSJonathan W Adams 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2552dce01e3fSJonathan W Adams 			    caller());
2553dce01e3fSJonathan W Adams 		}
25547c478bd9Sstevel@tonic-gate 	}
2555dce01e3fSJonathan W Adams 	kmem_cache_free(cp, buf);
25567c478bd9Sstevel@tonic-gate }
25577c478bd9Sstevel@tonic-gate 
25587c478bd9Sstevel@tonic-gate void *
25597c478bd9Sstevel@tonic-gate kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
25607c478bd9Sstevel@tonic-gate {
25617c478bd9Sstevel@tonic-gate 	size_t realsize = size + vmp->vm_quantum;
25627c478bd9Sstevel@tonic-gate 	void *addr;
25637c478bd9Sstevel@tonic-gate 
25647c478bd9Sstevel@tonic-gate 	/*
25657c478bd9Sstevel@tonic-gate 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
25667c478bd9Sstevel@tonic-gate 	 * vm_quantum will cause integer wraparound.  Check for this, and
25677c478bd9Sstevel@tonic-gate 	 * blow off the firewall page in this case.  Note that such a
25687c478bd9Sstevel@tonic-gate 	 * giant allocation (the entire kernel address space) can never
25697c478bd9Sstevel@tonic-gate 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
25707c478bd9Sstevel@tonic-gate 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
25717c478bd9Sstevel@tonic-gate 	 * corresponding check in kmem_firewall_va_free().
25727c478bd9Sstevel@tonic-gate 	 */
25737c478bd9Sstevel@tonic-gate 	if (realsize < size)
25747c478bd9Sstevel@tonic-gate 		realsize = size;
25757c478bd9Sstevel@tonic-gate 
25767c478bd9Sstevel@tonic-gate 	/*
25777c478bd9Sstevel@tonic-gate 	 * While boot still owns resource management, make sure that this
25787c478bd9Sstevel@tonic-gate 	 * redzone virtual address allocation is properly accounted for in
25797c478bd9Sstevel@tonic-gate 	 * OBPs "virtual-memory" "available" lists because we're
25807c478bd9Sstevel@tonic-gate 	 * effectively claiming them for a red zone.  If we don't do this,
25817c478bd9Sstevel@tonic-gate 	 * the available lists become too fragmented and too large for the
25827c478bd9Sstevel@tonic-gate 	 * current boot/kernel memory list interface.
25837c478bd9Sstevel@tonic-gate 	 */
25847c478bd9Sstevel@tonic-gate 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
25857c478bd9Sstevel@tonic-gate 
25867c478bd9Sstevel@tonic-gate 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
25877c478bd9Sstevel@tonic-gate 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
25887c478bd9Sstevel@tonic-gate 
25897c478bd9Sstevel@tonic-gate 	return (addr);
25907c478bd9Sstevel@tonic-gate }
25917c478bd9Sstevel@tonic-gate 
25927c478bd9Sstevel@tonic-gate void
25937c478bd9Sstevel@tonic-gate kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
25947c478bd9Sstevel@tonic-gate {
25957c478bd9Sstevel@tonic-gate 	ASSERT((kvseg.s_base == NULL ?
25967c478bd9Sstevel@tonic-gate 	    va_to_pfn((char *)addr + size) :
25977c478bd9Sstevel@tonic-gate 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
25987c478bd9Sstevel@tonic-gate 
25997c478bd9Sstevel@tonic-gate 	vmem_free(vmp, addr, size + vmp->vm_quantum);
26007c478bd9Sstevel@tonic-gate }
26017c478bd9Sstevel@tonic-gate 
26027c478bd9Sstevel@tonic-gate /*
26037c478bd9Sstevel@tonic-gate  * Try to allocate at least `size' bytes of memory without sleeping or
26047c478bd9Sstevel@tonic-gate  * panicking. Return actual allocated size in `asize'. If allocation failed,
26057c478bd9Sstevel@tonic-gate  * try final allocation with sleep or panic allowed.
26067c478bd9Sstevel@tonic-gate  */
26077c478bd9Sstevel@tonic-gate void *
26087c478bd9Sstevel@tonic-gate kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
26097c478bd9Sstevel@tonic-gate {
26107c478bd9Sstevel@tonic-gate 	void *p;
26117c478bd9Sstevel@tonic-gate 
26127c478bd9Sstevel@tonic-gate 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
26137c478bd9Sstevel@tonic-gate 	do {
26147c478bd9Sstevel@tonic-gate 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
26157c478bd9Sstevel@tonic-gate 		if (p != NULL)
26167c478bd9Sstevel@tonic-gate 			return (p);
26177c478bd9Sstevel@tonic-gate 		*asize += KMEM_ALIGN;
26187c478bd9Sstevel@tonic-gate 	} while (*asize <= PAGESIZE);
26197c478bd9Sstevel@tonic-gate 
26207c478bd9Sstevel@tonic-gate 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
26217c478bd9Sstevel@tonic-gate 	return (kmem_alloc(*asize, kmflag));
26227c478bd9Sstevel@tonic-gate }
26237c478bd9Sstevel@tonic-gate 
26247c478bd9Sstevel@tonic-gate /*
26257c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from a cache.
26267c478bd9Sstevel@tonic-gate  */
26277c478bd9Sstevel@tonic-gate static void
26287c478bd9Sstevel@tonic-gate kmem_cache_reap(kmem_cache_t *cp)
26297c478bd9Sstevel@tonic-gate {
2630b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
2631*686031edSTom Erickson 	cp->cache_reap++;
2632b5fca8f8Stomee 
26337c478bd9Sstevel@tonic-gate 	/*
26347c478bd9Sstevel@tonic-gate 	 * Ask the cache's owner to free some memory if possible.
26357c478bd9Sstevel@tonic-gate 	 * The idea is to handle things like the inode cache, which
26367c478bd9Sstevel@tonic-gate 	 * typically sits on a bunch of memory that it doesn't truly
26377c478bd9Sstevel@tonic-gate 	 * *need*.  Reclaim policy is entirely up to the owner; this
26387c478bd9Sstevel@tonic-gate 	 * callback is just an advisory plea for help.
26397c478bd9Sstevel@tonic-gate 	 */
2640b5fca8f8Stomee 	if (cp->cache_reclaim != NULL) {
2641b5fca8f8Stomee 		long delta;
2642b5fca8f8Stomee 
2643b5fca8f8Stomee 		/*
2644b5fca8f8Stomee 		 * Reclaimed memory should be reapable (not included in the
2645b5fca8f8Stomee 		 * depot's working set).
2646b5fca8f8Stomee 		 */
2647b5fca8f8Stomee 		delta = cp->cache_full.ml_total;
26487c478bd9Sstevel@tonic-gate 		cp->cache_reclaim(cp->cache_private);
2649b5fca8f8Stomee 		delta = cp->cache_full.ml_total - delta;
2650b5fca8f8Stomee 		if (delta > 0) {
2651b5fca8f8Stomee 			mutex_enter(&cp->cache_depot_lock);
2652b5fca8f8Stomee 			cp->cache_full.ml_reaplimit += delta;
2653b5fca8f8Stomee 			cp->cache_full.ml_min += delta;
2654b5fca8f8Stomee 			mutex_exit(&cp->cache_depot_lock);
2655b5fca8f8Stomee 		}
2656b5fca8f8Stomee 	}
26577c478bd9Sstevel@tonic-gate 
26587c478bd9Sstevel@tonic-gate 	kmem_depot_ws_reap(cp);
2659b5fca8f8Stomee 
2660b5fca8f8Stomee 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
2661b5fca8f8Stomee 		kmem_cache_defrag(cp);
2662b5fca8f8Stomee 	}
26637c478bd9Sstevel@tonic-gate }
26647c478bd9Sstevel@tonic-gate 
26657c478bd9Sstevel@tonic-gate static void
26667c478bd9Sstevel@tonic-gate kmem_reap_timeout(void *flag_arg)
26677c478bd9Sstevel@tonic-gate {
26687c478bd9Sstevel@tonic-gate 	uint32_t *flag = (uint32_t *)flag_arg;
26697c478bd9Sstevel@tonic-gate 
26707c478bd9Sstevel@tonic-gate 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
26717c478bd9Sstevel@tonic-gate 	*flag = 0;
26727c478bd9Sstevel@tonic-gate }
26737c478bd9Sstevel@tonic-gate 
26747c478bd9Sstevel@tonic-gate static void
26757c478bd9Sstevel@tonic-gate kmem_reap_done(void *flag)
26767c478bd9Sstevel@tonic-gate {
26777c478bd9Sstevel@tonic-gate 	(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
26787c478bd9Sstevel@tonic-gate }
26797c478bd9Sstevel@tonic-gate 
26807c478bd9Sstevel@tonic-gate static void
26817c478bd9Sstevel@tonic-gate kmem_reap_start(void *flag)
26827c478bd9Sstevel@tonic-gate {
26837c478bd9Sstevel@tonic-gate 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
26847c478bd9Sstevel@tonic-gate 
26857c478bd9Sstevel@tonic-gate 	if (flag == &kmem_reaping) {
26867c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
26877c478bd9Sstevel@tonic-gate 		/*
26887c478bd9Sstevel@tonic-gate 		 * if we have segkp under heap, reap segkp cache.
26897c478bd9Sstevel@tonic-gate 		 */
26907c478bd9Sstevel@tonic-gate 		if (segkp_fromheap)
26917c478bd9Sstevel@tonic-gate 			segkp_cache_free();
26927c478bd9Sstevel@tonic-gate 	}
26937c478bd9Sstevel@tonic-gate 	else
26947c478bd9Sstevel@tonic-gate 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
26957c478bd9Sstevel@tonic-gate 
26967c478bd9Sstevel@tonic-gate 	/*
26977c478bd9Sstevel@tonic-gate 	 * We use taskq_dispatch() to schedule a timeout to clear
26987c478bd9Sstevel@tonic-gate 	 * the flag so that kmem_reap() becomes self-throttling:
26997c478bd9Sstevel@tonic-gate 	 * we won't reap again until the current reap completes *and*
27007c478bd9Sstevel@tonic-gate 	 * at least kmem_reap_interval ticks have elapsed.
27017c478bd9Sstevel@tonic-gate 	 */
27027c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
27037c478bd9Sstevel@tonic-gate 		kmem_reap_done(flag);
27047c478bd9Sstevel@tonic-gate }
27057c478bd9Sstevel@tonic-gate 
27067c478bd9Sstevel@tonic-gate static void
27077c478bd9Sstevel@tonic-gate kmem_reap_common(void *flag_arg)
27087c478bd9Sstevel@tonic-gate {
27097c478bd9Sstevel@tonic-gate 	uint32_t *flag = (uint32_t *)flag_arg;
27107c478bd9Sstevel@tonic-gate 
27117c478bd9Sstevel@tonic-gate 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
27127c478bd9Sstevel@tonic-gate 	    cas32(flag, 0, 1) != 0)
27137c478bd9Sstevel@tonic-gate 		return;
27147c478bd9Sstevel@tonic-gate 
27157c478bd9Sstevel@tonic-gate 	/*
27167c478bd9Sstevel@tonic-gate 	 * It may not be kosher to do memory allocation when a reap is called
27177c478bd9Sstevel@tonic-gate 	 * is called (for example, if vmem_populate() is in the call chain).
27187c478bd9Sstevel@tonic-gate 	 * So we start the reap going with a TQ_NOALLOC dispatch.  If the
27197c478bd9Sstevel@tonic-gate 	 * dispatch fails, we reset the flag, and the next reap will try again.
27207c478bd9Sstevel@tonic-gate 	 */
27217c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
27227c478bd9Sstevel@tonic-gate 		*flag = 0;
27237c478bd9Sstevel@tonic-gate }
27247c478bd9Sstevel@tonic-gate 
27257c478bd9Sstevel@tonic-gate /*
27267c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from all caches.  Called from the VM system
27277c478bd9Sstevel@tonic-gate  * when memory gets tight.
27287c478bd9Sstevel@tonic-gate  */
27297c478bd9Sstevel@tonic-gate void
27307c478bd9Sstevel@tonic-gate kmem_reap(void)
27317c478bd9Sstevel@tonic-gate {
27327c478bd9Sstevel@tonic-gate 	kmem_reap_common(&kmem_reaping);
27337c478bd9Sstevel@tonic-gate }
27347c478bd9Sstevel@tonic-gate 
27357c478bd9Sstevel@tonic-gate /*
27367c478bd9Sstevel@tonic-gate  * Reclaim all unused memory from identifier arenas, called when a vmem
27377c478bd9Sstevel@tonic-gate  * arena not back by memory is exhausted.  Since reaping memory-backed caches
27387c478bd9Sstevel@tonic-gate  * cannot help with identifier exhaustion, we avoid both a large amount of
27397c478bd9Sstevel@tonic-gate  * work and unwanted side-effects from reclaim callbacks.
27407c478bd9Sstevel@tonic-gate  */
27417c478bd9Sstevel@tonic-gate void
27427c478bd9Sstevel@tonic-gate kmem_reap_idspace(void)
27437c478bd9Sstevel@tonic-gate {
27447c478bd9Sstevel@tonic-gate 	kmem_reap_common(&kmem_reaping_idspace);
27457c478bd9Sstevel@tonic-gate }
27467c478bd9Sstevel@tonic-gate 
27477c478bd9Sstevel@tonic-gate /*
27487c478bd9Sstevel@tonic-gate  * Purge all magazines from a cache and set its magazine limit to zero.
27497c478bd9Sstevel@tonic-gate  * All calls are serialized by the kmem_taskq lock, except for the final
27507c478bd9Sstevel@tonic-gate  * call from kmem_cache_destroy().
27517c478bd9Sstevel@tonic-gate  */
27527c478bd9Sstevel@tonic-gate static void
27537c478bd9Sstevel@tonic-gate kmem_cache_magazine_purge(kmem_cache_t *cp)
27547c478bd9Sstevel@tonic-gate {
27557c478bd9Sstevel@tonic-gate 	kmem_cpu_cache_t *ccp;
27567c478bd9Sstevel@tonic-gate 	kmem_magazine_t *mp, *pmp;
27577c478bd9Sstevel@tonic-gate 	int rounds, prounds, cpu_seqid;
27587c478bd9Sstevel@tonic-gate 
2759b5fca8f8Stomee 	ASSERT(!list_link_active(&cp->cache_link) ||
2760b5fca8f8Stomee 	    taskq_member(kmem_taskq, curthread));
27617c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
27627c478bd9Sstevel@tonic-gate 
27637c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
27647c478bd9Sstevel@tonic-gate 		ccp = &cp->cache_cpu[cpu_seqid];
27657c478bd9Sstevel@tonic-gate 
27667c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
27677c478bd9Sstevel@tonic-gate 		mp = ccp->cc_loaded;
27687c478bd9Sstevel@tonic-gate 		pmp = ccp->cc_ploaded;
27697c478bd9Sstevel@tonic-gate 		rounds = ccp->cc_rounds;
27707c478bd9Sstevel@tonic-gate 		prounds = ccp->cc_prounds;
27717c478bd9Sstevel@tonic-gate 		ccp->cc_loaded = NULL;
27727c478bd9Sstevel@tonic-gate 		ccp->cc_ploaded = NULL;
27737c478bd9Sstevel@tonic-gate 		ccp->cc_rounds = -1;
27747c478bd9Sstevel@tonic-gate 		ccp->cc_prounds = -1;
27757c478bd9Sstevel@tonic-gate 		ccp->cc_magsize = 0;
27767c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
27777c478bd9Sstevel@tonic-gate 
27787c478bd9Sstevel@tonic-gate 		if (mp)
27797c478bd9Sstevel@tonic-gate 			kmem_magazine_destroy(cp, mp, rounds);
27807c478bd9Sstevel@tonic-gate 		if (pmp)
27817c478bd9Sstevel@tonic-gate 			kmem_magazine_destroy(cp, pmp, prounds);
27827c478bd9Sstevel@tonic-gate 	}
27837c478bd9Sstevel@tonic-gate 
27847c478bd9Sstevel@tonic-gate 	/*
27857c478bd9Sstevel@tonic-gate 	 * Updating the working set statistics twice in a row has the
27867c478bd9Sstevel@tonic-gate 	 * effect of setting the working set size to zero, so everything
27877c478bd9Sstevel@tonic-gate 	 * is eligible for reaping.
27887c478bd9Sstevel@tonic-gate 	 */
27897c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
27907c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
27917c478bd9Sstevel@tonic-gate 
27927c478bd9Sstevel@tonic-gate 	kmem_depot_ws_reap(cp);
27937c478bd9Sstevel@tonic-gate }
27947c478bd9Sstevel@tonic-gate 
27957c478bd9Sstevel@tonic-gate /*
27967c478bd9Sstevel@tonic-gate  * Enable per-cpu magazines on a cache.
27977c478bd9Sstevel@tonic-gate  */
27987c478bd9Sstevel@tonic-gate static void
27997c478bd9Sstevel@tonic-gate kmem_cache_magazine_enable(kmem_cache_t *cp)
28007c478bd9Sstevel@tonic-gate {
28017c478bd9Sstevel@tonic-gate 	int cpu_seqid;
28027c478bd9Sstevel@tonic-gate 
28037c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_NOMAGAZINE)
28047c478bd9Sstevel@tonic-gate 		return;
28057c478bd9Sstevel@tonic-gate 
28067c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
28077c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
28087c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
28097c478bd9Sstevel@tonic-gate 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
28107c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
28117c478bd9Sstevel@tonic-gate 	}
28127c478bd9Sstevel@tonic-gate 
28137c478bd9Sstevel@tonic-gate }
28147c478bd9Sstevel@tonic-gate 
2815fa9e4066Sahrens /*
2816fa9e4066Sahrens  * Reap (almost) everything right now.  See kmem_cache_magazine_purge()
2817fa9e4066Sahrens  * for explanation of the back-to-back kmem_depot_ws_update() calls.
2818fa9e4066Sahrens  */
2819fa9e4066Sahrens void
2820fa9e4066Sahrens kmem_cache_reap_now(kmem_cache_t *cp)
2821fa9e4066Sahrens {
2822b5fca8f8Stomee 	ASSERT(list_link_active(&cp->cache_link));
2823b5fca8f8Stomee 
2824fa9e4066Sahrens 	kmem_depot_ws_update(cp);
2825fa9e4066Sahrens 	kmem_depot_ws_update(cp);
2826fa9e4066Sahrens 
2827fa9e4066Sahrens 	(void) taskq_dispatch(kmem_taskq,
2828fa9e4066Sahrens 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
2829fa9e4066Sahrens 	taskq_wait(kmem_taskq);
2830fa9e4066Sahrens }
2831fa9e4066Sahrens 
28327c478bd9Sstevel@tonic-gate /*
28337c478bd9Sstevel@tonic-gate  * Recompute a cache's magazine size.  The trade-off is that larger magazines
28347c478bd9Sstevel@tonic-gate  * provide a higher transfer rate with the depot, while smaller magazines
28357c478bd9Sstevel@tonic-gate  * reduce memory consumption.  Magazine resizing is an expensive operation;
28367c478bd9Sstevel@tonic-gate  * it should not be done frequently.
28377c478bd9Sstevel@tonic-gate  *
28387c478bd9Sstevel@tonic-gate  * Changes to the magazine size are serialized by the kmem_taskq lock.
28397c478bd9Sstevel@tonic-gate  *
28407c478bd9Sstevel@tonic-gate  * Note: at present this only grows the magazine size.  It might be useful
28417c478bd9Sstevel@tonic-gate  * to allow shrinkage too.
28427c478bd9Sstevel@tonic-gate  */
28437c478bd9Sstevel@tonic-gate static void
28447c478bd9Sstevel@tonic-gate kmem_cache_magazine_resize(kmem_cache_t *cp)
28457c478bd9Sstevel@tonic-gate {
28467c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp = cp->cache_magtype;
28477c478bd9Sstevel@tonic-gate 
28487c478bd9Sstevel@tonic-gate 	ASSERT(taskq_member(kmem_taskq, curthread));
28497c478bd9Sstevel@tonic-gate 
28507c478bd9Sstevel@tonic-gate 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
28517c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_purge(cp);
28527c478bd9Sstevel@tonic-gate 		mutex_enter(&cp->cache_depot_lock);
28537c478bd9Sstevel@tonic-gate 		cp->cache_magtype = ++mtp;
28547c478bd9Sstevel@tonic-gate 		cp->cache_depot_contention_prev =
28557c478bd9Sstevel@tonic-gate 		    cp->cache_depot_contention + INT_MAX;
28567c478bd9Sstevel@tonic-gate 		mutex_exit(&cp->cache_depot_lock);
28577c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_enable(cp);
28587c478bd9Sstevel@tonic-gate 	}
28597c478bd9Sstevel@tonic-gate }
28607c478bd9Sstevel@tonic-gate 
28617c478bd9Sstevel@tonic-gate /*
28627c478bd9Sstevel@tonic-gate  * Rescale a cache's hash table, so that the table size is roughly the
28637c478bd9Sstevel@tonic-gate  * cache size.  We want the average lookup time to be extremely small.
28647c478bd9Sstevel@tonic-gate  */
28657c478bd9Sstevel@tonic-gate static void
28667c478bd9Sstevel@tonic-gate kmem_hash_rescale(kmem_cache_t *cp)
28677c478bd9Sstevel@tonic-gate {
28687c478bd9Sstevel@tonic-gate 	kmem_bufctl_t **old_table, **new_table, *bcp;
28697c478bd9Sstevel@tonic-gate 	size_t old_size, new_size, h;
28707c478bd9Sstevel@tonic-gate 
28717c478bd9Sstevel@tonic-gate 	ASSERT(taskq_member(kmem_taskq, curthread));
28727c478bd9Sstevel@tonic-gate 
28737c478bd9Sstevel@tonic-gate 	new_size = MAX(KMEM_HASH_INITIAL,
28747c478bd9Sstevel@tonic-gate 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
28757c478bd9Sstevel@tonic-gate 	old_size = cp->cache_hash_mask + 1;
28767c478bd9Sstevel@tonic-gate 
28777c478bd9Sstevel@tonic-gate 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
28787c478bd9Sstevel@tonic-gate 		return;
28797c478bd9Sstevel@tonic-gate 
28807c478bd9Sstevel@tonic-gate 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
28817c478bd9Sstevel@tonic-gate 	    VM_NOSLEEP);
28827c478bd9Sstevel@tonic-gate 	if (new_table == NULL)
28837c478bd9Sstevel@tonic-gate 		return;
28847c478bd9Sstevel@tonic-gate 	bzero(new_table, new_size * sizeof (void *));
28857c478bd9Sstevel@tonic-gate 
28867c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
28877c478bd9Sstevel@tonic-gate 
28887c478bd9Sstevel@tonic-gate 	old_size = cp->cache_hash_mask + 1;
28897c478bd9Sstevel@tonic-gate 	old_table = cp->cache_hash_table;
28907c478bd9Sstevel@tonic-gate 
28917c478bd9Sstevel@tonic-gate 	cp->cache_hash_mask = new_size - 1;
28927c478bd9Sstevel@tonic-gate 	cp->cache_hash_table = new_table;
28937c478bd9Sstevel@tonic-gate 	cp->cache_rescale++;
28947c478bd9Sstevel@tonic-gate 
28957c478bd9Sstevel@tonic-gate 	for (h = 0; h < old_size; h++) {
28967c478bd9Sstevel@tonic-gate 		bcp = old_table[h];
28977c478bd9Sstevel@tonic-gate 		while (bcp != NULL) {
28987c478bd9Sstevel@tonic-gate 			void *addr = bcp->bc_addr;
28997c478bd9Sstevel@tonic-gate 			kmem_bufctl_t *next_bcp = bcp->bc_next;
29007c478bd9Sstevel@tonic-gate 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
29017c478bd9Sstevel@tonic-gate 			bcp->bc_next = *hash_bucket;
29027c478bd9Sstevel@tonic-gate 			*hash_bucket = bcp;
29037c478bd9Sstevel@tonic-gate 			bcp = next_bcp;
29047c478bd9Sstevel@tonic-gate 		}
29057c478bd9Sstevel@tonic-gate 	}
29067c478bd9Sstevel@tonic-gate 
29077c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
29087c478bd9Sstevel@tonic-gate 
29097c478bd9Sstevel@tonic-gate 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
29107c478bd9Sstevel@tonic-gate }
29117c478bd9Sstevel@tonic-gate 
29127c478bd9Sstevel@tonic-gate /*
2913b5fca8f8Stomee  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
2914b5fca8f8Stomee  * update, magazine resizing, and slab consolidation.
29157c478bd9Sstevel@tonic-gate  */
29167c478bd9Sstevel@tonic-gate static void
29177c478bd9Sstevel@tonic-gate kmem_cache_update(kmem_cache_t *cp)
29187c478bd9Sstevel@tonic-gate {
29197c478bd9Sstevel@tonic-gate 	int need_hash_rescale = 0;
29207c478bd9Sstevel@tonic-gate 	int need_magazine_resize = 0;
29217c478bd9Sstevel@tonic-gate 
29227c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
29237c478bd9Sstevel@tonic-gate 
29247c478bd9Sstevel@tonic-gate 	/*
29257c478bd9Sstevel@tonic-gate 	 * If the cache has become much larger or smaller than its hash table,
29267c478bd9Sstevel@tonic-gate 	 * fire off a request to rescale the hash table.
29277c478bd9Sstevel@tonic-gate 	 */
29287c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
29297c478bd9Sstevel@tonic-gate 
29307c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_HASH) &&
29317c478bd9Sstevel@tonic-gate 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
29327c478bd9Sstevel@tonic-gate 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
29337c478bd9Sstevel@tonic-gate 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
29347c478bd9Sstevel@tonic-gate 		need_hash_rescale = 1;
29357c478bd9Sstevel@tonic-gate 
29367c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
29377c478bd9Sstevel@tonic-gate 
29387c478bd9Sstevel@tonic-gate 	/*
29397c478bd9Sstevel@tonic-gate 	 * Update the depot working set statistics.
29407c478bd9Sstevel@tonic-gate 	 */
29417c478bd9Sstevel@tonic-gate 	kmem_depot_ws_update(cp);
29427c478bd9Sstevel@tonic-gate 
29437c478bd9Sstevel@tonic-gate 	/*
29447c478bd9Sstevel@tonic-gate 	 * If there's a lot of contention in the depot,
29457c478bd9Sstevel@tonic-gate 	 * increase the magazine size.
29467c478bd9Sstevel@tonic-gate 	 */
29477c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
29487c478bd9Sstevel@tonic-gate 
29497c478bd9Sstevel@tonic-gate 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
29507c478bd9Sstevel@tonic-gate 	    (int)(cp->cache_depot_contention -
29517c478bd9Sstevel@tonic-gate 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
29527c478bd9Sstevel@tonic-gate 		need_magazine_resize = 1;
29537c478bd9Sstevel@tonic-gate 
29547c478bd9Sstevel@tonic-gate 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
29557c478bd9Sstevel@tonic-gate 
29567c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
29577c478bd9Sstevel@tonic-gate 
29587c478bd9Sstevel@tonic-gate 	if (need_hash_rescale)
29597c478bd9Sstevel@tonic-gate 		(void) taskq_dispatch(kmem_taskq,
29607c478bd9Sstevel@tonic-gate 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
29617c478bd9Sstevel@tonic-gate 
29627c478bd9Sstevel@tonic-gate 	if (need_magazine_resize)
29637c478bd9Sstevel@tonic-gate 		(void) taskq_dispatch(kmem_taskq,
29647c478bd9Sstevel@tonic-gate 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
2965b5fca8f8Stomee 
2966b5fca8f8Stomee 	if (cp->cache_defrag != NULL)
2967b5fca8f8Stomee 		(void) taskq_dispatch(kmem_taskq,
2968b5fca8f8Stomee 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
29697c478bd9Sstevel@tonic-gate }
29707c478bd9Sstevel@tonic-gate 
2971d67944fbSScott Rotondo static void kmem_update(void *);
2972d67944fbSScott Rotondo 
29737c478bd9Sstevel@tonic-gate static void
29747c478bd9Sstevel@tonic-gate kmem_update_timeout(void *dummy)
29757c478bd9Sstevel@tonic-gate {
29767c478bd9Sstevel@tonic-gate 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
29777c478bd9Sstevel@tonic-gate }
29787c478bd9Sstevel@tonic-gate 
29797c478bd9Sstevel@tonic-gate static void
29807c478bd9Sstevel@tonic-gate kmem_update(void *dummy)
29817c478bd9Sstevel@tonic-gate {
29827c478bd9Sstevel@tonic-gate 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
29837c478bd9Sstevel@tonic-gate 
29847c478bd9Sstevel@tonic-gate 	/*
29857c478bd9Sstevel@tonic-gate 	 * We use taskq_dispatch() to reschedule the timeout so that
29867c478bd9Sstevel@tonic-gate 	 * kmem_update() becomes self-throttling: it won't schedule
29877c478bd9Sstevel@tonic-gate 	 * new tasks until all previous tasks have completed.
29887c478bd9Sstevel@tonic-gate 	 */
29897c478bd9Sstevel@tonic-gate 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
29907c478bd9Sstevel@tonic-gate 		kmem_update_timeout(NULL);
29917c478bd9Sstevel@tonic-gate }
29927c478bd9Sstevel@tonic-gate 
29937c478bd9Sstevel@tonic-gate static int
29947c478bd9Sstevel@tonic-gate kmem_cache_kstat_update(kstat_t *ksp, int rw)
29957c478bd9Sstevel@tonic-gate {
29967c478bd9Sstevel@tonic-gate 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
29977c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp = ksp->ks_private;
29987c478bd9Sstevel@tonic-gate 	uint64_t cpu_buf_avail;
29997c478bd9Sstevel@tonic-gate 	uint64_t buf_avail = 0;
30007c478bd9Sstevel@tonic-gate 	int cpu_seqid;
3001*686031edSTom Erickson 	long reap;
30027c478bd9Sstevel@tonic-gate 
30037c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
30047c478bd9Sstevel@tonic-gate 
30057c478bd9Sstevel@tonic-gate 	if (rw == KSTAT_WRITE)
30067c478bd9Sstevel@tonic-gate 		return (EACCES);
30077c478bd9Sstevel@tonic-gate 
30087c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
30097c478bd9Sstevel@tonic-gate 
30107c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
30117c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
30127c478bd9Sstevel@tonic-gate 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
30137c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
30147c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
30157c478bd9Sstevel@tonic-gate 
30167c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
30177c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
30187c478bd9Sstevel@tonic-gate 
30197c478bd9Sstevel@tonic-gate 		mutex_enter(&ccp->cc_lock);
30207c478bd9Sstevel@tonic-gate 
30217c478bd9Sstevel@tonic-gate 		cpu_buf_avail = 0;
30227c478bd9Sstevel@tonic-gate 		if (ccp->cc_rounds > 0)
30237c478bd9Sstevel@tonic-gate 			cpu_buf_avail += ccp->cc_rounds;
30247c478bd9Sstevel@tonic-gate 		if (ccp->cc_prounds > 0)
30257c478bd9Sstevel@tonic-gate 			cpu_buf_avail += ccp->cc_prounds;
30267c478bd9Sstevel@tonic-gate 
30277c478bd9Sstevel@tonic-gate 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
30287c478bd9Sstevel@tonic-gate 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
30297c478bd9Sstevel@tonic-gate 		buf_avail			+= cpu_buf_avail;
30307c478bd9Sstevel@tonic-gate 
30317c478bd9Sstevel@tonic-gate 		mutex_exit(&ccp->cc_lock);
30327c478bd9Sstevel@tonic-gate 	}
30337c478bd9Sstevel@tonic-gate 
30347c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_depot_lock);
30357c478bd9Sstevel@tonic-gate 
30367c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
30377c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
30387c478bd9Sstevel@tonic-gate 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
30397c478bd9Sstevel@tonic-gate 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
30407c478bd9Sstevel@tonic-gate 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
30417c478bd9Sstevel@tonic-gate 	kmcp->kmc_magazine_size.value.ui64	=
30427c478bd9Sstevel@tonic-gate 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
30437c478bd9Sstevel@tonic-gate 	    0 : cp->cache_magtype->mt_magsize;
30447c478bd9Sstevel@tonic-gate 
30457c478bd9Sstevel@tonic-gate 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
30467c478bd9Sstevel@tonic-gate 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
30477c478bd9Sstevel@tonic-gate 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
30487c478bd9Sstevel@tonic-gate 
3049*686031edSTom Erickson 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3050*686031edSTom Erickson 	reap = MIN(reap, cp->cache_full.ml_total);
3051*686031edSTom Erickson 
30527c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_depot_lock);
30537c478bd9Sstevel@tonic-gate 
30547c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
30557c478bd9Sstevel@tonic-gate 	kmcp->kmc_align.value.ui64	= cp->cache_align;
30567c478bd9Sstevel@tonic-gate 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
30577c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
30587c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
30599f1b636aStomee 	buf_avail += cp->cache_bufslab;
30607c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
30617c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
30627c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
30637c478bd9Sstevel@tonic-gate 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
30647c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
30657c478bd9Sstevel@tonic-gate 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
30667c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
30677c478bd9Sstevel@tonic-gate 	    cp->cache_hash_mask + 1 : 0;
30687c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
30697c478bd9Sstevel@tonic-gate 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
30707c478bd9Sstevel@tonic-gate 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
3071*686031edSTom Erickson 	kmcp->kmc_reap.value.ui64	= cp->cache_reap;
30727c478bd9Sstevel@tonic-gate 
3073b5fca8f8Stomee 	if (cp->cache_defrag == NULL) {
3074b5fca8f8Stomee 		kmcp->kmc_move_callbacks.value.ui64	= 0;
3075b5fca8f8Stomee 		kmcp->kmc_move_yes.value.ui64		= 0;
3076b5fca8f8Stomee 		kmcp->kmc_move_no.value.ui64		= 0;
3077b5fca8f8Stomee 		kmcp->kmc_move_later.value.ui64		= 0;
3078b5fca8f8Stomee 		kmcp->kmc_move_dont_need.value.ui64	= 0;
3079b5fca8f8Stomee 		kmcp->kmc_move_dont_know.value.ui64	= 0;
3080b5fca8f8Stomee 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3081*686031edSTom Erickson 		kmcp->kmc_move_slabs_freed.value.ui64	= 0;
3082*686031edSTom Erickson 		kmcp->kmc_defrag.value.ui64		= 0;
3083*686031edSTom Erickson 		kmcp->kmc_scan.value.ui64		= 0;
3084*686031edSTom Erickson 		kmcp->kmc_move_reclaimable.value.ui64	= 0;
3085b5fca8f8Stomee 	} else {
3086*686031edSTom Erickson 		int64_t reclaimable;
3087*686031edSTom Erickson 
3088b5fca8f8Stomee 		kmem_defrag_t *kd = cp->cache_defrag;
3089b5fca8f8Stomee 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3090b5fca8f8Stomee 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3091b5fca8f8Stomee 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3092b5fca8f8Stomee 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3093b5fca8f8Stomee 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3094b5fca8f8Stomee 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3095b5fca8f8Stomee 		kmcp->kmc_move_hunt_found.value.ui64	= kd->kmd_hunt_found;
3096*686031edSTom Erickson 		kmcp->kmc_move_slabs_freed.value.ui64	= kd->kmd_slabs_freed;
3097*686031edSTom Erickson 		kmcp->kmc_defrag.value.ui64		= kd->kmd_defrags;
3098*686031edSTom Erickson 		kmcp->kmc_scan.value.ui64		= kd->kmd_scans;
3099*686031edSTom Erickson 
3100*686031edSTom Erickson 		reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3101*686031edSTom Erickson 		reclaimable = MAX(reclaimable, 0);
3102*686031edSTom Erickson 		reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3103*686031edSTom Erickson 		kmcp->kmc_move_reclaimable.value.ui64	= reclaimable;
3104b5fca8f8Stomee 	}
3105b5fca8f8Stomee 
31067c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
31077c478bd9Sstevel@tonic-gate 	return (0);
31087c478bd9Sstevel@tonic-gate }
31097c478bd9Sstevel@tonic-gate 
31107c478bd9Sstevel@tonic-gate /*
31117c478bd9Sstevel@tonic-gate  * Return a named statistic about a particular cache.
31127c478bd9Sstevel@tonic-gate  * This shouldn't be called very often, so it's currently designed for
31137c478bd9Sstevel@tonic-gate  * simplicity (leverages existing kstat support) rather than efficiency.
31147c478bd9Sstevel@tonic-gate  */
31157c478bd9Sstevel@tonic-gate uint64_t
31167c478bd9Sstevel@tonic-gate kmem_cache_stat(kmem_cache_t *cp, char *name)
31177c478bd9Sstevel@tonic-gate {
31187c478bd9Sstevel@tonic-gate 	int i;
31197c478bd9Sstevel@tonic-gate 	kstat_t *ksp = cp->cache_kstat;
31207c478bd9Sstevel@tonic-gate 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
31217c478bd9Sstevel@tonic-gate 	uint64_t value = 0;
31227c478bd9Sstevel@tonic-gate 
31237c478bd9Sstevel@tonic-gate 	if (ksp != NULL) {
31247c478bd9Sstevel@tonic-gate 		mutex_enter(&kmem_cache_kstat_lock);
31257c478bd9Sstevel@tonic-gate 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
31267c478bd9Sstevel@tonic-gate 		for (i = 0; i < ksp->ks_ndata; i++) {
31277c478bd9Sstevel@tonic-gate 			if (strcmp(knp[i].name, name) == 0) {
31287c478bd9Sstevel@tonic-gate 				value = knp[i].value.ui64;
31297c478bd9Sstevel@tonic-gate 				break;
31307c478bd9Sstevel@tonic-gate 			}
31317c478bd9Sstevel@tonic-gate 		}
31327c478bd9Sstevel@tonic-gate 		mutex_exit(&kmem_cache_kstat_lock);
31337c478bd9Sstevel@tonic-gate 	}
31347c478bd9Sstevel@tonic-gate 	return (value);
31357c478bd9Sstevel@tonic-gate }
31367c478bd9Sstevel@tonic-gate 
31377c478bd9Sstevel@tonic-gate /*
31387c478bd9Sstevel@tonic-gate  * Return an estimate of currently available kernel heap memory.
31397c478bd9Sstevel@tonic-gate  * On 32-bit systems, physical memory may exceed virtual memory,
31407c478bd9Sstevel@tonic-gate  * we just truncate the result at 1GB.
31417c478bd9Sstevel@tonic-gate  */
31427c478bd9Sstevel@tonic-gate size_t
31437c478bd9Sstevel@tonic-gate kmem_avail(void)
31447c478bd9Sstevel@tonic-gate {
31457c478bd9Sstevel@tonic-gate 	spgcnt_t rmem = availrmem - tune.t_minarmem;
31467c478bd9Sstevel@tonic-gate 	spgcnt_t fmem = freemem - minfree;
31477c478bd9Sstevel@tonic-gate 
31487c478bd9Sstevel@tonic-gate 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
31497c478bd9Sstevel@tonic-gate 	    1 << (30 - PAGESHIFT))));
31507c478bd9Sstevel@tonic-gate }
31517c478bd9Sstevel@tonic-gate 
31527c478bd9Sstevel@tonic-gate /*
31537c478bd9Sstevel@tonic-gate  * Return the maximum amount of memory that is (in theory) allocatable
31547c478bd9Sstevel@tonic-gate  * from the heap. This may be used as an estimate only since there
31557c478bd9Sstevel@tonic-gate  * is no guarentee this space will still be available when an allocation
31567c478bd9Sstevel@tonic-gate  * request is made, nor that the space may be allocated in one big request
31577c478bd9Sstevel@tonic-gate  * due to kernel heap fragmentation.
31587c478bd9Sstevel@tonic-gate  */
31597c478bd9Sstevel@tonic-gate size_t
31607c478bd9Sstevel@tonic-gate kmem_maxavail(void)
31617c478bd9Sstevel@tonic-gate {
31627c478bd9Sstevel@tonic-gate 	spgcnt_t pmem = availrmem - tune.t_minarmem;
31637c478bd9Sstevel@tonic-gate 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
31647c478bd9Sstevel@tonic-gate 
31657c478bd9Sstevel@tonic-gate 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
31667c478bd9Sstevel@tonic-gate }
31677c478bd9Sstevel@tonic-gate 
3168fa9e4066Sahrens /*
3169fa9e4066Sahrens  * Indicate whether memory-intensive kmem debugging is enabled.
3170fa9e4066Sahrens  */
3171fa9e4066Sahrens int
3172fa9e4066Sahrens kmem_debugging(void)
3173fa9e4066Sahrens {
3174fa9e4066Sahrens 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3175fa9e4066Sahrens }
3176fa9e4066Sahrens 
3177b5fca8f8Stomee /* binning function, sorts finely at the two extremes */
3178b5fca8f8Stomee #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3179b5fca8f8Stomee 	((((sp)->slab_refcnt <= (binshift)) ||				\
3180b5fca8f8Stomee 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3181b5fca8f8Stomee 	    ? -(sp)->slab_refcnt					\
3182b5fca8f8Stomee 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3183b5fca8f8Stomee 
3184b5fca8f8Stomee /*
3185b5fca8f8Stomee  * Minimizing the number of partial slabs on the freelist minimizes
3186b5fca8f8Stomee  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3187b5fca8f8Stomee  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3188b5fca8f8Stomee  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3189b5fca8f8Stomee  * the most-used slabs at the front of the list where they have the best chance
3190b5fca8f8Stomee  * of being completely allocated, and the least-used slabs at a safe distance
3191b5fca8f8Stomee  * from the front to improve the odds that the few remaining buffers will all be
3192b5fca8f8Stomee  * freed before another allocation can tie up the slab. For that reason a slab
3193b5fca8f8Stomee  * with a higher slab_refcnt sorts less than than a slab with a lower
3194b5fca8f8Stomee  * slab_refcnt.
3195b5fca8f8Stomee  *
3196b5fca8f8Stomee  * However, if a slab has at least one buffer that is deemed unfreeable, we
3197b5fca8f8Stomee  * would rather have that slab at the front of the list regardless of
3198b5fca8f8Stomee  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3199b5fca8f8Stomee  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3200b5fca8f8Stomee  * callback, the slab is marked unfreeable for as long as it remains on the
3201b5fca8f8Stomee  * freelist.
3202b5fca8f8Stomee  */
3203b5fca8f8Stomee static int
3204b5fca8f8Stomee kmem_partial_slab_cmp(const void *p0, const void *p1)
3205b5fca8f8Stomee {
3206b5fca8f8Stomee 	const kmem_cache_t *cp;
3207b5fca8f8Stomee 	const kmem_slab_t *s0 = p0;
3208b5fca8f8Stomee 	const kmem_slab_t *s1 = p1;
3209b5fca8f8Stomee 	int w0, w1;
3210b5fca8f8Stomee 	size_t binshift;
3211b5fca8f8Stomee 
3212b5fca8f8Stomee 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3213b5fca8f8Stomee 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3214b5fca8f8Stomee 	ASSERT(s0->slab_cache == s1->slab_cache);
3215b5fca8f8Stomee 	cp = s1->slab_cache;
3216b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3217b5fca8f8Stomee 	binshift = cp->cache_partial_binshift;
3218b5fca8f8Stomee 
3219b5fca8f8Stomee 	/* weight of first slab */
3220b5fca8f8Stomee 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3221b5fca8f8Stomee 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3222b5fca8f8Stomee 		w0 -= cp->cache_maxchunks;
3223b5fca8f8Stomee 	}
3224b5fca8f8Stomee 
3225b5fca8f8Stomee 	/* weight of second slab */
3226b5fca8f8Stomee 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3227b5fca8f8Stomee 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3228b5fca8f8Stomee 		w1 -= cp->cache_maxchunks;
3229b5fca8f8Stomee 	}
3230b5fca8f8Stomee 
3231b5fca8f8Stomee 	if (w0 < w1)
3232b5fca8f8Stomee 		return (-1);
3233b5fca8f8Stomee 	if (w0 > w1)
3234b5fca8f8Stomee 		return (1);
3235b5fca8f8Stomee 
3236b5fca8f8Stomee 	/* compare pointer values */
3237b5fca8f8Stomee 	if ((uintptr_t)s0 < (uintptr_t)s1)
3238b5fca8f8Stomee 		return (-1);
3239b5fca8f8Stomee 	if ((uintptr_t)s0 > (uintptr_t)s1)
3240b5fca8f8Stomee 		return (1);
3241b5fca8f8Stomee 
3242b5fca8f8Stomee 	return (0);
3243b5fca8f8Stomee }
3244b5fca8f8Stomee 
3245b5fca8f8Stomee /*
3246b5fca8f8Stomee  * It must be valid to call the destructor (if any) on a newly created object.
3247b5fca8f8Stomee  * That is, the constructor (if any) must leave the object in a valid state for
3248b5fca8f8Stomee  * the destructor.
3249b5fca8f8Stomee  */
32507c478bd9Sstevel@tonic-gate kmem_cache_t *
32517c478bd9Sstevel@tonic-gate kmem_cache_create(
32527c478bd9Sstevel@tonic-gate 	char *name,		/* descriptive name for this cache */
32537c478bd9Sstevel@tonic-gate 	size_t bufsize,		/* size of the objects it manages */
32547c478bd9Sstevel@tonic-gate 	size_t align,		/* required object alignment */
32557c478bd9Sstevel@tonic-gate 	int (*constructor)(void *, void *, int), /* object constructor */
32567c478bd9Sstevel@tonic-gate 	void (*destructor)(void *, void *),	/* object destructor */
32577c478bd9Sstevel@tonic-gate 	void (*reclaim)(void *), /* memory reclaim callback */
32587c478bd9Sstevel@tonic-gate 	void *private,		/* pass-thru arg for constr/destr/reclaim */
32597c478bd9Sstevel@tonic-gate 	vmem_t *vmp,		/* vmem source for slab allocation */
32607c478bd9Sstevel@tonic-gate 	int cflags)		/* cache creation flags */
32617c478bd9Sstevel@tonic-gate {
32627c478bd9Sstevel@tonic-gate 	int cpu_seqid;
32637c478bd9Sstevel@tonic-gate 	size_t chunksize;
3264b5fca8f8Stomee 	kmem_cache_t *cp;
32657c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
32667c478bd9Sstevel@tonic-gate 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
32677c478bd9Sstevel@tonic-gate 
32687c478bd9Sstevel@tonic-gate #ifdef	DEBUG
32697c478bd9Sstevel@tonic-gate 	/*
32707c478bd9Sstevel@tonic-gate 	 * Cache names should conform to the rules for valid C identifiers
32717c478bd9Sstevel@tonic-gate 	 */
32727c478bd9Sstevel@tonic-gate 	if (!strident_valid(name)) {
32737c478bd9Sstevel@tonic-gate 		cmn_err(CE_CONT,
32747c478bd9Sstevel@tonic-gate 		    "kmem_cache_create: '%s' is an invalid cache name\n"
32757c478bd9Sstevel@tonic-gate 		    "cache names must conform to the rules for "
32767c478bd9Sstevel@tonic-gate 		    "C identifiers\n", name);
32777c478bd9Sstevel@tonic-gate 	}
32787c478bd9Sstevel@tonic-gate #endif	/* DEBUG */
32797c478bd9Sstevel@tonic-gate 
32807c478bd9Sstevel@tonic-gate 	if (vmp == NULL)
32817c478bd9Sstevel@tonic-gate 		vmp = kmem_default_arena;
32827c478bd9Sstevel@tonic-gate 
32837c478bd9Sstevel@tonic-gate 	/*
32847c478bd9Sstevel@tonic-gate 	 * If this kmem cache has an identifier vmem arena as its source, mark
32857c478bd9Sstevel@tonic-gate 	 * it such to allow kmem_reap_idspace().
32867c478bd9Sstevel@tonic-gate 	 */
32877c478bd9Sstevel@tonic-gate 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
32887c478bd9Sstevel@tonic-gate 	if (vmp->vm_cflags & VMC_IDENTIFIER)
32897c478bd9Sstevel@tonic-gate 		cflags |= KMC_IDENTIFIER;
32907c478bd9Sstevel@tonic-gate 
32917c478bd9Sstevel@tonic-gate 	/*
32927c478bd9Sstevel@tonic-gate 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
32937c478bd9Sstevel@tonic-gate 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
32947c478bd9Sstevel@tonic-gate 	 * false sharing of per-CPU data.
32957c478bd9Sstevel@tonic-gate 	 */
32967c478bd9Sstevel@tonic-gate 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
32977c478bd9Sstevel@tonic-gate 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
32987c478bd9Sstevel@tonic-gate 	bzero(cp, csize);
3299b5fca8f8Stomee 	list_link_init(&cp->cache_link);
33007c478bd9Sstevel@tonic-gate 
33017c478bd9Sstevel@tonic-gate 	if (align == 0)
33027c478bd9Sstevel@tonic-gate 		align = KMEM_ALIGN;
33037c478bd9Sstevel@tonic-gate 
33047c478bd9Sstevel@tonic-gate 	/*
33057c478bd9Sstevel@tonic-gate 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
33067c478bd9Sstevel@tonic-gate 	 * memory to hold bufctl information (because we can't safely
33077c478bd9Sstevel@tonic-gate 	 * perform word loads and stores on it).
33087c478bd9Sstevel@tonic-gate 	 */
33097c478bd9Sstevel@tonic-gate 	if (align < KMEM_ALIGN)
33107c478bd9Sstevel@tonic-gate 		cflags |= KMC_NOTOUCH;
33117c478bd9Sstevel@tonic-gate 
33127c478bd9Sstevel@tonic-gate 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum)
33137c478bd9Sstevel@tonic-gate 		panic("kmem_cache_create: bad alignment %lu", align);
33147c478bd9Sstevel@tonic-gate 
33157c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_flags_lock);
33167c478bd9Sstevel@tonic-gate 	if (kmem_flags & KMF_RANDOMIZE)
33177c478bd9Sstevel@tonic-gate 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
33187c478bd9Sstevel@tonic-gate 		    KMF_RANDOMIZE;
33197c478bd9Sstevel@tonic-gate 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
33207c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_flags_lock);
33217c478bd9Sstevel@tonic-gate 
33227c478bd9Sstevel@tonic-gate 	/*
33237c478bd9Sstevel@tonic-gate 	 * Make sure all the various flags are reasonable.
33247c478bd9Sstevel@tonic-gate 	 */
33257c478bd9Sstevel@tonic-gate 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
33267c478bd9Sstevel@tonic-gate 
33277c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_LITE) {
33287c478bd9Sstevel@tonic-gate 		if (bufsize >= kmem_lite_minsize &&
33297c478bd9Sstevel@tonic-gate 		    align <= kmem_lite_maxalign &&
33307c478bd9Sstevel@tonic-gate 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
33317c478bd9Sstevel@tonic-gate 			cp->cache_flags |= KMF_BUFTAG;
33327c478bd9Sstevel@tonic-gate 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
33337c478bd9Sstevel@tonic-gate 		} else {
33347c478bd9Sstevel@tonic-gate 			cp->cache_flags &= ~KMF_DEBUG;
33357c478bd9Sstevel@tonic-gate 		}
33367c478bd9Sstevel@tonic-gate 	}
33377c478bd9Sstevel@tonic-gate 
33387c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF)
33397c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_REDZONE;
33407c478bd9Sstevel@tonic-gate 
33417c478bd9Sstevel@tonic-gate 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
33427c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
33437c478bd9Sstevel@tonic-gate 
33447c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NODEBUG)
33457c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_DEBUG;
33467c478bd9Sstevel@tonic-gate 
33477c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOTOUCH)
33487c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_TOUCH;
33497c478bd9Sstevel@tonic-gate 
33507c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOHASH)
33517c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
33527c478bd9Sstevel@tonic-gate 
33537c478bd9Sstevel@tonic-gate 	if (cflags & KMC_NOMAGAZINE)
33547c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
33557c478bd9Sstevel@tonic-gate 
33567c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
33577c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_REDZONE;
33587c478bd9Sstevel@tonic-gate 
33597c478bd9Sstevel@tonic-gate 	if (!(cp->cache_flags & KMF_AUDIT))
33607c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_CONTENTS;
33617c478bd9Sstevel@tonic-gate 
33627c478bd9Sstevel@tonic-gate 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
33637c478bd9Sstevel@tonic-gate 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
33647c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_FIREWALL;
33657c478bd9Sstevel@tonic-gate 
33667c478bd9Sstevel@tonic-gate 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
33677c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_FIREWALL;
33687c478bd9Sstevel@tonic-gate 
33697c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_FIREWALL) {
33707c478bd9Sstevel@tonic-gate 		cp->cache_flags &= ~KMF_BUFTAG;
33717c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_NOMAGAZINE;
33727c478bd9Sstevel@tonic-gate 		ASSERT(vmp == kmem_default_arena);
33737c478bd9Sstevel@tonic-gate 		vmp = kmem_firewall_arena;
33747c478bd9Sstevel@tonic-gate 	}
33757c478bd9Sstevel@tonic-gate 
33767c478bd9Sstevel@tonic-gate 	/*
33777c478bd9Sstevel@tonic-gate 	 * Set cache properties.
33787c478bd9Sstevel@tonic-gate 	 */
33797c478bd9Sstevel@tonic-gate 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3380b5fca8f8Stomee 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
33817c478bd9Sstevel@tonic-gate 	cp->cache_bufsize = bufsize;
33827c478bd9Sstevel@tonic-gate 	cp->cache_align = align;
33837c478bd9Sstevel@tonic-gate 	cp->cache_constructor = constructor;
33847c478bd9Sstevel@tonic-gate 	cp->cache_destructor = destructor;
33857c478bd9Sstevel@tonic-gate 	cp->cache_reclaim = reclaim;
33867c478bd9Sstevel@tonic-gate 	cp->cache_private = private;
33877c478bd9Sstevel@tonic-gate 	cp->cache_arena = vmp;
33887c478bd9Sstevel@tonic-gate 	cp->cache_cflags = cflags;
33897c478bd9Sstevel@tonic-gate 
33907c478bd9Sstevel@tonic-gate 	/*
33917c478bd9Sstevel@tonic-gate 	 * Determine the chunk size.
33927c478bd9Sstevel@tonic-gate 	 */
33937c478bd9Sstevel@tonic-gate 	chunksize = bufsize;
33947c478bd9Sstevel@tonic-gate 
33957c478bd9Sstevel@tonic-gate 	if (align >= KMEM_ALIGN) {
33967c478bd9Sstevel@tonic-gate 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
33977c478bd9Sstevel@tonic-gate 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
33987c478bd9Sstevel@tonic-gate 	}
33997c478bd9Sstevel@tonic-gate 
34007c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_BUFTAG) {
34017c478bd9Sstevel@tonic-gate 		cp->cache_bufctl = chunksize;
34027c478bd9Sstevel@tonic-gate 		cp->cache_buftag = chunksize;
34037c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
34047c478bd9Sstevel@tonic-gate 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
34057c478bd9Sstevel@tonic-gate 		else
34067c478bd9Sstevel@tonic-gate 			chunksize += sizeof (kmem_buftag_t);
34077c478bd9Sstevel@tonic-gate 	}
34087c478bd9Sstevel@tonic-gate 
34097c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_DEADBEEF) {
34107c478bd9Sstevel@tonic-gate 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
34117c478bd9Sstevel@tonic-gate 		if (cp->cache_flags & KMF_LITE)
34127c478bd9Sstevel@tonic-gate 			cp->cache_verify = sizeof (uint64_t);
34137c478bd9Sstevel@tonic-gate 	}
34147c478bd9Sstevel@tonic-gate 
34157c478bd9Sstevel@tonic-gate 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
34167c478bd9Sstevel@tonic-gate 
34177c478bd9Sstevel@tonic-gate 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
34187c478bd9Sstevel@tonic-gate 
34197c478bd9Sstevel@tonic-gate 	/*
34207c478bd9Sstevel@tonic-gate 	 * Now that we know the chunk size, determine the optimal slab size.
34217c478bd9Sstevel@tonic-gate 	 */
34227c478bd9Sstevel@tonic-gate 	if (vmp == kmem_firewall_arena) {
34237c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
34247c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
34257c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = cp->cache_mincolor;
34267c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_HASH;
34277c478bd9Sstevel@tonic-gate 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
34287c478bd9Sstevel@tonic-gate 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
34297c478bd9Sstevel@tonic-gate 	    !(cp->cache_flags & KMF_AUDIT) &&
34307c478bd9Sstevel@tonic-gate 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
34317c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = vmp->vm_quantum;
34327c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = 0;
34337c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor =
34347c478bd9Sstevel@tonic-gate 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
34357c478bd9Sstevel@tonic-gate 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
34367c478bd9Sstevel@tonic-gate 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
34377c478bd9Sstevel@tonic-gate 	} else {
34387c478bd9Sstevel@tonic-gate 		size_t chunks, bestfit, waste, slabsize;
34397c478bd9Sstevel@tonic-gate 		size_t minwaste = LONG_MAX;
34407c478bd9Sstevel@tonic-gate 
34417c478bd9Sstevel@tonic-gate 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
34427c478bd9Sstevel@tonic-gate 			slabsize = P2ROUNDUP(chunksize * chunks,
34437c478bd9Sstevel@tonic-gate 			    vmp->vm_quantum);
34447c478bd9Sstevel@tonic-gate 			chunks = slabsize / chunksize;
34457c478bd9Sstevel@tonic-gate 			waste = (slabsize % chunksize) / chunks;
34467c478bd9Sstevel@tonic-gate 			if (waste < minwaste) {
34477c478bd9Sstevel@tonic-gate 				minwaste = waste;
34487c478bd9Sstevel@tonic-gate 				bestfit = slabsize;
34497c478bd9Sstevel@tonic-gate 			}
34507c478bd9Sstevel@tonic-gate 		}
34517c478bd9Sstevel@tonic-gate 		if (cflags & KMC_QCACHE)
34527c478bd9Sstevel@tonic-gate 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
34537c478bd9Sstevel@tonic-gate 		cp->cache_slabsize = bestfit;
34547c478bd9Sstevel@tonic-gate 		cp->cache_mincolor = 0;
34557c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = bestfit % chunksize;
34567c478bd9Sstevel@tonic-gate 		cp->cache_flags |= KMF_HASH;
34577c478bd9Sstevel@tonic-gate 	}
34587c478bd9Sstevel@tonic-gate 
3459b5fca8f8Stomee 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3460b5fca8f8Stomee 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3461b5fca8f8Stomee 
34627c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
34637c478bd9Sstevel@tonic-gate 		ASSERT(!(cflags & KMC_NOHASH));
34647c478bd9Sstevel@tonic-gate 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
34657c478bd9Sstevel@tonic-gate 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
34667c478bd9Sstevel@tonic-gate 	}
34677c478bd9Sstevel@tonic-gate 
34687c478bd9Sstevel@tonic-gate 	if (cp->cache_maxcolor >= vmp->vm_quantum)
34697c478bd9Sstevel@tonic-gate 		cp->cache_maxcolor = vmp->vm_quantum - 1;
34707c478bd9Sstevel@tonic-gate 
34717c478bd9Sstevel@tonic-gate 	cp->cache_color = cp->cache_mincolor;
34727c478bd9Sstevel@tonic-gate 
34737c478bd9Sstevel@tonic-gate 	/*
34747c478bd9Sstevel@tonic-gate 	 * Initialize the rest of the slab layer.
34757c478bd9Sstevel@tonic-gate 	 */
34767c478bd9Sstevel@tonic-gate 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
34777c478bd9Sstevel@tonic-gate 
3478b5fca8f8Stomee 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3479b5fca8f8Stomee 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3480b5fca8f8Stomee 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3481b5fca8f8Stomee 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3482b5fca8f8Stomee 	/* reuse partial slab AVL linkage for complete slab list linkage */
3483b5fca8f8Stomee 	list_create(&cp->cache_complete_slabs,
3484b5fca8f8Stomee 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
34857c478bd9Sstevel@tonic-gate 
34867c478bd9Sstevel@tonic-gate 	if (cp->cache_flags & KMF_HASH) {
34877c478bd9Sstevel@tonic-gate 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
34887c478bd9Sstevel@tonic-gate 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
34897c478bd9Sstevel@tonic-gate 		bzero(cp->cache_hash_table,
34907c478bd9Sstevel@tonic-gate 		    KMEM_HASH_INITIAL * sizeof (void *));
34917c478bd9Sstevel@tonic-gate 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
34927c478bd9Sstevel@tonic-gate 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
34937c478bd9Sstevel@tonic-gate 	}
34947c478bd9Sstevel@tonic-gate 
34957c478bd9Sstevel@tonic-gate 	/*
34967c478bd9Sstevel@tonic-gate 	 * Initialize the depot.
34977c478bd9Sstevel@tonic-gate 	 */
34987c478bd9Sstevel@tonic-gate 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
34997c478bd9Sstevel@tonic-gate 
35007c478bd9Sstevel@tonic-gate 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
35017c478bd9Sstevel@tonic-gate 		continue;
35027c478bd9Sstevel@tonic-gate 
35037c478bd9Sstevel@tonic-gate 	cp->cache_magtype = mtp;
35047c478bd9Sstevel@tonic-gate 
35057c478bd9Sstevel@tonic-gate 	/*
35067c478bd9Sstevel@tonic-gate 	 * Initialize the CPU layer.
35077c478bd9Sstevel@tonic-gate 	 */
35087c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
35097c478bd9Sstevel@tonic-gate 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
35107c478bd9Sstevel@tonic-gate 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
35117c478bd9Sstevel@tonic-gate 		ccp->cc_flags = cp->cache_flags;
35127c478bd9Sstevel@tonic-gate 		ccp->cc_rounds = -1;
35137c478bd9Sstevel@tonic-gate 		ccp->cc_prounds = -1;
35147c478bd9Sstevel@tonic-gate 	}
35157c478bd9Sstevel@tonic-gate 
35167c478bd9Sstevel@tonic-gate 	/*
35177c478bd9Sstevel@tonic-gate 	 * Create the cache's kstats.
35187c478bd9Sstevel@tonic-gate 	 */
35197c478bd9Sstevel@tonic-gate 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
35207c478bd9Sstevel@tonic-gate 	    "kmem_cache", KSTAT_TYPE_NAMED,
35217c478bd9Sstevel@tonic-gate 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
35227c478bd9Sstevel@tonic-gate 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
35237c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
35247c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
35257c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_private = cp;
35267c478bd9Sstevel@tonic-gate 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
35277c478bd9Sstevel@tonic-gate 		kstat_install(cp->cache_kstat);
35287c478bd9Sstevel@tonic-gate 	}
35297c478bd9Sstevel@tonic-gate 
35307c478bd9Sstevel@tonic-gate 	/*
35317c478bd9Sstevel@tonic-gate 	 * Add the cache to the global list.  This makes it visible
35327c478bd9Sstevel@tonic-gate 	 * to kmem_update(), so the cache must be ready for business.
35337c478bd9Sstevel@tonic-gate 	 */
35347c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
3535b5fca8f8Stomee 	list_insert_tail(&kmem_caches, cp);
35367c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
35377c478bd9Sstevel@tonic-gate 
35387c478bd9Sstevel@tonic-gate 	if (kmem_ready)
35397c478bd9Sstevel@tonic-gate 		kmem_cache_magazine_enable(cp);
35407c478bd9Sstevel@tonic-gate 
35417c478bd9Sstevel@tonic-gate 	return (cp);
35427c478bd9Sstevel@tonic-gate }
35437c478bd9Sstevel@tonic-gate 
3544b5fca8f8Stomee static int
3545b5fca8f8Stomee kmem_move_cmp(const void *buf, const void *p)
3546b5fca8f8Stomee {
3547b5fca8f8Stomee 	const kmem_move_t *kmm = p;
3548b5fca8f8Stomee 	uintptr_t v1 = (uintptr_t)buf;
3549b5fca8f8Stomee 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3550b5fca8f8Stomee 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3551b5fca8f8Stomee }
3552b5fca8f8Stomee 
3553b5fca8f8Stomee static void
3554b5fca8f8Stomee kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3555b5fca8f8Stomee {
3556b5fca8f8Stomee 	kmd->kmd_reclaim_numer = 1;
3557b5fca8f8Stomee }
3558b5fca8f8Stomee 
3559b5fca8f8Stomee /*
3560b5fca8f8Stomee  * Initially, when choosing candidate slabs for buffers to move, we want to be
3561b5fca8f8Stomee  * very selective and take only slabs that are less than
3562b5fca8f8Stomee  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3563b5fca8f8Stomee  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3564b5fca8f8Stomee  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3565b5fca8f8Stomee  * longer fragmented.
3566b5fca8f8Stomee  */
3567b5fca8f8Stomee static void
3568b5fca8f8Stomee kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3569b5fca8f8Stomee {
3570b5fca8f8Stomee 	if (direction > 0) {
3571b5fca8f8Stomee 		/* make it easier to find a candidate slab */
3572b5fca8f8Stomee 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3573b5fca8f8Stomee 			kmd->kmd_reclaim_numer++;
3574b5fca8f8Stomee 		}
3575b5fca8f8Stomee 	} else {
3576b5fca8f8Stomee 		/* be more selective */
3577b5fca8f8Stomee 		if (kmd->kmd_reclaim_numer > 1) {
3578b5fca8f8Stomee 			kmd->kmd_reclaim_numer--;
3579b5fca8f8Stomee 		}
3580b5fca8f8Stomee 	}
3581b5fca8f8Stomee }
3582b5fca8f8Stomee 
3583b5fca8f8Stomee void
3584b5fca8f8Stomee kmem_cache_set_move(kmem_cache_t *cp,
3585b5fca8f8Stomee     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3586b5fca8f8Stomee {
3587b5fca8f8Stomee 	kmem_defrag_t *defrag;
3588b5fca8f8Stomee 
3589b5fca8f8Stomee 	ASSERT(move != NULL);
3590b5fca8f8Stomee 	/*
3591b5fca8f8Stomee 	 * The consolidator does not support NOTOUCH caches because kmem cannot
3592b5fca8f8Stomee 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
3593b5fca8f8Stomee 	 * a low order bit usable by clients to distinguish uninitialized memory
3594b5fca8f8Stomee 	 * from known objects (see kmem_slab_create).
3595b5fca8f8Stomee 	 */
3596b5fca8f8Stomee 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
3597b5fca8f8Stomee 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
3598b5fca8f8Stomee 
3599b5fca8f8Stomee 	/*
3600b5fca8f8Stomee 	 * We should not be holding anyone's cache lock when calling
3601b5fca8f8Stomee 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
3602b5fca8f8Stomee 	 * lock.
3603b5fca8f8Stomee 	 */
3604b5fca8f8Stomee 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
3605b5fca8f8Stomee 
3606b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
3607b5fca8f8Stomee 
3608b5fca8f8Stomee 	if (KMEM_IS_MOVABLE(cp)) {
3609b5fca8f8Stomee 		if (cp->cache_move == NULL) {
36104d4c4c43STom Erickson 			ASSERT(cp->cache_slab_alloc == 0);
3611b5fca8f8Stomee 
3612b5fca8f8Stomee 			cp->cache_defrag = defrag;
3613b5fca8f8Stomee 			defrag = NULL; /* nothing to free */
3614b5fca8f8Stomee 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
3615b5fca8f8Stomee 			avl_create(&cp->cache_defrag->kmd_moves_pending,
3616b5fca8f8Stomee 			    kmem_move_cmp, sizeof (kmem_move_t),
3617b5fca8f8Stomee 			    offsetof(kmem_move_t, kmm_entry));
3618b5fca8f8Stomee 			/* LINTED: E_TRUE_LOGICAL_EXPR */
3619b5fca8f8Stomee 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3620b5fca8f8Stomee 			/* reuse the slab's AVL linkage for deadlist linkage */
3621b5fca8f8Stomee 			list_create(&cp->cache_defrag->kmd_deadlist,
3622b5fca8f8Stomee 			    sizeof (kmem_slab_t),
3623b5fca8f8Stomee 			    offsetof(kmem_slab_t, slab_link));
3624b5fca8f8Stomee 			kmem_reset_reclaim_threshold(cp->cache_defrag);
3625b5fca8f8Stomee 		}
3626b5fca8f8Stomee 		cp->cache_move = move;
3627b5fca8f8Stomee 	}
3628b5fca8f8Stomee 
3629b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
3630b5fca8f8Stomee 
3631b5fca8f8Stomee 	if (defrag != NULL) {
3632b5fca8f8Stomee 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
3633b5fca8f8Stomee 	}
3634b5fca8f8Stomee }
3635b5fca8f8Stomee 
36367c478bd9Sstevel@tonic-gate void
36377c478bd9Sstevel@tonic-gate kmem_cache_destroy(kmem_cache_t *cp)
36387c478bd9Sstevel@tonic-gate {
36397c478bd9Sstevel@tonic-gate 	int cpu_seqid;
36407c478bd9Sstevel@tonic-gate 
36417c478bd9Sstevel@tonic-gate 	/*
36427c478bd9Sstevel@tonic-gate 	 * Remove the cache from the global cache list so that no one else
36437c478bd9Sstevel@tonic-gate 	 * can schedule tasks on its behalf, wait for any pending tasks to
36447c478bd9Sstevel@tonic-gate 	 * complete, purge the cache, and then destroy it.
36457c478bd9Sstevel@tonic-gate 	 */
36467c478bd9Sstevel@tonic-gate 	mutex_enter(&kmem_cache_lock);
3647b5fca8f8Stomee 	list_remove(&kmem_caches, cp);
36487c478bd9Sstevel@tonic-gate 	mutex_exit(&kmem_cache_lock);
36497c478bd9Sstevel@tonic-gate 
36507c478bd9Sstevel@tonic-gate 	if (kmem_taskq != NULL)
36517c478bd9Sstevel@tonic-gate 		taskq_wait(kmem_taskq);
3652b5fca8f8Stomee 	if (kmem_move_taskq != NULL)
3653b5fca8f8Stomee 		taskq_wait(kmem_move_taskq);
36547c478bd9Sstevel@tonic-gate 
36557c478bd9Sstevel@tonic-gate 	kmem_cache_magazine_purge(cp);
36567c478bd9Sstevel@tonic-gate 
36577c478bd9Sstevel@tonic-gate 	mutex_enter(&cp->cache_lock);
36587c478bd9Sstevel@tonic-gate 	if (cp->cache_buftotal != 0)
36597c478bd9Sstevel@tonic-gate 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
36607c478bd9Sstevel@tonic-gate 		    cp->cache_name, (void *)cp);
3661b5fca8f8Stomee 	if (cp->cache_defrag != NULL) {
3662b5fca8f8Stomee 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
3663b5fca8f8Stomee 		list_destroy(&cp->cache_defrag->kmd_deadlist);
3664b5fca8f8Stomee 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
3665b5fca8f8Stomee 		cp->cache_defrag = NULL;
3666b5fca8f8Stomee 	}
36677c478bd9Sstevel@tonic-gate 	/*
3668b5fca8f8Stomee 	 * The cache is now dead.  There should be no further activity.  We
3669b5fca8f8Stomee 	 * enforce this by setting land mines in the constructor, destructor,
3670b5fca8f8Stomee 	 * reclaim, and move routines that induce a kernel text fault if
3671b5fca8f8Stomee 	 * invoked.
36727c478bd9Sstevel@tonic-gate 	 */
36737c478bd9Sstevel@tonic-gate 	cp->cache_constructor = (int (*)(void *, void *, int))1;
36747c478bd9Sstevel@tonic-gate 	cp->cache_destructor = (void (*)(void *, void *))2;
3675b5fca8f8Stomee 	cp->cache_reclaim = (void (*)(void *))3;
3676b5fca8f8Stomee 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
36777c478bd9Sstevel@tonic-gate 	mutex_exit(&cp->cache_lock);
36787c478bd9Sstevel@tonic-gate 
36797c478bd9Sstevel@tonic-gate 	kstat_delete(cp->cache_kstat);
36807c478bd9Sstevel@tonic-gate 
36817c478bd9Sstevel@tonic-gate 	if (cp->cache_hash_table != NULL)
36827c478bd9Sstevel@tonic-gate 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
36837c478bd9Sstevel@tonic-gate 		    (cp->cache_hash_mask + 1) * sizeof (void *));
36847c478bd9Sstevel@tonic-gate 
36857c478bd9Sstevel@tonic-gate 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
36867c478bd9Sstevel@tonic-gate 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
36877c478bd9Sstevel@tonic-gate 
36887c478bd9Sstevel@tonic-gate 	mutex_destroy(&cp->cache_depot_lock);
36897c478bd9Sstevel@tonic-gate 	mutex_destroy(&cp->cache_lock);
36907c478bd9Sstevel@tonic-gate 
36917c478bd9Sstevel@tonic-gate 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
36927c478bd9Sstevel@tonic-gate }
36937c478bd9Sstevel@tonic-gate 
36947c478bd9Sstevel@tonic-gate /*ARGSUSED*/
36957c478bd9Sstevel@tonic-gate static int
36967c478bd9Sstevel@tonic-gate kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
36977c478bd9Sstevel@tonic-gate {
36987c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
36997c478bd9Sstevel@tonic-gate 	if (what == CPU_UNCONFIG) {
37007c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_magazine_purge,
37017c478bd9Sstevel@tonic-gate 		    kmem_taskq, TQ_SLEEP);
37027c478bd9Sstevel@tonic-gate 		kmem_cache_applyall(kmem_cache_magazine_enable,
37037c478bd9Sstevel@tonic-gate 		    kmem_taskq, TQ_SLEEP);
37047c478bd9Sstevel@tonic-gate 	}
37057c478bd9Sstevel@tonic-gate 	return (0);
37067c478bd9Sstevel@tonic-gate }
37077c478bd9Sstevel@tonic-gate 
3708dce01e3fSJonathan W Adams static void
3709dce01e3fSJonathan W Adams kmem_alloc_caches_create(const int *array, size_t count,
3710dce01e3fSJonathan W Adams     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
3711dce01e3fSJonathan W Adams {
3712dce01e3fSJonathan W Adams 	char name[KMEM_CACHE_NAMELEN + 1];
3713dce01e3fSJonathan W Adams 	size_t table_unit = (1 << shift); /* range of one alloc_table entry */
3714dce01e3fSJonathan W Adams 	size_t size = table_unit;
3715dce01e3fSJonathan W Adams 	int i;
3716dce01e3fSJonathan W Adams 
3717dce01e3fSJonathan W Adams 	for (i = 0; i < count; i++) {
3718dce01e3fSJonathan W Adams 		size_t cache_size = array[i];
3719dce01e3fSJonathan W Adams 		size_t align = KMEM_ALIGN;
3720dce01e3fSJonathan W Adams 		kmem_cache_t *cp;
3721dce01e3fSJonathan W Adams 
3722dce01e3fSJonathan W Adams 		/* if the table has an entry for maxbuf, we're done */
3723dce01e3fSJonathan W Adams 		if (size > maxbuf)
3724dce01e3fSJonathan W Adams 			break;
3725dce01e3fSJonathan W Adams 
3726dce01e3fSJonathan W Adams 		/* cache size must be a multiple of the table unit */
3727dce01e3fSJonathan W Adams 		ASSERT(P2PHASE(cache_size, table_unit) == 0);
3728dce01e3fSJonathan W Adams 
3729dce01e3fSJonathan W Adams 		/*
3730dce01e3fSJonathan W Adams 		 * If they allocate a multiple of the coherency granularity,
3731dce01e3fSJonathan W Adams 		 * they get a coherency-granularity-aligned address.
3732dce01e3fSJonathan W Adams 		 */
3733dce01e3fSJonathan W Adams 		if (IS_P2ALIGNED(cache_size, 64))
3734dce01e3fSJonathan W Adams 			align = 64;
3735dce01e3fSJonathan W Adams 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
3736dce01e3fSJonathan W Adams 			align = PAGESIZE;
3737dce01e3fSJonathan W Adams 		(void) snprintf(name, sizeof (name),
3738dce01e3fSJonathan W Adams 		    "kmem_alloc_%lu", cache_size);
3739dce01e3fSJonathan W Adams 		cp = kmem_cache_create(name, cache_size, align,
3740dce01e3fSJonathan W Adams 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
3741dce01e3fSJonathan W Adams 
3742dce01e3fSJonathan W Adams 		while (size <= cache_size) {
3743dce01e3fSJonathan W Adams 			alloc_table[(size - 1) >> shift] = cp;
3744dce01e3fSJonathan W Adams 			size += table_unit;
3745dce01e3fSJonathan W Adams 		}
3746dce01e3fSJonathan W Adams 	}
3747dce01e3fSJonathan W Adams 
3748dce01e3fSJonathan W Adams 	ASSERT(size > maxbuf);		/* i.e. maxbuf <= max(cache_size) */
3749dce01e3fSJonathan W Adams }
3750dce01e3fSJonathan W Adams 
37517c478bd9Sstevel@tonic-gate static void
37527c478bd9Sstevel@tonic-gate kmem_cache_init(int pass, int use_large_pages)
37537c478bd9Sstevel@tonic-gate {
37547c478bd9Sstevel@tonic-gate 	int i;
3755dce01e3fSJonathan W Adams 	size_t maxbuf;
37567c478bd9Sstevel@tonic-gate 	kmem_magtype_t *mtp;
37577c478bd9Sstevel@tonic-gate 
37587c478bd9Sstevel@tonic-gate 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
3759dce01e3fSJonathan W Adams 		char name[KMEM_CACHE_NAMELEN + 1];
3760dce01e3fSJonathan W Adams 
37617c478bd9Sstevel@tonic-gate 		mtp = &kmem_magtype[i];
37627c478bd9Sstevel@tonic-gate 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
37637c478bd9Sstevel@tonic-gate 		mtp->mt_cache = kmem_cache_create(name,
37647c478bd9Sstevel@tonic-gate 		    (mtp->mt_magsize + 1) * sizeof (void *),
37657c478bd9Sstevel@tonic-gate 		    mtp->mt_align, NULL, NULL, NULL, NULL,
37667c478bd9Sstevel@tonic-gate 		    kmem_msb_arena, KMC_NOHASH);
37677c478bd9Sstevel@tonic-gate 	}
37687c478bd9Sstevel@tonic-gate 
37697c478bd9Sstevel@tonic-gate 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
37707c478bd9Sstevel@tonic-gate 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
37717c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
37727c478bd9Sstevel@tonic-gate 
37737c478bd9Sstevel@tonic-gate 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
37747c478bd9Sstevel@tonic-gate 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
37757c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
37767c478bd9Sstevel@tonic-gate 
37777c478bd9Sstevel@tonic-gate 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
37787c478bd9Sstevel@tonic-gate 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
37797c478bd9Sstevel@tonic-gate 	    kmem_msb_arena, KMC_NOHASH);
37807c478bd9Sstevel@tonic-gate 
37817c478bd9Sstevel@tonic-gate 	if (pass == 2) {
37827c478bd9Sstevel@tonic-gate 		kmem_va_arena = vmem_create("kmem_va",
37837c478bd9Sstevel@tonic-gate 		    NULL, 0, PAGESIZE,
37847c478bd9Sstevel@tonic-gate 		    vmem_alloc, vmem_free, heap_arena,
37857c478bd9Sstevel@tonic-gate 		    8 * PAGESIZE, VM_SLEEP);
37867c478bd9Sstevel@tonic-gate 
37877c478bd9Sstevel@tonic-gate 		if (use_large_pages) {
37887c478bd9Sstevel@tonic-gate 			kmem_default_arena = vmem_xcreate("kmem_default",
37897c478bd9Sstevel@tonic-gate 			    NULL, 0, PAGESIZE,
37907c478bd9Sstevel@tonic-gate 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
37917c478bd9Sstevel@tonic-gate 			    0, VM_SLEEP);
37927c478bd9Sstevel@tonic-gate 		} else {
37937c478bd9Sstevel@tonic-gate 			kmem_default_arena = vmem_create("kmem_default",
37947c478bd9Sstevel@tonic-gate 			    NULL, 0, PAGESIZE,
37957c478bd9Sstevel@tonic-gate 			    segkmem_alloc, segkmem_free, kmem_va_arena,
37967c478bd9Sstevel@tonic-gate 			    0, VM_SLEEP);
37977c478bd9Sstevel@tonic-gate 		}
3798dce01e3fSJonathan W Adams 
3799dce01e3fSJonathan W Adams 		/* Figure out what our maximum cache size is */
3800dce01e3fSJonathan W Adams 		maxbuf = kmem_max_cached;
3801dce01e3fSJonathan W Adams 		if (maxbuf <= KMEM_MAXBUF) {
3802dce01e3fSJonathan W Adams 			maxbuf = 0;
3803dce01e3fSJonathan W Adams 			kmem_max_cached = KMEM_MAXBUF;
3804dce01e3fSJonathan W Adams 		} else {
3805dce01e3fSJonathan W Adams 			size_t size = 0;
3806dce01e3fSJonathan W Adams 			size_t max =
3807dce01e3fSJonathan W Adams 			    sizeof (kmem_big_alloc_sizes) / sizeof (int);
3808dce01e3fSJonathan W Adams 			/*
3809dce01e3fSJonathan W Adams 			 * Round maxbuf up to an existing cache size.  If maxbuf
3810dce01e3fSJonathan W Adams 			 * is larger than the largest cache, we truncate it to
3811dce01e3fSJonathan W Adams 			 * the largest cache's size.
3812dce01e3fSJonathan W Adams 			 */
3813dce01e3fSJonathan W Adams 			for (i = 0; i < max; i++) {
3814dce01e3fSJonathan W Adams 				size = kmem_big_alloc_sizes[i];
3815dce01e3fSJonathan W Adams 				if (maxbuf <= size)
3816dce01e3fSJonathan W Adams 					break;
3817dce01e3fSJonathan W Adams 			}
3818dce01e3fSJonathan W Adams 			kmem_max_cached = maxbuf = size;
3819dce01e3fSJonathan W Adams 		}
3820dce01e3fSJonathan W Adams 
3821dce01e3fSJonathan W Adams 		/*
3822dce01e3fSJonathan W Adams 		 * The big alloc table may not be completely overwritten, so
3823dce01e3fSJonathan W Adams 		 * we clear out any stale cache pointers from the first pass.
3824dce01e3fSJonathan W Adams 		 */
3825dce01e3fSJonathan W Adams 		bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
38267c478bd9Sstevel@tonic-gate 	} else {
38277c478bd9Sstevel@tonic-gate 		/*
38287c478bd9Sstevel@tonic-gate 		 * During the first pass, the kmem_alloc_* caches
38297c478bd9Sstevel@tonic-gate 		 * are treated as metadata.
38307c478bd9Sstevel@tonic-gate 		 */
38317c478bd9Sstevel@tonic-gate 		kmem_default_arena = kmem_msb_arena;
3832dce01e3fSJonathan W Adams 		maxbuf = KMEM_BIG_MAXBUF_32BIT;
38337c478bd9Sstevel@tonic-gate 	}
38347c478bd9Sstevel@tonic-gate 
38357c478bd9Sstevel@tonic-gate 	/*
38367c478bd9Sstevel@tonic-gate 	 * Set up the default caches to back kmem_alloc()
38377c478bd9Sstevel@tonic-gate 	 */
3838dce01e3fSJonathan W Adams 	kmem_alloc_caches_create(
3839dce01e3fSJonathan W Adams 	    kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
3840dce01e3fSJonathan W Adams 	    kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
3841dce01e3fSJonathan W Adams 
3842dce01e3fSJonathan W Adams 	kmem_alloc_caches_create(
3843dce01e3fSJonathan W Adams 	    kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
3844dce01e3fSJonathan W Adams 	    kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
3845dce01e3fSJonathan W Adams 
3846dce01e3fSJonathan W Adams 	kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
38477c478bd9Sstevel@tonic-gate }
38487c478bd9Sstevel@tonic-gate 
38497c478bd9Sstevel@tonic-gate void
38507c478bd9Sstevel@tonic-gate kmem_init(void)
38517c478bd9Sstevel@tonic-gate {
38527c478bd9Sstevel@tonic-gate 	kmem_cache_t *cp;
38537c478bd9Sstevel@tonic-gate 	int old_kmem_flags = kmem_flags;
38547c478bd9Sstevel@tonic-gate 	int use_large_pages = 0;
38557c478bd9Sstevel@tonic-gate 	size_t maxverify, minfirewall;
38567c478bd9Sstevel@tonic-gate 
38577c478bd9Sstevel@tonic-gate 	kstat_init();
38587c478bd9Sstevel@tonic-gate 
38597c478bd9Sstevel@tonic-gate 	/*
38607c478bd9Sstevel@tonic-gate 	 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead.
38617c478bd9Sstevel@tonic-gate 	 */
38627c478bd9Sstevel@tonic-gate 	if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY))
38637c478bd9Sstevel@tonic-gate 		kmem_flags = 0;
38647c478bd9Sstevel@tonic-gate 
38657c478bd9Sstevel@tonic-gate 	/*
38667c478bd9Sstevel@tonic-gate 	 * Don't do firewalled allocations if the heap is less than 1TB
38677c478bd9Sstevel@tonic-gate 	 * (i.e. on a 32-bit kernel)
38687c478bd9Sstevel@tonic-gate 	 * The resulting VM_NEXTFIT allocations would create too much
38697c478bd9Sstevel@tonic-gate 	 * fragmentation in a small heap.
38707c478bd9Sstevel@tonic-gate 	 */
38717c478bd9Sstevel@tonic-gate #if defined(_LP64)
38727c478bd9Sstevel@tonic-gate 	maxverify = minfirewall = PAGESIZE / 2;
38737c478bd9Sstevel@tonic-gate #else
38747c478bd9Sstevel@tonic-gate 	maxverify = minfirewall = ULONG_MAX;
38757c478bd9Sstevel@tonic-gate #endif
38767c478bd9Sstevel@tonic-gate 
38777c478bd9Sstevel@tonic-gate 	/* LINTED */
38787c478bd9Sstevel@tonic-gate 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
38797c478bd9Sstevel@tonic-gate 
3880b5fca8f8Stomee 	list_create(&kmem_caches, sizeof (kmem_cache_t),
3881b5fca8f8Stomee 	    offsetof(kmem_cache_t, cache_link));
38827c478bd9Sstevel@tonic-gate 
38837c478bd9Sstevel@tonic-gate 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
38847c478bd9Sstevel@tonic-gate 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
38857c478bd9Sstevel@tonic-gate 	    VM_SLEEP | VMC_NO_QCACHE);
38867c478bd9Sstevel@tonic-gate 
38877c478bd9Sstevel@tonic-gate 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
38887c478bd9Sstevel@tonic-gate 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
38897c478bd9Sstevel@tonic-gate 	    VM_SLEEP);
38907c478bd9Sstevel@tonic-gate 
38917c478bd9Sstevel@tonic-gate 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
38927c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
38937c478bd9Sstevel@tonic-gate 
38947c478bd9Sstevel@tonic-gate 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
38957c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
38967c478bd9Sstevel@tonic-gate 
38977c478bd9Sstevel@tonic-gate 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
38987c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
38997c478bd9Sstevel@tonic-gate 
39007c478bd9Sstevel@tonic-gate 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
39017c478bd9Sstevel@tonic-gate 	    NULL, 0, PAGESIZE,
39027c478bd9Sstevel@tonic-gate 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
39037c478bd9Sstevel@tonic-gate 	    0, VM_SLEEP);
39047c478bd9Sstevel@tonic-gate 
39057c478bd9Sstevel@tonic-gate 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
39067c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP);
39077c478bd9Sstevel@tonic-gate 
39087c478bd9Sstevel@tonic-gate 	/* temporary oversize arena for mod_read_system_file */
39097c478bd9Sstevel@tonic-gate 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
39107c478bd9Sstevel@tonic-gate 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
39117c478bd9Sstevel@tonic-gate 
39127c478bd9Sstevel@tonic-gate 	kmem_reap_interval = 15 * hz;
39137c478bd9Sstevel@tonic-gate 
39147c478bd9Sstevel@tonic-gate 	/*
39157c478bd9Sstevel@tonic-gate 	 * Read /etc/system.  This is a chicken-and-egg problem because
39167c478bd9Sstevel@tonic-gate 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
39177c478bd9Sstevel@tonic-gate 	 * needs to use the allocator.  The simplest solution is to create
39187c478bd9Sstevel@tonic-gate 	 * all the standard kmem caches, read /etc/system, destroy all the
39197c478bd9Sstevel@tonic-gate 	 * caches we just created, and then create them all again in light
39207c478bd9Sstevel@tonic-gate 	 * of the (possibly) new kmem_flags and other kmem tunables.
39217c478bd9Sstevel@tonic-gate 	 */
39227c478bd9Sstevel@tonic-gate 	kmem_cache_init(1, 0);
39237c478bd9Sstevel@tonic-gate 
39247c478bd9Sstevel@tonic-gate 	mod_read_system_file(boothowto & RB_ASKNAME);
39257c478bd9Sstevel@tonic-gate 
3926b5fca8f8Stomee 	while ((cp = list_tail(&kmem_caches)) != NULL)
39277c478bd9Sstevel@tonic-gate 		kmem_cache_destroy(cp);
39287c478bd9Sstevel@tonic-gate 
39297c478bd9Sstevel@tonic-gate 	vmem_destroy(kmem_oversize_arena);
39307c478bd9Sstevel@tonic-gate 
39317c478bd9Sstevel@tonic-gate 	if (old_kmem_flags & KMF_STICKY)
39327c478bd9Sstevel@tonic-gate 		kmem_flags = old_kmem_flags;
39337c478bd9Sstevel@tonic-gate 
39347c478bd9Sstevel@tonic-gate 	if (!(kmem_flags & KMF_AUDIT))
39357c478bd9Sstevel@tonic-gate 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
39367c478bd9Sstevel@tonic-gate 
39377c478bd9Sstevel@tonic-gate 	if (kmem_maxverify == 0)
39387c478bd9Sstevel@tonic-gate 		kmem_maxverify = maxverify;
39397c478bd9Sstevel@tonic-gate 
39407c478bd9Sstevel@tonic-gate 	if (kmem_minfirewall == 0)
39417c478bd9Sstevel@tonic-gate 		kmem_minfirewall = minfirewall;
39427c478bd9Sstevel@tonic-gate 
39437c478bd9Sstevel@tonic-gate 	/*
39447c478bd9Sstevel@tonic-gate 	 * give segkmem a chance to figure out if we are using large pages
39457c478bd9Sstevel@tonic-gate 	 * for the kernel heap
39467c478bd9Sstevel@tonic-gate 	 */
39477c478bd9Sstevel@tonic-gate 	use_large_pages = segkmem_lpsetup();
39487c478bd9Sstevel@tonic-gate 
39497c478bd9Sstevel@tonic-gate 	/*
39507c478bd9Sstevel@tonic-gate 	 * To protect against corruption, we keep the actual number of callers
39517c478bd9Sstevel@tonic-gate 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
39527c478bd9Sstevel@tonic-gate 	 * to 16, since the overhead for small buffers quickly gets out of
39537c478bd9Sstevel@tonic-gate 	 * hand.
39547c478bd9Sstevel@tonic-gate 	 *
39557c478bd9Sstevel@tonic-gate 	 * The real limit would depend on the needs of the largest KMC_NOHASH
39567c478bd9Sstevel@tonic-gate 	 * cache.
39577c478bd9Sstevel@tonic-gate 	 */
39587c478bd9Sstevel@tonic-gate 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
39597c478bd9Sstevel@tonic-gate 	kmem_lite_pcs = kmem_lite_count;
39607c478bd9Sstevel@tonic-gate 
39617c478bd9Sstevel@tonic-gate 	/*
39627c478bd9Sstevel@tonic-gate 	 * Normally, we firewall oversized allocations when possible, but
39637c478bd9Sstevel@tonic-gate 	 * if we are using large pages for kernel memory, and we don't have
39647c478bd9Sstevel@tonic-gate 	 * any non-LITE debugging flags set, we want to allocate oversized
39657c478bd9Sstevel@tonic-gate 	 * buffers from large pages, and so skip the firewalling.
39667c478bd9Sstevel@tonic-gate 	 */
39677c478bd9Sstevel@tonic-gate 	if (use_large_pages &&
39687c478bd9Sstevel@tonic-gate 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
39697c478bd9Sstevel@tonic-gate 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
39707c478bd9Sstevel@tonic-gate 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
39717c478bd9Sstevel@tonic-gate 		    0, VM_SLEEP);
39727c478bd9Sstevel@tonic-gate 	} else {
39737c478bd9Sstevel@tonic-gate 		kmem_oversize_arena = vmem_create("kmem_oversize",
39747c478bd9Sstevel@tonic-gate 		    NULL, 0, PAGESIZE,
39757c478bd9Sstevel@tonic-gate 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
39767c478bd9Sstevel@tonic-gate 		    kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP);
39777c478bd9Sstevel@tonic-gate 	}
39787c478bd9Sstevel@tonic-gate 
39797c478bd9Sstevel@tonic-gate 	kmem_cache_init(2, use_large_pages);
39807c478bd9Sstevel@tonic-gate 
39817c478bd9Sstevel@tonic-gate 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
39827c478bd9Sstevel@tonic-gate 		if (kmem_transaction_log_size == 0)
39837c478bd9Sstevel@tonic-gate 			kmem_transaction_log_size = kmem_maxavail() / 50;
39847c478bd9Sstevel@tonic-gate 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
39857c478bd9Sstevel@tonic-gate 	}
39867c478bd9Sstevel@tonic-gate 
39877c478bd9Sstevel@tonic-gate 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
39887c478bd9Sstevel@tonic-gate 		if (kmem_content_log_size == 0)
39897c478bd9Sstevel@tonic-gate 			kmem_content_log_size = kmem_maxavail() / 50;
39907c478bd9Sstevel@tonic-gate 		kmem_content_log = kmem_log_init(kmem_content_log_size);
39917c478bd9Sstevel@tonic-gate 	}
39927c478bd9Sstevel@tonic-gate 
39937c478bd9Sstevel@tonic-gate 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
39947c478bd9Sstevel@tonic-gate 
39957c478bd9Sstevel@tonic-gate 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
39967c478bd9Sstevel@tonic-gate 
39977c478bd9Sstevel@tonic-gate 	/*
39987c478bd9Sstevel@tonic-gate 	 * Initialize STREAMS message caches so allocb() is available.
39997c478bd9Sstevel@tonic-gate 	 * This allows us to initialize the logging framework (cmn_err(9F),
40007c478bd9Sstevel@tonic-gate 	 * strlog(9F), etc) so we can start recording messages.
40017c478bd9Sstevel@tonic-gate 	 */
40027c478bd9Sstevel@tonic-gate 	streams_msg_init();
40037d692464Sdp 
40047c478bd9Sstevel@tonic-gate 	/*
40057c478bd9Sstevel@tonic-gate 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
40067c478bd9Sstevel@tonic-gate 	 * can register their callbacks.
40077c478bd9Sstevel@tonic-gate 	 */
40087c478bd9Sstevel@tonic-gate 	zone_zsd_init();
4009f4b3ec61Sdh 
40107c478bd9Sstevel@tonic-gate 	log_init();
40117c478bd9Sstevel@tonic-gate 	taskq_init();
40127c478bd9Sstevel@tonic-gate 
40137d692464Sdp 	/*
40147d692464Sdp 	 * Warn about invalid or dangerous values of kmem_flags.
40157d692464Sdp 	 * Always warn about unsupported values.
40167d692464Sdp 	 */
40177d692464Sdp 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
40187d692464Sdp 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
40197d692464Sdp 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
40207d692464Sdp 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
40217d692464Sdp 		    "See the Solaris Tunable Parameters Reference Manual.",
40227d692464Sdp 		    kmem_flags);
40237d692464Sdp 
40247d692464Sdp #ifdef DEBUG
40257d692464Sdp 	if ((kmem_flags & KMF_DEBUG) == 0)
40267d692464Sdp 		cmn_err(CE_NOTE, "kmem debugging disabled.");
40277d692464Sdp #else
40287d692464Sdp 	/*
40297d692464Sdp 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
40307d692464Sdp 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
40317d692464Sdp 	 * if KMF_AUDIT is set). We should warn the user about the performance
40327d692464Sdp 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
40337d692464Sdp 	 * isn't set (since that disables AUDIT).
40347d692464Sdp 	 */
40357d692464Sdp 	if (!(kmem_flags & KMF_LITE) &&
40367d692464Sdp 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
40377d692464Sdp 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
40387d692464Sdp 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
40397d692464Sdp 		    "and large memory overhead possible. See the Solaris "
40407d692464Sdp 		    "Tunable Parameters Reference Manual.", kmem_flags);
40417d692464Sdp #endif /* not DEBUG */
40427d692464Sdp 
40437c478bd9Sstevel@tonic-gate 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
40447c478bd9Sstevel@tonic-gate 
40457c478bd9Sstevel@tonic-gate 	kmem_ready = 1;
40467c478bd9Sstevel@tonic-gate 
40477c478bd9Sstevel@tonic-gate 	/*
40487c478bd9Sstevel@tonic-gate 	 * Initialize the platform-specific aligned/DMA memory allocator.
40497c478bd9Sstevel@tonic-gate 	 */
40507c478bd9Sstevel@tonic-gate 	ka_init();
40517c478bd9Sstevel@tonic-gate 
40527c478bd9Sstevel@tonic-gate 	/*
40537c478bd9Sstevel@tonic-gate 	 * Initialize 32-bit ID cache.
40547c478bd9Sstevel@tonic-gate 	 */
40557c478bd9Sstevel@tonic-gate 	id32_init();
4056f4b3ec61Sdh 
4057f4b3ec61Sdh 	/*
4058f4b3ec61Sdh 	 * Initialize the networking stack so modules loaded can
4059f4b3ec61Sdh 	 * register their callbacks.
4060f4b3ec61Sdh 	 */
4061f4b3ec61Sdh 	netstack_init();
40627c478bd9Sstevel@tonic-gate }
40637c478bd9Sstevel@tonic-gate 
4064b5fca8f8Stomee static void
4065b5fca8f8Stomee kmem_move_init(void)
4066b5fca8f8Stomee {
4067b5fca8f8Stomee 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4068b5fca8f8Stomee 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4069b5fca8f8Stomee 	    kmem_msb_arena, KMC_NOHASH);
4070b5fca8f8Stomee 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
4071b5fca8f8Stomee 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4072b5fca8f8Stomee 	    kmem_msb_arena, KMC_NOHASH);
4073b5fca8f8Stomee 
4074b5fca8f8Stomee 	/*
4075b5fca8f8Stomee 	 * kmem guarantees that move callbacks are sequential and that even
4076b5fca8f8Stomee 	 * across multiple caches no two moves ever execute simultaneously.
4077b5fca8f8Stomee 	 * Move callbacks are processed on a separate taskq so that client code
4078b5fca8f8Stomee 	 * does not interfere with internal maintenance tasks.
4079b5fca8f8Stomee 	 */
4080b5fca8f8Stomee 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4081b5fca8f8Stomee 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4082b5fca8f8Stomee }
4083b5fca8f8Stomee 
40847c478bd9Sstevel@tonic-gate void
40857c478bd9Sstevel@tonic-gate kmem_thread_init(void)
40867c478bd9Sstevel@tonic-gate {
4087b5fca8f8Stomee 	kmem_move_init();
40887c478bd9Sstevel@tonic-gate 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
40897c478bd9Sstevel@tonic-gate 	    300, INT_MAX, TASKQ_PREPOPULATE);
40907c478bd9Sstevel@tonic-gate }
40917c478bd9Sstevel@tonic-gate 
40927c478bd9Sstevel@tonic-gate void
40937c478bd9Sstevel@tonic-gate kmem_mp_init(void)
40947c478bd9Sstevel@tonic-gate {
40957c478bd9Sstevel@tonic-gate 	mutex_enter(&cpu_lock);
40967c478bd9Sstevel@tonic-gate 	register_cpu_setup_func(kmem_cpu_setup, NULL);
40977c478bd9Sstevel@tonic-gate 	mutex_exit(&cpu_lock);
40987c478bd9Sstevel@tonic-gate 
40997c478bd9Sstevel@tonic-gate 	kmem_update_timeout(NULL);
41002e0c549eSJonathan Adams 
41012e0c549eSJonathan Adams 	taskq_mp_init();
41027c478bd9Sstevel@tonic-gate }
4103b5fca8f8Stomee 
4104b5fca8f8Stomee /*
4105b5fca8f8Stomee  * Return the slab of the allocated buffer, or NULL if the buffer is not
4106b5fca8f8Stomee  * allocated. This function may be called with a known slab address to determine
4107b5fca8f8Stomee  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4108b5fca8f8Stomee  * an allocated buffer's slab.
4109b5fca8f8Stomee  */
4110b5fca8f8Stomee static kmem_slab_t *
4111b5fca8f8Stomee kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4112b5fca8f8Stomee {
4113b5fca8f8Stomee 	kmem_bufctl_t *bcp, *bufbcp;
4114b5fca8f8Stomee 
4115b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4116b5fca8f8Stomee 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4117b5fca8f8Stomee 
4118b5fca8f8Stomee 	if (cp->cache_flags & KMF_HASH) {
4119b5fca8f8Stomee 		for (bcp = *KMEM_HASH(cp, buf);
4120b5fca8f8Stomee 		    (bcp != NULL) && (bcp->bc_addr != buf);
4121b5fca8f8Stomee 		    bcp = bcp->bc_next) {
4122b5fca8f8Stomee 			continue;
4123b5fca8f8Stomee 		}
4124b5fca8f8Stomee 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4125b5fca8f8Stomee 		return (bcp == NULL ? NULL : bcp->bc_slab);
4126b5fca8f8Stomee 	}
4127b5fca8f8Stomee 
4128b5fca8f8Stomee 	if (sp == NULL) {
4129b5fca8f8Stomee 		sp = KMEM_SLAB(cp, buf);
4130b5fca8f8Stomee 	}
4131b5fca8f8Stomee 	bufbcp = KMEM_BUFCTL(cp, buf);
4132b5fca8f8Stomee 	for (bcp = sp->slab_head;
4133b5fca8f8Stomee 	    (bcp != NULL) && (bcp != bufbcp);
4134b5fca8f8Stomee 	    bcp = bcp->bc_next) {
4135b5fca8f8Stomee 		continue;
4136b5fca8f8Stomee 	}
4137b5fca8f8Stomee 	return (bcp == NULL ? sp : NULL);
4138b5fca8f8Stomee }
4139b5fca8f8Stomee 
4140b5fca8f8Stomee static boolean_t
4141b5fca8f8Stomee kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4142b5fca8f8Stomee {
4143*686031edSTom Erickson 	long refcnt = sp->slab_refcnt;
4144b5fca8f8Stomee 
4145b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4146b5fca8f8Stomee 
4147*686031edSTom Erickson 	/*
4148*686031edSTom Erickson 	 * For code coverage we want to be able to move an object within the
4149*686031edSTom Erickson 	 * same slab (the only partial slab) even if allocating the destination
4150*686031edSTom Erickson 	 * buffer resulted in a completely allocated slab.
4151*686031edSTom Erickson 	 */
4152*686031edSTom Erickson 	if (flags & KMM_DEBUG) {
4153*686031edSTom Erickson 		return ((flags & KMM_DESPERATE) ||
4154*686031edSTom Erickson 		    ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4155*686031edSTom Erickson 	}
4156*686031edSTom Erickson 
4157b5fca8f8Stomee 	/* If we're desperate, we don't care if the client said NO. */
4158b5fca8f8Stomee 	if (flags & KMM_DESPERATE) {
4159b5fca8f8Stomee 		return (refcnt < sp->slab_chunks); /* any partial */
4160b5fca8f8Stomee 	}
4161b5fca8f8Stomee 
4162b5fca8f8Stomee 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4163b5fca8f8Stomee 		return (B_FALSE);
4164b5fca8f8Stomee 	}
4165b5fca8f8Stomee 
4166*686031edSTom Erickson 	if ((refcnt == 1) || kmem_move_any_partial) {
4167b5fca8f8Stomee 		return (refcnt < sp->slab_chunks);
4168b5fca8f8Stomee 	}
4169b5fca8f8Stomee 
4170b5fca8f8Stomee 	/*
4171b5fca8f8Stomee 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4172b5fca8f8Stomee 	 * slabs with a progressively higher percentage of used buffers can be
4173b5fca8f8Stomee 	 * reclaimed until the cache as a whole is no longer fragmented.
4174b5fca8f8Stomee 	 *
4175b5fca8f8Stomee 	 *	sp->slab_refcnt   kmd_reclaim_numer
4176b5fca8f8Stomee 	 *	--------------- < ------------------
4177b5fca8f8Stomee 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4178b5fca8f8Stomee 	 */
4179b5fca8f8Stomee 	return ((refcnt * KMEM_VOID_FRACTION) <
4180b5fca8f8Stomee 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4181b5fca8f8Stomee }
4182b5fca8f8Stomee 
4183b5fca8f8Stomee static void *
4184b5fca8f8Stomee kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4185b5fca8f8Stomee     void *tbuf)
4186b5fca8f8Stomee {
4187b5fca8f8Stomee 	int i;		/* magazine round index */
4188b5fca8f8Stomee 
4189b5fca8f8Stomee 	for (i = 0; i < n; i++) {
4190b5fca8f8Stomee 		if (buf == m->mag_round[i]) {
4191b5fca8f8Stomee 			if (cp->cache_flags & KMF_BUFTAG) {
4192b5fca8f8Stomee 				(void) kmem_cache_free_debug(cp, tbuf,
4193b5fca8f8Stomee 				    caller());
4194b5fca8f8Stomee 			}
4195b5fca8f8Stomee 			m->mag_round[i] = tbuf;
4196b5fca8f8Stomee 			return (buf);
4197b5fca8f8Stomee 		}
4198b5fca8f8Stomee 	}
4199b5fca8f8Stomee 
4200b5fca8f8Stomee 	return (NULL);
4201b5fca8f8Stomee }
4202b5fca8f8Stomee 
4203b5fca8f8Stomee /*
4204b5fca8f8Stomee  * Hunt the magazine layer for the given buffer. If found, the buffer is
4205b5fca8f8Stomee  * removed from the magazine layer and returned, otherwise NULL is returned.
4206b5fca8f8Stomee  * The state of the returned buffer is freed and constructed.
4207b5fca8f8Stomee  */
4208b5fca8f8Stomee static void *
4209b5fca8f8Stomee kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4210b5fca8f8Stomee {
4211b5fca8f8Stomee 	kmem_cpu_cache_t *ccp;
4212b5fca8f8Stomee 	kmem_magazine_t	*m;
4213b5fca8f8Stomee 	int cpu_seqid;
4214b5fca8f8Stomee 	int n;		/* magazine rounds */
4215b5fca8f8Stomee 	void *tbuf;	/* temporary swap buffer */
4216b5fca8f8Stomee 
4217b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4218b5fca8f8Stomee 
4219b5fca8f8Stomee 	/*
4220b5fca8f8Stomee 	 * Allocated a buffer to swap with the one we hope to pull out of a
4221b5fca8f8Stomee 	 * magazine when found.
4222b5fca8f8Stomee 	 */
4223b5fca8f8Stomee 	tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4224b5fca8f8Stomee 	if (tbuf == NULL) {
4225b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4226b5fca8f8Stomee 		return (NULL);
4227b5fca8f8Stomee 	}
4228b5fca8f8Stomee 	if (tbuf == buf) {
4229b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4230b5fca8f8Stomee 		if (cp->cache_flags & KMF_BUFTAG) {
4231b5fca8f8Stomee 			(void) kmem_cache_free_debug(cp, buf, caller());
4232b5fca8f8Stomee 		}
4233b5fca8f8Stomee 		return (buf);
4234b5fca8f8Stomee 	}
4235b5fca8f8Stomee 
4236b5fca8f8Stomee 	/* Hunt the depot. */
4237b5fca8f8Stomee 	mutex_enter(&cp->cache_depot_lock);
4238b5fca8f8Stomee 	n = cp->cache_magtype->mt_magsize;
4239b5fca8f8Stomee 	for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4240b5fca8f8Stomee 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4241b5fca8f8Stomee 			mutex_exit(&cp->cache_depot_lock);
4242b5fca8f8Stomee 			return (buf);
4243b5fca8f8Stomee 		}
4244b5fca8f8Stomee 	}
4245b5fca8f8Stomee 	mutex_exit(&cp->cache_depot_lock);
4246b5fca8f8Stomee 
4247b5fca8f8Stomee 	/* Hunt the per-CPU magazines. */
4248b5fca8f8Stomee 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4249b5fca8f8Stomee 		ccp = &cp->cache_cpu[cpu_seqid];
4250b5fca8f8Stomee 
4251b5fca8f8Stomee 		mutex_enter(&ccp->cc_lock);
4252b5fca8f8Stomee 		m = ccp->cc_loaded;
4253b5fca8f8Stomee 		n = ccp->cc_rounds;
4254b5fca8f8Stomee 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4255b5fca8f8Stomee 			mutex_exit(&ccp->cc_lock);
4256b5fca8f8Stomee 			return (buf);
4257b5fca8f8Stomee 		}
4258b5fca8f8Stomee 		m = ccp->cc_ploaded;
4259b5fca8f8Stomee 		n = ccp->cc_prounds;
4260b5fca8f8Stomee 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4261b5fca8f8Stomee 			mutex_exit(&ccp->cc_lock);
4262b5fca8f8Stomee 			return (buf);
4263b5fca8f8Stomee 		}
4264b5fca8f8Stomee 		mutex_exit(&ccp->cc_lock);
4265b5fca8f8Stomee 	}
4266b5fca8f8Stomee 
4267b5fca8f8Stomee 	kmem_cache_free(cp, tbuf);
4268b5fca8f8Stomee 	return (NULL);
4269b5fca8f8Stomee }
4270b5fca8f8Stomee 
4271b5fca8f8Stomee /*
4272b5fca8f8Stomee  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4273b5fca8f8Stomee  * or when the buffer is freed.
4274b5fca8f8Stomee  */
4275b5fca8f8Stomee static void
4276b5fca8f8Stomee kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4277b5fca8f8Stomee {
4278b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4279b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4280b5fca8f8Stomee 
4281b5fca8f8Stomee 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4282b5fca8f8Stomee 		return;
4283b5fca8f8Stomee 	}
4284b5fca8f8Stomee 
4285b5fca8f8Stomee 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4286b5fca8f8Stomee 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4287b5fca8f8Stomee 			avl_remove(&cp->cache_partial_slabs, sp);
4288b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4289b5fca8f8Stomee 			sp->slab_stuck_offset = (uint32_t)-1;
4290b5fca8f8Stomee 			avl_add(&cp->cache_partial_slabs, sp);
4291b5fca8f8Stomee 		}
4292b5fca8f8Stomee 	} else {
4293b5fca8f8Stomee 		sp->slab_later_count = 0;
4294b5fca8f8Stomee 		sp->slab_stuck_offset = (uint32_t)-1;
4295b5fca8f8Stomee 	}
4296b5fca8f8Stomee }
4297b5fca8f8Stomee 
4298b5fca8f8Stomee static void
4299b5fca8f8Stomee kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4300b5fca8f8Stomee {
4301b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4302b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4303b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4304b5fca8f8Stomee 
4305b5fca8f8Stomee 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4306b5fca8f8Stomee 		return;
4307b5fca8f8Stomee 	}
4308b5fca8f8Stomee 
4309b5fca8f8Stomee 	avl_remove(&cp->cache_partial_slabs, sp);
4310b5fca8f8Stomee 	sp->slab_later_count = 0;
4311b5fca8f8Stomee 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4312b5fca8f8Stomee 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4313b5fca8f8Stomee 	avl_add(&cp->cache_partial_slabs, sp);
4314b5fca8f8Stomee }
4315b5fca8f8Stomee 
4316b5fca8f8Stomee static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4317b5fca8f8Stomee 
4318b5fca8f8Stomee /*
4319b5fca8f8Stomee  * The move callback takes two buffer addresses, the buffer to be moved, and a
4320b5fca8f8Stomee  * newly allocated and constructed buffer selected by kmem as the destination.
4321b5fca8f8Stomee  * It also takes the size of the buffer and an optional user argument specified
4322b5fca8f8Stomee  * at cache creation time. kmem guarantees that the buffer to be moved has not
4323b5fca8f8Stomee  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4324b5fca8f8Stomee  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4325b5fca8f8Stomee  * the client to safely determine whether or not it is still using the buffer.
4326b5fca8f8Stomee  * The client must not free either of the buffers passed to the move callback,
4327b5fca8f8Stomee  * since kmem wants to free them directly to the slab layer. The client response
4328b5fca8f8Stomee  * tells kmem which of the two buffers to free:
4329b5fca8f8Stomee  *
4330b5fca8f8Stomee  * YES		kmem frees the old buffer (the move was successful)
4331b5fca8f8Stomee  * NO		kmem frees the new buffer, marks the slab of the old buffer
4332b5fca8f8Stomee  *              non-reclaimable to avoid bothering the client again
4333b5fca8f8Stomee  * LATER	kmem frees the new buffer, increments slab_later_count
4334b5fca8f8Stomee  * DONT_KNOW	kmem frees the new buffer, searches mags for the old buffer
4335b5fca8f8Stomee  * DONT_NEED	kmem frees both the old buffer and the new buffer
4336b5fca8f8Stomee  *
4337b5fca8f8Stomee  * The pending callback argument now being processed contains both of the
4338b5fca8f8Stomee  * buffers (old and new) passed to the move callback function, the slab of the
4339b5fca8f8Stomee  * old buffer, and flags related to the move request, such as whether or not the
4340b5fca8f8Stomee  * system was desperate for memory.
4341*686031edSTom Erickson  *
4342*686031edSTom Erickson  * Slabs are not freed while there is a pending callback, but instead are kept
4343*686031edSTom Erickson  * on a deadlist, which is drained after the last callback completes. This means
4344*686031edSTom Erickson  * that slabs are safe to access until kmem_move_end(), no matter how many of
4345*686031edSTom Erickson  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4346*686031edSTom Erickson  * zero for as long as the slab remains on the deadlist and until the slab is
4347*686031edSTom Erickson  * freed.
4348b5fca8f8Stomee  */
4349b5fca8f8Stomee static void
4350b5fca8f8Stomee kmem_move_buffer(kmem_move_t *callback)
4351b5fca8f8Stomee {
4352b5fca8f8Stomee 	kmem_cbrc_t response;
4353b5fca8f8Stomee 	kmem_slab_t *sp = callback->kmm_from_slab;
4354b5fca8f8Stomee 	kmem_cache_t *cp = sp->slab_cache;
4355b5fca8f8Stomee 	boolean_t free_on_slab;
4356b5fca8f8Stomee 
4357b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4358b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4359b5fca8f8Stomee 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4360b5fca8f8Stomee 
4361b5fca8f8Stomee 	/*
4362b5fca8f8Stomee 	 * The number of allocated buffers on the slab may have changed since we
4363b5fca8f8Stomee 	 * last checked the slab's reclaimability (when the pending move was
4364b5fca8f8Stomee 	 * enqueued), or the client may have responded NO when asked to move
4365b5fca8f8Stomee 	 * another buffer on the same slab.
4366b5fca8f8Stomee 	 */
4367b5fca8f8Stomee 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4368b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4369b5fca8f8Stomee 		KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4370b5fca8f8Stomee 		    kmem_move_stats.kms_notify_no_longer_reclaimable);
4371b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4372b5fca8f8Stomee 		kmem_move_end(cp, callback);
4373b5fca8f8Stomee 		return;
4374b5fca8f8Stomee 	}
4375b5fca8f8Stomee 
4376b5fca8f8Stomee 	/*
4377b5fca8f8Stomee 	 * Hunting magazines is expensive, so we'll wait to do that until the
4378b5fca8f8Stomee 	 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4379b5fca8f8Stomee 	 * is cheap, so we might as well do that here in case we can avoid
4380b5fca8f8Stomee 	 * bothering the client.
4381b5fca8f8Stomee 	 */
4382b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4383b5fca8f8Stomee 	free_on_slab = (kmem_slab_allocated(cp, sp,
4384b5fca8f8Stomee 	    callback->kmm_from_buf) == NULL);
4385b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4386b5fca8f8Stomee 
4387b5fca8f8Stomee 	if (free_on_slab) {
4388b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4389b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4390b5fca8f8Stomee 		kmem_move_end(cp, callback);
4391b5fca8f8Stomee 		return;
4392b5fca8f8Stomee 	}
4393b5fca8f8Stomee 
4394b5fca8f8Stomee 	if (cp->cache_flags & KMF_BUFTAG) {
4395b5fca8f8Stomee 		/*
4396b5fca8f8Stomee 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4397b5fca8f8Stomee 		 */
4398b5fca8f8Stomee 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4399b5fca8f8Stomee 		    KM_NOSLEEP, 1, caller()) != 0) {
4400b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4401b5fca8f8Stomee 			kmem_move_end(cp, callback);
4402b5fca8f8Stomee 			return;
4403b5fca8f8Stomee 		}
4404b5fca8f8Stomee 	} else if (cp->cache_constructor != NULL &&
4405b5fca8f8Stomee 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4406b5fca8f8Stomee 	    KM_NOSLEEP) != 0) {
4407b5fca8f8Stomee 		atomic_add_64(&cp->cache_alloc_fail, 1);
4408b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4409b5fca8f8Stomee 		kmem_slab_free(cp, callback->kmm_to_buf);
4410b5fca8f8Stomee 		kmem_move_end(cp, callback);
4411b5fca8f8Stomee 		return;
4412b5fca8f8Stomee 	}
4413b5fca8f8Stomee 
4414b5fca8f8Stomee 	KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4415b5fca8f8Stomee 	KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4416b5fca8f8Stomee 	    kmem_move_stats.kms_notify_callbacks);
4417b5fca8f8Stomee 	cp->cache_defrag->kmd_callbacks++;
4418b5fca8f8Stomee 	cp->cache_defrag->kmd_thread = curthread;
4419b5fca8f8Stomee 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4420b5fca8f8Stomee 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4421b5fca8f8Stomee 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4422b5fca8f8Stomee 	    callback);
4423b5fca8f8Stomee 
4424b5fca8f8Stomee 	response = cp->cache_move(callback->kmm_from_buf,
4425b5fca8f8Stomee 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4426b5fca8f8Stomee 
4427b5fca8f8Stomee 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4428b5fca8f8Stomee 	    callback, kmem_cbrc_t, response);
4429b5fca8f8Stomee 	cp->cache_defrag->kmd_thread = NULL;
4430b5fca8f8Stomee 	cp->cache_defrag->kmd_from_buf = NULL;
4431b5fca8f8Stomee 	cp->cache_defrag->kmd_to_buf = NULL;
4432b5fca8f8Stomee 
4433b5fca8f8Stomee 	if (response == KMEM_CBRC_YES) {
4434b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4435b5fca8f8Stomee 		cp->cache_defrag->kmd_yes++;
4436b5fca8f8Stomee 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4437*686031edSTom Erickson 		/* slab safe to access until kmem_move_end() */
4438*686031edSTom Erickson 		if (sp->slab_refcnt == 0)
4439*686031edSTom Erickson 			cp->cache_defrag->kmd_slabs_freed++;
4440b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4441b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4442b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4443b5fca8f8Stomee 		kmem_move_end(cp, callback);
4444b5fca8f8Stomee 		return;
4445b5fca8f8Stomee 	}
4446b5fca8f8Stomee 
4447b5fca8f8Stomee 	switch (response) {
4448b5fca8f8Stomee 	case KMEM_CBRC_NO:
4449b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_no);
4450b5fca8f8Stomee 		cp->cache_defrag->kmd_no++;
4451b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4452b5fca8f8Stomee 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4453b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4454b5fca8f8Stomee 		break;
4455b5fca8f8Stomee 	case KMEM_CBRC_LATER:
4456b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_later);
4457b5fca8f8Stomee 		cp->cache_defrag->kmd_later++;
4458b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4459b5fca8f8Stomee 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4460b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4461b5fca8f8Stomee 			break;
4462b5fca8f8Stomee 		}
4463b5fca8f8Stomee 
4464b5fca8f8Stomee 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4465b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4466b5fca8f8Stomee 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4467b5fca8f8Stomee 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4468b5fca8f8Stomee 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4469b5fca8f8Stomee 			    callback->kmm_from_buf);
4470b5fca8f8Stomee 		}
4471b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4472b5fca8f8Stomee 		break;
4473b5fca8f8Stomee 	case KMEM_CBRC_DONT_NEED:
4474b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4475b5fca8f8Stomee 		cp->cache_defrag->kmd_dont_need++;
4476b5fca8f8Stomee 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4477*686031edSTom Erickson 		if (sp->slab_refcnt == 0)
4478*686031edSTom Erickson 			cp->cache_defrag->kmd_slabs_freed++;
4479b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4480b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4481b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4482b5fca8f8Stomee 		break;
4483b5fca8f8Stomee 	case KMEM_CBRC_DONT_KNOW:
4484b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4485b5fca8f8Stomee 		cp->cache_defrag->kmd_dont_know++;
4486b5fca8f8Stomee 		if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4487b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4488b5fca8f8Stomee 			cp->cache_defrag->kmd_hunt_found++;
4489b5fca8f8Stomee 			kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4490b5fca8f8Stomee 			    B_TRUE);
4491*686031edSTom Erickson 			if (sp->slab_refcnt == 0)
4492*686031edSTom Erickson 				cp->cache_defrag->kmd_slabs_freed++;
4493b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4494b5fca8f8Stomee 			kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4495b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4496b5fca8f8Stomee 		}
4497b5fca8f8Stomee 		break;
4498b5fca8f8Stomee 	default:
4499b5fca8f8Stomee 		panic("'%s' (%p) unexpected move callback response %d\n",
4500b5fca8f8Stomee 		    cp->cache_name, (void *)cp, response);
4501b5fca8f8Stomee 	}
4502b5fca8f8Stomee 
4503b5fca8f8Stomee 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4504b5fca8f8Stomee 	kmem_move_end(cp, callback);
4505b5fca8f8Stomee }
4506b5fca8f8Stomee 
4507b5fca8f8Stomee /* Return B_FALSE if there is insufficient memory for the move request. */
4508b5fca8f8Stomee static boolean_t
4509b5fca8f8Stomee kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4510b5fca8f8Stomee {
4511b5fca8f8Stomee 	void *to_buf;
4512b5fca8f8Stomee 	avl_index_t index;
4513b5fca8f8Stomee 	kmem_move_t *callback, *pending;
4514*686031edSTom Erickson 	ulong_t n;
4515b5fca8f8Stomee 
4516b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4517b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4518b5fca8f8Stomee 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4519b5fca8f8Stomee 
4520b5fca8f8Stomee 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4521b5fca8f8Stomee 	if (callback == NULL) {
4522b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
4523b5fca8f8Stomee 		return (B_FALSE);
4524b5fca8f8Stomee 	}
4525b5fca8f8Stomee 
4526b5fca8f8Stomee 	callback->kmm_from_slab = sp;
4527b5fca8f8Stomee 	callback->kmm_from_buf = buf;
4528b5fca8f8Stomee 	callback->kmm_flags = flags;
4529b5fca8f8Stomee 
4530b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4531b5fca8f8Stomee 
4532*686031edSTom Erickson 	n = avl_numnodes(&cp->cache_partial_slabs);
4533*686031edSTom Erickson 	if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4534b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4535b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4536b5fca8f8Stomee 		return (B_TRUE); /* there is no need for the move request */
4537b5fca8f8Stomee 	}
4538b5fca8f8Stomee 
4539b5fca8f8Stomee 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4540b5fca8f8Stomee 	if (pending != NULL) {
4541b5fca8f8Stomee 		/*
4542b5fca8f8Stomee 		 * If the move is already pending and we're desperate now,
4543b5fca8f8Stomee 		 * update the move flags.
4544b5fca8f8Stomee 		 */
4545b5fca8f8Stomee 		if (flags & KMM_DESPERATE) {
4546b5fca8f8Stomee 			pending->kmm_flags |= KMM_DESPERATE;
4547b5fca8f8Stomee 		}
4548b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4549b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
4550b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4551b5fca8f8Stomee 		return (B_TRUE);
4552b5fca8f8Stomee 	}
4553b5fca8f8Stomee 
4554b5fca8f8Stomee 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs));
4555b5fca8f8Stomee 	callback->kmm_to_buf = to_buf;
4556b5fca8f8Stomee 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4557b5fca8f8Stomee 
4558b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4559b5fca8f8Stomee 
4560b5fca8f8Stomee 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4561b5fca8f8Stomee 	    callback, TQ_NOSLEEP)) {
456225e2c9cfStomee 		KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail);
4563b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4564b5fca8f8Stomee 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4565b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
456625e2c9cfStomee 		kmem_slab_free(cp, to_buf);
4567b5fca8f8Stomee 		kmem_cache_free(kmem_move_cache, callback);
4568b5fca8f8Stomee 		return (B_FALSE);
4569b5fca8f8Stomee 	}
4570b5fca8f8Stomee 
4571b5fca8f8Stomee 	return (B_TRUE);
4572b5fca8f8Stomee }
4573b5fca8f8Stomee 
4574b5fca8f8Stomee static void
4575b5fca8f8Stomee kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4576b5fca8f8Stomee {
4577b5fca8f8Stomee 	avl_index_t index;
4578b5fca8f8Stomee 
4579b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4580b5fca8f8Stomee 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4581b5fca8f8Stomee 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4582b5fca8f8Stomee 
4583b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4584b5fca8f8Stomee 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4585b5fca8f8Stomee 	    callback->kmm_from_buf, &index) != NULL);
4586b5fca8f8Stomee 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4587b5fca8f8Stomee 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4588b5fca8f8Stomee 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4589b5fca8f8Stomee 		kmem_slab_t *sp;
4590b5fca8f8Stomee 
4591b5fca8f8Stomee 		/*
4592b5fca8f8Stomee 		 * The last pending move completed. Release all slabs from the
4593b5fca8f8Stomee 		 * front of the dead list except for any slab at the tail that
4594b5fca8f8Stomee 		 * needs to be released from the context of kmem_move_buffers().
4595b5fca8f8Stomee 		 * kmem deferred unmapping the buffers on these slabs in order
4596b5fca8f8Stomee 		 * to guarantee that buffers passed to the move callback have
4597b5fca8f8Stomee 		 * been touched only by kmem or by the client itself.
4598b5fca8f8Stomee 		 */
4599b5fca8f8Stomee 		while ((sp = list_remove_head(deadlist)) != NULL) {
4600b5fca8f8Stomee 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4601b5fca8f8Stomee 				list_insert_tail(deadlist, sp);
4602b5fca8f8Stomee 				break;
4603b5fca8f8Stomee 			}
4604b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount--;
4605b5fca8f8Stomee 			cp->cache_slab_destroy++;
4606b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4607b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
4608b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4609b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4610b5fca8f8Stomee 		}
4611b5fca8f8Stomee 	}
4612b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4613b5fca8f8Stomee 	kmem_cache_free(kmem_move_cache, callback);
4614b5fca8f8Stomee }
4615b5fca8f8Stomee 
4616b5fca8f8Stomee /*
4617b5fca8f8Stomee  * Move buffers from least used slabs first by scanning backwards from the end
4618b5fca8f8Stomee  * of the partial slab list. Scan at most max_scan candidate slabs and move
4619b5fca8f8Stomee  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4620b5fca8f8Stomee  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4621b5fca8f8Stomee  * skip slabs with a ratio of allocated buffers at or above the current
4622b5fca8f8Stomee  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4623b5fca8f8Stomee  * scan is aborted) so that the caller can adjust the reclaimability threshold
4624b5fca8f8Stomee  * depending on how many reclaimable slabs it finds.
4625b5fca8f8Stomee  *
4626b5fca8f8Stomee  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4627b5fca8f8Stomee  * move request, since it is not valid for kmem_move_begin() to call
4628b5fca8f8Stomee  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4629b5fca8f8Stomee  */
4630b5fca8f8Stomee static int
4631b5fca8f8Stomee kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4632b5fca8f8Stomee     int flags)
4633b5fca8f8Stomee {
4634b5fca8f8Stomee 	kmem_slab_t *sp;
4635b5fca8f8Stomee 	void *buf;
4636b5fca8f8Stomee 	int i, j; /* slab index, buffer index */
4637b5fca8f8Stomee 	int s; /* reclaimable slabs */
4638b5fca8f8Stomee 	int b; /* allocated (movable) buffers on reclaimable slab */
4639b5fca8f8Stomee 	boolean_t success;
4640b5fca8f8Stomee 	int refcnt;
4641b5fca8f8Stomee 	int nomove;
4642b5fca8f8Stomee 
4643b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4644b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4645b5fca8f8Stomee 	ASSERT(kmem_move_cache != NULL);
4646b5fca8f8Stomee 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4647*686031edSTom Erickson 	ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4648*686031edSTom Erickson 	    avl_numnodes(&cp->cache_partial_slabs) > 1);
4649b5fca8f8Stomee 
4650b5fca8f8Stomee 	if (kmem_move_blocked) {
4651b5fca8f8Stomee 		return (0);
4652b5fca8f8Stomee 	}
4653b5fca8f8Stomee 
4654b5fca8f8Stomee 	if (kmem_move_fulltilt) {
4655b5fca8f8Stomee 		flags |= KMM_DESPERATE;
4656b5fca8f8Stomee 	}
4657b5fca8f8Stomee 
4658b5fca8f8Stomee 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4659b5fca8f8Stomee 		/*
4660b5fca8f8Stomee 		 * Scan as many slabs as needed to find the desired number of
4661b5fca8f8Stomee 		 * candidate slabs.
4662b5fca8f8Stomee 		 */
4663b5fca8f8Stomee 		max_scan = (size_t)-1;
4664b5fca8f8Stomee 	}
4665b5fca8f8Stomee 
4666b5fca8f8Stomee 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4667b5fca8f8Stomee 		/* Find as many candidate slabs as possible. */
4668b5fca8f8Stomee 		max_slabs = (size_t)-1;
4669b5fca8f8Stomee 	}
4670b5fca8f8Stomee 
4671b5fca8f8Stomee 	sp = avl_last(&cp->cache_partial_slabs);
4672*686031edSTom Erickson 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4673*686031edSTom Erickson 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4674*686031edSTom Erickson 	    ((sp != avl_first(&cp->cache_partial_slabs)) ||
4675*686031edSTom Erickson 	    (flags & KMM_DEBUG));
4676b5fca8f8Stomee 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4677b5fca8f8Stomee 
4678b5fca8f8Stomee 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4679b5fca8f8Stomee 			continue;
4680b5fca8f8Stomee 		}
4681b5fca8f8Stomee 		s++;
4682b5fca8f8Stomee 
4683b5fca8f8Stomee 		/* Look for allocated buffers to move. */
4684b5fca8f8Stomee 		for (j = 0, b = 0, buf = sp->slab_base;
4685b5fca8f8Stomee 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4686b5fca8f8Stomee 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
4687b5fca8f8Stomee 
4688b5fca8f8Stomee 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4689b5fca8f8Stomee 				continue;
4690b5fca8f8Stomee 			}
4691b5fca8f8Stomee 
4692b5fca8f8Stomee 			b++;
4693b5fca8f8Stomee 
4694b5fca8f8Stomee 			/*
4695b5fca8f8Stomee 			 * Prevent the slab from being destroyed while we drop
4696b5fca8f8Stomee 			 * cache_lock and while the pending move is not yet
4697b5fca8f8Stomee 			 * registered. Flag the pending move while
4698b5fca8f8Stomee 			 * kmd_moves_pending may still be empty, since we can't
4699b5fca8f8Stomee 			 * yet rely on a non-zero pending move count to prevent
4700b5fca8f8Stomee 			 * the slab from being destroyed.
4701b5fca8f8Stomee 			 */
4702b5fca8f8Stomee 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4703b5fca8f8Stomee 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4704b5fca8f8Stomee 			/*
4705b5fca8f8Stomee 			 * Recheck refcnt and nomove after reacquiring the lock,
4706b5fca8f8Stomee 			 * since these control the order of partial slabs, and
4707b5fca8f8Stomee 			 * we want to know if we can pick up the scan where we
4708b5fca8f8Stomee 			 * left off.
4709b5fca8f8Stomee 			 */
4710b5fca8f8Stomee 			refcnt = sp->slab_refcnt;
4711b5fca8f8Stomee 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
4712b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4713b5fca8f8Stomee 
4714b5fca8f8Stomee 			success = kmem_move_begin(cp, sp, buf, flags);
4715b5fca8f8Stomee 
4716b5fca8f8Stomee 			/*
4717b5fca8f8Stomee 			 * Now, before the lock is reacquired, kmem could
4718b5fca8f8Stomee 			 * process all pending move requests and purge the
4719b5fca8f8Stomee 			 * deadlist, so that upon reacquiring the lock, sp has
4720*686031edSTom Erickson 			 * been remapped. Or, the client may free all the
4721*686031edSTom Erickson 			 * objects on the slab while the pending moves are still
4722*686031edSTom Erickson 			 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
4723b5fca8f8Stomee 			 * flag causes the slab to be put at the end of the
4724*686031edSTom Erickson 			 * deadlist and prevents it from being destroyed, since
4725*686031edSTom Erickson 			 * we plan to destroy it here after reacquiring the
4726*686031edSTom Erickson 			 * lock.
4727b5fca8f8Stomee 			 */
4728b5fca8f8Stomee 			mutex_enter(&cp->cache_lock);
4729b5fca8f8Stomee 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4730b5fca8f8Stomee 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
4731b5fca8f8Stomee 
4732b5fca8f8Stomee 			if (sp->slab_refcnt == 0) {
4733b5fca8f8Stomee 				list_t *deadlist =
4734b5fca8f8Stomee 				    &cp->cache_defrag->kmd_deadlist;
4735*686031edSTom Erickson 				list_remove(deadlist, sp);
4736b5fca8f8Stomee 
4737*686031edSTom Erickson 				if (!avl_is_empty(
4738*686031edSTom Erickson 				    &cp->cache_defrag->kmd_moves_pending)) {
4739*686031edSTom Erickson 					/*
4740*686031edSTom Erickson 					 * A pending move makes it unsafe to
4741*686031edSTom Erickson 					 * destroy the slab, because even though
4742*686031edSTom Erickson 					 * the move is no longer needed, the
4743*686031edSTom Erickson 					 * context where that is determined
4744*686031edSTom Erickson 					 * requires the slab to exist.
4745*686031edSTom Erickson 					 * Fortunately, a pending move also
4746*686031edSTom Erickson 					 * means we don't need to destroy the
4747*686031edSTom Erickson 					 * slab here, since it will get
4748*686031edSTom Erickson 					 * destroyed along with any other slabs
4749*686031edSTom Erickson 					 * on the deadlist after the last
4750*686031edSTom Erickson 					 * pending move completes.
4751*686031edSTom Erickson 					 */
4752*686031edSTom Erickson 					list_insert_head(deadlist, sp);
4753*686031edSTom Erickson 					KMEM_STAT_ADD(kmem_move_stats.
4754*686031edSTom Erickson 					    kms_endscan_slab_dead);
4755*686031edSTom Erickson 					return (-1);
4756*686031edSTom Erickson 				}
4757b5fca8f8Stomee 
4758*686031edSTom Erickson 				/*
4759*686031edSTom Erickson 				 * Destroy the slab now if it was completely
4760*686031edSTom Erickson 				 * freed while we dropped cache_lock and there
4761*686031edSTom Erickson 				 * are no pending moves. Since slab_refcnt
4762*686031edSTom Erickson 				 * cannot change once it reaches zero, no new
4763*686031edSTom Erickson 				 * pending moves from that slab are possible.
4764*686031edSTom Erickson 				 */
4765b5fca8f8Stomee 				cp->cache_defrag->kmd_deadcount--;
4766b5fca8f8Stomee 				cp->cache_slab_destroy++;
4767b5fca8f8Stomee 				mutex_exit(&cp->cache_lock);
4768b5fca8f8Stomee 				kmem_slab_destroy(cp, sp);
4769b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.
4770b5fca8f8Stomee 				    kms_dead_slabs_freed);
4771b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.
4772b5fca8f8Stomee 				    kms_endscan_slab_destroyed);
4773b5fca8f8Stomee 				mutex_enter(&cp->cache_lock);
4774b5fca8f8Stomee 				/*
4775b5fca8f8Stomee 				 * Since we can't pick up the scan where we left
4776b5fca8f8Stomee 				 * off, abort the scan and say nothing about the
4777b5fca8f8Stomee 				 * number of reclaimable slabs.
4778b5fca8f8Stomee 				 */
4779b5fca8f8Stomee 				return (-1);
4780b5fca8f8Stomee 			}
4781b5fca8f8Stomee 
4782b5fca8f8Stomee 			if (!success) {
4783b5fca8f8Stomee 				/*
4784b5fca8f8Stomee 				 * Abort the scan if there is not enough memory
4785b5fca8f8Stomee 				 * for the request and say nothing about the
4786b5fca8f8Stomee 				 * number of reclaimable slabs.
4787b5fca8f8Stomee 				 */
4788*686031edSTom Erickson 				KMEM_STAT_COND_ADD(s < max_slabs,
4789b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_nomem);
4790b5fca8f8Stomee 				return (-1);
4791b5fca8f8Stomee 			}
4792b5fca8f8Stomee 
4793b5fca8f8Stomee 			/*
4794b5fca8f8Stomee 			 * The slab's position changed while the lock was
4795b5fca8f8Stomee 			 * dropped, so we don't know where we are in the
4796b5fca8f8Stomee 			 * sequence any more.
4797b5fca8f8Stomee 			 */
4798b5fca8f8Stomee 			if (sp->slab_refcnt != refcnt) {
4799*686031edSTom Erickson 				/*
4800*686031edSTom Erickson 				 * If this is a KMM_DEBUG move, the slab_refcnt
4801*686031edSTom Erickson 				 * may have changed because we allocated a
4802*686031edSTom Erickson 				 * destination buffer on the same slab. In that
4803*686031edSTom Erickson 				 * case, we're not interested in counting it.
4804*686031edSTom Erickson 				 */
4805*686031edSTom Erickson 				KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
4806*686031edSTom Erickson 				    (s < max_slabs),
4807b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_refcnt_changed);
4808b5fca8f8Stomee 				return (-1);
4809b5fca8f8Stomee 			}
4810b5fca8f8Stomee 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
4811*686031edSTom Erickson 				KMEM_STAT_COND_ADD(s < max_slabs,
4812b5fca8f8Stomee 				    kmem_move_stats.kms_endscan_nomove_changed);
4813b5fca8f8Stomee 				return (-1);
4814b5fca8f8Stomee 			}
4815b5fca8f8Stomee 
4816b5fca8f8Stomee 			/*
4817b5fca8f8Stomee 			 * Generating a move request allocates a destination
4818*686031edSTom Erickson 			 * buffer from the slab layer, bumping the first partial
4819*686031edSTom Erickson 			 * slab if it is completely allocated. If the current
4820*686031edSTom Erickson 			 * slab becomes the first partial slab as a result, we
4821*686031edSTom Erickson 			 * can't continue to scan backwards.
4822*686031edSTom Erickson 			 *
4823*686031edSTom Erickson 			 * If this is a KMM_DEBUG move and we allocated the
4824*686031edSTom Erickson 			 * destination buffer from the last partial slab, then
4825*686031edSTom Erickson 			 * the buffer we're moving is on the same slab and our
4826*686031edSTom Erickson 			 * slab_refcnt has changed, causing us to return before
4827*686031edSTom Erickson 			 * reaching here if there are no partial slabs left.
4828b5fca8f8Stomee 			 */
4829b5fca8f8Stomee 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
4830b5fca8f8Stomee 			if (sp == avl_first(&cp->cache_partial_slabs)) {
4831*686031edSTom Erickson 				/*
4832*686031edSTom Erickson 				 * We're not interested in a second KMM_DEBUG
4833*686031edSTom Erickson 				 * move.
4834*686031edSTom Erickson 				 */
4835b5fca8f8Stomee 				goto end_scan;
4836b5fca8f8Stomee 			}
4837b5fca8f8Stomee 		}
4838b5fca8f8Stomee 	}
4839b5fca8f8Stomee end_scan:
4840b5fca8f8Stomee 
4841*686031edSTom Erickson 	KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
4842*686031edSTom Erickson 	    (s < max_slabs) &&
4843*686031edSTom Erickson 	    (sp == avl_first(&cp->cache_partial_slabs)),
4844b5fca8f8Stomee 	    kmem_move_stats.kms_endscan_freelist);
4845b5fca8f8Stomee 
4846b5fca8f8Stomee 	return (s);
4847b5fca8f8Stomee }
4848b5fca8f8Stomee 
4849b5fca8f8Stomee typedef struct kmem_move_notify_args {
4850b5fca8f8Stomee 	kmem_cache_t *kmna_cache;
4851b5fca8f8Stomee 	void *kmna_buf;
4852b5fca8f8Stomee } kmem_move_notify_args_t;
4853b5fca8f8Stomee 
4854b5fca8f8Stomee static void
4855b5fca8f8Stomee kmem_cache_move_notify_task(void *arg)
4856b5fca8f8Stomee {
4857b5fca8f8Stomee 	kmem_move_notify_args_t *args = arg;
4858b5fca8f8Stomee 	kmem_cache_t *cp = args->kmna_cache;
4859b5fca8f8Stomee 	void *buf = args->kmna_buf;
4860b5fca8f8Stomee 	kmem_slab_t *sp;
4861b5fca8f8Stomee 
4862b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
4863b5fca8f8Stomee 	ASSERT(list_link_active(&cp->cache_link));
4864b5fca8f8Stomee 
4865b5fca8f8Stomee 	kmem_free(args, sizeof (kmem_move_notify_args_t));
4866b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4867b5fca8f8Stomee 	sp = kmem_slab_allocated(cp, NULL, buf);
4868b5fca8f8Stomee 
4869b5fca8f8Stomee 	/* Ignore the notification if the buffer is no longer allocated. */
4870b5fca8f8Stomee 	if (sp == NULL) {
4871b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4872b5fca8f8Stomee 		return;
4873b5fca8f8Stomee 	}
4874b5fca8f8Stomee 
4875b5fca8f8Stomee 	/* Ignore the notification if there's no reason to move the buffer. */
4876b5fca8f8Stomee 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
4877b5fca8f8Stomee 		/*
4878b5fca8f8Stomee 		 * So far the notification is not ignored. Ignore the
4879b5fca8f8Stomee 		 * notification if the slab is not marked by an earlier refusal
4880b5fca8f8Stomee 		 * to move a buffer.
4881b5fca8f8Stomee 		 */
4882b5fca8f8Stomee 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
4883b5fca8f8Stomee 		    (sp->slab_later_count == 0)) {
4884b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4885b5fca8f8Stomee 			return;
4886b5fca8f8Stomee 		}
4887b5fca8f8Stomee 
4888b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
4889b5fca8f8Stomee 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4890b5fca8f8Stomee 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4891b5fca8f8Stomee 		mutex_exit(&cp->cache_lock);
4892b5fca8f8Stomee 		/* see kmem_move_buffers() about dropping the lock */
4893b5fca8f8Stomee 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
4894b5fca8f8Stomee 		mutex_enter(&cp->cache_lock);
4895b5fca8f8Stomee 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4896b5fca8f8Stomee 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
4897b5fca8f8Stomee 		if (sp->slab_refcnt == 0) {
4898b5fca8f8Stomee 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4899*686031edSTom Erickson 			list_remove(deadlist, sp);
4900b5fca8f8Stomee 
4901*686031edSTom Erickson 			if (!avl_is_empty(
4902*686031edSTom Erickson 			    &cp->cache_defrag->kmd_moves_pending)) {
4903*686031edSTom Erickson 				list_insert_head(deadlist, sp);
4904*686031edSTom Erickson 				mutex_exit(&cp->cache_lock);
4905*686031edSTom Erickson 				KMEM_STAT_ADD(kmem_move_stats.
4906*686031edSTom Erickson 				    kms_notify_slab_dead);
4907*686031edSTom Erickson 				return;
4908*686031edSTom Erickson 			}
4909b5fca8f8Stomee 
4910b5fca8f8Stomee 			cp->cache_defrag->kmd_deadcount--;
4911b5fca8f8Stomee 			cp->cache_slab_destroy++;
4912b5fca8f8Stomee 			mutex_exit(&cp->cache_lock);
4913b5fca8f8Stomee 			kmem_slab_destroy(cp, sp);
4914b5fca8f8Stomee 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4915*686031edSTom Erickson 			KMEM_STAT_ADD(kmem_move_stats.
4916*686031edSTom Erickson 			    kms_notify_slab_destroyed);
4917b5fca8f8Stomee 			return;
4918b5fca8f8Stomee 		}
4919b5fca8f8Stomee 	} else {
4920b5fca8f8Stomee 		kmem_slab_move_yes(cp, sp, buf);
4921b5fca8f8Stomee 	}
4922b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4923b5fca8f8Stomee }
4924b5fca8f8Stomee 
4925b5fca8f8Stomee void
4926b5fca8f8Stomee kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
4927b5fca8f8Stomee {
4928b5fca8f8Stomee 	kmem_move_notify_args_t *args;
4929b5fca8f8Stomee 
4930b5fca8f8Stomee 	KMEM_STAT_ADD(kmem_move_stats.kms_notify);
4931b5fca8f8Stomee 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
4932b5fca8f8Stomee 	if (args != NULL) {
4933b5fca8f8Stomee 		args->kmna_cache = cp;
4934b5fca8f8Stomee 		args->kmna_buf = buf;
4935eb697d4eStomee 		if (!taskq_dispatch(kmem_taskq,
4936b5fca8f8Stomee 		    (task_func_t *)kmem_cache_move_notify_task, args,
4937eb697d4eStomee 		    TQ_NOSLEEP))
4938eb697d4eStomee 			kmem_free(args, sizeof (kmem_move_notify_args_t));
4939b5fca8f8Stomee 	}
4940b5fca8f8Stomee }
4941b5fca8f8Stomee 
4942b5fca8f8Stomee static void
4943b5fca8f8Stomee kmem_cache_defrag(kmem_cache_t *cp)
4944b5fca8f8Stomee {
4945b5fca8f8Stomee 	size_t n;
4946b5fca8f8Stomee 
4947b5fca8f8Stomee 	ASSERT(cp->cache_defrag != NULL);
4948b5fca8f8Stomee 
4949b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
4950b5fca8f8Stomee 	n = avl_numnodes(&cp->cache_partial_slabs);
4951b5fca8f8Stomee 	if (n > 1) {
4952b5fca8f8Stomee 		/* kmem_move_buffers() drops and reacquires cache_lock */
4953b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
4954*686031edSTom Erickson 		cp->cache_defrag->kmd_defrags++;
4955*686031edSTom Erickson 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
4956b5fca8f8Stomee 	}
4957b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
4958b5fca8f8Stomee }
4959b5fca8f8Stomee 
4960b5fca8f8Stomee /* Is this cache above the fragmentation threshold? */
4961b5fca8f8Stomee static boolean_t
4962b5fca8f8Stomee kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
4963b5fca8f8Stomee {
4964b5fca8f8Stomee 	/*
4965b5fca8f8Stomee 	 *	nfree		kmem_frag_numer
4966b5fca8f8Stomee 	 * ------------------ > ---------------
4967b5fca8f8Stomee 	 * cp->cache_buftotal	kmem_frag_denom
4968b5fca8f8Stomee 	 */
4969b5fca8f8Stomee 	return ((nfree * kmem_frag_denom) >
4970b5fca8f8Stomee 	    (cp->cache_buftotal * kmem_frag_numer));
4971b5fca8f8Stomee }
4972b5fca8f8Stomee 
4973b5fca8f8Stomee static boolean_t
4974b5fca8f8Stomee kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
4975b5fca8f8Stomee {
4976b5fca8f8Stomee 	boolean_t fragmented;
4977b5fca8f8Stomee 	uint64_t nfree;
4978b5fca8f8Stomee 
4979b5fca8f8Stomee 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4980b5fca8f8Stomee 	*doreap = B_FALSE;
4981b5fca8f8Stomee 
4982*686031edSTom Erickson 	if (kmem_move_fulltilt) {
4983*686031edSTom Erickson 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
4984*686031edSTom Erickson 			return (B_TRUE);
4985*686031edSTom Erickson 		}
4986*686031edSTom Erickson 	} else {
4987*686031edSTom Erickson 		if ((cp->cache_complete_slab_count + avl_numnodes(
4988*686031edSTom Erickson 		    &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
4989*686031edSTom Erickson 			return (B_FALSE);
4990*686031edSTom Erickson 		}
4991*686031edSTom Erickson 	}
4992b5fca8f8Stomee 
4993b5fca8f8Stomee 	nfree = cp->cache_bufslab;
4994*686031edSTom Erickson 	fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
4995*686031edSTom Erickson 	    kmem_cache_frag_threshold(cp, nfree));
4996*686031edSTom Erickson 
4997b5fca8f8Stomee 	/*
4998b5fca8f8Stomee 	 * Free buffers in the magazine layer appear allocated from the point of
4999b5fca8f8Stomee 	 * view of the slab layer. We want to know if the slab layer would
5000b5fca8f8Stomee 	 * appear fragmented if we included free buffers from magazines that
5001b5fca8f8Stomee 	 * have fallen out of the working set.
5002b5fca8f8Stomee 	 */
5003b5fca8f8Stomee 	if (!fragmented) {
5004b5fca8f8Stomee 		long reap;
5005b5fca8f8Stomee 
5006b5fca8f8Stomee 		mutex_enter(&cp->cache_depot_lock);
5007b5fca8f8Stomee 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5008b5fca8f8Stomee 		reap = MIN(reap, cp->cache_full.ml_total);
5009b5fca8f8Stomee 		mutex_exit(&cp->cache_depot_lock);
5010b5fca8f8Stomee 
5011b5fca8f8Stomee 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5012b5fca8f8Stomee 		if (kmem_cache_frag_threshold(cp, nfree)) {
5013b5fca8f8Stomee 			*doreap = B_TRUE;
5014b5fca8f8Stomee 		}
5015b5fca8f8Stomee 	}
5016b5fca8f8Stomee 
5017b5fca8f8Stomee 	return (fragmented);
5018b5fca8f8Stomee }
5019b5fca8f8Stomee 
5020b5fca8f8Stomee /* Called periodically from kmem_taskq */
5021b5fca8f8Stomee static void
5022b5fca8f8Stomee kmem_cache_scan(kmem_cache_t *cp)
5023b5fca8f8Stomee {
5024b5fca8f8Stomee 	boolean_t reap = B_FALSE;
5025*686031edSTom Erickson 	kmem_defrag_t *kmd;
5026b5fca8f8Stomee 
5027b5fca8f8Stomee 	ASSERT(taskq_member(kmem_taskq, curthread));
5028b5fca8f8Stomee 
5029b5fca8f8Stomee 	mutex_enter(&cp->cache_lock);
5030b5fca8f8Stomee 
5031*686031edSTom Erickson 	kmd = cp->cache_defrag;
5032*686031edSTom Erickson 	if (kmd->kmd_consolidate > 0) {
5033*686031edSTom Erickson 		kmd->kmd_consolidate--;
5034*686031edSTom Erickson 		mutex_exit(&cp->cache_lock);
5035*686031edSTom Erickson 		kmem_cache_reap(cp);
5036*686031edSTom Erickson 		return;
5037*686031edSTom Erickson 	}
5038*686031edSTom Erickson 
5039b5fca8f8Stomee 	if (kmem_cache_is_fragmented(cp, &reap)) {
5040b5fca8f8Stomee 		size_t slabs_found;
5041b5fca8f8Stomee 
5042b5fca8f8Stomee 		/*
5043b5fca8f8Stomee 		 * Consolidate reclaimable slabs from the end of the partial
5044b5fca8f8Stomee 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5045b5fca8f8Stomee 		 * reclaimable slabs). Keep track of how many candidate slabs we
5046b5fca8f8Stomee 		 * looked for and how many we actually found so we can adjust
5047b5fca8f8Stomee 		 * the definition of a candidate slab if we're having trouble
5048b5fca8f8Stomee 		 * finding them.
5049b5fca8f8Stomee 		 *
5050b5fca8f8Stomee 		 * kmem_move_buffers() drops and reacquires cache_lock.
5051b5fca8f8Stomee 		 */
5052*686031edSTom Erickson 		KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5053*686031edSTom Erickson 		kmd->kmd_scans++;
5054b5fca8f8Stomee 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5055b5fca8f8Stomee 		    kmem_reclaim_max_slabs, 0);
5056b5fca8f8Stomee 		if (slabs_found >= 0) {
5057b5fca8f8Stomee 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5058b5fca8f8Stomee 			kmd->kmd_slabs_found += slabs_found;
5059b5fca8f8Stomee 		}
5060b5fca8f8Stomee 
5061*686031edSTom Erickson 		if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5062*686031edSTom Erickson 			kmd->kmd_tries = 0;
5063b5fca8f8Stomee 
5064b5fca8f8Stomee 			/*
5065b5fca8f8Stomee 			 * If we had difficulty finding candidate slabs in
5066b5fca8f8Stomee 			 * previous scans, adjust the threshold so that
5067b5fca8f8Stomee 			 * candidates are easier to find.
5068b5fca8f8Stomee 			 */
5069b5fca8f8Stomee 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5070b5fca8f8Stomee 				kmem_adjust_reclaim_threshold(kmd, -1);
5071b5fca8f8Stomee 			} else if ((kmd->kmd_slabs_found * 2) <
5072b5fca8f8Stomee 			    kmd->kmd_slabs_sought) {
5073b5fca8f8Stomee 				kmem_adjust_reclaim_threshold(kmd, 1);
5074b5fca8f8Stomee 			}
5075b5fca8f8Stomee 			kmd->kmd_slabs_sought = 0;
5076b5fca8f8Stomee 			kmd->kmd_slabs_found = 0;
5077b5fca8f8Stomee 		}
5078b5fca8f8Stomee 	} else {
5079b5fca8f8Stomee 		kmem_reset_reclaim_threshold(cp->cache_defrag);
5080b5fca8f8Stomee #ifdef	DEBUG
5081*686031edSTom Erickson 		if (!avl_is_empty(&cp->cache_partial_slabs)) {
5082b5fca8f8Stomee 			/*
5083b5fca8f8Stomee 			 * In a debug kernel we want the consolidator to
5084b5fca8f8Stomee 			 * run occasionally even when there is plenty of
5085b5fca8f8Stomee 			 * memory.
5086b5fca8f8Stomee 			 */
5087*686031edSTom Erickson 			uint16_t debug_rand;
5088b5fca8f8Stomee 
5089*686031edSTom Erickson 			(void) random_get_bytes((uint8_t *)&debug_rand, 2);
5090b5fca8f8Stomee 			if (!kmem_move_noreap &&
5091b5fca8f8Stomee 			    ((debug_rand % kmem_mtb_reap) == 0)) {
5092b5fca8f8Stomee 				mutex_exit(&cp->cache_lock);
5093b5fca8f8Stomee 				KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
5094*686031edSTom Erickson 				kmem_cache_reap(cp);
5095b5fca8f8Stomee 				return;
5096b5fca8f8Stomee 			} else if ((debug_rand % kmem_mtb_move) == 0) {
5097*686031edSTom Erickson 				KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5098*686031edSTom Erickson 				KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans);
5099*686031edSTom Erickson 				kmd->kmd_scans++;
5100b5fca8f8Stomee 				(void) kmem_move_buffers(cp,
5101*686031edSTom Erickson 				    kmem_reclaim_scan_range, 1, KMM_DEBUG);
5102b5fca8f8Stomee 			}
5103b5fca8f8Stomee 		}
5104b5fca8f8Stomee #endif	/* DEBUG */
5105b5fca8f8Stomee 	}
5106b5fca8f8Stomee 
5107b5fca8f8Stomee 	mutex_exit(&cp->cache_lock);
5108b5fca8f8Stomee 
5109b5fca8f8Stomee 	if (reap) {
5110b5fca8f8Stomee 		KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
5111b5fca8f8Stomee 		kmem_depot_ws_reap(cp);
5112b5fca8f8Stomee 	}
5113b5fca8f8Stomee }
5114