xref: /illumos-gate/usr/src/uts/common/os/condvar.c (revision f635d46a9872dc5a02bbbd736f2bf18685c2c221)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/thread.h>
30 #include <sys/proc.h>
31 #include <sys/debug.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/sobject.h>
35 #include <sys/sleepq.h>
36 #include <sys/cpuvar.h>
37 #include <sys/condvar.h>
38 #include <sys/condvar_impl.h>
39 #include <sys/schedctl.h>
40 #include <sys/procfs.h>
41 #include <sys/sdt.h>
42 
43 /*
44  * CV_MAX_WAITERS is the maximum number of waiters we track; once
45  * the number becomes higher than that, we look at the sleepq to
46  * see whether there are *really* any waiters.
47  */
48 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
49 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
50 
51 /*
52  * Threads don't "own" condition variables.
53  */
54 /* ARGSUSED */
55 static kthread_t *
56 cv_owner(void *cvp)
57 {
58 	return (NULL);
59 }
60 
61 /*
62  * Unsleep a thread that's blocked on a condition variable.
63  */
64 static void
65 cv_unsleep(kthread_t *t)
66 {
67 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
68 	sleepq_head_t *sqh = SQHASH(cvp);
69 
70 	ASSERT(THREAD_LOCK_HELD(t));
71 
72 	if (cvp == NULL)
73 		panic("cv_unsleep: thread %p not on sleepq %p", t, sqh);
74 	DTRACE_SCHED1(wakeup, kthread_t *, t);
75 	sleepq_unsleep(t);
76 	if (cvp->cv_waiters != CV_MAX_WAITERS)
77 		cvp->cv_waiters--;
78 	disp_lock_exit_high(&sqh->sq_lock);
79 	CL_SETRUN(t);
80 }
81 
82 /*
83  * Change the priority of a thread that's blocked on a condition variable.
84  */
85 static void
86 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
87 {
88 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
89 	sleepq_t *sqp = t->t_sleepq;
90 
91 	ASSERT(THREAD_LOCK_HELD(t));
92 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
93 
94 	if (cvp == NULL)
95 		panic("cv_change_pri: %p not on sleep queue", t);
96 	sleepq_dequeue(t);
97 	*t_prip = pri;
98 	sleepq_insert(sqp, t);
99 }
100 
101 /*
102  * The sobj_ops vector exports a set of functions needed when a thread
103  * is asleep on a synchronization object of this type.
104  */
105 static sobj_ops_t cv_sobj_ops = {
106 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
107 };
108 
109 /* ARGSUSED */
110 void
111 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
112 {
113 	((condvar_impl_t *)cvp)->cv_waiters = 0;
114 }
115 
116 /*
117  * cv_destroy is not currently needed, but is part of the DDI.
118  * This is in case cv_init ever needs to allocate something for a cv.
119  */
120 /* ARGSUSED */
121 void
122 cv_destroy(kcondvar_t *cvp)
123 {
124 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
125 }
126 
127 /*
128  * The cv_block() function blocks a thread on a condition variable
129  * by putting it in a hashed sleep queue associated with the
130  * synchronization object.
131  *
132  * Threads are taken off the hashed sleep queues via calls to
133  * cv_signal(), cv_broadcast(), or cv_unsleep().
134  */
135 static void
136 cv_block(condvar_impl_t *cvp)
137 {
138 	kthread_t *t = curthread;
139 	klwp_t *lwp = ttolwp(t);
140 	sleepq_head_t *sqh;
141 
142 	ASSERT(THREAD_LOCK_HELD(t));
143 	ASSERT(t != CPU->cpu_idle_thread);
144 	ASSERT(CPU_ON_INTR(CPU) == 0);
145 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
146 	ASSERT(t->t_state == TS_ONPROC);
147 
148 	t->t_schedflag &= ~TS_SIGNALLED;
149 	CL_SLEEP(t);			/* assign kernel priority */
150 	t->t_wchan = (caddr_t)cvp;
151 	t->t_sobj_ops = &cv_sobj_ops;
152 	DTRACE_SCHED(sleep);
153 
154 	/*
155 	 * The check for t_intr is to avoid doing the
156 	 * account for an interrupt thread on the still-pinned
157 	 * lwp's statistics.
158 	 */
159 	if (lwp != NULL && t->t_intr == NULL) {
160 		lwp->lwp_ru.nvcsw++;
161 		(void) new_mstate(t, LMS_SLEEP);
162 	}
163 
164 	sqh = SQHASH(cvp);
165 	disp_lock_enter_high(&sqh->sq_lock);
166 	if (cvp->cv_waiters < CV_MAX_WAITERS)
167 		cvp->cv_waiters++;
168 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
169 	THREAD_SLEEP(t, &sqh->sq_lock);
170 	sleepq_insert(&sqh->sq_queue, t);
171 	/*
172 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
173 	 * lock sqh->sq_lock. This lock is later released by the caller
174 	 * when it calls thread_unlock() on curthread.
175 	 */
176 }
177 
178 #define	cv_block_sig(t, cvp)	\
179 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
180 
181 /*
182  * Block on the indicated condition variable and release the
183  * associated kmutex while blocked.
184  */
185 void
186 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
187 {
188 	if (panicstr)
189 		return;
190 
191 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
192 	thread_lock(curthread);			/* lock the thread */
193 	cv_block((condvar_impl_t *)cvp);
194 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
195 	mutex_exit(mp);
196 	swtch();
197 	mutex_enter(mp);
198 }
199 
200 /*
201  * Same as cv_wait except the thread will unblock at 'tim'
202  * (an absolute time) if it hasn't already unblocked.
203  *
204  * Returns the amount of time left from the original 'tim' value
205  * when it was unblocked.
206  */
207 clock_t
208 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
209 {
210 	kthread_t *t = curthread;
211 	timeout_id_t id;
212 	clock_t timeleft;
213 	int signalled;
214 
215 	if (panicstr)
216 		return (-1);
217 
218 	timeleft = tim - lbolt;
219 	if (timeleft <= 0)
220 		return (-1);
221 	id = realtime_timeout((void (*)(void *))setrun, t, timeleft);
222 	thread_lock(t);		/* lock the thread */
223 	cv_block((condvar_impl_t *)cvp);
224 	thread_unlock_nopreempt(t);
225 	mutex_exit(mp);
226 	if ((tim - lbolt) <= 0)		/* allow for wrap */
227 		setrun(t);
228 	swtch();
229 	signalled = (t->t_schedflag & TS_SIGNALLED);
230 	/*
231 	 * Get the time left. untimeout() returns -1 if the timeout has
232 	 * occured or the time remaining.  If the time remaining is zero,
233 	 * the timeout has occured between when we were awoken and
234 	 * we called untimeout.  We will treat this as if the timeout
235 	 * has occured and set timeleft to -1.
236 	 */
237 	timeleft = untimeout(id);
238 	mutex_enter(mp);
239 	if (timeleft <= 0) {
240 		timeleft = -1;
241 		if (signalled)	/* avoid consuming the cv_signal() */
242 			cv_signal(cvp);
243 	}
244 	return (timeleft);
245 }
246 
247 int
248 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
249 {
250 	kthread_t *t = curthread;
251 	proc_t *p = ttoproc(t);
252 	klwp_t *lwp = ttolwp(t);
253 	int cancel_pending;
254 	int rval = 1;
255 	int signalled = 0;
256 
257 	if (panicstr)
258 		return (rval);
259 
260 	/*
261 	 * The check for t_intr is to catch an interrupt thread
262 	 * that has not yet unpinned the thread underneath.
263 	 */
264 	if (lwp == NULL || t->t_intr) {
265 		cv_wait(cvp, mp);
266 		return (rval);
267 	}
268 
269 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
270 	cancel_pending = schedctl_cancel_pending();
271 	lwp->lwp_asleep = 1;
272 	lwp->lwp_sysabort = 0;
273 	thread_lock(t);
274 	cv_block_sig(t, (condvar_impl_t *)cvp);
275 	thread_unlock_nopreempt(t);
276 	mutex_exit(mp);
277 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
278 		setrun(t);
279 	/* ASSERT(no locks are held) */
280 	swtch();
281 	signalled = (t->t_schedflag & TS_SIGNALLED);
282 	t->t_flag &= ~T_WAKEABLE;
283 	mutex_enter(mp);
284 	if (ISSIG_PENDING(t, lwp, p)) {
285 		mutex_exit(mp);
286 		if (issig(FORREAL))
287 			rval = 0;
288 		mutex_enter(mp);
289 	}
290 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
291 		rval = 0;
292 	if (rval != 0 && cancel_pending) {
293 		schedctl_cancel_eintr();
294 		rval = 0;
295 	}
296 	lwp->lwp_asleep = 0;
297 	lwp->lwp_sysabort = 0;
298 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
299 		cv_signal(cvp);
300 	return (rval);
301 }
302 
303 /*
304  * Returns:
305  * 	Function result in order of presidence:
306  *		 0 if a signal was received
307  *		-1 if timeout occured
308  *		>0 if awakened via cv_signal() or cv_broadcast().
309  *		   (returns time remaining)
310  *
311  * cv_timedwait_sig() is now part of the DDI.
312  */
313 clock_t
314 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
315 {
316 	kthread_t *t = curthread;
317 	proc_t *p = ttoproc(t);
318 	klwp_t *lwp = ttolwp(t);
319 	int cancel_pending = 0;
320 	timeout_id_t id;
321 	clock_t rval = 1;
322 	clock_t timeleft;
323 	int signalled = 0;
324 
325 	if (panicstr)
326 		return (rval);
327 
328 	/*
329 	 * If there is no lwp, then we don't need to wait for a signal.
330 	 * The check for t_intr is to catch an interrupt thread
331 	 * that has not yet unpinned the thread underneath.
332 	 */
333 	if (lwp == NULL || t->t_intr)
334 		return (cv_timedwait(cvp, mp, tim));
335 
336 	/*
337 	 * If tim is less than or equal to lbolt, then the timeout
338 	 * has already occured.  So just check to see if there is a signal
339 	 * pending.  If so return 0 indicating that there is a signal pending.
340 	 * Else return -1 indicating that the timeout occured. No need to
341 	 * wait on anything.
342 	 */
343 	timeleft = tim - lbolt;
344 	if (timeleft <= 0) {
345 		lwp->lwp_asleep = 1;
346 		lwp->lwp_sysabort = 0;
347 		rval = -1;
348 		goto out;
349 	}
350 
351 	/*
352 	 * Set the timeout and wait.
353 	 */
354 	cancel_pending = schedctl_cancel_pending();
355 	id = realtime_timeout((void (*)(void *))setrun, t, timeleft);
356 	lwp->lwp_asleep = 1;
357 	lwp->lwp_sysabort = 0;
358 	thread_lock(t);
359 	cv_block_sig(t, (condvar_impl_t *)cvp);
360 	thread_unlock_nopreempt(t);
361 	mutex_exit(mp);
362 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending ||
363 	    (tim - lbolt <= 0))
364 		setrun(t);
365 	/* ASSERT(no locks are held) */
366 	swtch();
367 	signalled = (t->t_schedflag & TS_SIGNALLED);
368 	t->t_flag &= ~T_WAKEABLE;
369 	mutex_enter(mp);
370 
371 	/*
372 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
373 	 * occured or the time remaining.  If the time remaining is zero,
374 	 * the timeout has occured between when we were awoken and
375 	 * we called untimeout.  We will treat this as if the timeout
376 	 * has occured and set rval to -1.
377 	 */
378 	rval = untimeout(id);
379 	if (rval <= 0)
380 		rval = -1;
381 
382 	/*
383 	 * Check to see if a signal is pending.  If so, regardless of whether
384 	 * or not we were awoken due to the signal, the signal is now pending
385 	 * and a return of 0 has the highest priority.
386 	 */
387 out:
388 	if (ISSIG_PENDING(t, lwp, p)) {
389 		mutex_exit(mp);
390 		if (issig(FORREAL))
391 			rval = 0;
392 		mutex_enter(mp);
393 	}
394 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
395 		rval = 0;
396 	if (rval != 0 && cancel_pending) {
397 		schedctl_cancel_eintr();
398 		rval = 0;
399 	}
400 	lwp->lwp_asleep = 0;
401 	lwp->lwp_sysabort = 0;
402 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
403 		cv_signal(cvp);
404 	return (rval);
405 }
406 
407 /*
408  * Like cv_wait_sig_swap but allows the caller to indicate (with a
409  * non-NULL sigret) that they will take care of signalling the cv
410  * after wakeup, if necessary.  This is a vile hack that should only
411  * be used when no other option is available; almost all callers
412  * should just use cv_wait_sig_swap (which takes care of the cv_signal
413  * stuff automatically) instead.
414  */
415 int
416 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
417 {
418 	kthread_t *t = curthread;
419 	proc_t *p = ttoproc(t);
420 	klwp_t *lwp = ttolwp(t);
421 	int cancel_pending;
422 	int rval = 1;
423 	int signalled = 0;
424 
425 	if (panicstr)
426 		return (rval);
427 
428 	/*
429 	 * The check for t_intr is to catch an interrupt thread
430 	 * that has not yet unpinned the thread underneath.
431 	 */
432 	if (lwp == NULL || t->t_intr) {
433 		cv_wait(cvp, mp);
434 		return (rval);
435 	}
436 
437 	cancel_pending = schedctl_cancel_pending();
438 	lwp->lwp_asleep = 1;
439 	lwp->lwp_sysabort = 0;
440 	thread_lock(t);
441 	t->t_kpri_req = 0;	/* don't need kernel priority */
442 	cv_block_sig(t, (condvar_impl_t *)cvp);
443 	/* I can be swapped now */
444 	curthread->t_schedflag &= ~TS_DONT_SWAP;
445 	thread_unlock_nopreempt(t);
446 	mutex_exit(mp);
447 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
448 		setrun(t);
449 	/* ASSERT(no locks are held) */
450 	swtch();
451 	signalled = (t->t_schedflag & TS_SIGNALLED);
452 	t->t_flag &= ~T_WAKEABLE;
453 	/* TS_DONT_SWAP set by disp() */
454 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
455 	mutex_enter(mp);
456 	if (ISSIG_PENDING(t, lwp, p)) {
457 		mutex_exit(mp);
458 		if (issig(FORREAL))
459 			rval = 0;
460 		mutex_enter(mp);
461 	}
462 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
463 		rval = 0;
464 	if (rval != 0 && cancel_pending) {
465 		schedctl_cancel_eintr();
466 		rval = 0;
467 	}
468 	lwp->lwp_asleep = 0;
469 	lwp->lwp_sysabort = 0;
470 	if (rval == 0) {
471 		if (sigret != NULL)
472 			*sigret = signalled;	/* just tell the caller */
473 		else if (signalled)
474 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
475 	}
476 	return (rval);
477 }
478 
479 /*
480  * Same as cv_wait_sig but the thread can be swapped out while waiting.
481  * This should only be used when we know we aren't holding any locks.
482  */
483 int
484 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
485 {
486 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
487 }
488 
489 void
490 cv_signal(kcondvar_t *cvp)
491 {
492 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
493 
494 	/* make sure the cv_waiters field looks sane */
495 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
496 	if (cp->cv_waiters > 0) {
497 		sleepq_head_t *sqh = SQHASH(cp);
498 		disp_lock_enter(&sqh->sq_lock);
499 		ASSERT(CPU_ON_INTR(CPU) == 0);
500 		if (cp->cv_waiters & CV_WAITERS_MASK) {
501 			kthread_t *t;
502 			cp->cv_waiters--;
503 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
504 			/*
505 			 * If cv_waiters is non-zero (and less than
506 			 * CV_MAX_WAITERS) there should be a thread
507 			 * in the queue.
508 			 */
509 			ASSERT(t != NULL);
510 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
511 			cp->cv_waiters = 0;
512 		}
513 		disp_lock_exit(&sqh->sq_lock);
514 	}
515 }
516 
517 void
518 cv_broadcast(kcondvar_t *cvp)
519 {
520 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
521 
522 	/* make sure the cv_waiters field looks sane */
523 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
524 	if (cp->cv_waiters > 0) {
525 		sleepq_head_t *sqh = SQHASH(cp);
526 		disp_lock_enter(&sqh->sq_lock);
527 		ASSERT(CPU_ON_INTR(CPU) == 0);
528 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
529 		cp->cv_waiters = 0;
530 		disp_lock_exit(&sqh->sq_lock);
531 	}
532 }
533 
534 /*
535  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
536  * for requests to stop, like cv_wait_sig() but without dealing with signals.
537  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
538  * If your code has to call this function then your code is the same.
539  */
540 void
541 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
542 {
543 	kthread_t *t = curthread;
544 	klwp_t *lwp = ttolwp(t);
545 	proc_t *p = ttoproc(t);
546 	timeout_id_t id;
547 	clock_t tim;
548 
549 	if (panicstr)
550 		return;
551 
552 	/*
553 	 * If there is no lwp, then we don't need to eventually stop it
554 	 * The check for t_intr is to catch an interrupt thread
555 	 * that has not yet unpinned the thread underneath.
556 	 */
557 	if (lwp == NULL || t->t_intr) {
558 		cv_wait(cvp, mp);
559 		return;
560 	}
561 
562 	/*
563 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
564 	 */
565 	tim = lbolt + MSEC_TO_TICK(wakeup_time);
566 	id = realtime_timeout((void (*)(void *))setrun, t, tim - lbolt);
567 	thread_lock(t);			/* lock the thread */
568 	cv_block((condvar_impl_t *)cvp);
569 	thread_unlock_nopreempt(t);
570 	mutex_exit(mp);
571 	/* ASSERT(no locks are held); */
572 	if ((tim - lbolt) <= 0)		/* allow for wrap */
573 		setrun(t);
574 	swtch();
575 	(void) untimeout(id);
576 
577 	/*
578 	 * Check for reasons to stop, if lwp_nostop is not true.
579 	 * See issig_forreal() for explanations of the various stops.
580 	 */
581 	mutex_enter(&p->p_lock);
582 	while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
583 		/*
584 		 * Hold the lwp here for watchpoint manipulation.
585 		 */
586 		if (t->t_proc_flag & TP_PAUSE) {
587 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
588 			continue;
589 		}
590 		/*
591 		 * System checkpoint.
592 		 */
593 		if (t->t_proc_flag & TP_CHKPT) {
594 			stop(PR_CHECKPOINT, 0);
595 			continue;
596 		}
597 		/*
598 		 * Honor fork1(), watchpoint activity (remapping a page),
599 		 * and lwp_suspend() requests.
600 		 */
601 		if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
602 		    (t->t_proc_flag & TP_HOLDLWP)) {
603 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
604 			continue;
605 		}
606 		/*
607 		 * Honor /proc requested stop.
608 		 */
609 		if (t->t_proc_flag & TP_PRSTOP) {
610 			stop(PR_REQUESTED, 0);
611 		}
612 		/*
613 		 * If some lwp in the process has already stopped
614 		 * showing PR_JOBCONTROL, stop in sympathy with it.
615 		 */
616 		if (p->p_stopsig && t != p->p_agenttp) {
617 			stop(PR_JOBCONTROL, p->p_stopsig);
618 			continue;
619 		}
620 		break;
621 	}
622 	mutex_exit(&p->p_lock);
623 	mutex_enter(mp);
624 }
625 
626 /*
627  * Like cv_timedwait_sig(), but takes an absolute hires future time
628  * rather than a future time in clock ticks.  Will not return showing
629  * that a timeout occurred until the future time is passed.
630  * If 'when' is a NULL pointer, no timeout will occur.
631  * Returns:
632  * 	Function result in order of presidence:
633  *		 0 if a signal was received
634  *		-1 if timeout occured
635  *	        >0 if awakened via cv_signal() or cv_broadcast()
636  *		   or by a spurious wakeup.
637  *		   (might return time remaining)
638  * As a special test, if someone abruptly resets the system time
639  * (but not through adjtime(2); drifting of the clock is allowed and
640  * expected [see timespectohz_adj()]), then we force a return of -1
641  * so the caller can return a premature timeout to the calling process
642  * so it can reevaluate the situation in light of the new system time.
643  * (The system clock has been reset if timecheck != timechanged.)
644  */
645 int
646 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp,
647 	timestruc_t *when, int timecheck)
648 {
649 	timestruc_t now;
650 	timestruc_t delta;
651 	int rval;
652 
653 	if (when == NULL)
654 		return (cv_wait_sig_swap(cvp, mp));
655 
656 	gethrestime_lasttick(&now);
657 	delta = *when;
658 	timespecsub(&delta, &now);
659 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
660 		/*
661 		 * We have already reached the absolute future time.
662 		 * Call cv_timedwait_sig() just to check for signals.
663 		 * We will return immediately with either 0 or -1.
664 		 */
665 		rval = cv_timedwait_sig(cvp, mp, lbolt);
666 	} else {
667 		if (timecheck == timechanged) {
668 			rval = cv_timedwait_sig(cvp, mp,
669 			    lbolt + timespectohz(when, now));
670 
671 		} else {
672 			/*
673 			 * Someone reset the system time;
674 			 * just force an immediate timeout.
675 			 */
676 			rval = -1;
677 		}
678 		if (rval == -1 && timecheck == timechanged) {
679 			/*
680 			 * Even though cv_timedwait_sig() returned showing a
681 			 * timeout, the future time may not have passed yet.
682 			 * If not, change rval to indicate a normal wakeup.
683 			 */
684 			gethrestime(&now);
685 			delta = *when;
686 			timespecsub(&delta, &now);
687 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
688 			    delta.tv_nsec > 0))
689 				rval = 1;
690 		}
691 	}
692 	return (rval);
693 }
694