xref: /illumos-gate/usr/src/uts/common/io/usb/hcd/ehci/ehci_util.c (revision 15c07adc1c7b828006b5e3c4d528b92229d6bd23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2018, Joyent, Inc.
25  */
26 
27 /*
28  * EHCI Host Controller Driver (EHCI)
29  *
30  * The EHCI driver is a software driver which interfaces to the Universal
31  * Serial Bus layer (USBA) and the Host Controller (HC). The interface to
32  * the Host Controller is defined by the EHCI Host Controller Interface.
33  *
34  * This module contains the main EHCI driver code which handles all USB
35  * transfers, bandwidth allocations and other general functionalities.
36  */
37 
38 #include <sys/usb/hcd/ehci/ehcid.h>
39 #include <sys/usb/hcd/ehci/ehci_isoch.h>
40 #include <sys/usb/hcd/ehci/ehci_xfer.h>
41 
42 /*
43  * EHCI MSI tunable:
44  *
45  * By default MSI is enabled on all supported platforms except for the
46  * EHCI controller of ULI1575 South bridge.
47  */
48 boolean_t ehci_enable_msi = B_TRUE;
49 
50 /* Pointer to the state structure */
51 extern void *ehci_statep;
52 
53 extern void ehci_handle_endpoint_reclaimation(ehci_state_t *);
54 
55 extern uint_t ehci_vt62x2_workaround;
56 extern int force_ehci_off;
57 
58 /* Adjustable variables for the size of the pools */
59 int ehci_qh_pool_size = EHCI_QH_POOL_SIZE;
60 int ehci_qtd_pool_size = EHCI_QTD_POOL_SIZE;
61 
62 /*
63  * Initialize the values which the order of 32ms intr qh are executed
64  * by the host controller in the lattice tree.
65  */
66 static uchar_t ehci_index[EHCI_NUM_INTR_QH_LISTS] =
67 	{0x00, 0x10, 0x08, 0x18,
68 	0x04, 0x14, 0x0c, 0x1c,
69 	0x02, 0x12, 0x0a, 0x1a,
70 	0x06, 0x16, 0x0e, 0x1e,
71 	0x01, 0x11, 0x09, 0x19,
72 	0x05, 0x15, 0x0d, 0x1d,
73 	0x03, 0x13, 0x0b, 0x1b,
74 	0x07, 0x17, 0x0f, 0x1f};
75 
76 /*
77  * Initialize the values which are used to calculate start split mask
78  * for the low/full/high speed interrupt and isochronous endpoints.
79  */
80 static uint_t ehci_start_split_mask[15] = {
81 		/*
82 		 * For high/full/low speed usb devices. For high speed
83 		 * device with polling interval greater than or equal
84 		 * to 8us (125us).
85 		 */
86 		0x01,	/* 00000001 */
87 		0x02,	/* 00000010 */
88 		0x04,	/* 00000100 */
89 		0x08,	/* 00001000 */
90 		0x10,	/* 00010000 */
91 		0x20,	/* 00100000 */
92 		0x40,	/* 01000000 */
93 		0x80,	/* 10000000 */
94 
95 		/* Only for high speed devices with polling interval 4us */
96 		0x11,	/* 00010001 */
97 		0x22,	/* 00100010 */
98 		0x44,	/* 01000100 */
99 		0x88,	/* 10001000 */
100 
101 		/* Only for high speed devices with polling interval 2us */
102 		0x55,	/* 01010101 */
103 		0xaa,	/* 10101010 */
104 
105 		/* Only for high speed devices with polling interval 1us */
106 		0xff	/* 11111111 */
107 };
108 
109 /*
110  * Initialize the values which are used to calculate complete split mask
111  * for the low/full speed interrupt and isochronous endpoints.
112  */
113 static uint_t ehci_intr_complete_split_mask[7] = {
114 		/* Only full/low speed devices */
115 		0x1c,	/* 00011100 */
116 		0x38,	/* 00111000 */
117 		0x70,	/* 01110000 */
118 		0xe0,	/* 11100000 */
119 		0x00,	/* Need FSTN feature */
120 		0x00,	/* Need FSTN feature */
121 		0x00	/* Need FSTN feature */
122 };
123 
124 
125 /*
126  * EHCI Internal Function Prototypes
127  */
128 
129 /* Host Controller Driver (HCD) initialization functions */
130 void		ehci_set_dma_attributes(ehci_state_t	*ehcip);
131 int		ehci_allocate_pools(ehci_state_t	*ehcip);
132 void		ehci_decode_ddi_dma_addr_bind_handle_result(
133 				ehci_state_t		*ehcip,
134 				int			result);
135 int		ehci_map_regs(ehci_state_t		*ehcip);
136 int		ehci_register_intrs_and_init_mutex(
137 				ehci_state_t		*ehcip);
138 static int	ehci_add_intrs(ehci_state_t		*ehcip,
139 				int			intr_type);
140 int		ehci_init_ctlr(ehci_state_t		*ehcip,
141 				int			init_type);
142 static int	ehci_take_control(ehci_state_t		*ehcip);
143 static int	ehci_init_periodic_frame_lst_table(
144 				ehci_state_t		*ehcip);
145 static void	ehci_build_interrupt_lattice(
146 				ehci_state_t		*ehcip);
147 usba_hcdi_ops_t *ehci_alloc_hcdi_ops(ehci_state_t	*ehcip);
148 
149 /* Host Controller Driver (HCD) deinitialization functions */
150 int		ehci_cleanup(ehci_state_t		*ehcip);
151 static void	ehci_rem_intrs(ehci_state_t		*ehcip);
152 int		ehci_cpr_suspend(ehci_state_t		*ehcip);
153 int		ehci_cpr_resume(ehci_state_t		*ehcip);
154 
155 /* Bandwidth Allocation functions */
156 int		ehci_allocate_bandwidth(ehci_state_t	*ehcip,
157 				usba_pipe_handle_data_t	*ph,
158 				uint_t			*pnode,
159 				uchar_t			*smask,
160 				uchar_t			*cmask);
161 static int	ehci_allocate_high_speed_bandwidth(
162 				ehci_state_t		*ehcip,
163 				usba_pipe_handle_data_t	*ph,
164 				uint_t			*hnode,
165 				uchar_t			*smask,
166 				uchar_t			*cmask);
167 static int	ehci_allocate_classic_tt_bandwidth(
168 				ehci_state_t		*ehcip,
169 				usba_pipe_handle_data_t	*ph,
170 				uint_t			pnode);
171 void		ehci_deallocate_bandwidth(ehci_state_t	*ehcip,
172 				usba_pipe_handle_data_t	*ph,
173 				uint_t			pnode,
174 				uchar_t			smask,
175 				uchar_t			cmask);
176 static void	ehci_deallocate_high_speed_bandwidth(
177 				ehci_state_t		*ehcip,
178 				usba_pipe_handle_data_t	*ph,
179 				uint_t			hnode,
180 				uchar_t			smask,
181 				uchar_t			cmask);
182 static void	ehci_deallocate_classic_tt_bandwidth(
183 				ehci_state_t		*ehcip,
184 				usba_pipe_handle_data_t	*ph,
185 				uint_t			pnode);
186 static int	ehci_compute_high_speed_bandwidth(
187 				ehci_state_t		*ehcip,
188 				usb_ep_descr_t		*endpoint,
189 				usb_port_status_t	port_status,
190 				uint_t			*sbandwidth,
191 				uint_t			*cbandwidth);
192 static int	ehci_compute_classic_bandwidth(
193 				usb_ep_descr_t		*endpoint,
194 				usb_port_status_t	port_status,
195 				uint_t			*bandwidth);
196 int		ehci_adjust_polling_interval(
197 				ehci_state_t		*ehcip,
198 				usb_ep_descr_t		*endpoint,
199 				usb_port_status_t	port_status);
200 static int	ehci_adjust_high_speed_polling_interval(
201 				ehci_state_t		*ehcip,
202 				usb_ep_descr_t		*endpoint);
203 static uint_t	ehci_lattice_height(uint_t		interval);
204 static uint_t	ehci_lattice_parent(uint_t		node);
205 static uint_t	ehci_find_periodic_node(
206 				uint_t			leaf,
207 				int			interval);
208 static uint_t	ehci_leftmost_leaf(uint_t		node,
209 				uint_t			height);
210 static uint_t	ehci_pow_2(uint_t x);
211 static uint_t	ehci_log_2(uint_t x);
212 static int	ehci_find_bestfit_hs_mask(
213 				ehci_state_t		*ehcip,
214 				uchar_t			*smask,
215 				uint_t			*pnode,
216 				usb_ep_descr_t		*endpoint,
217 				uint_t			bandwidth,
218 				int			interval);
219 static int	ehci_find_bestfit_ls_intr_mask(
220 				ehci_state_t		*ehcip,
221 				uchar_t			*smask,
222 				uchar_t			*cmask,
223 				uint_t			*pnode,
224 				uint_t			sbandwidth,
225 				uint_t			cbandwidth,
226 				int			interval);
227 static int	ehci_find_bestfit_sitd_in_mask(
228 				ehci_state_t		*ehcip,
229 				uchar_t			*smask,
230 				uchar_t			*cmask,
231 				uint_t			*pnode,
232 				uint_t			sbandwidth,
233 				uint_t			cbandwidth,
234 				int			interval);
235 static int	ehci_find_bestfit_sitd_out_mask(
236 				ehci_state_t		*ehcip,
237 				uchar_t			*smask,
238 				uint_t			*pnode,
239 				uint_t			sbandwidth,
240 				int			interval);
241 static uint_t	ehci_calculate_bw_availability_mask(
242 				ehci_state_t		*ehcip,
243 				uint_t			bandwidth,
244 				int			leaf,
245 				int			leaf_count,
246 				uchar_t			*bw_mask);
247 static void	ehci_update_bw_availability(
248 				ehci_state_t		*ehcip,
249 				int			bandwidth,
250 				int			leftmost_leaf,
251 				int			leaf_count,
252 				uchar_t			mask);
253 
254 /* Miscellaneous functions */
255 ehci_state_t	*ehci_obtain_state(
256 				dev_info_t		*dip);
257 int		ehci_state_is_operational(
258 				ehci_state_t		*ehcip);
259 int		ehci_do_soft_reset(
260 				ehci_state_t		*ehcip);
261 usb_req_attrs_t ehci_get_xfer_attrs(ehci_state_t	*ehcip,
262 				ehci_pipe_private_t	*pp,
263 				ehci_trans_wrapper_t	*tw);
264 usb_frame_number_t ehci_get_current_frame_number(
265 				ehci_state_t		*ehcip);
266 static void	ehci_cpr_cleanup(
267 				ehci_state_t		*ehcip);
268 int		ehci_wait_for_sof(
269 				ehci_state_t		*ehcip);
270 void		ehci_toggle_scheduler(
271 				ehci_state_t		*ehcip);
272 void		ehci_print_caps(ehci_state_t		*ehcip);
273 void		ehci_print_regs(ehci_state_t		*ehcip);
274 void		ehci_print_qh(ehci_state_t		*ehcip,
275 				ehci_qh_t		*qh);
276 void		ehci_print_qtd(ehci_state_t		*ehcip,
277 				ehci_qtd_t		*qtd);
278 void		ehci_create_stats(ehci_state_t		*ehcip);
279 void		ehci_destroy_stats(ehci_state_t		*ehcip);
280 void		ehci_do_intrs_stats(ehci_state_t	*ehcip,
281 				int		val);
282 void		ehci_do_byte_stats(ehci_state_t		*ehcip,
283 				size_t		len,
284 				uint8_t		attr,
285 				uint8_t		addr);
286 
287 /*
288  * check if this ehci controller can support PM
289  */
290 int
291 ehci_hcdi_pm_support(dev_info_t *dip)
292 {
293 	ehci_state_t *ehcip = ddi_get_soft_state(ehci_statep,
294 	    ddi_get_instance(dip));
295 
296 	if (((ehcip->ehci_vendor_id == PCI_VENDOR_NEC_COMBO) &&
297 	    (ehcip->ehci_device_id == PCI_DEVICE_NEC_COMBO)) ||
298 
299 	    ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
300 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) ||
301 
302 	    (ehcip->ehci_vendor_id == PCI_VENDOR_VIA)) {
303 
304 		return (USB_SUCCESS);
305 	}
306 
307 	return (USB_FAILURE);
308 }
309 
310 void
311 ehci_dma_attr_workaround(ehci_state_t	*ehcip)
312 {
313 	/*
314 	 * Some Nvidia chips can not handle qh dma address above 2G.
315 	 * The bit 31 of the dma address might be omitted and it will
316 	 * cause system crash or other unpredicable result. So force
317 	 * the dma address allocated below 2G to make ehci work.
318 	 */
319 	if (PCI_VENDOR_NVIDIA == ehcip->ehci_vendor_id) {
320 		switch (ehcip->ehci_device_id) {
321 			case PCI_DEVICE_NVIDIA_CK804:
322 			case PCI_DEVICE_NVIDIA_MCP04:
323 				USB_DPRINTF_L2(PRINT_MASK_ATTA,
324 				    ehcip->ehci_log_hdl,
325 				    "ehci_dma_attr_workaround: NVIDIA dma "
326 				    "workaround enabled, force dma address "
327 				    "to be allocated below 2G");
328 				ehcip->ehci_dma_attr.dma_attr_addr_hi =
329 				    0x7fffffffull;
330 				break;
331 			default:
332 				break;
333 
334 		}
335 	}
336 }
337 
338 /*
339  * Host Controller Driver (HCD) initialization functions
340  */
341 
342 /*
343  * ehci_set_dma_attributes:
344  *
345  * Set the limits in the DMA attributes structure. Most of the values used
346  * in the  DMA limit structures are the default values as specified by	the
347  * Writing PCI device drivers document.
348  */
349 void
350 ehci_set_dma_attributes(ehci_state_t	*ehcip)
351 {
352 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
353 	    "ehci_set_dma_attributes:");
354 
355 	/* Initialize the DMA attributes */
356 	ehcip->ehci_dma_attr.dma_attr_version = DMA_ATTR_V0;
357 	ehcip->ehci_dma_attr.dma_attr_addr_lo = 0x00000000ull;
358 	ehcip->ehci_dma_attr.dma_attr_addr_hi = 0xfffffffeull;
359 
360 	/* 32 bit addressing */
361 	ehcip->ehci_dma_attr.dma_attr_count_max = EHCI_DMA_ATTR_COUNT_MAX;
362 
363 	/* Byte alignment */
364 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
365 
366 	/*
367 	 * Since PCI  specification is byte alignment, the
368 	 * burst size field should be set to 1 for PCI devices.
369 	 */
370 	ehcip->ehci_dma_attr.dma_attr_burstsizes = 0x1;
371 
372 	ehcip->ehci_dma_attr.dma_attr_minxfer = 0x1;
373 	ehcip->ehci_dma_attr.dma_attr_maxxfer = EHCI_DMA_ATTR_MAX_XFER;
374 	ehcip->ehci_dma_attr.dma_attr_seg = 0xffffffffull;
375 	ehcip->ehci_dma_attr.dma_attr_sgllen = 1;
376 	ehcip->ehci_dma_attr.dma_attr_granular = EHCI_DMA_ATTR_GRANULAR;
377 	ehcip->ehci_dma_attr.dma_attr_flags = 0;
378 	ehci_dma_attr_workaround(ehcip);
379 }
380 
381 
382 /*
383  * ehci_allocate_pools:
384  *
385  * Allocate the system memory for the Endpoint Descriptor (QH) and for the
386  * Transfer Descriptor (QTD) pools. Both QH and QTD structures must be aligned
387  * to a 16 byte boundary.
388  */
389 int
390 ehci_allocate_pools(ehci_state_t	*ehcip)
391 {
392 	ddi_device_acc_attr_t		dev_attr;
393 	size_t				real_length;
394 	int				result;
395 	uint_t				ccount;
396 	int				i;
397 
398 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
399 	    "ehci_allocate_pools:");
400 
401 	/* The host controller will be little endian */
402 	dev_attr.devacc_attr_version	= DDI_DEVICE_ATTR_V0;
403 	dev_attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
404 	dev_attr.devacc_attr_dataorder	= DDI_STRICTORDER_ACC;
405 
406 	/* Byte alignment */
407 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_TD_QH_ALIGNMENT;
408 
409 	/* Allocate the QTD pool DMA handle */
410 	if (ddi_dma_alloc_handle(ehcip->ehci_dip, &ehcip->ehci_dma_attr,
411 	    DDI_DMA_SLEEP, 0,
412 	    &ehcip->ehci_qtd_pool_dma_handle) != DDI_SUCCESS) {
413 
414 		goto failure;
415 	}
416 
417 	/* Allocate the memory for the QTD pool */
418 	if (ddi_dma_mem_alloc(ehcip->ehci_qtd_pool_dma_handle,
419 	    ehci_qtd_pool_size * sizeof (ehci_qtd_t),
420 	    &dev_attr,
421 	    DDI_DMA_CONSISTENT,
422 	    DDI_DMA_SLEEP,
423 	    0,
424 	    (caddr_t *)&ehcip->ehci_qtd_pool_addr,
425 	    &real_length,
426 	    &ehcip->ehci_qtd_pool_mem_handle)) {
427 
428 		goto failure;
429 	}
430 
431 	/* Map the QTD pool into the I/O address space */
432 	result = ddi_dma_addr_bind_handle(
433 	    ehcip->ehci_qtd_pool_dma_handle,
434 	    NULL,
435 	    (caddr_t)ehcip->ehci_qtd_pool_addr,
436 	    real_length,
437 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
438 	    DDI_DMA_SLEEP,
439 	    NULL,
440 	    &ehcip->ehci_qtd_pool_cookie,
441 	    &ccount);
442 
443 	bzero((void *)ehcip->ehci_qtd_pool_addr,
444 	    ehci_qtd_pool_size * sizeof (ehci_qtd_t));
445 
446 	/* Process the result */
447 	if (result == DDI_DMA_MAPPED) {
448 		/* The cookie count should be 1 */
449 		if (ccount != 1) {
450 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
451 			    "ehci_allocate_pools: More than 1 cookie");
452 
453 			goto failure;
454 		}
455 	} else {
456 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
457 		    "ehci_allocate_pools: Result = %d", result);
458 
459 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
460 
461 		goto failure;
462 	}
463 
464 	/*
465 	 * DMA addresses for QTD pools are bound
466 	 */
467 	ehcip->ehci_dma_addr_bind_flag |= EHCI_QTD_POOL_BOUND;
468 
469 	/* Initialize the QTD pool */
470 	for (i = 0; i < ehci_qtd_pool_size; i ++) {
471 		Set_QTD(ehcip->ehci_qtd_pool_addr[i].
472 		    qtd_state, EHCI_QTD_FREE);
473 	}
474 
475 	/* Allocate the QTD pool DMA handle */
476 	if (ddi_dma_alloc_handle(ehcip->ehci_dip,
477 	    &ehcip->ehci_dma_attr,
478 	    DDI_DMA_SLEEP,
479 	    0,
480 	    &ehcip->ehci_qh_pool_dma_handle) != DDI_SUCCESS) {
481 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
482 		    "ehci_allocate_pools: ddi_dma_alloc_handle failed");
483 
484 		goto failure;
485 	}
486 
487 	/* Allocate the memory for the QH pool */
488 	if (ddi_dma_mem_alloc(ehcip->ehci_qh_pool_dma_handle,
489 	    ehci_qh_pool_size * sizeof (ehci_qh_t),
490 	    &dev_attr,
491 	    DDI_DMA_CONSISTENT,
492 	    DDI_DMA_SLEEP,
493 	    0,
494 	    (caddr_t *)&ehcip->ehci_qh_pool_addr,
495 	    &real_length,
496 	    &ehcip->ehci_qh_pool_mem_handle) != DDI_SUCCESS) {
497 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
498 		    "ehci_allocate_pools: ddi_dma_mem_alloc failed");
499 
500 		goto failure;
501 	}
502 
503 	result = ddi_dma_addr_bind_handle(ehcip->ehci_qh_pool_dma_handle,
504 	    NULL,
505 	    (caddr_t)ehcip->ehci_qh_pool_addr,
506 	    real_length,
507 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
508 	    DDI_DMA_SLEEP,
509 	    NULL,
510 	    &ehcip->ehci_qh_pool_cookie,
511 	    &ccount);
512 
513 	bzero((void *)ehcip->ehci_qh_pool_addr,
514 	    ehci_qh_pool_size * sizeof (ehci_qh_t));
515 
516 	/* Process the result */
517 	if (result == DDI_DMA_MAPPED) {
518 		/* The cookie count should be 1 */
519 		if (ccount != 1) {
520 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
521 			    "ehci_allocate_pools: More than 1 cookie");
522 
523 			goto failure;
524 		}
525 	} else {
526 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
527 
528 		goto failure;
529 	}
530 
531 	/*
532 	 * DMA addresses for QH pools are bound
533 	 */
534 	ehcip->ehci_dma_addr_bind_flag |= EHCI_QH_POOL_BOUND;
535 
536 	/* Initialize the QH pool */
537 	for (i = 0; i < ehci_qh_pool_size; i ++) {
538 		Set_QH(ehcip->ehci_qh_pool_addr[i].qh_state, EHCI_QH_FREE);
539 	}
540 
541 	/* Byte alignment */
542 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
543 
544 	return (DDI_SUCCESS);
545 
546 failure:
547 	/* Byte alignment */
548 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
549 
550 	return (DDI_FAILURE);
551 }
552 
553 
554 /*
555  * ehci_decode_ddi_dma_addr_bind_handle_result:
556  *
557  * Process the return values of ddi_dma_addr_bind_handle()
558  */
559 void
560 ehci_decode_ddi_dma_addr_bind_handle_result(
561 	ehci_state_t	*ehcip,
562 	int		result)
563 {
564 	USB_DPRINTF_L2(PRINT_MASK_ALLOC, ehcip->ehci_log_hdl,
565 	    "ehci_decode_ddi_dma_addr_bind_handle_result:");
566 
567 	switch (result) {
568 	case DDI_DMA_PARTIAL_MAP:
569 		USB_DPRINTF_L2(PRINT_MASK_ALL, ehcip->ehci_log_hdl,
570 		    "Partial transfers not allowed");
571 		break;
572 	case DDI_DMA_INUSE:
573 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
574 		    "Handle is in use");
575 		break;
576 	case DDI_DMA_NORESOURCES:
577 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
578 		    "No resources");
579 		break;
580 	case DDI_DMA_NOMAPPING:
581 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
582 		    "No mapping");
583 		break;
584 	case DDI_DMA_TOOBIG:
585 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
586 		    "Object is too big");
587 		break;
588 	default:
589 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
590 		    "Unknown dma error");
591 	}
592 }
593 
594 
595 /*
596  * ehci_map_regs:
597  *
598  * The Host Controller (HC) contains a set of on-chip operational registers
599  * and which should be mapped into a non-cacheable portion of the  system
600  * addressable space.
601  */
602 int
603 ehci_map_regs(ehci_state_t	*ehcip)
604 {
605 	ddi_device_acc_attr_t	attr;
606 	uint16_t		cmd_reg;
607 	uint_t			length;
608 
609 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_map_regs:");
610 
611 	/* Check to make sure we have memory access */
612 	if (pci_config_setup(ehcip->ehci_dip,
613 	    &ehcip->ehci_config_handle) != DDI_SUCCESS) {
614 
615 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
616 		    "ehci_map_regs: Config error");
617 
618 		return (DDI_FAILURE);
619 	}
620 
621 	/* Make sure Memory Access Enable is set */
622 	cmd_reg = pci_config_get16(ehcip->ehci_config_handle, PCI_CONF_COMM);
623 
624 	if (!(cmd_reg & PCI_COMM_MAE)) {
625 
626 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
627 		    "ehci_map_regs: Memory base address access disabled");
628 
629 		return (DDI_FAILURE);
630 	}
631 
632 	/* The host controller will be little endian */
633 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
634 	attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
635 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
636 
637 	/* Map in EHCI Capability registers */
638 	if (ddi_regs_map_setup(ehcip->ehci_dip, 1,
639 	    (caddr_t *)&ehcip->ehci_capsp, 0,
640 	    sizeof (ehci_caps_t), &attr,
641 	    &ehcip->ehci_caps_handle) != DDI_SUCCESS) {
642 
643 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
644 		    "ehci_map_regs: Map setup error");
645 
646 		return (DDI_FAILURE);
647 	}
648 
649 	length = ddi_get8(ehcip->ehci_caps_handle,
650 	    (uint8_t *)&ehcip->ehci_capsp->ehci_caps_length);
651 
652 	/* Free the original mapping */
653 	ddi_regs_map_free(&ehcip->ehci_caps_handle);
654 
655 	/* Re-map in EHCI Capability and Operational registers */
656 	if (ddi_regs_map_setup(ehcip->ehci_dip, 1,
657 	    (caddr_t *)&ehcip->ehci_capsp, 0,
658 	    length + sizeof (ehci_regs_t), &attr,
659 	    &ehcip->ehci_caps_handle) != DDI_SUCCESS) {
660 
661 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
662 		    "ehci_map_regs: Map setup error");
663 
664 		return (DDI_FAILURE);
665 	}
666 
667 	/* Get the pointer to EHCI Operational Register */
668 	ehcip->ehci_regsp = (ehci_regs_t *)
669 	    ((uintptr_t)ehcip->ehci_capsp + length);
670 
671 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
672 	    "ehci_map_regs: Capsp 0x%p Regsp 0x%p\n",
673 	    (void *)ehcip->ehci_capsp, (void *)ehcip->ehci_regsp);
674 
675 	return (DDI_SUCCESS);
676 }
677 
678 /*
679  * The following simulated polling is for debugging purposes only.
680  * It is activated on x86 by setting usb-polling=true in GRUB or ehci.conf.
681  */
682 static int
683 ehci_is_polled(dev_info_t *dip)
684 {
685 	int ret;
686 	char *propval;
687 
688 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
689 	    "usb-polling", &propval) != DDI_SUCCESS)
690 
691 		return (0);
692 
693 	ret = (strcmp(propval, "true") == 0);
694 	ddi_prop_free(propval);
695 
696 	return (ret);
697 }
698 
699 static void
700 ehci_poll_intr(void *arg)
701 {
702 	/* poll every msec */
703 	for (;;) {
704 		(void) ehci_intr(arg, NULL);
705 		delay(drv_usectohz(1000));
706 	}
707 }
708 
709 /*
710  * ehci_register_intrs_and_init_mutex:
711  *
712  * Register interrupts and initialize each mutex and condition variables
713  */
714 int
715 ehci_register_intrs_and_init_mutex(ehci_state_t	*ehcip)
716 {
717 	int	intr_types;
718 
719 #if defined(__x86)
720 	uint8_t iline;
721 #endif
722 
723 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
724 	    "ehci_register_intrs_and_init_mutex:");
725 
726 	/*
727 	 * There is a known MSI hardware bug with the EHCI controller
728 	 * of ULI1575 southbridge. Hence MSI is disabled for this chip.
729 	 */
730 	if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
731 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) {
732 		ehcip->ehci_msi_enabled = B_FALSE;
733 	} else {
734 		/* Set the MSI enable flag from the global EHCI MSI tunable */
735 		ehcip->ehci_msi_enabled = ehci_enable_msi;
736 	}
737 
738 	/* launch polling thread instead of enabling pci interrupt */
739 	if (ehci_is_polled(ehcip->ehci_dip)) {
740 		extern pri_t maxclsyspri;
741 
742 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
743 		    "ehci_register_intrs_and_init_mutex: "
744 		    "running in simulated polled mode");
745 
746 		(void) thread_create(NULL, 0, ehci_poll_intr, ehcip, 0, &p0,
747 		    TS_RUN, maxclsyspri);
748 
749 		goto skip_intr;
750 	}
751 
752 #if defined(__x86)
753 	/*
754 	 * Make sure that the interrupt pin is connected to the
755 	 * interrupt controller on x86.	 Interrupt line 255 means
756 	 * "unknown" or "not connected" (PCI spec 6.2.4, footnote 43).
757 	 * If we would return failure when interrupt line equals 255, then
758 	 * high speed devices will be routed to companion host controllers.
759 	 * However, it is not necessary to return failure here, and
760 	 * o/uhci codes don't check the interrupt line either.
761 	 * But it's good to log a message here for debug purposes.
762 	 */
763 	iline = pci_config_get8(ehcip->ehci_config_handle,
764 	    PCI_CONF_ILINE);
765 
766 	if (iline == 255) {
767 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
768 		    "ehci_register_intrs_and_init_mutex: "
769 		    "interrupt line value out of range (%d)",
770 		    iline);
771 	}
772 #endif	/* __x86 */
773 
774 	/* Get supported interrupt types */
775 	if (ddi_intr_get_supported_types(ehcip->ehci_dip,
776 	    &intr_types) != DDI_SUCCESS) {
777 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
778 		    "ehci_register_intrs_and_init_mutex: "
779 		    "ddi_intr_get_supported_types failed");
780 
781 		return (DDI_FAILURE);
782 	}
783 
784 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
785 	    "ehci_register_intrs_and_init_mutex: "
786 	    "supported interrupt types 0x%x", intr_types);
787 
788 	if ((intr_types & DDI_INTR_TYPE_MSI) && ehcip->ehci_msi_enabled) {
789 		if (ehci_add_intrs(ehcip, DDI_INTR_TYPE_MSI)
790 		    != DDI_SUCCESS) {
791 			USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
792 			    "ehci_register_intrs_and_init_mutex: MSI "
793 			    "registration failed, trying FIXED interrupt \n");
794 		} else {
795 			USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
796 			    "ehci_register_intrs_and_init_mutex: "
797 			    "Using MSI interrupt type\n");
798 
799 			ehcip->ehci_intr_type = DDI_INTR_TYPE_MSI;
800 			ehcip->ehci_flags |= EHCI_INTR;
801 		}
802 	}
803 
804 	if ((!(ehcip->ehci_flags & EHCI_INTR)) &&
805 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
806 		if (ehci_add_intrs(ehcip, DDI_INTR_TYPE_FIXED)
807 		    != DDI_SUCCESS) {
808 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
809 			    "ehci_register_intrs_and_init_mutex: "
810 			    "FIXED interrupt registration failed\n");
811 
812 			return (DDI_FAILURE);
813 		}
814 
815 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
816 		    "ehci_register_intrs_and_init_mutex: "
817 		    "Using FIXED interrupt type\n");
818 
819 		ehcip->ehci_intr_type = DDI_INTR_TYPE_FIXED;
820 		ehcip->ehci_flags |= EHCI_INTR;
821 	}
822 
823 skip_intr:
824 	/* Create prototype for advance on async schedule */
825 	cv_init(&ehcip->ehci_async_schedule_advance_cv,
826 	    NULL, CV_DRIVER, NULL);
827 
828 	return (DDI_SUCCESS);
829 }
830 
831 
832 /*
833  * ehci_add_intrs:
834  *
835  * Register FIXED or MSI interrupts.
836  */
837 static int
838 ehci_add_intrs(ehci_state_t *ehcip, int intr_type)
839 {
840 	int	actual, avail, intr_size, count = 0;
841 	int	i, flag, ret;
842 
843 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
844 	    "ehci_add_intrs: interrupt type 0x%x", intr_type);
845 
846 	/* Get number of interrupts */
847 	ret = ddi_intr_get_nintrs(ehcip->ehci_dip, intr_type, &count);
848 	if ((ret != DDI_SUCCESS) || (count == 0)) {
849 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
850 		    "ehci_add_intrs: ddi_intr_get_nintrs() failure, "
851 		    "ret: %d, count: %d", ret, count);
852 
853 		return (DDI_FAILURE);
854 	}
855 
856 	/* Get number of available interrupts */
857 	ret = ddi_intr_get_navail(ehcip->ehci_dip, intr_type, &avail);
858 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
859 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
860 		    "ehci_add_intrs: ddi_intr_get_navail() failure, "
861 		    "ret: %d, count: %d", ret, count);
862 
863 		return (DDI_FAILURE);
864 	}
865 
866 	if (avail < count) {
867 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
868 		    "ehci_add_intrs: ehci_add_intrs: nintrs () "
869 		    "returned %d, navail returned %d\n", count, avail);
870 	}
871 
872 	/* Allocate an array of interrupt handles */
873 	intr_size = count * sizeof (ddi_intr_handle_t);
874 	ehcip->ehci_htable = kmem_zalloc(intr_size, KM_SLEEP);
875 
876 	flag = (intr_type == DDI_INTR_TYPE_MSI) ?
877 	    DDI_INTR_ALLOC_STRICT:DDI_INTR_ALLOC_NORMAL;
878 
879 	/* call ddi_intr_alloc() */
880 	ret = ddi_intr_alloc(ehcip->ehci_dip, ehcip->ehci_htable,
881 	    intr_type, 0, count, &actual, flag);
882 
883 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
884 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
885 		    "ehci_add_intrs: ddi_intr_alloc() failed %d", ret);
886 
887 		kmem_free(ehcip->ehci_htable, intr_size);
888 
889 		return (DDI_FAILURE);
890 	}
891 
892 	if (actual < count) {
893 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
894 		    "ehci_add_intrs: Requested: %d, Received: %d\n",
895 		    count, actual);
896 
897 		for (i = 0; i < actual; i++)
898 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
899 
900 		kmem_free(ehcip->ehci_htable, intr_size);
901 
902 		return (DDI_FAILURE);
903 	}
904 
905 	ehcip->ehci_intr_cnt = actual;
906 
907 	if ((ret = ddi_intr_get_pri(ehcip->ehci_htable[0],
908 	    &ehcip->ehci_intr_pri)) != DDI_SUCCESS) {
909 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
910 		    "ehci_add_intrs: ddi_intr_get_pri() failed %d", ret);
911 
912 		for (i = 0; i < actual; i++)
913 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
914 
915 		kmem_free(ehcip->ehci_htable, intr_size);
916 
917 		return (DDI_FAILURE);
918 	}
919 
920 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
921 	    "ehci_add_intrs: Supported Interrupt priority 0x%x",
922 	    ehcip->ehci_intr_pri);
923 
924 	/* Test for high level mutex */
925 	if (ehcip->ehci_intr_pri >= ddi_intr_get_hilevel_pri()) {
926 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
927 		    "ehci_add_intrs: Hi level interrupt not supported");
928 
929 		for (i = 0; i < actual; i++)
930 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
931 
932 		kmem_free(ehcip->ehci_htable, intr_size);
933 
934 		return (DDI_FAILURE);
935 	}
936 
937 	/* Initialize the mutex */
938 	mutex_init(&ehcip->ehci_int_mutex, NULL, MUTEX_DRIVER,
939 	    DDI_INTR_PRI(ehcip->ehci_intr_pri));
940 
941 	/* Call ddi_intr_add_handler() */
942 	for (i = 0; i < actual; i++) {
943 		if ((ret = ddi_intr_add_handler(ehcip->ehci_htable[i],
944 		    ehci_intr, (caddr_t)ehcip,
945 		    (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
946 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
947 			    "ehci_add_intrs:ddi_intr_add_handler() "
948 			    "failed %d", ret);
949 
950 			for (i = 0; i < actual; i++)
951 				(void) ddi_intr_free(ehcip->ehci_htable[i]);
952 
953 			mutex_destroy(&ehcip->ehci_int_mutex);
954 			kmem_free(ehcip->ehci_htable, intr_size);
955 
956 			return (DDI_FAILURE);
957 		}
958 	}
959 
960 	if ((ret = ddi_intr_get_cap(ehcip->ehci_htable[0],
961 	    &ehcip->ehci_intr_cap)) != DDI_SUCCESS) {
962 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
963 		    "ehci_add_intrs: ddi_intr_get_cap() failed %d", ret);
964 
965 		for (i = 0; i < actual; i++) {
966 			(void) ddi_intr_remove_handler(ehcip->ehci_htable[i]);
967 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
968 		}
969 
970 		mutex_destroy(&ehcip->ehci_int_mutex);
971 		kmem_free(ehcip->ehci_htable, intr_size);
972 
973 		return (DDI_FAILURE);
974 	}
975 
976 	/* Enable all interrupts */
977 	if (ehcip->ehci_intr_cap & DDI_INTR_FLAG_BLOCK) {
978 		/* Call ddi_intr_block_enable() for MSI interrupts */
979 		(void) ddi_intr_block_enable(ehcip->ehci_htable,
980 		    ehcip->ehci_intr_cnt);
981 	} else {
982 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
983 		for (i = 0; i < ehcip->ehci_intr_cnt; i++)
984 			(void) ddi_intr_enable(ehcip->ehci_htable[i]);
985 	}
986 
987 	return (DDI_SUCCESS);
988 }
989 
990 
991 /*
992  * ehci_init_hardware
993  *
994  * take control from BIOS, reset EHCI host controller, and check version, etc.
995  */
996 int
997 ehci_init_hardware(ehci_state_t	*ehcip)
998 {
999 	int			revision;
1000 	uint16_t		cmd_reg;
1001 	int			abort_on_BIOS_take_over_failure;
1002 
1003 	/* Take control from the BIOS */
1004 	if (ehci_take_control(ehcip) != USB_SUCCESS) {
1005 
1006 		/* read .conf file properties */
1007 		abort_on_BIOS_take_over_failure =
1008 		    ddi_prop_get_int(DDI_DEV_T_ANY,
1009 		    ehcip->ehci_dip, DDI_PROP_DONTPASS,
1010 		    "abort-on-BIOS-take-over-failure", 0);
1011 
1012 		if (abort_on_BIOS_take_over_failure) {
1013 
1014 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1015 			    "Unable to take control from BIOS.");
1016 
1017 			return (DDI_FAILURE);
1018 		}
1019 
1020 		USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1021 		    "Unable to take control from BIOS. Failure is ignored.");
1022 	}
1023 
1024 	/* set Memory Master Enable */
1025 	cmd_reg = pci_config_get16(ehcip->ehci_config_handle, PCI_CONF_COMM);
1026 	cmd_reg |= (PCI_COMM_MAE | PCI_COMM_ME);
1027 	pci_config_put16(ehcip->ehci_config_handle, PCI_CONF_COMM, cmd_reg);
1028 
1029 	/* Reset the EHCI host controller */
1030 	Set_OpReg(ehci_command,
1031 	    Get_OpReg(ehci_command) | EHCI_CMD_HOST_CTRL_RESET);
1032 
1033 	/* Wait 10ms for reset to complete */
1034 	drv_usecwait(EHCI_RESET_TIMEWAIT);
1035 
1036 	ASSERT(Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED);
1037 
1038 	/* Verify the version number */
1039 	revision = Get_16Cap(ehci_version);
1040 
1041 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1042 	    "ehci_init_hardware: Revision 0x%x", revision);
1043 
1044 	/*
1045 	 * EHCI driver supports EHCI host controllers compliant to
1046 	 * 0.95 and higher revisions of EHCI specifications.
1047 	 */
1048 	if (revision < EHCI_REVISION_0_95) {
1049 
1050 		USB_DPRINTF_L0(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1051 		    "Revision 0x%x is not supported", revision);
1052 
1053 		return (DDI_FAILURE);
1054 	}
1055 
1056 	if (ehcip->ehci_hc_soft_state == EHCI_CTLR_INIT_STATE) {
1057 
1058 		/* Initialize the Frame list base address area */
1059 		if (ehci_init_periodic_frame_lst_table(ehcip) != DDI_SUCCESS) {
1060 
1061 			return (DDI_FAILURE);
1062 		}
1063 
1064 		/*
1065 		 * For performance reasons, do not insert anything into the
1066 		 * asynchronous list or activate the asynch list schedule until
1067 		 * there is a valid QH.
1068 		 */
1069 		ehcip->ehci_head_of_async_sched_list = NULL;
1070 
1071 		if ((ehcip->ehci_vendor_id == PCI_VENDOR_VIA) &&
1072 		    (ehci_vt62x2_workaround & EHCI_VIA_ASYNC_SCHEDULE)) {
1073 			/*
1074 			 * The driver is unable to reliably stop the asynch
1075 			 * list schedule on VIA VT6202 controllers, so we
1076 			 * always keep a dummy QH on the list.
1077 			 */
1078 			ehci_qh_t *dummy_async_qh =
1079 			    ehci_alloc_qh(ehcip, NULL, NULL);
1080 
1081 			Set_QH(dummy_async_qh->qh_link_ptr,
1082 			    ((ehci_qh_cpu_to_iommu(ehcip, dummy_async_qh) &
1083 			    EHCI_QH_LINK_PTR) | EHCI_QH_LINK_REF_QH));
1084 
1085 			/* Set this QH to be the "head" of the circular list */
1086 			Set_QH(dummy_async_qh->qh_ctrl,
1087 			    Get_QH(dummy_async_qh->qh_ctrl) |
1088 			    EHCI_QH_CTRL_RECLAIM_HEAD);
1089 
1090 			Set_QH(dummy_async_qh->qh_next_qtd,
1091 			    EHCI_QH_NEXT_QTD_PTR_VALID);
1092 			Set_QH(dummy_async_qh->qh_alt_next_qtd,
1093 			    EHCI_QH_ALT_NEXT_QTD_PTR_VALID);
1094 
1095 			ehcip->ehci_head_of_async_sched_list = dummy_async_qh;
1096 			ehcip->ehci_open_async_count++;
1097 			ehcip->ehci_async_req_count++;
1098 		}
1099 	}
1100 
1101 	return (DDI_SUCCESS);
1102 }
1103 
1104 
1105 /*
1106  * ehci_init_workaround
1107  *
1108  * some workarounds during initializing ehci
1109  */
1110 int
1111 ehci_init_workaround(ehci_state_t	*ehcip)
1112 {
1113 	/*
1114 	 * Acer Labs Inc. M5273 EHCI controller does not send
1115 	 * interrupts unless the Root hub ports are routed to the EHCI
1116 	 * host controller; so route the ports now, before we test for
1117 	 * the presence of SOFs interrupts.
1118 	 */
1119 	if (ehcip->ehci_vendor_id == PCI_VENDOR_ALI) {
1120 		/* Route all Root hub ports to EHCI host controller */
1121 		Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_EHCI);
1122 	}
1123 
1124 	/*
1125 	 * VIA chips have some issues and may not work reliably.
1126 	 * Revisions >= 0x80 are part of a southbridge and appear
1127 	 * to be reliable with the workaround.
1128 	 * For revisions < 0x80, if we	were bound using class
1129 	 * complain, else proceed. This will allow the user to
1130 	 * bind ehci specifically to this chip and not have the
1131 	 * warnings
1132 	 */
1133 	if (ehcip->ehci_vendor_id == PCI_VENDOR_VIA) {
1134 
1135 		if (ehcip->ehci_rev_id >= PCI_VIA_REVISION_6212) {
1136 
1137 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1138 			    "ehci_init_workaround: Applying VIA workarounds "
1139 			    "for the 6212 chip.");
1140 
1141 		} else if (strcmp(DEVI(ehcip->ehci_dip)->devi_binding_name,
1142 		    "pciclass,0c0320") == 0) {
1143 
1144 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1145 			    "Due to recently discovered incompatibilities");
1146 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1147 			    "with this USB controller, USB2.x transfer");
1148 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1149 			    "support has been disabled. This device will");
1150 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1151 			    "continue to function as a USB1.x controller.");
1152 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1153 			    "If you are interested in enabling USB2.x");
1154 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1155 			    "support please, refer to the ehci(7D) man page.");
1156 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1157 			    "Please also refer to www.sun.com/io for");
1158 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1159 			    "Solaris Ready products and to");
1160 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1161 			    "www.sun.com/bigadmin/hcl for additional");
1162 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1163 			    "compatible USB products.");
1164 
1165 			return (DDI_FAILURE);
1166 
1167 			} else if (ehci_vt62x2_workaround) {
1168 
1169 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1170 			    "Applying VIA workarounds");
1171 		}
1172 	}
1173 
1174 	return (DDI_SUCCESS);
1175 }
1176 
1177 
1178 /*
1179  * ehci_init_check_status
1180  *
1181  * Check if EHCI host controller is running
1182  */
1183 int
1184 ehci_init_check_status(ehci_state_t	*ehcip)
1185 {
1186 	clock_t			sof_time_wait;
1187 
1188 	/*
1189 	 * Get the number of clock ticks to wait.
1190 	 * This is based on the maximum time it takes for a frame list rollover
1191 	 * and maximum time wait for SOFs to begin.
1192 	 */
1193 	sof_time_wait = drv_usectohz((EHCI_NUM_PERIODIC_FRAME_LISTS * 1000) +
1194 	    EHCI_SOF_TIMEWAIT);
1195 
1196 	/* Tell the ISR to broadcast ehci_async_schedule_advance_cv */
1197 	ehcip->ehci_flags |= EHCI_CV_INTR;
1198 
1199 	/* We need to add a delay to allow the chip time to start running */
1200 	(void) cv_reltimedwait(&ehcip->ehci_async_schedule_advance_cv,
1201 	    &ehcip->ehci_int_mutex, sof_time_wait, TR_CLOCK_TICK);
1202 
1203 	/*
1204 	 * Check EHCI host controller is running, otherwise return failure.
1205 	 */
1206 	if ((ehcip->ehci_flags & EHCI_CV_INTR) ||
1207 	    (Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED)) {
1208 
1209 		USB_DPRINTF_L0(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1210 		    "No SOF interrupts have been received, this USB EHCI host"
1211 		    "controller is unusable");
1212 
1213 		/*
1214 		 * Route all Root hub ports to Classic host
1215 		 * controller, in case this is an unusable ALI M5273
1216 		 * EHCI controller.
1217 		 */
1218 		if (ehcip->ehci_vendor_id == PCI_VENDOR_ALI) {
1219 			Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_CLASSIC);
1220 		}
1221 
1222 		return (DDI_FAILURE);
1223 	}
1224 
1225 	return (DDI_SUCCESS);
1226 }
1227 
1228 
1229 /*
1230  * ehci_init_ctlr:
1231  *
1232  * Initialize the Host Controller (HC).
1233  */
1234 int
1235 ehci_init_ctlr(ehci_state_t *ehcip, int init_type)
1236 {
1237 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_init_ctlr:");
1238 
1239 	if (init_type == EHCI_NORMAL_INITIALIZATION) {
1240 
1241 		if (ehci_init_hardware(ehcip) != DDI_SUCCESS) {
1242 
1243 			return (DDI_FAILURE);
1244 		}
1245 	}
1246 
1247 	/*
1248 	 * Check for Asynchronous schedule park capability feature. If this
1249 	 * feature is supported, then, program ehci command register with
1250 	 * appropriate values..
1251 	 */
1252 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_ASYNC_SCHED_PARK_CAP) {
1253 
1254 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1255 		    "ehci_init_ctlr: Async park mode is supported");
1256 
1257 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) |
1258 		    (EHCI_CMD_ASYNC_PARK_ENABLE |
1259 		    EHCI_CMD_ASYNC_PARK_COUNT_3)));
1260 	}
1261 
1262 	/*
1263 	 * Check for programmable periodic frame list feature. If this
1264 	 * feature is supported, then, program ehci command register with
1265 	 * 1024 frame list value.
1266 	 */
1267 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_PROG_FRAME_LIST_FLAG) {
1268 
1269 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1270 		    "ehci_init_ctlr: Variable programmable periodic "
1271 		    "frame list is supported");
1272 
1273 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) |
1274 		    EHCI_CMD_FRAME_1024_SIZE));
1275 	}
1276 
1277 	/*
1278 	 * Currently EHCI driver doesn't support 64 bit addressing.
1279 	 *
1280 	 * If we are using 64 bit addressing capability, then, program
1281 	 * ehci_ctrl_segment register with 4 Gigabyte segment where all
1282 	 * of the interface data structures are allocated.
1283 	 */
1284 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_64BIT_ADDR_CAP) {
1285 
1286 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1287 		    "ehci_init_ctlr: EHCI driver doesn't support "
1288 		    "64 bit addressing");
1289 	}
1290 
1291 	/* 64 bit addressing is not support */
1292 	Set_OpReg(ehci_ctrl_segment, 0x00000000);
1293 
1294 	/* Turn on/off the schedulers */
1295 	ehci_toggle_scheduler(ehcip);
1296 
1297 	/* Set host controller soft state to operational */
1298 	ehcip->ehci_hc_soft_state = EHCI_CTLR_OPERATIONAL_STATE;
1299 
1300 	/*
1301 	 * Set the Periodic Frame List Base Address register with the
1302 	 * starting physical address of the Periodic Frame List.
1303 	 */
1304 	Set_OpReg(ehci_periodic_list_base,
1305 	    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
1306 	    EHCI_PERIODIC_LIST_BASE));
1307 
1308 	/*
1309 	 * Set ehci_interrupt to enable all interrupts except Root
1310 	 * Hub Status change interrupt.
1311 	 */
1312 	Set_OpReg(ehci_interrupt, EHCI_INTR_HOST_SYSTEM_ERROR |
1313 	    EHCI_INTR_FRAME_LIST_ROLLOVER | EHCI_INTR_USB_ERROR |
1314 	    EHCI_INTR_USB);
1315 
1316 	/*
1317 	 * Set the desired interrupt threshold and turn on EHCI host controller.
1318 	 */
1319 	Set_OpReg(ehci_command,
1320 	    ((Get_OpReg(ehci_command) & ~EHCI_CMD_INTR_THRESHOLD) |
1321 	    (EHCI_CMD_01_INTR | EHCI_CMD_HOST_CTRL_RUN)));
1322 
1323 	ASSERT(Get_OpReg(ehci_command) & EHCI_CMD_HOST_CTRL_RUN);
1324 
1325 	if (init_type == EHCI_NORMAL_INITIALIZATION) {
1326 
1327 		if (ehci_init_workaround(ehcip) != DDI_SUCCESS) {
1328 
1329 			/* Set host controller soft state to error */
1330 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
1331 
1332 			return (DDI_FAILURE);
1333 		}
1334 
1335 		if (ehci_init_check_status(ehcip) != DDI_SUCCESS) {
1336 
1337 			/* Set host controller soft state to error */
1338 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
1339 
1340 			return (DDI_FAILURE);
1341 		}
1342 
1343 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1344 		    "ehci_init_ctlr: SOF's have started");
1345 	}
1346 
1347 	/* Route all Root hub ports to EHCI host controller */
1348 	Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_EHCI);
1349 
1350 	return (DDI_SUCCESS);
1351 }
1352 
1353 /*
1354  * ehci_take_control:
1355  *
1356  * Handshake to take EHCI control from BIOS if necessary.  Its only valid for
1357  * x86 machines, because sparc doesn't have a BIOS.
1358  * On x86 machine, the take control process includes
1359  *    o get the base address of the extended capability list
1360  *    o find out the capability for handoff synchronization in the list.
1361  *    o check if BIOS has owned the host controller.
1362  *    o set the OS Owned semaphore bit, ask the BIOS to release the ownership.
1363  *    o wait for a constant time and check if BIOS has relinquished control.
1364  */
1365 /* ARGSUSED */
1366 static int
1367 ehci_take_control(ehci_state_t *ehcip)
1368 {
1369 #if defined(__x86)
1370 	uint32_t		extended_cap;
1371 	uint32_t		extended_cap_offset;
1372 	uint32_t		extended_cap_id;
1373 	uint_t			retry;
1374 
1375 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1376 	    "ehci_take_control:");
1377 
1378 	/*
1379 	 * According EHCI Spec 2.2.4, get EECP base address from HCCPARAMS
1380 	 * register.
1381 	 */
1382 	extended_cap_offset = (Get_Cap(ehci_hcc_params) & EHCI_HCC_EECP) >>
1383 	    EHCI_HCC_EECP_SHIFT;
1384 
1385 	/*
1386 	 * According EHCI Spec 2.2.4, if the extended capability offset is
1387 	 * less than 40h then its not valid.  This means we don't need to
1388 	 * worry about BIOS handoff.
1389 	 */
1390 	if (extended_cap_offset < EHCI_HCC_EECP_MIN_OFFSET) {
1391 
1392 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1393 		    "ehci_take_control: Hardware doesn't support legacy.");
1394 
1395 		goto success;
1396 	}
1397 
1398 	/*
1399 	 * According EHCI Spec 2.1.7, A zero offset indicates the
1400 	 * end of the extended capability list.
1401 	 */
1402 	while (extended_cap_offset) {
1403 
1404 		/* Get the extended capability value. */
1405 		extended_cap = pci_config_get32(ehcip->ehci_config_handle,
1406 		    extended_cap_offset);
1407 
1408 		/*
1409 		 * It's possible that we'll receive an invalid PCI read here due
1410 		 * to something going wrong due to platform firmware. This has
1411 		 * been observed in the wild depending on the version of ACPI in
1412 		 * use. If this happens, we'll assume that the capability does
1413 		 * not exist and that we do not need to take control from the
1414 		 * BIOS.
1415 		 */
1416 		if (extended_cap == PCI_EINVAL32) {
1417 			extended_cap_id = EHCI_EX_CAP_ID_RESERVED;
1418 			break;
1419 		}
1420 
1421 		/* Get the capability ID */
1422 		extended_cap_id = (extended_cap & EHCI_EX_CAP_ID) >>
1423 		    EHCI_EX_CAP_ID_SHIFT;
1424 
1425 		/* Check if the card support legacy */
1426 		if (extended_cap_id == EHCI_EX_CAP_ID_BIOS_HANDOFF) {
1427 			break;
1428 		}
1429 
1430 		/* Get the offset of the next capability */
1431 		extended_cap_offset = (extended_cap & EHCI_EX_CAP_NEXT_PTR) >>
1432 		    EHCI_EX_CAP_NEXT_PTR_SHIFT;
1433 
1434 	}
1435 
1436 	/*
1437 	 * Unable to find legacy support in hardware's extended capability list.
1438 	 * This means we don't need to worry about BIOS handoff.
1439 	 */
1440 	if (extended_cap_id != EHCI_EX_CAP_ID_BIOS_HANDOFF) {
1441 
1442 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1443 		    "ehci_take_control: Hardware doesn't support legacy");
1444 
1445 		goto success;
1446 	}
1447 
1448 	/* Check if BIOS has owned it. */
1449 	if (!(extended_cap & EHCI_LEGSUP_BIOS_OWNED_SEM)) {
1450 
1451 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1452 		    "ehci_take_control: BIOS does not own EHCI");
1453 
1454 		goto success;
1455 	}
1456 
1457 	/*
1458 	 * According EHCI Spec 5.1, The OS driver initiates an ownership
1459 	 * request by setting the OS Owned semaphore to a one. The OS
1460 	 * waits for the BIOS Owned bit to go to a zero before attempting
1461 	 * to use the EHCI controller. The time that OS must wait for BIOS
1462 	 * to respond to the request for ownership is beyond the scope of
1463 	 * this specification.
1464 	 * It waits up to EHCI_TAKEOVER_WAIT_COUNT*EHCI_TAKEOVER_DELAY ms
1465 	 * for BIOS to release the ownership.
1466 	 */
1467 	extended_cap |= EHCI_LEGSUP_OS_OWNED_SEM;
1468 	pci_config_put32(ehcip->ehci_config_handle, extended_cap_offset,
1469 	    extended_cap);
1470 
1471 	for (retry = 0; retry < EHCI_TAKEOVER_WAIT_COUNT; retry++) {
1472 
1473 		/* wait a special interval */
1474 #ifndef __lock_lint
1475 		delay(drv_usectohz(EHCI_TAKEOVER_DELAY));
1476 #endif
1477 		/* Check to see if the BIOS has released the ownership */
1478 		extended_cap = pci_config_get32(
1479 		    ehcip->ehci_config_handle, extended_cap_offset);
1480 
1481 		if (!(extended_cap & EHCI_LEGSUP_BIOS_OWNED_SEM)) {
1482 
1483 			USB_DPRINTF_L3(PRINT_MASK_ATTA,
1484 			    ehcip->ehci_log_hdl,
1485 			    "ehci_take_control: BIOS has released "
1486 			    "the ownership. retry = %d", retry);
1487 
1488 			goto success;
1489 		}
1490 
1491 	}
1492 
1493 	USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1494 	    "ehci_take_control: take control from BIOS failed.");
1495 
1496 	return (USB_FAILURE);
1497 
1498 success:
1499 
1500 #endif	/* __x86 */
1501 	return (USB_SUCCESS);
1502 }
1503 
1504 
1505 /*
1506  * ehci_init_periodic_frame_list_table :
1507  *
1508  * Allocate the system memory and initialize Host Controller
1509  * Periodic Frame List table area. The starting of the Periodic
1510  * Frame List Table area must be 4096 byte aligned.
1511  */
1512 static int
1513 ehci_init_periodic_frame_lst_table(ehci_state_t *ehcip)
1514 {
1515 	ddi_device_acc_attr_t	dev_attr;
1516 	size_t			real_length;
1517 	uint_t			ccount;
1518 	int			result;
1519 
1520 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
1521 
1522 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1523 	    "ehci_init_periodic_frame_lst_table:");
1524 
1525 	/* The host controller will be little endian */
1526 	dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1527 	dev_attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
1528 	dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1529 
1530 	/* Force the required 4K restrictive alignment */
1531 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_PFL_ALIGNMENT;
1532 
1533 	/* Create space for the Periodic Frame List */
1534 	if (ddi_dma_alloc_handle(ehcip->ehci_dip, &ehcip->ehci_dma_attr,
1535 	    DDI_DMA_SLEEP, 0, &ehcip->ehci_pflt_dma_handle) != DDI_SUCCESS) {
1536 
1537 		goto failure;
1538 	}
1539 
1540 	if (ddi_dma_mem_alloc(ehcip->ehci_pflt_dma_handle,
1541 	    sizeof (ehci_periodic_frame_list_t),
1542 	    &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
1543 	    0, (caddr_t *)&ehcip->ehci_periodic_frame_list_tablep,
1544 	    &real_length, &ehcip->ehci_pflt_mem_handle)) {
1545 
1546 		goto failure;
1547 	}
1548 
1549 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1550 	    "ehci_init_periodic_frame_lst_table: "
1551 	    "Real length %lu", real_length);
1552 
1553 	/* Map the whole Periodic Frame List into the I/O address space */
1554 	result = ddi_dma_addr_bind_handle(ehcip->ehci_pflt_dma_handle,
1555 	    NULL, (caddr_t)ehcip->ehci_periodic_frame_list_tablep,
1556 	    real_length, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1557 	    DDI_DMA_SLEEP, NULL, &ehcip->ehci_pflt_cookie, &ccount);
1558 
1559 	if (result == DDI_DMA_MAPPED) {
1560 		/* The cookie count should be 1 */
1561 		if (ccount != 1) {
1562 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1563 			    "ehci_init_periodic_frame_lst_table: "
1564 			    "More than 1 cookie");
1565 
1566 			goto failure;
1567 		}
1568 	} else {
1569 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
1570 
1571 		goto failure;
1572 	}
1573 
1574 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1575 	    "ehci_init_periodic_frame_lst_table: virtual 0x%p physical 0x%x",
1576 	    (void *)ehcip->ehci_periodic_frame_list_tablep,
1577 	    ehcip->ehci_pflt_cookie.dmac_address);
1578 
1579 	/*
1580 	 * DMA addresses for Periodic Frame List are bound.
1581 	 */
1582 	ehcip->ehci_dma_addr_bind_flag |= EHCI_PFLT_DMA_BOUND;
1583 
1584 	bzero((void *)ehcip->ehci_periodic_frame_list_tablep, real_length);
1585 
1586 	/* Initialize the Periodic Frame List */
1587 	ehci_build_interrupt_lattice(ehcip);
1588 
1589 	/* Reset Byte Alignment to Default */
1590 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
1591 
1592 	return (DDI_SUCCESS);
1593 failure:
1594 	/* Byte alignment */
1595 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
1596 
1597 	return (DDI_FAILURE);
1598 }
1599 
1600 
1601 /*
1602  * ehci_build_interrupt_lattice:
1603  *
1604  * Construct the interrupt lattice tree using static Endpoint Descriptors
1605  * (QH). This interrupt lattice tree will have total of 32 interrupt  QH
1606  * lists and the Host Controller (HC) processes one interrupt QH list in
1607  * every frame. The Host Controller traverses the periodic schedule by
1608  * constructing an array offset reference from the Periodic List Base Address
1609  * register and bits 12 to 3 of Frame Index register. It fetches the element
1610  * and begins traversing the graph of linked schedule data structures.
1611  */
1612 static void
1613 ehci_build_interrupt_lattice(ehci_state_t	*ehcip)
1614 {
1615 	ehci_qh_t	*list_array = ehcip->ehci_qh_pool_addr;
1616 	ushort_t	ehci_index[EHCI_NUM_PERIODIC_FRAME_LISTS];
1617 	ehci_periodic_frame_list_t *periodic_frame_list =
1618 	    ehcip->ehci_periodic_frame_list_tablep;
1619 	ushort_t	*temp, num_of_nodes;
1620 	uintptr_t	addr;
1621 	int		i, j, k;
1622 
1623 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1624 	    "ehci_build_interrupt_lattice:");
1625 
1626 	/*
1627 	 * Reserve the first 63 Endpoint Descriptor (QH) structures
1628 	 * in the pool as static endpoints & these are required for
1629 	 * constructing interrupt lattice tree.
1630 	 */
1631 	for (i = 0; i < EHCI_NUM_STATIC_NODES; i++) {
1632 		Set_QH(list_array[i].qh_state, EHCI_QH_STATIC);
1633 		Set_QH(list_array[i].qh_status, EHCI_QH_STS_HALTED);
1634 		Set_QH(list_array[i].qh_next_qtd, EHCI_QH_NEXT_QTD_PTR_VALID);
1635 		Set_QH(list_array[i].qh_alt_next_qtd,
1636 		    EHCI_QH_ALT_NEXT_QTD_PTR_VALID);
1637 	}
1638 
1639 	/*
1640 	 * Make sure that last Endpoint on the periodic frame list terminates
1641 	 * periodic schedule.
1642 	 */
1643 	Set_QH(list_array[0].qh_link_ptr, EHCI_QH_LINK_PTR_VALID);
1644 
1645 	/* Build the interrupt lattice tree */
1646 	for (i = 0; i < (EHCI_NUM_STATIC_NODES / 2); i++) {
1647 		/*
1648 		 * The next  pointer in the host controller  endpoint
1649 		 * descriptor must contain an iommu address. Calculate
1650 		 * the offset into the cpu address and add this to the
1651 		 * starting iommu address.
1652 		 */
1653 		addr = ehci_qh_cpu_to_iommu(ehcip, (ehci_qh_t *)&list_array[i]);
1654 
1655 		Set_QH(list_array[2*i + 1].qh_link_ptr,
1656 		    addr | EHCI_QH_LINK_REF_QH);
1657 		Set_QH(list_array[2*i + 2].qh_link_ptr,
1658 		    addr | EHCI_QH_LINK_REF_QH);
1659 	}
1660 
1661 	/* Build the tree bottom */
1662 	temp = (unsigned short *)
1663 	    kmem_zalloc(EHCI_NUM_PERIODIC_FRAME_LISTS * 2, KM_SLEEP);
1664 
1665 	num_of_nodes = 1;
1666 
1667 	/*
1668 	 * Initialize the values which are used for setting up head pointers
1669 	 * for the 32ms scheduling lists which starts from the Periodic Frame
1670 	 * List.
1671 	 */
1672 	for (i = 0; i < ehci_log_2(EHCI_NUM_PERIODIC_FRAME_LISTS); i++) {
1673 		for (j = 0, k = 0; k < num_of_nodes; k++, j++) {
1674 			ehci_index[j++] = temp[k];
1675 			ehci_index[j]	= temp[k] + ehci_pow_2(i);
1676 		}
1677 
1678 		num_of_nodes *= 2;
1679 		for (k = 0; k < num_of_nodes; k++)
1680 			temp[k] = ehci_index[k];
1681 	}
1682 
1683 	kmem_free((void *)temp, (EHCI_NUM_PERIODIC_FRAME_LISTS * 2));
1684 
1685 	/*
1686 	 * Initialize the interrupt list in the Periodic Frame List Table
1687 	 * so that it points to the bottom of the tree.
1688 	 */
1689 	for (i = 0, j = 0; i < ehci_pow_2(TREE_HEIGHT); i++) {
1690 		addr = ehci_qh_cpu_to_iommu(ehcip, (ehci_qh_t *)
1691 		    (&list_array[((EHCI_NUM_STATIC_NODES + 1) / 2) + i - 1]));
1692 
1693 		ASSERT(addr);
1694 
1695 		for (k = 0; k < ehci_pow_2(TREE_HEIGHT); k++) {
1696 			Set_PFLT(periodic_frame_list->
1697 			    ehci_periodic_frame_list_table[ehci_index[j++]],
1698 			    (uint32_t)(addr | EHCI_QH_LINK_REF_QH));
1699 		}
1700 	}
1701 }
1702 
1703 
1704 /*
1705  * ehci_alloc_hcdi_ops:
1706  *
1707  * The HCDI interfaces or entry points are the software interfaces used by
1708  * the Universal Serial Bus Driver  (USBA) to  access the services of the
1709  * Host Controller Driver (HCD).  During HCD initialization, inform  USBA
1710  * about all available HCDI interfaces or entry points.
1711  */
1712 usba_hcdi_ops_t *
1713 ehci_alloc_hcdi_ops(ehci_state_t	*ehcip)
1714 {
1715 	usba_hcdi_ops_t			*usba_hcdi_ops;
1716 
1717 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1718 	    "ehci_alloc_hcdi_ops:");
1719 
1720 	usba_hcdi_ops = usba_alloc_hcdi_ops();
1721 
1722 	usba_hcdi_ops->usba_hcdi_ops_version = HCDI_OPS_VERSION;
1723 
1724 	usba_hcdi_ops->usba_hcdi_pm_support = ehci_hcdi_pm_support;
1725 	usba_hcdi_ops->usba_hcdi_pipe_open = ehci_hcdi_pipe_open;
1726 	usba_hcdi_ops->usba_hcdi_pipe_close = ehci_hcdi_pipe_close;
1727 
1728 	usba_hcdi_ops->usba_hcdi_pipe_reset = ehci_hcdi_pipe_reset;
1729 	usba_hcdi_ops->usba_hcdi_pipe_reset_data_toggle =
1730 	    ehci_hcdi_pipe_reset_data_toggle;
1731 
1732 	usba_hcdi_ops->usba_hcdi_pipe_ctrl_xfer = ehci_hcdi_pipe_ctrl_xfer;
1733 	usba_hcdi_ops->usba_hcdi_pipe_bulk_xfer = ehci_hcdi_pipe_bulk_xfer;
1734 	usba_hcdi_ops->usba_hcdi_pipe_intr_xfer = ehci_hcdi_pipe_intr_xfer;
1735 	usba_hcdi_ops->usba_hcdi_pipe_isoc_xfer = ehci_hcdi_pipe_isoc_xfer;
1736 
1737 	usba_hcdi_ops->usba_hcdi_bulk_transfer_size =
1738 	    ehci_hcdi_bulk_transfer_size;
1739 
1740 	usba_hcdi_ops->usba_hcdi_pipe_stop_intr_polling =
1741 	    ehci_hcdi_pipe_stop_intr_polling;
1742 	usba_hcdi_ops->usba_hcdi_pipe_stop_isoc_polling =
1743 	    ehci_hcdi_pipe_stop_isoc_polling;
1744 
1745 	usba_hcdi_ops->usba_hcdi_get_current_frame_number =
1746 	    ehci_hcdi_get_current_frame_number;
1747 	usba_hcdi_ops->usba_hcdi_get_max_isoc_pkts =
1748 	    ehci_hcdi_get_max_isoc_pkts;
1749 
1750 	usba_hcdi_ops->usba_hcdi_console_input_init =
1751 	    ehci_hcdi_polled_input_init;
1752 	usba_hcdi_ops->usba_hcdi_console_input_enter =
1753 	    ehci_hcdi_polled_input_enter;
1754 	usba_hcdi_ops->usba_hcdi_console_read =
1755 	    ehci_hcdi_polled_read;
1756 	usba_hcdi_ops->usba_hcdi_console_input_exit =
1757 	    ehci_hcdi_polled_input_exit;
1758 	usba_hcdi_ops->usba_hcdi_console_input_fini =
1759 	    ehci_hcdi_polled_input_fini;
1760 
1761 	usba_hcdi_ops->usba_hcdi_console_output_init =
1762 	    ehci_hcdi_polled_output_init;
1763 	usba_hcdi_ops->usba_hcdi_console_output_enter =
1764 	    ehci_hcdi_polled_output_enter;
1765 	usba_hcdi_ops->usba_hcdi_console_write =
1766 	    ehci_hcdi_polled_write;
1767 	usba_hcdi_ops->usba_hcdi_console_output_exit =
1768 	    ehci_hcdi_polled_output_exit;
1769 	usba_hcdi_ops->usba_hcdi_console_output_fini =
1770 	    ehci_hcdi_polled_output_fini;
1771 	return (usba_hcdi_ops);
1772 }
1773 
1774 
1775 /*
1776  * Host Controller Driver (HCD) deinitialization functions
1777  */
1778 
1779 /*
1780  * ehci_cleanup:
1781  *
1782  * Cleanup on attach failure or detach
1783  */
1784 int
1785 ehci_cleanup(ehci_state_t	*ehcip)
1786 {
1787 	ehci_trans_wrapper_t	*tw;
1788 	ehci_pipe_private_t	*pp;
1789 	ehci_qtd_t		*qtd;
1790 	int			i, ctrl, rval;
1791 	int			flags = ehcip->ehci_flags;
1792 
1793 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_cleanup:");
1794 
1795 	if (flags & EHCI_RHREG) {
1796 		/* Unload the root hub driver */
1797 		if (ehci_unload_root_hub_driver(ehcip) != USB_SUCCESS) {
1798 
1799 			return (DDI_FAILURE);
1800 		}
1801 	}
1802 
1803 	if (flags & EHCI_USBAREG) {
1804 		/* Unregister this HCD instance with USBA */
1805 		usba_hcdi_unregister(ehcip->ehci_dip);
1806 	}
1807 
1808 	if (flags & EHCI_INTR) {
1809 
1810 		mutex_enter(&ehcip->ehci_int_mutex);
1811 
1812 		/* Disable all EHCI QH list processing */
1813 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) &
1814 		    ~(EHCI_CMD_ASYNC_SCHED_ENABLE |
1815 		    EHCI_CMD_PERIODIC_SCHED_ENABLE)));
1816 
1817 		/* Disable all EHCI interrupts */
1818 		Set_OpReg(ehci_interrupt, 0);
1819 
1820 		/* wait for the next SOF */
1821 		(void) ehci_wait_for_sof(ehcip);
1822 
1823 		/* Route all Root hub ports to Classic host controller */
1824 		Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_CLASSIC);
1825 
1826 		/* Stop the EHCI host controller */
1827 		Set_OpReg(ehci_command,
1828 		    Get_OpReg(ehci_command) & ~EHCI_CMD_HOST_CTRL_RUN);
1829 
1830 		mutex_exit(&ehcip->ehci_int_mutex);
1831 
1832 		/* Wait for sometime */
1833 		delay(drv_usectohz(EHCI_TIMEWAIT));
1834 
1835 		ehci_rem_intrs(ehcip);
1836 	}
1837 
1838 	/* Unmap the EHCI registers */
1839 	if (ehcip->ehci_caps_handle) {
1840 		ddi_regs_map_free(&ehcip->ehci_caps_handle);
1841 	}
1842 
1843 	if (ehcip->ehci_config_handle) {
1844 		pci_config_teardown(&ehcip->ehci_config_handle);
1845 	}
1846 
1847 	/* Free all the buffers */
1848 	if (ehcip->ehci_qtd_pool_addr && ehcip->ehci_qtd_pool_mem_handle) {
1849 		for (i = 0; i < ehci_qtd_pool_size; i ++) {
1850 			qtd = &ehcip->ehci_qtd_pool_addr[i];
1851 			ctrl = Get_QTD(ehcip->
1852 			    ehci_qtd_pool_addr[i].qtd_state);
1853 
1854 			if ((ctrl != EHCI_QTD_FREE) &&
1855 			    (ctrl != EHCI_QTD_DUMMY) &&
1856 			    (qtd->qtd_trans_wrapper)) {
1857 
1858 				mutex_enter(&ehcip->ehci_int_mutex);
1859 
1860 				tw = (ehci_trans_wrapper_t *)
1861 				    EHCI_LOOKUP_ID((uint32_t)
1862 				    Get_QTD(qtd->qtd_trans_wrapper));
1863 
1864 				/* Obtain the pipe private structure */
1865 				pp = tw->tw_pipe_private;
1866 
1867 				/* Stop the the transfer timer */
1868 				ehci_stop_xfer_timer(ehcip, tw,
1869 				    EHCI_REMOVE_XFER_ALWAYS);
1870 
1871 				ehci_deallocate_tw(ehcip, pp, tw);
1872 
1873 				mutex_exit(&ehcip->ehci_int_mutex);
1874 			}
1875 		}
1876 
1877 		/*
1878 		 * If EHCI_QTD_POOL_BOUND flag is set, then unbind
1879 		 * the handle for QTD pools.
1880 		 */
1881 		if ((ehcip->ehci_dma_addr_bind_flag &
1882 		    EHCI_QTD_POOL_BOUND) == EHCI_QTD_POOL_BOUND) {
1883 
1884 			rval = ddi_dma_unbind_handle(
1885 			    ehcip->ehci_qtd_pool_dma_handle);
1886 
1887 			ASSERT(rval == DDI_SUCCESS);
1888 		}
1889 		ddi_dma_mem_free(&ehcip->ehci_qtd_pool_mem_handle);
1890 	}
1891 
1892 	/* Free the QTD pool */
1893 	if (ehcip->ehci_qtd_pool_dma_handle) {
1894 		ddi_dma_free_handle(&ehcip->ehci_qtd_pool_dma_handle);
1895 	}
1896 
1897 	if (ehcip->ehci_qh_pool_addr && ehcip->ehci_qh_pool_mem_handle) {
1898 		/*
1899 		 * If EHCI_QH_POOL_BOUND flag is set, then unbind
1900 		 * the handle for QH pools.
1901 		 */
1902 		if ((ehcip->ehci_dma_addr_bind_flag &
1903 		    EHCI_QH_POOL_BOUND) == EHCI_QH_POOL_BOUND) {
1904 
1905 			rval = ddi_dma_unbind_handle(
1906 			    ehcip->ehci_qh_pool_dma_handle);
1907 
1908 			ASSERT(rval == DDI_SUCCESS);
1909 		}
1910 
1911 		ddi_dma_mem_free(&ehcip->ehci_qh_pool_mem_handle);
1912 	}
1913 
1914 	/* Free the QH pool */
1915 	if (ehcip->ehci_qh_pool_dma_handle) {
1916 		ddi_dma_free_handle(&ehcip->ehci_qh_pool_dma_handle);
1917 	}
1918 
1919 	/* Free the Periodic frame list table (PFLT) area */
1920 	if (ehcip->ehci_periodic_frame_list_tablep &&
1921 	    ehcip->ehci_pflt_mem_handle) {
1922 		/*
1923 		 * If EHCI_PFLT_DMA_BOUND flag is set, then unbind
1924 		 * the handle for PFLT.
1925 		 */
1926 		if ((ehcip->ehci_dma_addr_bind_flag &
1927 		    EHCI_PFLT_DMA_BOUND) == EHCI_PFLT_DMA_BOUND) {
1928 
1929 			rval = ddi_dma_unbind_handle(
1930 			    ehcip->ehci_pflt_dma_handle);
1931 
1932 			ASSERT(rval == DDI_SUCCESS);
1933 		}
1934 
1935 		ddi_dma_mem_free(&ehcip->ehci_pflt_mem_handle);
1936 	}
1937 
1938 	(void) ehci_isoc_cleanup(ehcip);
1939 
1940 	if (ehcip->ehci_pflt_dma_handle) {
1941 		ddi_dma_free_handle(&ehcip->ehci_pflt_dma_handle);
1942 	}
1943 
1944 	if (flags & EHCI_INTR) {
1945 		/* Destroy the mutex */
1946 		mutex_destroy(&ehcip->ehci_int_mutex);
1947 
1948 		/* Destroy the async schedule advance condition variable */
1949 		cv_destroy(&ehcip->ehci_async_schedule_advance_cv);
1950 	}
1951 
1952 	/* clean up kstat structs */
1953 	ehci_destroy_stats(ehcip);
1954 
1955 	/* Free ehci hcdi ops */
1956 	if (ehcip->ehci_hcdi_ops) {
1957 		usba_free_hcdi_ops(ehcip->ehci_hcdi_ops);
1958 	}
1959 
1960 	if (flags & EHCI_ZALLOC) {
1961 
1962 		usb_free_log_hdl(ehcip->ehci_log_hdl);
1963 
1964 		/* Remove all properties that might have been created */
1965 		ddi_prop_remove_all(ehcip->ehci_dip);
1966 
1967 		/* Free the soft state */
1968 		ddi_soft_state_free(ehci_statep,
1969 		    ddi_get_instance(ehcip->ehci_dip));
1970 	}
1971 
1972 	return (DDI_SUCCESS);
1973 }
1974 
1975 
1976 /*
1977  * ehci_rem_intrs:
1978  *
1979  * Unregister FIXED or MSI interrupts
1980  */
1981 static void
1982 ehci_rem_intrs(ehci_state_t	*ehcip)
1983 {
1984 	int	i;
1985 
1986 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1987 	    "ehci_rem_intrs: interrupt type 0x%x", ehcip->ehci_intr_type);
1988 
1989 	/* Disable all interrupts */
1990 	if (ehcip->ehci_intr_cap & DDI_INTR_FLAG_BLOCK) {
1991 		(void) ddi_intr_block_disable(ehcip->ehci_htable,
1992 		    ehcip->ehci_intr_cnt);
1993 	} else {
1994 		for (i = 0; i < ehcip->ehci_intr_cnt; i++) {
1995 			(void) ddi_intr_disable(ehcip->ehci_htable[i]);
1996 		}
1997 	}
1998 
1999 	/* Call ddi_intr_remove_handler() */
2000 	for (i = 0; i < ehcip->ehci_intr_cnt; i++) {
2001 		(void) ddi_intr_remove_handler(ehcip->ehci_htable[i]);
2002 		(void) ddi_intr_free(ehcip->ehci_htable[i]);
2003 	}
2004 
2005 	kmem_free(ehcip->ehci_htable,
2006 	    ehcip->ehci_intr_cnt * sizeof (ddi_intr_handle_t));
2007 }
2008 
2009 
2010 /*
2011  * ehci_cpr_suspend
2012  */
2013 int
2014 ehci_cpr_suspend(ehci_state_t	*ehcip)
2015 {
2016 	int	i;
2017 
2018 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2019 	    "ehci_cpr_suspend:");
2020 
2021 	/* Call into the root hub and suspend it */
2022 	if (usba_hubdi_detach(ehcip->ehci_dip, DDI_SUSPEND) != DDI_SUCCESS) {
2023 
2024 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2025 		    "ehci_cpr_suspend: root hub fails to suspend");
2026 
2027 		return (DDI_FAILURE);
2028 	}
2029 
2030 	/* Only root hub's intr pipe should be open at this time */
2031 	mutex_enter(&ehcip->ehci_int_mutex);
2032 
2033 	ASSERT(ehcip->ehci_open_pipe_count == 0);
2034 
2035 	/* Just wait till all resources are reclaimed */
2036 	i = 0;
2037 	while ((ehcip->ehci_reclaim_list != NULL) && (i++ < 3)) {
2038 		ehci_handle_endpoint_reclaimation(ehcip);
2039 		(void) ehci_wait_for_sof(ehcip);
2040 	}
2041 	ASSERT(ehcip->ehci_reclaim_list == NULL);
2042 
2043 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2044 	    "ehci_cpr_suspend: Disable HC QH list processing");
2045 
2046 	/* Disable all EHCI QH list processing */
2047 	Set_OpReg(ehci_command, (Get_OpReg(ehci_command) &
2048 	    ~(EHCI_CMD_ASYNC_SCHED_ENABLE | EHCI_CMD_PERIODIC_SCHED_ENABLE)));
2049 
2050 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2051 	    "ehci_cpr_suspend: Disable HC interrupts");
2052 
2053 	/* Disable all EHCI interrupts */
2054 	Set_OpReg(ehci_interrupt, 0);
2055 
2056 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2057 	    "ehci_cpr_suspend: Wait for the next SOF");
2058 
2059 	/* Wait for the next SOF */
2060 	if (ehci_wait_for_sof(ehcip) != USB_SUCCESS) {
2061 
2062 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2063 		    "ehci_cpr_suspend: ehci host controller suspend failed");
2064 
2065 		mutex_exit(&ehcip->ehci_int_mutex);
2066 		return (DDI_FAILURE);
2067 	}
2068 
2069 	/*
2070 	 * Stop the ehci host controller
2071 	 * if usb keyboard is not connected.
2072 	 */
2073 	if (ehcip->ehci_polled_kbd_count == 0 || force_ehci_off != 0) {
2074 		Set_OpReg(ehci_command,
2075 		    Get_OpReg(ehci_command) & ~EHCI_CMD_HOST_CTRL_RUN);
2076 
2077 	}
2078 
2079 	/* Set host controller soft state to suspend */
2080 	ehcip->ehci_hc_soft_state = EHCI_CTLR_SUSPEND_STATE;
2081 
2082 	mutex_exit(&ehcip->ehci_int_mutex);
2083 
2084 	return (DDI_SUCCESS);
2085 }
2086 
2087 
2088 /*
2089  * ehci_cpr_resume
2090  */
2091 int
2092 ehci_cpr_resume(ehci_state_t	*ehcip)
2093 {
2094 	mutex_enter(&ehcip->ehci_int_mutex);
2095 
2096 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2097 	    "ehci_cpr_resume: Restart the controller");
2098 
2099 	/* Cleanup ehci specific information across cpr */
2100 	ehci_cpr_cleanup(ehcip);
2101 
2102 	/* Restart the controller */
2103 	if (ehci_init_ctlr(ehcip, EHCI_NORMAL_INITIALIZATION) != DDI_SUCCESS) {
2104 
2105 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2106 		    "ehci_cpr_resume: ehci host controller resume failed ");
2107 
2108 		mutex_exit(&ehcip->ehci_int_mutex);
2109 
2110 		return (DDI_FAILURE);
2111 	}
2112 
2113 	mutex_exit(&ehcip->ehci_int_mutex);
2114 
2115 	/* Now resume the root hub */
2116 	if (usba_hubdi_attach(ehcip->ehci_dip, DDI_RESUME) != DDI_SUCCESS) {
2117 
2118 		return (DDI_FAILURE);
2119 	}
2120 
2121 	return (DDI_SUCCESS);
2122 }
2123 
2124 
2125 /*
2126  * Bandwidth Allocation functions
2127  */
2128 
2129 /*
2130  * ehci_allocate_bandwidth:
2131  *
2132  * Figure out whether or not this interval may be supported. Return the index
2133  * into the  lattice if it can be supported.  Return allocation failure if it
2134  * can not be supported.
2135  */
2136 int
2137 ehci_allocate_bandwidth(
2138 	ehci_state_t		*ehcip,
2139 	usba_pipe_handle_data_t	*ph,
2140 	uint_t			*pnode,
2141 	uchar_t			*smask,
2142 	uchar_t			*cmask)
2143 {
2144 	int			error = USB_SUCCESS;
2145 
2146 	/* This routine is protected by the ehci_int_mutex */
2147 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2148 
2149 	/* Reset the pnode to the last checked pnode */
2150 	*pnode = 0;
2151 
2152 	/* Allocate high speed bandwidth */
2153 	if ((error = ehci_allocate_high_speed_bandwidth(ehcip,
2154 	    ph, pnode, smask, cmask)) != USB_SUCCESS) {
2155 
2156 		return (error);
2157 	}
2158 
2159 	/*
2160 	 * For low/full speed usb devices, allocate classic TT bandwidth
2161 	 * in additional to high speed bandwidth.
2162 	 */
2163 	if (ph->p_usba_device->usb_port_status != USBA_HIGH_SPEED_DEV) {
2164 
2165 		/* Allocate classic TT bandwidth */
2166 		if ((error = ehci_allocate_classic_tt_bandwidth(
2167 		    ehcip, ph, *pnode)) != USB_SUCCESS) {
2168 
2169 			/* Deallocate high speed bandwidth */
2170 			ehci_deallocate_high_speed_bandwidth(
2171 			    ehcip, ph, *pnode, *smask, *cmask);
2172 		}
2173 	}
2174 
2175 	return (error);
2176 }
2177 
2178 
2179 /*
2180  * ehci_allocate_high_speed_bandwidth:
2181  *
2182  * Allocate high speed bandwidth for the low/full/high speed interrupt and
2183  * isochronous endpoints.
2184  */
2185 static int
2186 ehci_allocate_high_speed_bandwidth(
2187 	ehci_state_t		*ehcip,
2188 	usba_pipe_handle_data_t	*ph,
2189 	uint_t			*pnode,
2190 	uchar_t			*smask,
2191 	uchar_t			*cmask)
2192 {
2193 	uint_t			sbandwidth, cbandwidth;
2194 	int			interval;
2195 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2196 	usba_device_t		*child_ud;
2197 	usb_port_status_t	port_status;
2198 	int			error;
2199 
2200 	/* This routine is protected by the ehci_int_mutex */
2201 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2202 
2203 	/* Get child's usba device structure */
2204 	child_ud = ph->p_usba_device;
2205 
2206 	mutex_enter(&child_ud->usb_mutex);
2207 
2208 	/* Get the current usb device's port status */
2209 	port_status = ph->p_usba_device->usb_port_status;
2210 
2211 	mutex_exit(&child_ud->usb_mutex);
2212 
2213 	/*
2214 	 * Calculate the length in bytes of a transaction on this
2215 	 * periodic endpoint. Return failure if maximum packet is
2216 	 * zero.
2217 	 */
2218 	error = ehci_compute_high_speed_bandwidth(ehcip, endpoint,
2219 	    port_status, &sbandwidth, &cbandwidth);
2220 	if (error != USB_SUCCESS) {
2221 
2222 		return (error);
2223 	}
2224 
2225 	/*
2226 	 * Adjust polling interval to be a power of 2.
2227 	 * If this interval can't be supported, return
2228 	 * allocation failure.
2229 	 */
2230 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2231 	if (interval == USB_FAILURE) {
2232 
2233 		return (USB_FAILURE);
2234 	}
2235 
2236 	if (port_status == USBA_HIGH_SPEED_DEV) {
2237 		/* Allocate bandwidth for high speed devices */
2238 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2239 		    USB_EP_ATTR_ISOCH) {
2240 			error = USB_SUCCESS;
2241 		} else {
2242 
2243 			error = ehci_find_bestfit_hs_mask(ehcip, smask, pnode,
2244 			    endpoint, sbandwidth, interval);
2245 		}
2246 
2247 		*cmask = 0x00;
2248 
2249 	} else {
2250 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2251 		    USB_EP_ATTR_INTR) {
2252 
2253 			/* Allocate bandwidth for low speed interrupt */
2254 			error = ehci_find_bestfit_ls_intr_mask(ehcip,
2255 			    smask, cmask, pnode, sbandwidth, cbandwidth,
2256 			    interval);
2257 		} else {
2258 			if ((endpoint->bEndpointAddress &
2259 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2260 
2261 				/* Allocate bandwidth for sitd in */
2262 				error = ehci_find_bestfit_sitd_in_mask(ehcip,
2263 				    smask, cmask, pnode, sbandwidth, cbandwidth,
2264 				    interval);
2265 			} else {
2266 
2267 				/* Allocate bandwidth for sitd out */
2268 				error = ehci_find_bestfit_sitd_out_mask(ehcip,
2269 				    smask, pnode, sbandwidth, interval);
2270 				*cmask = 0x00;
2271 			}
2272 		}
2273 	}
2274 
2275 	if (error != USB_SUCCESS) {
2276 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2277 		    "ehci_allocate_high_speed_bandwidth: Reached maximum "
2278 		    "bandwidth value and cannot allocate bandwidth for a "
2279 		    "given high-speed periodic endpoint");
2280 
2281 		return (USB_NO_BANDWIDTH);
2282 	}
2283 
2284 	return (error);
2285 }
2286 
2287 
2288 /*
2289  * ehci_allocate_classic_tt_speed_bandwidth:
2290  *
2291  * Allocate classic TT bandwidth for the low/full speed interrupt and
2292  * isochronous endpoints.
2293  */
2294 static int
2295 ehci_allocate_classic_tt_bandwidth(
2296 	ehci_state_t		*ehcip,
2297 	usba_pipe_handle_data_t	*ph,
2298 	uint_t			pnode)
2299 {
2300 	uint_t			bandwidth, min;
2301 	uint_t			height, leftmost, list;
2302 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2303 	usba_device_t		*child_ud, *parent_ud;
2304 	usb_port_status_t	port_status;
2305 	int			i, interval;
2306 
2307 	/* This routine is protected by the ehci_int_mutex */
2308 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2309 
2310 	/* Get child's usba device structure */
2311 	child_ud = ph->p_usba_device;
2312 
2313 	mutex_enter(&child_ud->usb_mutex);
2314 
2315 	/* Get the current usb device's port status */
2316 	port_status = child_ud->usb_port_status;
2317 
2318 	/* Get the parent high speed hub's usba device structure */
2319 	parent_ud = child_ud->usb_hs_hub_usba_dev;
2320 
2321 	mutex_exit(&child_ud->usb_mutex);
2322 
2323 	USB_DPRINTF_L3(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2324 	    "ehci_allocate_classic_tt_bandwidth: "
2325 	    "child_ud 0x%p parent_ud 0x%p",
2326 	    (void *)child_ud, (void *)parent_ud);
2327 
2328 	/*
2329 	 * Calculate the length in bytes of a transaction on this
2330 	 * periodic endpoint. Return failure if maximum packet is
2331 	 * zero.
2332 	 */
2333 	if (ehci_compute_classic_bandwidth(endpoint,
2334 	    port_status, &bandwidth) != USB_SUCCESS) {
2335 
2336 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2337 		    "ehci_allocate_classic_tt_bandwidth: Periodic endpoint "
2338 		    "with zero endpoint maximum packet size is not supported");
2339 
2340 		return (USB_NOT_SUPPORTED);
2341 	}
2342 
2343 	USB_DPRINTF_L3(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2344 	    "ehci_allocate_classic_tt_bandwidth: bandwidth %d", bandwidth);
2345 
2346 	mutex_enter(&parent_ud->usb_mutex);
2347 
2348 	/*
2349 	 * If the length in bytes plus the allocated bandwidth exceeds
2350 	 * the maximum, return bandwidth allocation failure.
2351 	 */
2352 	if ((parent_ud->usb_hs_hub_min_bandwidth + bandwidth) >
2353 	    FS_PERIODIC_BANDWIDTH) {
2354 
2355 		mutex_exit(&parent_ud->usb_mutex);
2356 
2357 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2358 		    "ehci_allocate_classic_tt_bandwidth: Reached maximum "
2359 		    "bandwidth value and cannot allocate bandwidth for a "
2360 		    "given low/full speed periodic endpoint");
2361 
2362 		return (USB_NO_BANDWIDTH);
2363 	}
2364 
2365 	mutex_exit(&parent_ud->usb_mutex);
2366 
2367 	/* Adjust polling interval to be a power of 2 */
2368 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2369 
2370 	/* Find the height in the tree */
2371 	height = ehci_lattice_height(interval);
2372 
2373 	/* Find the leftmost leaf in the subtree specified by the node. */
2374 	leftmost = ehci_leftmost_leaf(pnode, height);
2375 
2376 	mutex_enter(&parent_ud->usb_mutex);
2377 
2378 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2379 		list = ehci_index[leftmost + i];
2380 
2381 		if ((parent_ud->usb_hs_hub_bandwidth[list] +
2382 		    bandwidth) > FS_PERIODIC_BANDWIDTH) {
2383 
2384 			mutex_exit(&parent_ud->usb_mutex);
2385 
2386 			USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2387 			    "ehci_allocate_classic_tt_bandwidth: Reached "
2388 			    "maximum bandwidth value and cannot allocate "
2389 			    "bandwidth for low/full periodic endpoint");
2390 
2391 			return (USB_NO_BANDWIDTH);
2392 		}
2393 	}
2394 
2395 	/*
2396 	 * All the leaves for this node must be updated with the bandwidth.
2397 	 */
2398 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2399 		list = ehci_index[leftmost + i];
2400 		parent_ud->usb_hs_hub_bandwidth[list] += bandwidth;
2401 	}
2402 
2403 	/* Find the leaf with the smallest allocated bandwidth */
2404 	min = parent_ud->usb_hs_hub_bandwidth[0];
2405 
2406 	for (i = 1; i < EHCI_NUM_INTR_QH_LISTS; i++) {
2407 		if (parent_ud->usb_hs_hub_bandwidth[i] < min) {
2408 			min = parent_ud->usb_hs_hub_bandwidth[i];
2409 		}
2410 	}
2411 
2412 	/* Save the minimum for later use */
2413 	parent_ud->usb_hs_hub_min_bandwidth = min;
2414 
2415 	mutex_exit(&parent_ud->usb_mutex);
2416 
2417 	return (USB_SUCCESS);
2418 }
2419 
2420 
2421 /*
2422  * ehci_deallocate_bandwidth:
2423  *
2424  * Deallocate bandwidth for the given node in the lattice and the length
2425  * of transfer.
2426  */
2427 void
2428 ehci_deallocate_bandwidth(
2429 	ehci_state_t		*ehcip,
2430 	usba_pipe_handle_data_t	*ph,
2431 	uint_t			pnode,
2432 	uchar_t			smask,
2433 	uchar_t			cmask)
2434 {
2435 	/* This routine is protected by the ehci_int_mutex */
2436 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2437 
2438 	ehci_deallocate_high_speed_bandwidth(ehcip, ph, pnode, smask, cmask);
2439 
2440 	/*
2441 	 * For low/full speed usb devices, deallocate classic TT bandwidth
2442 	 * in additional to high speed bandwidth.
2443 	 */
2444 	if (ph->p_usba_device->usb_port_status != USBA_HIGH_SPEED_DEV) {
2445 
2446 		/* Deallocate classic TT bandwidth */
2447 		ehci_deallocate_classic_tt_bandwidth(ehcip, ph, pnode);
2448 	}
2449 }
2450 
2451 
2452 /*
2453  * ehci_deallocate_high_speed_bandwidth:
2454  *
2455  * Deallocate high speed bandwidth of a interrupt or isochronous endpoint.
2456  */
2457 static void
2458 ehci_deallocate_high_speed_bandwidth(
2459 	ehci_state_t		*ehcip,
2460 	usba_pipe_handle_data_t	*ph,
2461 	uint_t			pnode,
2462 	uchar_t			smask,
2463 	uchar_t			cmask)
2464 {
2465 	uint_t			height, leftmost;
2466 	uint_t			list_count;
2467 	uint_t			sbandwidth, cbandwidth;
2468 	int			interval;
2469 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2470 	usba_device_t		*child_ud;
2471 	usb_port_status_t	port_status;
2472 
2473 	/* This routine is protected by the ehci_int_mutex */
2474 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2475 
2476 	/* Get child's usba device structure */
2477 	child_ud = ph->p_usba_device;
2478 
2479 	mutex_enter(&child_ud->usb_mutex);
2480 
2481 	/* Get the current usb device's port status */
2482 	port_status = ph->p_usba_device->usb_port_status;
2483 
2484 	mutex_exit(&child_ud->usb_mutex);
2485 
2486 	(void) ehci_compute_high_speed_bandwidth(ehcip, endpoint,
2487 	    port_status, &sbandwidth, &cbandwidth);
2488 
2489 	/* Adjust polling interval to be a power of 2 */
2490 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2491 
2492 	/* Find the height in the tree */
2493 	height = ehci_lattice_height(interval);
2494 
2495 	/*
2496 	 * Find the leftmost leaf in the subtree specified by the node
2497 	 */
2498 	leftmost = ehci_leftmost_leaf(pnode, height);
2499 
2500 	list_count = EHCI_NUM_INTR_QH_LISTS/interval;
2501 
2502 	/* Delete the bandwidth from the appropriate lists */
2503 	if (port_status == USBA_HIGH_SPEED_DEV) {
2504 
2505 		ehci_update_bw_availability(ehcip, -sbandwidth,
2506 		    leftmost, list_count, smask);
2507 	} else {
2508 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2509 		    USB_EP_ATTR_INTR) {
2510 
2511 			ehci_update_bw_availability(ehcip, -sbandwidth,
2512 			    leftmost, list_count, smask);
2513 			ehci_update_bw_availability(ehcip, -cbandwidth,
2514 			    leftmost, list_count, cmask);
2515 		} else {
2516 			if ((endpoint->bEndpointAddress &
2517 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2518 
2519 				ehci_update_bw_availability(ehcip, -sbandwidth,
2520 				    leftmost, list_count, smask);
2521 				ehci_update_bw_availability(ehcip,
2522 				    -MAX_UFRAME_SITD_XFER, leftmost,
2523 				    list_count, cmask);
2524 			} else {
2525 
2526 				ehci_update_bw_availability(ehcip,
2527 				    -MAX_UFRAME_SITD_XFER, leftmost,
2528 				    list_count, smask);
2529 			}
2530 		}
2531 	}
2532 }
2533 
2534 /*
2535  * ehci_deallocate_classic_tt_bandwidth:
2536  *
2537  * Deallocate high speed bandwidth of a interrupt or isochronous endpoint.
2538  */
2539 static void
2540 ehci_deallocate_classic_tt_bandwidth(
2541 	ehci_state_t		*ehcip,
2542 	usba_pipe_handle_data_t	*ph,
2543 	uint_t			pnode)
2544 {
2545 	uint_t			bandwidth, height, leftmost, list, min;
2546 	int			i, interval;
2547 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2548 	usba_device_t		*child_ud, *parent_ud;
2549 	usb_port_status_t	port_status;
2550 
2551 	/* This routine is protected by the ehci_int_mutex */
2552 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2553 
2554 	/* Get child's usba device structure */
2555 	child_ud = ph->p_usba_device;
2556 
2557 	mutex_enter(&child_ud->usb_mutex);
2558 
2559 	/* Get the current usb device's port status */
2560 	port_status = child_ud->usb_port_status;
2561 
2562 	/* Get the parent high speed hub's usba device structure */
2563 	parent_ud = child_ud->usb_hs_hub_usba_dev;
2564 
2565 	mutex_exit(&child_ud->usb_mutex);
2566 
2567 	/* Obtain the bandwidth */
2568 	(void) ehci_compute_classic_bandwidth(endpoint,
2569 	    port_status, &bandwidth);
2570 
2571 	/* Adjust polling interval to be a power of 2 */
2572 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2573 
2574 	/* Find the height in the tree */
2575 	height = ehci_lattice_height(interval);
2576 
2577 	/* Find the leftmost leaf in the subtree specified by the node */
2578 	leftmost = ehci_leftmost_leaf(pnode, height);
2579 
2580 	mutex_enter(&parent_ud->usb_mutex);
2581 
2582 	/* Delete the bandwidth from the appropriate lists */
2583 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2584 		list = ehci_index[leftmost + i];
2585 		parent_ud->usb_hs_hub_bandwidth[list] -= bandwidth;
2586 	}
2587 
2588 	/* Find the leaf with the smallest allocated bandwidth */
2589 	min = parent_ud->usb_hs_hub_bandwidth[0];
2590 
2591 	for (i = 1; i < EHCI_NUM_INTR_QH_LISTS; i++) {
2592 		if (parent_ud->usb_hs_hub_bandwidth[i] < min) {
2593 			min = parent_ud->usb_hs_hub_bandwidth[i];
2594 		}
2595 	}
2596 
2597 	/* Save the minimum for later use */
2598 	parent_ud->usb_hs_hub_min_bandwidth = min;
2599 
2600 	mutex_exit(&parent_ud->usb_mutex);
2601 }
2602 
2603 
2604 /*
2605  * ehci_compute_high_speed_bandwidth:
2606  *
2607  * Given a periodic endpoint (interrupt or isochronous) determine the total
2608  * bandwidth for one transaction. The EHCI host controller traverses the
2609  * endpoint descriptor lists on a first-come-first-serve basis. When the HC
2610  * services an endpoint, only a single transaction attempt is made. The  HC
2611  * moves to the next Endpoint Descriptor after the first transaction attempt
2612  * rather than finishing the entire Transfer Descriptor. Therefore, when  a
2613  * Transfer Descriptor is inserted into the lattice, we will only count the
2614  * number of bytes for one transaction.
2615  *
2616  * The following are the formulas used for  calculating bandwidth in  terms
2617  * bytes and it is for the single USB high speed transaction.  The protocol
2618  * overheads will be different for each of type of USB transfer & all these
2619  * formulas & protocol overheads are derived from the 5.11.3 section of the
2620  * USB 2.0 Specification.
2621  *
2622  * High-Speed:
2623  *		Protocol overhead + ((MaxPktSz * 7)/6) + Host_Delay
2624  *
2625  * Split Transaction: (Low/Full speed devices connected behind usb2.0 hub)
2626  *
2627  *		Protocol overhead + Split transaction overhead +
2628  *			((MaxPktSz * 7)/6) + Host_Delay;
2629  */
2630 /* ARGSUSED */
2631 static int
2632 ehci_compute_high_speed_bandwidth(
2633 	ehci_state_t		*ehcip,
2634 	usb_ep_descr_t		*endpoint,
2635 	usb_port_status_t	port_status,
2636 	uint_t			*sbandwidth,
2637 	uint_t			*cbandwidth)
2638 {
2639 	ushort_t		maxpacketsize = endpoint->wMaxPacketSize;
2640 
2641 	/* Return failure if endpoint maximum packet is zero */
2642 	if (maxpacketsize == 0) {
2643 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2644 		    "ehci_allocate_high_speed_bandwidth: Periodic endpoint "
2645 		    "with zero endpoint maximum packet size is not supported");
2646 
2647 		return (USB_NOT_SUPPORTED);
2648 	}
2649 
2650 	/* Add bit-stuffing overhead */
2651 	maxpacketsize = (ushort_t)((maxpacketsize * 7) / 6);
2652 
2653 	/* Add Host Controller specific delay to required bandwidth */
2654 	*sbandwidth = EHCI_HOST_CONTROLLER_DELAY;
2655 
2656 	/* Add xfer specific protocol overheads */
2657 	if ((endpoint->bmAttributes &
2658 	    USB_EP_ATTR_MASK) == USB_EP_ATTR_INTR) {
2659 		/* High speed interrupt transaction */
2660 		*sbandwidth += HS_NON_ISOC_PROTO_OVERHEAD;
2661 	} else {
2662 		/* Isochronous transaction */
2663 		*sbandwidth += HS_ISOC_PROTO_OVERHEAD;
2664 	}
2665 
2666 	/*
2667 	 * For low/full speed devices, add split transaction specific
2668 	 * overheads.
2669 	 */
2670 	if (port_status != USBA_HIGH_SPEED_DEV) {
2671 		/*
2672 		 * Add start and complete split transaction
2673 		 * tokens overheads.
2674 		 */
2675 		*cbandwidth = *sbandwidth + COMPLETE_SPLIT_OVERHEAD;
2676 		*sbandwidth += START_SPLIT_OVERHEAD;
2677 
2678 		/* Add data overhead depending on data direction */
2679 		if ((endpoint->bEndpointAddress &
2680 		    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2681 			*cbandwidth += maxpacketsize;
2682 		} else {
2683 			if ((endpoint->bmAttributes &
2684 			    USB_EP_ATTR_MASK) == USB_EP_ATTR_ISOCH) {
2685 				/* There is no compete splits for out */
2686 				*cbandwidth = 0;
2687 			}
2688 			*sbandwidth += maxpacketsize;
2689 		}
2690 	} else {
2691 		uint_t		xactions;
2692 
2693 		/* Get the max transactions per microframe */
2694 		xactions = ((maxpacketsize & USB_EP_MAX_XACTS_MASK) >>
2695 		    USB_EP_MAX_XACTS_SHIFT) + 1;
2696 
2697 		/* High speed transaction */
2698 		*sbandwidth += maxpacketsize;
2699 
2700 		/* Calculate bandwidth per micro-frame */
2701 		*sbandwidth *= xactions;
2702 
2703 		*cbandwidth = 0;
2704 	}
2705 
2706 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2707 	    "ehci_allocate_high_speed_bandwidth: "
2708 	    "Start split bandwidth %d Complete split bandwidth %d",
2709 	    *sbandwidth, *cbandwidth);
2710 
2711 	return (USB_SUCCESS);
2712 }
2713 
2714 
2715 /*
2716  * ehci_compute_classic_bandwidth:
2717  *
2718  * Given a periodic endpoint (interrupt or isochronous) determine the total
2719  * bandwidth for one transaction. The EHCI host controller traverses the
2720  * endpoint descriptor lists on a first-come-first-serve basis. When the HC
2721  * services an endpoint, only a single transaction attempt is made. The  HC
2722  * moves to the next Endpoint Descriptor after the first transaction attempt
2723  * rather than finishing the entire Transfer Descriptor. Therefore, when  a
2724  * Transfer Descriptor is inserted into the lattice, we will only count the
2725  * number of bytes for one transaction.
2726  *
2727  * The following are the formulas used for  calculating bandwidth in  terms
2728  * bytes and it is for the single USB high speed transaction.  The protocol
2729  * overheads will be different for each of type of USB transfer & all these
2730  * formulas & protocol overheads are derived from the 5.11.3 section of the
2731  * USB 2.0 Specification.
2732  *
2733  * Low-Speed:
2734  *		Protocol overhead + Hub LS overhead +
2735  *		(Low Speed clock * ((MaxPktSz * 7)/6)) + TT_Delay
2736  *
2737  * Full-Speed:
2738  *		Protocol overhead + ((MaxPktSz * 7)/6) + TT_Delay
2739  */
2740 /* ARGSUSED */
2741 static int
2742 ehci_compute_classic_bandwidth(
2743 	usb_ep_descr_t		*endpoint,
2744 	usb_port_status_t	port_status,
2745 	uint_t			*bandwidth)
2746 {
2747 	ushort_t		maxpacketsize = endpoint->wMaxPacketSize;
2748 
2749 	/*
2750 	 * If endpoint maximum packet is zero, then return immediately.
2751 	 */
2752 	if (maxpacketsize == 0) {
2753 
2754 		return (USB_NOT_SUPPORTED);
2755 	}
2756 
2757 	/* Add TT delay to required bandwidth */
2758 	*bandwidth = TT_DELAY;
2759 
2760 	/* Add bit-stuffing overhead */
2761 	maxpacketsize = (ushort_t)((maxpacketsize * 7) / 6);
2762 
2763 	switch (port_status) {
2764 	case USBA_LOW_SPEED_DEV:
2765 		/* Low speed interrupt transaction */
2766 		*bandwidth += (LOW_SPEED_PROTO_OVERHEAD +
2767 		    HUB_LOW_SPEED_PROTO_OVERHEAD +
2768 		    (LOW_SPEED_CLOCK * maxpacketsize));
2769 		break;
2770 	case USBA_FULL_SPEED_DEV:
2771 		/* Full speed transaction */
2772 		*bandwidth += maxpacketsize;
2773 
2774 		/* Add xfer specific protocol overheads */
2775 		if ((endpoint->bmAttributes &
2776 		    USB_EP_ATTR_MASK) == USB_EP_ATTR_INTR) {
2777 			/* Full speed interrupt transaction */
2778 			*bandwidth += FS_NON_ISOC_PROTO_OVERHEAD;
2779 		} else {
2780 			/* Isochronous and input transaction */
2781 			if ((endpoint->bEndpointAddress &
2782 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2783 				*bandwidth += FS_ISOC_INPUT_PROTO_OVERHEAD;
2784 			} else {
2785 				/* Isochronous and output transaction */
2786 				*bandwidth += FS_ISOC_OUTPUT_PROTO_OVERHEAD;
2787 			}
2788 		}
2789 		break;
2790 	}
2791 
2792 	return (USB_SUCCESS);
2793 }
2794 
2795 
2796 /*
2797  * ehci_adjust_polling_interval:
2798  *
2799  * Adjust bandwidth according usb device speed.
2800  */
2801 /* ARGSUSED */
2802 int
2803 ehci_adjust_polling_interval(
2804 	ehci_state_t		*ehcip,
2805 	usb_ep_descr_t		*endpoint,
2806 	usb_port_status_t	port_status)
2807 {
2808 	uint_t			interval;
2809 	int			i = 0;
2810 
2811 	/* Get the polling interval */
2812 	interval = endpoint->bInterval;
2813 
2814 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2815 	    "ehci_adjust_polling_interval: Polling interval 0x%x", interval);
2816 
2817 	/*
2818 	 * According USB 2.0 Specifications, a high-speed endpoint's
2819 	 * polling intervals are specified interms of 125us or micro
2820 	 * frame, where as full/low endpoint's polling intervals are
2821 	 * specified in milliseconds.
2822 	 *
2823 	 * A high speed interrupt/isochronous endpoints can specify
2824 	 * desired polling interval between 1 to 16 micro-frames,
2825 	 * where as full/low endpoints can specify between 1 to 255
2826 	 * milliseconds.
2827 	 */
2828 	switch (port_status) {
2829 	case USBA_LOW_SPEED_DEV:
2830 		/*
2831 		 * Low speed  endpoints are limited to	specifying
2832 		 * only 8ms to 255ms in this driver. If a device
2833 		 * reports a polling interval that is less than 8ms,
2834 		 * it will use 8 ms instead.
2835 		 */
2836 		if (interval < LS_MIN_POLL_INTERVAL) {
2837 
2838 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2839 			    "Low speed endpoint's poll interval of %d ms "
2840 			    "is below threshold. Rounding up to %d ms",
2841 			    interval, LS_MIN_POLL_INTERVAL);
2842 
2843 			interval = LS_MIN_POLL_INTERVAL;
2844 		}
2845 
2846 		/*
2847 		 * Return an error if the polling interval is greater
2848 		 * than 255ms.
2849 		 */
2850 		if (interval > LS_MAX_POLL_INTERVAL) {
2851 
2852 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2853 			    "Low speed endpoint's poll interval is "
2854 			    "greater than %d ms", LS_MAX_POLL_INTERVAL);
2855 
2856 			return (USB_FAILURE);
2857 		}
2858 		break;
2859 
2860 	case USBA_FULL_SPEED_DEV:
2861 		/*
2862 		 * Return an error if the polling interval is less
2863 		 * than 1ms and greater than 255ms.
2864 		 */
2865 		if ((interval < FS_MIN_POLL_INTERVAL) &&
2866 		    (interval > FS_MAX_POLL_INTERVAL)) {
2867 
2868 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2869 			    "Full speed endpoint's poll interval must "
2870 			    "be between %d and %d ms", FS_MIN_POLL_INTERVAL,
2871 			    FS_MAX_POLL_INTERVAL);
2872 
2873 			return (USB_FAILURE);
2874 		}
2875 		break;
2876 	case USBA_HIGH_SPEED_DEV:
2877 		/*
2878 		 * Return an error if the polling interval is less 1
2879 		 * and greater than 16. Convert this value to 125us
2880 		 * units using 2^(bInterval -1). refer usb 2.0 spec
2881 		 * page 51 for details.
2882 		 */
2883 		if ((interval < HS_MIN_POLL_INTERVAL) &&
2884 		    (interval > HS_MAX_POLL_INTERVAL)) {
2885 
2886 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2887 			    "High speed endpoint's poll interval "
2888 			    "must be between %d and %d units",
2889 			    HS_MIN_POLL_INTERVAL, HS_MAX_POLL_INTERVAL);
2890 
2891 			return (USB_FAILURE);
2892 		}
2893 
2894 		/* Adjust high speed device polling interval */
2895 		interval =
2896 		    ehci_adjust_high_speed_polling_interval(ehcip, endpoint);
2897 
2898 		break;
2899 	}
2900 
2901 	/*
2902 	 * If polling interval is greater than 32ms,
2903 	 * adjust polling interval equal to 32ms.
2904 	 */
2905 	if (interval > EHCI_NUM_INTR_QH_LISTS) {
2906 		interval = EHCI_NUM_INTR_QH_LISTS;
2907 	}
2908 
2909 	/*
2910 	 * Find the nearest power of 2 that's less
2911 	 * than interval.
2912 	 */
2913 	while ((ehci_pow_2(i)) <= interval) {
2914 		i++;
2915 	}
2916 
2917 	return (ehci_pow_2((i - 1)));
2918 }
2919 
2920 
2921 /*
2922  * ehci_adjust_high_speed_polling_interval:
2923  */
2924 /* ARGSUSED */
2925 static int
2926 ehci_adjust_high_speed_polling_interval(
2927 	ehci_state_t		*ehcip,
2928 	usb_ep_descr_t		*endpoint)
2929 {
2930 	uint_t			interval;
2931 
2932 	/* Get the polling interval */
2933 	interval = ehci_pow_2(endpoint->bInterval - 1);
2934 
2935 	/*
2936 	 * Convert polling interval from micro seconds
2937 	 * to milli seconds.
2938 	 */
2939 	if (interval <= EHCI_MAX_UFRAMES) {
2940 		interval = 1;
2941 	} else {
2942 		interval = interval/EHCI_MAX_UFRAMES;
2943 	}
2944 
2945 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2946 	    "ehci_adjust_high_speed_polling_interval: "
2947 	    "High speed adjusted interval 0x%x", interval);
2948 
2949 	return (interval);
2950 }
2951 
2952 
2953 /*
2954  * ehci_lattice_height:
2955  *
2956  * Given the requested bandwidth, find the height in the tree at which the
2957  * nodes for this bandwidth fall.  The height is measured as the number of
2958  * nodes from the leaf to the level specified by bandwidth The root of the
2959  * tree is at height TREE_HEIGHT.
2960  */
2961 static uint_t
2962 ehci_lattice_height(uint_t interval)
2963 {
2964 	return (TREE_HEIGHT - (ehci_log_2(interval)));
2965 }
2966 
2967 
2968 /*
2969  * ehci_lattice_parent:
2970  *
2971  * Given a node in the lattice, find the index of the parent node
2972  */
2973 static uint_t
2974 ehci_lattice_parent(uint_t node)
2975 {
2976 	if ((node % 2) == 0) {
2977 
2978 		return ((node/2) - 1);
2979 	} else {
2980 
2981 		return ((node + 1)/2 - 1);
2982 	}
2983 }
2984 
2985 
2986 /*
2987  * ehci_find_periodic_node:
2988  *
2989  * Based on the "real" array leaf node and interval, get the periodic node.
2990  */
2991 static uint_t
2992 ehci_find_periodic_node(uint_t leaf, int interval)
2993 {
2994 	uint_t	lattice_leaf;
2995 	uint_t	height = ehci_lattice_height(interval);
2996 	uint_t	pnode;
2997 	int	i;
2998 
2999 	/* Get the leaf number in the lattice */
3000 	lattice_leaf = leaf + EHCI_NUM_INTR_QH_LISTS - 1;
3001 
3002 	/* Get the node in the lattice based on the height and leaf */
3003 	pnode = lattice_leaf;
3004 	for (i = 0; i < height; i++) {
3005 		pnode = ehci_lattice_parent(pnode);
3006 	}
3007 
3008 	return (pnode);
3009 }
3010 
3011 
3012 /*
3013  * ehci_leftmost_leaf:
3014  *
3015  * Find the leftmost leaf in the subtree specified by the node. Height refers
3016  * to number of nodes from the bottom of the tree to the node,	including the
3017  * node.
3018  *
3019  * The formula for a zero based tree is:
3020  *     2^H * Node + 2^H - 1
3021  * The leaf of the tree is an array, convert the number for the array.
3022  *     Subtract the size of nodes not in the array
3023  *     2^H * Node + 2^H - 1 - (EHCI_NUM_INTR_QH_LISTS - 1) =
3024  *     2^H * Node + 2^H - EHCI_NUM_INTR_QH_LISTS =
3025  *     2^H * (Node + 1) - EHCI_NUM_INTR_QH_LISTS
3026  *	   0
3027  *	 1   2
3028  *	0 1 2 3
3029  */
3030 static uint_t
3031 ehci_leftmost_leaf(
3032 	uint_t	node,
3033 	uint_t	height)
3034 {
3035 	return ((ehci_pow_2(height) * (node + 1)) - EHCI_NUM_INTR_QH_LISTS);
3036 }
3037 
3038 
3039 /*
3040  * ehci_pow_2:
3041  *
3042  * Compute 2 to the power
3043  */
3044 static uint_t
3045 ehci_pow_2(uint_t x)
3046 {
3047 	if (x == 0) {
3048 
3049 		return (1);
3050 	} else {
3051 
3052 		return (2 << (x - 1));
3053 	}
3054 }
3055 
3056 
3057 /*
3058  * ehci_log_2:
3059  *
3060  * Compute log base 2 of x
3061  */
3062 static uint_t
3063 ehci_log_2(uint_t x)
3064 {
3065 	int i = 0;
3066 
3067 	while (x != 1) {
3068 		x = x >> 1;
3069 		i++;
3070 	}
3071 
3072 	return (i);
3073 }
3074 
3075 
3076 /*
3077  * ehci_find_bestfit_hs_mask:
3078  *
3079  * Find the smask and cmask in the bandwidth allocation, and update the
3080  * bandwidth allocation.
3081  */
3082 static int
3083 ehci_find_bestfit_hs_mask(
3084 	ehci_state_t	*ehcip,
3085 	uchar_t		*smask,
3086 	uint_t		*pnode,
3087 	usb_ep_descr_t	*endpoint,
3088 	uint_t		bandwidth,
3089 	int		interval)
3090 {
3091 	int		i;
3092 	uint_t		elements, index;
3093 	int		array_leaf, best_array_leaf;
3094 	uint_t		node_bandwidth, best_node_bandwidth;
3095 	uint_t		leaf_count;
3096 	uchar_t		bw_mask;
3097 	uchar_t		best_smask;
3098 
3099 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3100 	    "ehci_find_bestfit_hs_mask: ");
3101 
3102 	/* Get all the valid smasks */
3103 	switch (ehci_pow_2(endpoint->bInterval - 1)) {
3104 	case EHCI_INTR_1US_POLL:
3105 		index = EHCI_1US_MASK_INDEX;
3106 		elements = EHCI_INTR_1US_POLL;
3107 		break;
3108 	case EHCI_INTR_2US_POLL:
3109 		index = EHCI_2US_MASK_INDEX;
3110 		elements = EHCI_INTR_2US_POLL;
3111 		break;
3112 	case EHCI_INTR_4US_POLL:
3113 		index = EHCI_4US_MASK_INDEX;
3114 		elements = EHCI_INTR_4US_POLL;
3115 		break;
3116 	case EHCI_INTR_XUS_POLL:
3117 	default:
3118 		index = EHCI_XUS_MASK_INDEX;
3119 		elements = EHCI_INTR_XUS_POLL;
3120 		break;
3121 	}
3122 
3123 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3124 
3125 	/*
3126 	 * Because of the way the leaves are setup, we will automatically
3127 	 * hit the leftmost leaf of every possible node with this interval.
3128 	 */
3129 	best_smask = 0x00;
3130 	best_node_bandwidth = 0;
3131 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3132 		/* Find the bandwidth mask */
3133 		node_bandwidth = ehci_calculate_bw_availability_mask(ehcip,
3134 		    bandwidth, ehci_index[array_leaf], leaf_count, &bw_mask);
3135 
3136 		/*
3137 		 * If this node cannot support our requirements skip to the
3138 		 * next leaf.
3139 		 */
3140 		if (bw_mask == 0x00) {
3141 			continue;
3142 		}
3143 
3144 		/*
3145 		 * Now make sure our bandwidth requirements can be
3146 		 * satisfied with one of smasks in this node.
3147 		 */
3148 		*smask = 0x00;
3149 		for (i = index; i < (index + elements); i++) {
3150 			/* Check the start split mask value */
3151 			if (ehci_start_split_mask[index] & bw_mask) {
3152 				*smask = ehci_start_split_mask[index];
3153 				break;
3154 			}
3155 		}
3156 
3157 		/*
3158 		 * If an appropriate smask is found save the information if:
3159 		 * o best_smask has not been found yet.
3160 		 * - or -
3161 		 * o This is the node with the least amount of bandwidth
3162 		 */
3163 		if ((*smask != 0x00) &&
3164 		    ((best_smask == 0x00) ||
3165 		    (best_node_bandwidth > node_bandwidth))) {
3166 
3167 			best_node_bandwidth = node_bandwidth;
3168 			best_array_leaf = array_leaf;
3169 			best_smask = *smask;
3170 		}
3171 	}
3172 
3173 	/*
3174 	 * If we find node that can handle the bandwidth populate the
3175 	 * appropriate variables and return success.
3176 	 */
3177 	if (best_smask) {
3178 		*smask = best_smask;
3179 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3180 		    interval);
3181 		ehci_update_bw_availability(ehcip, bandwidth,
3182 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3183 
3184 		return (USB_SUCCESS);
3185 	}
3186 
3187 	return (USB_FAILURE);
3188 }
3189 
3190 
3191 /*
3192  * ehci_find_bestfit_ls_intr_mask:
3193  *
3194  * Find the smask and cmask in the bandwidth allocation.
3195  */
3196 static int
3197 ehci_find_bestfit_ls_intr_mask(
3198 	ehci_state_t	*ehcip,
3199 	uchar_t		*smask,
3200 	uchar_t		*cmask,
3201 	uint_t		*pnode,
3202 	uint_t		sbandwidth,
3203 	uint_t		cbandwidth,
3204 	int		interval)
3205 {
3206 	int		i;
3207 	uint_t		elements, index;
3208 	int		array_leaf, best_array_leaf;
3209 	uint_t		node_sbandwidth, node_cbandwidth;
3210 	uint_t		best_node_bandwidth;
3211 	uint_t		leaf_count;
3212 	uchar_t		bw_smask, bw_cmask;
3213 	uchar_t		best_smask, best_cmask;
3214 
3215 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3216 	    "ehci_find_bestfit_ls_intr_mask: ");
3217 
3218 	/* For low and full speed devices */
3219 	index = EHCI_XUS_MASK_INDEX;
3220 	elements = EHCI_INTR_4MS_POLL;
3221 
3222 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3223 
3224 	/*
3225 	 * Because of the way the leaves are setup, we will automatically
3226 	 * hit the leftmost leaf of every possible node with this interval.
3227 	 */
3228 	best_smask = 0x00;
3229 	best_node_bandwidth = 0;
3230 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3231 		/* Find the bandwidth mask */
3232 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3233 		    sbandwidth, ehci_index[array_leaf], leaf_count, &bw_smask);
3234 		node_cbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3235 		    cbandwidth, ehci_index[array_leaf], leaf_count, &bw_cmask);
3236 
3237 		/*
3238 		 * If this node cannot support our requirements skip to the
3239 		 * next leaf.
3240 		 */
3241 		if ((bw_smask == 0x00) || (bw_cmask == 0x00)) {
3242 			continue;
3243 		}
3244 
3245 		/*
3246 		 * Now make sure our bandwidth requirements can be
3247 		 * satisfied with one of smasks in this node.
3248 		 */
3249 		*smask = 0x00;
3250 		*cmask = 0x00;
3251 		for (i = index; i < (index + elements); i++) {
3252 			/* Check the start split mask value */
3253 			if ((ehci_start_split_mask[index] & bw_smask) &&
3254 			    (ehci_intr_complete_split_mask[index] & bw_cmask)) {
3255 				*smask = ehci_start_split_mask[index];
3256 				*cmask = ehci_intr_complete_split_mask[index];
3257 				break;
3258 			}
3259 		}
3260 
3261 		/*
3262 		 * If an appropriate smask is found save the information if:
3263 		 * o best_smask has not been found yet.
3264 		 * - or -
3265 		 * o This is the node with the least amount of bandwidth
3266 		 */
3267 		if ((*smask != 0x00) &&
3268 		    ((best_smask == 0x00) ||
3269 		    (best_node_bandwidth >
3270 		    (node_sbandwidth + node_cbandwidth)))) {
3271 			best_node_bandwidth = node_sbandwidth + node_cbandwidth;
3272 			best_array_leaf = array_leaf;
3273 			best_smask = *smask;
3274 			best_cmask = *cmask;
3275 		}
3276 	}
3277 
3278 	/*
3279 	 * If we find node that can handle the bandwidth populate the
3280 	 * appropriate variables and return success.
3281 	 */
3282 	if (best_smask) {
3283 		*smask = best_smask;
3284 		*cmask = best_cmask;
3285 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3286 		    interval);
3287 		ehci_update_bw_availability(ehcip, sbandwidth,
3288 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3289 		ehci_update_bw_availability(ehcip, cbandwidth,
3290 		    ehci_index[best_array_leaf], leaf_count, best_cmask);
3291 
3292 		return (USB_SUCCESS);
3293 	}
3294 
3295 	return (USB_FAILURE);
3296 }
3297 
3298 
3299 /*
3300  * ehci_find_bestfit_sitd_in_mask:
3301  *
3302  * Find the smask and cmask in the bandwidth allocation.
3303  */
3304 static int
3305 ehci_find_bestfit_sitd_in_mask(
3306 	ehci_state_t	*ehcip,
3307 	uchar_t		*smask,
3308 	uchar_t		*cmask,
3309 	uint_t		*pnode,
3310 	uint_t		sbandwidth,
3311 	uint_t		cbandwidth,
3312 	int		interval)
3313 {
3314 	int		i, uFrames, found;
3315 	int		array_leaf, best_array_leaf;
3316 	uint_t		node_sbandwidth, node_cbandwidth;
3317 	uint_t		best_node_bandwidth;
3318 	uint_t		leaf_count;
3319 	uchar_t		bw_smask, bw_cmask;
3320 	uchar_t		best_smask, best_cmask;
3321 
3322 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3323 	    "ehci_find_bestfit_sitd_in_mask: ");
3324 
3325 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3326 
3327 	/*
3328 	 * Because of the way the leaves are setup, we will automatically
3329 	 * hit the leftmost leaf of every possible node with this interval.
3330 	 * You may only send MAX_UFRAME_SITD_XFER raw bits per uFrame.
3331 	 */
3332 	/*
3333 	 * Need to add an additional 2 uFrames, if the "L"ast
3334 	 * complete split is before uFrame 6.  See section
3335 	 * 11.8.4 in USB 2.0 Spec.  Currently we do not support
3336 	 * the "Back Ptr" which means we support on IN of
3337 	 * ~4*MAX_UFRAME_SITD_XFER bandwidth/
3338 	 */
3339 	uFrames = (cbandwidth / MAX_UFRAME_SITD_XFER) + 2;
3340 	if (cbandwidth % MAX_UFRAME_SITD_XFER) {
3341 		uFrames++;
3342 	}
3343 	if (uFrames > 6) {
3344 
3345 		return (USB_FAILURE);
3346 	}
3347 	*smask = 0x1;
3348 	*cmask = 0x00;
3349 	for (i = 0; i < uFrames; i++) {
3350 		*cmask = *cmask << 1;
3351 		*cmask |= 0x1;
3352 	}
3353 	/* cmask must start 2 frames after the smask */
3354 	*cmask = *cmask << 2;
3355 
3356 	found = 0;
3357 	best_smask = 0x00;
3358 	best_node_bandwidth = 0;
3359 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3360 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3361 		    sbandwidth, ehci_index[array_leaf], leaf_count, &bw_smask);
3362 		node_cbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3363 		    MAX_UFRAME_SITD_XFER, ehci_index[array_leaf], leaf_count,
3364 		    &bw_cmask);
3365 
3366 		/*
3367 		 * If this node cannot support our requirements skip to the
3368 		 * next leaf.
3369 		 */
3370 		if ((bw_smask == 0x00) || (bw_cmask == 0x00)) {
3371 			continue;
3372 		}
3373 
3374 		for (i = 0; i < (EHCI_MAX_UFRAMES - uFrames - 2); i++) {
3375 			if ((*smask & bw_smask) && (*cmask & bw_cmask)) {
3376 				found = 1;
3377 				break;
3378 			}
3379 			*smask = *smask << 1;
3380 			*cmask = *cmask << 1;
3381 		}
3382 
3383 		/*
3384 		 * If an appropriate smask is found save the information if:
3385 		 * o best_smask has not been found yet.
3386 		 * - or -
3387 		 * o This is the node with the least amount of bandwidth
3388 		 */
3389 		if (found &&
3390 		    ((best_smask == 0x00) ||
3391 		    (best_node_bandwidth >
3392 		    (node_sbandwidth + node_cbandwidth)))) {
3393 			best_node_bandwidth = node_sbandwidth + node_cbandwidth;
3394 			best_array_leaf = array_leaf;
3395 			best_smask = *smask;
3396 			best_cmask = *cmask;
3397 		}
3398 	}
3399 
3400 	/*
3401 	 * If we find node that can handle the bandwidth populate the
3402 	 * appropriate variables and return success.
3403 	 */
3404 	if (best_smask) {
3405 		*smask = best_smask;
3406 		*cmask = best_cmask;
3407 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3408 		    interval);
3409 		ehci_update_bw_availability(ehcip, sbandwidth,
3410 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3411 		ehci_update_bw_availability(ehcip, MAX_UFRAME_SITD_XFER,
3412 		    ehci_index[best_array_leaf], leaf_count, best_cmask);
3413 
3414 		return (USB_SUCCESS);
3415 	}
3416 
3417 	return (USB_FAILURE);
3418 }
3419 
3420 
3421 /*
3422  * ehci_find_bestfit_sitd_out_mask:
3423  *
3424  * Find the smask in the bandwidth allocation.
3425  */
3426 static int
3427 ehci_find_bestfit_sitd_out_mask(
3428 	ehci_state_t	*ehcip,
3429 	uchar_t		*smask,
3430 	uint_t		*pnode,
3431 	uint_t		sbandwidth,
3432 	int		interval)
3433 {
3434 	int		i, uFrames, found;
3435 	int		array_leaf, best_array_leaf;
3436 	uint_t		node_sbandwidth;
3437 	uint_t		best_node_bandwidth;
3438 	uint_t		leaf_count;
3439 	uchar_t		bw_smask;
3440 	uchar_t		best_smask;
3441 
3442 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3443 	    "ehci_find_bestfit_sitd_out_mask: ");
3444 
3445 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3446 
3447 	/*
3448 	 * Because of the way the leaves are setup, we will automatically
3449 	 * hit the leftmost leaf of every possible node with this interval.
3450 	 * You may only send MAX_UFRAME_SITD_XFER raw bits per uFrame.
3451 	 */
3452 	*smask = 0x00;
3453 	uFrames = sbandwidth / MAX_UFRAME_SITD_XFER;
3454 	if (sbandwidth % MAX_UFRAME_SITD_XFER) {
3455 		uFrames++;
3456 	}
3457 	for (i = 0; i < uFrames; i++) {
3458 		*smask = *smask << 1;
3459 		*smask |= 0x1;
3460 	}
3461 
3462 	found = 0;
3463 	best_smask = 0x00;
3464 	best_node_bandwidth = 0;
3465 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3466 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3467 		    MAX_UFRAME_SITD_XFER, ehci_index[array_leaf], leaf_count,
3468 		    &bw_smask);
3469 
3470 		/*
3471 		 * If this node cannot support our requirements skip to the
3472 		 * next leaf.
3473 		 */
3474 		if (bw_smask == 0x00) {
3475 			continue;
3476 		}
3477 
3478 		/* You cannot have a start split on the 8th uFrame */
3479 		for (i = 0; (*smask & 0x80) == 0; i++) {
3480 			if (*smask & bw_smask) {
3481 				found = 1;
3482 				break;
3483 			}
3484 			*smask = *smask << 1;
3485 		}
3486 
3487 		/*
3488 		 * If an appropriate smask is found save the information if:
3489 		 * o best_smask has not been found yet.
3490 		 * - or -
3491 		 * o This is the node with the least amount of bandwidth
3492 		 */
3493 		if (found &&
3494 		    ((best_smask == 0x00) ||
3495 		    (best_node_bandwidth > node_sbandwidth))) {
3496 			best_node_bandwidth = node_sbandwidth;
3497 			best_array_leaf = array_leaf;
3498 			best_smask = *smask;
3499 		}
3500 	}
3501 
3502 	/*
3503 	 * If we find node that can handle the bandwidth populate the
3504 	 * appropriate variables and return success.
3505 	 */
3506 	if (best_smask) {
3507 		*smask = best_smask;
3508 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3509 		    interval);
3510 		ehci_update_bw_availability(ehcip, MAX_UFRAME_SITD_XFER,
3511 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3512 
3513 		return (USB_SUCCESS);
3514 	}
3515 
3516 	return (USB_FAILURE);
3517 }
3518 
3519 
3520 /*
3521  * ehci_calculate_bw_availability_mask:
3522  *
3523  * Returns the "total bandwidth used" in this node.
3524  * Populates bw_mask with the uFrames that can support the bandwidth.
3525  *
3526  * If all the Frames cannot support this bandwidth, then bw_mask
3527  * will return 0x00 and the "total bandwidth used" will be invalid.
3528  */
3529 static uint_t
3530 ehci_calculate_bw_availability_mask(
3531 	ehci_state_t	*ehcip,
3532 	uint_t		bandwidth,
3533 	int		leaf,
3534 	int		leaf_count,
3535 	uchar_t		*bw_mask)
3536 {
3537 	int			i, j;
3538 	uchar_t			bw_uframe;
3539 	int			uframe_total;
3540 	ehci_frame_bandwidth_t	*fbp;
3541 	uint_t			total_bandwidth = 0;
3542 
3543 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3544 	    "ehci_calculate_bw_availability_mask: leaf %d leaf count %d",
3545 	    leaf, leaf_count);
3546 
3547 	/* Start by saying all uFrames are available */
3548 	*bw_mask = 0xFF;
3549 
3550 	for (i = 0; (i < leaf_count) || (*bw_mask == 0x00); i++) {
3551 		fbp = &ehcip->ehci_frame_bandwidth[leaf + i];
3552 
3553 		total_bandwidth += fbp->ehci_allocated_frame_bandwidth;
3554 
3555 		for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3556 			/*
3557 			 * If the uFrame in bw_mask is available check to see if
3558 			 * it can support the additional bandwidth.
3559 			 */
3560 			bw_uframe = (*bw_mask & (0x1 << j));
3561 			uframe_total =
3562 			    fbp->ehci_micro_frame_bandwidth[j] +
3563 			    bandwidth;
3564 			if ((bw_uframe) &&
3565 			    (uframe_total > HS_PERIODIC_BANDWIDTH)) {
3566 				*bw_mask = *bw_mask & ~bw_uframe;
3567 			}
3568 		}
3569 	}
3570 
3571 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3572 	    "ehci_calculate_bw_availability_mask: bandwidth mask 0x%x",
3573 	    *bw_mask);
3574 
3575 	return (total_bandwidth);
3576 }
3577 
3578 
3579 /*
3580  * ehci_update_bw_availability:
3581  *
3582  * The leftmost leaf needs to be in terms of array position and
3583  * not the actual lattice position.
3584  */
3585 static void
3586 ehci_update_bw_availability(
3587 	ehci_state_t	*ehcip,
3588 	int		bandwidth,
3589 	int		leftmost_leaf,
3590 	int		leaf_count,
3591 	uchar_t		mask)
3592 {
3593 	int			i, j;
3594 	ehci_frame_bandwidth_t	*fbp;
3595 	int			uFrame_bandwidth[8];
3596 
3597 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3598 	    "ehci_update_bw_availability: "
3599 	    "leaf %d count %d bandwidth 0x%x mask 0x%x",
3600 	    leftmost_leaf, leaf_count, bandwidth, mask);
3601 
3602 	ASSERT(leftmost_leaf < 32);
3603 	ASSERT(leftmost_leaf >= 0);
3604 
3605 	for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3606 		if (mask & 0x1) {
3607 			uFrame_bandwidth[j] = bandwidth;
3608 		} else {
3609 			uFrame_bandwidth[j] = 0;
3610 		}
3611 
3612 		mask = mask >> 1;
3613 	}
3614 
3615 	/* Updated all the effected leafs with the bandwidth */
3616 	for (i = 0; i < leaf_count; i++) {
3617 		fbp = &ehcip->ehci_frame_bandwidth[leftmost_leaf + i];
3618 
3619 		for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3620 			fbp->ehci_micro_frame_bandwidth[j] +=
3621 			    uFrame_bandwidth[j];
3622 			fbp->ehci_allocated_frame_bandwidth +=
3623 			    uFrame_bandwidth[j];
3624 		}
3625 	}
3626 }
3627 
3628 /*
3629  * Miscellaneous functions
3630  */
3631 
3632 /*
3633  * ehci_obtain_state:
3634  *
3635  * NOTE: This function is also called from POLLED MODE.
3636  */
3637 ehci_state_t *
3638 ehci_obtain_state(dev_info_t	*dip)
3639 {
3640 	int			instance = ddi_get_instance(dip);
3641 
3642 	ehci_state_t *state = ddi_get_soft_state(ehci_statep, instance);
3643 
3644 	ASSERT(state != NULL);
3645 
3646 	return (state);
3647 }
3648 
3649 
3650 /*
3651  * ehci_state_is_operational:
3652  *
3653  * Check the Host controller state and return proper values.
3654  */
3655 int
3656 ehci_state_is_operational(ehci_state_t	*ehcip)
3657 {
3658 	int	val;
3659 
3660 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3661 
3662 	switch (ehcip->ehci_hc_soft_state) {
3663 	case EHCI_CTLR_INIT_STATE:
3664 	case EHCI_CTLR_SUSPEND_STATE:
3665 		val = USB_FAILURE;
3666 		break;
3667 	case EHCI_CTLR_OPERATIONAL_STATE:
3668 		val = USB_SUCCESS;
3669 		break;
3670 	case EHCI_CTLR_ERROR_STATE:
3671 		val = USB_HC_HARDWARE_ERROR;
3672 		break;
3673 	default:
3674 		val = USB_FAILURE;
3675 		break;
3676 	}
3677 
3678 	return (val);
3679 }
3680 
3681 
3682 /*
3683  * ehci_do_soft_reset
3684  *
3685  * Do soft reset of ehci host controller.
3686  */
3687 int
3688 ehci_do_soft_reset(ehci_state_t	*ehcip)
3689 {
3690 	usb_frame_number_t	before_frame_number, after_frame_number;
3691 	ehci_regs_t		*ehci_save_regs;
3692 
3693 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3694 
3695 	/* Increment host controller error count */
3696 	ehcip->ehci_hc_error++;
3697 
3698 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3699 	    "ehci_do_soft_reset:"
3700 	    "Reset ehci host controller 0x%x", ehcip->ehci_hc_error);
3701 
3702 	/*
3703 	 * Allocate space for saving current Host Controller
3704 	 * registers. Don't do any recovery if allocation
3705 	 * fails.
3706 	 */
3707 	ehci_save_regs = (ehci_regs_t *)
3708 	    kmem_zalloc(sizeof (ehci_regs_t), KM_NOSLEEP);
3709 
3710 	if (ehci_save_regs == NULL) {
3711 		USB_DPRINTF_L2(PRINT_MASK_INTR,  ehcip->ehci_log_hdl,
3712 		    "ehci_do_soft_reset: kmem_zalloc failed");
3713 
3714 		return (USB_FAILURE);
3715 	}
3716 
3717 	/* Save current ehci registers */
3718 	ehci_save_regs->ehci_command = Get_OpReg(ehci_command);
3719 	ehci_save_regs->ehci_interrupt = Get_OpReg(ehci_interrupt);
3720 	ehci_save_regs->ehci_ctrl_segment = Get_OpReg(ehci_ctrl_segment);
3721 	ehci_save_regs->ehci_async_list_addr = Get_OpReg(ehci_async_list_addr);
3722 	ehci_save_regs->ehci_config_flag = Get_OpReg(ehci_config_flag);
3723 	ehci_save_regs->ehci_periodic_list_base =
3724 	    Get_OpReg(ehci_periodic_list_base);
3725 
3726 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3727 	    "ehci_do_soft_reset: Save reg = 0x%p", (void *)ehci_save_regs);
3728 
3729 	/* Disable all list processing and interrupts */
3730 	Set_OpReg(ehci_command, Get_OpReg(ehci_command) &
3731 	    ~(EHCI_CMD_ASYNC_SCHED_ENABLE | EHCI_CMD_PERIODIC_SCHED_ENABLE));
3732 
3733 	/* Disable all EHCI interrupts */
3734 	Set_OpReg(ehci_interrupt, 0);
3735 
3736 	/* Wait for few milliseconds */
3737 	drv_usecwait(EHCI_SOF_TIMEWAIT);
3738 
3739 	/* Do light soft reset of ehci host controller */
3740 	Set_OpReg(ehci_command,
3741 	    Get_OpReg(ehci_command) | EHCI_CMD_LIGHT_HC_RESET);
3742 
3743 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3744 	    "ehci_do_soft_reset: Reset in progress");
3745 
3746 	/* Wait for reset to complete */
3747 	drv_usecwait(EHCI_RESET_TIMEWAIT);
3748 
3749 	/*
3750 	 * Restore previous saved EHCI register value
3751 	 * into the current EHCI registers.
3752 	 */
3753 	Set_OpReg(ehci_ctrl_segment, (uint32_t)
3754 	    ehci_save_regs->ehci_ctrl_segment);
3755 
3756 	Set_OpReg(ehci_periodic_list_base, (uint32_t)
3757 	    ehci_save_regs->ehci_periodic_list_base);
3758 
3759 	Set_OpReg(ehci_async_list_addr, (uint32_t)
3760 	    ehci_save_regs->ehci_async_list_addr);
3761 
3762 	/*
3763 	 * For some reason this register might get nulled out by
3764 	 * the Uli M1575 South Bridge. To workaround the hardware
3765 	 * problem, check the value after write and retry if the
3766 	 * last write fails.
3767 	 */
3768 	if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
3769 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
3770 	    (ehci_save_regs->ehci_async_list_addr !=
3771 	    Get_OpReg(ehci_async_list_addr))) {
3772 		int retry = 0;
3773 
3774 		Set_OpRegRetry(ehci_async_list_addr, (uint32_t)
3775 		    ehci_save_regs->ehci_async_list_addr, retry);
3776 		if (retry >= EHCI_MAX_RETRY) {
3777 			USB_DPRINTF_L2(PRINT_MASK_ATTA,
3778 			    ehcip->ehci_log_hdl, "ehci_do_soft_reset:"
3779 			    " ASYNCLISTADDR write failed.");
3780 
3781 			return (USB_FAILURE);
3782 		}
3783 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
3784 		    "ehci_do_soft_reset: ASYNCLISTADDR "
3785 		    "write failed, retry=%d", retry);
3786 	}
3787 
3788 	Set_OpReg(ehci_config_flag, (uint32_t)
3789 	    ehci_save_regs->ehci_config_flag);
3790 
3791 	/* Enable both Asynchronous and Periodic Schedule if necessary */
3792 	ehci_toggle_scheduler(ehcip);
3793 
3794 	/*
3795 	 * Set ehci_interrupt to enable all interrupts except Root
3796 	 * Hub Status change and frame list rollover interrupts.
3797 	 */
3798 	Set_OpReg(ehci_interrupt, EHCI_INTR_HOST_SYSTEM_ERROR |
3799 	    EHCI_INTR_FRAME_LIST_ROLLOVER |
3800 	    EHCI_INTR_USB_ERROR |
3801 	    EHCI_INTR_USB);
3802 
3803 	/*
3804 	 * Deallocate the space that allocated for saving
3805 	 * HC registers.
3806 	 */
3807 	kmem_free((void *) ehci_save_regs, sizeof (ehci_regs_t));
3808 
3809 	/*
3810 	 * Set the desired interrupt threshold, frame list size (if
3811 	 * applicable) and turn EHCI host controller.
3812 	 */
3813 	Set_OpReg(ehci_command, ((Get_OpReg(ehci_command) &
3814 	    ~EHCI_CMD_INTR_THRESHOLD) |
3815 	    (EHCI_CMD_01_INTR | EHCI_CMD_HOST_CTRL_RUN)));
3816 
3817 	/* Wait 10ms for EHCI to start sending SOF */
3818 	drv_usecwait(EHCI_RESET_TIMEWAIT);
3819 
3820 	/*
3821 	 * Get the current usb frame number before waiting for
3822 	 * few milliseconds.
3823 	 */
3824 	before_frame_number = ehci_get_current_frame_number(ehcip);
3825 
3826 	/* Wait for few milliseconds */
3827 	drv_usecwait(EHCI_SOF_TIMEWAIT);
3828 
3829 	/*
3830 	 * Get the current usb frame number after waiting for
3831 	 * few milliseconds.
3832 	 */
3833 	after_frame_number = ehci_get_current_frame_number(ehcip);
3834 
3835 	USB_DPRINTF_L4(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3836 	    "ehci_do_soft_reset: Before Frame Number 0x%llx "
3837 	    "After Frame Number 0x%llx",
3838 	    (unsigned long long)before_frame_number,
3839 	    (unsigned long long)after_frame_number);
3840 
3841 	if ((after_frame_number <= before_frame_number) &&
3842 	    (Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED)) {
3843 
3844 		USB_DPRINTF_L2(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3845 		    "ehci_do_soft_reset: Soft reset failed");
3846 
3847 		return (USB_FAILURE);
3848 	}
3849 
3850 	return (USB_SUCCESS);
3851 }
3852 
3853 
3854 /*
3855  * ehci_get_xfer_attrs:
3856  *
3857  * Get the attributes of a particular xfer.
3858  *
3859  * NOTE: This function is also called from POLLED MODE.
3860  */
3861 usb_req_attrs_t
3862 ehci_get_xfer_attrs(
3863 	ehci_state_t		*ehcip,
3864 	ehci_pipe_private_t	*pp,
3865 	ehci_trans_wrapper_t	*tw)
3866 {
3867 	usb_ep_descr_t		*eptd = &pp->pp_pipe_handle->p_ep;
3868 	usb_req_attrs_t		attrs = USB_ATTRS_NONE;
3869 
3870 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3871 	    "ehci_get_xfer_attrs:");
3872 
3873 	switch (eptd->bmAttributes & USB_EP_ATTR_MASK) {
3874 	case USB_EP_ATTR_CONTROL:
3875 		attrs = ((usb_ctrl_req_t *)
3876 		    tw->tw_curr_xfer_reqp)->ctrl_attributes;
3877 		break;
3878 	case USB_EP_ATTR_BULK:
3879 		attrs = ((usb_bulk_req_t *)
3880 		    tw->tw_curr_xfer_reqp)->bulk_attributes;
3881 		break;
3882 	case USB_EP_ATTR_INTR:
3883 		attrs = ((usb_intr_req_t *)
3884 		    tw->tw_curr_xfer_reqp)->intr_attributes;
3885 		break;
3886 	}
3887 
3888 	return (attrs);
3889 }
3890 
3891 
3892 /*
3893  * ehci_get_current_frame_number:
3894  *
3895  * Get the current software based usb frame number.
3896  */
3897 usb_frame_number_t
3898 ehci_get_current_frame_number(ehci_state_t *ehcip)
3899 {
3900 	usb_frame_number_t	usb_frame_number;
3901 	usb_frame_number_t	ehci_fno, micro_frame_number;
3902 
3903 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3904 
3905 	ehci_fno = ehcip->ehci_fno;
3906 	micro_frame_number = Get_OpReg(ehci_frame_index) & 0x3FFF;
3907 
3908 	/*
3909 	 * Calculate current software based usb frame number.
3910 	 *
3911 	 * This code accounts for the fact that frame number is
3912 	 * updated by the Host Controller before the ehci driver
3913 	 * gets an FrameListRollover interrupt that will adjust
3914 	 * Frame higher part.
3915 	 *
3916 	 * Refer ehci specification 1.0, section 2.3.2, page 21.
3917 	 */
3918 	micro_frame_number = ((micro_frame_number & 0x1FFF) |
3919 	    ehci_fno) + (((micro_frame_number & 0x3FFF) ^
3920 	    ehci_fno) & 0x2000);
3921 
3922 	/*
3923 	 * Micro Frame number is equivalent to 125 usec. Eight
3924 	 * Micro Frame numbers are equivalent to one millsecond
3925 	 * or one usb frame number.
3926 	 */
3927 	usb_frame_number = micro_frame_number >>
3928 	    EHCI_uFRAMES_PER_USB_FRAME_SHIFT;
3929 
3930 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3931 	    "ehci_get_current_frame_number: "
3932 	    "Current usb uframe number = 0x%llx "
3933 	    "Current usb frame number  = 0x%llx",
3934 	    (unsigned long long)micro_frame_number,
3935 	    (unsigned long long)usb_frame_number);
3936 
3937 	return (usb_frame_number);
3938 }
3939 
3940 
3941 /*
3942  * ehci_cpr_cleanup:
3943  *
3944  * Cleanup ehci state and other ehci specific informations across
3945  * Check Point Resume (CPR).
3946  */
3947 static	void
3948 ehci_cpr_cleanup(ehci_state_t *ehcip)
3949 {
3950 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3951 
3952 	/* Reset software part of usb frame number */
3953 	ehcip->ehci_fno = 0;
3954 }
3955 
3956 
3957 /*
3958  * ehci_wait_for_sof:
3959  *
3960  * Wait for couple of SOF interrupts
3961  */
3962 int
3963 ehci_wait_for_sof(ehci_state_t	*ehcip)
3964 {
3965 	usb_frame_number_t	before_frame_number, after_frame_number;
3966 	int			error = USB_SUCCESS;
3967 
3968 	USB_DPRINTF_L4(PRINT_MASK_LISTS,
3969 	    ehcip->ehci_log_hdl, "ehci_wait_for_sof");
3970 
3971 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3972 
3973 	error = ehci_state_is_operational(ehcip);
3974 
3975 	if (error != USB_SUCCESS) {
3976 
3977 		return (error);
3978 	}
3979 
3980 	/* Get the current usb frame number before waiting for two SOFs */
3981 	before_frame_number = ehci_get_current_frame_number(ehcip);
3982 
3983 	mutex_exit(&ehcip->ehci_int_mutex);
3984 
3985 	/* Wait for few milliseconds */
3986 	delay(drv_usectohz(EHCI_SOF_TIMEWAIT));
3987 
3988 	mutex_enter(&ehcip->ehci_int_mutex);
3989 
3990 	/* Get the current usb frame number after woken up */
3991 	after_frame_number = ehci_get_current_frame_number(ehcip);
3992 
3993 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3994 	    "ehci_wait_for_sof: framenumber: before 0x%llx "
3995 	    "after 0x%llx",
3996 	    (unsigned long long)before_frame_number,
3997 	    (unsigned long long)after_frame_number);
3998 
3999 	/* Return failure, if usb frame number has not been changed */
4000 	if (after_frame_number <= before_frame_number) {
4001 
4002 		if ((ehci_do_soft_reset(ehcip)) != USB_SUCCESS) {
4003 
4004 			USB_DPRINTF_L0(PRINT_MASK_LISTS,
4005 			    ehcip->ehci_log_hdl, "No SOF interrupts");
4006 
4007 			/* Set host controller soft state to error */
4008 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
4009 
4010 			return (USB_FAILURE);
4011 		}
4012 
4013 	}
4014 
4015 	return (USB_SUCCESS);
4016 }
4017 
4018 /*
4019  * Toggle the async/periodic schedule based on opened pipe count.
4020  * During pipe cleanup(in pipe reset case), the pipe's QH is temporarily
4021  * disabled. But the TW on the pipe is not freed. In this case, we need
4022  * to disable async/periodic schedule for some non-compatible hardware.
4023  * Otherwise, the hardware will overwrite software's configuration of
4024  * the QH.
4025  */
4026 void
4027 ehci_toggle_scheduler_on_pipe(ehci_state_t *ehcip)
4028 {
4029 	uint_t  temp_reg, cmd_reg;
4030 
4031 	cmd_reg = Get_OpReg(ehci_command);
4032 	temp_reg = cmd_reg;
4033 
4034 	/*
4035 	 * Enable/Disable asynchronous scheduler, and
4036 	 * turn on/off async list door bell
4037 	 */
4038 	if (ehcip->ehci_open_async_count) {
4039 		if ((ehcip->ehci_async_req_count > 0) &&
4040 		    ((cmd_reg & EHCI_CMD_ASYNC_SCHED_ENABLE) == 0)) {
4041 			/*
4042 			 * For some reason this address might get nulled out by
4043 			 * the ehci chip. Set it here just in case it is null.
4044 			 */
4045 			Set_OpReg(ehci_async_list_addr,
4046 			    ehci_qh_cpu_to_iommu(ehcip,
4047 			    ehcip->ehci_head_of_async_sched_list));
4048 
4049 			/*
4050 			 * For some reason this register might get nulled out by
4051 			 * the Uli M1575 Southbridge. To workaround the HW
4052 			 * problem, check the value after write and retry if the
4053 			 * last write fails.
4054 			 *
4055 			 * If the ASYNCLISTADDR remains "stuck" after
4056 			 * EHCI_MAX_RETRY retries, then the M1575 is broken
4057 			 * and is stuck in an inconsistent state and is about
4058 			 * to crash the machine with a trn_oor panic when it
4059 			 * does a DMA read from 0x0.  It is better to panic
4060 			 * now rather than wait for the trn_oor crash; this
4061 			 * way Customer Service will have a clean signature
4062 			 * that indicts the M1575 chip rather than a
4063 			 * mysterious and hard-to-diagnose trn_oor panic.
4064 			 */
4065 			if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4066 			    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
4067 			    (ehci_qh_cpu_to_iommu(ehcip,
4068 			    ehcip->ehci_head_of_async_sched_list) !=
4069 			    Get_OpReg(ehci_async_list_addr))) {
4070 				int retry = 0;
4071 
4072 				Set_OpRegRetry(ehci_async_list_addr,
4073 				    ehci_qh_cpu_to_iommu(ehcip,
4074 				    ehcip->ehci_head_of_async_sched_list),
4075 				    retry);
4076 				if (retry >= EHCI_MAX_RETRY)
4077 					cmn_err(CE_PANIC,
4078 					    "ehci_toggle_scheduler_on_pipe: "
4079 					    "ASYNCLISTADDR write failed.");
4080 
4081 				USB_DPRINTF_L2(PRINT_MASK_ATTA,
4082 				    ehcip->ehci_log_hdl,
4083 				    "ehci_toggle_scheduler_on_pipe:"
4084 				    " ASYNCLISTADDR write failed, retry=%d",
4085 				    retry);
4086 			}
4087 
4088 			cmd_reg |= EHCI_CMD_ASYNC_SCHED_ENABLE;
4089 		}
4090 	} else {
4091 		cmd_reg &= ~EHCI_CMD_ASYNC_SCHED_ENABLE;
4092 	}
4093 
4094 	if (ehcip->ehci_open_periodic_count) {
4095 		if ((ehcip->ehci_periodic_req_count > 0) &&
4096 		    ((cmd_reg & EHCI_CMD_PERIODIC_SCHED_ENABLE) == 0)) {
4097 			/*
4098 			 * For some reason this address get's nulled out by
4099 			 * the ehci chip. Set it here just in case it is null.
4100 			 */
4101 			Set_OpReg(ehci_periodic_list_base,
4102 			    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
4103 			    0xFFFFF000));
4104 			cmd_reg |= EHCI_CMD_PERIODIC_SCHED_ENABLE;
4105 		}
4106 	} else {
4107 		cmd_reg &= ~EHCI_CMD_PERIODIC_SCHED_ENABLE;
4108 	}
4109 
4110 	/* Just an optimization */
4111 	if (temp_reg != cmd_reg) {
4112 		Set_OpReg(ehci_command, cmd_reg);
4113 	}
4114 }
4115 
4116 
4117 /*
4118  * ehci_toggle_scheduler:
4119  *
4120  * Turn scheduler based on pipe open count.
4121  */
4122 void
4123 ehci_toggle_scheduler(ehci_state_t *ehcip)
4124 {
4125 	uint_t	temp_reg, cmd_reg;
4126 
4127 	/*
4128 	 * For performance optimization, we need to change the bits
4129 	 * if (async == 1||async == 0) OR (periodic == 1||periodic == 0)
4130 	 *
4131 	 * Related bits already enabled if
4132 	 *	async and periodic req counts are > 1
4133 	 *	OR async req count > 1 & no periodic pipe
4134 	 *	OR periodic req count > 1 & no async pipe
4135 	 */
4136 	if (((ehcip->ehci_async_req_count > 1) &&
4137 	    (ehcip->ehci_periodic_req_count > 1)) ||
4138 	    ((ehcip->ehci_async_req_count > 1) &&
4139 	    (ehcip->ehci_open_periodic_count == 0)) ||
4140 	    ((ehcip->ehci_periodic_req_count > 1) &&
4141 	    (ehcip->ehci_open_async_count == 0))) {
4142 		USB_DPRINTF_L4(PRINT_MASK_ATTA,
4143 		    ehcip->ehci_log_hdl, "ehci_toggle_scheduler:"
4144 		    "async/periodic bits no need to change");
4145 
4146 		return;
4147 	}
4148 
4149 	cmd_reg = Get_OpReg(ehci_command);
4150 	temp_reg = cmd_reg;
4151 
4152 	/*
4153 	 * Enable/Disable asynchronous scheduler, and
4154 	 * turn on/off async list door bell
4155 	 */
4156 	if (ehcip->ehci_async_req_count > 1) {
4157 		/* we already enable the async bit */
4158 		USB_DPRINTF_L4(PRINT_MASK_ATTA,
4159 		    ehcip->ehci_log_hdl, "ehci_toggle_scheduler:"
4160 		    "async bit already enabled: cmd_reg=0x%x", cmd_reg);
4161 	} else if (ehcip->ehci_async_req_count == 1) {
4162 		if (!(cmd_reg & EHCI_CMD_ASYNC_SCHED_ENABLE)) {
4163 			/*
4164 			 * For some reason this address might get nulled out by
4165 			 * the ehci chip. Set it here just in case it is null.
4166 			 * If it's not null, we should not reset the
4167 			 * ASYNCLISTADDR, because it's updated by hardware to
4168 			 * point to the next queue head to be executed.
4169 			 */
4170 			if (!Get_OpReg(ehci_async_list_addr)) {
4171 				Set_OpReg(ehci_async_list_addr,
4172 				    ehci_qh_cpu_to_iommu(ehcip,
4173 				    ehcip->ehci_head_of_async_sched_list));
4174 			}
4175 
4176 			/*
4177 			 * For some reason this register might get nulled out by
4178 			 * the Uli M1575 Southbridge. To workaround the HW
4179 			 * problem, check the value after write and retry if the
4180 			 * last write fails.
4181 			 *
4182 			 * If the ASYNCLISTADDR remains "stuck" after
4183 			 * EHCI_MAX_RETRY retries, then the M1575 is broken
4184 			 * and is stuck in an inconsistent state and is about
4185 			 * to crash the machine with a trn_oor panic when it
4186 			 * does a DMA read from 0x0.  It is better to panic
4187 			 * now rather than wait for the trn_oor crash; this
4188 			 * way Customer Service will have a clean signature
4189 			 * that indicts the M1575 chip rather than a
4190 			 * mysterious and hard-to-diagnose trn_oor panic.
4191 			 */
4192 			if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4193 			    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
4194 			    (ehci_qh_cpu_to_iommu(ehcip,
4195 			    ehcip->ehci_head_of_async_sched_list) !=
4196 			    Get_OpReg(ehci_async_list_addr))) {
4197 				int retry = 0;
4198 
4199 				Set_OpRegRetry(ehci_async_list_addr,
4200 				    ehci_qh_cpu_to_iommu(ehcip,
4201 				    ehcip->ehci_head_of_async_sched_list),
4202 				    retry);
4203 				if (retry >= EHCI_MAX_RETRY)
4204 					cmn_err(CE_PANIC,
4205 					    "ehci_toggle_scheduler: "
4206 					    "ASYNCLISTADDR write failed.");
4207 
4208 				USB_DPRINTF_L3(PRINT_MASK_ATTA,
4209 				    ehcip->ehci_log_hdl,
4210 				    "ehci_toggle_scheduler: ASYNCLISTADDR "
4211 				    "write failed, retry=%d", retry);
4212 			}
4213 		}
4214 		cmd_reg |= EHCI_CMD_ASYNC_SCHED_ENABLE;
4215 	} else {
4216 		cmd_reg &= ~EHCI_CMD_ASYNC_SCHED_ENABLE;
4217 	}
4218 
4219 	if (ehcip->ehci_periodic_req_count > 1) {
4220 		/* we already enable the periodic bit. */
4221 		USB_DPRINTF_L4(PRINT_MASK_ATTA,
4222 		    ehcip->ehci_log_hdl, "ehci_toggle_scheduler:"
4223 		    "periodic bit already enabled: cmd_reg=0x%x", cmd_reg);
4224 	} else if (ehcip->ehci_periodic_req_count == 1) {
4225 		if (!(cmd_reg & EHCI_CMD_PERIODIC_SCHED_ENABLE)) {
4226 			/*
4227 			 * For some reason this address get's nulled out by
4228 			 * the ehci chip. Set it here just in case it is null.
4229 			 */
4230 			Set_OpReg(ehci_periodic_list_base,
4231 			    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
4232 			    0xFFFFF000));
4233 		}
4234 		cmd_reg |= EHCI_CMD_PERIODIC_SCHED_ENABLE;
4235 	} else {
4236 		cmd_reg &= ~EHCI_CMD_PERIODIC_SCHED_ENABLE;
4237 	}
4238 
4239 	/* Just an optimization */
4240 	if (temp_reg != cmd_reg) {
4241 		Set_OpReg(ehci_command, cmd_reg);
4242 
4243 		/* To make sure the command register is updated correctly */
4244 		if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4245 		    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) {
4246 			int retry = 0;
4247 
4248 			Set_OpRegRetry(ehci_command, cmd_reg, retry);
4249 			USB_DPRINTF_L3(PRINT_MASK_ATTA,
4250 			    ehcip->ehci_log_hdl,
4251 			    "ehci_toggle_scheduler: CMD write failed, retry=%d",
4252 			    retry);
4253 		}
4254 
4255 	}
4256 }
4257 
4258 /*
4259  * ehci print functions
4260  */
4261 
4262 /*
4263  * ehci_print_caps:
4264  */
4265 void
4266 ehci_print_caps(ehci_state_t	*ehcip)
4267 {
4268 	uint_t			i;
4269 
4270 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4271 	    "\n\tUSB 2.0 Host Controller Characteristics\n");
4272 
4273 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4274 	    "Caps Length: 0x%x Version: 0x%x\n",
4275 	    Get_8Cap(ehci_caps_length), Get_16Cap(ehci_version));
4276 
4277 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4278 	    "Structural Parameters\n");
4279 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4280 	    "Port indicators: %s", (Get_Cap(ehci_hcs_params) &
4281 	    EHCI_HCS_PORT_INDICATOR) ? "Yes" : "No");
4282 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4283 	    "No of Classic host controllers: 0x%x",
4284 	    (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_COMP_CTRLS)
4285 	    >> EHCI_HCS_NUM_COMP_CTRL_SHIFT);
4286 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4287 	    "No of ports per Classic host controller: 0x%x",
4288 	    (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS_CC)
4289 	    >> EHCI_HCS_NUM_PORTS_CC_SHIFT);
4290 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4291 	    "Port routing rules: %s", (Get_Cap(ehci_hcs_params) &
4292 	    EHCI_HCS_PORT_ROUTING_RULES) ? "Yes" : "No");
4293 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4294 	    "Port power control: %s", (Get_Cap(ehci_hcs_params) &
4295 	    EHCI_HCS_PORT_POWER_CONTROL) ? "Yes" : "No");
4296 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4297 	    "No of root hub ports: 0x%x\n",
4298 	    Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS);
4299 
4300 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4301 	    "Capability Parameters\n");
4302 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4303 	    "EHCI extended capability: %s", (Get_Cap(ehci_hcc_params) &
4304 	    EHCI_HCC_EECP) ? "Yes" : "No");
4305 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4306 	    "Isoch schedule threshold: 0x%x",
4307 	    Get_Cap(ehci_hcc_params) & EHCI_HCC_ISOCH_SCHED_THRESHOLD);
4308 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4309 	    "Async schedule park capability: %s", (Get_Cap(ehci_hcc_params) &
4310 	    EHCI_HCC_ASYNC_SCHED_PARK_CAP) ? "Yes" : "No");
4311 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4312 	    "Programmable frame list flag: %s", (Get_Cap(ehci_hcc_params) &
4313 	    EHCI_HCC_PROG_FRAME_LIST_FLAG) ? "256/512/1024" : "1024");
4314 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4315 	    "64bit addressing capability: %s\n", (Get_Cap(ehci_hcc_params) &
4316 	    EHCI_HCC_64BIT_ADDR_CAP) ? "Yes" : "No");
4317 
4318 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4319 	    "Classic Port Route Description");
4320 
4321 	for (i = 0; i < (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS); i++) {
4322 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4323 		    "\tPort Route 0x%x: 0x%x", i, Get_8Cap(ehci_port_route[i]));
4324 	}
4325 }
4326 
4327 
4328 /*
4329  * ehci_print_regs:
4330  */
4331 void
4332 ehci_print_regs(ehci_state_t	*ehcip)
4333 {
4334 	uint_t			i;
4335 
4336 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4337 	    "\n\tEHCI%d Operational Registers\n",
4338 	    ddi_get_instance(ehcip->ehci_dip));
4339 
4340 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4341 	    "Command: 0x%x Status: 0x%x",
4342 	    Get_OpReg(ehci_command), Get_OpReg(ehci_status));
4343 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4344 	    "Interrupt: 0x%x Frame Index: 0x%x",
4345 	    Get_OpReg(ehci_interrupt), Get_OpReg(ehci_frame_index));
4346 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4347 	    "Control Segment: 0x%x Periodic List Base: 0x%x",
4348 	    Get_OpReg(ehci_ctrl_segment), Get_OpReg(ehci_periodic_list_base));
4349 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4350 	    "Async List Addr: 0x%x Config Flag: 0x%x",
4351 	    Get_OpReg(ehci_async_list_addr), Get_OpReg(ehci_config_flag));
4352 
4353 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4354 	    "Root Hub Port Status");
4355 
4356 	for (i = 0; i < (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS); i++) {
4357 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4358 		    "\tPort Status 0x%x: 0x%x ", i,
4359 		    Get_OpReg(ehci_rh_port_status[i]));
4360 	}
4361 }
4362 
4363 
4364 /*
4365  * ehci_print_qh:
4366  */
4367 void
4368 ehci_print_qh(
4369 	ehci_state_t	*ehcip,
4370 	ehci_qh_t	*qh)
4371 {
4372 	uint_t		i;
4373 
4374 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4375 	    "ehci_print_qh: qh = 0x%p", (void *)qh);
4376 
4377 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4378 	    "\tqh_link_ptr: 0x%x ", Get_QH(qh->qh_link_ptr));
4379 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4380 	    "\tqh_ctrl: 0x%x ", Get_QH(qh->qh_ctrl));
4381 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4382 	    "\tqh_split_ctrl: 0x%x ", Get_QH(qh->qh_split_ctrl));
4383 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4384 	    "\tqh_curr_qtd: 0x%x ", Get_QH(qh->qh_curr_qtd));
4385 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4386 	    "\tqh_next_qtd: 0x%x ", Get_QH(qh->qh_next_qtd));
4387 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4388 	    "\tqh_alt_next_qtd: 0x%x ", Get_QH(qh->qh_alt_next_qtd));
4389 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4390 	    "\tqh_status: 0x%x ", Get_QH(qh->qh_status));
4391 
4392 	for (i = 0; i < 5; i++) {
4393 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4394 		    "\tqh_buf[%d]: 0x%x ", i, Get_QH(qh->qh_buf[i]));
4395 	}
4396 
4397 	for (i = 0; i < 5; i++) {
4398 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4399 		    "\tqh_buf_high[%d]: 0x%x ",
4400 		    i, Get_QH(qh->qh_buf_high[i]));
4401 	}
4402 
4403 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4404 	    "\tqh_dummy_qtd: 0x%x ", Get_QH(qh->qh_dummy_qtd));
4405 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4406 	    "\tqh_prev: 0x%x ", Get_QH(qh->qh_prev));
4407 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4408 	    "\tqh_state: 0x%x ", Get_QH(qh->qh_state));
4409 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4410 	    "\tqh_reclaim_next: 0x%x ", Get_QH(qh->qh_reclaim_next));
4411 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4412 	    "\tqh_reclaim_frame: 0x%x ", Get_QH(qh->qh_reclaim_frame));
4413 }
4414 
4415 
4416 /*
4417  * ehci_print_qtd:
4418  */
4419 void
4420 ehci_print_qtd(
4421 	ehci_state_t	*ehcip,
4422 	ehci_qtd_t	*qtd)
4423 {
4424 	uint_t		i;
4425 
4426 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4427 	    "ehci_print_qtd: qtd = 0x%p", (void *)qtd);
4428 
4429 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4430 	    "\tqtd_next_qtd: 0x%x ", Get_QTD(qtd->qtd_next_qtd));
4431 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4432 	    "\tqtd_alt_next_qtd: 0x%x ", Get_QTD(qtd->qtd_alt_next_qtd));
4433 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4434 	    "\tqtd_ctrl: 0x%x ", Get_QTD(qtd->qtd_ctrl));
4435 
4436 	for (i = 0; i < 5; i++) {
4437 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4438 		    "\tqtd_buf[%d]: 0x%x ", i, Get_QTD(qtd->qtd_buf[i]));
4439 	}
4440 
4441 	for (i = 0; i < 5; i++) {
4442 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4443 		    "\tqtd_buf_high[%d]: 0x%x ",
4444 		    i, Get_QTD(qtd->qtd_buf_high[i]));
4445 	}
4446 
4447 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4448 	    "\tqtd_trans_wrapper: 0x%x ", Get_QTD(qtd->qtd_trans_wrapper));
4449 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4450 	    "\tqtd_tw_next_qtd: 0x%x ", Get_QTD(qtd->qtd_tw_next_qtd));
4451 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4452 	    "\tqtd_active_qtd_next: 0x%x ", Get_QTD(qtd->qtd_active_qtd_next));
4453 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4454 	    "\tqtd_active_qtd_prev: 0x%x ", Get_QTD(qtd->qtd_active_qtd_prev));
4455 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4456 	    "\tqtd_state: 0x%x ", Get_QTD(qtd->qtd_state));
4457 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4458 	    "\tqtd_ctrl_phase: 0x%x ", Get_QTD(qtd->qtd_ctrl_phase));
4459 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4460 	    "\tqtd_xfer_offs: 0x%x ", Get_QTD(qtd->qtd_xfer_offs));
4461 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4462 	    "\tqtd_xfer_len: 0x%x ", Get_QTD(qtd->qtd_xfer_len));
4463 }
4464 
4465 /*
4466  * ehci kstat functions
4467  */
4468 
4469 /*
4470  * ehci_create_stats:
4471  *
4472  * Allocate and initialize the ehci kstat structures
4473  */
4474 void
4475 ehci_create_stats(ehci_state_t	*ehcip)
4476 {
4477 	char			kstatname[KSTAT_STRLEN];
4478 	const char		*dname = ddi_driver_name(ehcip->ehci_dip);
4479 	char			*usbtypes[USB_N_COUNT_KSTATS] =
4480 	    {"ctrl", "isoch", "bulk", "intr"};
4481 	uint_t			instance = ehcip->ehci_instance;
4482 	ehci_intrs_stats_t	*isp;
4483 	int			i;
4484 
4485 	if (EHCI_INTRS_STATS(ehcip) == NULL) {
4486 		(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,intrs",
4487 		    dname, instance);
4488 		EHCI_INTRS_STATS(ehcip) = kstat_create("usba", instance,
4489 		    kstatname, "usb_interrupts", KSTAT_TYPE_NAMED,
4490 		    sizeof (ehci_intrs_stats_t) / sizeof (kstat_named_t),
4491 		    KSTAT_FLAG_PERSISTENT);
4492 
4493 		if (EHCI_INTRS_STATS(ehcip)) {
4494 			isp = EHCI_INTRS_STATS_DATA(ehcip);
4495 			kstat_named_init(&isp->ehci_sts_total,
4496 			    "Interrupts Total", KSTAT_DATA_UINT64);
4497 			kstat_named_init(&isp->ehci_sts_not_claimed,
4498 			    "Not Claimed", KSTAT_DATA_UINT64);
4499 			kstat_named_init(&isp->ehci_sts_async_sched_status,
4500 			    "Async schedule status", KSTAT_DATA_UINT64);
4501 			kstat_named_init(&isp->ehci_sts_periodic_sched_status,
4502 			    "Periodic sched status", KSTAT_DATA_UINT64);
4503 			kstat_named_init(&isp->ehci_sts_empty_async_schedule,
4504 			    "Empty async schedule", KSTAT_DATA_UINT64);
4505 			kstat_named_init(&isp->ehci_sts_host_ctrl_halted,
4506 			    "Host controller Halted", KSTAT_DATA_UINT64);
4507 			kstat_named_init(&isp->ehci_sts_async_advance_intr,
4508 			    "Intr on async advance", KSTAT_DATA_UINT64);
4509 			kstat_named_init(&isp->ehci_sts_host_system_error_intr,
4510 			    "Host system error", KSTAT_DATA_UINT64);
4511 			kstat_named_init(&isp->ehci_sts_frm_list_rollover_intr,
4512 			    "Frame list rollover", KSTAT_DATA_UINT64);
4513 			kstat_named_init(&isp->ehci_sts_rh_port_change_intr,
4514 			    "Port change detect", KSTAT_DATA_UINT64);
4515 			kstat_named_init(&isp->ehci_sts_usb_error_intr,
4516 			    "USB error interrupt", KSTAT_DATA_UINT64);
4517 			kstat_named_init(&isp->ehci_sts_usb_intr,
4518 			    "USB interrupt", KSTAT_DATA_UINT64);
4519 
4520 			EHCI_INTRS_STATS(ehcip)->ks_private = ehcip;
4521 			EHCI_INTRS_STATS(ehcip)->ks_update = nulldev;
4522 			kstat_install(EHCI_INTRS_STATS(ehcip));
4523 		}
4524 	}
4525 
4526 	if (EHCI_TOTAL_STATS(ehcip) == NULL) {
4527 		(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,total",
4528 		    dname, instance);
4529 		EHCI_TOTAL_STATS(ehcip) = kstat_create("usba", instance,
4530 		    kstatname, "usb_byte_count", KSTAT_TYPE_IO, 1,
4531 		    KSTAT_FLAG_PERSISTENT);
4532 
4533 		if (EHCI_TOTAL_STATS(ehcip)) {
4534 			kstat_install(EHCI_TOTAL_STATS(ehcip));
4535 		}
4536 	}
4537 
4538 	for (i = 0; i < USB_N_COUNT_KSTATS; i++) {
4539 		if (ehcip->ehci_count_stats[i] == NULL) {
4540 			(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,%s",
4541 			    dname, instance, usbtypes[i]);
4542 			ehcip->ehci_count_stats[i] = kstat_create("usba",
4543 			    instance, kstatname, "usb_byte_count",
4544 			    KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
4545 
4546 			if (ehcip->ehci_count_stats[i]) {
4547 				kstat_install(ehcip->ehci_count_stats[i]);
4548 			}
4549 		}
4550 	}
4551 }
4552 
4553 
4554 /*
4555  * ehci_destroy_stats:
4556  *
4557  * Clean up ehci kstat structures
4558  */
4559 void
4560 ehci_destroy_stats(ehci_state_t	*ehcip)
4561 {
4562 	int	i;
4563 
4564 	if (EHCI_INTRS_STATS(ehcip)) {
4565 		kstat_delete(EHCI_INTRS_STATS(ehcip));
4566 		EHCI_INTRS_STATS(ehcip) = NULL;
4567 	}
4568 
4569 	if (EHCI_TOTAL_STATS(ehcip)) {
4570 		kstat_delete(EHCI_TOTAL_STATS(ehcip));
4571 		EHCI_TOTAL_STATS(ehcip) = NULL;
4572 	}
4573 
4574 	for (i = 0; i < USB_N_COUNT_KSTATS; i++) {
4575 		if (ehcip->ehci_count_stats[i]) {
4576 			kstat_delete(ehcip->ehci_count_stats[i]);
4577 			ehcip->ehci_count_stats[i] = NULL;
4578 		}
4579 	}
4580 }
4581 
4582 
4583 /*
4584  * ehci_do_intrs_stats:
4585  *
4586  * ehci status information
4587  */
4588 void
4589 ehci_do_intrs_stats(
4590 	ehci_state_t	*ehcip,
4591 	int		val)
4592 {
4593 	if (EHCI_INTRS_STATS(ehcip)) {
4594 		EHCI_INTRS_STATS_DATA(ehcip)->ehci_sts_total.value.ui64++;
4595 		switch (val) {
4596 		case EHCI_STS_ASYNC_SCHED_STATUS:
4597 			EHCI_INTRS_STATS_DATA(ehcip)->
4598 			    ehci_sts_async_sched_status.value.ui64++;
4599 			break;
4600 		case EHCI_STS_PERIODIC_SCHED_STATUS:
4601 			EHCI_INTRS_STATS_DATA(ehcip)->
4602 			    ehci_sts_periodic_sched_status.value.ui64++;
4603 			break;
4604 		case EHCI_STS_EMPTY_ASYNC_SCHEDULE:
4605 			EHCI_INTRS_STATS_DATA(ehcip)->
4606 			    ehci_sts_empty_async_schedule.value.ui64++;
4607 			break;
4608 		case EHCI_STS_HOST_CTRL_HALTED:
4609 			EHCI_INTRS_STATS_DATA(ehcip)->
4610 			    ehci_sts_host_ctrl_halted.value.ui64++;
4611 			break;
4612 		case EHCI_STS_ASYNC_ADVANCE_INTR:
4613 			EHCI_INTRS_STATS_DATA(ehcip)->
4614 			    ehci_sts_async_advance_intr.value.ui64++;
4615 			break;
4616 		case EHCI_STS_HOST_SYSTEM_ERROR_INTR:
4617 			EHCI_INTRS_STATS_DATA(ehcip)->
4618 			    ehci_sts_host_system_error_intr.value.ui64++;
4619 			break;
4620 		case EHCI_STS_FRM_LIST_ROLLOVER_INTR:
4621 			EHCI_INTRS_STATS_DATA(ehcip)->
4622 			    ehci_sts_frm_list_rollover_intr.value.ui64++;
4623 			break;
4624 		case EHCI_STS_RH_PORT_CHANGE_INTR:
4625 			EHCI_INTRS_STATS_DATA(ehcip)->
4626 			    ehci_sts_rh_port_change_intr.value.ui64++;
4627 			break;
4628 		case EHCI_STS_USB_ERROR_INTR:
4629 			EHCI_INTRS_STATS_DATA(ehcip)->
4630 			    ehci_sts_usb_error_intr.value.ui64++;
4631 			break;
4632 		case EHCI_STS_USB_INTR:
4633 			EHCI_INTRS_STATS_DATA(ehcip)->
4634 			    ehci_sts_usb_intr.value.ui64++;
4635 			break;
4636 		default:
4637 			EHCI_INTRS_STATS_DATA(ehcip)->
4638 			    ehci_sts_not_claimed.value.ui64++;
4639 			break;
4640 		}
4641 	}
4642 }
4643 
4644 
4645 /*
4646  * ehci_do_byte_stats:
4647  *
4648  * ehci data xfer information
4649  */
4650 void
4651 ehci_do_byte_stats(
4652 	ehci_state_t	*ehcip,
4653 	size_t		len,
4654 	uint8_t		attr,
4655 	uint8_t		addr)
4656 {
4657 	uint8_t 	type = attr & USB_EP_ATTR_MASK;
4658 	uint8_t 	dir = addr & USB_EP_DIR_MASK;
4659 
4660 	if (dir == USB_EP_DIR_IN) {
4661 		EHCI_TOTAL_STATS_DATA(ehcip)->reads++;
4662 		EHCI_TOTAL_STATS_DATA(ehcip)->nread += len;
4663 		switch (type) {
4664 			case USB_EP_ATTR_CONTROL:
4665 				EHCI_CTRL_STATS(ehcip)->reads++;
4666 				EHCI_CTRL_STATS(ehcip)->nread += len;
4667 				break;
4668 			case USB_EP_ATTR_BULK:
4669 				EHCI_BULK_STATS(ehcip)->reads++;
4670 				EHCI_BULK_STATS(ehcip)->nread += len;
4671 				break;
4672 			case USB_EP_ATTR_INTR:
4673 				EHCI_INTR_STATS(ehcip)->reads++;
4674 				EHCI_INTR_STATS(ehcip)->nread += len;
4675 				break;
4676 			case USB_EP_ATTR_ISOCH:
4677 				EHCI_ISOC_STATS(ehcip)->reads++;
4678 				EHCI_ISOC_STATS(ehcip)->nread += len;
4679 				break;
4680 		}
4681 	} else if (dir == USB_EP_DIR_OUT) {
4682 		EHCI_TOTAL_STATS_DATA(ehcip)->writes++;
4683 		EHCI_TOTAL_STATS_DATA(ehcip)->nwritten += len;
4684 		switch (type) {
4685 			case USB_EP_ATTR_CONTROL:
4686 				EHCI_CTRL_STATS(ehcip)->writes++;
4687 				EHCI_CTRL_STATS(ehcip)->nwritten += len;
4688 				break;
4689 			case USB_EP_ATTR_BULK:
4690 				EHCI_BULK_STATS(ehcip)->writes++;
4691 				EHCI_BULK_STATS(ehcip)->nwritten += len;
4692 				break;
4693 			case USB_EP_ATTR_INTR:
4694 				EHCI_INTR_STATS(ehcip)->writes++;
4695 				EHCI_INTR_STATS(ehcip)->nwritten += len;
4696 				break;
4697 			case USB_EP_ATTR_ISOCH:
4698 				EHCI_ISOC_STATS(ehcip)->writes++;
4699 				EHCI_ISOC_STATS(ehcip)->nwritten += len;
4700 				break;
4701 		}
4702 	}
4703 }
4704