xref: /illumos-gate/usr/src/uts/common/os/cpu.c (revision cfbda96766a25458b8ad2be1a09a59ce247a25d8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  */
26 
27 /*
28  * Architecture-independent CPU control functions.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/var.h>
34 #include <sys/thread.h>
35 #include <sys/cpuvar.h>
36 #include <sys/cpu_event.h>
37 #include <sys/kstat.h>
38 #include <sys/uadmin.h>
39 #include <sys/systm.h>
40 #include <sys/errno.h>
41 #include <sys/cmn_err.h>
42 #include <sys/procset.h>
43 #include <sys/processor.h>
44 #include <sys/debug.h>
45 #include <sys/cpupart.h>
46 #include <sys/lgrp.h>
47 #include <sys/pset.h>
48 #include <sys/pghw.h>
49 #include <sys/kmem.h>
50 #include <sys/kmem_impl.h>	/* to set per-cpu kmem_cache offset */
51 #include <sys/atomic.h>
52 #include <sys/callb.h>
53 #include <sys/vtrace.h>
54 #include <sys/cyclic.h>
55 #include <sys/bitmap.h>
56 #include <sys/nvpair.h>
57 #include <sys/pool_pset.h>
58 #include <sys/msacct.h>
59 #include <sys/time.h>
60 #include <sys/archsystm.h>
61 #include <sys/sdt.h>
62 #if defined(__x86) || defined(__amd64)
63 #include <sys/x86_archext.h>
64 #endif
65 #include <sys/callo.h>
66 
67 extern int	mp_cpu_start(cpu_t *);
68 extern int	mp_cpu_stop(cpu_t *);
69 extern int	mp_cpu_poweron(cpu_t *);
70 extern int	mp_cpu_poweroff(cpu_t *);
71 extern int	mp_cpu_configure(int);
72 extern int	mp_cpu_unconfigure(int);
73 extern void	mp_cpu_faulted_enter(cpu_t *);
74 extern void	mp_cpu_faulted_exit(cpu_t *);
75 
76 extern int cmp_cpu_to_chip(processorid_t cpuid);
77 #ifdef __sparcv9
78 extern char *cpu_fru_fmri(cpu_t *cp);
79 #endif
80 
81 static void cpu_add_active_internal(cpu_t *cp);
82 static void cpu_remove_active(cpu_t *cp);
83 static void cpu_info_kstat_create(cpu_t *cp);
84 static void cpu_info_kstat_destroy(cpu_t *cp);
85 static void cpu_stats_kstat_create(cpu_t *cp);
86 static void cpu_stats_kstat_destroy(cpu_t *cp);
87 
88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
90 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
92 
93 /*
94  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
95  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
96  * respect to related locks is:
97  *
98  *	cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
99  *
100  * Warning:  Certain sections of code do not use the cpu_lock when
101  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
102  * all cpus are paused during modifications to this list, a solution
103  * to protect the list is too either disable kernel preemption while
104  * walking the list, *or* recheck the cpu_next pointer at each
105  * iteration in the loop.  Note that in no cases can any cached
106  * copies of the cpu pointers be kept as they may become invalid.
107  */
108 kmutex_t	cpu_lock;
109 cpu_t		*cpu_list;		/* list of all CPUs */
110 cpu_t		*clock_cpu_list;	/* used by clock to walk CPUs */
111 cpu_t		*cpu_active;		/* list of active CPUs */
112 cpuset_t	cpu_active_set;		/* cached set of active CPUs */
113 static cpuset_t	cpu_available;		/* set of available CPUs */
114 cpuset_t	cpu_seqid_inuse;	/* which cpu_seqids are in use */
115 
116 cpu_t		**cpu_seq;		/* ptrs to CPUs, indexed by seq_id */
117 
118 /*
119  * max_ncpus keeps the max cpus the system can have. Initially
120  * it's NCPU, but since most archs scan the devtree for cpus
121  * fairly early on during boot, the real max can be known before
122  * ncpus is set (useful for early NCPU based allocations).
123  */
124 int max_ncpus = NCPU;
125 /*
126  * platforms that set max_ncpus to maxiumum number of cpus that can be
127  * dynamically added will set boot_max_ncpus to the number of cpus found
128  * at device tree scan time during boot.
129  */
130 int boot_max_ncpus = -1;
131 int boot_ncpus = -1;
132 /*
133  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
134  * used to size arrays that are indexed by CPU id.
135  */
136 processorid_t max_cpuid = NCPU - 1;
137 
138 /*
139  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
140  * can be used to optimize NCPU loops to avoid going through CPUs which were
141  * never on-line.
142  */
143 processorid_t max_cpu_seqid_ever = 0;
144 
145 int ncpus = 1;
146 int ncpus_online = 1;
147 
148 /*
149  * CPU that we're trying to offline.  Protected by cpu_lock.
150  */
151 cpu_t *cpu_inmotion;
152 
153 /*
154  * Can be raised to suppress further weakbinding, which are instead
155  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
156  * while individual thread weakbinding synchronization is done under thread
157  * lock.
158  */
159 int weakbindingbarrier;
160 
161 /*
162  * Variables used in pause_cpus().
163  */
164 static volatile char safe_list[NCPU];
165 
166 static struct _cpu_pause_info {
167 	int		cp_spl;		/* spl saved in pause_cpus() */
168 	volatile int	cp_go;		/* Go signal sent after all ready */
169 	int		cp_count;	/* # of CPUs to pause */
170 	ksema_t		cp_sem;		/* synch pause_cpus & cpu_pause */
171 	kthread_id_t	cp_paused;
172 	void		*(*cp_func)(void *);
173 } cpu_pause_info;
174 
175 static kmutex_t pause_free_mutex;
176 static kcondvar_t pause_free_cv;
177 
178 
179 static struct cpu_sys_stats_ks_data {
180 	kstat_named_t cpu_ticks_idle;
181 	kstat_named_t cpu_ticks_user;
182 	kstat_named_t cpu_ticks_kernel;
183 	kstat_named_t cpu_ticks_wait;
184 	kstat_named_t cpu_nsec_idle;
185 	kstat_named_t cpu_nsec_user;
186 	kstat_named_t cpu_nsec_kernel;
187 	kstat_named_t cpu_nsec_dtrace;
188 	kstat_named_t cpu_nsec_intr;
189 	kstat_named_t cpu_load_intr;
190 	kstat_named_t wait_ticks_io;
191 	kstat_named_t dtrace_probes;
192 	kstat_named_t bread;
193 	kstat_named_t bwrite;
194 	kstat_named_t lread;
195 	kstat_named_t lwrite;
196 	kstat_named_t phread;
197 	kstat_named_t phwrite;
198 	kstat_named_t pswitch;
199 	kstat_named_t trap;
200 	kstat_named_t intr;
201 	kstat_named_t syscall;
202 	kstat_named_t sysread;
203 	kstat_named_t syswrite;
204 	kstat_named_t sysfork;
205 	kstat_named_t sysvfork;
206 	kstat_named_t sysexec;
207 	kstat_named_t readch;
208 	kstat_named_t writech;
209 	kstat_named_t rcvint;
210 	kstat_named_t xmtint;
211 	kstat_named_t mdmint;
212 	kstat_named_t rawch;
213 	kstat_named_t canch;
214 	kstat_named_t outch;
215 	kstat_named_t msg;
216 	kstat_named_t sema;
217 	kstat_named_t namei;
218 	kstat_named_t ufsiget;
219 	kstat_named_t ufsdirblk;
220 	kstat_named_t ufsipage;
221 	kstat_named_t ufsinopage;
222 	kstat_named_t procovf;
223 	kstat_named_t intrthread;
224 	kstat_named_t intrblk;
225 	kstat_named_t intrunpin;
226 	kstat_named_t idlethread;
227 	kstat_named_t inv_swtch;
228 	kstat_named_t nthreads;
229 	kstat_named_t cpumigrate;
230 	kstat_named_t xcalls;
231 	kstat_named_t mutex_adenters;
232 	kstat_named_t rw_rdfails;
233 	kstat_named_t rw_wrfails;
234 	kstat_named_t modload;
235 	kstat_named_t modunload;
236 	kstat_named_t bawrite;
237 	kstat_named_t iowait;
238 } cpu_sys_stats_ks_data_template = {
239 	{ "cpu_ticks_idle",	KSTAT_DATA_UINT64 },
240 	{ "cpu_ticks_user",	KSTAT_DATA_UINT64 },
241 	{ "cpu_ticks_kernel",	KSTAT_DATA_UINT64 },
242 	{ "cpu_ticks_wait",	KSTAT_DATA_UINT64 },
243 	{ "cpu_nsec_idle",	KSTAT_DATA_UINT64 },
244 	{ "cpu_nsec_user",	KSTAT_DATA_UINT64 },
245 	{ "cpu_nsec_kernel",	KSTAT_DATA_UINT64 },
246 	{ "cpu_nsec_dtrace",	KSTAT_DATA_UINT64 },
247 	{ "cpu_nsec_intr",	KSTAT_DATA_UINT64 },
248 	{ "cpu_load_intr",	KSTAT_DATA_UINT64 },
249 	{ "wait_ticks_io",	KSTAT_DATA_UINT64 },
250 	{ "dtrace_probes",	KSTAT_DATA_UINT64 },
251 	{ "bread",		KSTAT_DATA_UINT64 },
252 	{ "bwrite",		KSTAT_DATA_UINT64 },
253 	{ "lread",		KSTAT_DATA_UINT64 },
254 	{ "lwrite",		KSTAT_DATA_UINT64 },
255 	{ "phread",		KSTAT_DATA_UINT64 },
256 	{ "phwrite",		KSTAT_DATA_UINT64 },
257 	{ "pswitch",		KSTAT_DATA_UINT64 },
258 	{ "trap",		KSTAT_DATA_UINT64 },
259 	{ "intr",		KSTAT_DATA_UINT64 },
260 	{ "syscall",		KSTAT_DATA_UINT64 },
261 	{ "sysread",		KSTAT_DATA_UINT64 },
262 	{ "syswrite",		KSTAT_DATA_UINT64 },
263 	{ "sysfork",		KSTAT_DATA_UINT64 },
264 	{ "sysvfork",		KSTAT_DATA_UINT64 },
265 	{ "sysexec",		KSTAT_DATA_UINT64 },
266 	{ "readch",		KSTAT_DATA_UINT64 },
267 	{ "writech",		KSTAT_DATA_UINT64 },
268 	{ "rcvint",		KSTAT_DATA_UINT64 },
269 	{ "xmtint",		KSTAT_DATA_UINT64 },
270 	{ "mdmint",		KSTAT_DATA_UINT64 },
271 	{ "rawch",		KSTAT_DATA_UINT64 },
272 	{ "canch",		KSTAT_DATA_UINT64 },
273 	{ "outch",		KSTAT_DATA_UINT64 },
274 	{ "msg",		KSTAT_DATA_UINT64 },
275 	{ "sema",		KSTAT_DATA_UINT64 },
276 	{ "namei",		KSTAT_DATA_UINT64 },
277 	{ "ufsiget",		KSTAT_DATA_UINT64 },
278 	{ "ufsdirblk",		KSTAT_DATA_UINT64 },
279 	{ "ufsipage",		KSTAT_DATA_UINT64 },
280 	{ "ufsinopage",		KSTAT_DATA_UINT64 },
281 	{ "procovf",		KSTAT_DATA_UINT64 },
282 	{ "intrthread",		KSTAT_DATA_UINT64 },
283 	{ "intrblk",		KSTAT_DATA_UINT64 },
284 	{ "intrunpin",		KSTAT_DATA_UINT64 },
285 	{ "idlethread",		KSTAT_DATA_UINT64 },
286 	{ "inv_swtch",		KSTAT_DATA_UINT64 },
287 	{ "nthreads",		KSTAT_DATA_UINT64 },
288 	{ "cpumigrate",		KSTAT_DATA_UINT64 },
289 	{ "xcalls",		KSTAT_DATA_UINT64 },
290 	{ "mutex_adenters",	KSTAT_DATA_UINT64 },
291 	{ "rw_rdfails",		KSTAT_DATA_UINT64 },
292 	{ "rw_wrfails",		KSTAT_DATA_UINT64 },
293 	{ "modload",		KSTAT_DATA_UINT64 },
294 	{ "modunload",		KSTAT_DATA_UINT64 },
295 	{ "bawrite",		KSTAT_DATA_UINT64 },
296 	{ "iowait",		KSTAT_DATA_UINT64 },
297 };
298 
299 static struct cpu_vm_stats_ks_data {
300 	kstat_named_t pgrec;
301 	kstat_named_t pgfrec;
302 	kstat_named_t pgin;
303 	kstat_named_t pgpgin;
304 	kstat_named_t pgout;
305 	kstat_named_t pgpgout;
306 	kstat_named_t swapin;
307 	kstat_named_t pgswapin;
308 	kstat_named_t swapout;
309 	kstat_named_t pgswapout;
310 	kstat_named_t zfod;
311 	kstat_named_t dfree;
312 	kstat_named_t scan;
313 	kstat_named_t rev;
314 	kstat_named_t hat_fault;
315 	kstat_named_t as_fault;
316 	kstat_named_t maj_fault;
317 	kstat_named_t cow_fault;
318 	kstat_named_t prot_fault;
319 	kstat_named_t softlock;
320 	kstat_named_t kernel_asflt;
321 	kstat_named_t pgrrun;
322 	kstat_named_t execpgin;
323 	kstat_named_t execpgout;
324 	kstat_named_t execfree;
325 	kstat_named_t anonpgin;
326 	kstat_named_t anonpgout;
327 	kstat_named_t anonfree;
328 	kstat_named_t fspgin;
329 	kstat_named_t fspgout;
330 	kstat_named_t fsfree;
331 } cpu_vm_stats_ks_data_template = {
332 	{ "pgrec",		KSTAT_DATA_UINT64 },
333 	{ "pgfrec",		KSTAT_DATA_UINT64 },
334 	{ "pgin",		KSTAT_DATA_UINT64 },
335 	{ "pgpgin",		KSTAT_DATA_UINT64 },
336 	{ "pgout",		KSTAT_DATA_UINT64 },
337 	{ "pgpgout",		KSTAT_DATA_UINT64 },
338 	{ "swapin",		KSTAT_DATA_UINT64 },
339 	{ "pgswapin",		KSTAT_DATA_UINT64 },
340 	{ "swapout",		KSTAT_DATA_UINT64 },
341 	{ "pgswapout",		KSTAT_DATA_UINT64 },
342 	{ "zfod",		KSTAT_DATA_UINT64 },
343 	{ "dfree",		KSTAT_DATA_UINT64 },
344 	{ "scan",		KSTAT_DATA_UINT64 },
345 	{ "rev",		KSTAT_DATA_UINT64 },
346 	{ "hat_fault",		KSTAT_DATA_UINT64 },
347 	{ "as_fault",		KSTAT_DATA_UINT64 },
348 	{ "maj_fault",		KSTAT_DATA_UINT64 },
349 	{ "cow_fault",		KSTAT_DATA_UINT64 },
350 	{ "prot_fault",		KSTAT_DATA_UINT64 },
351 	{ "softlock",		KSTAT_DATA_UINT64 },
352 	{ "kernel_asflt",	KSTAT_DATA_UINT64 },
353 	{ "pgrrun",		KSTAT_DATA_UINT64 },
354 	{ "execpgin",		KSTAT_DATA_UINT64 },
355 	{ "execpgout",		KSTAT_DATA_UINT64 },
356 	{ "execfree",		KSTAT_DATA_UINT64 },
357 	{ "anonpgin",		KSTAT_DATA_UINT64 },
358 	{ "anonpgout",		KSTAT_DATA_UINT64 },
359 	{ "anonfree",		KSTAT_DATA_UINT64 },
360 	{ "fspgin",		KSTAT_DATA_UINT64 },
361 	{ "fspgout",		KSTAT_DATA_UINT64 },
362 	{ "fsfree",		KSTAT_DATA_UINT64 },
363 };
364 
365 /*
366  * Force the specified thread to migrate to the appropriate processor.
367  * Called with thread lock held, returns with it dropped.
368  */
369 static void
370 force_thread_migrate(kthread_id_t tp)
371 {
372 	ASSERT(THREAD_LOCK_HELD(tp));
373 	if (tp == curthread) {
374 		THREAD_TRANSITION(tp);
375 		CL_SETRUN(tp);
376 		thread_unlock_nopreempt(tp);
377 		swtch();
378 	} else {
379 		if (tp->t_state == TS_ONPROC) {
380 			cpu_surrender(tp);
381 		} else if (tp->t_state == TS_RUN) {
382 			(void) dispdeq(tp);
383 			setbackdq(tp);
384 		}
385 		thread_unlock(tp);
386 	}
387 }
388 
389 /*
390  * Set affinity for a specified CPU.
391  *
392  * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for
393  * curthread, will set affinity to the CPU on which the thread is currently
394  * running.  For other cpu_id values, the caller must ensure that the
395  * referenced CPU remains valid, which can be done by holding cpu_lock across
396  * this call.
397  *
398  * CPU affinity is guaranteed after return of thread_affinity_set().  If a
399  * caller setting affinity to CPU_CURRENT requires that its thread not migrate
400  * CPUs prior to a successful return, it should take extra precautions (such as
401  * their own call to kpreempt_disable) to ensure that safety.
402  *
403  * A CPU affinity reference count is maintained by thread_affinity_set and
404  * thread_affinity_clear (incrementing and decrementing it, respectively),
405  * maintaining CPU affinity while the count is non-zero, and allowing regions
406  * of code which require affinity to be nested.
407  */
408 void
409 thread_affinity_set(kthread_id_t t, int cpu_id)
410 {
411 	cpu_t *cp;
412 
413 	ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
414 
415 	if (cpu_id == CPU_CURRENT) {
416 		VERIFY3P(t, ==, curthread);
417 		kpreempt_disable();
418 		cp = CPU;
419 	} else {
420 		/*
421 		 * We should be asserting that cpu_lock is held here, but
422 		 * the NCA code doesn't acquire it.  The following assert
423 		 * should be uncommented when the NCA code is fixed.
424 		 *
425 		 * ASSERT(MUTEX_HELD(&cpu_lock));
426 		 */
427 		VERIFY((cpu_id >= 0) && (cpu_id < NCPU));
428 		cp = cpu[cpu_id];
429 
430 		/* user must provide a good cpu_id */
431 		VERIFY(cp != NULL);
432 	}
433 
434 	/*
435 	 * If there is already a hard affinity requested, and this affinity
436 	 * conflicts with that, panic.
437 	 */
438 	thread_lock(t);
439 	if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
440 		panic("affinity_set: setting %p but already bound to %p",
441 		    (void *)cp, (void *)t->t_bound_cpu);
442 	}
443 	t->t_affinitycnt++;
444 	t->t_bound_cpu = cp;
445 
446 	/*
447 	 * Make sure we're running on the right CPU.
448 	 */
449 	if (cp != t->t_cpu || t != curthread) {
450 		ASSERT(cpu_id != CPU_CURRENT);
451 		force_thread_migrate(t);	/* drops thread lock */
452 	} else {
453 		thread_unlock(t);
454 	}
455 
456 	if (cpu_id == CPU_CURRENT) {
457 		kpreempt_enable();
458 	}
459 }
460 
461 /*
462  *	Wrapper for backward compatibility.
463  */
464 void
465 affinity_set(int cpu_id)
466 {
467 	thread_affinity_set(curthread, cpu_id);
468 }
469 
470 /*
471  * Decrement the affinity reservation count and if it becomes zero,
472  * clear the CPU affinity for the current thread, or set it to the user's
473  * software binding request.
474  */
475 void
476 thread_affinity_clear(kthread_id_t t)
477 {
478 	register processorid_t binding;
479 
480 	thread_lock(t);
481 	if (--t->t_affinitycnt == 0) {
482 		if ((binding = t->t_bind_cpu) == PBIND_NONE) {
483 			/*
484 			 * Adjust disp_max_unbound_pri if necessary.
485 			 */
486 			disp_adjust_unbound_pri(t);
487 			t->t_bound_cpu = NULL;
488 			if (t->t_cpu->cpu_part != t->t_cpupart) {
489 				force_thread_migrate(t);
490 				return;
491 			}
492 		} else {
493 			t->t_bound_cpu = cpu[binding];
494 			/*
495 			 * Make sure the thread is running on the bound CPU.
496 			 */
497 			if (t->t_cpu != t->t_bound_cpu) {
498 				force_thread_migrate(t);
499 				return;		/* already dropped lock */
500 			}
501 		}
502 	}
503 	thread_unlock(t);
504 }
505 
506 /*
507  * Wrapper for backward compatibility.
508  */
509 void
510 affinity_clear(void)
511 {
512 	thread_affinity_clear(curthread);
513 }
514 
515 /*
516  * Weak cpu affinity.  Bind to the "current" cpu for short periods
517  * of time during which the thread must not block (but may be preempted).
518  * Use this instead of kpreempt_disable() when it is only "no migration"
519  * rather than "no preemption" semantics that are required - disabling
520  * preemption holds higher priority threads off of cpu and if the
521  * operation that is protected is more than momentary this is not good
522  * for realtime etc.
523  *
524  * Weakly bound threads will not prevent a cpu from being offlined -
525  * we'll only run them on the cpu to which they are weakly bound but
526  * (because they do not block) we'll always be able to move them on to
527  * another cpu at offline time if we give them just a short moment to
528  * run during which they will unbind.  To give a cpu a chance of offlining,
529  * however, we require a barrier to weak bindings that may be raised for a
530  * given cpu (offline/move code may set this and then wait a short time for
531  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
532  *
533  * There are few restrictions on the calling context of thread_nomigrate.
534  * The caller must not hold the thread lock.  Calls may be nested.
535  *
536  * After weakbinding a thread must not perform actions that may block.
537  * In particular it must not call thread_affinity_set; calling that when
538  * already weakbound is nonsensical anyway.
539  *
540  * If curthread is prevented from migrating for other reasons
541  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
542  * then the weak binding will succeed even if this cpu is the target of an
543  * offline/move request.
544  */
545 void
546 thread_nomigrate(void)
547 {
548 	cpu_t *cp;
549 	kthread_id_t t = curthread;
550 
551 again:
552 	kpreempt_disable();
553 	cp = CPU;
554 
555 	/*
556 	 * A highlevel interrupt must not modify t_nomigrate or
557 	 * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
558 	 * interrupt thread cannot migrate and we can avoid the
559 	 * thread_lock call below by short-circuiting here.  In either
560 	 * case we can just return since no migration is possible and
561 	 * the condition will persist (ie, when we test for these again
562 	 * in thread_allowmigrate they can't have changed).   Migration
563 	 * is also impossible if we're at or above DISP_LEVEL pil.
564 	 */
565 	if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
566 	    getpil() >= DISP_LEVEL) {
567 		kpreempt_enable();
568 		return;
569 	}
570 
571 	/*
572 	 * We must be consistent with existing weak bindings.  Since we
573 	 * may be interrupted between the increment of t_nomigrate and
574 	 * the store to t_weakbound_cpu below we cannot assume that
575 	 * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
576 	 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
577 	 * always the case.
578 	 */
579 	if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
580 		if (!panicstr)
581 			panic("thread_nomigrate: binding to %p but already "
582 			    "bound to %p", (void *)cp,
583 			    (void *)t->t_weakbound_cpu);
584 	}
585 
586 	/*
587 	 * At this point we have preemption disabled and we don't yet hold
588 	 * the thread lock.  So it's possible that somebody else could
589 	 * set t_bind_cpu here and not be able to force us across to the
590 	 * new cpu (since we have preemption disabled).
591 	 */
592 	thread_lock(curthread);
593 
594 	/*
595 	 * If further weak bindings are being (temporarily) suppressed then
596 	 * we'll settle for disabling kernel preemption (which assures
597 	 * no migration provided the thread does not block which it is
598 	 * not allowed to if using thread_nomigrate).  We must remember
599 	 * this disposition so we can take appropriate action in
600 	 * thread_allowmigrate.  If this is a nested call and the
601 	 * thread is already weakbound then fall through as normal.
602 	 * We remember the decision to settle for kpreempt_disable through
603 	 * negative nesting counting in t_nomigrate.  Once a thread has had one
604 	 * weakbinding request satisfied in this way any further (nested)
605 	 * requests will continue to be satisfied in the same way,
606 	 * even if weak bindings have recommenced.
607 	 */
608 	if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
609 		--t->t_nomigrate;
610 		thread_unlock(curthread);
611 		return;		/* with kpreempt_disable still active */
612 	}
613 
614 	/*
615 	 * We hold thread_lock so t_bind_cpu cannot change.  We could,
616 	 * however, be running on a different cpu to which we are t_bound_cpu
617 	 * to (as explained above).  If we grant the weak binding request
618 	 * in that case then the dispatcher must favour our weak binding
619 	 * over our strong (in which case, just as when preemption is
620 	 * disabled, we can continue to run on a cpu other than the one to
621 	 * which we are strongbound; the difference in this case is that
622 	 * this thread can be preempted and so can appear on the dispatch
623 	 * queues of a cpu other than the one it is strongbound to).
624 	 *
625 	 * If the cpu we are running on does not appear to be a current
626 	 * offline target (we check cpu_inmotion to determine this - since
627 	 * we don't hold cpu_lock we may not see a recent store to that,
628 	 * so it's possible that we at times can grant a weak binding to a
629 	 * cpu that is an offline target, but that one request will not
630 	 * prevent the offline from succeeding) then we will always grant
631 	 * the weak binding request.  This includes the case above where
632 	 * we grant a weakbinding not commensurate with our strong binding.
633 	 *
634 	 * If our cpu does appear to be an offline target then we're inclined
635 	 * not to grant the weakbinding request just yet - we'd prefer to
636 	 * migrate to another cpu and grant the request there.  The
637 	 * exceptions are those cases where going through preemption code
638 	 * will not result in us changing cpu:
639 	 *
640 	 *	. interrupts have already bypassed this case (see above)
641 	 *	. we are already weakbound to this cpu (dispatcher code will
642 	 *	  always return us to the weakbound cpu)
643 	 *	. preemption was disabled even before we disabled it above
644 	 *	. we are strongbound to this cpu (if we're strongbound to
645 	 *	another and not yet running there the trip through the
646 	 *	dispatcher will move us to the strongbound cpu and we
647 	 *	will grant the weak binding there)
648 	 */
649 	if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
650 	    t->t_bound_cpu == cp) {
651 		/*
652 		 * Don't be tempted to store to t_weakbound_cpu only on
653 		 * the first nested bind request - if we're interrupted
654 		 * after the increment of t_nomigrate and before the
655 		 * store to t_weakbound_cpu and the interrupt calls
656 		 * thread_nomigrate then the assertion in thread_allowmigrate
657 		 * would fail.
658 		 */
659 		t->t_nomigrate++;
660 		t->t_weakbound_cpu = cp;
661 		membar_producer();
662 		thread_unlock(curthread);
663 		/*
664 		 * Now that we have dropped the thread_lock another thread
665 		 * can set our t_weakbound_cpu, and will try to migrate us
666 		 * to the strongbound cpu (which will not be prevented by
667 		 * preemption being disabled since we're about to enable
668 		 * preemption).  We have granted the weakbinding to the current
669 		 * cpu, so again we are in the position that is is is possible
670 		 * that our weak and strong bindings differ.  Again this
671 		 * is catered for by dispatcher code which will favour our
672 		 * weak binding.
673 		 */
674 		kpreempt_enable();
675 	} else {
676 		/*
677 		 * Move to another cpu before granting the request by
678 		 * forcing this thread through preemption code.  When we
679 		 * get to set{front,back}dq called from CL_PREEMPT()
680 		 * cpu_choose() will be used to select a cpu to queue
681 		 * us on - that will see cpu_inmotion and take
682 		 * steps to avoid returning us to this cpu.
683 		 */
684 		cp->cpu_kprunrun = 1;
685 		thread_unlock(curthread);
686 		kpreempt_enable();	/* will call preempt() */
687 		goto again;
688 	}
689 }
690 
691 void
692 thread_allowmigrate(void)
693 {
694 	kthread_id_t t = curthread;
695 
696 	ASSERT(t->t_weakbound_cpu == CPU ||
697 	    (t->t_nomigrate < 0 && t->t_preempt > 0) ||
698 	    CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
699 	    getpil() >= DISP_LEVEL);
700 
701 	if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
702 	    getpil() >= DISP_LEVEL)
703 		return;
704 
705 	if (t->t_nomigrate < 0) {
706 		/*
707 		 * This thread was granted "weak binding" in the
708 		 * stronger form of kernel preemption disabling.
709 		 * Undo a level of nesting for both t_nomigrate
710 		 * and t_preempt.
711 		 */
712 		++t->t_nomigrate;
713 		kpreempt_enable();
714 	} else if (--t->t_nomigrate == 0) {
715 		/*
716 		 * Time to drop the weak binding.  We need to cater
717 		 * for the case where we're weakbound to a different
718 		 * cpu than that to which we're strongbound (a very
719 		 * temporary arrangement that must only persist until
720 		 * weak binding drops).  We don't acquire thread_lock
721 		 * here so even as this code executes t_bound_cpu
722 		 * may be changing.  So we disable preemption and
723 		 * a) in the case that t_bound_cpu changes while we
724 		 * have preemption disabled kprunrun will be set
725 		 * asynchronously, and b) if before disabling
726 		 * preemption we were already on a different cpu to
727 		 * our t_bound_cpu then we set kprunrun ourselves
728 		 * to force a trip through the dispatcher when
729 		 * preemption is enabled.
730 		 */
731 		kpreempt_disable();
732 		if (t->t_bound_cpu &&
733 		    t->t_weakbound_cpu != t->t_bound_cpu)
734 			CPU->cpu_kprunrun = 1;
735 		t->t_weakbound_cpu = NULL;
736 		membar_producer();
737 		kpreempt_enable();
738 	}
739 }
740 
741 /*
742  * weakbinding_stop can be used to temporarily cause weakbindings made
743  * with thread_nomigrate to be satisfied through the stronger action of
744  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
745  */
746 
747 void
748 weakbinding_stop(void)
749 {
750 	ASSERT(MUTEX_HELD(&cpu_lock));
751 	weakbindingbarrier = 1;
752 	membar_producer();	/* make visible before subsequent thread_lock */
753 }
754 
755 void
756 weakbinding_start(void)
757 {
758 	ASSERT(MUTEX_HELD(&cpu_lock));
759 	weakbindingbarrier = 0;
760 }
761 
762 void
763 null_xcall(void)
764 {
765 }
766 
767 /*
768  * This routine is called to place the CPUs in a safe place so that
769  * one of them can be taken off line or placed on line.  What we are
770  * trying to do here is prevent a thread from traversing the list
771  * of active CPUs while we are changing it or from getting placed on
772  * the run queue of a CPU that has just gone off line.  We do this by
773  * creating a thread with the highest possible prio for each CPU and
774  * having it call this routine.  The advantage of this method is that
775  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
776  * This makes disp faster at the expense of making p_online() slower
777  * which is a good trade off.
778  */
779 static void
780 cpu_pause(int index)
781 {
782 	int s;
783 	struct _cpu_pause_info *cpi = &cpu_pause_info;
784 	volatile char *safe = &safe_list[index];
785 	long    lindex = index;
786 
787 	ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
788 
789 	while (*safe != PAUSE_DIE) {
790 		*safe = PAUSE_READY;
791 		membar_enter();		/* make sure stores are flushed */
792 		sema_v(&cpi->cp_sem);	/* signal requesting thread */
793 
794 		/*
795 		 * Wait here until all pause threads are running.  That
796 		 * indicates that it's safe to do the spl.  Until
797 		 * cpu_pause_info.cp_go is set, we don't want to spl
798 		 * because that might block clock interrupts needed
799 		 * to preempt threads on other CPUs.
800 		 */
801 		while (cpi->cp_go == 0)
802 			;
803 		/*
804 		 * Even though we are at the highest disp prio, we need
805 		 * to block out all interrupts below LOCK_LEVEL so that
806 		 * an intr doesn't come in, wake up a thread, and call
807 		 * setbackdq/setfrontdq.
808 		 */
809 		s = splhigh();
810 		/*
811 		 * if cp_func has been set then call it using index as the
812 		 * argument, currently only used by cpr_suspend_cpus().
813 		 * This function is used as the code to execute on the
814 		 * "paused" cpu's when a machine comes out of a sleep state
815 		 * and CPU's were powered off.  (could also be used for
816 		 * hotplugging CPU's).
817 		 */
818 		if (cpi->cp_func != NULL)
819 			(*cpi->cp_func)((void *)lindex);
820 
821 		mach_cpu_pause(safe);
822 
823 		splx(s);
824 		/*
825 		 * Waiting is at an end. Switch out of cpu_pause
826 		 * loop and resume useful work.
827 		 */
828 		swtch();
829 	}
830 
831 	mutex_enter(&pause_free_mutex);
832 	*safe = PAUSE_DEAD;
833 	cv_broadcast(&pause_free_cv);
834 	mutex_exit(&pause_free_mutex);
835 }
836 
837 /*
838  * Allow the cpus to start running again.
839  */
840 void
841 start_cpus()
842 {
843 	int i;
844 
845 	ASSERT(MUTEX_HELD(&cpu_lock));
846 	ASSERT(cpu_pause_info.cp_paused);
847 	cpu_pause_info.cp_paused = NULL;
848 	for (i = 0; i < NCPU; i++)
849 		safe_list[i] = PAUSE_IDLE;
850 	membar_enter();			/* make sure stores are flushed */
851 	affinity_clear();
852 	splx(cpu_pause_info.cp_spl);
853 	kpreempt_enable();
854 }
855 
856 /*
857  * Allocate a pause thread for a CPU.
858  */
859 static void
860 cpu_pause_alloc(cpu_t *cp)
861 {
862 	kthread_id_t	t;
863 	long		cpun = cp->cpu_id;
864 
865 	/*
866 	 * Note, v.v_nglobpris will not change value as long as I hold
867 	 * cpu_lock.
868 	 */
869 	t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
870 	    0, &p0, TS_STOPPED, v.v_nglobpris - 1);
871 	thread_lock(t);
872 	t->t_bound_cpu = cp;
873 	t->t_disp_queue = cp->cpu_disp;
874 	t->t_affinitycnt = 1;
875 	t->t_preempt = 1;
876 	thread_unlock(t);
877 	cp->cpu_pause_thread = t;
878 	/*
879 	 * Registering a thread in the callback table is usually done
880 	 * in the initialization code of the thread.  In this
881 	 * case, we do it right after thread creation because the
882 	 * thread itself may never run, and we need to register the
883 	 * fact that it is safe for cpr suspend.
884 	 */
885 	CALLB_CPR_INIT_SAFE(t, "cpu_pause");
886 }
887 
888 /*
889  * Free a pause thread for a CPU.
890  */
891 static void
892 cpu_pause_free(cpu_t *cp)
893 {
894 	kthread_id_t	t;
895 	int		cpun = cp->cpu_id;
896 
897 	ASSERT(MUTEX_HELD(&cpu_lock));
898 	/*
899 	 * We have to get the thread and tell it to die.
900 	 */
901 	if ((t = cp->cpu_pause_thread) == NULL) {
902 		ASSERT(safe_list[cpun] == PAUSE_IDLE);
903 		return;
904 	}
905 	thread_lock(t);
906 	t->t_cpu = CPU;		/* disp gets upset if last cpu is quiesced. */
907 	t->t_bound_cpu = NULL;	/* Must un-bind; cpu may not be running. */
908 	t->t_pri = v.v_nglobpris - 1;
909 	ASSERT(safe_list[cpun] == PAUSE_IDLE);
910 	safe_list[cpun] = PAUSE_DIE;
911 	THREAD_TRANSITION(t);
912 	setbackdq(t);
913 	thread_unlock_nopreempt(t);
914 
915 	/*
916 	 * If we don't wait for the thread to actually die, it may try to
917 	 * run on the wrong cpu as part of an actual call to pause_cpus().
918 	 */
919 	mutex_enter(&pause_free_mutex);
920 	while (safe_list[cpun] != PAUSE_DEAD) {
921 		cv_wait(&pause_free_cv, &pause_free_mutex);
922 	}
923 	mutex_exit(&pause_free_mutex);
924 	safe_list[cpun] = PAUSE_IDLE;
925 
926 	cp->cpu_pause_thread = NULL;
927 }
928 
929 /*
930  * Initialize basic structures for pausing CPUs.
931  */
932 void
933 cpu_pause_init()
934 {
935 	sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
936 	/*
937 	 * Create initial CPU pause thread.
938 	 */
939 	cpu_pause_alloc(CPU);
940 }
941 
942 /*
943  * Start the threads used to pause another CPU.
944  */
945 static int
946 cpu_pause_start(processorid_t cpu_id)
947 {
948 	int	i;
949 	int	cpu_count = 0;
950 
951 	for (i = 0; i < NCPU; i++) {
952 		cpu_t		*cp;
953 		kthread_id_t	t;
954 
955 		cp = cpu[i];
956 		if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
957 			safe_list[i] = PAUSE_WAIT;
958 			continue;
959 		}
960 
961 		/*
962 		 * Skip CPU if it is quiesced or not yet started.
963 		 */
964 		if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
965 			safe_list[i] = PAUSE_WAIT;
966 			continue;
967 		}
968 
969 		/*
970 		 * Start this CPU's pause thread.
971 		 */
972 		t = cp->cpu_pause_thread;
973 		thread_lock(t);
974 		/*
975 		 * Reset the priority, since nglobpris may have
976 		 * changed since the thread was created, if someone
977 		 * has loaded the RT (or some other) scheduling
978 		 * class.
979 		 */
980 		t->t_pri = v.v_nglobpris - 1;
981 		THREAD_TRANSITION(t);
982 		setbackdq(t);
983 		thread_unlock_nopreempt(t);
984 		++cpu_count;
985 	}
986 	return (cpu_count);
987 }
988 
989 
990 /*
991  * Pause all of the CPUs except the one we are on by creating a high
992  * priority thread bound to those CPUs.
993  *
994  * Note that one must be extremely careful regarding code
995  * executed while CPUs are paused.  Since a CPU may be paused
996  * while a thread scheduling on that CPU is holding an adaptive
997  * lock, code executed with CPUs paused must not acquire adaptive
998  * (or low-level spin) locks.  Also, such code must not block,
999  * since the thread that is supposed to initiate the wakeup may
1000  * never run.
1001  *
1002  * With a few exceptions, the restrictions on code executed with CPUs
1003  * paused match those for code executed at high-level interrupt
1004  * context.
1005  */
1006 void
1007 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
1008 {
1009 	processorid_t	cpu_id;
1010 	int		i;
1011 	struct _cpu_pause_info	*cpi = &cpu_pause_info;
1012 
1013 	ASSERT(MUTEX_HELD(&cpu_lock));
1014 	ASSERT(cpi->cp_paused == NULL);
1015 	cpi->cp_count = 0;
1016 	cpi->cp_go = 0;
1017 	for (i = 0; i < NCPU; i++)
1018 		safe_list[i] = PAUSE_IDLE;
1019 	kpreempt_disable();
1020 
1021 	cpi->cp_func = func;
1022 
1023 	/*
1024 	 * If running on the cpu that is going offline, get off it.
1025 	 * This is so that it won't be necessary to rechoose a CPU
1026 	 * when done.
1027 	 */
1028 	if (CPU == off_cp)
1029 		cpu_id = off_cp->cpu_next_part->cpu_id;
1030 	else
1031 		cpu_id = CPU->cpu_id;
1032 	affinity_set(cpu_id);
1033 
1034 	/*
1035 	 * Start the pause threads and record how many were started
1036 	 */
1037 	cpi->cp_count = cpu_pause_start(cpu_id);
1038 
1039 	/*
1040 	 * Now wait for all CPUs to be running the pause thread.
1041 	 */
1042 	while (cpi->cp_count > 0) {
1043 		/*
1044 		 * Spin reading the count without grabbing the disp
1045 		 * lock to make sure we don't prevent the pause
1046 		 * threads from getting the lock.
1047 		 */
1048 		while (sema_held(&cpi->cp_sem))
1049 			;
1050 		if (sema_tryp(&cpi->cp_sem))
1051 			--cpi->cp_count;
1052 	}
1053 	cpi->cp_go = 1;			/* all have reached cpu_pause */
1054 
1055 	/*
1056 	 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1057 	 * to PAUSE_WAIT.)
1058 	 */
1059 	for (i = 0; i < NCPU; i++) {
1060 		while (safe_list[i] != PAUSE_WAIT)
1061 			;
1062 	}
1063 	cpi->cp_spl = splhigh();	/* block dispatcher on this CPU */
1064 	cpi->cp_paused = curthread;
1065 }
1066 
1067 /*
1068  * Check whether the current thread has CPUs paused
1069  */
1070 int
1071 cpus_paused(void)
1072 {
1073 	if (cpu_pause_info.cp_paused != NULL) {
1074 		ASSERT(cpu_pause_info.cp_paused == curthread);
1075 		return (1);
1076 	}
1077 	return (0);
1078 }
1079 
1080 static cpu_t *
1081 cpu_get_all(processorid_t cpun)
1082 {
1083 	ASSERT(MUTEX_HELD(&cpu_lock));
1084 
1085 	if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1086 		return (NULL);
1087 	return (cpu[cpun]);
1088 }
1089 
1090 /*
1091  * Check whether cpun is a valid processor id and whether it should be
1092  * visible from the current zone. If it is, return a pointer to the
1093  * associated CPU structure.
1094  */
1095 cpu_t *
1096 cpu_get(processorid_t cpun)
1097 {
1098 	cpu_t *c;
1099 
1100 	ASSERT(MUTEX_HELD(&cpu_lock));
1101 	c = cpu_get_all(cpun);
1102 	if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1103 	    zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1104 		return (NULL);
1105 	return (c);
1106 }
1107 
1108 /*
1109  * The following functions should be used to check CPU states in the kernel.
1110  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1111  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1112  * states.  Those are for user-land (and system call) use only.
1113  */
1114 
1115 /*
1116  * Determine whether the CPU is online and handling interrupts.
1117  */
1118 int
1119 cpu_is_online(cpu_t *cpu)
1120 {
1121 	ASSERT(MUTEX_HELD(&cpu_lock));
1122 	return (cpu_flagged_online(cpu->cpu_flags));
1123 }
1124 
1125 /*
1126  * Determine whether the CPU is offline (this includes spare and faulted).
1127  */
1128 int
1129 cpu_is_offline(cpu_t *cpu)
1130 {
1131 	ASSERT(MUTEX_HELD(&cpu_lock));
1132 	return (cpu_flagged_offline(cpu->cpu_flags));
1133 }
1134 
1135 /*
1136  * Determine whether the CPU is powered off.
1137  */
1138 int
1139 cpu_is_poweredoff(cpu_t *cpu)
1140 {
1141 	ASSERT(MUTEX_HELD(&cpu_lock));
1142 	return (cpu_flagged_poweredoff(cpu->cpu_flags));
1143 }
1144 
1145 /*
1146  * Determine whether the CPU is handling interrupts.
1147  */
1148 int
1149 cpu_is_nointr(cpu_t *cpu)
1150 {
1151 	ASSERT(MUTEX_HELD(&cpu_lock));
1152 	return (cpu_flagged_nointr(cpu->cpu_flags));
1153 }
1154 
1155 /*
1156  * Determine whether the CPU is active (scheduling threads).
1157  */
1158 int
1159 cpu_is_active(cpu_t *cpu)
1160 {
1161 	ASSERT(MUTEX_HELD(&cpu_lock));
1162 	return (cpu_flagged_active(cpu->cpu_flags));
1163 }
1164 
1165 /*
1166  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1167  */
1168 int
1169 cpu_flagged_online(cpu_flag_t cpu_flags)
1170 {
1171 	return (cpu_flagged_active(cpu_flags) &&
1172 	    (cpu_flags & CPU_ENABLE));
1173 }
1174 
1175 int
1176 cpu_flagged_offline(cpu_flag_t cpu_flags)
1177 {
1178 	return (((cpu_flags & CPU_POWEROFF) == 0) &&
1179 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1180 }
1181 
1182 int
1183 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1184 {
1185 	return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1186 }
1187 
1188 int
1189 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1190 {
1191 	return (cpu_flagged_active(cpu_flags) &&
1192 	    (cpu_flags & CPU_ENABLE) == 0);
1193 }
1194 
1195 int
1196 cpu_flagged_active(cpu_flag_t cpu_flags)
1197 {
1198 	return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1199 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1200 }
1201 
1202 /*
1203  * Bring the indicated CPU online.
1204  */
1205 int
1206 cpu_online(cpu_t *cp)
1207 {
1208 	int	error = 0;
1209 
1210 	/*
1211 	 * Handle on-line request.
1212 	 *	This code must put the new CPU on the active list before
1213 	 *	starting it because it will not be paused, and will start
1214 	 *	using the active list immediately.  The real start occurs
1215 	 *	when the CPU_QUIESCED flag is turned off.
1216 	 */
1217 
1218 	ASSERT(MUTEX_HELD(&cpu_lock));
1219 
1220 	/*
1221 	 * Put all the cpus into a known safe place.
1222 	 * No mutexes can be entered while CPUs are paused.
1223 	 */
1224 	error = mp_cpu_start(cp);	/* arch-dep hook */
1225 	if (error == 0) {
1226 		pg_cpupart_in(cp, cp->cpu_part);
1227 		pause_cpus(NULL, NULL);
1228 		cpu_add_active_internal(cp);
1229 		if (cp->cpu_flags & CPU_FAULTED) {
1230 			cp->cpu_flags &= ~CPU_FAULTED;
1231 			mp_cpu_faulted_exit(cp);
1232 		}
1233 		cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1234 		    CPU_SPARE);
1235 		CPU_NEW_GENERATION(cp);
1236 		start_cpus();
1237 		cpu_stats_kstat_create(cp);
1238 		cpu_create_intrstat(cp);
1239 		lgrp_kstat_create(cp);
1240 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1241 		cpu_intr_enable(cp);	/* arch-dep hook */
1242 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1243 		cpu_set_state(cp);
1244 		cyclic_online(cp);
1245 		/*
1246 		 * This has to be called only after cyclic_online(). This
1247 		 * function uses cyclics.
1248 		 */
1249 		callout_cpu_online(cp);
1250 		poke_cpu(cp->cpu_id);
1251 	}
1252 
1253 	return (error);
1254 }
1255 
1256 /*
1257  * Take the indicated CPU offline.
1258  */
1259 int
1260 cpu_offline(cpu_t *cp, int flags)
1261 {
1262 	cpupart_t *pp;
1263 	int	error = 0;
1264 	cpu_t	*ncp;
1265 	int	intr_enable;
1266 	int	cyclic_off = 0;
1267 	int	callout_off = 0;
1268 	int	loop_count;
1269 	int	no_quiesce = 0;
1270 	int	(*bound_func)(struct cpu *, int);
1271 	kthread_t *t;
1272 	lpl_t	*cpu_lpl;
1273 	proc_t	*p;
1274 	int	lgrp_diff_lpl;
1275 	boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1276 
1277 	ASSERT(MUTEX_HELD(&cpu_lock));
1278 
1279 	/*
1280 	 * If we're going from faulted or spare to offline, just
1281 	 * clear these flags and update CPU state.
1282 	 */
1283 	if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1284 		if (cp->cpu_flags & CPU_FAULTED) {
1285 			cp->cpu_flags &= ~CPU_FAULTED;
1286 			mp_cpu_faulted_exit(cp);
1287 		}
1288 		cp->cpu_flags &= ~CPU_SPARE;
1289 		cpu_set_state(cp);
1290 		return (0);
1291 	}
1292 
1293 	/*
1294 	 * Handle off-line request.
1295 	 */
1296 	pp = cp->cpu_part;
1297 	/*
1298 	 * Don't offline last online CPU in partition
1299 	 */
1300 	if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1301 		return (EBUSY);
1302 	/*
1303 	 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1304 	 * if we were asked to.
1305 	 */
1306 	error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1307 	if (error != 0)
1308 		return (error);
1309 	/*
1310 	 * We shouldn't be bound to this CPU ourselves.
1311 	 */
1312 	if (curthread->t_bound_cpu == cp)
1313 		return (EBUSY);
1314 
1315 	/*
1316 	 * Tell interested parties that this CPU is going offline.
1317 	 */
1318 	CPU_NEW_GENERATION(cp);
1319 	cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1320 
1321 	/*
1322 	 * Tell the PG subsystem that the CPU is leaving the partition
1323 	 */
1324 	pg_cpupart_out(cp, pp);
1325 
1326 	/*
1327 	 * Take the CPU out of interrupt participation so we won't find
1328 	 * bound kernel threads.  If the architecture cannot completely
1329 	 * shut off interrupts on the CPU, don't quiesce it, but don't
1330 	 * run anything but interrupt thread... this is indicated by
1331 	 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1332 	 * off.
1333 	 */
1334 	intr_enable = cp->cpu_flags & CPU_ENABLE;
1335 	if (intr_enable)
1336 		no_quiesce = cpu_intr_disable(cp);
1337 
1338 	/*
1339 	 * Record that we are aiming to offline this cpu.  This acts as
1340 	 * a barrier to further weak binding requests in thread_nomigrate
1341 	 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1342 	 * lean away from this cpu.  Further strong bindings are already
1343 	 * avoided since we hold cpu_lock.  Since threads that are set
1344 	 * runnable around now and others coming off the target cpu are
1345 	 * directed away from the target, existing strong and weak bindings
1346 	 * (especially the latter) to the target cpu stand maximum chance of
1347 	 * being able to unbind during the short delay loop below (if other
1348 	 * unbound threads compete they may not see cpu in time to unbind
1349 	 * even if they would do so immediately.
1350 	 */
1351 	cpu_inmotion = cp;
1352 	membar_enter();
1353 
1354 	/*
1355 	 * Check for kernel threads (strong or weak) bound to that CPU.
1356 	 * Strongly bound threads may not unbind, and we'll have to return
1357 	 * EBUSY.  Weakly bound threads should always disappear - we've
1358 	 * stopped more weak binding with cpu_inmotion and existing
1359 	 * bindings will drain imminently (they may not block).  Nonetheless
1360 	 * we will wait for a fixed period for all bound threads to disappear.
1361 	 * Inactive interrupt threads are OK (they'll be in TS_FREE
1362 	 * state).  If test finds some bound threads, wait a few ticks
1363 	 * to give short-lived threads (such as interrupts) chance to
1364 	 * complete.  Note that if no_quiesce is set, i.e. this cpu
1365 	 * is required to service interrupts, then we take the route
1366 	 * that permits interrupt threads to be active (or bypassed).
1367 	 */
1368 	bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1369 
1370 again:	for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1371 		if (loop_count >= 5) {
1372 			error = EBUSY;	/* some threads still bound */
1373 			break;
1374 		}
1375 
1376 		/*
1377 		 * If some threads were assigned, give them
1378 		 * a chance to complete or move.
1379 		 *
1380 		 * This assumes that the clock_thread is not bound
1381 		 * to any CPU, because the clock_thread is needed to
1382 		 * do the delay(hz/100).
1383 		 *
1384 		 * Note: we still hold the cpu_lock while waiting for
1385 		 * the next clock tick.  This is OK since it isn't
1386 		 * needed for anything else except processor_bind(2),
1387 		 * and system initialization.  If we drop the lock,
1388 		 * we would risk another p_online disabling the last
1389 		 * processor.
1390 		 */
1391 		delay(hz/100);
1392 	}
1393 
1394 	if (error == 0 && callout_off == 0) {
1395 		callout_cpu_offline(cp);
1396 		callout_off = 1;
1397 	}
1398 
1399 	if (error == 0 && cyclic_off == 0) {
1400 		if (!cyclic_offline(cp)) {
1401 			/*
1402 			 * We must have bound cyclics...
1403 			 */
1404 			error = EBUSY;
1405 			goto out;
1406 		}
1407 		cyclic_off = 1;
1408 	}
1409 
1410 	/*
1411 	 * Call mp_cpu_stop() to perform any special operations
1412 	 * needed for this machine architecture to offline a CPU.
1413 	 */
1414 	if (error == 0)
1415 		error = mp_cpu_stop(cp);	/* arch-dep hook */
1416 
1417 	/*
1418 	 * If that all worked, take the CPU offline and decrement
1419 	 * ncpus_online.
1420 	 */
1421 	if (error == 0) {
1422 		/*
1423 		 * Put all the cpus into a known safe place.
1424 		 * No mutexes can be entered while CPUs are paused.
1425 		 */
1426 		pause_cpus(cp, NULL);
1427 		/*
1428 		 * Repeat the operation, if necessary, to make sure that
1429 		 * all outstanding low-level interrupts run to completion
1430 		 * before we set the CPU_QUIESCED flag.  It's also possible
1431 		 * that a thread has weak bound to the cpu despite our raising
1432 		 * cpu_inmotion above since it may have loaded that
1433 		 * value before the barrier became visible (this would have
1434 		 * to be the thread that was on the target cpu at the time
1435 		 * we raised the barrier).
1436 		 */
1437 		if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1438 		    (*bound_func)(cp, 1)) {
1439 			start_cpus();
1440 			(void) mp_cpu_start(cp);
1441 			goto again;
1442 		}
1443 		ncp = cp->cpu_next_part;
1444 		cpu_lpl = cp->cpu_lpl;
1445 		ASSERT(cpu_lpl != NULL);
1446 
1447 		/*
1448 		 * Remove the CPU from the list of active CPUs.
1449 		 */
1450 		cpu_remove_active(cp);
1451 
1452 		/*
1453 		 * Walk the active process list and look for threads
1454 		 * whose home lgroup needs to be updated, or
1455 		 * the last CPU they run on is the one being offlined now.
1456 		 */
1457 
1458 		ASSERT(curthread->t_cpu != cp);
1459 		for (p = practive; p != NULL; p = p->p_next) {
1460 
1461 			t = p->p_tlist;
1462 
1463 			if (t == NULL)
1464 				continue;
1465 
1466 			lgrp_diff_lpl = 0;
1467 
1468 			do {
1469 				ASSERT(t->t_lpl != NULL);
1470 				/*
1471 				 * Taking last CPU in lpl offline
1472 				 * Rehome thread if it is in this lpl
1473 				 * Otherwise, update the count of how many
1474 				 * threads are in this CPU's lgroup but have
1475 				 * a different lpl.
1476 				 */
1477 
1478 				if (cpu_lpl->lpl_ncpu == 0) {
1479 					if (t->t_lpl == cpu_lpl)
1480 						lgrp_move_thread(t,
1481 						    lgrp_choose(t,
1482 						    t->t_cpupart), 0);
1483 					else if (t->t_lpl->lpl_lgrpid ==
1484 					    cpu_lpl->lpl_lgrpid)
1485 						lgrp_diff_lpl++;
1486 				}
1487 				ASSERT(t->t_lpl->lpl_ncpu > 0);
1488 
1489 				/*
1490 				 * Update CPU last ran on if it was this CPU
1491 				 */
1492 				if (t->t_cpu == cp && t->t_bound_cpu != cp)
1493 					t->t_cpu = disp_lowpri_cpu(ncp,
1494 					    t->t_lpl, t->t_pri, NULL);
1495 				ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1496 				    t->t_weakbound_cpu == cp);
1497 
1498 				t = t->t_forw;
1499 			} while (t != p->p_tlist);
1500 
1501 			/*
1502 			 * Didn't find any threads in the same lgroup as this
1503 			 * CPU with a different lpl, so remove the lgroup from
1504 			 * the process lgroup bitmask.
1505 			 */
1506 
1507 			if (lgrp_diff_lpl == 0)
1508 				klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1509 		}
1510 
1511 		/*
1512 		 * Walk thread list looking for threads that need to be
1513 		 * rehomed, since there are some threads that are not in
1514 		 * their process's p_tlist.
1515 		 */
1516 
1517 		t = curthread;
1518 		do {
1519 			ASSERT(t != NULL && t->t_lpl != NULL);
1520 
1521 			/*
1522 			 * Rehome threads with same lpl as this CPU when this
1523 			 * is the last CPU in the lpl.
1524 			 */
1525 
1526 			if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1527 				lgrp_move_thread(t,
1528 				    lgrp_choose(t, t->t_cpupart), 1);
1529 
1530 			ASSERT(t->t_lpl->lpl_ncpu > 0);
1531 
1532 			/*
1533 			 * Update CPU last ran on if it was this CPU
1534 			 */
1535 
1536 			if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1537 				t->t_cpu = disp_lowpri_cpu(ncp,
1538 				    t->t_lpl, t->t_pri, NULL);
1539 			}
1540 			ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1541 			    t->t_weakbound_cpu == cp);
1542 			t = t->t_next;
1543 
1544 		} while (t != curthread);
1545 		ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1546 		cp->cpu_flags |= CPU_OFFLINE;
1547 		disp_cpu_inactive(cp);
1548 		if (!no_quiesce)
1549 			cp->cpu_flags |= CPU_QUIESCED;
1550 		ncpus_online--;
1551 		cpu_set_state(cp);
1552 		cpu_inmotion = NULL;
1553 		start_cpus();
1554 		cpu_stats_kstat_destroy(cp);
1555 		cpu_delete_intrstat(cp);
1556 		lgrp_kstat_destroy(cp);
1557 	}
1558 
1559 out:
1560 	cpu_inmotion = NULL;
1561 
1562 	/*
1563 	 * If we failed, re-enable interrupts.
1564 	 * Do this even if cpu_intr_disable returned an error, because
1565 	 * it may have partially disabled interrupts.
1566 	 */
1567 	if (error && intr_enable)
1568 		cpu_intr_enable(cp);
1569 
1570 	/*
1571 	 * If we failed, but managed to offline the cyclic subsystem on this
1572 	 * CPU, bring it back online.
1573 	 */
1574 	if (error && cyclic_off)
1575 		cyclic_online(cp);
1576 
1577 	/*
1578 	 * If we failed, but managed to offline callouts on this CPU,
1579 	 * bring it back online.
1580 	 */
1581 	if (error && callout_off)
1582 		callout_cpu_online(cp);
1583 
1584 	/*
1585 	 * If we failed, tell the PG subsystem that the CPU is back
1586 	 */
1587 	pg_cpupart_in(cp, pp);
1588 
1589 	/*
1590 	 * If we failed, we need to notify everyone that this CPU is back on.
1591 	 */
1592 	if (error != 0) {
1593 		CPU_NEW_GENERATION(cp);
1594 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1595 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1596 	}
1597 
1598 	return (error);
1599 }
1600 
1601 /*
1602  * Mark the indicated CPU as faulted, taking it offline.
1603  */
1604 int
1605 cpu_faulted(cpu_t *cp, int flags)
1606 {
1607 	int	error = 0;
1608 
1609 	ASSERT(MUTEX_HELD(&cpu_lock));
1610 	ASSERT(!cpu_is_poweredoff(cp));
1611 
1612 	if (cpu_is_offline(cp)) {
1613 		cp->cpu_flags &= ~CPU_SPARE;
1614 		cp->cpu_flags |= CPU_FAULTED;
1615 		mp_cpu_faulted_enter(cp);
1616 		cpu_set_state(cp);
1617 		return (0);
1618 	}
1619 
1620 	if ((error = cpu_offline(cp, flags)) == 0) {
1621 		cp->cpu_flags |= CPU_FAULTED;
1622 		mp_cpu_faulted_enter(cp);
1623 		cpu_set_state(cp);
1624 	}
1625 
1626 	return (error);
1627 }
1628 
1629 /*
1630  * Mark the indicated CPU as a spare, taking it offline.
1631  */
1632 int
1633 cpu_spare(cpu_t *cp, int flags)
1634 {
1635 	int	error = 0;
1636 
1637 	ASSERT(MUTEX_HELD(&cpu_lock));
1638 	ASSERT(!cpu_is_poweredoff(cp));
1639 
1640 	if (cpu_is_offline(cp)) {
1641 		if (cp->cpu_flags & CPU_FAULTED) {
1642 			cp->cpu_flags &= ~CPU_FAULTED;
1643 			mp_cpu_faulted_exit(cp);
1644 		}
1645 		cp->cpu_flags |= CPU_SPARE;
1646 		cpu_set_state(cp);
1647 		return (0);
1648 	}
1649 
1650 	if ((error = cpu_offline(cp, flags)) == 0) {
1651 		cp->cpu_flags |= CPU_SPARE;
1652 		cpu_set_state(cp);
1653 	}
1654 
1655 	return (error);
1656 }
1657 
1658 /*
1659  * Take the indicated CPU from poweroff to offline.
1660  */
1661 int
1662 cpu_poweron(cpu_t *cp)
1663 {
1664 	int	error = ENOTSUP;
1665 
1666 	ASSERT(MUTEX_HELD(&cpu_lock));
1667 	ASSERT(cpu_is_poweredoff(cp));
1668 
1669 	error = mp_cpu_poweron(cp);	/* arch-dep hook */
1670 	if (error == 0)
1671 		cpu_set_state(cp);
1672 
1673 	return (error);
1674 }
1675 
1676 /*
1677  * Take the indicated CPU from any inactive state to powered off.
1678  */
1679 int
1680 cpu_poweroff(cpu_t *cp)
1681 {
1682 	int	error = ENOTSUP;
1683 
1684 	ASSERT(MUTEX_HELD(&cpu_lock));
1685 	ASSERT(cpu_is_offline(cp));
1686 
1687 	if (!(cp->cpu_flags & CPU_QUIESCED))
1688 		return (EBUSY);		/* not completely idle */
1689 
1690 	error = mp_cpu_poweroff(cp);	/* arch-dep hook */
1691 	if (error == 0)
1692 		cpu_set_state(cp);
1693 
1694 	return (error);
1695 }
1696 
1697 /*
1698  * Initialize the Sequential CPU id lookup table
1699  */
1700 void
1701 cpu_seq_tbl_init()
1702 {
1703 	cpu_t	**tbl;
1704 
1705 	tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1706 	tbl[0] = CPU;
1707 
1708 	cpu_seq = tbl;
1709 }
1710 
1711 /*
1712  * Initialize the CPU lists for the first CPU.
1713  */
1714 void
1715 cpu_list_init(cpu_t *cp)
1716 {
1717 	cp->cpu_next = cp;
1718 	cp->cpu_prev = cp;
1719 	cpu_list = cp;
1720 	clock_cpu_list = cp;
1721 
1722 	cp->cpu_next_onln = cp;
1723 	cp->cpu_prev_onln = cp;
1724 	cpu_active = cp;
1725 
1726 	cp->cpu_seqid = 0;
1727 	CPUSET_ADD(cpu_seqid_inuse, 0);
1728 
1729 	/*
1730 	 * Bootstrap cpu_seq using cpu_list
1731 	 * The cpu_seq[] table will be dynamically allocated
1732 	 * when kmem later becomes available (but before going MP)
1733 	 */
1734 	cpu_seq = &cpu_list;
1735 
1736 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1737 	cp_default.cp_cpulist = cp;
1738 	cp_default.cp_ncpus = 1;
1739 	cp->cpu_next_part = cp;
1740 	cp->cpu_prev_part = cp;
1741 	cp->cpu_part = &cp_default;
1742 
1743 	CPUSET_ADD(cpu_available, cp->cpu_id);
1744 	CPUSET_ADD(cpu_active_set, cp->cpu_id);
1745 }
1746 
1747 /*
1748  * Insert a CPU into the list of available CPUs.
1749  */
1750 void
1751 cpu_add_unit(cpu_t *cp)
1752 {
1753 	int seqid;
1754 
1755 	ASSERT(MUTEX_HELD(&cpu_lock));
1756 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1757 
1758 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1759 
1760 	/*
1761 	 * Note: most users of the cpu_list will grab the
1762 	 * cpu_lock to insure that it isn't modified.  However,
1763 	 * certain users can't or won't do that.  To allow this
1764 	 * we pause the other cpus.  Users who walk the list
1765 	 * without cpu_lock, must disable kernel preemption
1766 	 * to insure that the list isn't modified underneath
1767 	 * them.  Also, any cached pointers to cpu structures
1768 	 * must be revalidated by checking to see if the
1769 	 * cpu_next pointer points to itself.  This check must
1770 	 * be done with the cpu_lock held or kernel preemption
1771 	 * disabled.  This check relies upon the fact that
1772 	 * old cpu structures are not free'ed or cleared after
1773 	 * then are removed from the cpu_list.
1774 	 *
1775 	 * Note that the clock code walks the cpu list dereferencing
1776 	 * the cpu_part pointer, so we need to initialize it before
1777 	 * adding the cpu to the list.
1778 	 */
1779 	cp->cpu_part = &cp_default;
1780 	pause_cpus(NULL, NULL);
1781 	cp->cpu_next = cpu_list;
1782 	cp->cpu_prev = cpu_list->cpu_prev;
1783 	cpu_list->cpu_prev->cpu_next = cp;
1784 	cpu_list->cpu_prev = cp;
1785 	start_cpus();
1786 
1787 	for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1788 		continue;
1789 	CPUSET_ADD(cpu_seqid_inuse, seqid);
1790 	cp->cpu_seqid = seqid;
1791 
1792 	if (seqid > max_cpu_seqid_ever)
1793 		max_cpu_seqid_ever = seqid;
1794 
1795 	ASSERT(ncpus < max_ncpus);
1796 	ncpus++;
1797 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1798 	cpu[cp->cpu_id] = cp;
1799 	CPUSET_ADD(cpu_available, cp->cpu_id);
1800 	cpu_seq[cp->cpu_seqid] = cp;
1801 
1802 	/*
1803 	 * allocate a pause thread for this CPU.
1804 	 */
1805 	cpu_pause_alloc(cp);
1806 
1807 	/*
1808 	 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1809 	 * link them into a list of just that CPU.
1810 	 * This is so that disp_lowpri_cpu will work for thread_create in
1811 	 * pause_cpus() when called from the startup thread in a new CPU.
1812 	 */
1813 	cp->cpu_next_onln = cp;
1814 	cp->cpu_prev_onln = cp;
1815 	cpu_info_kstat_create(cp);
1816 	cp->cpu_next_part = cp;
1817 	cp->cpu_prev_part = cp;
1818 
1819 	init_cpu_mstate(cp, CMS_SYSTEM);
1820 
1821 	pool_pset_mod = gethrtime();
1822 }
1823 
1824 /*
1825  * Do the opposite of cpu_add_unit().
1826  */
1827 void
1828 cpu_del_unit(int cpuid)
1829 {
1830 	struct cpu	*cp, *cpnext;
1831 
1832 	ASSERT(MUTEX_HELD(&cpu_lock));
1833 	cp = cpu[cpuid];
1834 	ASSERT(cp != NULL);
1835 
1836 	ASSERT(cp->cpu_next_onln == cp);
1837 	ASSERT(cp->cpu_prev_onln == cp);
1838 	ASSERT(cp->cpu_next_part == cp);
1839 	ASSERT(cp->cpu_prev_part == cp);
1840 
1841 	/*
1842 	 * Tear down the CPU's physical ID cache, and update any
1843 	 * processor groups
1844 	 */
1845 	pg_cpu_fini(cp, NULL);
1846 	pghw_physid_destroy(cp);
1847 
1848 	/*
1849 	 * Destroy kstat stuff.
1850 	 */
1851 	cpu_info_kstat_destroy(cp);
1852 	term_cpu_mstate(cp);
1853 	/*
1854 	 * Free up pause thread.
1855 	 */
1856 	cpu_pause_free(cp);
1857 	CPUSET_DEL(cpu_available, cp->cpu_id);
1858 	cpu[cp->cpu_id] = NULL;
1859 	cpu_seq[cp->cpu_seqid] = NULL;
1860 
1861 	/*
1862 	 * The clock thread and mutex_vector_enter cannot hold the
1863 	 * cpu_lock while traversing the cpu list, therefore we pause
1864 	 * all other threads by pausing the other cpus. These, and any
1865 	 * other routines holding cpu pointers while possibly sleeping
1866 	 * must be sure to call kpreempt_disable before processing the
1867 	 * list and be sure to check that the cpu has not been deleted
1868 	 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1869 	 * to keep the deleted cpu structure around.
1870 	 *
1871 	 * Note that this MUST be done AFTER cpu_available
1872 	 * has been updated so that we don't waste time
1873 	 * trying to pause the cpu we're trying to delete.
1874 	 */
1875 	pause_cpus(NULL, NULL);
1876 
1877 	cpnext = cp->cpu_next;
1878 	cp->cpu_prev->cpu_next = cp->cpu_next;
1879 	cp->cpu_next->cpu_prev = cp->cpu_prev;
1880 	if (cp == cpu_list)
1881 		cpu_list = cpnext;
1882 
1883 	/*
1884 	 * Signals that the cpu has been deleted (see above).
1885 	 */
1886 	cp->cpu_next = NULL;
1887 	cp->cpu_prev = NULL;
1888 
1889 	start_cpus();
1890 
1891 	CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1892 	ncpus--;
1893 	lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1894 
1895 	pool_pset_mod = gethrtime();
1896 }
1897 
1898 /*
1899  * Add a CPU to the list of active CPUs.
1900  *	This routine must not get any locks, because other CPUs are paused.
1901  */
1902 static void
1903 cpu_add_active_internal(cpu_t *cp)
1904 {
1905 	cpupart_t	*pp = cp->cpu_part;
1906 
1907 	ASSERT(MUTEX_HELD(&cpu_lock));
1908 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1909 
1910 	ncpus_online++;
1911 	cpu_set_state(cp);
1912 	cp->cpu_next_onln = cpu_active;
1913 	cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1914 	cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1915 	cpu_active->cpu_prev_onln = cp;
1916 	CPUSET_ADD(cpu_active_set, cp->cpu_id);
1917 
1918 	if (pp->cp_cpulist) {
1919 		cp->cpu_next_part = pp->cp_cpulist;
1920 		cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1921 		pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1922 		pp->cp_cpulist->cpu_prev_part = cp;
1923 	} else {
1924 		ASSERT(pp->cp_ncpus == 0);
1925 		pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1926 	}
1927 	pp->cp_ncpus++;
1928 	if (pp->cp_ncpus == 1) {
1929 		cp_numparts_nonempty++;
1930 		ASSERT(cp_numparts_nonempty != 0);
1931 	}
1932 
1933 	pg_cpu_active(cp);
1934 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1935 
1936 	bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1937 }
1938 
1939 /*
1940  * Add a CPU to the list of active CPUs.
1941  *	This is called from machine-dependent layers when a new CPU is started.
1942  */
1943 void
1944 cpu_add_active(cpu_t *cp)
1945 {
1946 	pg_cpupart_in(cp, cp->cpu_part);
1947 
1948 	pause_cpus(NULL, NULL);
1949 	cpu_add_active_internal(cp);
1950 	start_cpus();
1951 
1952 	cpu_stats_kstat_create(cp);
1953 	cpu_create_intrstat(cp);
1954 	lgrp_kstat_create(cp);
1955 	cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1956 }
1957 
1958 
1959 /*
1960  * Remove a CPU from the list of active CPUs.
1961  *	This routine must not get any locks, because other CPUs are paused.
1962  */
1963 /* ARGSUSED */
1964 static void
1965 cpu_remove_active(cpu_t *cp)
1966 {
1967 	cpupart_t	*pp = cp->cpu_part;
1968 
1969 	ASSERT(MUTEX_HELD(&cpu_lock));
1970 	ASSERT(cp->cpu_next_onln != cp);	/* not the last one */
1971 	ASSERT(cp->cpu_prev_onln != cp);	/* not the last one */
1972 
1973 	pg_cpu_inactive(cp);
1974 
1975 	lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1976 
1977 	if (cp == clock_cpu_list)
1978 		clock_cpu_list = cp->cpu_next_onln;
1979 
1980 	cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1981 	cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1982 	if (cpu_active == cp) {
1983 		cpu_active = cp->cpu_next_onln;
1984 	}
1985 	cp->cpu_next_onln = cp;
1986 	cp->cpu_prev_onln = cp;
1987 	CPUSET_DEL(cpu_active_set, cp->cpu_id);
1988 
1989 	cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1990 	cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1991 	if (pp->cp_cpulist == cp) {
1992 		pp->cp_cpulist = cp->cpu_next_part;
1993 		ASSERT(pp->cp_cpulist != cp);
1994 	}
1995 	cp->cpu_next_part = cp;
1996 	cp->cpu_prev_part = cp;
1997 	pp->cp_ncpus--;
1998 	if (pp->cp_ncpus == 0) {
1999 		cp_numparts_nonempty--;
2000 		ASSERT(cp_numparts_nonempty != 0);
2001 	}
2002 }
2003 
2004 /*
2005  * Routine used to setup a newly inserted CPU in preparation for starting
2006  * it running code.
2007  */
2008 int
2009 cpu_configure(int cpuid)
2010 {
2011 	int retval = 0;
2012 
2013 	ASSERT(MUTEX_HELD(&cpu_lock));
2014 
2015 	/*
2016 	 * Some structures are statically allocated based upon
2017 	 * the maximum number of cpus the system supports.  Do not
2018 	 * try to add anything beyond this limit.
2019 	 */
2020 	if (cpuid < 0 || cpuid >= NCPU) {
2021 		return (EINVAL);
2022 	}
2023 
2024 	if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2025 		return (EALREADY);
2026 	}
2027 
2028 	if ((retval = mp_cpu_configure(cpuid)) != 0) {
2029 		return (retval);
2030 	}
2031 
2032 	cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2033 	cpu_set_state(cpu[cpuid]);
2034 	retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2035 	if (retval != 0)
2036 		(void) mp_cpu_unconfigure(cpuid);
2037 
2038 	return (retval);
2039 }
2040 
2041 /*
2042  * Routine used to cleanup a CPU that has been powered off.  This will
2043  * destroy all per-cpu information related to this cpu.
2044  */
2045 int
2046 cpu_unconfigure(int cpuid)
2047 {
2048 	int error;
2049 
2050 	ASSERT(MUTEX_HELD(&cpu_lock));
2051 
2052 	if (cpu[cpuid] == NULL) {
2053 		return (ENODEV);
2054 	}
2055 
2056 	if (cpu[cpuid]->cpu_flags == 0) {
2057 		return (EALREADY);
2058 	}
2059 
2060 	if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2061 		return (EBUSY);
2062 	}
2063 
2064 	if (cpu[cpuid]->cpu_props != NULL) {
2065 		(void) nvlist_free(cpu[cpuid]->cpu_props);
2066 		cpu[cpuid]->cpu_props = NULL;
2067 	}
2068 
2069 	error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2070 
2071 	if (error != 0)
2072 		return (error);
2073 
2074 	return (mp_cpu_unconfigure(cpuid));
2075 }
2076 
2077 /*
2078  * Routines for registering and de-registering cpu_setup callback functions.
2079  *
2080  * Caller's context
2081  *	These routines must not be called from a driver's attach(9E) or
2082  *	detach(9E) entry point.
2083  *
2084  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2085  */
2086 
2087 /*
2088  * Ideally, these would be dynamically allocated and put into a linked
2089  * list; however that is not feasible because the registration routine
2090  * has to be available before the kmem allocator is working (in fact,
2091  * it is called by the kmem allocator init code).  In any case, there
2092  * are quite a few extra entries for future users.
2093  */
2094 #define	NCPU_SETUPS	20
2095 
2096 struct cpu_setup {
2097 	cpu_setup_func_t *func;
2098 	void *arg;
2099 } cpu_setups[NCPU_SETUPS];
2100 
2101 void
2102 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2103 {
2104 	int i;
2105 
2106 	ASSERT(MUTEX_HELD(&cpu_lock));
2107 
2108 	for (i = 0; i < NCPU_SETUPS; i++)
2109 		if (cpu_setups[i].func == NULL)
2110 			break;
2111 	if (i >= NCPU_SETUPS)
2112 		cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2113 
2114 	cpu_setups[i].func = func;
2115 	cpu_setups[i].arg = arg;
2116 }
2117 
2118 void
2119 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2120 {
2121 	int i;
2122 
2123 	ASSERT(MUTEX_HELD(&cpu_lock));
2124 
2125 	for (i = 0; i < NCPU_SETUPS; i++)
2126 		if ((cpu_setups[i].func == func) &&
2127 		    (cpu_setups[i].arg == arg))
2128 			break;
2129 	if (i >= NCPU_SETUPS)
2130 		cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2131 		    "deregister");
2132 
2133 	cpu_setups[i].func = NULL;
2134 	cpu_setups[i].arg = 0;
2135 }
2136 
2137 /*
2138  * Call any state change hooks for this CPU, ignore any errors.
2139  */
2140 void
2141 cpu_state_change_notify(int id, cpu_setup_t what)
2142 {
2143 	int i;
2144 
2145 	ASSERT(MUTEX_HELD(&cpu_lock));
2146 
2147 	for (i = 0; i < NCPU_SETUPS; i++) {
2148 		if (cpu_setups[i].func != NULL) {
2149 			cpu_setups[i].func(what, id, cpu_setups[i].arg);
2150 		}
2151 	}
2152 }
2153 
2154 /*
2155  * Call any state change hooks for this CPU, undo it if error found.
2156  */
2157 static int
2158 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2159 {
2160 	int i;
2161 	int retval = 0;
2162 
2163 	ASSERT(MUTEX_HELD(&cpu_lock));
2164 
2165 	for (i = 0; i < NCPU_SETUPS; i++) {
2166 		if (cpu_setups[i].func != NULL) {
2167 			retval = cpu_setups[i].func(what, id,
2168 			    cpu_setups[i].arg);
2169 			if (retval) {
2170 				for (i--; i >= 0; i--) {
2171 					if (cpu_setups[i].func != NULL)
2172 						cpu_setups[i].func(undo,
2173 						    id, cpu_setups[i].arg);
2174 				}
2175 				break;
2176 			}
2177 		}
2178 	}
2179 	return (retval);
2180 }
2181 
2182 /*
2183  * Export information about this CPU via the kstat mechanism.
2184  */
2185 static struct {
2186 	kstat_named_t ci_state;
2187 	kstat_named_t ci_state_begin;
2188 	kstat_named_t ci_cpu_type;
2189 	kstat_named_t ci_fpu_type;
2190 	kstat_named_t ci_clock_MHz;
2191 	kstat_named_t ci_chip_id;
2192 	kstat_named_t ci_implementation;
2193 	kstat_named_t ci_brandstr;
2194 	kstat_named_t ci_core_id;
2195 	kstat_named_t ci_curr_clock_Hz;
2196 	kstat_named_t ci_supp_freq_Hz;
2197 	kstat_named_t ci_pg_id;
2198 #if defined(__sparcv9)
2199 	kstat_named_t ci_device_ID;
2200 	kstat_named_t ci_cpu_fru;
2201 #endif
2202 #if defined(__x86)
2203 	kstat_named_t ci_vendorstr;
2204 	kstat_named_t ci_family;
2205 	kstat_named_t ci_model;
2206 	kstat_named_t ci_step;
2207 	kstat_named_t ci_clogid;
2208 	kstat_named_t ci_pkg_core_id;
2209 	kstat_named_t ci_ncpuperchip;
2210 	kstat_named_t ci_ncoreperchip;
2211 	kstat_named_t ci_max_cstates;
2212 	kstat_named_t ci_curr_cstate;
2213 	kstat_named_t ci_cacheid;
2214 	kstat_named_t ci_sktstr;
2215 #endif
2216 } cpu_info_template = {
2217 	{ "state",			KSTAT_DATA_CHAR },
2218 	{ "state_begin",		KSTAT_DATA_LONG },
2219 	{ "cpu_type",			KSTAT_DATA_CHAR },
2220 	{ "fpu_type",			KSTAT_DATA_CHAR },
2221 	{ "clock_MHz",			KSTAT_DATA_LONG },
2222 	{ "chip_id",			KSTAT_DATA_LONG },
2223 	{ "implementation",		KSTAT_DATA_STRING },
2224 	{ "brand",			KSTAT_DATA_STRING },
2225 	{ "core_id",			KSTAT_DATA_LONG },
2226 	{ "current_clock_Hz",		KSTAT_DATA_UINT64 },
2227 	{ "supported_frequencies_Hz",	KSTAT_DATA_STRING },
2228 	{ "pg_id",			KSTAT_DATA_LONG },
2229 #if defined(__sparcv9)
2230 	{ "device_ID",			KSTAT_DATA_UINT64 },
2231 	{ "cpu_fru",			KSTAT_DATA_STRING },
2232 #endif
2233 #if defined(__x86)
2234 	{ "vendor_id",			KSTAT_DATA_STRING },
2235 	{ "family",			KSTAT_DATA_INT32 },
2236 	{ "model",			KSTAT_DATA_INT32 },
2237 	{ "stepping",			KSTAT_DATA_INT32 },
2238 	{ "clog_id",			KSTAT_DATA_INT32 },
2239 	{ "pkg_core_id",		KSTAT_DATA_LONG },
2240 	{ "ncpu_per_chip",		KSTAT_DATA_INT32 },
2241 	{ "ncore_per_chip",		KSTAT_DATA_INT32 },
2242 	{ "supported_max_cstates",	KSTAT_DATA_INT32 },
2243 	{ "current_cstate",		KSTAT_DATA_INT32 },
2244 	{ "cache_id",			KSTAT_DATA_INT32 },
2245 	{ "socket_type",		KSTAT_DATA_STRING },
2246 #endif
2247 };
2248 
2249 static kmutex_t cpu_info_template_lock;
2250 
2251 static int
2252 cpu_info_kstat_update(kstat_t *ksp, int rw)
2253 {
2254 	cpu_t	*cp = ksp->ks_private;
2255 	const char *pi_state;
2256 
2257 	if (rw == KSTAT_WRITE)
2258 		return (EACCES);
2259 
2260 #if defined(__x86)
2261 	/* Is the cpu still initialising itself? */
2262 	if (cpuid_checkpass(cp, 1) == 0)
2263 		return (ENXIO);
2264 #endif
2265 	switch (cp->cpu_type_info.pi_state) {
2266 	case P_ONLINE:
2267 		pi_state = PS_ONLINE;
2268 		break;
2269 	case P_POWEROFF:
2270 		pi_state = PS_POWEROFF;
2271 		break;
2272 	case P_NOINTR:
2273 		pi_state = PS_NOINTR;
2274 		break;
2275 	case P_FAULTED:
2276 		pi_state = PS_FAULTED;
2277 		break;
2278 	case P_SPARE:
2279 		pi_state = PS_SPARE;
2280 		break;
2281 	case P_OFFLINE:
2282 		pi_state = PS_OFFLINE;
2283 		break;
2284 	default:
2285 		pi_state = "unknown";
2286 	}
2287 	(void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2288 	cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2289 	(void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2290 	    cp->cpu_type_info.pi_processor_type, 15);
2291 	(void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2292 	    cp->cpu_type_info.pi_fputypes, 15);
2293 	cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2294 	cpu_info_template.ci_chip_id.value.l =
2295 	    pg_plat_hw_instance_id(cp, PGHW_CHIP);
2296 	kstat_named_setstr(&cpu_info_template.ci_implementation,
2297 	    cp->cpu_idstr);
2298 	kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2299 	cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2300 	cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2301 	    cp->cpu_curr_clock;
2302 	cpu_info_template.ci_pg_id.value.l =
2303 	    cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2304 	    cp->cpu_pg->cmt_lineage->pg_id : -1;
2305 	kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2306 	    cp->cpu_supp_freqs);
2307 #if defined(__sparcv9)
2308 	cpu_info_template.ci_device_ID.value.ui64 =
2309 	    cpunodes[cp->cpu_id].device_id;
2310 	kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2311 #endif
2312 #if defined(__x86)
2313 	kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2314 	    cpuid_getvendorstr(cp));
2315 	cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2316 	cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2317 	cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2318 	cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2319 	cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2320 	cpu_info_template.ci_ncoreperchip.value.l =
2321 	    cpuid_get_ncore_per_chip(cp);
2322 	cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2323 	cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2324 	cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2325 	cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2326 	kstat_named_setstr(&cpu_info_template.ci_sktstr,
2327 	    cpuid_getsocketstr(cp));
2328 #endif
2329 
2330 	return (0);
2331 }
2332 
2333 static void
2334 cpu_info_kstat_create(cpu_t *cp)
2335 {
2336 	zoneid_t zoneid;
2337 
2338 	ASSERT(MUTEX_HELD(&cpu_lock));
2339 
2340 	if (pool_pset_enabled())
2341 		zoneid = GLOBAL_ZONEID;
2342 	else
2343 		zoneid = ALL_ZONES;
2344 	if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2345 	    NULL, "misc", KSTAT_TYPE_NAMED,
2346 	    sizeof (cpu_info_template) / sizeof (kstat_named_t),
2347 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2348 		cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2349 #if defined(__sparcv9)
2350 		cp->cpu_info_kstat->ks_data_size +=
2351 		    strlen(cpu_fru_fmri(cp)) + 1;
2352 #endif
2353 #if defined(__x86)
2354 		cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2355 #endif
2356 		if (cp->cpu_supp_freqs != NULL)
2357 			cp->cpu_info_kstat->ks_data_size +=
2358 			    strlen(cp->cpu_supp_freqs) + 1;
2359 		cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2360 		cp->cpu_info_kstat->ks_data = &cpu_info_template;
2361 		cp->cpu_info_kstat->ks_private = cp;
2362 		cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2363 		kstat_install(cp->cpu_info_kstat);
2364 	}
2365 }
2366 
2367 static void
2368 cpu_info_kstat_destroy(cpu_t *cp)
2369 {
2370 	ASSERT(MUTEX_HELD(&cpu_lock));
2371 
2372 	kstat_delete(cp->cpu_info_kstat);
2373 	cp->cpu_info_kstat = NULL;
2374 }
2375 
2376 /*
2377  * Create and install kstats for the boot CPU.
2378  */
2379 void
2380 cpu_kstat_init(cpu_t *cp)
2381 {
2382 	mutex_enter(&cpu_lock);
2383 	cpu_info_kstat_create(cp);
2384 	cpu_stats_kstat_create(cp);
2385 	cpu_create_intrstat(cp);
2386 	cpu_set_state(cp);
2387 	mutex_exit(&cpu_lock);
2388 }
2389 
2390 /*
2391  * Make visible to the zone that subset of the cpu information that would be
2392  * initialized when a cpu is configured (but still offline).
2393  */
2394 void
2395 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2396 {
2397 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2398 
2399 	ASSERT(MUTEX_HELD(&cpu_lock));
2400 	ASSERT(pool_pset_enabled());
2401 	ASSERT(cp != NULL);
2402 
2403 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2404 		zone->zone_ncpus++;
2405 		ASSERT(zone->zone_ncpus <= ncpus);
2406 	}
2407 	if (cp->cpu_info_kstat != NULL)
2408 		kstat_zone_add(cp->cpu_info_kstat, zoneid);
2409 }
2410 
2411 /*
2412  * Make visible to the zone that subset of the cpu information that would be
2413  * initialized when a previously configured cpu is onlined.
2414  */
2415 void
2416 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2417 {
2418 	kstat_t *ksp;
2419 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2420 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2421 	processorid_t cpun;
2422 
2423 	ASSERT(MUTEX_HELD(&cpu_lock));
2424 	ASSERT(pool_pset_enabled());
2425 	ASSERT(cp != NULL);
2426 	ASSERT(cpu_is_active(cp));
2427 
2428 	cpun = cp->cpu_id;
2429 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2430 		zone->zone_ncpus_online++;
2431 		ASSERT(zone->zone_ncpus_online <= ncpus_online);
2432 	}
2433 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2434 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2435 	    != NULL) {
2436 		kstat_zone_add(ksp, zoneid);
2437 		kstat_rele(ksp);
2438 	}
2439 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2440 		kstat_zone_add(ksp, zoneid);
2441 		kstat_rele(ksp);
2442 	}
2443 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2444 		kstat_zone_add(ksp, zoneid);
2445 		kstat_rele(ksp);
2446 	}
2447 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2448 	    NULL) {
2449 		kstat_zone_add(ksp, zoneid);
2450 		kstat_rele(ksp);
2451 	}
2452 }
2453 
2454 /*
2455  * Update relevant kstats such that cpu is now visible to processes
2456  * executing in specified zone.
2457  */
2458 void
2459 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2460 {
2461 	cpu_visibility_configure(cp, zone);
2462 	if (cpu_is_active(cp))
2463 		cpu_visibility_online(cp, zone);
2464 }
2465 
2466 /*
2467  * Make invisible to the zone that subset of the cpu information that would be
2468  * torn down when a previously offlined cpu is unconfigured.
2469  */
2470 void
2471 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2472 {
2473 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2474 
2475 	ASSERT(MUTEX_HELD(&cpu_lock));
2476 	ASSERT(pool_pset_enabled());
2477 	ASSERT(cp != NULL);
2478 
2479 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2480 		ASSERT(zone->zone_ncpus != 0);
2481 		zone->zone_ncpus--;
2482 	}
2483 	if (cp->cpu_info_kstat)
2484 		kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2485 }
2486 
2487 /*
2488  * Make invisible to the zone that subset of the cpu information that would be
2489  * torn down when a cpu is offlined (but still configured).
2490  */
2491 void
2492 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2493 {
2494 	kstat_t *ksp;
2495 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2496 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2497 	processorid_t cpun;
2498 
2499 	ASSERT(MUTEX_HELD(&cpu_lock));
2500 	ASSERT(pool_pset_enabled());
2501 	ASSERT(cp != NULL);
2502 	ASSERT(cpu_is_active(cp));
2503 
2504 	cpun = cp->cpu_id;
2505 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2506 		ASSERT(zone->zone_ncpus_online != 0);
2507 		zone->zone_ncpus_online--;
2508 	}
2509 
2510 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2511 	    NULL) {
2512 		kstat_zone_remove(ksp, zoneid);
2513 		kstat_rele(ksp);
2514 	}
2515 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2516 		kstat_zone_remove(ksp, zoneid);
2517 		kstat_rele(ksp);
2518 	}
2519 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2520 		kstat_zone_remove(ksp, zoneid);
2521 		kstat_rele(ksp);
2522 	}
2523 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2524 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2525 	    != NULL) {
2526 		kstat_zone_remove(ksp, zoneid);
2527 		kstat_rele(ksp);
2528 	}
2529 }
2530 
2531 /*
2532  * Update relevant kstats such that cpu is no longer visible to processes
2533  * executing in specified zone.
2534  */
2535 void
2536 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2537 {
2538 	if (cpu_is_active(cp))
2539 		cpu_visibility_offline(cp, zone);
2540 	cpu_visibility_unconfigure(cp, zone);
2541 }
2542 
2543 /*
2544  * Bind a thread to a CPU as requested.
2545  */
2546 int
2547 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2548     int *error)
2549 {
2550 	processorid_t	binding;
2551 	cpu_t		*cp = NULL;
2552 
2553 	ASSERT(MUTEX_HELD(&cpu_lock));
2554 	ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2555 
2556 	thread_lock(tp);
2557 
2558 	/*
2559 	 * Record old binding, but change the obind, which was initialized
2560 	 * to PBIND_NONE, only if this thread has a binding.  This avoids
2561 	 * reporting PBIND_NONE for a process when some LWPs are bound.
2562 	 */
2563 	binding = tp->t_bind_cpu;
2564 	if (binding != PBIND_NONE)
2565 		*obind = binding;	/* record old binding */
2566 
2567 	switch (bind) {
2568 	case PBIND_QUERY:
2569 		/* Just return the old binding */
2570 		thread_unlock(tp);
2571 		return (0);
2572 
2573 	case PBIND_QUERY_TYPE:
2574 		/* Return the binding type */
2575 		*obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2576 		thread_unlock(tp);
2577 		return (0);
2578 
2579 	case PBIND_SOFT:
2580 		/*
2581 		 *  Set soft binding for this thread and return the actual
2582 		 *  binding
2583 		 */
2584 		TB_CPU_SOFT_SET(tp);
2585 		thread_unlock(tp);
2586 		return (0);
2587 
2588 	case PBIND_HARD:
2589 		/*
2590 		 *  Set hard binding for this thread and return the actual
2591 		 *  binding
2592 		 */
2593 		TB_CPU_HARD_SET(tp);
2594 		thread_unlock(tp);
2595 		return (0);
2596 
2597 	default:
2598 		break;
2599 	}
2600 
2601 	/*
2602 	 * If this thread/LWP cannot be bound because of permission
2603 	 * problems, just note that and return success so that the
2604 	 * other threads/LWPs will be bound.  This is the way
2605 	 * processor_bind() is defined to work.
2606 	 *
2607 	 * Binding will get EPERM if the thread is of system class
2608 	 * or hasprocperm() fails.
2609 	 */
2610 	if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2611 		*error = EPERM;
2612 		thread_unlock(tp);
2613 		return (0);
2614 	}
2615 
2616 	binding = bind;
2617 	if (binding != PBIND_NONE) {
2618 		cp = cpu_get((processorid_t)binding);
2619 		/*
2620 		 * Make sure binding is valid and is in right partition.
2621 		 */
2622 		if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2623 			*error = EINVAL;
2624 			thread_unlock(tp);
2625 			return (0);
2626 		}
2627 	}
2628 	tp->t_bind_cpu = binding;	/* set new binding */
2629 
2630 	/*
2631 	 * If there is no system-set reason for affinity, set
2632 	 * the t_bound_cpu field to reflect the binding.
2633 	 */
2634 	if (tp->t_affinitycnt == 0) {
2635 		if (binding == PBIND_NONE) {
2636 			/*
2637 			 * We may need to adjust disp_max_unbound_pri
2638 			 * since we're becoming unbound.
2639 			 */
2640 			disp_adjust_unbound_pri(tp);
2641 
2642 			tp->t_bound_cpu = NULL;	/* set new binding */
2643 
2644 			/*
2645 			 * Move thread to lgroup with strongest affinity
2646 			 * after unbinding
2647 			 */
2648 			if (tp->t_lgrp_affinity)
2649 				lgrp_move_thread(tp,
2650 				    lgrp_choose(tp, tp->t_cpupart), 1);
2651 
2652 			if (tp->t_state == TS_ONPROC &&
2653 			    tp->t_cpu->cpu_part != tp->t_cpupart)
2654 				cpu_surrender(tp);
2655 		} else {
2656 			lpl_t	*lpl;
2657 
2658 			tp->t_bound_cpu = cp;
2659 			ASSERT(cp->cpu_lpl != NULL);
2660 
2661 			/*
2662 			 * Set home to lgroup with most affinity containing CPU
2663 			 * that thread is being bound or minimum bounding
2664 			 * lgroup if no affinities set
2665 			 */
2666 			if (tp->t_lgrp_affinity)
2667 				lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2668 				    LGRP_NONE, B_FALSE);
2669 			else
2670 				lpl = cp->cpu_lpl;
2671 
2672 			if (tp->t_lpl != lpl) {
2673 				/* can't grab cpu_lock */
2674 				lgrp_move_thread(tp, lpl, 1);
2675 			}
2676 
2677 			/*
2678 			 * Make the thread switch to the bound CPU.
2679 			 * If the thread is runnable, we need to
2680 			 * requeue it even if t_cpu is already set
2681 			 * to the right CPU, since it may be on a
2682 			 * kpreempt queue and need to move to a local
2683 			 * queue.  We could check t_disp_queue to
2684 			 * avoid unnecessary overhead if it's already
2685 			 * on the right queue, but since this isn't
2686 			 * a performance-critical operation it doesn't
2687 			 * seem worth the extra code and complexity.
2688 			 *
2689 			 * If the thread is weakbound to the cpu then it will
2690 			 * resist the new binding request until the weak
2691 			 * binding drops.  The cpu_surrender or requeueing
2692 			 * below could be skipped in such cases (since it
2693 			 * will have no effect), but that would require
2694 			 * thread_allowmigrate to acquire thread_lock so
2695 			 * we'll take the very occasional hit here instead.
2696 			 */
2697 			if (tp->t_state == TS_ONPROC) {
2698 				cpu_surrender(tp);
2699 			} else if (tp->t_state == TS_RUN) {
2700 				cpu_t *ocp = tp->t_cpu;
2701 
2702 				(void) dispdeq(tp);
2703 				setbackdq(tp);
2704 				/*
2705 				 * Either on the bound CPU's disp queue now,
2706 				 * or swapped out or on the swap queue.
2707 				 */
2708 				ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2709 				    tp->t_weakbound_cpu == ocp ||
2710 				    (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2711 				    != TS_LOAD);
2712 			}
2713 		}
2714 	}
2715 
2716 	/*
2717 	 * Our binding has changed; set TP_CHANGEBIND.
2718 	 */
2719 	tp->t_proc_flag |= TP_CHANGEBIND;
2720 	aston(tp);
2721 
2722 	thread_unlock(tp);
2723 
2724 	return (0);
2725 }
2726 
2727 
2728 cpuset_t *
2729 cpuset_alloc(int kmflags)
2730 {
2731 	return (kmem_alloc(sizeof (cpuset_t), kmflags));
2732 }
2733 
2734 void
2735 cpuset_free(cpuset_t *s)
2736 {
2737 	kmem_free(s, sizeof (cpuset_t));
2738 }
2739 
2740 void
2741 cpuset_all(cpuset_t *s)
2742 {
2743 	int i;
2744 
2745 	for (i = 0; i < CPUSET_WORDS; i++)
2746 		s->cpub[i] = ~0UL;
2747 }
2748 
2749 void
2750 cpuset_all_but(cpuset_t *s, const uint_t cpu)
2751 {
2752 	cpuset_all(s);
2753 	CPUSET_DEL(*s, cpu);
2754 }
2755 
2756 void
2757 cpuset_only(cpuset_t *s, const uint_t cpu)
2758 {
2759 	CPUSET_ZERO(*s);
2760 	CPUSET_ADD(*s, cpu);
2761 }
2762 
2763 long
2764 cpu_in_set(const cpuset_t *s, const uint_t cpu)
2765 {
2766 	VERIFY(cpu < NCPU);
2767 	return (BT_TEST(s->cpub, cpu));
2768 }
2769 
2770 void
2771 cpuset_add(cpuset_t *s, const uint_t cpu)
2772 {
2773 	VERIFY(cpu < NCPU);
2774 	BT_SET(s->cpub, cpu);
2775 }
2776 
2777 void
2778 cpuset_del(cpuset_t *s, const uint_t cpu)
2779 {
2780 	VERIFY(cpu < NCPU);
2781 	BT_CLEAR(s->cpub, cpu);
2782 }
2783 
2784 int
2785 cpuset_isnull(const cpuset_t *s)
2786 {
2787 	int i;
2788 
2789 	for (i = 0; i < CPUSET_WORDS; i++) {
2790 		if (s->cpub[i] != 0)
2791 			return (0);
2792 	}
2793 	return (1);
2794 }
2795 
2796 int
2797 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2)
2798 {
2799 	int i;
2800 
2801 	for (i = 0; i < CPUSET_WORDS; i++) {
2802 		if (s1->cpub[i] != s2->cpub[i])
2803 			return (0);
2804 	}
2805 	return (1);
2806 }
2807 
2808 uint_t
2809 cpuset_find(const cpuset_t *s)
2810 {
2811 
2812 	uint_t	i;
2813 	uint_t	cpu = (uint_t)-1;
2814 
2815 	/*
2816 	 * Find a cpu in the cpuset
2817 	 */
2818 	for (i = 0; i < CPUSET_WORDS; i++) {
2819 		cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2820 		if (cpu != (uint_t)-1) {
2821 			cpu += i * BT_NBIPUL;
2822 			break;
2823 		}
2824 	}
2825 	return (cpu);
2826 }
2827 
2828 void
2829 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2830 {
2831 	int	i, j;
2832 	uint_t	bit;
2833 
2834 	/*
2835 	 * First, find the smallest cpu id in the set.
2836 	 */
2837 	for (i = 0; i < CPUSET_WORDS; i++) {
2838 		if (s->cpub[i] != 0) {
2839 			bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2840 			ASSERT(bit != (uint_t)-1);
2841 			*smallestid = bit + (i * BT_NBIPUL);
2842 
2843 			/*
2844 			 * Now find the largest cpu id in
2845 			 * the set and return immediately.
2846 			 * Done in an inner loop to avoid
2847 			 * having to break out of the first
2848 			 * loop.
2849 			 */
2850 			for (j = CPUSET_WORDS - 1; j >= i; j--) {
2851 				if (s->cpub[j] != 0) {
2852 					bit = (uint_t)(highbit(s->cpub[j]) - 1);
2853 					ASSERT(bit != (uint_t)-1);
2854 					*largestid = bit + (j * BT_NBIPUL);
2855 					ASSERT(*largestid >= *smallestid);
2856 					return;
2857 				}
2858 			}
2859 
2860 			/*
2861 			 * If this code is reached, a
2862 			 * smallestid was found, but not a
2863 			 * largestid. The cpuset must have
2864 			 * been changed during the course
2865 			 * of this function call.
2866 			 */
2867 			ASSERT(0);
2868 		}
2869 	}
2870 	*smallestid = *largestid = CPUSET_NOTINSET;
2871 }
2872 
2873 void
2874 cpuset_atomic_del(cpuset_t *s, const uint_t cpu)
2875 {
2876 	VERIFY(cpu < NCPU);
2877 	BT_ATOMIC_CLEAR(s->cpub, (cpu))
2878 }
2879 
2880 void
2881 cpuset_atomic_add(cpuset_t *s, const uint_t cpu)
2882 {
2883 	VERIFY(cpu < NCPU);
2884 	BT_ATOMIC_SET(s->cpub, (cpu))
2885 }
2886 
2887 long
2888 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu)
2889 {
2890 	long res;
2891 
2892 	VERIFY(cpu < NCPU);
2893 	BT_ATOMIC_SET_EXCL(s->cpub, cpu, res);
2894 	return (res);
2895 }
2896 
2897 long
2898 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu)
2899 {
2900 	long res;
2901 
2902 	VERIFY(cpu < NCPU);
2903 	BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res);
2904 	return (res);
2905 }
2906 
2907 void
2908 cpuset_or(cpuset_t *dst, cpuset_t *src)
2909 {
2910 	for (int i = 0; i < CPUSET_WORDS; i++) {
2911 		dst->cpub[i] |= src->cpub[i];
2912 	}
2913 }
2914 
2915 void
2916 cpuset_xor(cpuset_t *dst, cpuset_t *src)
2917 {
2918 	for (int i = 0; i < CPUSET_WORDS; i++) {
2919 		dst->cpub[i] ^= src->cpub[i];
2920 	}
2921 }
2922 
2923 void
2924 cpuset_and(cpuset_t *dst, cpuset_t *src)
2925 {
2926 	for (int i = 0; i < CPUSET_WORDS; i++) {
2927 		dst->cpub[i] &= src->cpub[i];
2928 	}
2929 }
2930 
2931 void
2932 cpuset_zero(cpuset_t *dst)
2933 {
2934 	for (int i = 0; i < CPUSET_WORDS; i++) {
2935 		dst->cpub[i] = 0;
2936 	}
2937 }
2938 
2939 
2940 /*
2941  * Unbind threads bound to specified CPU.
2942  *
2943  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2944  * CPU. Otherwise unbind all soft-bound user threads.
2945  */
2946 int
2947 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2948 {
2949 	processorid_t obind;
2950 	kthread_t *tp;
2951 	int ret = 0;
2952 	proc_t *pp;
2953 	int err, berr = 0;
2954 
2955 	ASSERT(MUTEX_HELD(&cpu_lock));
2956 
2957 	mutex_enter(&pidlock);
2958 	for (pp = practive; pp != NULL; pp = pp->p_next) {
2959 		mutex_enter(&pp->p_lock);
2960 		tp = pp->p_tlist;
2961 		/*
2962 		 * Skip zombies, kernel processes, and processes in
2963 		 * other zones, if called from a non-global zone.
2964 		 */
2965 		if (tp == NULL || (pp->p_flag & SSYS) ||
2966 		    !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2967 			mutex_exit(&pp->p_lock);
2968 			continue;
2969 		}
2970 		do {
2971 			if (tp->t_bind_cpu != cpu)
2972 				continue;
2973 			/*
2974 			 * Skip threads with hard binding when
2975 			 * `unbind_all_threads' is not specified.
2976 			 */
2977 			if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2978 				continue;
2979 			err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2980 			if (ret == 0)
2981 				ret = err;
2982 		} while ((tp = tp->t_forw) != pp->p_tlist);
2983 		mutex_exit(&pp->p_lock);
2984 	}
2985 	mutex_exit(&pidlock);
2986 	if (ret == 0)
2987 		ret = berr;
2988 	return (ret);
2989 }
2990 
2991 
2992 /*
2993  * Destroy all remaining bound threads on a cpu.
2994  */
2995 void
2996 cpu_destroy_bound_threads(cpu_t *cp)
2997 {
2998 	extern id_t syscid;
2999 	register kthread_id_t	t, tlist, tnext;
3000 
3001 	/*
3002 	 * Destroy all remaining bound threads on the cpu.  This
3003 	 * should include both the interrupt threads and the idle thread.
3004 	 * This requires some care, since we need to traverse the
3005 	 * thread list with the pidlock mutex locked, but thread_free
3006 	 * also locks the pidlock mutex.  So, we collect the threads
3007 	 * we're going to reap in a list headed by "tlist", then we
3008 	 * unlock the pidlock mutex and traverse the tlist list,
3009 	 * doing thread_free's on the thread's.	 Simple, n'est pas?
3010 	 * Also, this depends on thread_free not mucking with the
3011 	 * t_next and t_prev links of the thread.
3012 	 */
3013 
3014 	if ((t = curthread) != NULL) {
3015 
3016 		tlist = NULL;
3017 		mutex_enter(&pidlock);
3018 		do {
3019 			tnext = t->t_next;
3020 			if (t->t_bound_cpu == cp) {
3021 
3022 				/*
3023 				 * We've found a bound thread, carefully unlink
3024 				 * it out of the thread list, and add it to
3025 				 * our "tlist".	 We "know" we don't have to
3026 				 * worry about unlinking curthread (the thread
3027 				 * that is executing this code).
3028 				 */
3029 				t->t_next->t_prev = t->t_prev;
3030 				t->t_prev->t_next = t->t_next;
3031 				t->t_next = tlist;
3032 				tlist = t;
3033 				ASSERT(t->t_cid == syscid);
3034 				/* wake up anyone blocked in thread_join */
3035 				cv_broadcast(&t->t_joincv);
3036 				/*
3037 				 * t_lwp set by interrupt threads and not
3038 				 * cleared.
3039 				 */
3040 				t->t_lwp = NULL;
3041 				/*
3042 				 * Pause and idle threads always have
3043 				 * t_state set to TS_ONPROC.
3044 				 */
3045 				t->t_state = TS_FREE;
3046 				t->t_prev = NULL;	/* Just in case */
3047 			}
3048 
3049 		} while ((t = tnext) != curthread);
3050 
3051 		mutex_exit(&pidlock);
3052 
3053 		mutex_sync();
3054 		for (t = tlist; t != NULL; t = tnext) {
3055 			tnext = t->t_next;
3056 			thread_free(t);
3057 		}
3058 	}
3059 }
3060 
3061 /*
3062  * Update the cpu_supp_freqs of this cpu. This information is returned
3063  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
3064  * maintain the kstat data size.
3065  */
3066 void
3067 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
3068 {
3069 	char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
3070 	const char *lfreqs = clkstr;
3071 	boolean_t kstat_exists = B_FALSE;
3072 	kstat_t *ksp;
3073 	size_t len;
3074 
3075 	/*
3076 	 * A NULL pointer means we only support one speed.
3077 	 */
3078 	if (freqs == NULL)
3079 		(void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
3080 		    cp->cpu_curr_clock);
3081 	else
3082 		lfreqs = freqs;
3083 
3084 	/*
3085 	 * Make sure the frequency doesn't change while a snapshot is
3086 	 * going on. Of course, we only need to worry about this if
3087 	 * the kstat exists.
3088 	 */
3089 	if ((ksp = cp->cpu_info_kstat) != NULL) {
3090 		mutex_enter(ksp->ks_lock);
3091 		kstat_exists = B_TRUE;
3092 	}
3093 
3094 	/*
3095 	 * Free any previously allocated string and if the kstat
3096 	 * already exists, then update its data size.
3097 	 */
3098 	if (cp->cpu_supp_freqs != NULL) {
3099 		len = strlen(cp->cpu_supp_freqs) + 1;
3100 		kmem_free(cp->cpu_supp_freqs, len);
3101 		if (kstat_exists)
3102 			ksp->ks_data_size -= len;
3103 	}
3104 
3105 	/*
3106 	 * Allocate the new string and set the pointer.
3107 	 */
3108 	len = strlen(lfreqs) + 1;
3109 	cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
3110 	(void) strcpy(cp->cpu_supp_freqs, lfreqs);
3111 
3112 	/*
3113 	 * If the kstat already exists then update the data size and
3114 	 * free the lock.
3115 	 */
3116 	if (kstat_exists) {
3117 		ksp->ks_data_size += len;
3118 		mutex_exit(ksp->ks_lock);
3119 	}
3120 }
3121 
3122 /*
3123  * Indicate the current CPU's clock freqency (in Hz).
3124  * The calling context must be such that CPU references are safe.
3125  */
3126 void
3127 cpu_set_curr_clock(uint64_t new_clk)
3128 {
3129 	uint64_t old_clk;
3130 
3131 	old_clk = CPU->cpu_curr_clock;
3132 	CPU->cpu_curr_clock = new_clk;
3133 
3134 	/*
3135 	 * The cpu-change-speed DTrace probe exports the frequency in Hz
3136 	 */
3137 	DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3138 	    uint64_t, old_clk, uint64_t, new_clk);
3139 }
3140 
3141 /*
3142  * processor_info(2) and p_online(2) status support functions
3143  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3144  *   for use in communicating processor state information to userland.  Kernel
3145  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3146  *   modifying cpu_flags should record the state change via a call to the
3147  *   cpu_set_state().
3148  */
3149 
3150 /*
3151  * Update the pi_state of this CPU.  This function provides the CPU status for
3152  * the information returned by processor_info(2).
3153  */
3154 void
3155 cpu_set_state(cpu_t *cpu)
3156 {
3157 	ASSERT(MUTEX_HELD(&cpu_lock));
3158 	cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3159 	cpu->cpu_state_begin = gethrestime_sec();
3160 	pool_cpu_mod = gethrtime();
3161 }
3162 
3163 /*
3164  * Return offline/online/other status for the indicated CPU.  Use only for
3165  * communication with user applications; cpu_flags provides the in-kernel
3166  * interface.
3167  */
3168 int
3169 cpu_get_state(cpu_t *cpu)
3170 {
3171 	ASSERT(MUTEX_HELD(&cpu_lock));
3172 	if (cpu->cpu_flags & CPU_POWEROFF)
3173 		return (P_POWEROFF);
3174 	else if (cpu->cpu_flags & CPU_FAULTED)
3175 		return (P_FAULTED);
3176 	else if (cpu->cpu_flags & CPU_SPARE)
3177 		return (P_SPARE);
3178 	else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3179 		return (P_OFFLINE);
3180 	else if (cpu->cpu_flags & CPU_ENABLE)
3181 		return (P_ONLINE);
3182 	else
3183 		return (P_NOINTR);
3184 }
3185 
3186 /*
3187  * Return processor_info(2) state as a string.
3188  */
3189 const char *
3190 cpu_get_state_str(cpu_t *cpu)
3191 {
3192 	const char *string;
3193 
3194 	switch (cpu_get_state(cpu)) {
3195 	case P_ONLINE:
3196 		string = PS_ONLINE;
3197 		break;
3198 	case P_POWEROFF:
3199 		string = PS_POWEROFF;
3200 		break;
3201 	case P_NOINTR:
3202 		string = PS_NOINTR;
3203 		break;
3204 	case P_SPARE:
3205 		string = PS_SPARE;
3206 		break;
3207 	case P_FAULTED:
3208 		string = PS_FAULTED;
3209 		break;
3210 	case P_OFFLINE:
3211 		string = PS_OFFLINE;
3212 		break;
3213 	default:
3214 		string = "unknown";
3215 		break;
3216 	}
3217 	return (string);
3218 }
3219 
3220 /*
3221  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3222  * kstats, respectively.  This is done when a CPU is initialized or placed
3223  * online via p_online(2).
3224  */
3225 static void
3226 cpu_stats_kstat_create(cpu_t *cp)
3227 {
3228 	int	instance = cp->cpu_id;
3229 	char	*module = "cpu";
3230 	char	*class = "misc";
3231 	kstat_t	*ksp;
3232 	zoneid_t zoneid;
3233 
3234 	ASSERT(MUTEX_HELD(&cpu_lock));
3235 
3236 	if (pool_pset_enabled())
3237 		zoneid = GLOBAL_ZONEID;
3238 	else
3239 		zoneid = ALL_ZONES;
3240 	/*
3241 	 * Create named kstats
3242 	 */
3243 #define	CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3244 	ksp = kstat_create_zone(module, instance, (name), class,         \
3245 	    KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3246 	    zoneid);                                                     \
3247 	if (ksp != NULL) {                                               \
3248 		ksp->ks_private = cp;                                    \
3249 		ksp->ks_update = (update_func);                          \
3250 		kstat_install(ksp);                                      \
3251 	} else                                                           \
3252 		cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3253 		    module, instance, (name));
3254 
3255 	CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3256 	    cpu_sys_stats_ks_update);
3257 	CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3258 	    cpu_vm_stats_ks_update);
3259 
3260 	/*
3261 	 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3262 	 */
3263 	ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3264 	    "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3265 	if (ksp != NULL) {
3266 		ksp->ks_update = cpu_stat_ks_update;
3267 		ksp->ks_private = cp;
3268 		kstat_install(ksp);
3269 	}
3270 }
3271 
3272 static void
3273 cpu_stats_kstat_destroy(cpu_t *cp)
3274 {
3275 	char ks_name[KSTAT_STRLEN];
3276 
3277 	(void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3278 	kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3279 
3280 	kstat_delete_byname("cpu", cp->cpu_id, "sys");
3281 	kstat_delete_byname("cpu", cp->cpu_id, "vm");
3282 }
3283 
3284 static int
3285 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3286 {
3287 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3288 	struct cpu_sys_stats_ks_data *csskd;
3289 	cpu_sys_stats_t *css;
3290 	hrtime_t msnsecs[NCMSTATES];
3291 	int	i;
3292 
3293 	if (rw == KSTAT_WRITE)
3294 		return (EACCES);
3295 
3296 	csskd = ksp->ks_data;
3297 	css = &cp->cpu_stats.sys;
3298 
3299 	/*
3300 	 * Read CPU mstate, but compare with the last values we
3301 	 * received to make sure that the returned kstats never
3302 	 * decrease.
3303 	 */
3304 
3305 	get_cpu_mstate(cp, msnsecs);
3306 	if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3307 		msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3308 	if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3309 		msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3310 	if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3311 		msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3312 
3313 	bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3314 	    sizeof (cpu_sys_stats_ks_data_template));
3315 
3316 	csskd->cpu_ticks_wait.value.ui64 = 0;
3317 	csskd->wait_ticks_io.value.ui64 = 0;
3318 
3319 	csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3320 	csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3321 	csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3322 	csskd->cpu_ticks_idle.value.ui64 =
3323 	    NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3324 	csskd->cpu_ticks_user.value.ui64 =
3325 	    NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3326 	csskd->cpu_ticks_kernel.value.ui64 =
3327 	    NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3328 	csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3329 	csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3330 	csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3331 	csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3332 	csskd->bread.value.ui64 = css->bread;
3333 	csskd->bwrite.value.ui64 = css->bwrite;
3334 	csskd->lread.value.ui64 = css->lread;
3335 	csskd->lwrite.value.ui64 = css->lwrite;
3336 	csskd->phread.value.ui64 = css->phread;
3337 	csskd->phwrite.value.ui64 = css->phwrite;
3338 	csskd->pswitch.value.ui64 = css->pswitch;
3339 	csskd->trap.value.ui64 = css->trap;
3340 	csskd->intr.value.ui64 = 0;
3341 	for (i = 0; i < PIL_MAX; i++)
3342 		csskd->intr.value.ui64 += css->intr[i];
3343 	csskd->syscall.value.ui64 = css->syscall;
3344 	csskd->sysread.value.ui64 = css->sysread;
3345 	csskd->syswrite.value.ui64 = css->syswrite;
3346 	csskd->sysfork.value.ui64 = css->sysfork;
3347 	csskd->sysvfork.value.ui64 = css->sysvfork;
3348 	csskd->sysexec.value.ui64 = css->sysexec;
3349 	csskd->readch.value.ui64 = css->readch;
3350 	csskd->writech.value.ui64 = css->writech;
3351 	csskd->rcvint.value.ui64 = css->rcvint;
3352 	csskd->xmtint.value.ui64 = css->xmtint;
3353 	csskd->mdmint.value.ui64 = css->mdmint;
3354 	csskd->rawch.value.ui64 = css->rawch;
3355 	csskd->canch.value.ui64 = css->canch;
3356 	csskd->outch.value.ui64 = css->outch;
3357 	csskd->msg.value.ui64 = css->msg;
3358 	csskd->sema.value.ui64 = css->sema;
3359 	csskd->namei.value.ui64 = css->namei;
3360 	csskd->ufsiget.value.ui64 = css->ufsiget;
3361 	csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3362 	csskd->ufsipage.value.ui64 = css->ufsipage;
3363 	csskd->ufsinopage.value.ui64 = css->ufsinopage;
3364 	csskd->procovf.value.ui64 = css->procovf;
3365 	csskd->intrthread.value.ui64 = 0;
3366 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3367 		csskd->intrthread.value.ui64 += css->intr[i];
3368 	csskd->intrblk.value.ui64 = css->intrblk;
3369 	csskd->intrunpin.value.ui64 = css->intrunpin;
3370 	csskd->idlethread.value.ui64 = css->idlethread;
3371 	csskd->inv_swtch.value.ui64 = css->inv_swtch;
3372 	csskd->nthreads.value.ui64 = css->nthreads;
3373 	csskd->cpumigrate.value.ui64 = css->cpumigrate;
3374 	csskd->xcalls.value.ui64 = css->xcalls;
3375 	csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3376 	csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3377 	csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3378 	csskd->modload.value.ui64 = css->modload;
3379 	csskd->modunload.value.ui64 = css->modunload;
3380 	csskd->bawrite.value.ui64 = css->bawrite;
3381 	csskd->iowait.value.ui64 = css->iowait;
3382 
3383 	return (0);
3384 }
3385 
3386 static int
3387 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3388 {
3389 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3390 	struct cpu_vm_stats_ks_data *cvskd;
3391 	cpu_vm_stats_t *cvs;
3392 
3393 	if (rw == KSTAT_WRITE)
3394 		return (EACCES);
3395 
3396 	cvs = &cp->cpu_stats.vm;
3397 	cvskd = ksp->ks_data;
3398 
3399 	bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3400 	    sizeof (cpu_vm_stats_ks_data_template));
3401 	cvskd->pgrec.value.ui64 = cvs->pgrec;
3402 	cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3403 	cvskd->pgin.value.ui64 = cvs->pgin;
3404 	cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3405 	cvskd->pgout.value.ui64 = cvs->pgout;
3406 	cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3407 	cvskd->swapin.value.ui64 = cvs->swapin;
3408 	cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3409 	cvskd->swapout.value.ui64 = cvs->swapout;
3410 	cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3411 	cvskd->zfod.value.ui64 = cvs->zfod;
3412 	cvskd->dfree.value.ui64 = cvs->dfree;
3413 	cvskd->scan.value.ui64 = cvs->scan;
3414 	cvskd->rev.value.ui64 = cvs->rev;
3415 	cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3416 	cvskd->as_fault.value.ui64 = cvs->as_fault;
3417 	cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3418 	cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3419 	cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3420 	cvskd->softlock.value.ui64 = cvs->softlock;
3421 	cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3422 	cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3423 	cvskd->execpgin.value.ui64 = cvs->execpgin;
3424 	cvskd->execpgout.value.ui64 = cvs->execpgout;
3425 	cvskd->execfree.value.ui64 = cvs->execfree;
3426 	cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3427 	cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3428 	cvskd->anonfree.value.ui64 = cvs->anonfree;
3429 	cvskd->fspgin.value.ui64 = cvs->fspgin;
3430 	cvskd->fspgout.value.ui64 = cvs->fspgout;
3431 	cvskd->fsfree.value.ui64 = cvs->fsfree;
3432 
3433 	return (0);
3434 }
3435 
3436 static int
3437 cpu_stat_ks_update(kstat_t *ksp, int rw)
3438 {
3439 	cpu_stat_t *cso;
3440 	cpu_t *cp;
3441 	int i;
3442 	hrtime_t msnsecs[NCMSTATES];
3443 
3444 	cso = (cpu_stat_t *)ksp->ks_data;
3445 	cp = (cpu_t *)ksp->ks_private;
3446 
3447 	if (rw == KSTAT_WRITE)
3448 		return (EACCES);
3449 
3450 	/*
3451 	 * Read CPU mstate, but compare with the last values we
3452 	 * received to make sure that the returned kstats never
3453 	 * decrease.
3454 	 */
3455 
3456 	get_cpu_mstate(cp, msnsecs);
3457 	msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3458 	msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3459 	msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3460 	if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3461 		cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3462 	if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3463 		cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3464 	if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3465 		cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3466 	cso->cpu_sysinfo.cpu[CPU_WAIT]	= 0;
3467 	cso->cpu_sysinfo.wait[W_IO]	= 0;
3468 	cso->cpu_sysinfo.wait[W_SWAP]	= 0;
3469 	cso->cpu_sysinfo.wait[W_PIO]	= 0;
3470 	cso->cpu_sysinfo.bread		= CPU_STATS(cp, sys.bread);
3471 	cso->cpu_sysinfo.bwrite		= CPU_STATS(cp, sys.bwrite);
3472 	cso->cpu_sysinfo.lread		= CPU_STATS(cp, sys.lread);
3473 	cso->cpu_sysinfo.lwrite		= CPU_STATS(cp, sys.lwrite);
3474 	cso->cpu_sysinfo.phread		= CPU_STATS(cp, sys.phread);
3475 	cso->cpu_sysinfo.phwrite	= CPU_STATS(cp, sys.phwrite);
3476 	cso->cpu_sysinfo.pswitch	= CPU_STATS(cp, sys.pswitch);
3477 	cso->cpu_sysinfo.trap		= CPU_STATS(cp, sys.trap);
3478 	cso->cpu_sysinfo.intr		= 0;
3479 	for (i = 0; i < PIL_MAX; i++)
3480 		cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3481 	cso->cpu_sysinfo.syscall	= CPU_STATS(cp, sys.syscall);
3482 	cso->cpu_sysinfo.sysread	= CPU_STATS(cp, sys.sysread);
3483 	cso->cpu_sysinfo.syswrite	= CPU_STATS(cp, sys.syswrite);
3484 	cso->cpu_sysinfo.sysfork	= CPU_STATS(cp, sys.sysfork);
3485 	cso->cpu_sysinfo.sysvfork	= CPU_STATS(cp, sys.sysvfork);
3486 	cso->cpu_sysinfo.sysexec	= CPU_STATS(cp, sys.sysexec);
3487 	cso->cpu_sysinfo.readch		= CPU_STATS(cp, sys.readch);
3488 	cso->cpu_sysinfo.writech	= CPU_STATS(cp, sys.writech);
3489 	cso->cpu_sysinfo.rcvint		= CPU_STATS(cp, sys.rcvint);
3490 	cso->cpu_sysinfo.xmtint		= CPU_STATS(cp, sys.xmtint);
3491 	cso->cpu_sysinfo.mdmint		= CPU_STATS(cp, sys.mdmint);
3492 	cso->cpu_sysinfo.rawch		= CPU_STATS(cp, sys.rawch);
3493 	cso->cpu_sysinfo.canch		= CPU_STATS(cp, sys.canch);
3494 	cso->cpu_sysinfo.outch		= CPU_STATS(cp, sys.outch);
3495 	cso->cpu_sysinfo.msg		= CPU_STATS(cp, sys.msg);
3496 	cso->cpu_sysinfo.sema		= CPU_STATS(cp, sys.sema);
3497 	cso->cpu_sysinfo.namei		= CPU_STATS(cp, sys.namei);
3498 	cso->cpu_sysinfo.ufsiget	= CPU_STATS(cp, sys.ufsiget);
3499 	cso->cpu_sysinfo.ufsdirblk	= CPU_STATS(cp, sys.ufsdirblk);
3500 	cso->cpu_sysinfo.ufsipage	= CPU_STATS(cp, sys.ufsipage);
3501 	cso->cpu_sysinfo.ufsinopage	= CPU_STATS(cp, sys.ufsinopage);
3502 	cso->cpu_sysinfo.inodeovf	= 0;
3503 	cso->cpu_sysinfo.fileovf	= 0;
3504 	cso->cpu_sysinfo.procovf	= CPU_STATS(cp, sys.procovf);
3505 	cso->cpu_sysinfo.intrthread	= 0;
3506 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3507 		cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3508 	cso->cpu_sysinfo.intrblk	= CPU_STATS(cp, sys.intrblk);
3509 	cso->cpu_sysinfo.idlethread	= CPU_STATS(cp, sys.idlethread);
3510 	cso->cpu_sysinfo.inv_swtch	= CPU_STATS(cp, sys.inv_swtch);
3511 	cso->cpu_sysinfo.nthreads	= CPU_STATS(cp, sys.nthreads);
3512 	cso->cpu_sysinfo.cpumigrate	= CPU_STATS(cp, sys.cpumigrate);
3513 	cso->cpu_sysinfo.xcalls		= CPU_STATS(cp, sys.xcalls);
3514 	cso->cpu_sysinfo.mutex_adenters	= CPU_STATS(cp, sys.mutex_adenters);
3515 	cso->cpu_sysinfo.rw_rdfails	= CPU_STATS(cp, sys.rw_rdfails);
3516 	cso->cpu_sysinfo.rw_wrfails	= CPU_STATS(cp, sys.rw_wrfails);
3517 	cso->cpu_sysinfo.modload	= CPU_STATS(cp, sys.modload);
3518 	cso->cpu_sysinfo.modunload	= CPU_STATS(cp, sys.modunload);
3519 	cso->cpu_sysinfo.bawrite	= CPU_STATS(cp, sys.bawrite);
3520 	cso->cpu_sysinfo.rw_enters	= 0;
3521 	cso->cpu_sysinfo.win_uo_cnt	= 0;
3522 	cso->cpu_sysinfo.win_uu_cnt	= 0;
3523 	cso->cpu_sysinfo.win_so_cnt	= 0;
3524 	cso->cpu_sysinfo.win_su_cnt	= 0;
3525 	cso->cpu_sysinfo.win_suo_cnt	= 0;
3526 
3527 	cso->cpu_syswait.iowait		= CPU_STATS(cp, sys.iowait);
3528 	cso->cpu_syswait.swap		= 0;
3529 	cso->cpu_syswait.physio		= 0;
3530 
3531 	cso->cpu_vminfo.pgrec		= CPU_STATS(cp, vm.pgrec);
3532 	cso->cpu_vminfo.pgfrec		= CPU_STATS(cp, vm.pgfrec);
3533 	cso->cpu_vminfo.pgin		= CPU_STATS(cp, vm.pgin);
3534 	cso->cpu_vminfo.pgpgin		= CPU_STATS(cp, vm.pgpgin);
3535 	cso->cpu_vminfo.pgout		= CPU_STATS(cp, vm.pgout);
3536 	cso->cpu_vminfo.pgpgout		= CPU_STATS(cp, vm.pgpgout);
3537 	cso->cpu_vminfo.swapin		= CPU_STATS(cp, vm.swapin);
3538 	cso->cpu_vminfo.pgswapin	= CPU_STATS(cp, vm.pgswapin);
3539 	cso->cpu_vminfo.swapout		= CPU_STATS(cp, vm.swapout);
3540 	cso->cpu_vminfo.pgswapout	= CPU_STATS(cp, vm.pgswapout);
3541 	cso->cpu_vminfo.zfod		= CPU_STATS(cp, vm.zfod);
3542 	cso->cpu_vminfo.dfree		= CPU_STATS(cp, vm.dfree);
3543 	cso->cpu_vminfo.scan		= CPU_STATS(cp, vm.scan);
3544 	cso->cpu_vminfo.rev		= CPU_STATS(cp, vm.rev);
3545 	cso->cpu_vminfo.hat_fault	= CPU_STATS(cp, vm.hat_fault);
3546 	cso->cpu_vminfo.as_fault	= CPU_STATS(cp, vm.as_fault);
3547 	cso->cpu_vminfo.maj_fault	= CPU_STATS(cp, vm.maj_fault);
3548 	cso->cpu_vminfo.cow_fault	= CPU_STATS(cp, vm.cow_fault);
3549 	cso->cpu_vminfo.prot_fault	= CPU_STATS(cp, vm.prot_fault);
3550 	cso->cpu_vminfo.softlock	= CPU_STATS(cp, vm.softlock);
3551 	cso->cpu_vminfo.kernel_asflt	= CPU_STATS(cp, vm.kernel_asflt);
3552 	cso->cpu_vminfo.pgrrun		= CPU_STATS(cp, vm.pgrrun);
3553 	cso->cpu_vminfo.execpgin	= CPU_STATS(cp, vm.execpgin);
3554 	cso->cpu_vminfo.execpgout	= CPU_STATS(cp, vm.execpgout);
3555 	cso->cpu_vminfo.execfree	= CPU_STATS(cp, vm.execfree);
3556 	cso->cpu_vminfo.anonpgin	= CPU_STATS(cp, vm.anonpgin);
3557 	cso->cpu_vminfo.anonpgout	= CPU_STATS(cp, vm.anonpgout);
3558 	cso->cpu_vminfo.anonfree	= CPU_STATS(cp, vm.anonfree);
3559 	cso->cpu_vminfo.fspgin		= CPU_STATS(cp, vm.fspgin);
3560 	cso->cpu_vminfo.fspgout		= CPU_STATS(cp, vm.fspgout);
3561 	cso->cpu_vminfo.fsfree		= CPU_STATS(cp, vm.fsfree);
3562 
3563 	return (0);
3564 }
3565