xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision baa708d6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
28  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
29  * Copyright 2017 Nexenta Systems, Inc.
30  */
31 /*
32  * Copyright 2011 cyril.galibern@opensvc.com
33  */
34 
35 /*
36  * SCSI disk target driver.
37  */
38 #include <sys/scsi/scsi.h>
39 #include <sys/dkbad.h>
40 #include <sys/dklabel.h>
41 #include <sys/dkio.h>
42 #include <sys/fdio.h>
43 #include <sys/cdio.h>
44 #include <sys/mhd.h>
45 #include <sys/vtoc.h>
46 #include <sys/dktp/fdisk.h>
47 #include <sys/kstat.h>
48 #include <sys/vtrace.h>
49 #include <sys/note.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/efi_partition.h>
53 #include <sys/var.h>
54 #include <sys/aio_req.h>
55 
56 #ifdef __lock_lint
57 #define	_LP64
58 #define	__amd64
59 #endif
60 
61 #if (defined(__fibre))
62 /* Note: is there a leadville version of the following? */
63 #include <sys/fc4/fcal_linkapp.h>
64 #endif
65 #include <sys/taskq.h>
66 #include <sys/uuid.h>
67 #include <sys/byteorder.h>
68 #include <sys/sdt.h>
69 
70 #include "sd_xbuf.h"
71 
72 #include <sys/scsi/targets/sddef.h>
73 #include <sys/cmlb.h>
74 #include <sys/sysevent/eventdefs.h>
75 #include <sys/sysevent/dev.h>
76 
77 #include <sys/fm/protocol.h>
78 
79 /*
80  * Loadable module info.
81  */
82 #if (defined(__fibre))
83 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
84 #else /* !__fibre */
85 #define	SD_MODULE_NAME	"SCSI Disk Driver"
86 #endif /* !__fibre */
87 
88 /*
89  * Define the interconnect type, to allow the driver to distinguish
90  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
91  *
92  * This is really for backward compatibility. In the future, the driver
93  * should actually check the "interconnect-type" property as reported by
94  * the HBA; however at present this property is not defined by all HBAs,
95  * so we will use this #define (1) to permit the driver to run in
96  * backward-compatibility mode; and (2) to print a notification message
97  * if an FC HBA does not support the "interconnect-type" property.  The
98  * behavior of the driver will be to assume parallel SCSI behaviors unless
99  * the "interconnect-type" property is defined by the HBA **AND** has a
100  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
101  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
102  * Channel behaviors (as per the old ssd).  (Note that the
103  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
104  * will result in the driver assuming parallel SCSI behaviors.)
105  *
106  * (see common/sys/scsi/impl/services.h)
107  *
108  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
109  * since some FC HBAs may already support that, and there is some code in
110  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
111  * default would confuse that code, and besides things should work fine
112  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
113  * "interconnect_type" property.
114  *
115  */
116 #if (defined(__fibre))
117 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
118 #else
119 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
120 #endif
121 
122 /*
123  * The name of the driver, established from the module name in _init.
124  */
125 static	char *sd_label			= NULL;
126 
127 /*
128  * Driver name is unfortunately prefixed on some driver.conf properties.
129  */
130 #if (defined(__fibre))
131 #define	sd_max_xfer_size		ssd_max_xfer_size
132 #define	sd_config_list			ssd_config_list
133 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
134 static	char *sd_config_list		= "ssd-config-list";
135 #else
136 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
137 static	char *sd_config_list		= "sd-config-list";
138 #endif
139 
140 /*
141  * Driver global variables
142  */
143 
144 #if (defined(__fibre))
145 /*
146  * These #defines are to avoid namespace collisions that occur because this
147  * code is currently used to compile two separate driver modules: sd and ssd.
148  * All global variables need to be treated this way (even if declared static)
149  * in order to allow the debugger to resolve the names properly.
150  * It is anticipated that in the near future the ssd module will be obsoleted,
151  * at which time this namespace issue should go away.
152  */
153 #define	sd_state			ssd_state
154 #define	sd_io_time			ssd_io_time
155 #define	sd_failfast_enable		ssd_failfast_enable
156 #define	sd_ua_retry_count		ssd_ua_retry_count
157 #define	sd_report_pfa			ssd_report_pfa
158 #define	sd_max_throttle			ssd_max_throttle
159 #define	sd_min_throttle			ssd_min_throttle
160 #define	sd_rot_delay			ssd_rot_delay
161 
162 #define	sd_retry_on_reservation_conflict	\
163 					ssd_retry_on_reservation_conflict
164 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
165 #define	sd_resv_conflict_name		ssd_resv_conflict_name
166 
167 #define	sd_component_mask		ssd_component_mask
168 #define	sd_level_mask			ssd_level_mask
169 #define	sd_debug_un			ssd_debug_un
170 #define	sd_error_level			ssd_error_level
171 
172 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
173 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
174 
175 #define	sd_tr				ssd_tr
176 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
177 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
178 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
179 #define	sd_check_media_time		ssd_check_media_time
180 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
181 #define	sd_label_mutex			ssd_label_mutex
182 #define	sd_detach_mutex			ssd_detach_mutex
183 #define	sd_log_buf			ssd_log_buf
184 #define	sd_log_mutex			ssd_log_mutex
185 
186 #define	sd_disk_table			ssd_disk_table
187 #define	sd_disk_table_size		ssd_disk_table_size
188 #define	sd_sense_mutex			ssd_sense_mutex
189 #define	sd_cdbtab			ssd_cdbtab
190 
191 #define	sd_cb_ops			ssd_cb_ops
192 #define	sd_ops				ssd_ops
193 #define	sd_additional_codes		ssd_additional_codes
194 #define	sd_tgops			ssd_tgops
195 
196 #define	sd_minor_data			ssd_minor_data
197 #define	sd_minor_data_efi		ssd_minor_data_efi
198 
199 #define	sd_tq				ssd_tq
200 #define	sd_wmr_tq			ssd_wmr_tq
201 #define	sd_taskq_name			ssd_taskq_name
202 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
203 #define	sd_taskq_minalloc		ssd_taskq_minalloc
204 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
205 
206 #define	sd_dump_format_string		ssd_dump_format_string
207 
208 #define	sd_iostart_chain		ssd_iostart_chain
209 #define	sd_iodone_chain			ssd_iodone_chain
210 
211 #define	sd_pm_idletime			ssd_pm_idletime
212 
213 #define	sd_force_pm_supported		ssd_force_pm_supported
214 
215 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
216 
217 #define	sd_ssc_init			ssd_ssc_init
218 #define	sd_ssc_send			ssd_ssc_send
219 #define	sd_ssc_fini			ssd_ssc_fini
220 #define	sd_ssc_assessment		ssd_ssc_assessment
221 #define	sd_ssc_post			ssd_ssc_post
222 #define	sd_ssc_print			ssd_ssc_print
223 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
224 #define	sd_ssc_set_info			ssd_ssc_set_info
225 #define	sd_ssc_extract_info		ssd_ssc_extract_info
226 
227 #endif
228 
229 #ifdef	SDDEBUG
230 int	sd_force_pm_supported		= 0;
231 #endif	/* SDDEBUG */
232 
233 void *sd_state				= NULL;
234 int sd_io_time				= SD_IO_TIME;
235 int sd_failfast_enable			= 1;
236 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
237 int sd_report_pfa			= 1;
238 int sd_max_throttle			= SD_MAX_THROTTLE;
239 int sd_min_throttle			= SD_MIN_THROTTLE;
240 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
241 int sd_qfull_throttle_enable		= TRUE;
242 
243 int sd_retry_on_reservation_conflict	= 1;
244 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
245 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
246 
247 static int sd_dtype_optical_bind	= -1;
248 
249 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
250 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
251 
252 /*
253  * Global data for debug logging. To enable debug printing, sd_component_mask
254  * and sd_level_mask should be set to the desired bit patterns as outlined in
255  * sddef.h.
256  */
257 uint_t	sd_component_mask		= 0x0;
258 uint_t	sd_level_mask			= 0x0;
259 struct	sd_lun *sd_debug_un		= NULL;
260 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
261 
262 /* Note: these may go away in the future... */
263 static uint32_t	sd_xbuf_active_limit	= 512;
264 static uint32_t sd_xbuf_reserve_limit	= 16;
265 
266 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
267 
268 /*
269  * Timer value used to reset the throttle after it has been reduced
270  * (typically in response to TRAN_BUSY or STATUS_QFULL)
271  */
272 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
273 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
274 
275 /*
276  * Interval value associated with the media change scsi watch.
277  */
278 static int sd_check_media_time		= 3000000;
279 
280 /*
281  * Wait value used for in progress operations during a DDI_SUSPEND
282  */
283 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
284 
285 /*
286  * sd_label_mutex protects a static buffer used in the disk label
287  * component of the driver
288  */
289 static kmutex_t sd_label_mutex;
290 
291 /*
292  * sd_detach_mutex protects un_layer_count, un_detach_count, and
293  * un_opens_in_progress in the sd_lun structure.
294  */
295 static kmutex_t sd_detach_mutex;
296 
297 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
298 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
299 
300 /*
301  * Global buffer and mutex for debug logging
302  */
303 static char	sd_log_buf[1024];
304 static kmutex_t	sd_log_mutex;
305 
306 /*
307  * Structs and globals for recording attached lun information.
308  * This maintains a chain. Each node in the chain represents a SCSI controller.
309  * The structure records the number of luns attached to each target connected
310  * with the controller.
311  * For parallel scsi device only.
312  */
313 struct sd_scsi_hba_tgt_lun {
314 	struct sd_scsi_hba_tgt_lun	*next;
315 	dev_info_t			*pdip;
316 	int				nlun[NTARGETS_WIDE];
317 };
318 
319 /*
320  * Flag to indicate the lun is attached or detached
321  */
322 #define	SD_SCSI_LUN_ATTACH	0
323 #define	SD_SCSI_LUN_DETACH	1
324 
325 static kmutex_t	sd_scsi_target_lun_mutex;
326 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
327 
328 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
329     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
330 
331 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
332     sd_scsi_target_lun_head))
333 
334 /*
335  * "Smart" Probe Caching structs, globals, #defines, etc.
336  * For parallel scsi and non-self-identify device only.
337  */
338 
339 /*
340  * The following resources and routines are implemented to support
341  * "smart" probing, which caches the scsi_probe() results in an array,
342  * in order to help avoid long probe times.
343  */
344 struct sd_scsi_probe_cache {
345 	struct	sd_scsi_probe_cache	*next;
346 	dev_info_t	*pdip;
347 	int		cache[NTARGETS_WIDE];
348 };
349 
350 static kmutex_t	sd_scsi_probe_cache_mutex;
351 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
352 
353 /*
354  * Really we only need protection on the head of the linked list, but
355  * better safe than sorry.
356  */
357 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
358     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
359 
360 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
361     sd_scsi_probe_cache_head))
362 
363 /*
364  * Power attribute table
365  */
366 static sd_power_attr_ss sd_pwr_ss = {
367 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
368 	{0, 100},
369 	{30, 0},
370 	{20000, 0}
371 };
372 
373 static sd_power_attr_pc sd_pwr_pc = {
374 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
375 		"3=active", NULL },
376 	{0, 0, 0, 100},
377 	{90, 90, 20, 0},
378 	{15000, 15000, 1000, 0}
379 };
380 
381 /*
382  * Power level to power condition
383  */
384 static int sd_pl2pc[] = {
385 	SD_TARGET_START_VALID,
386 	SD_TARGET_STANDBY,
387 	SD_TARGET_IDLE,
388 	SD_TARGET_ACTIVE
389 };
390 
391 /*
392  * Vendor specific data name property declarations
393  */
394 
395 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
396 
397 static sd_tunables seagate_properties = {
398 	SEAGATE_THROTTLE_VALUE,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0
407 };
408 
409 
410 static sd_tunables fujitsu_properties = {
411 	FUJITSU_THROTTLE_VALUE,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0
420 };
421 
422 static sd_tunables ibm_properties = {
423 	IBM_THROTTLE_VALUE,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0
432 };
433 
434 static sd_tunables purple_properties = {
435 	PURPLE_THROTTLE_VALUE,
436 	0,
437 	0,
438 	PURPLE_BUSY_RETRIES,
439 	PURPLE_RESET_RETRY_COUNT,
440 	PURPLE_RESERVE_RELEASE_TIME,
441 	0,
442 	0,
443 	0
444 };
445 
446 static sd_tunables sve_properties = {
447 	SVE_THROTTLE_VALUE,
448 	0,
449 	0,
450 	SVE_BUSY_RETRIES,
451 	SVE_RESET_RETRY_COUNT,
452 	SVE_RESERVE_RELEASE_TIME,
453 	SVE_MIN_THROTTLE_VALUE,
454 	SVE_DISKSORT_DISABLED_FLAG,
455 	0
456 };
457 
458 static sd_tunables maserati_properties = {
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	MASERATI_DISKSORT_DISABLED_FLAG,
467 	MASERATI_LUN_RESET_ENABLED_FLAG
468 };
469 
470 static sd_tunables pirus_properties = {
471 	PIRUS_THROTTLE_VALUE,
472 	0,
473 	PIRUS_NRR_COUNT,
474 	PIRUS_BUSY_RETRIES,
475 	PIRUS_RESET_RETRY_COUNT,
476 	0,
477 	PIRUS_MIN_THROTTLE_VALUE,
478 	PIRUS_DISKSORT_DISABLED_FLAG,
479 	PIRUS_LUN_RESET_ENABLED_FLAG
480 };
481 
482 #endif
483 
484 #if (defined(__sparc) && !defined(__fibre)) || \
485 	(defined(__i386) || defined(__amd64))
486 
487 
488 static sd_tunables elite_properties = {
489 	ELITE_THROTTLE_VALUE,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0,
497 	0
498 };
499 
500 static sd_tunables st31200n_properties = {
501 	ST31200N_THROTTLE_VALUE,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0,
508 	0,
509 	0
510 };
511 
512 #endif /* Fibre or not */
513 
514 static sd_tunables lsi_properties_scsi = {
515 	LSI_THROTTLE_VALUE,
516 	0,
517 	LSI_NOTREADY_RETRIES,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0,
523 	0
524 };
525 
526 static sd_tunables symbios_properties = {
527 	SYMBIOS_THROTTLE_VALUE,
528 	0,
529 	SYMBIOS_NOTREADY_RETRIES,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0,
535 	0
536 };
537 
538 static sd_tunables lsi_properties = {
539 	0,
540 	0,
541 	LSI_NOTREADY_RETRIES,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0,
547 	0
548 };
549 
550 static sd_tunables lsi_oem_properties = {
551 	0,
552 	0,
553 	LSI_OEM_NOTREADY_RETRIES,
554 	0,
555 	0,
556 	0,
557 	0,
558 	0,
559 	0,
560 	1
561 };
562 
563 
564 
565 #if (defined(SD_PROP_TST))
566 
567 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
568 #define	SD_TST_THROTTLE_VAL	16
569 #define	SD_TST_NOTREADY_VAL	12
570 #define	SD_TST_BUSY_VAL		60
571 #define	SD_TST_RST_RETRY_VAL	36
572 #define	SD_TST_RSV_REL_TIME	60
573 
574 static sd_tunables tst_properties = {
575 	SD_TST_THROTTLE_VAL,
576 	SD_TST_CTYPE_VAL,
577 	SD_TST_NOTREADY_VAL,
578 	SD_TST_BUSY_VAL,
579 	SD_TST_RST_RETRY_VAL,
580 	SD_TST_RSV_REL_TIME,
581 	0,
582 	0,
583 	0
584 };
585 #endif
586 
587 /* This is similar to the ANSI toupper implementation */
588 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
589 
590 /*
591  * Static Driver Configuration Table
592  *
593  * This is the table of disks which need throttle adjustment (or, perhaps
594  * something else as defined by the flags at a future time.)  device_id
595  * is a string consisting of concatenated vid (vendor), pid (product/model)
596  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
597  * the parts of the string are as defined by the sizes in the scsi_inquiry
598  * structure.  Device type is searched as far as the device_id string is
599  * defined.  Flags defines which values are to be set in the driver from the
600  * properties list.
601  *
602  * Entries below which begin and end with a "*" are a special case.
603  * These do not have a specific vendor, and the string which follows
604  * can appear anywhere in the 16 byte PID portion of the inquiry data.
605  *
606  * Entries below which begin and end with a " " (blank) are a special
607  * case. The comparison function will treat multiple consecutive blanks
608  * as equivalent to a single blank. For example, this causes a
609  * sd_disk_table entry of " NEC CDROM " to match a device's id string
610  * of  "NEC       CDROM".
611  *
612  * Note: The MD21 controller type has been obsoleted.
613  *	 ST318202F is a Legacy device
614  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
615  *	 made with an FC connection. The entries here are a legacy.
616  */
617 static sd_disk_config_t sd_disk_table[] = {
618 #if defined(__fibre) || defined(__i386) || defined(__amd64)
619 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
630 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
631 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
632 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
633 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
639 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
640 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
641 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
642 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
643 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
644 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
645 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
646 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
665 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
666 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
667 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
668 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
669 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
670 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
671 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
672 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
673 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
674 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
675 			SD_CONF_BSET_BSY_RETRY_COUNT|
676 			SD_CONF_BSET_RST_RETRIES|
677 			SD_CONF_BSET_RSV_REL_TIME,
678 		&purple_properties },
679 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
680 		SD_CONF_BSET_BSY_RETRY_COUNT|
681 		SD_CONF_BSET_RST_RETRIES|
682 		SD_CONF_BSET_RSV_REL_TIME|
683 		SD_CONF_BSET_MIN_THROTTLE|
684 		SD_CONF_BSET_DISKSORT_DISABLED,
685 		&sve_properties },
686 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
687 			SD_CONF_BSET_BSY_RETRY_COUNT|
688 			SD_CONF_BSET_RST_RETRIES|
689 			SD_CONF_BSET_RSV_REL_TIME,
690 		&purple_properties },
691 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
692 		SD_CONF_BSET_LUN_RESET_ENABLED,
693 		&maserati_properties },
694 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
695 		SD_CONF_BSET_NRR_COUNT|
696 		SD_CONF_BSET_BSY_RETRY_COUNT|
697 		SD_CONF_BSET_RST_RETRIES|
698 		SD_CONF_BSET_MIN_THROTTLE|
699 		SD_CONF_BSET_DISKSORT_DISABLED|
700 		SD_CONF_BSET_LUN_RESET_ENABLED,
701 		&pirus_properties },
702 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
703 		SD_CONF_BSET_NRR_COUNT|
704 		SD_CONF_BSET_BSY_RETRY_COUNT|
705 		SD_CONF_BSET_RST_RETRIES|
706 		SD_CONF_BSET_MIN_THROTTLE|
707 		SD_CONF_BSET_DISKSORT_DISABLED|
708 		SD_CONF_BSET_LUN_RESET_ENABLED,
709 		&pirus_properties },
710 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
711 		SD_CONF_BSET_NRR_COUNT|
712 		SD_CONF_BSET_BSY_RETRY_COUNT|
713 		SD_CONF_BSET_RST_RETRIES|
714 		SD_CONF_BSET_MIN_THROTTLE|
715 		SD_CONF_BSET_DISKSORT_DISABLED|
716 		SD_CONF_BSET_LUN_RESET_ENABLED,
717 		&pirus_properties },
718 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
719 		SD_CONF_BSET_NRR_COUNT|
720 		SD_CONF_BSET_BSY_RETRY_COUNT|
721 		SD_CONF_BSET_RST_RETRIES|
722 		SD_CONF_BSET_MIN_THROTTLE|
723 		SD_CONF_BSET_DISKSORT_DISABLED|
724 		SD_CONF_BSET_LUN_RESET_ENABLED,
725 		&pirus_properties },
726 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
727 		SD_CONF_BSET_NRR_COUNT|
728 		SD_CONF_BSET_BSY_RETRY_COUNT|
729 		SD_CONF_BSET_RST_RETRIES|
730 		SD_CONF_BSET_MIN_THROTTLE|
731 		SD_CONF_BSET_DISKSORT_DISABLED|
732 		SD_CONF_BSET_LUN_RESET_ENABLED,
733 		&pirus_properties },
734 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
735 		SD_CONF_BSET_NRR_COUNT|
736 		SD_CONF_BSET_BSY_RETRY_COUNT|
737 		SD_CONF_BSET_RST_RETRIES|
738 		SD_CONF_BSET_MIN_THROTTLE|
739 		SD_CONF_BSET_DISKSORT_DISABLED|
740 		SD_CONF_BSET_LUN_RESET_ENABLED,
741 		&pirus_properties },
742 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
745 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
746 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
747 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
748 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
749 #endif /* fibre or NON-sparc platforms */
750 #if ((defined(__sparc) && !defined(__fibre)) ||\
751 	(defined(__i386) || defined(__amd64)))
752 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
753 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
754 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
755 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
756 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
761 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
762 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
763 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
764 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
765 	    &symbios_properties },
766 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
767 	    &lsi_properties_scsi },
768 #if defined(__i386) || defined(__amd64)
769 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
770 				    | SD_CONF_BSET_READSUB_BCD
771 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
772 				    | SD_CONF_BSET_NO_READ_HEADER
773 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
774 
775 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
776 				    | SD_CONF_BSET_READSUB_BCD
777 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
778 				    | SD_CONF_BSET_NO_READ_HEADER
779 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
780 #endif /* __i386 || __amd64 */
781 #endif /* sparc NON-fibre or NON-sparc platforms */
782 
783 #if (defined(SD_PROP_TST))
784 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
785 				| SD_CONF_BSET_CTYPE
786 				| SD_CONF_BSET_NRR_COUNT
787 				| SD_CONF_BSET_FAB_DEVID
788 				| SD_CONF_BSET_NOCACHE
789 				| SD_CONF_BSET_BSY_RETRY_COUNT
790 				| SD_CONF_BSET_PLAYMSF_BCD
791 				| SD_CONF_BSET_READSUB_BCD
792 				| SD_CONF_BSET_READ_TOC_TRK_BCD
793 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
794 				| SD_CONF_BSET_NO_READ_HEADER
795 				| SD_CONF_BSET_READ_CD_XD4
796 				| SD_CONF_BSET_RST_RETRIES
797 				| SD_CONF_BSET_RSV_REL_TIME
798 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
799 #endif
800 };
801 
802 static const int sd_disk_table_size =
803 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
804 
805 /*
806  * Emulation mode disk drive VID/PID table
807  */
808 static char sd_flash_dev_table[][25] = {
809 	"ATA     MARVELL SD88SA02",
810 	"MARVELL SD88SA02",
811 	"TOSHIBA THNSNV05",
812 };
813 
814 static const int sd_flash_dev_table_size =
815 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
816 
817 #define	SD_INTERCONNECT_PARALLEL	0
818 #define	SD_INTERCONNECT_FABRIC		1
819 #define	SD_INTERCONNECT_FIBRE		2
820 #define	SD_INTERCONNECT_SSA		3
821 #define	SD_INTERCONNECT_SATA		4
822 #define	SD_INTERCONNECT_SAS		5
823 
824 #define	SD_IS_PARALLEL_SCSI(un)		\
825 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
826 #define	SD_IS_SERIAL(un)		\
827 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
828 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
829 
830 /*
831  * Definitions used by device id registration routines
832  */
833 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
834 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
835 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
836 
837 static kmutex_t sd_sense_mutex = {0};
838 
839 /*
840  * Macros for updates of the driver state
841  */
842 #define	New_state(un, s)        \
843 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
844 #define	Restore_state(un)	\
845 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
846 
847 static struct sd_cdbinfo sd_cdbtab[] = {
848 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
849 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
850 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
851 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
852 };
853 
854 /*
855  * Specifies the number of seconds that must have elapsed since the last
856  * cmd. has completed for a device to be declared idle to the PM framework.
857  */
858 static int sd_pm_idletime = 1;
859 
860 /*
861  * Internal function prototypes
862  */
863 
864 #if (defined(__fibre))
865 /*
866  * These #defines are to avoid namespace collisions that occur because this
867  * code is currently used to compile two separate driver modules: sd and ssd.
868  * All function names need to be treated this way (even if declared static)
869  * in order to allow the debugger to resolve the names properly.
870  * It is anticipated that in the near future the ssd module will be obsoleted,
871  * at which time this ugliness should go away.
872  */
873 #define	sd_log_trace			ssd_log_trace
874 #define	sd_log_info			ssd_log_info
875 #define	sd_log_err			ssd_log_err
876 #define	sdprobe				ssdprobe
877 #define	sdinfo				ssdinfo
878 #define	sd_prop_op			ssd_prop_op
879 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
880 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
881 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
882 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
883 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
884 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
885 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
886 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
887 #define	sd_spin_up_unit			ssd_spin_up_unit
888 #define	sd_enable_descr_sense		ssd_enable_descr_sense
889 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
890 #define	sd_set_mmc_caps			ssd_set_mmc_caps
891 #define	sd_read_unit_properties		ssd_read_unit_properties
892 #define	sd_process_sdconf_file		ssd_process_sdconf_file
893 #define	sd_process_sdconf_table		ssd_process_sdconf_table
894 #define	sd_sdconf_id_match		ssd_sdconf_id_match
895 #define	sd_blank_cmp			ssd_blank_cmp
896 #define	sd_chk_vers1_data		ssd_chk_vers1_data
897 #define	sd_set_vers1_properties		ssd_set_vers1_properties
898 #define	sd_check_solid_state		ssd_check_solid_state
899 #define	sd_check_emulation_mode		ssd_check_emulation_mode
900 
901 #define	sd_get_physical_geometry	ssd_get_physical_geometry
902 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
903 #define	sd_update_block_info		ssd_update_block_info
904 #define	sd_register_devid		ssd_register_devid
905 #define	sd_get_devid			ssd_get_devid
906 #define	sd_create_devid			ssd_create_devid
907 #define	sd_write_deviceid		ssd_write_deviceid
908 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
909 #define	sd_setup_pm			ssd_setup_pm
910 #define	sd_create_pm_components		ssd_create_pm_components
911 #define	sd_ddi_suspend			ssd_ddi_suspend
912 #define	sd_ddi_resume			ssd_ddi_resume
913 #define	sd_pm_state_change		ssd_pm_state_change
914 #define	sdpower				ssdpower
915 #define	sdattach			ssdattach
916 #define	sddetach			ssddetach
917 #define	sd_unit_attach			ssd_unit_attach
918 #define	sd_unit_detach			ssd_unit_detach
919 #define	sd_set_unit_attributes		ssd_set_unit_attributes
920 #define	sd_create_errstats		ssd_create_errstats
921 #define	sd_set_errstats			ssd_set_errstats
922 #define	sd_set_pstats			ssd_set_pstats
923 #define	sddump				ssddump
924 #define	sd_scsi_poll			ssd_scsi_poll
925 #define	sd_send_polled_RQS		ssd_send_polled_RQS
926 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
927 #define	sd_init_event_callbacks		ssd_init_event_callbacks
928 #define	sd_event_callback		ssd_event_callback
929 #define	sd_cache_control		ssd_cache_control
930 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
931 #define	sd_get_write_cache_changeable	ssd_get_write_cache_changeable
932 #define	sd_get_nv_sup			ssd_get_nv_sup
933 #define	sd_make_device			ssd_make_device
934 #define	sdopen				ssdopen
935 #define	sdclose				ssdclose
936 #define	sd_ready_and_valid		ssd_ready_and_valid
937 #define	sdmin				ssdmin
938 #define	sdread				ssdread
939 #define	sdwrite				ssdwrite
940 #define	sdaread				ssdaread
941 #define	sdawrite			ssdawrite
942 #define	sdstrategy			ssdstrategy
943 #define	sdioctl				ssdioctl
944 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
945 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
946 #define	sd_checksum_iostart		ssd_checksum_iostart
947 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
948 #define	sd_pm_iostart			ssd_pm_iostart
949 #define	sd_core_iostart			ssd_core_iostart
950 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
951 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
952 #define	sd_checksum_iodone		ssd_checksum_iodone
953 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
954 #define	sd_pm_iodone			ssd_pm_iodone
955 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
956 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
957 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
958 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
959 #define	sd_buf_iodone			ssd_buf_iodone
960 #define	sd_uscsi_strategy		ssd_uscsi_strategy
961 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
962 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
963 #define	sd_uscsi_iodone			ssd_uscsi_iodone
964 #define	sd_xbuf_strategy		ssd_xbuf_strategy
965 #define	sd_xbuf_init			ssd_xbuf_init
966 #define	sd_pm_entry			ssd_pm_entry
967 #define	sd_pm_exit			ssd_pm_exit
968 
969 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
970 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
971 
972 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
973 #define	sdintr				ssdintr
974 #define	sd_start_cmds			ssd_start_cmds
975 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
976 #define	sd_bioclone_alloc		ssd_bioclone_alloc
977 #define	sd_bioclone_free		ssd_bioclone_free
978 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
979 #define	sd_shadow_buf_free		ssd_shadow_buf_free
980 #define	sd_print_transport_rejected_message	\
981 					ssd_print_transport_rejected_message
982 #define	sd_retry_command		ssd_retry_command
983 #define	sd_set_retry_bp			ssd_set_retry_bp
984 #define	sd_send_request_sense_command	ssd_send_request_sense_command
985 #define	sd_start_retry_command		ssd_start_retry_command
986 #define	sd_start_direct_priority_command	\
987 					ssd_start_direct_priority_command
988 #define	sd_return_failed_command	ssd_return_failed_command
989 #define	sd_return_failed_command_no_restart	\
990 					ssd_return_failed_command_no_restart
991 #define	sd_return_command		ssd_return_command
992 #define	sd_sync_with_callback		ssd_sync_with_callback
993 #define	sdrunout			ssdrunout
994 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
995 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
996 #define	sd_reduce_throttle		ssd_reduce_throttle
997 #define	sd_restore_throttle		ssd_restore_throttle
998 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
999 #define	sd_init_cdb_limits		ssd_init_cdb_limits
1000 #define	sd_pkt_status_good		ssd_pkt_status_good
1001 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
1002 #define	sd_pkt_status_busy		ssd_pkt_status_busy
1003 #define	sd_pkt_status_reservation_conflict	\
1004 					ssd_pkt_status_reservation_conflict
1005 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1006 #define	sd_handle_request_sense		ssd_handle_request_sense
1007 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1008 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1009 #define	sd_validate_sense_data		ssd_validate_sense_data
1010 #define	sd_decode_sense			ssd_decode_sense
1011 #define	sd_print_sense_msg		ssd_print_sense_msg
1012 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1013 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1014 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1015 #define	sd_sense_key_medium_or_hardware_error	\
1016 					ssd_sense_key_medium_or_hardware_error
1017 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1018 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1019 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1020 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1021 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1022 #define	sd_sense_key_default		ssd_sense_key_default
1023 #define	sd_print_retry_msg		ssd_print_retry_msg
1024 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1025 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1026 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1027 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1028 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1029 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1030 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1031 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1032 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1033 #define	sd_reset_target			ssd_reset_target
1034 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1035 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1036 #define	sd_taskq_create			ssd_taskq_create
1037 #define	sd_taskq_delete			ssd_taskq_delete
1038 #define	sd_target_change_task		ssd_target_change_task
1039 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1040 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1041 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1042 #define	sd_media_change_task		ssd_media_change_task
1043 #define	sd_handle_mchange		ssd_handle_mchange
1044 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1045 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1046 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1047 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1048 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1049 					sd_send_scsi_feature_GET_CONFIGURATION
1050 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1051 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1052 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1053 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1054 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1055 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1056 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1057 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1058 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1059 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1060 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1061 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1062 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1063 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1064 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1065 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1066 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1067 #define	sd_alloc_rqs			ssd_alloc_rqs
1068 #define	sd_free_rqs			ssd_free_rqs
1069 #define	sd_dump_memory			ssd_dump_memory
1070 #define	sd_get_media_info_com		ssd_get_media_info_com
1071 #define	sd_get_media_info		ssd_get_media_info
1072 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1073 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1074 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1075 #define	sd_strtok_r			ssd_strtok_r
1076 #define	sd_set_properties		ssd_set_properties
1077 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1078 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1079 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1080 #define	sd_check_mhd			ssd_check_mhd
1081 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1082 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1083 #define	sd_sname			ssd_sname
1084 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1085 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1086 #define	sd_take_ownership		ssd_take_ownership
1087 #define	sd_reserve_release		ssd_reserve_release
1088 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1089 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1090 #define	sd_persistent_reservation_in_read_keys	\
1091 					ssd_persistent_reservation_in_read_keys
1092 #define	sd_persistent_reservation_in_read_resv	\
1093 					ssd_persistent_reservation_in_read_resv
1094 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1095 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1096 #define	sd_mhdioc_release		ssd_mhdioc_release
1097 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1098 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1099 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1100 #define	sr_change_blkmode		ssr_change_blkmode
1101 #define	sr_change_speed			ssr_change_speed
1102 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1103 #define	sr_pause_resume			ssr_pause_resume
1104 #define	sr_play_msf			ssr_play_msf
1105 #define	sr_play_trkind			ssr_play_trkind
1106 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1107 #define	sr_read_subchannel		ssr_read_subchannel
1108 #define	sr_read_tocentry		ssr_read_tocentry
1109 #define	sr_read_tochdr			ssr_read_tochdr
1110 #define	sr_read_cdda			ssr_read_cdda
1111 #define	sr_read_cdxa			ssr_read_cdxa
1112 #define	sr_read_mode1			ssr_read_mode1
1113 #define	sr_read_mode2			ssr_read_mode2
1114 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1115 #define	sr_sector_mode			ssr_sector_mode
1116 #define	sr_eject			ssr_eject
1117 #define	sr_ejected			ssr_ejected
1118 #define	sr_check_wp			ssr_check_wp
1119 #define	sd_watch_request_submit		ssd_watch_request_submit
1120 #define	sd_check_media			ssd_check_media
1121 #define	sd_media_watch_cb		ssd_media_watch_cb
1122 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1123 #define	sr_volume_ctrl			ssr_volume_ctrl
1124 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1125 #define	sd_log_page_supported		ssd_log_page_supported
1126 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1127 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1128 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1129 #define	sd_range_lock			ssd_range_lock
1130 #define	sd_get_range			ssd_get_range
1131 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1132 #define	sd_range_unlock			ssd_range_unlock
1133 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1134 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1135 
1136 #define	sd_iostart_chain		ssd_iostart_chain
1137 #define	sd_iodone_chain			ssd_iodone_chain
1138 #define	sd_initpkt_map			ssd_initpkt_map
1139 #define	sd_destroypkt_map		ssd_destroypkt_map
1140 #define	sd_chain_type_map		ssd_chain_type_map
1141 #define	sd_chain_index_map		ssd_chain_index_map
1142 
1143 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1144 #define	sd_failfast_flushq		ssd_failfast_flushq
1145 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1146 
1147 #define	sd_is_lsi			ssd_is_lsi
1148 #define	sd_tg_rdwr			ssd_tg_rdwr
1149 #define	sd_tg_getinfo			ssd_tg_getinfo
1150 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1151 
1152 #endif	/* #if (defined(__fibre)) */
1153 
1154 
1155 int _init(void);
1156 int _fini(void);
1157 int _info(struct modinfo *modinfop);
1158 
1159 /*PRINTFLIKE3*/
1160 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1161 /*PRINTFLIKE3*/
1162 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1163 /*PRINTFLIKE3*/
1164 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1165 
1166 static int sdprobe(dev_info_t *devi);
1167 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1168     void **result);
1169 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1170     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1171 
1172 /*
1173  * Smart probe for parallel scsi
1174  */
1175 static void sd_scsi_probe_cache_init(void);
1176 static void sd_scsi_probe_cache_fini(void);
1177 static void sd_scsi_clear_probe_cache(void);
1178 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1179 
1180 /*
1181  * Attached luns on target for parallel scsi
1182  */
1183 static void sd_scsi_target_lun_init(void);
1184 static void sd_scsi_target_lun_fini(void);
1185 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1186 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1187 
1188 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1189 
1190 /*
1191  * Using sd_ssc_init to establish sd_ssc_t struct
1192  * Using sd_ssc_send to send uscsi internal command
1193  * Using sd_ssc_fini to free sd_ssc_t struct
1194  */
1195 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1196 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1197     int flag, enum uio_seg dataspace, int path_flag);
1198 static void sd_ssc_fini(sd_ssc_t *ssc);
1199 
1200 /*
1201  * Using sd_ssc_assessment to set correct type-of-assessment
1202  * Using sd_ssc_post to post ereport & system log
1203  *       sd_ssc_post will call sd_ssc_print to print system log
1204  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1205  */
1206 static void sd_ssc_assessment(sd_ssc_t *ssc,
1207     enum sd_type_assessment tp_assess);
1208 
1209 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1210 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1211 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1212     enum sd_driver_assessment drv_assess);
1213 
1214 /*
1215  * Using sd_ssc_set_info to mark an un-decodable-data error.
1216  * Using sd_ssc_extract_info to transfer information from internal
1217  *       data structures to sd_ssc_t.
1218  */
1219 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1220     const char *fmt, ...);
1221 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1222     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1223 
1224 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1225     enum uio_seg dataspace, int path_flag);
1226 
1227 #ifdef _LP64
1228 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1229 static void	sd_reenable_dsense_task(void *arg);
1230 #endif /* _LP64 */
1231 
1232 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1233 
1234 static void sd_read_unit_properties(struct sd_lun *un);
1235 static int  sd_process_sdconf_file(struct sd_lun *un);
1236 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1237 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1238 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1239 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1240     int *data_list, sd_tunables *values);
1241 static void sd_process_sdconf_table(struct sd_lun *un);
1242 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1243 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1244 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1245 	int list_len, char *dataname_ptr);
1246 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1247     sd_tunables *prop_list);
1248 
1249 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1250     int reservation_flag);
1251 static int  sd_get_devid(sd_ssc_t *ssc);
1252 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1253 static int  sd_write_deviceid(sd_ssc_t *ssc);
1254 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1255 
1256 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1257 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1258 
1259 static int  sd_ddi_suspend(dev_info_t *devi);
1260 static int  sd_ddi_resume(dev_info_t *devi);
1261 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1262 static int  sdpower(dev_info_t *devi, int component, int level);
1263 
1264 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1265 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1266 static int  sd_unit_attach(dev_info_t *devi);
1267 static int  sd_unit_detach(dev_info_t *devi);
1268 
1269 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1270 static void sd_create_errstats(struct sd_lun *un, int instance);
1271 static void sd_set_errstats(struct sd_lun *un);
1272 static void sd_set_pstats(struct sd_lun *un);
1273 
1274 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1275 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1276 static int  sd_send_polled_RQS(struct sd_lun *un);
1277 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1278 
1279 #if (defined(__fibre))
1280 /*
1281  * Event callbacks (photon)
1282  */
1283 static void sd_init_event_callbacks(struct sd_lun *un);
1284 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1285 #endif
1286 
1287 /*
1288  * Defines for sd_cache_control
1289  */
1290 
1291 #define	SD_CACHE_ENABLE		1
1292 #define	SD_CACHE_DISABLE	0
1293 #define	SD_CACHE_NOCHANGE	-1
1294 
1295 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1296 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1297 static void  sd_get_write_cache_changeable(sd_ssc_t *ssc, int *is_changeable);
1298 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1299 static dev_t sd_make_device(dev_info_t *devi);
1300 static void  sd_check_solid_state(sd_ssc_t *ssc);
1301 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1302 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1303 	uint64_t capacity);
1304 
1305 /*
1306  * Driver entry point functions.
1307  */
1308 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1309 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1310 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1311 
1312 static void sdmin(struct buf *bp);
1313 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1314 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1315 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1316 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1317 
1318 static int sdstrategy(struct buf *bp);
1319 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1320 
1321 /*
1322  * Function prototypes for layering functions in the iostart chain.
1323  */
1324 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1325 	struct buf *bp);
1326 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1327 	struct buf *bp);
1328 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1329 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1330 	struct buf *bp);
1331 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1332 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1333 
1334 /*
1335  * Function prototypes for layering functions in the iodone chain.
1336  */
1337 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1338 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1339 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1340 	struct buf *bp);
1341 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1342 	struct buf *bp);
1343 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1344 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1345 	struct buf *bp);
1346 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1347 
1348 /*
1349  * Prototypes for functions to support buf(9S) based IO.
1350  */
1351 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1352 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1353 static void sd_destroypkt_for_buf(struct buf *);
1354 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1355 	struct buf *bp, int flags,
1356 	int (*callback)(caddr_t), caddr_t callback_arg,
1357 	diskaddr_t lba, uint32_t blockcount);
1358 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1359 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1360 
1361 /*
1362  * Prototypes for functions to support USCSI IO.
1363  */
1364 static int sd_uscsi_strategy(struct buf *bp);
1365 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1366 static void sd_destroypkt_for_uscsi(struct buf *);
1367 
1368 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1369 	uchar_t chain_type, void *pktinfop);
1370 
1371 static int  sd_pm_entry(struct sd_lun *un);
1372 static void sd_pm_exit(struct sd_lun *un);
1373 
1374 static void sd_pm_idletimeout_handler(void *arg);
1375 
1376 /*
1377  * sd_core internal functions (used at the sd_core_io layer).
1378  */
1379 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1380 static void sdintr(struct scsi_pkt *pktp);
1381 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1382 
1383 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1384 	enum uio_seg dataspace, int path_flag);
1385 
1386 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1387 	daddr_t blkno, int (*func)(struct buf *));
1388 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1389 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1390 static void sd_bioclone_free(struct buf *bp);
1391 static void sd_shadow_buf_free(struct buf *bp);
1392 
1393 static void sd_print_transport_rejected_message(struct sd_lun *un,
1394 	struct sd_xbuf *xp, int code);
1395 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1396     void *arg, int code);
1397 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1398     void *arg, int code);
1399 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1400     void *arg, int code);
1401 
1402 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1403 	int retry_check_flag,
1404 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1405 		int c),
1406 	void *user_arg, int failure_code,  clock_t retry_delay,
1407 	void (*statp)(kstat_io_t *));
1408 
1409 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1410 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1411 
1412 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1413 	struct scsi_pkt *pktp);
1414 static void sd_start_retry_command(void *arg);
1415 static void sd_start_direct_priority_command(void *arg);
1416 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1417 	int errcode);
1418 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1419 	struct buf *bp, int errcode);
1420 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1421 static void sd_sync_with_callback(struct sd_lun *un);
1422 static int sdrunout(caddr_t arg);
1423 
1424 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1425 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1426 
1427 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1428 static void sd_restore_throttle(void *arg);
1429 
1430 static void sd_init_cdb_limits(struct sd_lun *un);
1431 
1432 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 
1435 /*
1436  * Error handling functions
1437  */
1438 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1443 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1450 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1451 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1452 	struct sd_xbuf *xp, size_t actual_len);
1453 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1454 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1455 
1456 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1457 	void *arg, int code);
1458 
1459 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1460 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1461 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1462 	uint8_t *sense_datap,
1463 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1464 static void sd_sense_key_not_ready(struct sd_lun *un,
1465 	uint8_t *sense_datap,
1466 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1468 	uint8_t *sense_datap,
1469 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1471 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1472 static void sd_sense_key_unit_attention(struct sd_lun *un,
1473 	uint8_t *sense_datap,
1474 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1480 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1481 static void sd_sense_key_default(struct sd_lun *un,
1482 	uint8_t *sense_datap,
1483 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1484 
1485 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1486 	void *arg, int flag);
1487 
1488 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1489 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1490 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1491 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1492 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1493 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1494 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1495 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1496 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1497 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1498 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1499 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1500 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1501 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1502 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1503 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1504 
1505 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1506 
1507 static void sd_start_stop_unit_callback(void *arg);
1508 static void sd_start_stop_unit_task(void *arg);
1509 
1510 static void sd_taskq_create(void);
1511 static void sd_taskq_delete(void);
1512 static void sd_target_change_task(void *arg);
1513 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1514 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1515 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1516 static void sd_media_change_task(void *arg);
1517 
1518 static int sd_handle_mchange(struct sd_lun *un);
1519 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1520 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1521 	uint32_t *lbap, int path_flag);
1522 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1523 	uint32_t *lbap, uint32_t *psp, int path_flag);
1524 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1525 	int flag, int path_flag);
1526 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1527 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1528 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1529 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1530 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1531 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1532 	uchar_t usr_cmd, uchar_t *usr_bufp);
1533 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1534 	struct dk_callback *dkc);
1535 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1536 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1537 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1538 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1539 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1540 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1541 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1542 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1543 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1544 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1545 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1546 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1547 	size_t buflen, daddr_t start_block, int path_flag);
1548 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1549 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1550 	path_flag)
1551 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1552 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1553 	path_flag)
1554 
1555 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1556 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1557 	uint16_t param_ptr, int path_flag);
1558 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1559 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1560 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1561 
1562 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1563 static void sd_free_rqs(struct sd_lun *un);
1564 
1565 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1566 	uchar_t *data, int len, int fmt);
1567 static void sd_panic_for_res_conflict(struct sd_lun *un);
1568 
1569 /*
1570  * Disk Ioctl Function Prototypes
1571  */
1572 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1573 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1574 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1575 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1576 
1577 /*
1578  * Multi-host Ioctl Prototypes
1579  */
1580 static int sd_check_mhd(dev_t dev, int interval);
1581 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1582 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1583 static char *sd_sname(uchar_t status);
1584 static void sd_mhd_resvd_recover(void *arg);
1585 static void sd_resv_reclaim_thread();
1586 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1587 static int sd_reserve_release(dev_t dev, int cmd);
1588 static void sd_rmv_resv_reclaim_req(dev_t dev);
1589 static void sd_mhd_reset_notify_cb(caddr_t arg);
1590 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1591 	mhioc_inkeys_t *usrp, int flag);
1592 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1593 	mhioc_inresvs_t *usrp, int flag);
1594 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1595 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1596 static int sd_mhdioc_release(dev_t dev);
1597 static int sd_mhdioc_register_devid(dev_t dev);
1598 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1599 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1600 
1601 /*
1602  * SCSI removable prototypes
1603  */
1604 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1606 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1607 static int sr_pause_resume(dev_t dev, int mode);
1608 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1609 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1617 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1618 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1619 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1620 static int sr_eject(dev_t dev);
1621 static void sr_ejected(register struct sd_lun *un);
1622 static int sr_check_wp(dev_t dev);
1623 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1624 static int sd_check_media(dev_t dev, enum dkio_state state);
1625 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1626 static void sd_delayed_cv_broadcast(void *arg);
1627 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1628 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1629 
1630 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1631 
1632 /*
1633  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1634  */
1635 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1636 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1637 static void sd_wm_cache_destructor(void *wm, void *un);
1638 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1639     daddr_t endb, ushort_t typ);
1640 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1641     daddr_t endb);
1642 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1643 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1644 static void sd_read_modify_write_task(void * arg);
1645 static int
1646 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1647     struct buf **bpp);
1648 
1649 
1650 /*
1651  * Function prototypes for failfast support.
1652  */
1653 static void sd_failfast_flushq(struct sd_lun *un);
1654 static int sd_failfast_flushq_callback(struct buf *bp);
1655 
1656 /*
1657  * Function prototypes to check for lsi devices
1658  */
1659 static void sd_is_lsi(struct sd_lun *un);
1660 
1661 /*
1662  * Function prototypes for partial DMA support
1663  */
1664 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1665 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1666 
1667 
1668 /* Function prototypes for cmlb */
1669 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1670     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1671 
1672 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1673 
1674 /*
1675  * For printing RMW warning message timely
1676  */
1677 static void sd_rmw_msg_print_handler(void *arg);
1678 
1679 /*
1680  * Constants for failfast support:
1681  *
1682  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1683  * failfast processing being performed.
1684  *
1685  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1686  * failfast processing on all bufs with B_FAILFAST set.
1687  */
1688 
1689 #define	SD_FAILFAST_INACTIVE		0
1690 #define	SD_FAILFAST_ACTIVE		1
1691 
1692 /*
1693  * Bitmask to control behavior of buf(9S) flushes when a transition to
1694  * the failfast state occurs. Optional bits include:
1695  *
1696  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1697  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1698  * be flushed.
1699  *
1700  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1701  * driver, in addition to the regular wait queue. This includes the xbuf
1702  * queues. When clear, only the driver's wait queue will be flushed.
1703  */
1704 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1705 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1706 
1707 /*
1708  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1709  * to flush all queues within the driver.
1710  */
1711 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1712 
1713 
1714 /*
1715  * SD Testing Fault Injection
1716  */
1717 #ifdef SD_FAULT_INJECTION
1718 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1719 static void sd_faultinjection(struct scsi_pkt *pktp);
1720 static void sd_injection_log(char *buf, struct sd_lun *un);
1721 #endif
1722 
1723 /*
1724  * Device driver ops vector
1725  */
1726 static struct cb_ops sd_cb_ops = {
1727 	sdopen,			/* open */
1728 	sdclose,		/* close */
1729 	sdstrategy,		/* strategy */
1730 	nodev,			/* print */
1731 	sddump,			/* dump */
1732 	sdread,			/* read */
1733 	sdwrite,		/* write */
1734 	sdioctl,		/* ioctl */
1735 	nodev,			/* devmap */
1736 	nodev,			/* mmap */
1737 	nodev,			/* segmap */
1738 	nochpoll,		/* poll */
1739 	sd_prop_op,		/* cb_prop_op */
1740 	0,			/* streamtab  */
1741 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1742 	CB_REV,			/* cb_rev */
1743 	sdaread, 		/* async I/O read entry point */
1744 	sdawrite		/* async I/O write entry point */
1745 };
1746 
1747 struct dev_ops sd_ops = {
1748 	DEVO_REV,		/* devo_rev, */
1749 	0,			/* refcnt  */
1750 	sdinfo,			/* info */
1751 	nulldev,		/* identify */
1752 	sdprobe,		/* probe */
1753 	sdattach,		/* attach */
1754 	sddetach,		/* detach */
1755 	nodev,			/* reset */
1756 	&sd_cb_ops,		/* driver operations */
1757 	NULL,			/* bus operations */
1758 	sdpower,		/* power */
1759 	ddi_quiesce_not_needed,		/* quiesce */
1760 };
1761 
1762 /*
1763  * This is the loadable module wrapper.
1764  */
1765 #include <sys/modctl.h>
1766 
1767 #ifndef XPV_HVM_DRIVER
1768 static struct modldrv modldrv = {
1769 	&mod_driverops,		/* Type of module. This one is a driver */
1770 	SD_MODULE_NAME,		/* Module name. */
1771 	&sd_ops			/* driver ops */
1772 };
1773 
1774 static struct modlinkage modlinkage = {
1775 	MODREV_1, &modldrv, NULL
1776 };
1777 
1778 #else /* XPV_HVM_DRIVER */
1779 static struct modlmisc modlmisc = {
1780 	&mod_miscops,		/* Type of module. This one is a misc */
1781 	"HVM " SD_MODULE_NAME,		/* Module name. */
1782 };
1783 
1784 static struct modlinkage modlinkage = {
1785 	MODREV_1, &modlmisc, NULL
1786 };
1787 
1788 #endif /* XPV_HVM_DRIVER */
1789 
1790 static cmlb_tg_ops_t sd_tgops = {
1791 	TG_DK_OPS_VERSION_1,
1792 	sd_tg_rdwr,
1793 	sd_tg_getinfo
1794 };
1795 
1796 static struct scsi_asq_key_strings sd_additional_codes[] = {
1797 	0x81, 0, "Logical Unit is Reserved",
1798 	0x85, 0, "Audio Address Not Valid",
1799 	0xb6, 0, "Media Load Mechanism Failed",
1800 	0xB9, 0, "Audio Play Operation Aborted",
1801 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1802 	0x53, 2, "Medium removal prevented",
1803 	0x6f, 0, "Authentication failed during key exchange",
1804 	0x6f, 1, "Key not present",
1805 	0x6f, 2, "Key not established",
1806 	0x6f, 3, "Read without proper authentication",
1807 	0x6f, 4, "Mismatched region to this logical unit",
1808 	0x6f, 5, "Region reset count error",
1809 	0xffff, 0x0, NULL
1810 };
1811 
1812 
1813 /*
1814  * Struct for passing printing information for sense data messages
1815  */
1816 struct sd_sense_info {
1817 	int	ssi_severity;
1818 	int	ssi_pfa_flag;
1819 };
1820 
1821 /*
1822  * Table of function pointers for iostart-side routines. Separate "chains"
1823  * of layered function calls are formed by placing the function pointers
1824  * sequentially in the desired order. Functions are called according to an
1825  * incrementing table index ordering. The last function in each chain must
1826  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1827  * in the sd_iodone_chain[] array.
1828  *
1829  * Note: It may seem more natural to organize both the iostart and iodone
1830  * functions together, into an array of structures (or some similar
1831  * organization) with a common index, rather than two separate arrays which
1832  * must be maintained in synchronization. The purpose of this division is
1833  * to achieve improved performance: individual arrays allows for more
1834  * effective cache line utilization on certain platforms.
1835  */
1836 
1837 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1838 
1839 
1840 static sd_chain_t sd_iostart_chain[] = {
1841 
1842 	/* Chain for buf IO for disk drive targets (PM enabled) */
1843 	sd_mapblockaddr_iostart,	/* Index: 0 */
1844 	sd_pm_iostart,			/* Index: 1 */
1845 	sd_core_iostart,		/* Index: 2 */
1846 
1847 	/* Chain for buf IO for disk drive targets (PM disabled) */
1848 	sd_mapblockaddr_iostart,	/* Index: 3 */
1849 	sd_core_iostart,		/* Index: 4 */
1850 
1851 	/*
1852 	 * Chain for buf IO for removable-media or large sector size
1853 	 * disk drive targets with RMW needed (PM enabled)
1854 	 */
1855 	sd_mapblockaddr_iostart,	/* Index: 5 */
1856 	sd_mapblocksize_iostart,	/* Index: 6 */
1857 	sd_pm_iostart,			/* Index: 7 */
1858 	sd_core_iostart,		/* Index: 8 */
1859 
1860 	/*
1861 	 * Chain for buf IO for removable-media or large sector size
1862 	 * disk drive targets with RMW needed (PM disabled)
1863 	 */
1864 	sd_mapblockaddr_iostart,	/* Index: 9 */
1865 	sd_mapblocksize_iostart,	/* Index: 10 */
1866 	sd_core_iostart,		/* Index: 11 */
1867 
1868 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1869 	sd_mapblockaddr_iostart,	/* Index: 12 */
1870 	sd_checksum_iostart,		/* Index: 13 */
1871 	sd_pm_iostart,			/* Index: 14 */
1872 	sd_core_iostart,		/* Index: 15 */
1873 
1874 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1875 	sd_mapblockaddr_iostart,	/* Index: 16 */
1876 	sd_checksum_iostart,		/* Index: 17 */
1877 	sd_core_iostart,		/* Index: 18 */
1878 
1879 	/* Chain for USCSI commands (all targets) */
1880 	sd_pm_iostart,			/* Index: 19 */
1881 	sd_core_iostart,		/* Index: 20 */
1882 
1883 	/* Chain for checksumming USCSI commands (all targets) */
1884 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1885 	sd_pm_iostart,			/* Index: 22 */
1886 	sd_core_iostart,		/* Index: 23 */
1887 
1888 	/* Chain for "direct" USCSI commands (all targets) */
1889 	sd_core_iostart,		/* Index: 24 */
1890 
1891 	/* Chain for "direct priority" USCSI commands (all targets) */
1892 	sd_core_iostart,		/* Index: 25 */
1893 
1894 	/*
1895 	 * Chain for buf IO for large sector size disk drive targets
1896 	 * with RMW needed with checksumming (PM enabled)
1897 	 */
1898 	sd_mapblockaddr_iostart,	/* Index: 26 */
1899 	sd_mapblocksize_iostart,	/* Index: 27 */
1900 	sd_checksum_iostart,		/* Index: 28 */
1901 	sd_pm_iostart,			/* Index: 29 */
1902 	sd_core_iostart,		/* Index: 30 */
1903 
1904 	/*
1905 	 * Chain for buf IO for large sector size disk drive targets
1906 	 * with RMW needed with checksumming (PM disabled)
1907 	 */
1908 	sd_mapblockaddr_iostart,	/* Index: 31 */
1909 	sd_mapblocksize_iostart,	/* Index: 32 */
1910 	sd_checksum_iostart,		/* Index: 33 */
1911 	sd_core_iostart,		/* Index: 34 */
1912 
1913 };
1914 
1915 /*
1916  * Macros to locate the first function of each iostart chain in the
1917  * sd_iostart_chain[] array. These are located by the index in the array.
1918  */
1919 #define	SD_CHAIN_DISK_IOSTART			0
1920 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1921 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1922 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1923 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1924 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1925 #define	SD_CHAIN_CHKSUM_IOSTART			12
1926 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1927 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1928 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1929 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1930 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1931 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1932 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1933 
1934 
1935 /*
1936  * Table of function pointers for the iodone-side routines for the driver-
1937  * internal layering mechanism.  The calling sequence for iodone routines
1938  * uses a decrementing table index, so the last routine called in a chain
1939  * must be at the lowest array index location for that chain.  The last
1940  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1941  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1942  * of the functions in an iodone side chain must correspond to the ordering
1943  * of the iostart routines for that chain.  Note that there is no iodone
1944  * side routine that corresponds to sd_core_iostart(), so there is no
1945  * entry in the table for this.
1946  */
1947 
1948 static sd_chain_t sd_iodone_chain[] = {
1949 
1950 	/* Chain for buf IO for disk drive targets (PM enabled) */
1951 	sd_buf_iodone,			/* Index: 0 */
1952 	sd_mapblockaddr_iodone,		/* Index: 1 */
1953 	sd_pm_iodone,			/* Index: 2 */
1954 
1955 	/* Chain for buf IO for disk drive targets (PM disabled) */
1956 	sd_buf_iodone,			/* Index: 3 */
1957 	sd_mapblockaddr_iodone,		/* Index: 4 */
1958 
1959 	/*
1960 	 * Chain for buf IO for removable-media or large sector size
1961 	 * disk drive targets with RMW needed (PM enabled)
1962 	 */
1963 	sd_buf_iodone,			/* Index: 5 */
1964 	sd_mapblockaddr_iodone,		/* Index: 6 */
1965 	sd_mapblocksize_iodone,		/* Index: 7 */
1966 	sd_pm_iodone,			/* Index: 8 */
1967 
1968 	/*
1969 	 * Chain for buf IO for removable-media or large sector size
1970 	 * disk drive targets with RMW needed (PM disabled)
1971 	 */
1972 	sd_buf_iodone,			/* Index: 9 */
1973 	sd_mapblockaddr_iodone,		/* Index: 10 */
1974 	sd_mapblocksize_iodone,		/* Index: 11 */
1975 
1976 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1977 	sd_buf_iodone,			/* Index: 12 */
1978 	sd_mapblockaddr_iodone,		/* Index: 13 */
1979 	sd_checksum_iodone,		/* Index: 14 */
1980 	sd_pm_iodone,			/* Index: 15 */
1981 
1982 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1983 	sd_buf_iodone,			/* Index: 16 */
1984 	sd_mapblockaddr_iodone,		/* Index: 17 */
1985 	sd_checksum_iodone,		/* Index: 18 */
1986 
1987 	/* Chain for USCSI commands (non-checksum targets) */
1988 	sd_uscsi_iodone,		/* Index: 19 */
1989 	sd_pm_iodone,			/* Index: 20 */
1990 
1991 	/* Chain for USCSI commands (checksum targets) */
1992 	sd_uscsi_iodone,		/* Index: 21 */
1993 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1994 	sd_pm_iodone,			/* Index: 22 */
1995 
1996 	/* Chain for "direct" USCSI commands (all targets) */
1997 	sd_uscsi_iodone,		/* Index: 24 */
1998 
1999 	/* Chain for "direct priority" USCSI commands (all targets) */
2000 	sd_uscsi_iodone,		/* Index: 25 */
2001 
2002 	/*
2003 	 * Chain for buf IO for large sector size disk drive targets
2004 	 * with checksumming (PM enabled)
2005 	 */
2006 	sd_buf_iodone,			/* Index: 26 */
2007 	sd_mapblockaddr_iodone,		/* Index: 27 */
2008 	sd_mapblocksize_iodone,		/* Index: 28 */
2009 	sd_checksum_iodone,		/* Index: 29 */
2010 	sd_pm_iodone,			/* Index: 30 */
2011 
2012 	/*
2013 	 * Chain for buf IO for large sector size disk drive targets
2014 	 * with checksumming (PM disabled)
2015 	 */
2016 	sd_buf_iodone,			/* Index: 31 */
2017 	sd_mapblockaddr_iodone,		/* Index: 32 */
2018 	sd_mapblocksize_iodone,		/* Index: 33 */
2019 	sd_checksum_iodone,		/* Index: 34 */
2020 };
2021 
2022 
2023 /*
2024  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2025  * each iodone-side chain. These are located by the array index, but as the
2026  * iodone side functions are called in a decrementing-index order, the
2027  * highest index number in each chain must be specified (as these correspond
2028  * to the first function in the iodone chain that will be called by the core
2029  * at IO completion time).
2030  */
2031 
2032 #define	SD_CHAIN_DISK_IODONE			2
2033 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2034 #define	SD_CHAIN_RMMEDIA_IODONE			8
2035 #define	SD_CHAIN_MSS_DISK_IODONE		8
2036 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2037 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2038 #define	SD_CHAIN_CHKSUM_IODONE			15
2039 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2040 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2041 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2042 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2043 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2044 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2045 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2046 
2047 
2048 
2049 /*
2050  * Array to map a layering chain index to the appropriate initpkt routine.
2051  * The redundant entries are present so that the index used for accessing
2052  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2053  * with this table as well.
2054  */
2055 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2056 
2057 static sd_initpkt_t	sd_initpkt_map[] = {
2058 
2059 	/* Chain for buf IO for disk drive targets (PM enabled) */
2060 	sd_initpkt_for_buf,		/* Index: 0 */
2061 	sd_initpkt_for_buf,		/* Index: 1 */
2062 	sd_initpkt_for_buf,		/* Index: 2 */
2063 
2064 	/* Chain for buf IO for disk drive targets (PM disabled) */
2065 	sd_initpkt_for_buf,		/* Index: 3 */
2066 	sd_initpkt_for_buf,		/* Index: 4 */
2067 
2068 	/*
2069 	 * Chain for buf IO for removable-media or large sector size
2070 	 * disk drive targets (PM enabled)
2071 	 */
2072 	sd_initpkt_for_buf,		/* Index: 5 */
2073 	sd_initpkt_for_buf,		/* Index: 6 */
2074 	sd_initpkt_for_buf,		/* Index: 7 */
2075 	sd_initpkt_for_buf,		/* Index: 8 */
2076 
2077 	/*
2078 	 * Chain for buf IO for removable-media or large sector size
2079 	 * disk drive targets (PM disabled)
2080 	 */
2081 	sd_initpkt_for_buf,		/* Index: 9 */
2082 	sd_initpkt_for_buf,		/* Index: 10 */
2083 	sd_initpkt_for_buf,		/* Index: 11 */
2084 
2085 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2086 	sd_initpkt_for_buf,		/* Index: 12 */
2087 	sd_initpkt_for_buf,		/* Index: 13 */
2088 	sd_initpkt_for_buf,		/* Index: 14 */
2089 	sd_initpkt_for_buf,		/* Index: 15 */
2090 
2091 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2092 	sd_initpkt_for_buf,		/* Index: 16 */
2093 	sd_initpkt_for_buf,		/* Index: 17 */
2094 	sd_initpkt_for_buf,		/* Index: 18 */
2095 
2096 	/* Chain for USCSI commands (non-checksum targets) */
2097 	sd_initpkt_for_uscsi,		/* Index: 19 */
2098 	sd_initpkt_for_uscsi,		/* Index: 20 */
2099 
2100 	/* Chain for USCSI commands (checksum targets) */
2101 	sd_initpkt_for_uscsi,		/* Index: 21 */
2102 	sd_initpkt_for_uscsi,		/* Index: 22 */
2103 	sd_initpkt_for_uscsi,		/* Index: 22 */
2104 
2105 	/* Chain for "direct" USCSI commands (all targets) */
2106 	sd_initpkt_for_uscsi,		/* Index: 24 */
2107 
2108 	/* Chain for "direct priority" USCSI commands (all targets) */
2109 	sd_initpkt_for_uscsi,		/* Index: 25 */
2110 
2111 	/*
2112 	 * Chain for buf IO for large sector size disk drive targets
2113 	 * with checksumming (PM enabled)
2114 	 */
2115 	sd_initpkt_for_buf,		/* Index: 26 */
2116 	sd_initpkt_for_buf,		/* Index: 27 */
2117 	sd_initpkt_for_buf,		/* Index: 28 */
2118 	sd_initpkt_for_buf,		/* Index: 29 */
2119 	sd_initpkt_for_buf,		/* Index: 30 */
2120 
2121 	/*
2122 	 * Chain for buf IO for large sector size disk drive targets
2123 	 * with checksumming (PM disabled)
2124 	 */
2125 	sd_initpkt_for_buf,		/* Index: 31 */
2126 	sd_initpkt_for_buf,		/* Index: 32 */
2127 	sd_initpkt_for_buf,		/* Index: 33 */
2128 	sd_initpkt_for_buf,		/* Index: 34 */
2129 };
2130 
2131 
2132 /*
2133  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2134  * The redundant entries are present so that the index used for accessing
2135  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2136  * with this table as well.
2137  */
2138 typedef void (*sd_destroypkt_t)(struct buf *);
2139 
2140 static sd_destroypkt_t	sd_destroypkt_map[] = {
2141 
2142 	/* Chain for buf IO for disk drive targets (PM enabled) */
2143 	sd_destroypkt_for_buf,		/* Index: 0 */
2144 	sd_destroypkt_for_buf,		/* Index: 1 */
2145 	sd_destroypkt_for_buf,		/* Index: 2 */
2146 
2147 	/* Chain for buf IO for disk drive targets (PM disabled) */
2148 	sd_destroypkt_for_buf,		/* Index: 3 */
2149 	sd_destroypkt_for_buf,		/* Index: 4 */
2150 
2151 	/*
2152 	 * Chain for buf IO for removable-media or large sector size
2153 	 * disk drive targets (PM enabled)
2154 	 */
2155 	sd_destroypkt_for_buf,		/* Index: 5 */
2156 	sd_destroypkt_for_buf,		/* Index: 6 */
2157 	sd_destroypkt_for_buf,		/* Index: 7 */
2158 	sd_destroypkt_for_buf,		/* Index: 8 */
2159 
2160 	/*
2161 	 * Chain for buf IO for removable-media or large sector size
2162 	 * disk drive targets (PM disabled)
2163 	 */
2164 	sd_destroypkt_for_buf,		/* Index: 9 */
2165 	sd_destroypkt_for_buf,		/* Index: 10 */
2166 	sd_destroypkt_for_buf,		/* Index: 11 */
2167 
2168 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2169 	sd_destroypkt_for_buf,		/* Index: 12 */
2170 	sd_destroypkt_for_buf,		/* Index: 13 */
2171 	sd_destroypkt_for_buf,		/* Index: 14 */
2172 	sd_destroypkt_for_buf,		/* Index: 15 */
2173 
2174 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2175 	sd_destroypkt_for_buf,		/* Index: 16 */
2176 	sd_destroypkt_for_buf,		/* Index: 17 */
2177 	sd_destroypkt_for_buf,		/* Index: 18 */
2178 
2179 	/* Chain for USCSI commands (non-checksum targets) */
2180 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2181 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2182 
2183 	/* Chain for USCSI commands (checksum targets) */
2184 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2185 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2186 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2187 
2188 	/* Chain for "direct" USCSI commands (all targets) */
2189 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2190 
2191 	/* Chain for "direct priority" USCSI commands (all targets) */
2192 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2193 
2194 	/*
2195 	 * Chain for buf IO for large sector size disk drive targets
2196 	 * with checksumming (PM disabled)
2197 	 */
2198 	sd_destroypkt_for_buf,		/* Index: 26 */
2199 	sd_destroypkt_for_buf,		/* Index: 27 */
2200 	sd_destroypkt_for_buf,		/* Index: 28 */
2201 	sd_destroypkt_for_buf,		/* Index: 29 */
2202 	sd_destroypkt_for_buf,		/* Index: 30 */
2203 
2204 	/*
2205 	 * Chain for buf IO for large sector size disk drive targets
2206 	 * with checksumming (PM enabled)
2207 	 */
2208 	sd_destroypkt_for_buf,		/* Index: 31 */
2209 	sd_destroypkt_for_buf,		/* Index: 32 */
2210 	sd_destroypkt_for_buf,		/* Index: 33 */
2211 	sd_destroypkt_for_buf,		/* Index: 34 */
2212 };
2213 
2214 
2215 
2216 /*
2217  * Array to map a layering chain index to the appropriate chain "type".
2218  * The chain type indicates a specific property/usage of the chain.
2219  * The redundant entries are present so that the index used for accessing
2220  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2221  * with this table as well.
2222  */
2223 
2224 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2225 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2226 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2227 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2228 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2229 						/* (for error recovery) */
2230 
2231 static int sd_chain_type_map[] = {
2232 
2233 	/* Chain for buf IO for disk drive targets (PM enabled) */
2234 	SD_CHAIN_BUFIO,			/* Index: 0 */
2235 	SD_CHAIN_BUFIO,			/* Index: 1 */
2236 	SD_CHAIN_BUFIO,			/* Index: 2 */
2237 
2238 	/* Chain for buf IO for disk drive targets (PM disabled) */
2239 	SD_CHAIN_BUFIO,			/* Index: 3 */
2240 	SD_CHAIN_BUFIO,			/* Index: 4 */
2241 
2242 	/*
2243 	 * Chain for buf IO for removable-media or large sector size
2244 	 * disk drive targets (PM enabled)
2245 	 */
2246 	SD_CHAIN_BUFIO,			/* Index: 5 */
2247 	SD_CHAIN_BUFIO,			/* Index: 6 */
2248 	SD_CHAIN_BUFIO,			/* Index: 7 */
2249 	SD_CHAIN_BUFIO,			/* Index: 8 */
2250 
2251 	/*
2252 	 * Chain for buf IO for removable-media or large sector size
2253 	 * disk drive targets (PM disabled)
2254 	 */
2255 	SD_CHAIN_BUFIO,			/* Index: 9 */
2256 	SD_CHAIN_BUFIO,			/* Index: 10 */
2257 	SD_CHAIN_BUFIO,			/* Index: 11 */
2258 
2259 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2260 	SD_CHAIN_BUFIO,			/* Index: 12 */
2261 	SD_CHAIN_BUFIO,			/* Index: 13 */
2262 	SD_CHAIN_BUFIO,			/* Index: 14 */
2263 	SD_CHAIN_BUFIO,			/* Index: 15 */
2264 
2265 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2266 	SD_CHAIN_BUFIO,			/* Index: 16 */
2267 	SD_CHAIN_BUFIO,			/* Index: 17 */
2268 	SD_CHAIN_BUFIO,			/* Index: 18 */
2269 
2270 	/* Chain for USCSI commands (non-checksum targets) */
2271 	SD_CHAIN_USCSI,			/* Index: 19 */
2272 	SD_CHAIN_USCSI,			/* Index: 20 */
2273 
2274 	/* Chain for USCSI commands (checksum targets) */
2275 	SD_CHAIN_USCSI,			/* Index: 21 */
2276 	SD_CHAIN_USCSI,			/* Index: 22 */
2277 	SD_CHAIN_USCSI,			/* Index: 23 */
2278 
2279 	/* Chain for "direct" USCSI commands (all targets) */
2280 	SD_CHAIN_DIRECT,		/* Index: 24 */
2281 
2282 	/* Chain for "direct priority" USCSI commands (all targets) */
2283 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2284 
2285 	/*
2286 	 * Chain for buf IO for large sector size disk drive targets
2287 	 * with checksumming (PM enabled)
2288 	 */
2289 	SD_CHAIN_BUFIO,			/* Index: 26 */
2290 	SD_CHAIN_BUFIO,			/* Index: 27 */
2291 	SD_CHAIN_BUFIO,			/* Index: 28 */
2292 	SD_CHAIN_BUFIO,			/* Index: 29 */
2293 	SD_CHAIN_BUFIO,			/* Index: 30 */
2294 
2295 	/*
2296 	 * Chain for buf IO for large sector size disk drive targets
2297 	 * with checksumming (PM disabled)
2298 	 */
2299 	SD_CHAIN_BUFIO,			/* Index: 31 */
2300 	SD_CHAIN_BUFIO,			/* Index: 32 */
2301 	SD_CHAIN_BUFIO,			/* Index: 33 */
2302 	SD_CHAIN_BUFIO,			/* Index: 34 */
2303 };
2304 
2305 
2306 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2307 #define	SD_IS_BUFIO(xp)			\
2308 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2309 
2310 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2311 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2312 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2313 
2314 
2315 
2316 /*
2317  * Struct, array, and macros to map a specific chain to the appropriate
2318  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2319  *
2320  * The sd_chain_index_map[] array is used at attach time to set the various
2321  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2322  * chain to be used with the instance. This allows different instances to use
2323  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2324  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2325  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2326  * dynamically & without the use of locking; and (2) a layer may update the
2327  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2328  * to allow for deferred processing of an IO within the same chain from a
2329  * different execution context.
2330  */
2331 
2332 struct sd_chain_index {
2333 	int	sci_iostart_index;
2334 	int	sci_iodone_index;
2335 };
2336 
2337 static struct sd_chain_index	sd_chain_index_map[] = {
2338 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2339 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2340 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2341 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2342 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2343 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2344 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2345 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2346 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2347 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2348 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2349 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2350 
2351 };
2352 
2353 
2354 /*
2355  * The following are indexes into the sd_chain_index_map[] array.
2356  */
2357 
2358 /* un->un_buf_chain_type must be set to one of these */
2359 #define	SD_CHAIN_INFO_DISK		0
2360 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2361 #define	SD_CHAIN_INFO_RMMEDIA		2
2362 #define	SD_CHAIN_INFO_MSS_DISK		2
2363 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2364 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2365 #define	SD_CHAIN_INFO_CHKSUM		4
2366 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2367 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2368 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2369 
2370 /* un->un_uscsi_chain_type must be set to one of these */
2371 #define	SD_CHAIN_INFO_USCSI_CMD		6
2372 /* USCSI with PM disabled is the same as DIRECT */
2373 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2374 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2375 
2376 /* un->un_direct_chain_type must be set to one of these */
2377 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2378 
2379 /* un->un_priority_chain_type must be set to one of these */
2380 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2381 
2382 /* size for devid inquiries */
2383 #define	MAX_INQUIRY_SIZE		0xF0
2384 
2385 /*
2386  * Macros used by functions to pass a given buf(9S) struct along to the
2387  * next function in the layering chain for further processing.
2388  *
2389  * In the following macros, passing more than three arguments to the called
2390  * routines causes the optimizer for the SPARC compiler to stop doing tail
2391  * call elimination which results in significant performance degradation.
2392  */
2393 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2394 	((*(sd_iostart_chain[index]))(index, un, bp))
2395 
2396 #define	SD_BEGIN_IODONE(index, un, bp)	\
2397 	((*(sd_iodone_chain[index]))(index, un, bp))
2398 
2399 #define	SD_NEXT_IOSTART(index, un, bp)				\
2400 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2401 
2402 #define	SD_NEXT_IODONE(index, un, bp)				\
2403 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2404 
2405 /*
2406  *    Function: _init
2407  *
2408  * Description: This is the driver _init(9E) entry point.
2409  *
2410  * Return Code: Returns the value from mod_install(9F) or
2411  *		ddi_soft_state_init(9F) as appropriate.
2412  *
2413  *     Context: Called when driver module loaded.
2414  */
2415 
2416 int
2417 _init(void)
2418 {
2419 	int	err;
2420 
2421 	/* establish driver name from module name */
2422 	sd_label = (char *)mod_modname(&modlinkage);
2423 
2424 #ifndef XPV_HVM_DRIVER
2425 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2426 	    SD_MAXUNIT);
2427 	if (err != 0) {
2428 		return (err);
2429 	}
2430 
2431 #else /* XPV_HVM_DRIVER */
2432 	/* Remove the leading "hvm_" from the module name */
2433 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2434 	sd_label += strlen("hvm_");
2435 
2436 #endif /* XPV_HVM_DRIVER */
2437 
2438 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2439 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2440 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2441 
2442 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2443 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2444 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2445 
2446 	/*
2447 	 * it's ok to init here even for fibre device
2448 	 */
2449 	sd_scsi_probe_cache_init();
2450 
2451 	sd_scsi_target_lun_init();
2452 
2453 	/*
2454 	 * Creating taskq before mod_install ensures that all callers (threads)
2455 	 * that enter the module after a successful mod_install encounter
2456 	 * a valid taskq.
2457 	 */
2458 	sd_taskq_create();
2459 
2460 	err = mod_install(&modlinkage);
2461 	if (err != 0) {
2462 		/* delete taskq if install fails */
2463 		sd_taskq_delete();
2464 
2465 		mutex_destroy(&sd_detach_mutex);
2466 		mutex_destroy(&sd_log_mutex);
2467 		mutex_destroy(&sd_label_mutex);
2468 
2469 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2470 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2471 		cv_destroy(&sd_tr.srq_inprocess_cv);
2472 
2473 		sd_scsi_probe_cache_fini();
2474 
2475 		sd_scsi_target_lun_fini();
2476 
2477 #ifndef XPV_HVM_DRIVER
2478 		ddi_soft_state_fini(&sd_state);
2479 #endif /* !XPV_HVM_DRIVER */
2480 		return (err);
2481 	}
2482 
2483 	return (err);
2484 }
2485 
2486 
2487 /*
2488  *    Function: _fini
2489  *
2490  * Description: This is the driver _fini(9E) entry point.
2491  *
2492  * Return Code: Returns the value from mod_remove(9F)
2493  *
2494  *     Context: Called when driver module is unloaded.
2495  */
2496 
2497 int
2498 _fini(void)
2499 {
2500 	int err;
2501 
2502 	if ((err = mod_remove(&modlinkage)) != 0) {
2503 		return (err);
2504 	}
2505 
2506 	sd_taskq_delete();
2507 
2508 	mutex_destroy(&sd_detach_mutex);
2509 	mutex_destroy(&sd_log_mutex);
2510 	mutex_destroy(&sd_label_mutex);
2511 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2512 
2513 	sd_scsi_probe_cache_fini();
2514 
2515 	sd_scsi_target_lun_fini();
2516 
2517 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2518 	cv_destroy(&sd_tr.srq_inprocess_cv);
2519 
2520 #ifndef XPV_HVM_DRIVER
2521 	ddi_soft_state_fini(&sd_state);
2522 #endif /* !XPV_HVM_DRIVER */
2523 
2524 	return (err);
2525 }
2526 
2527 
2528 /*
2529  *    Function: _info
2530  *
2531  * Description: This is the driver _info(9E) entry point.
2532  *
2533  *   Arguments: modinfop - pointer to the driver modinfo structure
2534  *
2535  * Return Code: Returns the value from mod_info(9F).
2536  *
2537  *     Context: Kernel thread context
2538  */
2539 
2540 int
2541 _info(struct modinfo *modinfop)
2542 {
2543 	return (mod_info(&modlinkage, modinfop));
2544 }
2545 
2546 
2547 /*
2548  * The following routines implement the driver message logging facility.
2549  * They provide component- and level- based debug output filtering.
2550  * Output may also be restricted to messages for a single instance by
2551  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2552  * to NULL, then messages for all instances are printed.
2553  *
2554  * These routines have been cloned from each other due to the language
2555  * constraints of macros and variable argument list processing.
2556  */
2557 
2558 
2559 /*
2560  *    Function: sd_log_err
2561  *
2562  * Description: This routine is called by the SD_ERROR macro for debug
2563  *		logging of error conditions.
2564  *
2565  *   Arguments: comp - driver component being logged
2566  *		dev  - pointer to driver info structure
2567  *		fmt  - error string and format to be logged
2568  */
2569 
2570 static void
2571 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2572 {
2573 	va_list		ap;
2574 	dev_info_t	*dev;
2575 
2576 	ASSERT(un != NULL);
2577 	dev = SD_DEVINFO(un);
2578 	ASSERT(dev != NULL);
2579 
2580 	/*
2581 	 * Filter messages based on the global component and level masks.
2582 	 * Also print if un matches the value of sd_debug_un, or if
2583 	 * sd_debug_un is set to NULL.
2584 	 */
2585 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2586 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2587 		mutex_enter(&sd_log_mutex);
2588 		va_start(ap, fmt);
2589 		(void) vsprintf(sd_log_buf, fmt, ap);
2590 		va_end(ap);
2591 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2592 		mutex_exit(&sd_log_mutex);
2593 	}
2594 #ifdef SD_FAULT_INJECTION
2595 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2596 	if (un->sd_injection_mask & comp) {
2597 		mutex_enter(&sd_log_mutex);
2598 		va_start(ap, fmt);
2599 		(void) vsprintf(sd_log_buf, fmt, ap);
2600 		va_end(ap);
2601 		sd_injection_log(sd_log_buf, un);
2602 		mutex_exit(&sd_log_mutex);
2603 	}
2604 #endif
2605 }
2606 
2607 
2608 /*
2609  *    Function: sd_log_info
2610  *
2611  * Description: This routine is called by the SD_INFO macro for debug
2612  *		logging of general purpose informational conditions.
2613  *
2614  *   Arguments: comp - driver component being logged
2615  *		dev  - pointer to driver info structure
2616  *		fmt  - info string and format to be logged
2617  */
2618 
2619 static void
2620 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2621 {
2622 	va_list		ap;
2623 	dev_info_t	*dev;
2624 
2625 	ASSERT(un != NULL);
2626 	dev = SD_DEVINFO(un);
2627 	ASSERT(dev != NULL);
2628 
2629 	/*
2630 	 * Filter messages based on the global component and level masks.
2631 	 * Also print if un matches the value of sd_debug_un, or if
2632 	 * sd_debug_un is set to NULL.
2633 	 */
2634 	if ((sd_component_mask & component) &&
2635 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2636 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2637 		mutex_enter(&sd_log_mutex);
2638 		va_start(ap, fmt);
2639 		(void) vsprintf(sd_log_buf, fmt, ap);
2640 		va_end(ap);
2641 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2642 		mutex_exit(&sd_log_mutex);
2643 	}
2644 #ifdef SD_FAULT_INJECTION
2645 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2646 	if (un->sd_injection_mask & component) {
2647 		mutex_enter(&sd_log_mutex);
2648 		va_start(ap, fmt);
2649 		(void) vsprintf(sd_log_buf, fmt, ap);
2650 		va_end(ap);
2651 		sd_injection_log(sd_log_buf, un);
2652 		mutex_exit(&sd_log_mutex);
2653 	}
2654 #endif
2655 }
2656 
2657 
2658 /*
2659  *    Function: sd_log_trace
2660  *
2661  * Description: This routine is called by the SD_TRACE macro for debug
2662  *		logging of trace conditions (i.e. function entry/exit).
2663  *
2664  *   Arguments: comp - driver component being logged
2665  *		dev  - pointer to driver info structure
2666  *		fmt  - trace string and format to be logged
2667  */
2668 
2669 static void
2670 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2671 {
2672 	va_list		ap;
2673 	dev_info_t	*dev;
2674 
2675 	ASSERT(un != NULL);
2676 	dev = SD_DEVINFO(un);
2677 	ASSERT(dev != NULL);
2678 
2679 	/*
2680 	 * Filter messages based on the global component and level masks.
2681 	 * Also print if un matches the value of sd_debug_un, or if
2682 	 * sd_debug_un is set to NULL.
2683 	 */
2684 	if ((sd_component_mask & component) &&
2685 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2686 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2687 		mutex_enter(&sd_log_mutex);
2688 		va_start(ap, fmt);
2689 		(void) vsprintf(sd_log_buf, fmt, ap);
2690 		va_end(ap);
2691 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2692 		mutex_exit(&sd_log_mutex);
2693 	}
2694 #ifdef SD_FAULT_INJECTION
2695 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2696 	if (un->sd_injection_mask & component) {
2697 		mutex_enter(&sd_log_mutex);
2698 		va_start(ap, fmt);
2699 		(void) vsprintf(sd_log_buf, fmt, ap);
2700 		va_end(ap);
2701 		sd_injection_log(sd_log_buf, un);
2702 		mutex_exit(&sd_log_mutex);
2703 	}
2704 #endif
2705 }
2706 
2707 
2708 /*
2709  *    Function: sdprobe
2710  *
2711  * Description: This is the driver probe(9e) entry point function.
2712  *
2713  *   Arguments: devi - opaque device info handle
2714  *
2715  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2716  *              DDI_PROBE_FAILURE: If the probe failed.
2717  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2718  *				   but may be present in the future.
2719  */
2720 
2721 static int
2722 sdprobe(dev_info_t *devi)
2723 {
2724 	struct scsi_device	*devp;
2725 	int			rval;
2726 #ifndef XPV_HVM_DRIVER
2727 	int			instance = ddi_get_instance(devi);
2728 #endif /* !XPV_HVM_DRIVER */
2729 
2730 	/*
2731 	 * if it wasn't for pln, sdprobe could actually be nulldev
2732 	 * in the "__fibre" case.
2733 	 */
2734 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2735 		return (DDI_PROBE_DONTCARE);
2736 	}
2737 
2738 	devp = ddi_get_driver_private(devi);
2739 
2740 	if (devp == NULL) {
2741 		/* Ooops... nexus driver is mis-configured... */
2742 		return (DDI_PROBE_FAILURE);
2743 	}
2744 
2745 #ifndef XPV_HVM_DRIVER
2746 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2747 		return (DDI_PROBE_PARTIAL);
2748 	}
2749 #endif /* !XPV_HVM_DRIVER */
2750 
2751 	/*
2752 	 * Call the SCSA utility probe routine to see if we actually
2753 	 * have a target at this SCSI nexus.
2754 	 */
2755 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2756 	case SCSIPROBE_EXISTS:
2757 		switch (devp->sd_inq->inq_dtype) {
2758 		case DTYPE_DIRECT:
2759 			rval = DDI_PROBE_SUCCESS;
2760 			break;
2761 		case DTYPE_RODIRECT:
2762 			/* CDs etc. Can be removable media */
2763 			rval = DDI_PROBE_SUCCESS;
2764 			break;
2765 		case DTYPE_OPTICAL:
2766 			/*
2767 			 * Rewritable optical driver HP115AA
2768 			 * Can also be removable media
2769 			 */
2770 
2771 			/*
2772 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2773 			 * pre solaris 9 sparc sd behavior is required
2774 			 *
2775 			 * If first time through and sd_dtype_optical_bind
2776 			 * has not been set in /etc/system check properties
2777 			 */
2778 
2779 			if (sd_dtype_optical_bind  < 0) {
2780 				sd_dtype_optical_bind = ddi_prop_get_int
2781 				    (DDI_DEV_T_ANY, devi, 0,
2782 				    "optical-device-bind", 1);
2783 			}
2784 
2785 			if (sd_dtype_optical_bind == 0) {
2786 				rval = DDI_PROBE_FAILURE;
2787 			} else {
2788 				rval = DDI_PROBE_SUCCESS;
2789 			}
2790 			break;
2791 
2792 		case DTYPE_NOTPRESENT:
2793 		default:
2794 			rval = DDI_PROBE_FAILURE;
2795 			break;
2796 		}
2797 		break;
2798 	default:
2799 		rval = DDI_PROBE_PARTIAL;
2800 		break;
2801 	}
2802 
2803 	/*
2804 	 * This routine checks for resource allocation prior to freeing,
2805 	 * so it will take care of the "smart probing" case where a
2806 	 * scsi_probe() may or may not have been issued and will *not*
2807 	 * free previously-freed resources.
2808 	 */
2809 	scsi_unprobe(devp);
2810 	return (rval);
2811 }
2812 
2813 
2814 /*
2815  *    Function: sdinfo
2816  *
2817  * Description: This is the driver getinfo(9e) entry point function.
2818  * 		Given the device number, return the devinfo pointer from
2819  *		the scsi_device structure or the instance number
2820  *		associated with the dev_t.
2821  *
2822  *   Arguments: dip     - pointer to device info structure
2823  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2824  *			  DDI_INFO_DEVT2INSTANCE)
2825  *		arg     - driver dev_t
2826  *		resultp - user buffer for request response
2827  *
2828  * Return Code: DDI_SUCCESS
2829  *              DDI_FAILURE
2830  */
2831 /* ARGSUSED */
2832 static int
2833 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2834 {
2835 	struct sd_lun	*un;
2836 	dev_t		dev;
2837 	int		instance;
2838 	int		error;
2839 
2840 	switch (infocmd) {
2841 	case DDI_INFO_DEVT2DEVINFO:
2842 		dev = (dev_t)arg;
2843 		instance = SDUNIT(dev);
2844 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2845 			return (DDI_FAILURE);
2846 		}
2847 		*result = (void *) SD_DEVINFO(un);
2848 		error = DDI_SUCCESS;
2849 		break;
2850 	case DDI_INFO_DEVT2INSTANCE:
2851 		dev = (dev_t)arg;
2852 		instance = SDUNIT(dev);
2853 		*result = (void *)(uintptr_t)instance;
2854 		error = DDI_SUCCESS;
2855 		break;
2856 	default:
2857 		error = DDI_FAILURE;
2858 	}
2859 	return (error);
2860 }
2861 
2862 /*
2863  *    Function: sd_prop_op
2864  *
2865  * Description: This is the driver prop_op(9e) entry point function.
2866  *		Return the number of blocks for the partition in question
2867  *		or forward the request to the property facilities.
2868  *
2869  *   Arguments: dev       - device number
2870  *		dip       - pointer to device info structure
2871  *		prop_op   - property operator
2872  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2873  *		name      - pointer to property name
2874  *		valuep    - pointer or address of the user buffer
2875  *		lengthp   - property length
2876  *
2877  * Return Code: DDI_PROP_SUCCESS
2878  *              DDI_PROP_NOT_FOUND
2879  *              DDI_PROP_UNDEFINED
2880  *              DDI_PROP_NO_MEMORY
2881  *              DDI_PROP_BUF_TOO_SMALL
2882  */
2883 
2884 static int
2885 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2886     char *name, caddr_t valuep, int *lengthp)
2887 {
2888 	struct sd_lun	*un;
2889 
2890 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2891 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2892 		    name, valuep, lengthp));
2893 
2894 	return (cmlb_prop_op(un->un_cmlbhandle,
2895 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2896 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2897 }
2898 
2899 /*
2900  * The following functions are for smart probing:
2901  * sd_scsi_probe_cache_init()
2902  * sd_scsi_probe_cache_fini()
2903  * sd_scsi_clear_probe_cache()
2904  * sd_scsi_probe_with_cache()
2905  */
2906 
2907 /*
2908  *    Function: sd_scsi_probe_cache_init
2909  *
2910  * Description: Initializes the probe response cache mutex and head pointer.
2911  *
2912  *     Context: Kernel thread context
2913  */
2914 
2915 static void
2916 sd_scsi_probe_cache_init(void)
2917 {
2918 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2919 	sd_scsi_probe_cache_head = NULL;
2920 }
2921 
2922 
2923 /*
2924  *    Function: sd_scsi_probe_cache_fini
2925  *
2926  * Description: Frees all resources associated with the probe response cache.
2927  *
2928  *     Context: Kernel thread context
2929  */
2930 
2931 static void
2932 sd_scsi_probe_cache_fini(void)
2933 {
2934 	struct sd_scsi_probe_cache *cp;
2935 	struct sd_scsi_probe_cache *ncp;
2936 
2937 	/* Clean up our smart probing linked list */
2938 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2939 		ncp = cp->next;
2940 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2941 	}
2942 	sd_scsi_probe_cache_head = NULL;
2943 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2944 }
2945 
2946 
2947 /*
2948  *    Function: sd_scsi_clear_probe_cache
2949  *
2950  * Description: This routine clears the probe response cache. This is
2951  *		done when open() returns ENXIO so that when deferred
2952  *		attach is attempted (possibly after a device has been
2953  *		turned on) we will retry the probe. Since we don't know
2954  *		which target we failed to open, we just clear the
2955  *		entire cache.
2956  *
2957  *     Context: Kernel thread context
2958  */
2959 
2960 static void
2961 sd_scsi_clear_probe_cache(void)
2962 {
2963 	struct sd_scsi_probe_cache	*cp;
2964 	int				i;
2965 
2966 	mutex_enter(&sd_scsi_probe_cache_mutex);
2967 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2968 		/*
2969 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2970 		 * force probing to be performed the next time
2971 		 * sd_scsi_probe_with_cache is called.
2972 		 */
2973 		for (i = 0; i < NTARGETS_WIDE; i++) {
2974 			cp->cache[i] = SCSIPROBE_EXISTS;
2975 		}
2976 	}
2977 	mutex_exit(&sd_scsi_probe_cache_mutex);
2978 }
2979 
2980 
2981 /*
2982  *    Function: sd_scsi_probe_with_cache
2983  *
2984  * Description: This routine implements support for a scsi device probe
2985  *		with cache. The driver maintains a cache of the target
2986  *		responses to scsi probes. If we get no response from a
2987  *		target during a probe inquiry, we remember that, and we
2988  *		avoid additional calls to scsi_probe on non-zero LUNs
2989  *		on the same target until the cache is cleared. By doing
2990  *		so we avoid the 1/4 sec selection timeout for nonzero
2991  *		LUNs. lun0 of a target is always probed.
2992  *
2993  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2994  *              waitfunc - indicates what the allocator routines should
2995  *			   do when resources are not available. This value
2996  *			   is passed on to scsi_probe() when that routine
2997  *			   is called.
2998  *
2999  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
3000  *		otherwise the value returned by scsi_probe(9F).
3001  *
3002  *     Context: Kernel thread context
3003  */
3004 
3005 static int
3006 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3007 {
3008 	struct sd_scsi_probe_cache	*cp;
3009 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3010 	int		lun, tgt;
3011 
3012 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3013 	    SCSI_ADDR_PROP_LUN, 0);
3014 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3015 	    SCSI_ADDR_PROP_TARGET, -1);
3016 
3017 	/* Make sure caching enabled and target in range */
3018 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3019 		/* do it the old way (no cache) */
3020 		return (scsi_probe(devp, waitfn));
3021 	}
3022 
3023 	mutex_enter(&sd_scsi_probe_cache_mutex);
3024 
3025 	/* Find the cache for this scsi bus instance */
3026 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3027 		if (cp->pdip == pdip) {
3028 			break;
3029 		}
3030 	}
3031 
3032 	/* If we can't find a cache for this pdip, create one */
3033 	if (cp == NULL) {
3034 		int i;
3035 
3036 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3037 		    KM_SLEEP);
3038 		cp->pdip = pdip;
3039 		cp->next = sd_scsi_probe_cache_head;
3040 		sd_scsi_probe_cache_head = cp;
3041 		for (i = 0; i < NTARGETS_WIDE; i++) {
3042 			cp->cache[i] = SCSIPROBE_EXISTS;
3043 		}
3044 	}
3045 
3046 	mutex_exit(&sd_scsi_probe_cache_mutex);
3047 
3048 	/* Recompute the cache for this target if LUN zero */
3049 	if (lun == 0) {
3050 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3051 	}
3052 
3053 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3054 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3055 		return (SCSIPROBE_NORESP);
3056 	}
3057 
3058 	/* Do the actual probe; save & return the result */
3059 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3060 }
3061 
3062 
3063 /*
3064  *    Function: sd_scsi_target_lun_init
3065  *
3066  * Description: Initializes the attached lun chain mutex and head pointer.
3067  *
3068  *     Context: Kernel thread context
3069  */
3070 
3071 static void
3072 sd_scsi_target_lun_init(void)
3073 {
3074 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3075 	sd_scsi_target_lun_head = NULL;
3076 }
3077 
3078 
3079 /*
3080  *    Function: sd_scsi_target_lun_fini
3081  *
3082  * Description: Frees all resources associated with the attached lun
3083  *              chain
3084  *
3085  *     Context: Kernel thread context
3086  */
3087 
3088 static void
3089 sd_scsi_target_lun_fini(void)
3090 {
3091 	struct sd_scsi_hba_tgt_lun	*cp;
3092 	struct sd_scsi_hba_tgt_lun	*ncp;
3093 
3094 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3095 		ncp = cp->next;
3096 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3097 	}
3098 	sd_scsi_target_lun_head = NULL;
3099 	mutex_destroy(&sd_scsi_target_lun_mutex);
3100 }
3101 
3102 
3103 /*
3104  *    Function: sd_scsi_get_target_lun_count
3105  *
3106  * Description: This routine will check in the attached lun chain to see
3107  * 		how many luns are attached on the required SCSI controller
3108  * 		and target. Currently, some capabilities like tagged queue
3109  *		are supported per target based by HBA. So all luns in a
3110  *		target have the same capabilities. Based on this assumption,
3111  * 		sd should only set these capabilities once per target. This
3112  *		function is called when sd needs to decide how many luns
3113  *		already attached on a target.
3114  *
3115  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3116  *			  controller device.
3117  *              target	- The target ID on the controller's SCSI bus.
3118  *
3119  * Return Code: The number of luns attached on the required target and
3120  *		controller.
3121  *		-1 if target ID is not in parallel SCSI scope or the given
3122  * 		dip is not in the chain.
3123  *
3124  *     Context: Kernel thread context
3125  */
3126 
3127 static int
3128 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3129 {
3130 	struct sd_scsi_hba_tgt_lun	*cp;
3131 
3132 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3133 		return (-1);
3134 	}
3135 
3136 	mutex_enter(&sd_scsi_target_lun_mutex);
3137 
3138 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3139 		if (cp->pdip == dip) {
3140 			break;
3141 		}
3142 	}
3143 
3144 	mutex_exit(&sd_scsi_target_lun_mutex);
3145 
3146 	if (cp == NULL) {
3147 		return (-1);
3148 	}
3149 
3150 	return (cp->nlun[target]);
3151 }
3152 
3153 
3154 /*
3155  *    Function: sd_scsi_update_lun_on_target
3156  *
3157  * Description: This routine is used to update the attached lun chain when a
3158  *		lun is attached or detached on a target.
3159  *
3160  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3161  *                        controller device.
3162  *              target  - The target ID on the controller's SCSI bus.
3163  *		flag	- Indicate the lun is attached or detached.
3164  *
3165  *     Context: Kernel thread context
3166  */
3167 
3168 static void
3169 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3170 {
3171 	struct sd_scsi_hba_tgt_lun	*cp;
3172 
3173 	mutex_enter(&sd_scsi_target_lun_mutex);
3174 
3175 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3176 		if (cp->pdip == dip) {
3177 			break;
3178 		}
3179 	}
3180 
3181 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3182 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3183 		    KM_SLEEP);
3184 		cp->pdip = dip;
3185 		cp->next = sd_scsi_target_lun_head;
3186 		sd_scsi_target_lun_head = cp;
3187 	}
3188 
3189 	mutex_exit(&sd_scsi_target_lun_mutex);
3190 
3191 	if (cp != NULL) {
3192 		if (flag == SD_SCSI_LUN_ATTACH) {
3193 			cp->nlun[target] ++;
3194 		} else {
3195 			cp->nlun[target] --;
3196 		}
3197 	}
3198 }
3199 
3200 
3201 /*
3202  *    Function: sd_spin_up_unit
3203  *
3204  * Description: Issues the following commands to spin-up the device:
3205  *		START STOP UNIT, and INQUIRY.
3206  *
3207  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3208  *                      structure for this target.
3209  *
3210  * Return Code: 0 - success
3211  *		EIO - failure
3212  *		EACCES - reservation conflict
3213  *
3214  *     Context: Kernel thread context
3215  */
3216 
3217 static int
3218 sd_spin_up_unit(sd_ssc_t *ssc)
3219 {
3220 	size_t	resid		= 0;
3221 	int	has_conflict	= FALSE;
3222 	uchar_t *bufaddr;
3223 	int 	status;
3224 	struct sd_lun	*un;
3225 
3226 	ASSERT(ssc != NULL);
3227 	un = ssc->ssc_un;
3228 	ASSERT(un != NULL);
3229 
3230 	/*
3231 	 * Send a throwaway START UNIT command.
3232 	 *
3233 	 * If we fail on this, we don't care presently what precisely
3234 	 * is wrong.  EMC's arrays will also fail this with a check
3235 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3236 	 * we don't want to fail the attach because it may become
3237 	 * "active" later.
3238 	 * We don't know if power condition is supported or not at
3239 	 * this stage, use START STOP bit.
3240 	 */
3241 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3242 	    SD_TARGET_START, SD_PATH_DIRECT);
3243 
3244 	if (status != 0) {
3245 		if (status == EACCES)
3246 			has_conflict = TRUE;
3247 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3248 	}
3249 
3250 	/*
3251 	 * Send another INQUIRY command to the target. This is necessary for
3252 	 * non-removable media direct access devices because their INQUIRY data
3253 	 * may not be fully qualified until they are spun up (perhaps via the
3254 	 * START command above).  Note: This seems to be needed for some
3255 	 * legacy devices only.) The INQUIRY command should succeed even if a
3256 	 * Reservation Conflict is present.
3257 	 */
3258 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3259 
3260 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3261 	    != 0) {
3262 		kmem_free(bufaddr, SUN_INQSIZE);
3263 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3264 		return (EIO);
3265 	}
3266 
3267 	/*
3268 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3269 	 * Note that this routine does not return a failure here even if the
3270 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3271 	 */
3272 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3273 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3274 	}
3275 
3276 	kmem_free(bufaddr, SUN_INQSIZE);
3277 
3278 	/* If we hit a reservation conflict above, tell the caller. */
3279 	if (has_conflict == TRUE) {
3280 		return (EACCES);
3281 	}
3282 
3283 	return (0);
3284 }
3285 
3286 #ifdef _LP64
3287 /*
3288  *    Function: sd_enable_descr_sense
3289  *
3290  * Description: This routine attempts to select descriptor sense format
3291  *		using the Control mode page.  Devices that support 64 bit
3292  *		LBAs (for >2TB luns) should also implement descriptor
3293  *		sense data so we will call this function whenever we see
3294  *		a lun larger than 2TB.  If for some reason the device
3295  *		supports 64 bit LBAs but doesn't support descriptor sense
3296  *		presumably the mode select will fail.  Everything will
3297  *		continue to work normally except that we will not get
3298  *		complete sense data for commands that fail with an LBA
3299  *		larger than 32 bits.
3300  *
3301  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3302  *                      structure for this target.
3303  *
3304  *     Context: Kernel thread context only
3305  */
3306 
3307 static void
3308 sd_enable_descr_sense(sd_ssc_t *ssc)
3309 {
3310 	uchar_t			*header;
3311 	struct mode_control_scsi3 *ctrl_bufp;
3312 	size_t			buflen;
3313 	size_t			bd_len;
3314 	int			status;
3315 	struct sd_lun		*un;
3316 
3317 	ASSERT(ssc != NULL);
3318 	un = ssc->ssc_un;
3319 	ASSERT(un != NULL);
3320 
3321 	/*
3322 	 * Read MODE SENSE page 0xA, Control Mode Page
3323 	 */
3324 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3325 	    sizeof (struct mode_control_scsi3);
3326 	header = kmem_zalloc(buflen, KM_SLEEP);
3327 
3328 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3329 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3330 
3331 	if (status != 0) {
3332 		SD_ERROR(SD_LOG_COMMON, un,
3333 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3334 		goto eds_exit;
3335 	}
3336 
3337 	/*
3338 	 * Determine size of Block Descriptors in order to locate
3339 	 * the mode page data. ATAPI devices return 0, SCSI devices
3340 	 * should return MODE_BLK_DESC_LENGTH.
3341 	 */
3342 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3343 
3344 	/* Clear the mode data length field for MODE SELECT */
3345 	((struct mode_header *)header)->length = 0;
3346 
3347 	ctrl_bufp = (struct mode_control_scsi3 *)
3348 	    (header + MODE_HEADER_LENGTH + bd_len);
3349 
3350 	/*
3351 	 * If the page length is smaller than the expected value,
3352 	 * the target device doesn't support D_SENSE. Bail out here.
3353 	 */
3354 	if (ctrl_bufp->mode_page.length <
3355 	    sizeof (struct mode_control_scsi3) - 2) {
3356 		SD_ERROR(SD_LOG_COMMON, un,
3357 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3358 		goto eds_exit;
3359 	}
3360 
3361 	/*
3362 	 * Clear PS bit for MODE SELECT
3363 	 */
3364 	ctrl_bufp->mode_page.ps = 0;
3365 
3366 	/*
3367 	 * Set D_SENSE to enable descriptor sense format.
3368 	 */
3369 	ctrl_bufp->d_sense = 1;
3370 
3371 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3372 
3373 	/*
3374 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3375 	 */
3376 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3377 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3378 
3379 	if (status != 0) {
3380 		SD_INFO(SD_LOG_COMMON, un,
3381 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3382 	} else {
3383 		kmem_free(header, buflen);
3384 		return;
3385 	}
3386 
3387 eds_exit:
3388 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3389 	kmem_free(header, buflen);
3390 }
3391 
3392 /*
3393  *    Function: sd_reenable_dsense_task
3394  *
3395  * Description: Re-enable descriptor sense after device or bus reset
3396  *
3397  *     Context: Executes in a taskq() thread context
3398  */
3399 static void
3400 sd_reenable_dsense_task(void *arg)
3401 {
3402 	struct	sd_lun	*un = arg;
3403 	sd_ssc_t	*ssc;
3404 
3405 	ASSERT(un != NULL);
3406 
3407 	ssc = sd_ssc_init(un);
3408 	sd_enable_descr_sense(ssc);
3409 	sd_ssc_fini(ssc);
3410 }
3411 #endif /* _LP64 */
3412 
3413 /*
3414  *    Function: sd_set_mmc_caps
3415  *
3416  * Description: This routine determines if the device is MMC compliant and if
3417  *		the device supports CDDA via a mode sense of the CDVD
3418  *		capabilities mode page. Also checks if the device is a
3419  *		dvdram writable device.
3420  *
3421  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3422  *                      structure for this target.
3423  *
3424  *     Context: Kernel thread context only
3425  */
3426 
3427 static void
3428 sd_set_mmc_caps(sd_ssc_t *ssc)
3429 {
3430 	struct mode_header_grp2		*sense_mhp;
3431 	uchar_t				*sense_page;
3432 	caddr_t				buf;
3433 	int				bd_len;
3434 	int				status;
3435 	struct uscsi_cmd		com;
3436 	int				rtn;
3437 	uchar_t				*out_data_rw, *out_data_hd;
3438 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3439 	uchar_t				*out_data_gesn;
3440 	int				gesn_len;
3441 	struct sd_lun			*un;
3442 
3443 	ASSERT(ssc != NULL);
3444 	un = ssc->ssc_un;
3445 	ASSERT(un != NULL);
3446 
3447 	/*
3448 	 * The flags which will be set in this function are - mmc compliant,
3449 	 * dvdram writable device, cdda support. Initialize them to FALSE
3450 	 * and if a capability is detected - it will be set to TRUE.
3451 	 */
3452 	un->un_f_mmc_cap = FALSE;
3453 	un->un_f_dvdram_writable_device = FALSE;
3454 	un->un_f_cfg_cdda = FALSE;
3455 
3456 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3457 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3458 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3459 
3460 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3461 
3462 	if (status != 0) {
3463 		/* command failed; just return */
3464 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3465 		return;
3466 	}
3467 	/*
3468 	 * If the mode sense request for the CDROM CAPABILITIES
3469 	 * page (0x2A) succeeds the device is assumed to be MMC.
3470 	 */
3471 	un->un_f_mmc_cap = TRUE;
3472 
3473 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3474 	if (un->un_f_mmc_gesn_polling) {
3475 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3476 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3477 
3478 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3479 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3480 
3481 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3482 
3483 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3484 			un->un_f_mmc_gesn_polling = FALSE;
3485 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3486 			    "sd_set_mmc_caps: gesn not supported "
3487 			    "%d %x %x %x %x\n", rtn,
3488 			    out_data_gesn[0], out_data_gesn[1],
3489 			    out_data_gesn[2], out_data_gesn[3]);
3490 		}
3491 
3492 		kmem_free(out_data_gesn, gesn_len);
3493 	}
3494 
3495 	/* Get to the page data */
3496 	sense_mhp = (struct mode_header_grp2 *)buf;
3497 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3498 	    sense_mhp->bdesc_length_lo;
3499 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3500 		/*
3501 		 * We did not get back the expected block descriptor
3502 		 * length so we cannot determine if the device supports
3503 		 * CDDA. However, we still indicate the device is MMC
3504 		 * according to the successful response to the page
3505 		 * 0x2A mode sense request.
3506 		 */
3507 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3508 		    "sd_set_mmc_caps: Mode Sense returned "
3509 		    "invalid block descriptor length\n");
3510 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3511 		return;
3512 	}
3513 
3514 	/* See if read CDDA is supported */
3515 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3516 	    bd_len);
3517 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3518 
3519 	/* See if writing DVD RAM is supported. */
3520 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3521 	if (un->un_f_dvdram_writable_device == TRUE) {
3522 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3523 		return;
3524 	}
3525 
3526 	/*
3527 	 * If the device presents DVD or CD capabilities in the mode
3528 	 * page, we can return here since a RRD will not have
3529 	 * these capabilities.
3530 	 */
3531 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3532 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3533 		return;
3534 	}
3535 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3536 
3537 	/*
3538 	 * If un->un_f_dvdram_writable_device is still FALSE,
3539 	 * check for a Removable Rigid Disk (RRD).  A RRD
3540 	 * device is identified by the features RANDOM_WRITABLE and
3541 	 * HARDWARE_DEFECT_MANAGEMENT.
3542 	 */
3543 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3544 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3545 
3546 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3547 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3548 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3549 
3550 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3551 
3552 	if (rtn != 0) {
3553 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3554 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3555 		return;
3556 	}
3557 
3558 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3559 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3560 
3561 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3562 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3563 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3564 
3565 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3566 
3567 	if (rtn == 0) {
3568 		/*
3569 		 * We have good information, check for random writable
3570 		 * and hardware defect features.
3571 		 */
3572 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3573 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3574 			un->un_f_dvdram_writable_device = TRUE;
3575 		}
3576 	}
3577 
3578 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3579 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3580 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3581 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3582 }
3583 
3584 /*
3585  *    Function: sd_check_for_writable_cd
3586  *
3587  * Description: This routine determines if the media in the device is
3588  *		writable or not. It uses the get configuration command (0x46)
3589  *		to determine if the media is writable
3590  *
3591  *   Arguments: un - driver soft state (unit) structure
3592  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3593  *                           chain and the normal command waitq, or
3594  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3595  *                           "direct" chain and bypass the normal command
3596  *                           waitq.
3597  *
3598  *     Context: Never called at interrupt context.
3599  */
3600 
3601 static void
3602 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3603 {
3604 	struct uscsi_cmd		com;
3605 	uchar_t				*out_data;
3606 	uchar_t				*rqbuf;
3607 	int				rtn;
3608 	uchar_t				*out_data_rw, *out_data_hd;
3609 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3610 	struct mode_header_grp2		*sense_mhp;
3611 	uchar_t				*sense_page;
3612 	caddr_t				buf;
3613 	int				bd_len;
3614 	int				status;
3615 	struct sd_lun			*un;
3616 
3617 	ASSERT(ssc != NULL);
3618 	un = ssc->ssc_un;
3619 	ASSERT(un != NULL);
3620 	ASSERT(mutex_owned(SD_MUTEX(un)));
3621 
3622 	/*
3623 	 * Initialize the writable media to false, if configuration info.
3624 	 * tells us otherwise then only we will set it.
3625 	 */
3626 	un->un_f_mmc_writable_media = FALSE;
3627 	mutex_exit(SD_MUTEX(un));
3628 
3629 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3630 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3631 
3632 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3633 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3634 
3635 	if (rtn != 0)
3636 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3637 
3638 	mutex_enter(SD_MUTEX(un));
3639 	if (rtn == 0) {
3640 		/*
3641 		 * We have good information, check for writable DVD.
3642 		 */
3643 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3644 			un->un_f_mmc_writable_media = TRUE;
3645 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3646 			kmem_free(rqbuf, SENSE_LENGTH);
3647 			return;
3648 		}
3649 	}
3650 
3651 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3652 	kmem_free(rqbuf, SENSE_LENGTH);
3653 
3654 	/*
3655 	 * Determine if this is a RRD type device.
3656 	 */
3657 	mutex_exit(SD_MUTEX(un));
3658 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3659 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3660 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3661 
3662 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3663 
3664 	mutex_enter(SD_MUTEX(un));
3665 	if (status != 0) {
3666 		/* command failed; just return */
3667 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3668 		return;
3669 	}
3670 
3671 	/* Get to the page data */
3672 	sense_mhp = (struct mode_header_grp2 *)buf;
3673 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3674 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3675 		/*
3676 		 * We did not get back the expected block descriptor length so
3677 		 * we cannot check the mode page.
3678 		 */
3679 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3680 		    "sd_check_for_writable_cd: Mode Sense returned "
3681 		    "invalid block descriptor length\n");
3682 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3683 		return;
3684 	}
3685 
3686 	/*
3687 	 * If the device presents DVD or CD capabilities in the mode
3688 	 * page, we can return here since a RRD device will not have
3689 	 * these capabilities.
3690 	 */
3691 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3692 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3693 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3694 		return;
3695 	}
3696 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3697 
3698 	/*
3699 	 * If un->un_f_mmc_writable_media is still FALSE,
3700 	 * check for RRD type media.  A RRD device is identified
3701 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3702 	 */
3703 	mutex_exit(SD_MUTEX(un));
3704 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3705 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3706 
3707 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3708 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3709 	    RANDOM_WRITABLE, path_flag);
3710 
3711 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3712 	if (rtn != 0) {
3713 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3714 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3715 		mutex_enter(SD_MUTEX(un));
3716 		return;
3717 	}
3718 
3719 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3720 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3721 
3722 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3723 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3724 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3725 
3726 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3727 	mutex_enter(SD_MUTEX(un));
3728 	if (rtn == 0) {
3729 		/*
3730 		 * We have good information, check for random writable
3731 		 * and hardware defect features as current.
3732 		 */
3733 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3734 		    (out_data_rw[10] & 0x1) &&
3735 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3736 		    (out_data_hd[10] & 0x1)) {
3737 			un->un_f_mmc_writable_media = TRUE;
3738 		}
3739 	}
3740 
3741 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3742 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3743 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3744 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3745 }
3746 
3747 /*
3748  *    Function: sd_read_unit_properties
3749  *
3750  * Description: The following implements a property lookup mechanism.
3751  *		Properties for particular disks (keyed on vendor, model
3752  *		and rev numbers) are sought in the sd.conf file via
3753  *		sd_process_sdconf_file(), and if not found there, are
3754  *		looked for in a list hardcoded in this driver via
3755  *		sd_process_sdconf_table() Once located the properties
3756  *		are used to update the driver unit structure.
3757  *
3758  *   Arguments: un - driver soft state (unit) structure
3759  */
3760 
3761 static void
3762 sd_read_unit_properties(struct sd_lun *un)
3763 {
3764 	/*
3765 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3766 	 * the "sd-config-list" property (from the sd.conf file) or if
3767 	 * there was not a match for the inquiry vid/pid. If this event
3768 	 * occurs the static driver configuration table is searched for
3769 	 * a match.
3770 	 */
3771 	ASSERT(un != NULL);
3772 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3773 		sd_process_sdconf_table(un);
3774 	}
3775 
3776 	/* check for LSI device */
3777 	sd_is_lsi(un);
3778 
3779 
3780 }
3781 
3782 
3783 /*
3784  *    Function: sd_process_sdconf_file
3785  *
3786  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3787  *		driver's config file (ie, sd.conf) and update the driver
3788  *		soft state structure accordingly.
3789  *
3790  *   Arguments: un - driver soft state (unit) structure
3791  *
3792  * Return Code: SD_SUCCESS - The properties were successfully set according
3793  *			     to the driver configuration file.
3794  *		SD_FAILURE - The driver config list was not obtained or
3795  *			     there was no vid/pid match. This indicates that
3796  *			     the static config table should be used.
3797  *
3798  * The config file has a property, "sd-config-list". Currently we support
3799  * two kinds of formats. For both formats, the value of this property
3800  * is a list of duplets:
3801  *
3802  *  sd-config-list=
3803  *	<duplet>,
3804  *	[,<duplet>]*;
3805  *
3806  * For the improved format, where
3807  *
3808  *     <duplet>:= "<vid+pid>","<tunable-list>"
3809  *
3810  * and
3811  *
3812  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3813  *     <tunable> =        <name> : <value>
3814  *
3815  * The <vid+pid> is the string that is returned by the target device on a
3816  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3817  * to apply to all target devices with the specified <vid+pid>.
3818  *
3819  * Each <tunable> is a "<name> : <value>" pair.
3820  *
3821  * For the old format, the structure of each duplet is as follows:
3822  *
3823  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3824  *
3825  * The first entry of the duplet is the device ID string (the concatenated
3826  * vid & pid; not to be confused with a device_id).  This is defined in
3827  * the same way as in the sd_disk_table.
3828  *
3829  * The second part of the duplet is a string that identifies a
3830  * data-property-name-list. The data-property-name-list is defined as
3831  * follows:
3832  *
3833  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3834  *
3835  * The syntax of <data-property-name> depends on the <version> field.
3836  *
3837  * If version = SD_CONF_VERSION_1 we have the following syntax:
3838  *
3839  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3840  *
3841  * where the prop0 value will be used to set prop0 if bit0 set in the
3842  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3843  *
3844  */
3845 
3846 static int
3847 sd_process_sdconf_file(struct sd_lun *un)
3848 {
3849 	char	**config_list = NULL;
3850 	uint_t	nelements;
3851 	char	*vidptr;
3852 	int	vidlen;
3853 	char	*dnlist_ptr;
3854 	char	*dataname_ptr;
3855 	char	*dataname_lasts;
3856 	int	*data_list = NULL;
3857 	uint_t	data_list_len;
3858 	int	rval = SD_FAILURE;
3859 	int	i;
3860 
3861 	ASSERT(un != NULL);
3862 
3863 	/* Obtain the configuration list associated with the .conf file */
3864 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3865 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3866 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3867 		return (SD_FAILURE);
3868 	}
3869 
3870 	/*
3871 	 * Compare vids in each duplet to the inquiry vid - if a match is
3872 	 * made, get the data value and update the soft state structure
3873 	 * accordingly.
3874 	 *
3875 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3876 	 * otherwise.
3877 	 */
3878 	if (nelements & 1) {
3879 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3880 		    "sd-config-list should show as pairs of strings.\n");
3881 		if (config_list)
3882 			ddi_prop_free(config_list);
3883 		return (SD_FAILURE);
3884 	}
3885 
3886 	for (i = 0; i < nelements; i += 2) {
3887 		/*
3888 		 * Note: The assumption here is that each vid entry is on
3889 		 * a unique line from its associated duplet.
3890 		 */
3891 		vidptr = config_list[i];
3892 		vidlen = (int)strlen(vidptr);
3893 		if (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS) {
3894 			continue;
3895 		}
3896 
3897 		/*
3898 		 * dnlist contains 1 or more blank separated
3899 		 * data-property-name entries
3900 		 */
3901 		dnlist_ptr = config_list[i + 1];
3902 
3903 		if (strchr(dnlist_ptr, ':') != NULL) {
3904 			/*
3905 			 * Decode the improved format sd-config-list.
3906 			 */
3907 			sd_nvpair_str_decode(un, dnlist_ptr);
3908 		} else {
3909 			/*
3910 			 * The old format sd-config-list, loop through all
3911 			 * data-property-name entries in the
3912 			 * data-property-name-list
3913 			 * setting the properties for each.
3914 			 */
3915 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3916 			    &dataname_lasts); dataname_ptr != NULL;
3917 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3918 			    &dataname_lasts)) {
3919 				int version;
3920 
3921 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3922 				    "sd_process_sdconf_file: disk:%s, "
3923 				    "data:%s\n", vidptr, dataname_ptr);
3924 
3925 				/* Get the data list */
3926 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3927 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3928 				    &data_list_len) != DDI_PROP_SUCCESS) {
3929 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3930 					    "sd_process_sdconf_file: data "
3931 					    "property (%s) has no value\n",
3932 					    dataname_ptr);
3933 					continue;
3934 				}
3935 
3936 				version = data_list[0];
3937 
3938 				if (version == SD_CONF_VERSION_1) {
3939 					sd_tunables values;
3940 
3941 					/* Set the properties */
3942 					if (sd_chk_vers1_data(un, data_list[1],
3943 					    &data_list[2], data_list_len,
3944 					    dataname_ptr) == SD_SUCCESS) {
3945 						sd_get_tunables_from_conf(un,
3946 						    data_list[1], &data_list[2],
3947 						    &values);
3948 						sd_set_vers1_properties(un,
3949 						    data_list[1], &values);
3950 						rval = SD_SUCCESS;
3951 					} else {
3952 						rval = SD_FAILURE;
3953 					}
3954 				} else {
3955 					scsi_log(SD_DEVINFO(un), sd_label,
3956 					    CE_WARN, "data property %s version "
3957 					    "0x%x is invalid.",
3958 					    dataname_ptr, version);
3959 					rval = SD_FAILURE;
3960 				}
3961 				if (data_list)
3962 					ddi_prop_free(data_list);
3963 			}
3964 		}
3965 	}
3966 
3967 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3968 	if (config_list) {
3969 		ddi_prop_free(config_list);
3970 	}
3971 
3972 	return (rval);
3973 }
3974 
3975 /*
3976  *    Function: sd_nvpair_str_decode()
3977  *
3978  * Description: Parse the improved format sd-config-list to get
3979  *    each entry of tunable, which includes a name-value pair.
3980  *    Then call sd_set_properties() to set the property.
3981  *
3982  *   Arguments: un - driver soft state (unit) structure
3983  *    nvpair_str - the tunable list
3984  */
3985 static void
3986 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3987 {
3988 	char	*nv, *name, *value, *token;
3989 	char	*nv_lasts, *v_lasts, *x_lasts;
3990 
3991 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3992 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3993 		token = sd_strtok_r(nv, ":", &v_lasts);
3994 		name  = sd_strtok_r(token, " \t", &x_lasts);
3995 		token = sd_strtok_r(NULL, ":", &v_lasts);
3996 		value = sd_strtok_r(token, " \t", &x_lasts);
3997 		if (name == NULL || value == NULL) {
3998 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3999 			    "sd_nvpair_str_decode: "
4000 			    "name or value is not valid!\n");
4001 		} else {
4002 			sd_set_properties(un, name, value);
4003 		}
4004 	}
4005 }
4006 
4007 /*
4008  *    Function: sd_strtok_r()
4009  *
4010  * Description: This function uses strpbrk and strspn to break
4011  *    string into tokens on sequentially subsequent calls. Return
4012  *    NULL when no non-separator characters remain. The first
4013  *    argument is NULL for subsequent calls.
4014  */
4015 static char *
4016 sd_strtok_r(char *string, const char *sepset, char **lasts)
4017 {
4018 	char	*q, *r;
4019 
4020 	/* First or subsequent call */
4021 	if (string == NULL)
4022 		string = *lasts;
4023 
4024 	if (string == NULL)
4025 		return (NULL);
4026 
4027 	/* Skip leading separators */
4028 	q = string + strspn(string, sepset);
4029 
4030 	if (*q == '\0')
4031 		return (NULL);
4032 
4033 	if ((r = strpbrk(q, sepset)) == NULL)
4034 		*lasts = NULL;
4035 	else {
4036 		*r = '\0';
4037 		*lasts = r + 1;
4038 	}
4039 	return (q);
4040 }
4041 
4042 /*
4043  *    Function: sd_set_properties()
4044  *
4045  * Description: Set device properties based on the improved
4046  *    format sd-config-list.
4047  *
4048  *   Arguments: un - driver soft state (unit) structure
4049  *    name  - supported tunable name
4050  *    value - tunable value
4051  */
4052 static void
4053 sd_set_properties(struct sd_lun *un, char *name, char *value)
4054 {
4055 	char	*endptr = NULL;
4056 	long	val = 0;
4057 
4058 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4059 		if (strcasecmp(value, "true") == 0) {
4060 			un->un_f_suppress_cache_flush = TRUE;
4061 		} else if (strcasecmp(value, "false") == 0) {
4062 			un->un_f_suppress_cache_flush = FALSE;
4063 		} else {
4064 			goto value_invalid;
4065 		}
4066 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4067 		    "suppress_cache_flush flag set to %d\n",
4068 		    un->un_f_suppress_cache_flush);
4069 		return;
4070 	}
4071 
4072 	if (strcasecmp(name, "controller-type") == 0) {
4073 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4074 			un->un_ctype = val;
4075 		} else {
4076 			goto value_invalid;
4077 		}
4078 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4079 		    "ctype set to %d\n", un->un_ctype);
4080 		return;
4081 	}
4082 
4083 	if (strcasecmp(name, "delay-busy") == 0) {
4084 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4085 			un->un_busy_timeout = drv_usectohz(val / 1000);
4086 		} else {
4087 			goto value_invalid;
4088 		}
4089 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4090 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4091 		return;
4092 	}
4093 
4094 	if (strcasecmp(name, "disksort") == 0) {
4095 		if (strcasecmp(value, "true") == 0) {
4096 			un->un_f_disksort_disabled = FALSE;
4097 		} else if (strcasecmp(value, "false") == 0) {
4098 			un->un_f_disksort_disabled = TRUE;
4099 		} else {
4100 			goto value_invalid;
4101 		}
4102 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4103 		    "disksort disabled flag set to %d\n",
4104 		    un->un_f_disksort_disabled);
4105 		return;
4106 	}
4107 
4108 	if (strcasecmp(name, "power-condition") == 0) {
4109 		if (strcasecmp(value, "true") == 0) {
4110 			un->un_f_power_condition_disabled = FALSE;
4111 		} else if (strcasecmp(value, "false") == 0) {
4112 			un->un_f_power_condition_disabled = TRUE;
4113 		} else {
4114 			goto value_invalid;
4115 		}
4116 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4117 		    "power condition disabled flag set to %d\n",
4118 		    un->un_f_power_condition_disabled);
4119 		return;
4120 	}
4121 
4122 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4123 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4124 			un->un_reserve_release_time = val;
4125 		} else {
4126 			goto value_invalid;
4127 		}
4128 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4129 		    "reservation release timeout set to %d\n",
4130 		    un->un_reserve_release_time);
4131 		return;
4132 	}
4133 
4134 	if (strcasecmp(name, "reset-lun") == 0) {
4135 		if (strcasecmp(value, "true") == 0) {
4136 			un->un_f_lun_reset_enabled = TRUE;
4137 		} else if (strcasecmp(value, "false") == 0) {
4138 			un->un_f_lun_reset_enabled = FALSE;
4139 		} else {
4140 			goto value_invalid;
4141 		}
4142 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4143 		    "lun reset enabled flag set to %d\n",
4144 		    un->un_f_lun_reset_enabled);
4145 		return;
4146 	}
4147 
4148 	if (strcasecmp(name, "retries-busy") == 0) {
4149 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4150 			un->un_busy_retry_count = val;
4151 		} else {
4152 			goto value_invalid;
4153 		}
4154 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4155 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4156 		return;
4157 	}
4158 
4159 	if (strcasecmp(name, "retries-timeout") == 0) {
4160 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4161 			un->un_retry_count = val;
4162 		} else {
4163 			goto value_invalid;
4164 		}
4165 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4166 		    "timeout retry count set to %d\n", un->un_retry_count);
4167 		return;
4168 	}
4169 
4170 	if (strcasecmp(name, "retries-notready") == 0) {
4171 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4172 			un->un_notready_retry_count = val;
4173 		} else {
4174 			goto value_invalid;
4175 		}
4176 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4177 		    "notready retry count set to %d\n",
4178 		    un->un_notready_retry_count);
4179 		return;
4180 	}
4181 
4182 	if (strcasecmp(name, "retries-reset") == 0) {
4183 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4184 			un->un_reset_retry_count = val;
4185 		} else {
4186 			goto value_invalid;
4187 		}
4188 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4189 		    "reset retry count set to %d\n",
4190 		    un->un_reset_retry_count);
4191 		return;
4192 	}
4193 
4194 	if (strcasecmp(name, "throttle-max") == 0) {
4195 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4196 			un->un_saved_throttle = un->un_throttle = val;
4197 		} else {
4198 			goto value_invalid;
4199 		}
4200 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4201 		    "throttle set to %d\n", un->un_throttle);
4202 	}
4203 
4204 	if (strcasecmp(name, "throttle-min") == 0) {
4205 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4206 			un->un_min_throttle = val;
4207 		} else {
4208 			goto value_invalid;
4209 		}
4210 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4211 		    "min throttle set to %d\n", un->un_min_throttle);
4212 	}
4213 
4214 	if (strcasecmp(name, "rmw-type") == 0) {
4215 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4216 			un->un_f_rmw_type = val;
4217 		} else {
4218 			goto value_invalid;
4219 		}
4220 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4221 		    "RMW type set to %d\n", un->un_f_rmw_type);
4222 	}
4223 
4224 	if (strcasecmp(name, "physical-block-size") == 0) {
4225 		if (ddi_strtol(value, &endptr, 0, &val) == 0 &&
4226 		    ISP2(val) && val >= un->un_tgt_blocksize &&
4227 		    val >= un->un_sys_blocksize) {
4228 			un->un_phy_blocksize = val;
4229 		} else {
4230 			goto value_invalid;
4231 		}
4232 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4233 		    "physical block size set to %d\n", un->un_phy_blocksize);
4234 	}
4235 
4236 	if (strcasecmp(name, "retries-victim") == 0) {
4237 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4238 			un->un_victim_retry_count = val;
4239 		} else {
4240 			goto value_invalid;
4241 		}
4242 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4243 		    "victim retry count set to %d\n",
4244 		    un->un_victim_retry_count);
4245 		return;
4246 	}
4247 
4248 	/*
4249 	 * Validate the throttle values.
4250 	 * If any of the numbers are invalid, set everything to defaults.
4251 	 */
4252 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4253 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4254 	    (un->un_min_throttle > un->un_throttle)) {
4255 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4256 		un->un_min_throttle = sd_min_throttle;
4257 	}
4258 
4259 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4260 		if (strcasecmp(value, "true") == 0) {
4261 			un->un_f_mmc_gesn_polling = TRUE;
4262 		} else if (strcasecmp(value, "false") == 0) {
4263 			un->un_f_mmc_gesn_polling = FALSE;
4264 		} else {
4265 			goto value_invalid;
4266 		}
4267 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4268 		    "mmc-gesn-polling set to %d\n",
4269 		    un->un_f_mmc_gesn_polling);
4270 	}
4271 
4272 	return;
4273 
4274 value_invalid:
4275 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4276 	    "value of prop %s is invalid\n", name);
4277 }
4278 
4279 /*
4280  *    Function: sd_get_tunables_from_conf()
4281  *
4282  *
4283  *    This function reads the data list from the sd.conf file and pulls
4284  *    the values that can have numeric values as arguments and places
4285  *    the values in the appropriate sd_tunables member.
4286  *    Since the order of the data list members varies across platforms
4287  *    This function reads them from the data list in a platform specific
4288  *    order and places them into the correct sd_tunable member that is
4289  *    consistent across all platforms.
4290  */
4291 static void
4292 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4293     sd_tunables *values)
4294 {
4295 	int i;
4296 	int mask;
4297 
4298 	bzero(values, sizeof (sd_tunables));
4299 
4300 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4301 
4302 		mask = 1 << i;
4303 		if (mask > flags) {
4304 			break;
4305 		}
4306 
4307 		switch (mask & flags) {
4308 		case 0:	/* This mask bit not set in flags */
4309 			continue;
4310 		case SD_CONF_BSET_THROTTLE:
4311 			values->sdt_throttle = data_list[i];
4312 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4313 			    "sd_get_tunables_from_conf: throttle = %d\n",
4314 			    values->sdt_throttle);
4315 			break;
4316 		case SD_CONF_BSET_CTYPE:
4317 			values->sdt_ctype = data_list[i];
4318 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4319 			    "sd_get_tunables_from_conf: ctype = %d\n",
4320 			    values->sdt_ctype);
4321 			break;
4322 		case SD_CONF_BSET_NRR_COUNT:
4323 			values->sdt_not_rdy_retries = data_list[i];
4324 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4325 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4326 			    values->sdt_not_rdy_retries);
4327 			break;
4328 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4329 			values->sdt_busy_retries = data_list[i];
4330 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4331 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4332 			    values->sdt_busy_retries);
4333 			break;
4334 		case SD_CONF_BSET_RST_RETRIES:
4335 			values->sdt_reset_retries = data_list[i];
4336 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4337 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4338 			    values->sdt_reset_retries);
4339 			break;
4340 		case SD_CONF_BSET_RSV_REL_TIME:
4341 			values->sdt_reserv_rel_time = data_list[i];
4342 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4343 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4344 			    values->sdt_reserv_rel_time);
4345 			break;
4346 		case SD_CONF_BSET_MIN_THROTTLE:
4347 			values->sdt_min_throttle = data_list[i];
4348 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4349 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4350 			    values->sdt_min_throttle);
4351 			break;
4352 		case SD_CONF_BSET_DISKSORT_DISABLED:
4353 			values->sdt_disk_sort_dis = data_list[i];
4354 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4355 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4356 			    values->sdt_disk_sort_dis);
4357 			break;
4358 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4359 			values->sdt_lun_reset_enable = data_list[i];
4360 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4361 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4362 			    "\n", values->sdt_lun_reset_enable);
4363 			break;
4364 		case SD_CONF_BSET_CACHE_IS_NV:
4365 			values->sdt_suppress_cache_flush = data_list[i];
4366 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4367 			    "sd_get_tunables_from_conf: \
4368 			    suppress_cache_flush = %d"
4369 			    "\n", values->sdt_suppress_cache_flush);
4370 			break;
4371 		case SD_CONF_BSET_PC_DISABLED:
4372 			values->sdt_disk_sort_dis = data_list[i];
4373 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4374 			    "sd_get_tunables_from_conf: power_condition_dis = "
4375 			    "%d\n", values->sdt_power_condition_dis);
4376 			break;
4377 		}
4378 	}
4379 }
4380 
4381 /*
4382  *    Function: sd_process_sdconf_table
4383  *
4384  * Description: Search the static configuration table for a match on the
4385  *		inquiry vid/pid and update the driver soft state structure
4386  *		according to the table property values for the device.
4387  *
4388  *		The form of a configuration table entry is:
4389  *		  <vid+pid>,<flags>,<property-data>
4390  *		  "SEAGATE ST42400N",1,0x40000,
4391  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4392  *
4393  *   Arguments: un - driver soft state (unit) structure
4394  */
4395 
4396 static void
4397 sd_process_sdconf_table(struct sd_lun *un)
4398 {
4399 	char	*id = NULL;
4400 	int	table_index;
4401 	int	idlen;
4402 
4403 	ASSERT(un != NULL);
4404 	for (table_index = 0; table_index < sd_disk_table_size;
4405 	    table_index++) {
4406 		id = sd_disk_table[table_index].device_id;
4407 		idlen = strlen(id);
4408 
4409 		/*
4410 		 * The static configuration table currently does not
4411 		 * implement version 10 properties. Additionally,
4412 		 * multiple data-property-name entries are not
4413 		 * implemented in the static configuration table.
4414 		 */
4415 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4416 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4417 			    "sd_process_sdconf_table: disk %s\n", id);
4418 			sd_set_vers1_properties(un,
4419 			    sd_disk_table[table_index].flags,
4420 			    sd_disk_table[table_index].properties);
4421 			break;
4422 		}
4423 	}
4424 }
4425 
4426 
4427 /*
4428  *    Function: sd_sdconf_id_match
4429  *
4430  * Description: This local function implements a case sensitive vid/pid
4431  *		comparison as well as the boundary cases of wild card and
4432  *		multiple blanks.
4433  *
4434  *		Note: An implicit assumption made here is that the scsi
4435  *		inquiry structure will always keep the vid, pid and
4436  *		revision strings in consecutive sequence, so they can be
4437  *		read as a single string. If this assumption is not the
4438  *		case, a separate string, to be used for the check, needs
4439  *		to be built with these strings concatenated.
4440  *
4441  *   Arguments: un - driver soft state (unit) structure
4442  *		id - table or config file vid/pid
4443  *		idlen  - length of the vid/pid (bytes)
4444  *
4445  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4446  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4447  */
4448 
4449 static int
4450 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4451 {
4452 	struct scsi_inquiry	*sd_inq;
4453 	int 			rval = SD_SUCCESS;
4454 
4455 	ASSERT(un != NULL);
4456 	sd_inq = un->un_sd->sd_inq;
4457 	ASSERT(id != NULL);
4458 
4459 	/*
4460 	 * We use the inq_vid as a pointer to a buffer containing the
4461 	 * vid and pid and use the entire vid/pid length of the table
4462 	 * entry for the comparison. This works because the inq_pid
4463 	 * data member follows inq_vid in the scsi_inquiry structure.
4464 	 */
4465 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4466 		/*
4467 		 * The user id string is compared to the inquiry vid/pid
4468 		 * using a case insensitive comparison and ignoring
4469 		 * multiple spaces.
4470 		 */
4471 		rval = sd_blank_cmp(un, id, idlen);
4472 		if (rval != SD_SUCCESS) {
4473 			/*
4474 			 * User id strings that start and end with a "*"
4475 			 * are a special case. These do not have a
4476 			 * specific vendor, and the product string can
4477 			 * appear anywhere in the 16 byte PID portion of
4478 			 * the inquiry data. This is a simple strstr()
4479 			 * type search for the user id in the inquiry data.
4480 			 */
4481 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4482 				char	*pidptr = &id[1];
4483 				int	i;
4484 				int	j;
4485 				int	pidstrlen = idlen - 2;
4486 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4487 				    pidstrlen;
4488 
4489 				if (j < 0) {
4490 					return (SD_FAILURE);
4491 				}
4492 				for (i = 0; i < j; i++) {
4493 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4494 					    pidptr, pidstrlen) == 0) {
4495 						rval = SD_SUCCESS;
4496 						break;
4497 					}
4498 				}
4499 			}
4500 		}
4501 	}
4502 	return (rval);
4503 }
4504 
4505 
4506 /*
4507  *    Function: sd_blank_cmp
4508  *
4509  * Description: If the id string starts and ends with a space, treat
4510  *		multiple consecutive spaces as equivalent to a single
4511  *		space. For example, this causes a sd_disk_table entry
4512  *		of " NEC CDROM " to match a device's id string of
4513  *		"NEC       CDROM".
4514  *
4515  *		Note: The success exit condition for this routine is if
4516  *		the pointer to the table entry is '\0' and the cnt of
4517  *		the inquiry length is zero. This will happen if the inquiry
4518  *		string returned by the device is padded with spaces to be
4519  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4520  *		SCSI spec states that the inquiry string is to be padded with
4521  *		spaces.
4522  *
4523  *   Arguments: un - driver soft state (unit) structure
4524  *		id - table or config file vid/pid
4525  *		idlen  - length of the vid/pid (bytes)
4526  *
4527  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4528  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4529  */
4530 
4531 static int
4532 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4533 {
4534 	char		*p1;
4535 	char		*p2;
4536 	int		cnt;
4537 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4538 	    sizeof (SD_INQUIRY(un)->inq_pid);
4539 
4540 	ASSERT(un != NULL);
4541 	p2 = un->un_sd->sd_inq->inq_vid;
4542 	ASSERT(id != NULL);
4543 	p1 = id;
4544 
4545 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4546 		/*
4547 		 * Note: string p1 is terminated by a NUL but string p2
4548 		 * isn't.  The end of p2 is determined by cnt.
4549 		 */
4550 		for (;;) {
4551 			/* skip over any extra blanks in both strings */
4552 			while ((*p1 != '\0') && (*p1 == ' ')) {
4553 				p1++;
4554 			}
4555 			while ((cnt != 0) && (*p2 == ' ')) {
4556 				p2++;
4557 				cnt--;
4558 			}
4559 
4560 			/* compare the two strings */
4561 			if ((cnt == 0) ||
4562 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4563 				break;
4564 			}
4565 			while ((cnt > 0) &&
4566 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4567 				p1++;
4568 				p2++;
4569 				cnt--;
4570 			}
4571 		}
4572 	}
4573 
4574 	/* return SD_SUCCESS if both strings match */
4575 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4576 }
4577 
4578 
4579 /*
4580  *    Function: sd_chk_vers1_data
4581  *
4582  * Description: Verify the version 1 device properties provided by the
4583  *		user via the configuration file
4584  *
4585  *   Arguments: un	     - driver soft state (unit) structure
4586  *		flags	     - integer mask indicating properties to be set
4587  *		prop_list    - integer list of property values
4588  *		list_len     - number of the elements
4589  *
4590  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4591  *		SD_FAILURE - Indicates the user provided data is invalid
4592  */
4593 
4594 static int
4595 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4596     int list_len, char *dataname_ptr)
4597 {
4598 	int i;
4599 	int mask = 1;
4600 	int index = 0;
4601 
4602 	ASSERT(un != NULL);
4603 
4604 	/* Check for a NULL property name and list */
4605 	if (dataname_ptr == NULL) {
4606 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4607 		    "sd_chk_vers1_data: NULL data property name.");
4608 		return (SD_FAILURE);
4609 	}
4610 	if (prop_list == NULL) {
4611 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4612 		    "sd_chk_vers1_data: %s NULL data property list.",
4613 		    dataname_ptr);
4614 		return (SD_FAILURE);
4615 	}
4616 
4617 	/* Display a warning if undefined bits are set in the flags */
4618 	if (flags & ~SD_CONF_BIT_MASK) {
4619 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4620 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4621 		    "Properties not set.",
4622 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4623 		return (SD_FAILURE);
4624 	}
4625 
4626 	/*
4627 	 * Verify the length of the list by identifying the highest bit set
4628 	 * in the flags and validating that the property list has a length
4629 	 * up to the index of this bit.
4630 	 */
4631 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4632 		if (flags & mask) {
4633 			index++;
4634 		}
4635 		mask = 1 << i;
4636 	}
4637 	if (list_len < (index + 2)) {
4638 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4639 		    "sd_chk_vers1_data: "
4640 		    "Data property list %s size is incorrect. "
4641 		    "Properties not set.", dataname_ptr);
4642 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4643 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4644 		return (SD_FAILURE);
4645 	}
4646 	return (SD_SUCCESS);
4647 }
4648 
4649 
4650 /*
4651  *    Function: sd_set_vers1_properties
4652  *
4653  * Description: Set version 1 device properties based on a property list
4654  *		retrieved from the driver configuration file or static
4655  *		configuration table. Version 1 properties have the format:
4656  *
4657  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4658  *
4659  *		where the prop0 value will be used to set prop0 if bit0
4660  *		is set in the flags
4661  *
4662  *   Arguments: un	     - driver soft state (unit) structure
4663  *		flags	     - integer mask indicating properties to be set
4664  *		prop_list    - integer list of property values
4665  */
4666 
4667 static void
4668 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4669 {
4670 	ASSERT(un != NULL);
4671 
4672 	/*
4673 	 * Set the flag to indicate cache is to be disabled. An attempt
4674 	 * to disable the cache via sd_cache_control() will be made
4675 	 * later during attach once the basic initialization is complete.
4676 	 */
4677 	if (flags & SD_CONF_BSET_NOCACHE) {
4678 		un->un_f_opt_disable_cache = TRUE;
4679 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4680 		    "sd_set_vers1_properties: caching disabled flag set\n");
4681 	}
4682 
4683 	/* CD-specific configuration parameters */
4684 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4685 		un->un_f_cfg_playmsf_bcd = TRUE;
4686 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4687 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4688 	}
4689 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4690 		un->un_f_cfg_readsub_bcd = TRUE;
4691 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4692 		    "sd_set_vers1_properties: readsub_bcd set\n");
4693 	}
4694 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4695 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4696 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4697 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4698 	}
4699 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4700 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4701 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4702 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4703 	}
4704 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4705 		un->un_f_cfg_no_read_header = TRUE;
4706 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4707 		    "sd_set_vers1_properties: no_read_header set\n");
4708 	}
4709 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4710 		un->un_f_cfg_read_cd_xd4 = TRUE;
4711 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4712 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4713 	}
4714 
4715 	/* Support for devices which do not have valid/unique serial numbers */
4716 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4717 		un->un_f_opt_fab_devid = TRUE;
4718 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4719 		    "sd_set_vers1_properties: fab_devid bit set\n");
4720 	}
4721 
4722 	/* Support for user throttle configuration */
4723 	if (flags & SD_CONF_BSET_THROTTLE) {
4724 		ASSERT(prop_list != NULL);
4725 		un->un_saved_throttle = un->un_throttle =
4726 		    prop_list->sdt_throttle;
4727 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4728 		    "sd_set_vers1_properties: throttle set to %d\n",
4729 		    prop_list->sdt_throttle);
4730 	}
4731 
4732 	/* Set the per disk retry count according to the conf file or table. */
4733 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4734 		ASSERT(prop_list != NULL);
4735 		if (prop_list->sdt_not_rdy_retries) {
4736 			un->un_notready_retry_count =
4737 			    prop_list->sdt_not_rdy_retries;
4738 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4739 			    "sd_set_vers1_properties: not ready retry count"
4740 			    " set to %d\n", un->un_notready_retry_count);
4741 		}
4742 	}
4743 
4744 	/* The controller type is reported for generic disk driver ioctls */
4745 	if (flags & SD_CONF_BSET_CTYPE) {
4746 		ASSERT(prop_list != NULL);
4747 		switch (prop_list->sdt_ctype) {
4748 		case CTYPE_CDROM:
4749 			un->un_ctype = prop_list->sdt_ctype;
4750 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4751 			    "sd_set_vers1_properties: ctype set to "
4752 			    "CTYPE_CDROM\n");
4753 			break;
4754 		case CTYPE_CCS:
4755 			un->un_ctype = prop_list->sdt_ctype;
4756 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4757 			    "sd_set_vers1_properties: ctype set to "
4758 			    "CTYPE_CCS\n");
4759 			break;
4760 		case CTYPE_ROD:		/* RW optical */
4761 			un->un_ctype = prop_list->sdt_ctype;
4762 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4763 			    "sd_set_vers1_properties: ctype set to "
4764 			    "CTYPE_ROD\n");
4765 			break;
4766 		default:
4767 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4768 			    "sd_set_vers1_properties: Could not set "
4769 			    "invalid ctype value (%d)",
4770 			    prop_list->sdt_ctype);
4771 		}
4772 	}
4773 
4774 	/* Purple failover timeout */
4775 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4776 		ASSERT(prop_list != NULL);
4777 		un->un_busy_retry_count =
4778 		    prop_list->sdt_busy_retries;
4779 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4780 		    "sd_set_vers1_properties: "
4781 		    "busy retry count set to %d\n",
4782 		    un->un_busy_retry_count);
4783 	}
4784 
4785 	/* Purple reset retry count */
4786 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4787 		ASSERT(prop_list != NULL);
4788 		un->un_reset_retry_count =
4789 		    prop_list->sdt_reset_retries;
4790 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4791 		    "sd_set_vers1_properties: "
4792 		    "reset retry count set to %d\n",
4793 		    un->un_reset_retry_count);
4794 	}
4795 
4796 	/* Purple reservation release timeout */
4797 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4798 		ASSERT(prop_list != NULL);
4799 		un->un_reserve_release_time =
4800 		    prop_list->sdt_reserv_rel_time;
4801 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4802 		    "sd_set_vers1_properties: "
4803 		    "reservation release timeout set to %d\n",
4804 		    un->un_reserve_release_time);
4805 	}
4806 
4807 	/*
4808 	 * Driver flag telling the driver to verify that no commands are pending
4809 	 * for a device before issuing a Test Unit Ready. This is a workaround
4810 	 * for a firmware bug in some Seagate eliteI drives.
4811 	 */
4812 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4813 		un->un_f_cfg_tur_check = TRUE;
4814 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4815 		    "sd_set_vers1_properties: tur queue check set\n");
4816 	}
4817 
4818 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4819 		un->un_min_throttle = prop_list->sdt_min_throttle;
4820 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4821 		    "sd_set_vers1_properties: min throttle set to %d\n",
4822 		    un->un_min_throttle);
4823 	}
4824 
4825 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4826 		un->un_f_disksort_disabled =
4827 		    (prop_list->sdt_disk_sort_dis != 0) ?
4828 		    TRUE : FALSE;
4829 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4830 		    "sd_set_vers1_properties: disksort disabled "
4831 		    "flag set to %d\n",
4832 		    prop_list->sdt_disk_sort_dis);
4833 	}
4834 
4835 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4836 		un->un_f_lun_reset_enabled =
4837 		    (prop_list->sdt_lun_reset_enable != 0) ?
4838 		    TRUE : FALSE;
4839 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4840 		    "sd_set_vers1_properties: lun reset enabled "
4841 		    "flag set to %d\n",
4842 		    prop_list->sdt_lun_reset_enable);
4843 	}
4844 
4845 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4846 		un->un_f_suppress_cache_flush =
4847 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4848 		    TRUE : FALSE;
4849 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4850 		    "sd_set_vers1_properties: suppress_cache_flush "
4851 		    "flag set to %d\n",
4852 		    prop_list->sdt_suppress_cache_flush);
4853 	}
4854 
4855 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4856 		un->un_f_power_condition_disabled =
4857 		    (prop_list->sdt_power_condition_dis != 0) ?
4858 		    TRUE : FALSE;
4859 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4860 		    "sd_set_vers1_properties: power_condition_disabled "
4861 		    "flag set to %d\n",
4862 		    prop_list->sdt_power_condition_dis);
4863 	}
4864 
4865 	/*
4866 	 * Validate the throttle values.
4867 	 * If any of the numbers are invalid, set everything to defaults.
4868 	 */
4869 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4870 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4871 	    (un->un_min_throttle > un->un_throttle)) {
4872 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4873 		un->un_min_throttle = sd_min_throttle;
4874 	}
4875 }
4876 
4877 /*
4878  *   Function: sd_is_lsi()
4879  *
4880  *   Description: Check for lsi devices, step through the static device
4881  *	table to match vid/pid.
4882  *
4883  *   Args: un - ptr to sd_lun
4884  *
4885  *   Notes:  When creating new LSI property, need to add the new LSI property
4886  *		to this function.
4887  */
4888 static void
4889 sd_is_lsi(struct sd_lun *un)
4890 {
4891 	char	*id = NULL;
4892 	int	table_index;
4893 	int	idlen;
4894 	void	*prop;
4895 
4896 	ASSERT(un != NULL);
4897 	for (table_index = 0; table_index < sd_disk_table_size;
4898 	    table_index++) {
4899 		id = sd_disk_table[table_index].device_id;
4900 		idlen = strlen(id);
4901 		if (idlen == 0) {
4902 			continue;
4903 		}
4904 
4905 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4906 			prop = sd_disk_table[table_index].properties;
4907 			if (prop == &lsi_properties ||
4908 			    prop == &lsi_oem_properties ||
4909 			    prop == &lsi_properties_scsi ||
4910 			    prop == &symbios_properties) {
4911 				un->un_f_cfg_is_lsi = TRUE;
4912 			}
4913 			break;
4914 		}
4915 	}
4916 }
4917 
4918 /*
4919  *    Function: sd_get_physical_geometry
4920  *
4921  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4922  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4923  *		target, and use this information to initialize the physical
4924  *		geometry cache specified by pgeom_p.
4925  *
4926  *		MODE SENSE is an optional command, so failure in this case
4927  *		does not necessarily denote an error. We want to use the
4928  *		MODE SENSE commands to derive the physical geometry of the
4929  *		device, but if either command fails, the logical geometry is
4930  *		used as the fallback for disk label geometry in cmlb.
4931  *
4932  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4933  *		have already been initialized for the current target and
4934  *		that the current values be passed as args so that we don't
4935  *		end up ever trying to use -1 as a valid value. This could
4936  *		happen if either value is reset while we're not holding
4937  *		the mutex.
4938  *
4939  *   Arguments: un - driver soft state (unit) structure
4940  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4941  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4942  *			to use the USCSI "direct" chain and bypass the normal
4943  *			command waitq.
4944  *
4945  *     Context: Kernel thread only (can sleep).
4946  */
4947 
4948 static int
4949 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4950     diskaddr_t capacity, int lbasize, int path_flag)
4951 {
4952 	struct	mode_format	*page3p;
4953 	struct	mode_geometry	*page4p;
4954 	struct	mode_header	*headerp;
4955 	int	sector_size;
4956 	int	nsect;
4957 	int	nhead;
4958 	int	ncyl;
4959 	int	intrlv;
4960 	int	spc;
4961 	diskaddr_t	modesense_capacity;
4962 	int	rpm;
4963 	int	bd_len;
4964 	int	mode_header_length;
4965 	uchar_t	*p3bufp;
4966 	uchar_t	*p4bufp;
4967 	int	cdbsize;
4968 	int 	ret = EIO;
4969 	sd_ssc_t *ssc;
4970 	int	status;
4971 
4972 	ASSERT(un != NULL);
4973 
4974 	if (lbasize == 0) {
4975 		if (ISCD(un)) {
4976 			lbasize = 2048;
4977 		} else {
4978 			lbasize = un->un_sys_blocksize;
4979 		}
4980 	}
4981 	pgeom_p->g_secsize = (unsigned short)lbasize;
4982 
4983 	/*
4984 	 * If the unit is a cd/dvd drive MODE SENSE page three
4985 	 * and MODE SENSE page four are reserved (see SBC spec
4986 	 * and MMC spec). To prevent soft errors just return
4987 	 * using the default LBA size.
4988 	 *
4989 	 * Since SATA MODE SENSE function (sata_txlt_mode_sense()) does not
4990 	 * implement support for mode pages 3 and 4 return here to prevent
4991 	 * illegal requests on SATA drives.
4992 	 *
4993 	 * These pages are also reserved in SBC-2 and later.  We assume SBC-2
4994 	 * or later for a direct-attached block device if the SCSI version is
4995 	 * at least SPC-3.
4996 	 */
4997 
4998 	if (ISCD(un) ||
4999 	    un->un_interconnect_type == SD_INTERCONNECT_SATA ||
5000 	    (un->un_ctype == CTYPE_CCS && SD_INQUIRY(un)->inq_ansi >= 5))
5001 		return (ret);
5002 
5003 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
5004 
5005 	/*
5006 	 * Retrieve MODE SENSE page 3 - Format Device Page
5007 	 */
5008 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
5009 	ssc = sd_ssc_init(un);
5010 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
5011 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
5012 	if (status != 0) {
5013 		SD_ERROR(SD_LOG_COMMON, un,
5014 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5015 		goto page3_exit;
5016 	}
5017 
5018 	/*
5019 	 * Determine size of Block Descriptors in order to locate the mode
5020 	 * page data.  ATAPI devices return 0, SCSI devices should return
5021 	 * MODE_BLK_DESC_LENGTH.
5022 	 */
5023 	headerp = (struct mode_header *)p3bufp;
5024 	if (un->un_f_cfg_is_atapi == TRUE) {
5025 		struct mode_header_grp2 *mhp =
5026 		    (struct mode_header_grp2 *)headerp;
5027 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5028 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5029 	} else {
5030 		mode_header_length = MODE_HEADER_LENGTH;
5031 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5032 	}
5033 
5034 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5035 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5036 		    "sd_get_physical_geometry: received unexpected bd_len "
5037 		    "of %d, page3\n", bd_len);
5038 		status = EIO;
5039 		goto page3_exit;
5040 	}
5041 
5042 	page3p = (struct mode_format *)
5043 	    ((caddr_t)headerp + mode_header_length + bd_len);
5044 
5045 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5046 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5047 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5048 		    "%d\n", page3p->mode_page.code);
5049 		status = EIO;
5050 		goto page3_exit;
5051 	}
5052 
5053 	/*
5054 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5055 	 * complete successfully; otherwise, revert to the logical geometry.
5056 	 * So, we need to save everything in temporary variables.
5057 	 */
5058 	sector_size = BE_16(page3p->data_bytes_sect);
5059 
5060 	/*
5061 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5062 	 */
5063 	if (sector_size == 0) {
5064 		sector_size = un->un_sys_blocksize;
5065 	} else {
5066 		sector_size &= ~(un->un_sys_blocksize - 1);
5067 	}
5068 
5069 	nsect  = BE_16(page3p->sect_track);
5070 	intrlv = BE_16(page3p->interleave);
5071 
5072 	SD_INFO(SD_LOG_COMMON, un,
5073 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5074 	SD_INFO(SD_LOG_COMMON, un,
5075 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5076 	    page3p->mode_page.code, nsect, sector_size);
5077 	SD_INFO(SD_LOG_COMMON, un,
5078 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5079 	    BE_16(page3p->track_skew),
5080 	    BE_16(page3p->cylinder_skew));
5081 
5082 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5083 
5084 	/*
5085 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5086 	 */
5087 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5088 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5089 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5090 	if (status != 0) {
5091 		SD_ERROR(SD_LOG_COMMON, un,
5092 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5093 		goto page4_exit;
5094 	}
5095 
5096 	/*
5097 	 * Determine size of Block Descriptors in order to locate the mode
5098 	 * page data.  ATAPI devices return 0, SCSI devices should return
5099 	 * MODE_BLK_DESC_LENGTH.
5100 	 */
5101 	headerp = (struct mode_header *)p4bufp;
5102 	if (un->un_f_cfg_is_atapi == TRUE) {
5103 		struct mode_header_grp2 *mhp =
5104 		    (struct mode_header_grp2 *)headerp;
5105 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5106 	} else {
5107 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5108 	}
5109 
5110 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5111 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5112 		    "sd_get_physical_geometry: received unexpected bd_len of "
5113 		    "%d, page4\n", bd_len);
5114 		status = EIO;
5115 		goto page4_exit;
5116 	}
5117 
5118 	page4p = (struct mode_geometry *)
5119 	    ((caddr_t)headerp + mode_header_length + bd_len);
5120 
5121 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5122 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5123 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5124 		    "%d\n", page4p->mode_page.code);
5125 		status = EIO;
5126 		goto page4_exit;
5127 	}
5128 
5129 	/*
5130 	 * Stash the data now, after we know that both commands completed.
5131 	 */
5132 
5133 
5134 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5135 	spc   = nhead * nsect;
5136 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5137 	rpm   = BE_16(page4p->rpm);
5138 
5139 	modesense_capacity = spc * ncyl;
5140 
5141 	SD_INFO(SD_LOG_COMMON, un,
5142 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5143 	SD_INFO(SD_LOG_COMMON, un,
5144 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5145 	SD_INFO(SD_LOG_COMMON, un,
5146 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5147 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5148 	    (void *)pgeom_p, capacity);
5149 
5150 	/*
5151 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5152 	 * the product of C * H * S returned by MODE SENSE >= that returned
5153 	 * by read capacity. This is an idiosyncrasy of the original x86
5154 	 * disk subsystem.
5155 	 */
5156 	if (modesense_capacity >= capacity) {
5157 		SD_INFO(SD_LOG_COMMON, un,
5158 		    "sd_get_physical_geometry: adjusting acyl; "
5159 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5160 		    (modesense_capacity - capacity + spc - 1) / spc);
5161 		if (sector_size != 0) {
5162 			/* 1243403: NEC D38x7 drives don't support sec size */
5163 			pgeom_p->g_secsize = (unsigned short)sector_size;
5164 		}
5165 		pgeom_p->g_nsect    = (unsigned short)nsect;
5166 		pgeom_p->g_nhead    = (unsigned short)nhead;
5167 		pgeom_p->g_capacity = capacity;
5168 		pgeom_p->g_acyl	    =
5169 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5170 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5171 	}
5172 
5173 	pgeom_p->g_rpm    = (unsigned short)rpm;
5174 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5175 	ret = 0;
5176 
5177 	SD_INFO(SD_LOG_COMMON, un,
5178 	    "sd_get_physical_geometry: mode sense geometry:\n");
5179 	SD_INFO(SD_LOG_COMMON, un,
5180 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5181 	    nsect, sector_size, intrlv);
5182 	SD_INFO(SD_LOG_COMMON, un,
5183 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5184 	    nhead, ncyl, rpm, modesense_capacity);
5185 	SD_INFO(SD_LOG_COMMON, un,
5186 	    "sd_get_physical_geometry: (cached)\n");
5187 	SD_INFO(SD_LOG_COMMON, un,
5188 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5189 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5190 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5191 	SD_INFO(SD_LOG_COMMON, un,
5192 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5193 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5194 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5195 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5196 
5197 page4_exit:
5198 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5199 
5200 page3_exit:
5201 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5202 
5203 	if (status != 0) {
5204 		if (status == EIO) {
5205 			/*
5206 			 * Some disks do not support mode sense(6), we
5207 			 * should ignore this kind of error(sense key is
5208 			 * 0x5 - illegal request).
5209 			 */
5210 			uint8_t *sensep;
5211 			int senlen;
5212 
5213 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5214 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5215 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5216 
5217 			if (senlen > 0 &&
5218 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5219 				sd_ssc_assessment(ssc,
5220 				    SD_FMT_IGNORE_COMPROMISE);
5221 			} else {
5222 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5223 			}
5224 		} else {
5225 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5226 		}
5227 	}
5228 	sd_ssc_fini(ssc);
5229 	return (ret);
5230 }
5231 
5232 /*
5233  *    Function: sd_get_virtual_geometry
5234  *
5235  * Description: Ask the controller to tell us about the target device.
5236  *
5237  *   Arguments: un - pointer to softstate
5238  *		capacity - disk capacity in #blocks
5239  *		lbasize - disk block size in bytes
5240  *
5241  *     Context: Kernel thread only
5242  */
5243 
5244 static int
5245 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5246     diskaddr_t capacity, int lbasize)
5247 {
5248 	uint_t	geombuf;
5249 	int	spc;
5250 
5251 	ASSERT(un != NULL);
5252 
5253 	/* Set sector size, and total number of sectors */
5254 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5255 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5256 
5257 	/* Let the HBA tell us its geometry */
5258 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5259 
5260 	/* A value of -1 indicates an undefined "geometry" property */
5261 	if (geombuf == (-1)) {
5262 		return (EINVAL);
5263 	}
5264 
5265 	/* Initialize the logical geometry cache. */
5266 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5267 	lgeom_p->g_nsect   = geombuf & 0xffff;
5268 	lgeom_p->g_secsize = un->un_sys_blocksize;
5269 
5270 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5271 
5272 	/*
5273 	 * Note: The driver originally converted the capacity value from
5274 	 * target blocks to system blocks. However, the capacity value passed
5275 	 * to this routine is already in terms of system blocks (this scaling
5276 	 * is done when the READ CAPACITY command is issued and processed).
5277 	 * This 'error' may have gone undetected because the usage of g_ncyl
5278 	 * (which is based upon g_capacity) is very limited within the driver
5279 	 */
5280 	lgeom_p->g_capacity = capacity;
5281 
5282 	/*
5283 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5284 	 * hba may return zero values if the device has been removed.
5285 	 */
5286 	if (spc == 0) {
5287 		lgeom_p->g_ncyl = 0;
5288 	} else {
5289 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5290 	}
5291 	lgeom_p->g_acyl = 0;
5292 
5293 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5294 	return (0);
5295 
5296 }
5297 /*
5298  *    Function: sd_update_block_info
5299  *
5300  * Description: Calculate a byte count to sector count bitshift value
5301  *		from sector size.
5302  *
5303  *   Arguments: un: unit struct.
5304  *		lbasize: new target sector size
5305  *		capacity: new target capacity, ie. block count
5306  *
5307  *     Context: Kernel thread context
5308  */
5309 
5310 static void
5311 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5312 {
5313 	if (lbasize != 0) {
5314 		un->un_tgt_blocksize = lbasize;
5315 		un->un_f_tgt_blocksize_is_valid = TRUE;
5316 		if (!un->un_f_has_removable_media) {
5317 			un->un_sys_blocksize = lbasize;
5318 		}
5319 	}
5320 
5321 	if (capacity != 0) {
5322 		un->un_blockcount		= capacity;
5323 		un->un_f_blockcount_is_valid	= TRUE;
5324 
5325 		/*
5326 		 * The capacity has changed so update the errstats.
5327 		 */
5328 		if (un->un_errstats != NULL) {
5329 			struct sd_errstats *stp;
5330 
5331 			capacity *= un->un_sys_blocksize;
5332 			stp = (struct sd_errstats *)un->un_errstats->ks_data;
5333 			if (stp->sd_capacity.value.ui64 < capacity)
5334 				stp->sd_capacity.value.ui64 = capacity;
5335 		}
5336 	}
5337 }
5338 
5339 
5340 /*
5341  *    Function: sd_register_devid
5342  *
5343  * Description: This routine will obtain the device id information from the
5344  *		target, obtain the serial number, and register the device
5345  *		id with the ddi framework.
5346  *
5347  *   Arguments: devi - the system's dev_info_t for the device.
5348  *		un - driver soft state (unit) structure
5349  *		reservation_flag - indicates if a reservation conflict
5350  *		occurred during attach
5351  *
5352  *     Context: Kernel Thread
5353  */
5354 static void
5355 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5356 {
5357 	int		rval		= 0;
5358 	uchar_t		*inq80		= NULL;
5359 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5360 	size_t		inq80_resid	= 0;
5361 	uchar_t		*inq83		= NULL;
5362 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5363 	size_t		inq83_resid	= 0;
5364 	int		dlen, len;
5365 	char		*sn;
5366 	struct sd_lun	*un;
5367 
5368 	ASSERT(ssc != NULL);
5369 	un = ssc->ssc_un;
5370 	ASSERT(un != NULL);
5371 	ASSERT(mutex_owned(SD_MUTEX(un)));
5372 	ASSERT((SD_DEVINFO(un)) == devi);
5373 
5374 
5375 	/*
5376 	 * We check the availability of the World Wide Name (0x83) and Unit
5377 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5378 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5379 	 * 0x83 is available, that is the best choice.  Our next choice is
5380 	 * 0x80.  If neither are available, we munge the devid from the device
5381 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5382 	 * to fabricate a devid for non-Sun qualified disks.
5383 	 */
5384 	if (sd_check_vpd_page_support(ssc) == 0) {
5385 		/* collect page 80 data if available */
5386 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5387 
5388 			mutex_exit(SD_MUTEX(un));
5389 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5390 
5391 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5392 			    0x01, 0x80, &inq80_resid);
5393 
5394 			if (rval != 0) {
5395 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5396 				kmem_free(inq80, inq80_len);
5397 				inq80 = NULL;
5398 				inq80_len = 0;
5399 			} else if (ddi_prop_exists(
5400 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5401 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5402 			    INQUIRY_SERIAL_NO) == 0) {
5403 				/*
5404 				 * If we don't already have a serial number
5405 				 * property, do quick verify of data returned
5406 				 * and define property.
5407 				 */
5408 				dlen = inq80_len - inq80_resid;
5409 				len = (size_t)inq80[3];
5410 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5411 					/*
5412 					 * Ensure sn termination, skip leading
5413 					 * blanks, and create property
5414 					 * 'inquiry-serial-no'.
5415 					 */
5416 					sn = (char *)&inq80[4];
5417 					sn[len] = 0;
5418 					while (*sn && (*sn == ' '))
5419 						sn++;
5420 					if (*sn) {
5421 						(void) ddi_prop_update_string(
5422 						    DDI_DEV_T_NONE,
5423 						    SD_DEVINFO(un),
5424 						    INQUIRY_SERIAL_NO, sn);
5425 					}
5426 				}
5427 			}
5428 			mutex_enter(SD_MUTEX(un));
5429 		}
5430 
5431 		/* collect page 83 data if available */
5432 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5433 			mutex_exit(SD_MUTEX(un));
5434 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5435 
5436 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5437 			    0x01, 0x83, &inq83_resid);
5438 
5439 			if (rval != 0) {
5440 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5441 				kmem_free(inq83, inq83_len);
5442 				inq83 = NULL;
5443 				inq83_len = 0;
5444 			}
5445 			mutex_enter(SD_MUTEX(un));
5446 		}
5447 	}
5448 
5449 	/*
5450 	 * If transport has already registered a devid for this target
5451 	 * then that takes precedence over the driver's determination
5452 	 * of the devid.
5453 	 *
5454 	 * NOTE: The reason this check is done here instead of at the beginning
5455 	 * of the function is to allow the code above to create the
5456 	 * 'inquiry-serial-no' property.
5457 	 */
5458 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5459 		ASSERT(un->un_devid);
5460 		un->un_f_devid_transport_defined = TRUE;
5461 		goto cleanup; /* use devid registered by the transport */
5462 	}
5463 
5464 	/*
5465 	 * This is the case of antiquated Sun disk drives that have the
5466 	 * FAB_DEVID property set in the disk_table.  These drives
5467 	 * manage the devid's by storing them in last 2 available sectors
5468 	 * on the drive and have them fabricated by the ddi layer by calling
5469 	 * ddi_devid_init and passing the DEVID_FAB flag.
5470 	 */
5471 	if (un->un_f_opt_fab_devid == TRUE) {
5472 		/*
5473 		 * Depending on EINVAL isn't reliable, since a reserved disk
5474 		 * may result in invalid geometry, so check to make sure a
5475 		 * reservation conflict did not occur during attach.
5476 		 */
5477 		if ((sd_get_devid(ssc) == EINVAL) &&
5478 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5479 			/*
5480 			 * The devid is invalid AND there is no reservation
5481 			 * conflict.  Fabricate a new devid.
5482 			 */
5483 			(void) sd_create_devid(ssc);
5484 		}
5485 
5486 		/* Register the devid if it exists */
5487 		if (un->un_devid != NULL) {
5488 			(void) ddi_devid_register(SD_DEVINFO(un),
5489 			    un->un_devid);
5490 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5491 			    "sd_register_devid: Devid Fabricated\n");
5492 		}
5493 		goto cleanup;
5494 	}
5495 
5496 	/* encode best devid possible based on data available */
5497 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5498 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5499 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5500 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5501 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5502 
5503 		/* devid successfully encoded, register devid */
5504 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5505 
5506 	} else {
5507 		/*
5508 		 * Unable to encode a devid based on data available.
5509 		 * This is not a Sun qualified disk.  Older Sun disk
5510 		 * drives that have the SD_FAB_DEVID property
5511 		 * set in the disk_table and non Sun qualified
5512 		 * disks are treated in the same manner.  These
5513 		 * drives manage the devid's by storing them in
5514 		 * last 2 available sectors on the drive and
5515 		 * have them fabricated by the ddi layer by
5516 		 * calling ddi_devid_init and passing the
5517 		 * DEVID_FAB flag.
5518 		 * Create a fabricate devid only if there's no
5519 		 * fabricate devid existed.
5520 		 */
5521 		if (sd_get_devid(ssc) == EINVAL) {
5522 			(void) sd_create_devid(ssc);
5523 		}
5524 		un->un_f_opt_fab_devid = TRUE;
5525 
5526 		/* Register the devid if it exists */
5527 		if (un->un_devid != NULL) {
5528 			(void) ddi_devid_register(SD_DEVINFO(un),
5529 			    un->un_devid);
5530 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5531 			    "sd_register_devid: devid fabricated using "
5532 			    "ddi framework\n");
5533 		}
5534 	}
5535 
5536 cleanup:
5537 	/* clean up resources */
5538 	if (inq80 != NULL) {
5539 		kmem_free(inq80, inq80_len);
5540 	}
5541 	if (inq83 != NULL) {
5542 		kmem_free(inq83, inq83_len);
5543 	}
5544 }
5545 
5546 
5547 
5548 /*
5549  *    Function: sd_get_devid
5550  *
5551  * Description: This routine will return 0 if a valid device id has been
5552  *		obtained from the target and stored in the soft state. If a
5553  *		valid device id has not been previously read and stored, a
5554  *		read attempt will be made.
5555  *
5556  *   Arguments: un - driver soft state (unit) structure
5557  *
5558  * Return Code: 0 if we successfully get the device id
5559  *
5560  *     Context: Kernel Thread
5561  */
5562 
5563 static int
5564 sd_get_devid(sd_ssc_t *ssc)
5565 {
5566 	struct dk_devid		*dkdevid;
5567 	ddi_devid_t		tmpid;
5568 	uint_t			*ip;
5569 	size_t			sz;
5570 	diskaddr_t		blk;
5571 	int			status;
5572 	int			chksum;
5573 	int			i;
5574 	size_t			buffer_size;
5575 	struct sd_lun		*un;
5576 
5577 	ASSERT(ssc != NULL);
5578 	un = ssc->ssc_un;
5579 	ASSERT(un != NULL);
5580 	ASSERT(mutex_owned(SD_MUTEX(un)));
5581 
5582 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5583 	    un);
5584 
5585 	if (un->un_devid != NULL) {
5586 		return (0);
5587 	}
5588 
5589 	mutex_exit(SD_MUTEX(un));
5590 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5591 	    (void *)SD_PATH_DIRECT) != 0) {
5592 		mutex_enter(SD_MUTEX(un));
5593 		return (EINVAL);
5594 	}
5595 
5596 	/*
5597 	 * Read and verify device id, stored in the reserved cylinders at the
5598 	 * end of the disk. Backup label is on the odd sectors of the last
5599 	 * track of the last cylinder. Device id will be on track of the next
5600 	 * to last cylinder.
5601 	 */
5602 	mutex_enter(SD_MUTEX(un));
5603 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5604 	mutex_exit(SD_MUTEX(un));
5605 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5606 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5607 	    SD_PATH_DIRECT);
5608 
5609 	if (status != 0) {
5610 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5611 		goto error;
5612 	}
5613 
5614 	/* Validate the revision */
5615 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5616 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5617 		status = EINVAL;
5618 		goto error;
5619 	}
5620 
5621 	/* Calculate the checksum */
5622 	chksum = 0;
5623 	ip = (uint_t *)dkdevid;
5624 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5625 	    i++) {
5626 		chksum ^= ip[i];
5627 	}
5628 
5629 	/* Compare the checksums */
5630 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5631 		status = EINVAL;
5632 		goto error;
5633 	}
5634 
5635 	/* Validate the device id */
5636 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5637 		status = EINVAL;
5638 		goto error;
5639 	}
5640 
5641 	/*
5642 	 * Store the device id in the driver soft state
5643 	 */
5644 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5645 	tmpid = kmem_alloc(sz, KM_SLEEP);
5646 
5647 	mutex_enter(SD_MUTEX(un));
5648 
5649 	un->un_devid = tmpid;
5650 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5651 
5652 	kmem_free(dkdevid, buffer_size);
5653 
5654 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5655 
5656 	return (status);
5657 error:
5658 	mutex_enter(SD_MUTEX(un));
5659 	kmem_free(dkdevid, buffer_size);
5660 	return (status);
5661 }
5662 
5663 
5664 /*
5665  *    Function: sd_create_devid
5666  *
5667  * Description: This routine will fabricate the device id and write it
5668  *		to the disk.
5669  *
5670  *   Arguments: un - driver soft state (unit) structure
5671  *
5672  * Return Code: value of the fabricated device id
5673  *
5674  *     Context: Kernel Thread
5675  */
5676 
5677 static ddi_devid_t
5678 sd_create_devid(sd_ssc_t *ssc)
5679 {
5680 	struct sd_lun	*un;
5681 
5682 	ASSERT(ssc != NULL);
5683 	un = ssc->ssc_un;
5684 	ASSERT(un != NULL);
5685 
5686 	/* Fabricate the devid */
5687 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5688 	    == DDI_FAILURE) {
5689 		return (NULL);
5690 	}
5691 
5692 	/* Write the devid to disk */
5693 	if (sd_write_deviceid(ssc) != 0) {
5694 		ddi_devid_free(un->un_devid);
5695 		un->un_devid = NULL;
5696 	}
5697 
5698 	return (un->un_devid);
5699 }
5700 
5701 
5702 /*
5703  *    Function: sd_write_deviceid
5704  *
5705  * Description: This routine will write the device id to the disk
5706  *		reserved sector.
5707  *
5708  *   Arguments: un - driver soft state (unit) structure
5709  *
5710  * Return Code: EINVAL
5711  *		value returned by sd_send_scsi_cmd
5712  *
5713  *     Context: Kernel Thread
5714  */
5715 
5716 static int
5717 sd_write_deviceid(sd_ssc_t *ssc)
5718 {
5719 	struct dk_devid		*dkdevid;
5720 	uchar_t			*buf;
5721 	diskaddr_t		blk;
5722 	uint_t			*ip, chksum;
5723 	int			status;
5724 	int			i;
5725 	struct sd_lun		*un;
5726 
5727 	ASSERT(ssc != NULL);
5728 	un = ssc->ssc_un;
5729 	ASSERT(un != NULL);
5730 	ASSERT(mutex_owned(SD_MUTEX(un)));
5731 
5732 	mutex_exit(SD_MUTEX(un));
5733 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5734 	    (void *)SD_PATH_DIRECT) != 0) {
5735 		mutex_enter(SD_MUTEX(un));
5736 		return (-1);
5737 	}
5738 
5739 
5740 	/* Allocate the buffer */
5741 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5742 	dkdevid = (struct dk_devid *)buf;
5743 
5744 	/* Fill in the revision */
5745 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5746 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5747 
5748 	/* Copy in the device id */
5749 	mutex_enter(SD_MUTEX(un));
5750 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5751 	    ddi_devid_sizeof(un->un_devid));
5752 	mutex_exit(SD_MUTEX(un));
5753 
5754 	/* Calculate the checksum */
5755 	chksum = 0;
5756 	ip = (uint_t *)dkdevid;
5757 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5758 	    i++) {
5759 		chksum ^= ip[i];
5760 	}
5761 
5762 	/* Fill-in checksum */
5763 	DKD_FORMCHKSUM(chksum, dkdevid);
5764 
5765 	/* Write the reserved sector */
5766 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5767 	    SD_PATH_DIRECT);
5768 	if (status != 0)
5769 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5770 
5771 	kmem_free(buf, un->un_sys_blocksize);
5772 
5773 	mutex_enter(SD_MUTEX(un));
5774 	return (status);
5775 }
5776 
5777 
5778 /*
5779  *    Function: sd_check_vpd_page_support
5780  *
5781  * Description: This routine sends an inquiry command with the EVPD bit set and
5782  *		a page code of 0x00 to the device. It is used to determine which
5783  *		vital product pages are available to find the devid. We are
5784  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5785  *		the device does not support that command.
5786  *
5787  *   Arguments: un  - driver soft state (unit) structure
5788  *
5789  * Return Code: 0 - success
5790  *		1 - check condition
5791  *
5792  *     Context: This routine can sleep.
5793  */
5794 
5795 static int
5796 sd_check_vpd_page_support(sd_ssc_t *ssc)
5797 {
5798 	uchar_t	*page_list	= NULL;
5799 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5800 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5801 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5802 	int    	rval		= 0;
5803 	int	counter;
5804 	struct sd_lun		*un;
5805 
5806 	ASSERT(ssc != NULL);
5807 	un = ssc->ssc_un;
5808 	ASSERT(un != NULL);
5809 	ASSERT(mutex_owned(SD_MUTEX(un)));
5810 
5811 	mutex_exit(SD_MUTEX(un));
5812 
5813 	/*
5814 	 * We'll set the page length to the maximum to save figuring it out
5815 	 * with an additional call.
5816 	 */
5817 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5818 
5819 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5820 	    page_code, NULL);
5821 
5822 	if (rval != 0)
5823 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5824 
5825 	mutex_enter(SD_MUTEX(un));
5826 
5827 	/*
5828 	 * Now we must validate that the device accepted the command, as some
5829 	 * drives do not support it.  If the drive does support it, we will
5830 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5831 	 * not, we return -1.
5832 	 */
5833 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5834 		/* Loop to find one of the 2 pages we need */
5835 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5836 
5837 		/*
5838 		 * Pages are returned in ascending order, and 0x83 is what we
5839 		 * are hoping for.
5840 		 */
5841 		while ((page_list[counter] <= 0xB1) &&
5842 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5843 		    VPD_HEAD_OFFSET))) {
5844 			/*
5845 			 * Add 3 because page_list[3] is the number of
5846 			 * pages minus 3
5847 			 */
5848 
5849 			switch (page_list[counter]) {
5850 			case 0x00:
5851 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5852 				break;
5853 			case 0x80:
5854 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5855 				break;
5856 			case 0x81:
5857 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5858 				break;
5859 			case 0x82:
5860 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5861 				break;
5862 			case 0x83:
5863 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5864 				break;
5865 			case 0x86:
5866 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5867 				break;
5868 			case 0xB1:
5869 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5870 				break;
5871 			}
5872 			counter++;
5873 		}
5874 
5875 	} else {
5876 		rval = -1;
5877 
5878 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5879 		    "sd_check_vpd_page_support: This drive does not implement "
5880 		    "VPD pages.\n");
5881 	}
5882 
5883 	kmem_free(page_list, page_length);
5884 
5885 	return (rval);
5886 }
5887 
5888 
5889 /*
5890  *    Function: sd_setup_pm
5891  *
5892  * Description: Initialize Power Management on the device
5893  *
5894  *     Context: Kernel Thread
5895  */
5896 
5897 static void
5898 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5899 {
5900 	uint_t		log_page_size;
5901 	uchar_t		*log_page_data;
5902 	int		rval = 0;
5903 	struct sd_lun	*un;
5904 
5905 	ASSERT(ssc != NULL);
5906 	un = ssc->ssc_un;
5907 	ASSERT(un != NULL);
5908 
5909 	/*
5910 	 * Since we are called from attach, holding a mutex for
5911 	 * un is unnecessary. Because some of the routines called
5912 	 * from here require SD_MUTEX to not be held, assert this
5913 	 * right up front.
5914 	 */
5915 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5916 	/*
5917 	 * Since the sd device does not have the 'reg' property,
5918 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5919 	 * The following code is to tell cpr that this device
5920 	 * DOES need to be suspended and resumed.
5921 	 */
5922 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5923 	    "pm-hardware-state", "needs-suspend-resume");
5924 
5925 	/*
5926 	 * This complies with the new power management framework
5927 	 * for certain desktop machines. Create the pm_components
5928 	 * property as a string array property.
5929 	 * If un_f_pm_supported is TRUE, that means the disk
5930 	 * attached HBA has set the "pm-capable" property and
5931 	 * the value of this property is bigger than 0.
5932 	 */
5933 	if (un->un_f_pm_supported) {
5934 		/*
5935 		 * not all devices have a motor, try it first.
5936 		 * some devices may return ILLEGAL REQUEST, some
5937 		 * will hang
5938 		 * The following START_STOP_UNIT is used to check if target
5939 		 * device has a motor.
5940 		 */
5941 		un->un_f_start_stop_supported = TRUE;
5942 
5943 		if (un->un_f_power_condition_supported) {
5944 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5945 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5946 			    SD_PATH_DIRECT);
5947 			if (rval != 0) {
5948 				un->un_f_power_condition_supported = FALSE;
5949 			}
5950 		}
5951 		if (!un->un_f_power_condition_supported) {
5952 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5953 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5954 		}
5955 		if (rval != 0) {
5956 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5957 			un->un_f_start_stop_supported = FALSE;
5958 		}
5959 
5960 		/*
5961 		 * create pm properties anyways otherwise the parent can't
5962 		 * go to sleep
5963 		 */
5964 		un->un_f_pm_is_enabled = TRUE;
5965 		(void) sd_create_pm_components(devi, un);
5966 
5967 		/*
5968 		 * If it claims that log sense is supported, check it out.
5969 		 */
5970 		if (un->un_f_log_sense_supported) {
5971 			rval = sd_log_page_supported(ssc,
5972 			    START_STOP_CYCLE_PAGE);
5973 			if (rval == 1) {
5974 				/* Page found, use it. */
5975 				un->un_start_stop_cycle_page =
5976 				    START_STOP_CYCLE_PAGE;
5977 			} else {
5978 				/*
5979 				 * Page not found or log sense is not
5980 				 * supported.
5981 				 * Notice we do not check the old style
5982 				 * START_STOP_CYCLE_VU_PAGE because this
5983 				 * code path does not apply to old disks.
5984 				 */
5985 				un->un_f_log_sense_supported = FALSE;
5986 				un->un_f_pm_log_sense_smart = FALSE;
5987 			}
5988 		}
5989 
5990 		return;
5991 	}
5992 
5993 	/*
5994 	 * For the disk whose attached HBA has not set the "pm-capable"
5995 	 * property, check if it supports the power management.
5996 	 */
5997 	if (!un->un_f_log_sense_supported) {
5998 		un->un_power_level = SD_SPINDLE_ON;
5999 		un->un_f_pm_is_enabled = FALSE;
6000 		return;
6001 	}
6002 
6003 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
6004 
6005 #ifdef	SDDEBUG
6006 	if (sd_force_pm_supported) {
6007 		/* Force a successful result */
6008 		rval = 1;
6009 	}
6010 #endif
6011 
6012 	/*
6013 	 * If the start-stop cycle counter log page is not supported
6014 	 * or if the pm-capable property is set to be false (0),
6015 	 * then we should not create the pm_components property.
6016 	 */
6017 	if (rval == -1) {
6018 		/*
6019 		 * Error.
6020 		 * Reading log sense failed, most likely this is
6021 		 * an older drive that does not support log sense.
6022 		 * If this fails auto-pm is not supported.
6023 		 */
6024 		un->un_power_level = SD_SPINDLE_ON;
6025 		un->un_f_pm_is_enabled = FALSE;
6026 
6027 	} else if (rval == 0) {
6028 		/*
6029 		 * Page not found.
6030 		 * The start stop cycle counter is implemented as page
6031 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6032 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6033 		 */
6034 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6035 			/*
6036 			 * Page found, use this one.
6037 			 */
6038 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6039 			un->un_f_pm_is_enabled = TRUE;
6040 		} else {
6041 			/*
6042 			 * Error or page not found.
6043 			 * auto-pm is not supported for this device.
6044 			 */
6045 			un->un_power_level = SD_SPINDLE_ON;
6046 			un->un_f_pm_is_enabled = FALSE;
6047 		}
6048 	} else {
6049 		/*
6050 		 * Page found, use it.
6051 		 */
6052 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6053 		un->un_f_pm_is_enabled = TRUE;
6054 	}
6055 
6056 
6057 	if (un->un_f_pm_is_enabled == TRUE) {
6058 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6059 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6060 
6061 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6062 		    log_page_size, un->un_start_stop_cycle_page,
6063 		    0x01, 0, SD_PATH_DIRECT);
6064 
6065 		if (rval != 0) {
6066 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6067 		}
6068 
6069 #ifdef	SDDEBUG
6070 		if (sd_force_pm_supported) {
6071 			/* Force a successful result */
6072 			rval = 0;
6073 		}
6074 #endif
6075 
6076 		/*
6077 		 * If the Log sense for Page( Start/stop cycle counter page)
6078 		 * succeeds, then power management is supported and we can
6079 		 * enable auto-pm.
6080 		 */
6081 		if (rval == 0)  {
6082 			(void) sd_create_pm_components(devi, un);
6083 		} else {
6084 			un->un_power_level = SD_SPINDLE_ON;
6085 			un->un_f_pm_is_enabled = FALSE;
6086 		}
6087 
6088 		kmem_free(log_page_data, log_page_size);
6089 	}
6090 }
6091 
6092 
6093 /*
6094  *    Function: sd_create_pm_components
6095  *
6096  * Description: Initialize PM property.
6097  *
6098  *     Context: Kernel thread context
6099  */
6100 
6101 static void
6102 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6103 {
6104 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6105 
6106 	if (un->un_f_power_condition_supported) {
6107 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6108 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6109 		    != DDI_PROP_SUCCESS) {
6110 			un->un_power_level = SD_SPINDLE_ACTIVE;
6111 			un->un_f_pm_is_enabled = FALSE;
6112 			return;
6113 		}
6114 	} else {
6115 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6116 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6117 		    != DDI_PROP_SUCCESS) {
6118 			un->un_power_level = SD_SPINDLE_ON;
6119 			un->un_f_pm_is_enabled = FALSE;
6120 			return;
6121 		}
6122 	}
6123 	/*
6124 	 * When components are initially created they are idle,
6125 	 * power up any non-removables.
6126 	 * Note: the return value of pm_raise_power can't be used
6127 	 * for determining if PM should be enabled for this device.
6128 	 * Even if you check the return values and remove this
6129 	 * property created above, the PM framework will not honor the
6130 	 * change after the first call to pm_raise_power. Hence,
6131 	 * removal of that property does not help if pm_raise_power
6132 	 * fails. In the case of removable media, the start/stop
6133 	 * will fail if the media is not present.
6134 	 */
6135 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6136 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6137 		mutex_enter(SD_MUTEX(un));
6138 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6139 		mutex_enter(&un->un_pm_mutex);
6140 		/* Set to on and not busy. */
6141 		un->un_pm_count = 0;
6142 	} else {
6143 		mutex_enter(SD_MUTEX(un));
6144 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6145 		mutex_enter(&un->un_pm_mutex);
6146 		/* Set to off. */
6147 		un->un_pm_count = -1;
6148 	}
6149 	mutex_exit(&un->un_pm_mutex);
6150 	mutex_exit(SD_MUTEX(un));
6151 }
6152 
6153 
6154 /*
6155  *    Function: sd_ddi_suspend
6156  *
6157  * Description: Performs system power-down operations. This includes
6158  *		setting the drive state to indicate its suspended so
6159  *		that no new commands will be accepted. Also, wait for
6160  *		all commands that are in transport or queued to a timer
6161  *		for retry to complete. All timeout threads are cancelled.
6162  *
6163  * Return Code: DDI_FAILURE or DDI_SUCCESS
6164  *
6165  *     Context: Kernel thread context
6166  */
6167 
6168 static int
6169 sd_ddi_suspend(dev_info_t *devi)
6170 {
6171 	struct	sd_lun	*un;
6172 	clock_t		wait_cmds_complete;
6173 
6174 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6175 	if (un == NULL) {
6176 		return (DDI_FAILURE);
6177 	}
6178 
6179 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6180 
6181 	mutex_enter(SD_MUTEX(un));
6182 
6183 	/* Return success if the device is already suspended. */
6184 	if (un->un_state == SD_STATE_SUSPENDED) {
6185 		mutex_exit(SD_MUTEX(un));
6186 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6187 		    "device already suspended, exiting\n");
6188 		return (DDI_SUCCESS);
6189 	}
6190 
6191 	/* Return failure if the device is being used by HA */
6192 	if (un->un_resvd_status &
6193 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6194 		mutex_exit(SD_MUTEX(un));
6195 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6196 		    "device in use by HA, exiting\n");
6197 		return (DDI_FAILURE);
6198 	}
6199 
6200 	/*
6201 	 * Return failure if the device is in a resource wait
6202 	 * or power changing state.
6203 	 */
6204 	if ((un->un_state == SD_STATE_RWAIT) ||
6205 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6206 		mutex_exit(SD_MUTEX(un));
6207 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6208 		    "device in resource wait state, exiting\n");
6209 		return (DDI_FAILURE);
6210 	}
6211 
6212 
6213 	un->un_save_state = un->un_last_state;
6214 	New_state(un, SD_STATE_SUSPENDED);
6215 
6216 	/*
6217 	 * Wait for all commands that are in transport or queued to a timer
6218 	 * for retry to complete.
6219 	 *
6220 	 * While waiting, no new commands will be accepted or sent because of
6221 	 * the new state we set above.
6222 	 *
6223 	 * Wait till current operation has completed. If we are in the resource
6224 	 * wait state (with an intr outstanding) then we need to wait till the
6225 	 * intr completes and starts the next cmd. We want to wait for
6226 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6227 	 */
6228 	wait_cmds_complete = ddi_get_lbolt() +
6229 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6230 
6231 	while (un->un_ncmds_in_transport != 0) {
6232 		/*
6233 		 * Fail if commands do not finish in the specified time.
6234 		 */
6235 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6236 		    wait_cmds_complete) == -1) {
6237 			/*
6238 			 * Undo the state changes made above. Everything
6239 			 * must go back to it's original value.
6240 			 */
6241 			Restore_state(un);
6242 			un->un_last_state = un->un_save_state;
6243 			/* Wake up any threads that might be waiting. */
6244 			cv_broadcast(&un->un_suspend_cv);
6245 			mutex_exit(SD_MUTEX(un));
6246 			SD_ERROR(SD_LOG_IO_PM, un,
6247 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6248 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6249 			return (DDI_FAILURE);
6250 		}
6251 	}
6252 
6253 	/*
6254 	 * Cancel SCSI watch thread and timeouts, if any are active
6255 	 */
6256 
6257 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6258 		opaque_t temp_token = un->un_swr_token;
6259 		mutex_exit(SD_MUTEX(un));
6260 		scsi_watch_suspend(temp_token);
6261 		mutex_enter(SD_MUTEX(un));
6262 	}
6263 
6264 	if (un->un_reset_throttle_timeid != NULL) {
6265 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6266 		un->un_reset_throttle_timeid = NULL;
6267 		mutex_exit(SD_MUTEX(un));
6268 		(void) untimeout(temp_id);
6269 		mutex_enter(SD_MUTEX(un));
6270 	}
6271 
6272 	if (un->un_dcvb_timeid != NULL) {
6273 		timeout_id_t temp_id = un->un_dcvb_timeid;
6274 		un->un_dcvb_timeid = NULL;
6275 		mutex_exit(SD_MUTEX(un));
6276 		(void) untimeout(temp_id);
6277 		mutex_enter(SD_MUTEX(un));
6278 	}
6279 
6280 	mutex_enter(&un->un_pm_mutex);
6281 	if (un->un_pm_timeid != NULL) {
6282 		timeout_id_t temp_id = un->un_pm_timeid;
6283 		un->un_pm_timeid = NULL;
6284 		mutex_exit(&un->un_pm_mutex);
6285 		mutex_exit(SD_MUTEX(un));
6286 		(void) untimeout(temp_id);
6287 		mutex_enter(SD_MUTEX(un));
6288 	} else {
6289 		mutex_exit(&un->un_pm_mutex);
6290 	}
6291 
6292 	if (un->un_rmw_msg_timeid != NULL) {
6293 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6294 		un->un_rmw_msg_timeid = NULL;
6295 		mutex_exit(SD_MUTEX(un));
6296 		(void) untimeout(temp_id);
6297 		mutex_enter(SD_MUTEX(un));
6298 	}
6299 
6300 	if (un->un_retry_timeid != NULL) {
6301 		timeout_id_t temp_id = un->un_retry_timeid;
6302 		un->un_retry_timeid = NULL;
6303 		mutex_exit(SD_MUTEX(un));
6304 		(void) untimeout(temp_id);
6305 		mutex_enter(SD_MUTEX(un));
6306 
6307 		if (un->un_retry_bp != NULL) {
6308 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6309 			un->un_waitq_headp = un->un_retry_bp;
6310 			if (un->un_waitq_tailp == NULL) {
6311 				un->un_waitq_tailp = un->un_retry_bp;
6312 			}
6313 			un->un_retry_bp = NULL;
6314 			un->un_retry_statp = NULL;
6315 		}
6316 	}
6317 
6318 	if (un->un_direct_priority_timeid != NULL) {
6319 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6320 		un->un_direct_priority_timeid = NULL;
6321 		mutex_exit(SD_MUTEX(un));
6322 		(void) untimeout(temp_id);
6323 		mutex_enter(SD_MUTEX(un));
6324 	}
6325 
6326 	if (un->un_f_is_fibre == TRUE) {
6327 		/*
6328 		 * Remove callbacks for insert and remove events
6329 		 */
6330 		if (un->un_insert_event != NULL) {
6331 			mutex_exit(SD_MUTEX(un));
6332 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6333 			mutex_enter(SD_MUTEX(un));
6334 			un->un_insert_event = NULL;
6335 		}
6336 
6337 		if (un->un_remove_event != NULL) {
6338 			mutex_exit(SD_MUTEX(un));
6339 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6340 			mutex_enter(SD_MUTEX(un));
6341 			un->un_remove_event = NULL;
6342 		}
6343 	}
6344 
6345 	mutex_exit(SD_MUTEX(un));
6346 
6347 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6348 
6349 	return (DDI_SUCCESS);
6350 }
6351 
6352 
6353 /*
6354  *    Function: sd_ddi_resume
6355  *
6356  * Description: Performs system power-up operations..
6357  *
6358  * Return Code: DDI_SUCCESS
6359  *		DDI_FAILURE
6360  *
6361  *     Context: Kernel thread context
6362  */
6363 
6364 static int
6365 sd_ddi_resume(dev_info_t *devi)
6366 {
6367 	struct	sd_lun	*un;
6368 
6369 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6370 	if (un == NULL) {
6371 		return (DDI_FAILURE);
6372 	}
6373 
6374 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6375 
6376 	mutex_enter(SD_MUTEX(un));
6377 	Restore_state(un);
6378 
6379 	/*
6380 	 * Restore the state which was saved to give the
6381 	 * the right state in un_last_state
6382 	 */
6383 	un->un_last_state = un->un_save_state;
6384 	/*
6385 	 * Note: throttle comes back at full.
6386 	 * Also note: this MUST be done before calling pm_raise_power
6387 	 * otherwise the system can get hung in biowait. The scenario where
6388 	 * this'll happen is under cpr suspend. Writing of the system
6389 	 * state goes through sddump, which writes 0 to un_throttle. If
6390 	 * writing the system state then fails, example if the partition is
6391 	 * too small, then cpr attempts a resume. If throttle isn't restored
6392 	 * from the saved value until after calling pm_raise_power then
6393 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6394 	 * in biowait.
6395 	 */
6396 	un->un_throttle = un->un_saved_throttle;
6397 
6398 	/*
6399 	 * The chance of failure is very rare as the only command done in power
6400 	 * entry point is START command when you transition from 0->1 or
6401 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6402 	 * which suspend was done. Ignore the return value as the resume should
6403 	 * not be failed. In the case of removable media the media need not be
6404 	 * inserted and hence there is a chance that raise power will fail with
6405 	 * media not present.
6406 	 */
6407 	if (un->un_f_attach_spinup) {
6408 		mutex_exit(SD_MUTEX(un));
6409 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6410 		    SD_PM_STATE_ACTIVE(un));
6411 		mutex_enter(SD_MUTEX(un));
6412 	}
6413 
6414 	/*
6415 	 * Don't broadcast to the suspend cv and therefore possibly
6416 	 * start I/O until after power has been restored.
6417 	 */
6418 	cv_broadcast(&un->un_suspend_cv);
6419 	cv_broadcast(&un->un_state_cv);
6420 
6421 	/* restart thread */
6422 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6423 		scsi_watch_resume(un->un_swr_token);
6424 	}
6425 
6426 #if (defined(__fibre))
6427 	if (un->un_f_is_fibre == TRUE) {
6428 		/*
6429 		 * Add callbacks for insert and remove events
6430 		 */
6431 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6432 			sd_init_event_callbacks(un);
6433 		}
6434 	}
6435 #endif
6436 
6437 	/*
6438 	 * Transport any pending commands to the target.
6439 	 *
6440 	 * If this is a low-activity device commands in queue will have to wait
6441 	 * until new commands come in, which may take awhile. Also, we
6442 	 * specifically don't check un_ncmds_in_transport because we know that
6443 	 * there really are no commands in progress after the unit was
6444 	 * suspended and we could have reached the throttle level, been
6445 	 * suspended, and have no new commands coming in for awhile. Highly
6446 	 * unlikely, but so is the low-activity disk scenario.
6447 	 */
6448 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6449 
6450 	sd_start_cmds(un, NULL);
6451 	mutex_exit(SD_MUTEX(un));
6452 
6453 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6454 
6455 	return (DDI_SUCCESS);
6456 }
6457 
6458 
6459 /*
6460  *    Function: sd_pm_state_change
6461  *
6462  * Description: Change the driver power state.
6463  * 		Someone else is required to actually change the driver
6464  * 		power level.
6465  *
6466  *   Arguments: un - driver soft state (unit) structure
6467  *              level - the power level that is changed to
6468  *              flag - to decide how to change the power state
6469  *
6470  * Return Code: DDI_SUCCESS
6471  *
6472  *     Context: Kernel thread context
6473  */
6474 static int
6475 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6476 {
6477 	ASSERT(un != NULL);
6478 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6479 
6480 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6481 	mutex_enter(SD_MUTEX(un));
6482 
6483 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6484 		un->un_power_level = level;
6485 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6486 		mutex_enter(&un->un_pm_mutex);
6487 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6488 			un->un_pm_count++;
6489 			ASSERT(un->un_pm_count == 0);
6490 		}
6491 		mutex_exit(&un->un_pm_mutex);
6492 	} else {
6493 		/*
6494 		 * Exit if power management is not enabled for this device,
6495 		 * or if the device is being used by HA.
6496 		 */
6497 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6498 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6499 			mutex_exit(SD_MUTEX(un));
6500 			SD_TRACE(SD_LOG_POWER, un,
6501 			    "sd_pm_state_change: exiting\n");
6502 			return (DDI_FAILURE);
6503 		}
6504 
6505 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6506 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6507 
6508 		/*
6509 		 * See if the device is not busy, ie.:
6510 		 *    - we have no commands in the driver for this device
6511 		 *    - not waiting for resources
6512 		 */
6513 		if ((un->un_ncmds_in_driver == 0) &&
6514 		    (un->un_state != SD_STATE_RWAIT)) {
6515 			/*
6516 			 * The device is not busy, so it is OK to go to low
6517 			 * power state. Indicate low power, but rely on someone
6518 			 * else to actually change it.
6519 			 */
6520 			mutex_enter(&un->un_pm_mutex);
6521 			un->un_pm_count = -1;
6522 			mutex_exit(&un->un_pm_mutex);
6523 			un->un_power_level = level;
6524 		}
6525 	}
6526 
6527 	mutex_exit(SD_MUTEX(un));
6528 
6529 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6530 
6531 	return (DDI_SUCCESS);
6532 }
6533 
6534 
6535 /*
6536  *    Function: sd_pm_idletimeout_handler
6537  *
6538  * Description: A timer routine that's active only while a device is busy.
6539  *		The purpose is to extend slightly the pm framework's busy
6540  *		view of the device to prevent busy/idle thrashing for
6541  *		back-to-back commands. Do this by comparing the current time
6542  *		to the time at which the last command completed and when the
6543  *		difference is greater than sd_pm_idletime, call
6544  *		pm_idle_component. In addition to indicating idle to the pm
6545  *		framework, update the chain type to again use the internal pm
6546  *		layers of the driver.
6547  *
6548  *   Arguments: arg - driver soft state (unit) structure
6549  *
6550  *     Context: Executes in a timeout(9F) thread context
6551  */
6552 
6553 static void
6554 sd_pm_idletimeout_handler(void *arg)
6555 {
6556 	const hrtime_t idletime = sd_pm_idletime * NANOSEC;
6557 	struct sd_lun *un = arg;
6558 
6559 	mutex_enter(&sd_detach_mutex);
6560 	if (un->un_detach_count != 0) {
6561 		/* Abort if the instance is detaching */
6562 		mutex_exit(&sd_detach_mutex);
6563 		return;
6564 	}
6565 	mutex_exit(&sd_detach_mutex);
6566 
6567 	/*
6568 	 * Grab both mutexes, in the proper order, since we're accessing
6569 	 * both PM and softstate variables.
6570 	 */
6571 	mutex_enter(SD_MUTEX(un));
6572 	mutex_enter(&un->un_pm_mutex);
6573 	if (((gethrtime() - un->un_pm_idle_time) > idletime) &&
6574 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6575 		/*
6576 		 * Update the chain types.
6577 		 * This takes affect on the next new command received.
6578 		 */
6579 		if (un->un_f_non_devbsize_supported) {
6580 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6581 		} else {
6582 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6583 		}
6584 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6585 
6586 		SD_TRACE(SD_LOG_IO_PM, un,
6587 		    "sd_pm_idletimeout_handler: idling device\n");
6588 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6589 		un->un_pm_idle_timeid = NULL;
6590 	} else {
6591 		un->un_pm_idle_timeid =
6592 		    timeout(sd_pm_idletimeout_handler, un,
6593 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6594 	}
6595 	mutex_exit(&un->un_pm_mutex);
6596 	mutex_exit(SD_MUTEX(un));
6597 }
6598 
6599 
6600 /*
6601  *    Function: sd_pm_timeout_handler
6602  *
6603  * Description: Callback to tell framework we are idle.
6604  *
6605  *     Context: timeout(9f) thread context.
6606  */
6607 
6608 static void
6609 sd_pm_timeout_handler(void *arg)
6610 {
6611 	struct sd_lun *un = arg;
6612 
6613 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6614 	mutex_enter(&un->un_pm_mutex);
6615 	un->un_pm_timeid = NULL;
6616 	mutex_exit(&un->un_pm_mutex);
6617 }
6618 
6619 
6620 /*
6621  *    Function: sdpower
6622  *
6623  * Description: PM entry point.
6624  *
6625  * Return Code: DDI_SUCCESS
6626  *		DDI_FAILURE
6627  *
6628  *     Context: Kernel thread context
6629  */
6630 
6631 static int
6632 sdpower(dev_info_t *devi, int component, int level)
6633 {
6634 	struct sd_lun	*un;
6635 	int		instance;
6636 	int		rval = DDI_SUCCESS;
6637 	uint_t		i, log_page_size, maxcycles, ncycles;
6638 	uchar_t		*log_page_data;
6639 	int		log_sense_page;
6640 	int		medium_present;
6641 	time_t		intvlp;
6642 	struct pm_trans_data	sd_pm_tran_data;
6643 	uchar_t		save_state = SD_STATE_NORMAL;
6644 	int		sval;
6645 	uchar_t		state_before_pm;
6646 	int		got_semaphore_here;
6647 	sd_ssc_t	*ssc;
6648 	int	last_power_level = SD_SPINDLE_UNINIT;
6649 
6650 	instance = ddi_get_instance(devi);
6651 
6652 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6653 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6654 		return (DDI_FAILURE);
6655 	}
6656 
6657 	ssc = sd_ssc_init(un);
6658 
6659 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6660 
6661 	/*
6662 	 * Must synchronize power down with close.
6663 	 * Attempt to decrement/acquire the open/close semaphore,
6664 	 * but do NOT wait on it. If it's not greater than zero,
6665 	 * ie. it can't be decremented without waiting, then
6666 	 * someone else, either open or close, already has it
6667 	 * and the try returns 0. Use that knowledge here to determine
6668 	 * if it's OK to change the device power level.
6669 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6670 	 * here.
6671 	 */
6672 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6673 
6674 	mutex_enter(SD_MUTEX(un));
6675 
6676 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6677 	    un->un_ncmds_in_driver);
6678 
6679 	/*
6680 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6681 	 * already being processed in the driver, or if the semaphore was
6682 	 * not gotten here it indicates an open or close is being processed.
6683 	 * At the same time somebody is requesting to go to a lower power
6684 	 * that can't perform I/O, which can't happen, therefore we need to
6685 	 * return failure.
6686 	 */
6687 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6688 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6689 		mutex_exit(SD_MUTEX(un));
6690 
6691 		if (got_semaphore_here != 0) {
6692 			sema_v(&un->un_semoclose);
6693 		}
6694 		SD_TRACE(SD_LOG_IO_PM, un,
6695 		    "sdpower: exit, device has queued cmds.\n");
6696 
6697 		goto sdpower_failed;
6698 	}
6699 
6700 	/*
6701 	 * if it is OFFLINE that means the disk is completely dead
6702 	 * in our case we have to put the disk in on or off by sending commands
6703 	 * Of course that will fail anyway so return back here.
6704 	 *
6705 	 * Power changes to a device that's OFFLINE or SUSPENDED
6706 	 * are not allowed.
6707 	 */
6708 	if ((un->un_state == SD_STATE_OFFLINE) ||
6709 	    (un->un_state == SD_STATE_SUSPENDED)) {
6710 		mutex_exit(SD_MUTEX(un));
6711 
6712 		if (got_semaphore_here != 0) {
6713 			sema_v(&un->un_semoclose);
6714 		}
6715 		SD_TRACE(SD_LOG_IO_PM, un,
6716 		    "sdpower: exit, device is off-line.\n");
6717 
6718 		goto sdpower_failed;
6719 	}
6720 
6721 	/*
6722 	 * Change the device's state to indicate it's power level
6723 	 * is being changed. Do this to prevent a power off in the
6724 	 * middle of commands, which is especially bad on devices
6725 	 * that are really powered off instead of just spun down.
6726 	 */
6727 	state_before_pm = un->un_state;
6728 	un->un_state = SD_STATE_PM_CHANGING;
6729 
6730 	mutex_exit(SD_MUTEX(un));
6731 
6732 	/*
6733 	 * If log sense command is not supported, bypass the
6734 	 * following checking, otherwise, check the log sense
6735 	 * information for this device.
6736 	 */
6737 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6738 	    un->un_f_log_sense_supported) {
6739 		/*
6740 		 * Get the log sense information to understand whether the
6741 		 * the powercycle counts have gone beyond the threshhold.
6742 		 */
6743 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6744 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6745 
6746 		mutex_enter(SD_MUTEX(un));
6747 		log_sense_page = un->un_start_stop_cycle_page;
6748 		mutex_exit(SD_MUTEX(un));
6749 
6750 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6751 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6752 
6753 		if (rval != 0) {
6754 			if (rval == EIO)
6755 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6756 			else
6757 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6758 		}
6759 
6760 #ifdef	SDDEBUG
6761 		if (sd_force_pm_supported) {
6762 			/* Force a successful result */
6763 			rval = 0;
6764 		}
6765 #endif
6766 		if (rval != 0) {
6767 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6768 			    "Log Sense Failed\n");
6769 
6770 			kmem_free(log_page_data, log_page_size);
6771 			/* Cannot support power management on those drives */
6772 
6773 			if (got_semaphore_here != 0) {
6774 				sema_v(&un->un_semoclose);
6775 			}
6776 			/*
6777 			 * On exit put the state back to it's original value
6778 			 * and broadcast to anyone waiting for the power
6779 			 * change completion.
6780 			 */
6781 			mutex_enter(SD_MUTEX(un));
6782 			un->un_state = state_before_pm;
6783 			cv_broadcast(&un->un_suspend_cv);
6784 			mutex_exit(SD_MUTEX(un));
6785 			SD_TRACE(SD_LOG_IO_PM, un,
6786 			    "sdpower: exit, Log Sense Failed.\n");
6787 
6788 			goto sdpower_failed;
6789 		}
6790 
6791 		/*
6792 		 * From the page data - Convert the essential information to
6793 		 * pm_trans_data
6794 		 */
6795 		maxcycles =
6796 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6797 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6798 
6799 		ncycles =
6800 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6801 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6802 
6803 		if (un->un_f_pm_log_sense_smart) {
6804 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6805 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6806 			sd_pm_tran_data.un.smart_count.flag = 0;
6807 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6808 		} else {
6809 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6810 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6811 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6812 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6813 				    log_page_data[8+i];
6814 			}
6815 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6816 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6817 		}
6818 
6819 		kmem_free(log_page_data, log_page_size);
6820 
6821 		/*
6822 		 * Call pm_trans_check routine to get the Ok from
6823 		 * the global policy
6824 		 */
6825 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6826 #ifdef	SDDEBUG
6827 		if (sd_force_pm_supported) {
6828 			/* Force a successful result */
6829 			rval = 1;
6830 		}
6831 #endif
6832 		switch (rval) {
6833 		case 0:
6834 			/*
6835 			 * Not Ok to Power cycle or error in parameters passed
6836 			 * Would have given the advised time to consider power
6837 			 * cycle. Based on the new intvlp parameter we are
6838 			 * supposed to pretend we are busy so that pm framework
6839 			 * will never call our power entry point. Because of
6840 			 * that install a timeout handler and wait for the
6841 			 * recommended time to elapse so that power management
6842 			 * can be effective again.
6843 			 *
6844 			 * To effect this behavior, call pm_busy_component to
6845 			 * indicate to the framework this device is busy.
6846 			 * By not adjusting un_pm_count the rest of PM in
6847 			 * the driver will function normally, and independent
6848 			 * of this but because the framework is told the device
6849 			 * is busy it won't attempt powering down until it gets
6850 			 * a matching idle. The timeout handler sends this.
6851 			 * Note: sd_pm_entry can't be called here to do this
6852 			 * because sdpower may have been called as a result
6853 			 * of a call to pm_raise_power from within sd_pm_entry.
6854 			 *
6855 			 * If a timeout handler is already active then
6856 			 * don't install another.
6857 			 */
6858 			mutex_enter(&un->un_pm_mutex);
6859 			if (un->un_pm_timeid == NULL) {
6860 				un->un_pm_timeid =
6861 				    timeout(sd_pm_timeout_handler,
6862 				    un, intvlp * drv_usectohz(1000000));
6863 				mutex_exit(&un->un_pm_mutex);
6864 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6865 			} else {
6866 				mutex_exit(&un->un_pm_mutex);
6867 			}
6868 			if (got_semaphore_here != 0) {
6869 				sema_v(&un->un_semoclose);
6870 			}
6871 			/*
6872 			 * On exit put the state back to it's original value
6873 			 * and broadcast to anyone waiting for the power
6874 			 * change completion.
6875 			 */
6876 			mutex_enter(SD_MUTEX(un));
6877 			un->un_state = state_before_pm;
6878 			cv_broadcast(&un->un_suspend_cv);
6879 			mutex_exit(SD_MUTEX(un));
6880 
6881 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6882 			    "trans check Failed, not ok to power cycle.\n");
6883 
6884 			goto sdpower_failed;
6885 		case -1:
6886 			if (got_semaphore_here != 0) {
6887 				sema_v(&un->un_semoclose);
6888 			}
6889 			/*
6890 			 * On exit put the state back to it's original value
6891 			 * and broadcast to anyone waiting for the power
6892 			 * change completion.
6893 			 */
6894 			mutex_enter(SD_MUTEX(un));
6895 			un->un_state = state_before_pm;
6896 			cv_broadcast(&un->un_suspend_cv);
6897 			mutex_exit(SD_MUTEX(un));
6898 			SD_TRACE(SD_LOG_IO_PM, un,
6899 			    "sdpower: exit, trans check command Failed.\n");
6900 
6901 			goto sdpower_failed;
6902 		}
6903 	}
6904 
6905 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6906 		/*
6907 		 * Save the last state... if the STOP FAILS we need it
6908 		 * for restoring
6909 		 */
6910 		mutex_enter(SD_MUTEX(un));
6911 		save_state = un->un_last_state;
6912 		last_power_level = un->un_power_level;
6913 		/*
6914 		 * There must not be any cmds. getting processed
6915 		 * in the driver when we get here. Power to the
6916 		 * device is potentially going off.
6917 		 */
6918 		ASSERT(un->un_ncmds_in_driver == 0);
6919 		mutex_exit(SD_MUTEX(un));
6920 
6921 		/*
6922 		 * For now PM suspend the device completely before spindle is
6923 		 * turned off
6924 		 */
6925 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6926 		    == DDI_FAILURE) {
6927 			if (got_semaphore_here != 0) {
6928 				sema_v(&un->un_semoclose);
6929 			}
6930 			/*
6931 			 * On exit put the state back to it's original value
6932 			 * and broadcast to anyone waiting for the power
6933 			 * change completion.
6934 			 */
6935 			mutex_enter(SD_MUTEX(un));
6936 			un->un_state = state_before_pm;
6937 			un->un_power_level = last_power_level;
6938 			cv_broadcast(&un->un_suspend_cv);
6939 			mutex_exit(SD_MUTEX(un));
6940 			SD_TRACE(SD_LOG_IO_PM, un,
6941 			    "sdpower: exit, PM suspend Failed.\n");
6942 
6943 			goto sdpower_failed;
6944 		}
6945 	}
6946 
6947 	/*
6948 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6949 	 * close, or strategy. Dump no long uses this routine, it uses it's
6950 	 * own code so it can be done in polled mode.
6951 	 */
6952 
6953 	medium_present = TRUE;
6954 
6955 	/*
6956 	 * When powering up, issue a TUR in case the device is at unit
6957 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6958 	 * a deadlock on un_pm_busy_cv will occur.
6959 	 */
6960 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6961 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6962 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6963 		if (sval != 0)
6964 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6965 	}
6966 
6967 	if (un->un_f_power_condition_supported) {
6968 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6969 		    "IDLE", "ACTIVE"};
6970 		SD_TRACE(SD_LOG_IO_PM, un,
6971 		    "sdpower: sending \'%s\' power condition",
6972 		    pm_condition_name[level]);
6973 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6974 		    sd_pl2pc[level], SD_PATH_DIRECT);
6975 	} else {
6976 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6977 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6978 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6979 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6980 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6981 	}
6982 	if (sval != 0) {
6983 		if (sval == EIO)
6984 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6985 		else
6986 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6987 	}
6988 
6989 	/* Command failed, check for media present. */
6990 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6991 		medium_present = FALSE;
6992 	}
6993 
6994 	/*
6995 	 * The conditions of interest here are:
6996 	 *   if a spindle off with media present fails,
6997 	 *	then restore the state and return an error.
6998 	 *   else if a spindle on fails,
6999 	 *	then return an error (there's no state to restore).
7000 	 * In all other cases we setup for the new state
7001 	 * and return success.
7002 	 */
7003 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
7004 		if ((medium_present == TRUE) && (sval != 0)) {
7005 			/* The stop command from above failed */
7006 			rval = DDI_FAILURE;
7007 			/*
7008 			 * The stop command failed, and we have media
7009 			 * present. Put the level back by calling the
7010 			 * sd_pm_resume() and set the state back to
7011 			 * it's previous value.
7012 			 */
7013 			(void) sd_pm_state_change(un, last_power_level,
7014 			    SD_PM_STATE_ROLLBACK);
7015 			mutex_enter(SD_MUTEX(un));
7016 			un->un_last_state = save_state;
7017 			mutex_exit(SD_MUTEX(un));
7018 		} else if (un->un_f_monitor_media_state) {
7019 			/*
7020 			 * The stop command from above succeeded.
7021 			 * Terminate watch thread in case of removable media
7022 			 * devices going into low power state. This is as per
7023 			 * the requirements of pm framework, otherwise commands
7024 			 * will be generated for the device (through watch
7025 			 * thread), even when the device is in low power state.
7026 			 */
7027 			mutex_enter(SD_MUTEX(un));
7028 			un->un_f_watcht_stopped = FALSE;
7029 			if (un->un_swr_token != NULL) {
7030 				opaque_t temp_token = un->un_swr_token;
7031 				un->un_f_watcht_stopped = TRUE;
7032 				un->un_swr_token = NULL;
7033 				mutex_exit(SD_MUTEX(un));
7034 				(void) scsi_watch_request_terminate(temp_token,
7035 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
7036 			} else {
7037 				mutex_exit(SD_MUTEX(un));
7038 			}
7039 		}
7040 	} else {
7041 		/*
7042 		 * The level requested is I/O capable.
7043 		 * Legacy behavior: return success on a failed spinup
7044 		 * if there is no media in the drive.
7045 		 * Do this by looking at medium_present here.
7046 		 */
7047 		if ((sval != 0) && medium_present) {
7048 			/* The start command from above failed */
7049 			rval = DDI_FAILURE;
7050 		} else {
7051 			/*
7052 			 * The start command from above succeeded
7053 			 * PM resume the devices now that we have
7054 			 * started the disks
7055 			 */
7056 			(void) sd_pm_state_change(un, level,
7057 			    SD_PM_STATE_CHANGE);
7058 
7059 			/*
7060 			 * Resume the watch thread since it was suspended
7061 			 * when the device went into low power mode.
7062 			 */
7063 			if (un->un_f_monitor_media_state) {
7064 				mutex_enter(SD_MUTEX(un));
7065 				if (un->un_f_watcht_stopped == TRUE) {
7066 					opaque_t temp_token;
7067 
7068 					un->un_f_watcht_stopped = FALSE;
7069 					mutex_exit(SD_MUTEX(un));
7070 					temp_token =
7071 					    sd_watch_request_submit(un);
7072 					mutex_enter(SD_MUTEX(un));
7073 					un->un_swr_token = temp_token;
7074 				}
7075 				mutex_exit(SD_MUTEX(un));
7076 			}
7077 		}
7078 	}
7079 
7080 	if (got_semaphore_here != 0) {
7081 		sema_v(&un->un_semoclose);
7082 	}
7083 	/*
7084 	 * On exit put the state back to it's original value
7085 	 * and broadcast to anyone waiting for the power
7086 	 * change completion.
7087 	 */
7088 	mutex_enter(SD_MUTEX(un));
7089 	un->un_state = state_before_pm;
7090 	cv_broadcast(&un->un_suspend_cv);
7091 	mutex_exit(SD_MUTEX(un));
7092 
7093 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7094 
7095 	sd_ssc_fini(ssc);
7096 	return (rval);
7097 
7098 sdpower_failed:
7099 
7100 	sd_ssc_fini(ssc);
7101 	return (DDI_FAILURE);
7102 }
7103 
7104 
7105 
7106 /*
7107  *    Function: sdattach
7108  *
7109  * Description: Driver's attach(9e) entry point function.
7110  *
7111  *   Arguments: devi - opaque device info handle
7112  *		cmd  - attach  type
7113  *
7114  * Return Code: DDI_SUCCESS
7115  *		DDI_FAILURE
7116  *
7117  *     Context: Kernel thread context
7118  */
7119 
7120 static int
7121 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7122 {
7123 	switch (cmd) {
7124 	case DDI_ATTACH:
7125 		return (sd_unit_attach(devi));
7126 	case DDI_RESUME:
7127 		return (sd_ddi_resume(devi));
7128 	default:
7129 		break;
7130 	}
7131 	return (DDI_FAILURE);
7132 }
7133 
7134 
7135 /*
7136  *    Function: sddetach
7137  *
7138  * Description: Driver's detach(9E) entry point function.
7139  *
7140  *   Arguments: devi - opaque device info handle
7141  *		cmd  - detach  type
7142  *
7143  * Return Code: DDI_SUCCESS
7144  *		DDI_FAILURE
7145  *
7146  *     Context: Kernel thread context
7147  */
7148 
7149 static int
7150 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7151 {
7152 	switch (cmd) {
7153 	case DDI_DETACH:
7154 		return (sd_unit_detach(devi));
7155 	case DDI_SUSPEND:
7156 		return (sd_ddi_suspend(devi));
7157 	default:
7158 		break;
7159 	}
7160 	return (DDI_FAILURE);
7161 }
7162 
7163 
7164 /*
7165  *     Function: sd_sync_with_callback
7166  *
7167  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7168  *		 state while the callback routine is active.
7169  *
7170  *    Arguments: un: softstate structure for the instance
7171  *
7172  *	Context: Kernel thread context
7173  */
7174 
7175 static void
7176 sd_sync_with_callback(struct sd_lun *un)
7177 {
7178 	ASSERT(un != NULL);
7179 
7180 	mutex_enter(SD_MUTEX(un));
7181 
7182 	ASSERT(un->un_in_callback >= 0);
7183 
7184 	while (un->un_in_callback > 0) {
7185 		mutex_exit(SD_MUTEX(un));
7186 		delay(2);
7187 		mutex_enter(SD_MUTEX(un));
7188 	}
7189 
7190 	mutex_exit(SD_MUTEX(un));
7191 }
7192 
7193 /*
7194  *    Function: sd_unit_attach
7195  *
7196  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7197  *		the soft state structure for the device and performs
7198  *		all necessary structure and device initializations.
7199  *
7200  *   Arguments: devi: the system's dev_info_t for the device.
7201  *
7202  * Return Code: DDI_SUCCESS if attach is successful.
7203  *		DDI_FAILURE if any part of the attach fails.
7204  *
7205  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7206  *		Kernel thread context only.  Can sleep.
7207  */
7208 
7209 static int
7210 sd_unit_attach(dev_info_t *devi)
7211 {
7212 	struct	scsi_device	*devp;
7213 	struct	sd_lun		*un;
7214 	char			*variantp;
7215 	char			name_str[48];
7216 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7217 	int	instance;
7218 	int	rval;
7219 	int	wc_enabled;
7220 	int	wc_changeable;
7221 	int	tgt;
7222 	uint64_t	capacity;
7223 	uint_t		lbasize = 0;
7224 	dev_info_t	*pdip = ddi_get_parent(devi);
7225 	int		offbyone = 0;
7226 	int		geom_label_valid = 0;
7227 	sd_ssc_t	*ssc;
7228 	int		status;
7229 	struct sd_fm_internal	*sfip = NULL;
7230 	int		max_xfer_size;
7231 
7232 	/*
7233 	 * Retrieve the target driver's private data area. This was set
7234 	 * up by the HBA.
7235 	 */
7236 	devp = ddi_get_driver_private(devi);
7237 
7238 	/*
7239 	 * Retrieve the target ID of the device.
7240 	 */
7241 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7242 	    SCSI_ADDR_PROP_TARGET, -1);
7243 
7244 	/*
7245 	 * Since we have no idea what state things were left in by the last
7246 	 * user of the device, set up some 'default' settings, ie. turn 'em
7247 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7248 	 * Do this before the scsi_probe, which sends an inquiry.
7249 	 * This is a fix for bug (4430280).
7250 	 * Of special importance is wide-xfer. The drive could have been left
7251 	 * in wide transfer mode by the last driver to communicate with it,
7252 	 * this includes us. If that's the case, and if the following is not
7253 	 * setup properly or we don't re-negotiate with the drive prior to
7254 	 * transferring data to/from the drive, it causes bus parity errors,
7255 	 * data overruns, and unexpected interrupts. This first occurred when
7256 	 * the fix for bug (4378686) was made.
7257 	 */
7258 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7259 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7260 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7261 
7262 	/*
7263 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7264 	 * on a target. Setting it per lun instance actually sets the
7265 	 * capability of this target, which affects those luns already
7266 	 * attached on the same target. So during attach, we can only disable
7267 	 * this capability only when no other lun has been attached on this
7268 	 * target. By doing this, we assume a target has the same tagged-qing
7269 	 * capability for every lun. The condition can be removed when HBA
7270 	 * is changed to support per lun based tagged-qing capability.
7271 	 */
7272 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7273 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7274 	}
7275 
7276 	/*
7277 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7278 	 * This call will allocate and fill in the scsi_inquiry structure
7279 	 * and point the sd_inq member of the scsi_device structure to it.
7280 	 * If the attach succeeds, then this memory will not be de-allocated
7281 	 * (via scsi_unprobe()) until the instance is detached.
7282 	 */
7283 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7284 		goto probe_failed;
7285 	}
7286 
7287 	/*
7288 	 * Check the device type as specified in the inquiry data and
7289 	 * claim it if it is of a type that we support.
7290 	 */
7291 	switch (devp->sd_inq->inq_dtype) {
7292 	case DTYPE_DIRECT:
7293 		break;
7294 	case DTYPE_RODIRECT:
7295 		break;
7296 	case DTYPE_OPTICAL:
7297 		break;
7298 	case DTYPE_NOTPRESENT:
7299 	default:
7300 		/* Unsupported device type; fail the attach. */
7301 		goto probe_failed;
7302 	}
7303 
7304 	/*
7305 	 * Allocate the soft state structure for this unit.
7306 	 *
7307 	 * We rely upon this memory being set to all zeroes by
7308 	 * ddi_soft_state_zalloc().  We assume that any member of the
7309 	 * soft state structure that is not explicitly initialized by
7310 	 * this routine will have a value of zero.
7311 	 */
7312 	instance = ddi_get_instance(devp->sd_dev);
7313 #ifndef XPV_HVM_DRIVER
7314 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7315 		goto probe_failed;
7316 	}
7317 #endif /* !XPV_HVM_DRIVER */
7318 
7319 	/*
7320 	 * Retrieve a pointer to the newly-allocated soft state.
7321 	 *
7322 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7323 	 * was successful, unless something has gone horribly wrong and the
7324 	 * ddi's soft state internals are corrupt (in which case it is
7325 	 * probably better to halt here than just fail the attach....)
7326 	 */
7327 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7328 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7329 		    instance);
7330 		/*NOTREACHED*/
7331 	}
7332 
7333 	/*
7334 	 * Link the back ptr of the driver soft state to the scsi_device
7335 	 * struct for this lun.
7336 	 * Save a pointer to the softstate in the driver-private area of
7337 	 * the scsi_device struct.
7338 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7339 	 * we first set un->un_sd below.
7340 	 */
7341 	un->un_sd = devp;
7342 	devp->sd_private = (opaque_t)un;
7343 
7344 	/*
7345 	 * The following must be after devp is stored in the soft state struct.
7346 	 */
7347 #ifdef SDDEBUG
7348 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7349 	    "%s_unit_attach: un:0x%p instance:%d\n",
7350 	    ddi_driver_name(devi), un, instance);
7351 #endif
7352 
7353 	/*
7354 	 * Set up the device type and node type (for the minor nodes).
7355 	 * By default we assume that the device can at least support the
7356 	 * Common Command Set. Call it a CD-ROM if it reports itself
7357 	 * as a RODIRECT device.
7358 	 */
7359 	switch (devp->sd_inq->inq_dtype) {
7360 	case DTYPE_RODIRECT:
7361 		un->un_node_type = DDI_NT_CD_CHAN;
7362 		un->un_ctype	 = CTYPE_CDROM;
7363 		break;
7364 	case DTYPE_OPTICAL:
7365 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7366 		un->un_ctype	 = CTYPE_ROD;
7367 		break;
7368 	default:
7369 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7370 		un->un_ctype	 = CTYPE_CCS;
7371 		break;
7372 	}
7373 
7374 	/*
7375 	 * Try to read the interconnect type from the HBA.
7376 	 *
7377 	 * Note: This driver is currently compiled as two binaries, a parallel
7378 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7379 	 * differences are determined at compile time. In the future a single
7380 	 * binary will be provided and the interconnect type will be used to
7381 	 * differentiate between fibre and parallel scsi behaviors. At that time
7382 	 * it will be necessary for all fibre channel HBAs to support this
7383 	 * property.
7384 	 *
7385 	 * set un_f_is_fiber to TRUE ( default fiber )
7386 	 */
7387 	un->un_f_is_fibre = TRUE;
7388 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7389 	case INTERCONNECT_SSA:
7390 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7392 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7393 		break;
7394 	case INTERCONNECT_PARALLEL:
7395 		un->un_f_is_fibre = FALSE;
7396 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7397 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7398 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7399 		break;
7400 	case INTERCONNECT_SAS:
7401 		un->un_f_is_fibre = FALSE;
7402 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7403 		un->un_node_type = DDI_NT_BLOCK_SAS;
7404 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7405 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7406 		break;
7407 	case INTERCONNECT_SATA:
7408 		un->un_f_is_fibre = FALSE;
7409 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7410 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7411 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7412 		break;
7413 	case INTERCONNECT_FIBRE:
7414 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7415 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7416 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7417 		break;
7418 	case INTERCONNECT_FABRIC:
7419 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7420 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7421 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7422 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7423 		break;
7424 	default:
7425 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7426 		/*
7427 		 * The HBA does not support the "interconnect-type" property
7428 		 * (or did not provide a recognized type).
7429 		 *
7430 		 * Note: This will be obsoleted when a single fibre channel
7431 		 * and parallel scsi driver is delivered. In the meantime the
7432 		 * interconnect type will be set to the platform default.If that
7433 		 * type is not parallel SCSI, it means that we should be
7434 		 * assuming "ssd" semantics. However, here this also means that
7435 		 * the FC HBA is not supporting the "interconnect-type" property
7436 		 * like we expect it to, so log this occurrence.
7437 		 */
7438 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7439 		if (!SD_IS_PARALLEL_SCSI(un)) {
7440 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7441 			    "sd_unit_attach: un:0x%p Assuming "
7442 			    "INTERCONNECT_FIBRE\n", un);
7443 		} else {
7444 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7445 			    "sd_unit_attach: un:0x%p Assuming "
7446 			    "INTERCONNECT_PARALLEL\n", un);
7447 			un->un_f_is_fibre = FALSE;
7448 		}
7449 #else
7450 		/*
7451 		 * Note: This source will be implemented when a single fibre
7452 		 * channel and parallel scsi driver is delivered. The default
7453 		 * will be to assume that if a device does not support the
7454 		 * "interconnect-type" property it is a parallel SCSI HBA and
7455 		 * we will set the interconnect type for parallel scsi.
7456 		 */
7457 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7458 		un->un_f_is_fibre = FALSE;
7459 #endif
7460 		break;
7461 	}
7462 
7463 	if (un->un_f_is_fibre == TRUE) {
7464 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7465 		    SCSI_VERSION_3) {
7466 			switch (un->un_interconnect_type) {
7467 			case SD_INTERCONNECT_FIBRE:
7468 			case SD_INTERCONNECT_SSA:
7469 				un->un_node_type = DDI_NT_BLOCK_WWN;
7470 				break;
7471 			default:
7472 				break;
7473 			}
7474 		}
7475 	}
7476 
7477 	/*
7478 	 * Initialize the Request Sense command for the target
7479 	 */
7480 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7481 		goto alloc_rqs_failed;
7482 	}
7483 
7484 	/*
7485 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7486 	 * with separate binary for sd and ssd.
7487 	 *
7488 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7489 	 * The hardcoded values will go away when Sparc uses 1 binary
7490 	 * for sd and ssd.  This hardcoded values need to match
7491 	 * SD_RETRY_COUNT in sddef.h
7492 	 * The value used is base on interconnect type.
7493 	 * fibre = 3, parallel = 5
7494 	 */
7495 #if defined(__i386) || defined(__amd64)
7496 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7497 #else
7498 	un->un_retry_count = SD_RETRY_COUNT;
7499 #endif
7500 
7501 	/*
7502 	 * Set the per disk retry count to the default number of retries
7503 	 * for disks and CDROMs. This value can be overridden by the
7504 	 * disk property list or an entry in sd.conf.
7505 	 */
7506 	un->un_notready_retry_count =
7507 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7508 	    : DISK_NOT_READY_RETRY_COUNT(un);
7509 
7510 	/*
7511 	 * Set the busy retry count to the default value of un_retry_count.
7512 	 * This can be overridden by entries in sd.conf or the device
7513 	 * config table.
7514 	 */
7515 	un->un_busy_retry_count = un->un_retry_count;
7516 
7517 	/*
7518 	 * Init the reset threshold for retries.  This number determines
7519 	 * how many retries must be performed before a reset can be issued
7520 	 * (for certain error conditions). This can be overridden by entries
7521 	 * in sd.conf or the device config table.
7522 	 */
7523 	un->un_reset_retry_count = (un->un_retry_count / 2);
7524 
7525 	/*
7526 	 * Set the victim_retry_count to the default un_retry_count
7527 	 */
7528 	un->un_victim_retry_count = (2 * un->un_retry_count);
7529 
7530 	/*
7531 	 * Set the reservation release timeout to the default value of
7532 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7533 	 * device config table.
7534 	 */
7535 	un->un_reserve_release_time = 5;
7536 
7537 	/*
7538 	 * Set up the default maximum transfer size. Note that this may
7539 	 * get updated later in the attach, when setting up default wide
7540 	 * operations for disks.
7541 	 */
7542 #if defined(__i386) || defined(__amd64)
7543 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7544 	un->un_partial_dma_supported = 1;
7545 #else
7546 	un->un_max_xfer_size = (uint_t)maxphys;
7547 #endif
7548 
7549 	/*
7550 	 * Get "allow bus device reset" property (defaults to "enabled" if
7551 	 * the property was not defined). This is to disable bus resets for
7552 	 * certain kinds of error recovery. Note: In the future when a run-time
7553 	 * fibre check is available the soft state flag should default to
7554 	 * enabled.
7555 	 */
7556 	if (un->un_f_is_fibre == TRUE) {
7557 		un->un_f_allow_bus_device_reset = TRUE;
7558 	} else {
7559 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7560 		    "allow-bus-device-reset", 1) != 0) {
7561 			un->un_f_allow_bus_device_reset = TRUE;
7562 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7563 			    "sd_unit_attach: un:0x%p Bus device reset "
7564 			    "enabled\n", un);
7565 		} else {
7566 			un->un_f_allow_bus_device_reset = FALSE;
7567 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7568 			    "sd_unit_attach: un:0x%p Bus device reset "
7569 			    "disabled\n", un);
7570 		}
7571 	}
7572 
7573 	/*
7574 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7575 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7576 	 *
7577 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7578 	 * property. The new "variant" property with a value of "atapi" has been
7579 	 * introduced so that future 'variants' of standard SCSI behavior (like
7580 	 * atapi) could be specified by the underlying HBA drivers by supplying
7581 	 * a new value for the "variant" property, instead of having to define a
7582 	 * new property.
7583 	 */
7584 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7585 		un->un_f_cfg_is_atapi = TRUE;
7586 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7587 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7588 	}
7589 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7590 	    &variantp) == DDI_PROP_SUCCESS) {
7591 		if (strcmp(variantp, "atapi") == 0) {
7592 			un->un_f_cfg_is_atapi = TRUE;
7593 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7594 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7595 		}
7596 		ddi_prop_free(variantp);
7597 	}
7598 
7599 	un->un_cmd_timeout	= SD_IO_TIME;
7600 
7601 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7602 
7603 	/* Info on current states, statuses, etc. (Updated frequently) */
7604 	un->un_state		= SD_STATE_NORMAL;
7605 	un->un_last_state	= SD_STATE_NORMAL;
7606 
7607 	/* Control & status info for command throttling */
7608 	un->un_throttle		= sd_max_throttle;
7609 	un->un_saved_throttle	= sd_max_throttle;
7610 	un->un_min_throttle	= sd_min_throttle;
7611 
7612 	if (un->un_f_is_fibre == TRUE) {
7613 		un->un_f_use_adaptive_throttle = TRUE;
7614 	} else {
7615 		un->un_f_use_adaptive_throttle = FALSE;
7616 	}
7617 
7618 	/* Removable media support. */
7619 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7620 	un->un_mediastate		= DKIO_NONE;
7621 	un->un_specified_mediastate	= DKIO_NONE;
7622 
7623 	/* CVs for suspend/resume (PM or DR) */
7624 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7625 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7626 
7627 	/* Power management support. */
7628 	un->un_power_level = SD_SPINDLE_UNINIT;
7629 
7630 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7631 	un->un_f_wcc_inprog = 0;
7632 
7633 	/*
7634 	 * The open/close semaphore is used to serialize threads executing
7635 	 * in the driver's open & close entry point routines for a given
7636 	 * instance.
7637 	 */
7638 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7639 
7640 	/*
7641 	 * The conf file entry and softstate variable is a forceful override,
7642 	 * meaning a non-zero value must be entered to change the default.
7643 	 */
7644 	un->un_f_disksort_disabled = FALSE;
7645 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7646 	un->un_f_enable_rmw = FALSE;
7647 
7648 	/*
7649 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7650 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7651 	 */
7652 	un->un_f_mmc_gesn_polling = TRUE;
7653 
7654 	/*
7655 	 * physical sector size defaults to DEV_BSIZE currently. We can
7656 	 * override this value via the driver configuration file so we must
7657 	 * set it before calling sd_read_unit_properties().
7658 	 */
7659 	un->un_phy_blocksize = DEV_BSIZE;
7660 
7661 	/*
7662 	 * Retrieve the properties from the static driver table or the driver
7663 	 * configuration file (.conf) for this unit and update the soft state
7664 	 * for the device as needed for the indicated properties.
7665 	 * Note: the property configuration needs to occur here as some of the
7666 	 * following routines may have dependencies on soft state flags set
7667 	 * as part of the driver property configuration.
7668 	 */
7669 	sd_read_unit_properties(un);
7670 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7671 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7672 
7673 	/*
7674 	 * Only if a device has "hotpluggable" property, it is
7675 	 * treated as hotpluggable device. Otherwise, it is
7676 	 * regarded as non-hotpluggable one.
7677 	 */
7678 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7679 	    -1) != -1) {
7680 		un->un_f_is_hotpluggable = TRUE;
7681 	}
7682 
7683 	/*
7684 	 * set unit's attributes(flags) according to "hotpluggable" and
7685 	 * RMB bit in INQUIRY data.
7686 	 */
7687 	sd_set_unit_attributes(un, devi);
7688 
7689 	/*
7690 	 * By default, we mark the capacity, lbasize, and geometry
7691 	 * as invalid. Only if we successfully read a valid capacity
7692 	 * will we update the un_blockcount and un_tgt_blocksize with the
7693 	 * valid values (the geometry will be validated later).
7694 	 */
7695 	un->un_f_blockcount_is_valid	= FALSE;
7696 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7697 
7698 	/*
7699 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7700 	 * otherwise.
7701 	 */
7702 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7703 	un->un_blockcount = 0;
7704 
7705 	/*
7706 	 * Set up the per-instance info needed to determine the correct
7707 	 * CDBs and other info for issuing commands to the target.
7708 	 */
7709 	sd_init_cdb_limits(un);
7710 
7711 	/*
7712 	 * Set up the IO chains to use, based upon the target type.
7713 	 */
7714 	if (un->un_f_non_devbsize_supported) {
7715 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7716 	} else {
7717 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7718 	}
7719 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7720 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7721 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7722 
7723 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7724 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7725 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7726 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7727 
7728 
7729 	if (ISCD(un)) {
7730 		un->un_additional_codes = sd_additional_codes;
7731 	} else {
7732 		un->un_additional_codes = NULL;
7733 	}
7734 
7735 	/*
7736 	 * Create the kstats here so they can be available for attach-time
7737 	 * routines that send commands to the unit (either polled or via
7738 	 * sd_send_scsi_cmd).
7739 	 *
7740 	 * Note: This is a critical sequence that needs to be maintained:
7741 	 *	1) Instantiate the kstats here, before any routines using the
7742 	 *	   iopath (i.e. sd_send_scsi_cmd).
7743 	 *	2) Instantiate and initialize the partition stats
7744 	 *	   (sd_set_pstats).
7745 	 *	3) Initialize the error stats (sd_set_errstats), following
7746 	 *	   sd_validate_geometry(),sd_register_devid(),
7747 	 *	   and sd_cache_control().
7748 	 */
7749 
7750 	un->un_stats = kstat_create(sd_label, instance,
7751 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7752 	if (un->un_stats != NULL) {
7753 		un->un_stats->ks_lock = SD_MUTEX(un);
7754 		kstat_install(un->un_stats);
7755 	}
7756 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7757 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7758 
7759 	sd_create_errstats(un, instance);
7760 	if (un->un_errstats == NULL) {
7761 		goto create_errstats_failed;
7762 	}
7763 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7764 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7765 
7766 	/*
7767 	 * The following if/else code was relocated here from below as part
7768 	 * of the fix for bug (4430280). However with the default setup added
7769 	 * on entry to this routine, it's no longer absolutely necessary for
7770 	 * this to be before the call to sd_spin_up_unit.
7771 	 */
7772 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7773 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7774 		    (devp->sd_inq->inq_ansi == 5)) &&
7775 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7776 
7777 		/*
7778 		 * If tagged queueing is supported by the target
7779 		 * and by the host adapter then we will enable it
7780 		 */
7781 		un->un_tagflags = 0;
7782 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7783 		    (un->un_f_arq_enabled == TRUE)) {
7784 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7785 			    1, 1) == 1) {
7786 				un->un_tagflags = FLAG_STAG;
7787 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7788 				    "sd_unit_attach: un:0x%p tag queueing "
7789 				    "enabled\n", un);
7790 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7791 			    "untagged-qing", 0) == 1) {
7792 				un->un_f_opt_queueing = TRUE;
7793 				un->un_saved_throttle = un->un_throttle =
7794 				    min(un->un_throttle, 3);
7795 			} else {
7796 				un->un_f_opt_queueing = FALSE;
7797 				un->un_saved_throttle = un->un_throttle = 1;
7798 			}
7799 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7800 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7801 			/* The Host Adapter supports internal queueing. */
7802 			un->un_f_opt_queueing = TRUE;
7803 			un->un_saved_throttle = un->un_throttle =
7804 			    min(un->un_throttle, 3);
7805 		} else {
7806 			un->un_f_opt_queueing = FALSE;
7807 			un->un_saved_throttle = un->un_throttle = 1;
7808 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7809 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7810 		}
7811 
7812 		/*
7813 		 * Enable large transfers for SATA/SAS drives
7814 		 */
7815 		if (SD_IS_SERIAL(un)) {
7816 			un->un_max_xfer_size =
7817 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7818 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7819 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7820 			    "sd_unit_attach: un:0x%p max transfer "
7821 			    "size=0x%x\n", un, un->un_max_xfer_size);
7822 
7823 		}
7824 
7825 		/* Setup or tear down default wide operations for disks */
7826 
7827 		/*
7828 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7829 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7830 		 * system and be set to different values. In the future this
7831 		 * code may need to be updated when the ssd module is
7832 		 * obsoleted and removed from the system. (4299588)
7833 		 */
7834 		if (SD_IS_PARALLEL_SCSI(un) &&
7835 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7836 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7837 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7838 			    1, 1) == 1) {
7839 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7840 				    "sd_unit_attach: un:0x%p Wide Transfer "
7841 				    "enabled\n", un);
7842 			}
7843 
7844 			/*
7845 			 * If tagged queuing has also been enabled, then
7846 			 * enable large xfers
7847 			 */
7848 			if (un->un_saved_throttle == sd_max_throttle) {
7849 				un->un_max_xfer_size =
7850 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7851 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7852 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7853 				    "sd_unit_attach: un:0x%p max transfer "
7854 				    "size=0x%x\n", un, un->un_max_xfer_size);
7855 			}
7856 		} else {
7857 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7858 			    0, 1) == 1) {
7859 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7860 				    "sd_unit_attach: un:0x%p "
7861 				    "Wide Transfer disabled\n", un);
7862 			}
7863 		}
7864 	} else {
7865 		un->un_tagflags = FLAG_STAG;
7866 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7867 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7868 	}
7869 
7870 	/*
7871 	 * If this target supports LUN reset, try to enable it.
7872 	 */
7873 	if (un->un_f_lun_reset_enabled) {
7874 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7875 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7876 			    "un:0x%p lun_reset capability set\n", un);
7877 		} else {
7878 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7879 			    "un:0x%p lun-reset capability not set\n", un);
7880 		}
7881 	}
7882 
7883 	/*
7884 	 * Adjust the maximum transfer size. This is to fix
7885 	 * the problem of partial DMA support on SPARC. Some
7886 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7887 	 * size, which requires partial DMA support on SPARC.
7888 	 * In the future the SPARC pci nexus driver may solve
7889 	 * the problem instead of this fix.
7890 	 */
7891 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7892 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7893 		/* We need DMA partial even on sparc to ensure sddump() works */
7894 		un->un_max_xfer_size = max_xfer_size;
7895 		if (un->un_partial_dma_supported == 0)
7896 			un->un_partial_dma_supported = 1;
7897 	}
7898 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7899 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7900 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7901 		    un->un_max_xfer_size) == 1) {
7902 			un->un_buf_breakup_supported = 1;
7903 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7904 			    "un:0x%p Buf breakup enabled\n", un);
7905 		}
7906 	}
7907 
7908 	/*
7909 	 * Set PKT_DMA_PARTIAL flag.
7910 	 */
7911 	if (un->un_partial_dma_supported == 1) {
7912 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7913 	} else {
7914 		un->un_pkt_flags = 0;
7915 	}
7916 
7917 	/* Initialize sd_ssc_t for internal uscsi commands */
7918 	ssc = sd_ssc_init(un);
7919 	scsi_fm_init(devp);
7920 
7921 	/*
7922 	 * Allocate memory for SCSI FMA stuffs.
7923 	 */
7924 	un->un_fm_private =
7925 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7926 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7927 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7928 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7929 	sfip->fm_ssc.ssc_un = un;
7930 
7931 	if (ISCD(un) ||
7932 	    un->un_f_has_removable_media ||
7933 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7934 		/*
7935 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7936 		 * Their log are unchanged.
7937 		 */
7938 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7939 	} else {
7940 		/*
7941 		 * If enter here, it should be non-CDROM and FM-capable
7942 		 * device, and it will not keep the old scsi_log as before
7943 		 * in /var/adm/messages. However, the property
7944 		 * "fm-scsi-log" will control whether the FM telemetry will
7945 		 * be logged in /var/adm/messages.
7946 		 */
7947 		int fm_scsi_log;
7948 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7949 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7950 
7951 		if (fm_scsi_log)
7952 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7953 		else
7954 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7955 	}
7956 
7957 	/*
7958 	 * At this point in the attach, we have enough info in the
7959 	 * soft state to be able to issue commands to the target.
7960 	 *
7961 	 * All command paths used below MUST issue their commands as
7962 	 * SD_PATH_DIRECT. This is important as intermediate layers
7963 	 * are not all initialized yet (such as PM).
7964 	 */
7965 
7966 	/*
7967 	 * Send a TEST UNIT READY command to the device. This should clear
7968 	 * any outstanding UNIT ATTENTION that may be present.
7969 	 *
7970 	 * Note: Don't check for success, just track if there is a reservation,
7971 	 * this is a throw away command to clear any unit attentions.
7972 	 *
7973 	 * Note: This MUST be the first command issued to the target during
7974 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7975 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7976 	 * with attempts at spinning up a device with no media.
7977 	 */
7978 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7979 	if (status != 0) {
7980 		if (status == EACCES)
7981 			reservation_flag = SD_TARGET_IS_RESERVED;
7982 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7983 	}
7984 
7985 	/*
7986 	 * If the device is NOT a removable media device, attempt to spin
7987 	 * it up (using the START_STOP_UNIT command) and read its capacity
7988 	 * (using the READ CAPACITY command).  Note, however, that either
7989 	 * of these could fail and in some cases we would continue with
7990 	 * the attach despite the failure (see below).
7991 	 */
7992 	if (un->un_f_descr_format_supported) {
7993 
7994 		switch (sd_spin_up_unit(ssc)) {
7995 		case 0:
7996 			/*
7997 			 * Spin-up was successful; now try to read the
7998 			 * capacity.  If successful then save the results
7999 			 * and mark the capacity & lbasize as valid.
8000 			 */
8001 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8002 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8003 
8004 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
8005 			    &lbasize, SD_PATH_DIRECT);
8006 
8007 			switch (status) {
8008 			case 0: {
8009 				if (capacity > DK_MAX_BLOCKS) {
8010 #ifdef _LP64
8011 					if ((capacity + 1) >
8012 					    SD_GROUP1_MAX_ADDRESS) {
8013 						/*
8014 						 * Enable descriptor format
8015 						 * sense data so that we can
8016 						 * get 64 bit sense data
8017 						 * fields.
8018 						 */
8019 						sd_enable_descr_sense(ssc);
8020 					}
8021 #else
8022 					/* 32-bit kernels can't handle this */
8023 					scsi_log(SD_DEVINFO(un),
8024 					    sd_label, CE_WARN,
8025 					    "disk has %llu blocks, which "
8026 					    "is too large for a 32-bit "
8027 					    "kernel", capacity);
8028 
8029 #if defined(__i386) || defined(__amd64)
8030 					/*
8031 					 * 1TB disk was treated as (1T - 512)B
8032 					 * in the past, so that it might have
8033 					 * valid VTOC and solaris partitions,
8034 					 * we have to allow it to continue to
8035 					 * work.
8036 					 */
8037 					if (capacity -1 > DK_MAX_BLOCKS)
8038 #endif
8039 					goto spinup_failed;
8040 #endif
8041 				}
8042 
8043 				/*
8044 				 * Here it's not necessary to check the case:
8045 				 * the capacity of the device is bigger than
8046 				 * what the max hba cdb can support. Because
8047 				 * sd_send_scsi_READ_CAPACITY will retrieve
8048 				 * the capacity by sending USCSI command, which
8049 				 * is constrained by the max hba cdb. Actually,
8050 				 * sd_send_scsi_READ_CAPACITY will return
8051 				 * EINVAL when using bigger cdb than required
8052 				 * cdb length. Will handle this case in
8053 				 * "case EINVAL".
8054 				 */
8055 
8056 				/*
8057 				 * The following relies on
8058 				 * sd_send_scsi_READ_CAPACITY never
8059 				 * returning 0 for capacity and/or lbasize.
8060 				 */
8061 				sd_update_block_info(un, lbasize, capacity);
8062 
8063 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8064 				    "sd_unit_attach: un:0x%p capacity = %ld "
8065 				    "blocks; lbasize= %ld.\n", un,
8066 				    un->un_blockcount, un->un_tgt_blocksize);
8067 
8068 				break;
8069 			}
8070 			case EINVAL:
8071 				/*
8072 				 * In the case where the max-cdb-length property
8073 				 * is smaller than the required CDB length for
8074 				 * a SCSI device, a target driver can fail to
8075 				 * attach to that device.
8076 				 */
8077 				scsi_log(SD_DEVINFO(un),
8078 				    sd_label, CE_WARN,
8079 				    "disk capacity is too large "
8080 				    "for current cdb length");
8081 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8082 
8083 				goto spinup_failed;
8084 			case EACCES:
8085 				/*
8086 				 * Should never get here if the spin-up
8087 				 * succeeded, but code it in anyway.
8088 				 * From here, just continue with the attach...
8089 				 */
8090 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8091 				    "sd_unit_attach: un:0x%p "
8092 				    "sd_send_scsi_READ_CAPACITY "
8093 				    "returned reservation conflict\n", un);
8094 				reservation_flag = SD_TARGET_IS_RESERVED;
8095 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8096 				break;
8097 			default:
8098 				/*
8099 				 * Likewise, should never get here if the
8100 				 * spin-up succeeded. Just continue with
8101 				 * the attach...
8102 				 */
8103 				if (status == EIO)
8104 					sd_ssc_assessment(ssc,
8105 					    SD_FMT_STATUS_CHECK);
8106 				else
8107 					sd_ssc_assessment(ssc,
8108 					    SD_FMT_IGNORE);
8109 				break;
8110 			}
8111 			break;
8112 		case EACCES:
8113 			/*
8114 			 * Device is reserved by another host.  In this case
8115 			 * we could not spin it up or read the capacity, but
8116 			 * we continue with the attach anyway.
8117 			 */
8118 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8119 			    "sd_unit_attach: un:0x%p spin-up reservation "
8120 			    "conflict.\n", un);
8121 			reservation_flag = SD_TARGET_IS_RESERVED;
8122 			break;
8123 		default:
8124 			/* Fail the attach if the spin-up failed. */
8125 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8126 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8127 			goto spinup_failed;
8128 		}
8129 
8130 	}
8131 
8132 	/*
8133 	 * Check to see if this is a MMC drive
8134 	 */
8135 	if (ISCD(un)) {
8136 		sd_set_mmc_caps(ssc);
8137 	}
8138 
8139 	/*
8140 	 * Add a zero-length attribute to tell the world we support
8141 	 * kernel ioctls (for layered drivers)
8142 	 */
8143 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8144 	    DDI_KERNEL_IOCTL, NULL, 0);
8145 
8146 	/*
8147 	 * Add a boolean property to tell the world we support
8148 	 * the B_FAILFAST flag (for layered drivers)
8149 	 */
8150 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8151 	    "ddi-failfast-supported", NULL, 0);
8152 
8153 	/*
8154 	 * Initialize power management
8155 	 */
8156 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8157 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8158 	sd_setup_pm(ssc, devi);
8159 	if (un->un_f_pm_is_enabled == FALSE) {
8160 		/*
8161 		 * For performance, point to a jump table that does
8162 		 * not include pm.
8163 		 * The direct and priority chains don't change with PM.
8164 		 *
8165 		 * Note: this is currently done based on individual device
8166 		 * capabilities. When an interface for determining system
8167 		 * power enabled state becomes available, or when additional
8168 		 * layers are added to the command chain, these values will
8169 		 * have to be re-evaluated for correctness.
8170 		 */
8171 		if (un->un_f_non_devbsize_supported) {
8172 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8173 		} else {
8174 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8175 		}
8176 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8177 	}
8178 
8179 	/*
8180 	 * This property is set to 0 by HA software to avoid retries
8181 	 * on a reserved disk. (The preferred property name is
8182 	 * "retry-on-reservation-conflict") (1189689)
8183 	 *
8184 	 * Note: The use of a global here can have unintended consequences. A
8185 	 * per instance variable is preferable to match the capabilities of
8186 	 * different underlying hba's (4402600)
8187 	 */
8188 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8189 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8190 	    sd_retry_on_reservation_conflict);
8191 	if (sd_retry_on_reservation_conflict != 0) {
8192 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8193 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8194 		    sd_retry_on_reservation_conflict);
8195 	}
8196 
8197 	/* Set up options for QFULL handling. */
8198 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8199 	    "qfull-retries", -1)) != -1) {
8200 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8201 		    rval, 1);
8202 	}
8203 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8204 	    "qfull-retry-interval", -1)) != -1) {
8205 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8206 		    rval, 1);
8207 	}
8208 
8209 	/*
8210 	 * This just prints a message that announces the existence of the
8211 	 * device. The message is always printed in the system logfile, but
8212 	 * only appears on the console if the system is booted with the
8213 	 * -v (verbose) argument.
8214 	 */
8215 	ddi_report_dev(devi);
8216 
8217 	un->un_mediastate = DKIO_NONE;
8218 
8219 	/*
8220 	 * Check if this is a SSD(Solid State Drive).
8221 	 */
8222 	sd_check_solid_state(ssc);
8223 
8224 	/*
8225 	 * Check whether the drive is in emulation mode.
8226 	 */
8227 	sd_check_emulation_mode(ssc);
8228 
8229 	cmlb_alloc_handle(&un->un_cmlbhandle);
8230 
8231 #if defined(__i386) || defined(__amd64)
8232 	/*
8233 	 * On x86, compensate for off-by-1 legacy error
8234 	 */
8235 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8236 	    (lbasize == un->un_sys_blocksize))
8237 		offbyone = CMLB_OFF_BY_ONE;
8238 #endif
8239 
8240 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8241 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8242 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8243 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8244 	    (void *)SD_PATH_DIRECT) != 0) {
8245 		goto cmlb_attach_failed;
8246 	}
8247 
8248 
8249 	/*
8250 	 * Read and validate the device's geometry (ie, disk label)
8251 	 * A new unformatted drive will not have a valid geometry, but
8252 	 * the driver needs to successfully attach to this device so
8253 	 * the drive can be formatted via ioctls.
8254 	 */
8255 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8256 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8257 
8258 	mutex_enter(SD_MUTEX(un));
8259 
8260 	/*
8261 	 * Read and initialize the devid for the unit.
8262 	 */
8263 	if (un->un_f_devid_supported) {
8264 		sd_register_devid(ssc, devi, reservation_flag);
8265 	}
8266 	mutex_exit(SD_MUTEX(un));
8267 
8268 #if (defined(__fibre))
8269 	/*
8270 	 * Register callbacks for fibre only.  You can't do this solely
8271 	 * on the basis of the devid_type because this is hba specific.
8272 	 * We need to query our hba capabilities to find out whether to
8273 	 * register or not.
8274 	 */
8275 	if (un->un_f_is_fibre) {
8276 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8277 			sd_init_event_callbacks(un);
8278 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8279 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8280 			    un);
8281 		}
8282 	}
8283 #endif
8284 
8285 	if (un->un_f_opt_disable_cache == TRUE) {
8286 		/*
8287 		 * Disable both read cache and write cache.  This is
8288 		 * the historic behavior of the keywords in the config file.
8289 		 */
8290 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8291 		    0) {
8292 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8293 			    "sd_unit_attach: un:0x%p Could not disable "
8294 			    "caching", un);
8295 			goto devid_failed;
8296 		}
8297 	}
8298 
8299 	/*
8300 	 * Check the value of the WCE bit and if it's allowed to be changed,
8301 	 * set un_f_write_cache_enabled and un_f_cache_mode_changeable
8302 	 * accordingly.
8303 	 */
8304 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8305 	sd_get_write_cache_changeable(ssc, &wc_changeable);
8306 	mutex_enter(SD_MUTEX(un));
8307 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8308 	un->un_f_cache_mode_changeable = (wc_changeable != 0);
8309 	mutex_exit(SD_MUTEX(un));
8310 
8311 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8312 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8313 	    un->un_f_enable_rmw) {
8314 		if (!(un->un_wm_cache)) {
8315 			(void) snprintf(name_str, sizeof (name_str),
8316 			    "%s%d_cache",
8317 			    ddi_driver_name(SD_DEVINFO(un)),
8318 			    ddi_get_instance(SD_DEVINFO(un)));
8319 			un->un_wm_cache = kmem_cache_create(
8320 			    name_str, sizeof (struct sd_w_map),
8321 			    8, sd_wm_cache_constructor,
8322 			    sd_wm_cache_destructor, NULL,
8323 			    (void *)un, NULL, 0);
8324 			if (!(un->un_wm_cache)) {
8325 				goto wm_cache_failed;
8326 			}
8327 		}
8328 	}
8329 
8330 	/*
8331 	 * Check the value of the NV_SUP bit and set
8332 	 * un_f_suppress_cache_flush accordingly.
8333 	 */
8334 	sd_get_nv_sup(ssc);
8335 
8336 	/*
8337 	 * Find out what type of reservation this disk supports.
8338 	 */
8339 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8340 
8341 	switch (status) {
8342 	case 0:
8343 		/*
8344 		 * SCSI-3 reservations are supported.
8345 		 */
8346 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8347 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8348 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8349 		break;
8350 	case ENOTSUP:
8351 		/*
8352 		 * The PERSISTENT RESERVE IN command would not be recognized by
8353 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8354 		 */
8355 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8356 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8357 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8358 
8359 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8360 		break;
8361 	default:
8362 		/*
8363 		 * default to SCSI-3 reservations
8364 		 */
8365 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8366 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8367 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8368 
8369 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8370 		break;
8371 	}
8372 
8373 	/*
8374 	 * Set the pstat and error stat values here, so data obtained during the
8375 	 * previous attach-time routines is available.
8376 	 *
8377 	 * Note: This is a critical sequence that needs to be maintained:
8378 	 *	1) Instantiate the kstats before any routines using the iopath
8379 	 *	   (i.e. sd_send_scsi_cmd).
8380 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8381 	 *	   stats (sd_set_pstats)here, following
8382 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8383 	 *	   sd_cache_control().
8384 	 */
8385 
8386 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8387 		sd_set_pstats(un);
8388 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8389 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8390 	}
8391 
8392 	sd_set_errstats(un);
8393 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8394 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8395 
8396 
8397 	/*
8398 	 * After successfully attaching an instance, we record the information
8399 	 * of how many luns have been attached on the relative target and
8400 	 * controller for parallel SCSI. This information is used when sd tries
8401 	 * to set the tagged queuing capability in HBA.
8402 	 */
8403 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8404 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8405 	}
8406 
8407 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8408 	    "sd_unit_attach: un:0x%p exit success\n", un);
8409 
8410 	/* Uninitialize sd_ssc_t pointer */
8411 	sd_ssc_fini(ssc);
8412 
8413 	return (DDI_SUCCESS);
8414 
8415 	/*
8416 	 * An error occurred during the attach; clean up & return failure.
8417 	 */
8418 wm_cache_failed:
8419 devid_failed:
8420 	ddi_remove_minor_node(devi, NULL);
8421 
8422 cmlb_attach_failed:
8423 	/*
8424 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8425 	 */
8426 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8427 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8428 
8429 	/*
8430 	 * Refer to the comments of setting tagged-qing in the beginning of
8431 	 * sd_unit_attach. We can only disable tagged queuing when there is
8432 	 * no lun attached on the target.
8433 	 */
8434 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8435 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8436 	}
8437 
8438 	if (un->un_f_is_fibre == FALSE) {
8439 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8440 	}
8441 
8442 spinup_failed:
8443 
8444 	/* Uninitialize sd_ssc_t pointer */
8445 	sd_ssc_fini(ssc);
8446 
8447 	mutex_enter(SD_MUTEX(un));
8448 
8449 	/* Deallocate SCSI FMA memory spaces */
8450 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8451 
8452 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8453 	if (un->un_direct_priority_timeid != NULL) {
8454 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8455 		un->un_direct_priority_timeid = NULL;
8456 		mutex_exit(SD_MUTEX(un));
8457 		(void) untimeout(temp_id);
8458 		mutex_enter(SD_MUTEX(un));
8459 	}
8460 
8461 	/* Cancel any pending start/stop timeouts */
8462 	if (un->un_startstop_timeid != NULL) {
8463 		timeout_id_t temp_id = un->un_startstop_timeid;
8464 		un->un_startstop_timeid = NULL;
8465 		mutex_exit(SD_MUTEX(un));
8466 		(void) untimeout(temp_id);
8467 		mutex_enter(SD_MUTEX(un));
8468 	}
8469 
8470 	/* Cancel any pending reset-throttle timeouts */
8471 	if (un->un_reset_throttle_timeid != NULL) {
8472 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8473 		un->un_reset_throttle_timeid = NULL;
8474 		mutex_exit(SD_MUTEX(un));
8475 		(void) untimeout(temp_id);
8476 		mutex_enter(SD_MUTEX(un));
8477 	}
8478 
8479 	/* Cancel rmw warning message timeouts */
8480 	if (un->un_rmw_msg_timeid != NULL) {
8481 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8482 		un->un_rmw_msg_timeid = NULL;
8483 		mutex_exit(SD_MUTEX(un));
8484 		(void) untimeout(temp_id);
8485 		mutex_enter(SD_MUTEX(un));
8486 	}
8487 
8488 	/* Cancel any pending retry timeouts */
8489 	if (un->un_retry_timeid != NULL) {
8490 		timeout_id_t temp_id = un->un_retry_timeid;
8491 		un->un_retry_timeid = NULL;
8492 		mutex_exit(SD_MUTEX(un));
8493 		(void) untimeout(temp_id);
8494 		mutex_enter(SD_MUTEX(un));
8495 	}
8496 
8497 	/* Cancel any pending delayed cv broadcast timeouts */
8498 	if (un->un_dcvb_timeid != NULL) {
8499 		timeout_id_t temp_id = un->un_dcvb_timeid;
8500 		un->un_dcvb_timeid = NULL;
8501 		mutex_exit(SD_MUTEX(un));
8502 		(void) untimeout(temp_id);
8503 		mutex_enter(SD_MUTEX(un));
8504 	}
8505 
8506 	mutex_exit(SD_MUTEX(un));
8507 
8508 	/* There should not be any in-progress I/O so ASSERT this check */
8509 	ASSERT(un->un_ncmds_in_transport == 0);
8510 	ASSERT(un->un_ncmds_in_driver == 0);
8511 
8512 	/* Do not free the softstate if the callback routine is active */
8513 	sd_sync_with_callback(un);
8514 
8515 	/*
8516 	 * Partition stats apparently are not used with removables. These would
8517 	 * not have been created during attach, so no need to clean them up...
8518 	 */
8519 	if (un->un_errstats != NULL) {
8520 		kstat_delete(un->un_errstats);
8521 		un->un_errstats = NULL;
8522 	}
8523 
8524 create_errstats_failed:
8525 
8526 	if (un->un_stats != NULL) {
8527 		kstat_delete(un->un_stats);
8528 		un->un_stats = NULL;
8529 	}
8530 
8531 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8532 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8533 
8534 	ddi_prop_remove_all(devi);
8535 	sema_destroy(&un->un_semoclose);
8536 	cv_destroy(&un->un_state_cv);
8537 
8538 	sd_free_rqs(un);
8539 
8540 alloc_rqs_failed:
8541 
8542 	devp->sd_private = NULL;
8543 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8544 
8545 	/*
8546 	 * Note: the man pages are unclear as to whether or not doing a
8547 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8548 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8549 	 * ddi_get_soft_state() fails.  The implication seems to be
8550 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8551 	 */
8552 #ifndef XPV_HVM_DRIVER
8553 	ddi_soft_state_free(sd_state, instance);
8554 #endif /* !XPV_HVM_DRIVER */
8555 
8556 probe_failed:
8557 	scsi_unprobe(devp);
8558 
8559 	return (DDI_FAILURE);
8560 }
8561 
8562 
8563 /*
8564  *    Function: sd_unit_detach
8565  *
8566  * Description: Performs DDI_DETACH processing for sddetach().
8567  *
8568  * Return Code: DDI_SUCCESS
8569  *		DDI_FAILURE
8570  *
8571  *     Context: Kernel thread context
8572  */
8573 
8574 static int
8575 sd_unit_detach(dev_info_t *devi)
8576 {
8577 	struct scsi_device	*devp;
8578 	struct sd_lun		*un;
8579 	int			i;
8580 	int			tgt;
8581 	dev_t			dev;
8582 	dev_info_t		*pdip = ddi_get_parent(devi);
8583 #ifndef XPV_HVM_DRIVER
8584 	int			instance = ddi_get_instance(devi);
8585 #endif /* !XPV_HVM_DRIVER */
8586 
8587 	mutex_enter(&sd_detach_mutex);
8588 
8589 	/*
8590 	 * Fail the detach for any of the following:
8591 	 *  - Unable to get the sd_lun struct for the instance
8592 	 *  - A layered driver has an outstanding open on the instance
8593 	 *  - Another thread is already detaching this instance
8594 	 *  - Another thread is currently performing an open
8595 	 */
8596 	devp = ddi_get_driver_private(devi);
8597 	if ((devp == NULL) ||
8598 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8599 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8600 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8601 		mutex_exit(&sd_detach_mutex);
8602 		return (DDI_FAILURE);
8603 	}
8604 
8605 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8606 
8607 	/*
8608 	 * Mark this instance as currently in a detach, to inhibit any
8609 	 * opens from a layered driver.
8610 	 */
8611 	un->un_detach_count++;
8612 	mutex_exit(&sd_detach_mutex);
8613 
8614 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8615 	    SCSI_ADDR_PROP_TARGET, -1);
8616 
8617 	dev = sd_make_device(SD_DEVINFO(un));
8618 
8619 #ifndef lint
8620 	_NOTE(COMPETING_THREADS_NOW);
8621 #endif
8622 
8623 	mutex_enter(SD_MUTEX(un));
8624 
8625 	/*
8626 	 * Fail the detach if there are any outstanding layered
8627 	 * opens on this device.
8628 	 */
8629 	for (i = 0; i < NDKMAP; i++) {
8630 		if (un->un_ocmap.lyropen[i] != 0) {
8631 			goto err_notclosed;
8632 		}
8633 	}
8634 
8635 	/*
8636 	 * Verify there are NO outstanding commands issued to this device.
8637 	 * ie, un_ncmds_in_transport == 0.
8638 	 * It's possible to have outstanding commands through the physio
8639 	 * code path, even though everything's closed.
8640 	 */
8641 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8642 	    (un->un_direct_priority_timeid != NULL) ||
8643 	    (un->un_state == SD_STATE_RWAIT)) {
8644 		mutex_exit(SD_MUTEX(un));
8645 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8646 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8647 		goto err_stillbusy;
8648 	}
8649 
8650 	/*
8651 	 * If we have the device reserved, release the reservation.
8652 	 */
8653 	if ((un->un_resvd_status & SD_RESERVE) &&
8654 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8655 		mutex_exit(SD_MUTEX(un));
8656 		/*
8657 		 * Note: sd_reserve_release sends a command to the device
8658 		 * via the sd_ioctlcmd() path, and can sleep.
8659 		 */
8660 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8661 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8662 			    "sd_dr_detach: Cannot release reservation \n");
8663 		}
8664 	} else {
8665 		mutex_exit(SD_MUTEX(un));
8666 	}
8667 
8668 	/*
8669 	 * Untimeout any reserve recover, throttle reset, restart unit
8670 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8671 	 * from getting nulled by their callback functions.
8672 	 */
8673 	mutex_enter(SD_MUTEX(un));
8674 	if (un->un_resvd_timeid != NULL) {
8675 		timeout_id_t temp_id = un->un_resvd_timeid;
8676 		un->un_resvd_timeid = NULL;
8677 		mutex_exit(SD_MUTEX(un));
8678 		(void) untimeout(temp_id);
8679 		mutex_enter(SD_MUTEX(un));
8680 	}
8681 
8682 	if (un->un_reset_throttle_timeid != NULL) {
8683 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8684 		un->un_reset_throttle_timeid = NULL;
8685 		mutex_exit(SD_MUTEX(un));
8686 		(void) untimeout(temp_id);
8687 		mutex_enter(SD_MUTEX(un));
8688 	}
8689 
8690 	if (un->un_startstop_timeid != NULL) {
8691 		timeout_id_t temp_id = un->un_startstop_timeid;
8692 		un->un_startstop_timeid = NULL;
8693 		mutex_exit(SD_MUTEX(un));
8694 		(void) untimeout(temp_id);
8695 		mutex_enter(SD_MUTEX(un));
8696 	}
8697 
8698 	if (un->un_rmw_msg_timeid != NULL) {
8699 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8700 		un->un_rmw_msg_timeid = NULL;
8701 		mutex_exit(SD_MUTEX(un));
8702 		(void) untimeout(temp_id);
8703 		mutex_enter(SD_MUTEX(un));
8704 	}
8705 
8706 	if (un->un_dcvb_timeid != NULL) {
8707 		timeout_id_t temp_id = un->un_dcvb_timeid;
8708 		un->un_dcvb_timeid = NULL;
8709 		mutex_exit(SD_MUTEX(un));
8710 		(void) untimeout(temp_id);
8711 	} else {
8712 		mutex_exit(SD_MUTEX(un));
8713 	}
8714 
8715 	/* Remove any pending reservation reclaim requests for this device */
8716 	sd_rmv_resv_reclaim_req(dev);
8717 
8718 	mutex_enter(SD_MUTEX(un));
8719 
8720 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8721 	if (un->un_direct_priority_timeid != NULL) {
8722 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8723 		un->un_direct_priority_timeid = NULL;
8724 		mutex_exit(SD_MUTEX(un));
8725 		(void) untimeout(temp_id);
8726 		mutex_enter(SD_MUTEX(un));
8727 	}
8728 
8729 	/* Cancel any active multi-host disk watch thread requests */
8730 	if (un->un_mhd_token != NULL) {
8731 		mutex_exit(SD_MUTEX(un));
8732 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8733 		if (scsi_watch_request_terminate(un->un_mhd_token,
8734 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8735 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8736 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8737 			/*
8738 			 * Note: We are returning here after having removed
8739 			 * some driver timeouts above. This is consistent with
8740 			 * the legacy implementation but perhaps the watch
8741 			 * terminate call should be made with the wait flag set.
8742 			 */
8743 			goto err_stillbusy;
8744 		}
8745 		mutex_enter(SD_MUTEX(un));
8746 		un->un_mhd_token = NULL;
8747 	}
8748 
8749 	if (un->un_swr_token != NULL) {
8750 		mutex_exit(SD_MUTEX(un));
8751 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8752 		if (scsi_watch_request_terminate(un->un_swr_token,
8753 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8754 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8755 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8756 			/*
8757 			 * Note: We are returning here after having removed
8758 			 * some driver timeouts above. This is consistent with
8759 			 * the legacy implementation but perhaps the watch
8760 			 * terminate call should be made with the wait flag set.
8761 			 */
8762 			goto err_stillbusy;
8763 		}
8764 		mutex_enter(SD_MUTEX(un));
8765 		un->un_swr_token = NULL;
8766 	}
8767 
8768 	mutex_exit(SD_MUTEX(un));
8769 
8770 	/*
8771 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8772 	 * if we have not registered one.
8773 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8774 	 */
8775 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8776 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8777 
8778 	/*
8779 	 * protect the timeout pointers from getting nulled by
8780 	 * their callback functions during the cancellation process.
8781 	 * In such a scenario untimeout can be invoked with a null value.
8782 	 */
8783 	_NOTE(NO_COMPETING_THREADS_NOW);
8784 
8785 	mutex_enter(&un->un_pm_mutex);
8786 	if (un->un_pm_idle_timeid != NULL) {
8787 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8788 		un->un_pm_idle_timeid = NULL;
8789 		mutex_exit(&un->un_pm_mutex);
8790 
8791 		/*
8792 		 * Timeout is active; cancel it.
8793 		 * Note that it'll never be active on a device
8794 		 * that does not support PM therefore we don't
8795 		 * have to check before calling pm_idle_component.
8796 		 */
8797 		(void) untimeout(temp_id);
8798 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8799 		mutex_enter(&un->un_pm_mutex);
8800 	}
8801 
8802 	/*
8803 	 * Check whether there is already a timeout scheduled for power
8804 	 * management. If yes then don't lower the power here, that's.
8805 	 * the timeout handler's job.
8806 	 */
8807 	if (un->un_pm_timeid != NULL) {
8808 		timeout_id_t temp_id = un->un_pm_timeid;
8809 		un->un_pm_timeid = NULL;
8810 		mutex_exit(&un->un_pm_mutex);
8811 		/*
8812 		 * Timeout is active; cancel it.
8813 		 * Note that it'll never be active on a device
8814 		 * that does not support PM therefore we don't
8815 		 * have to check before calling pm_idle_component.
8816 		 */
8817 		(void) untimeout(temp_id);
8818 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8819 
8820 	} else {
8821 		mutex_exit(&un->un_pm_mutex);
8822 		if ((un->un_f_pm_is_enabled == TRUE) &&
8823 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8824 		    != DDI_SUCCESS)) {
8825 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8826 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8827 			/*
8828 			 * Fix for bug: 4297749, item # 13
8829 			 * The above test now includes a check to see if PM is
8830 			 * supported by this device before call
8831 			 * pm_lower_power().
8832 			 * Note, the following is not dead code. The call to
8833 			 * pm_lower_power above will generate a call back into
8834 			 * our sdpower routine which might result in a timeout
8835 			 * handler getting activated. Therefore the following
8836 			 * code is valid and necessary.
8837 			 */
8838 			mutex_enter(&un->un_pm_mutex);
8839 			if (un->un_pm_timeid != NULL) {
8840 				timeout_id_t temp_id = un->un_pm_timeid;
8841 				un->un_pm_timeid = NULL;
8842 				mutex_exit(&un->un_pm_mutex);
8843 				(void) untimeout(temp_id);
8844 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8845 			} else {
8846 				mutex_exit(&un->un_pm_mutex);
8847 			}
8848 		}
8849 	}
8850 
8851 	/*
8852 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8853 	 * Relocated here from above to be after the call to
8854 	 * pm_lower_power, which was getting errors.
8855 	 */
8856 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8857 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8858 
8859 	/*
8860 	 * Currently, tagged queuing is supported per target based by HBA.
8861 	 * Setting this per lun instance actually sets the capability of this
8862 	 * target in HBA, which affects those luns already attached on the
8863 	 * same target. So during detach, we can only disable this capability
8864 	 * only when this is the only lun left on this target. By doing
8865 	 * this, we assume a target has the same tagged queuing capability
8866 	 * for every lun. The condition can be removed when HBA is changed to
8867 	 * support per lun based tagged queuing capability.
8868 	 */
8869 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8870 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8871 	}
8872 
8873 	if (un->un_f_is_fibre == FALSE) {
8874 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8875 	}
8876 
8877 	/*
8878 	 * Remove any event callbacks, fibre only
8879 	 */
8880 	if (un->un_f_is_fibre == TRUE) {
8881 		if ((un->un_insert_event != NULL) &&
8882 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8883 		    DDI_SUCCESS)) {
8884 			/*
8885 			 * Note: We are returning here after having done
8886 			 * substantial cleanup above. This is consistent
8887 			 * with the legacy implementation but this may not
8888 			 * be the right thing to do.
8889 			 */
8890 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8891 			    "sd_dr_detach: Cannot cancel insert event\n");
8892 			goto err_remove_event;
8893 		}
8894 		un->un_insert_event = NULL;
8895 
8896 		if ((un->un_remove_event != NULL) &&
8897 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8898 		    DDI_SUCCESS)) {
8899 			/*
8900 			 * Note: We are returning here after having done
8901 			 * substantial cleanup above. This is consistent
8902 			 * with the legacy implementation but this may not
8903 			 * be the right thing to do.
8904 			 */
8905 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8906 			    "sd_dr_detach: Cannot cancel remove event\n");
8907 			goto err_remove_event;
8908 		}
8909 		un->un_remove_event = NULL;
8910 	}
8911 
8912 	/* Do not free the softstate if the callback routine is active */
8913 	sd_sync_with_callback(un);
8914 
8915 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8916 	cmlb_free_handle(&un->un_cmlbhandle);
8917 
8918 	/*
8919 	 * Hold the detach mutex here, to make sure that no other threads ever
8920 	 * can access a (partially) freed soft state structure.
8921 	 */
8922 	mutex_enter(&sd_detach_mutex);
8923 
8924 	/*
8925 	 * Clean up the soft state struct.
8926 	 * Cleanup is done in reverse order of allocs/inits.
8927 	 * At this point there should be no competing threads anymore.
8928 	 */
8929 
8930 	scsi_fm_fini(devp);
8931 
8932 	/*
8933 	 * Deallocate memory for SCSI FMA.
8934 	 */
8935 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8936 
8937 	/*
8938 	 * Unregister and free device id if it was not registered
8939 	 * by the transport.
8940 	 */
8941 	if (un->un_f_devid_transport_defined == FALSE)
8942 		ddi_devid_unregister(devi);
8943 
8944 	/*
8945 	 * free the devid structure if allocated before (by ddi_devid_init()
8946 	 * or ddi_devid_get()).
8947 	 */
8948 	if (un->un_devid) {
8949 		ddi_devid_free(un->un_devid);
8950 		un->un_devid = NULL;
8951 	}
8952 
8953 	/*
8954 	 * Destroy wmap cache if it exists.
8955 	 */
8956 	if (un->un_wm_cache != NULL) {
8957 		kmem_cache_destroy(un->un_wm_cache);
8958 		un->un_wm_cache = NULL;
8959 	}
8960 
8961 	/*
8962 	 * kstat cleanup is done in detach for all device types (4363169).
8963 	 * We do not want to fail detach if the device kstats are not deleted
8964 	 * since there is a confusion about the devo_refcnt for the device.
8965 	 * We just delete the kstats and let detach complete successfully.
8966 	 */
8967 	if (un->un_stats != NULL) {
8968 		kstat_delete(un->un_stats);
8969 		un->un_stats = NULL;
8970 	}
8971 	if (un->un_errstats != NULL) {
8972 		kstat_delete(un->un_errstats);
8973 		un->un_errstats = NULL;
8974 	}
8975 
8976 	/* Remove partition stats */
8977 	if (un->un_f_pkstats_enabled) {
8978 		for (i = 0; i < NSDMAP; i++) {
8979 			if (un->un_pstats[i] != NULL) {
8980 				kstat_delete(un->un_pstats[i]);
8981 				un->un_pstats[i] = NULL;
8982 			}
8983 		}
8984 	}
8985 
8986 	/* Remove xbuf registration */
8987 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8988 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8989 
8990 	/* Remove driver properties */
8991 	ddi_prop_remove_all(devi);
8992 
8993 	mutex_destroy(&un->un_pm_mutex);
8994 	cv_destroy(&un->un_pm_busy_cv);
8995 
8996 	cv_destroy(&un->un_wcc_cv);
8997 
8998 	/* Open/close semaphore */
8999 	sema_destroy(&un->un_semoclose);
9000 
9001 	/* Removable media condvar. */
9002 	cv_destroy(&un->un_state_cv);
9003 
9004 	/* Suspend/resume condvar. */
9005 	cv_destroy(&un->un_suspend_cv);
9006 	cv_destroy(&un->un_disk_busy_cv);
9007 
9008 	sd_free_rqs(un);
9009 
9010 	/* Free up soft state */
9011 	devp->sd_private = NULL;
9012 
9013 	bzero(un, sizeof (struct sd_lun));
9014 #ifndef XPV_HVM_DRIVER
9015 	ddi_soft_state_free(sd_state, instance);
9016 #endif /* !XPV_HVM_DRIVER */
9017 
9018 	mutex_exit(&sd_detach_mutex);
9019 
9020 	/* This frees up the INQUIRY data associated with the device. */
9021 	scsi_unprobe(devp);
9022 
9023 	/*
9024 	 * After successfully detaching an instance, we update the information
9025 	 * of how many luns have been attached in the relative target and
9026 	 * controller for parallel SCSI. This information is used when sd tries
9027 	 * to set the tagged queuing capability in HBA.
9028 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9029 	 * check if the device is parallel SCSI. However, we don't need to
9030 	 * check here because we've already checked during attach. No device
9031 	 * that is not parallel SCSI is in the chain.
9032 	 */
9033 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9034 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9035 	}
9036 
9037 	return (DDI_SUCCESS);
9038 
9039 err_notclosed:
9040 	mutex_exit(SD_MUTEX(un));
9041 
9042 err_stillbusy:
9043 	_NOTE(NO_COMPETING_THREADS_NOW);
9044 
9045 err_remove_event:
9046 	mutex_enter(&sd_detach_mutex);
9047 	un->un_detach_count--;
9048 	mutex_exit(&sd_detach_mutex);
9049 
9050 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9051 	return (DDI_FAILURE);
9052 }
9053 
9054 
9055 /*
9056  *    Function: sd_create_errstats
9057  *
9058  * Description: This routine instantiates the device error stats.
9059  *
9060  *		Note: During attach the stats are instantiated first so they are
9061  *		available for attach-time routines that utilize the driver
9062  *		iopath to send commands to the device. The stats are initialized
9063  *		separately so data obtained during some attach-time routines is
9064  *		available. (4362483)
9065  *
9066  *   Arguments: un - driver soft state (unit) structure
9067  *		instance - driver instance
9068  *
9069  *     Context: Kernel thread context
9070  */
9071 
9072 static void
9073 sd_create_errstats(struct sd_lun *un, int instance)
9074 {
9075 	struct	sd_errstats	*stp;
9076 	char	kstatmodule_err[KSTAT_STRLEN];
9077 	char	kstatname[KSTAT_STRLEN];
9078 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9079 
9080 	ASSERT(un != NULL);
9081 
9082 	if (un->un_errstats != NULL) {
9083 		return;
9084 	}
9085 
9086 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9087 	    "%serr", sd_label);
9088 	(void) snprintf(kstatname, sizeof (kstatname),
9089 	    "%s%d,err", sd_label, instance);
9090 
9091 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9092 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9093 
9094 	if (un->un_errstats == NULL) {
9095 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9096 		    "sd_create_errstats: Failed kstat_create\n");
9097 		return;
9098 	}
9099 
9100 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9101 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9102 	    KSTAT_DATA_UINT32);
9103 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9104 	    KSTAT_DATA_UINT32);
9105 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9106 	    KSTAT_DATA_UINT32);
9107 	kstat_named_init(&stp->sd_vid,		"Vendor",
9108 	    KSTAT_DATA_CHAR);
9109 	kstat_named_init(&stp->sd_pid,		"Product",
9110 	    KSTAT_DATA_CHAR);
9111 	kstat_named_init(&stp->sd_revision,	"Revision",
9112 	    KSTAT_DATA_CHAR);
9113 	kstat_named_init(&stp->sd_serial,	"Serial No",
9114 	    KSTAT_DATA_CHAR);
9115 	kstat_named_init(&stp->sd_capacity,	"Size",
9116 	    KSTAT_DATA_ULONGLONG);
9117 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9118 	    KSTAT_DATA_UINT32);
9119 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9120 	    KSTAT_DATA_UINT32);
9121 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9122 	    KSTAT_DATA_UINT32);
9123 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9124 	    KSTAT_DATA_UINT32);
9125 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9126 	    KSTAT_DATA_UINT32);
9127 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9128 	    KSTAT_DATA_UINT32);
9129 
9130 	un->un_errstats->ks_private = un;
9131 	un->un_errstats->ks_update  = nulldev;
9132 
9133 	kstat_install(un->un_errstats);
9134 }
9135 
9136 
9137 /*
9138  *    Function: sd_set_errstats
9139  *
9140  * Description: This routine sets the value of the vendor id, product id,
9141  *		revision, serial number, and capacity device error stats.
9142  *
9143  *		Note: During attach the stats are instantiated first so they are
9144  *		available for attach-time routines that utilize the driver
9145  *		iopath to send commands to the device. The stats are initialized
9146  *		separately so data obtained during some attach-time routines is
9147  *		available. (4362483)
9148  *
9149  *   Arguments: un - driver soft state (unit) structure
9150  *
9151  *     Context: Kernel thread context
9152  */
9153 
9154 static void
9155 sd_set_errstats(struct sd_lun *un)
9156 {
9157 	struct	sd_errstats	*stp;
9158 	char 			*sn;
9159 
9160 	ASSERT(un != NULL);
9161 	ASSERT(un->un_errstats != NULL);
9162 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9163 	ASSERT(stp != NULL);
9164 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9165 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9166 	(void) strncpy(stp->sd_revision.value.c,
9167 	    un->un_sd->sd_inq->inq_revision, 4);
9168 
9169 	/*
9170 	 * All the errstats are persistent across detach/attach,
9171 	 * so reset all the errstats here in case of the hot
9172 	 * replacement of disk drives, except for not changed
9173 	 * Sun qualified drives.
9174 	 */
9175 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9176 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9177 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9178 		stp->sd_softerrs.value.ui32 = 0;
9179 		stp->sd_harderrs.value.ui32 = 0;
9180 		stp->sd_transerrs.value.ui32 = 0;
9181 		stp->sd_rq_media_err.value.ui32 = 0;
9182 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9183 		stp->sd_rq_nodev_err.value.ui32 = 0;
9184 		stp->sd_rq_recov_err.value.ui32 = 0;
9185 		stp->sd_rq_illrq_err.value.ui32 = 0;
9186 		stp->sd_rq_pfa_err.value.ui32 = 0;
9187 	}
9188 
9189 	/*
9190 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9191 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9192 	 * (4376302))
9193 	 */
9194 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9195 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9196 		    sizeof (SD_INQUIRY(un)->inq_serial));
9197 	} else {
9198 		/*
9199 		 * Set the "Serial No" kstat for non-Sun qualified drives
9200 		 */
9201 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9202 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9203 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9204 			(void) strlcpy(stp->sd_serial.value.c, sn,
9205 			    sizeof (stp->sd_serial.value.c));
9206 			ddi_prop_free(sn);
9207 		}
9208 	}
9209 
9210 	if (un->un_f_blockcount_is_valid != TRUE) {
9211 		/*
9212 		 * Set capacity error stat to 0 for no media. This ensures
9213 		 * a valid capacity is displayed in response to 'iostat -E'
9214 		 * when no media is present in the device.
9215 		 */
9216 		stp->sd_capacity.value.ui64 = 0;
9217 	} else {
9218 		/*
9219 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9220 		 * capacity.
9221 		 *
9222 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9223 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9224 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9225 		 */
9226 		stp->sd_capacity.value.ui64 = (uint64_t)
9227 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9228 	}
9229 }
9230 
9231 
9232 /*
9233  *    Function: sd_set_pstats
9234  *
9235  * Description: This routine instantiates and initializes the partition
9236  *              stats for each partition with more than zero blocks.
9237  *		(4363169)
9238  *
9239  *   Arguments: un - driver soft state (unit) structure
9240  *
9241  *     Context: Kernel thread context
9242  */
9243 
9244 static void
9245 sd_set_pstats(struct sd_lun *un)
9246 {
9247 	char	kstatname[KSTAT_STRLEN];
9248 	int	instance;
9249 	int	i;
9250 	diskaddr_t	nblks = 0;
9251 	char	*partname = NULL;
9252 
9253 	ASSERT(un != NULL);
9254 
9255 	instance = ddi_get_instance(SD_DEVINFO(un));
9256 
9257 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9258 	for (i = 0; i < NSDMAP; i++) {
9259 
9260 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9261 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9262 			continue;
9263 		mutex_enter(SD_MUTEX(un));
9264 
9265 		if ((un->un_pstats[i] == NULL) &&
9266 		    (nblks != 0)) {
9267 
9268 			(void) snprintf(kstatname, sizeof (kstatname),
9269 			    "%s%d,%s", sd_label, instance,
9270 			    partname);
9271 
9272 			un->un_pstats[i] = kstat_create(sd_label,
9273 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9274 			    1, KSTAT_FLAG_PERSISTENT);
9275 			if (un->un_pstats[i] != NULL) {
9276 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9277 				kstat_install(un->un_pstats[i]);
9278 			}
9279 		}
9280 		mutex_exit(SD_MUTEX(un));
9281 	}
9282 }
9283 
9284 
9285 #if (defined(__fibre))
9286 /*
9287  *    Function: sd_init_event_callbacks
9288  *
9289  * Description: This routine initializes the insertion and removal event
9290  *		callbacks. (fibre only)
9291  *
9292  *   Arguments: un - driver soft state (unit) structure
9293  *
9294  *     Context: Kernel thread context
9295  */
9296 
9297 static void
9298 sd_init_event_callbacks(struct sd_lun *un)
9299 {
9300 	ASSERT(un != NULL);
9301 
9302 	if ((un->un_insert_event == NULL) &&
9303 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9304 	    &un->un_insert_event) == DDI_SUCCESS)) {
9305 		/*
9306 		 * Add the callback for an insertion event
9307 		 */
9308 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9309 		    un->un_insert_event, sd_event_callback, (void *)un,
9310 		    &(un->un_insert_cb_id));
9311 	}
9312 
9313 	if ((un->un_remove_event == NULL) &&
9314 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9315 	    &un->un_remove_event) == DDI_SUCCESS)) {
9316 		/*
9317 		 * Add the callback for a removal event
9318 		 */
9319 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9320 		    un->un_remove_event, sd_event_callback, (void *)un,
9321 		    &(un->un_remove_cb_id));
9322 	}
9323 }
9324 
9325 
9326 /*
9327  *    Function: sd_event_callback
9328  *
9329  * Description: This routine handles insert/remove events (photon). The
9330  *		state is changed to OFFLINE which can be used to supress
9331  *		error msgs. (fibre only)
9332  *
9333  *   Arguments: un - driver soft state (unit) structure
9334  *
9335  *     Context: Callout thread context
9336  */
9337 /* ARGSUSED */
9338 static void
9339 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9340     void *bus_impldata)
9341 {
9342 	struct sd_lun *un = (struct sd_lun *)arg;
9343 
9344 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9345 	if (event == un->un_insert_event) {
9346 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9347 		mutex_enter(SD_MUTEX(un));
9348 		if (un->un_state == SD_STATE_OFFLINE) {
9349 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9350 				un->un_state = un->un_last_state;
9351 			} else {
9352 				/*
9353 				 * We have gone through SUSPEND/RESUME while
9354 				 * we were offline. Restore the last state
9355 				 */
9356 				un->un_state = un->un_save_state;
9357 			}
9358 		}
9359 		mutex_exit(SD_MUTEX(un));
9360 
9361 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9362 	} else if (event == un->un_remove_event) {
9363 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9364 		mutex_enter(SD_MUTEX(un));
9365 		/*
9366 		 * We need to handle an event callback that occurs during
9367 		 * the suspend operation, since we don't prevent it.
9368 		 */
9369 		if (un->un_state != SD_STATE_OFFLINE) {
9370 			if (un->un_state != SD_STATE_SUSPENDED) {
9371 				New_state(un, SD_STATE_OFFLINE);
9372 			} else {
9373 				un->un_last_state = SD_STATE_OFFLINE;
9374 			}
9375 		}
9376 		mutex_exit(SD_MUTEX(un));
9377 	} else {
9378 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9379 		    "!Unknown event\n");
9380 	}
9381 
9382 }
9383 #endif
9384 
9385 /*
9386  * Values related to caching mode page depending on whether the unit is ATAPI.
9387  */
9388 #define	SDC_CDB_GROUP(un) ((un->un_f_cfg_is_atapi == TRUE) ? \
9389 	CDB_GROUP1 : CDB_GROUP0)
9390 #define	SDC_HDRLEN(un) ((un->un_f_cfg_is_atapi == TRUE) ? \
9391 	MODE_HEADER_LENGTH_GRP2 : MODE_HEADER_LENGTH)
9392 /*
9393  * Use mode_cache_scsi3 to ensure we get all of the mode sense data, otherwise
9394  * the mode select will fail (mode_cache_scsi3 is a superset of mode_caching).
9395  */
9396 #define	SDC_BUFLEN(un) (SDC_HDRLEN(un) + MODE_BLK_DESC_LENGTH + \
9397 	sizeof (struct mode_cache_scsi3))
9398 
9399 static int
9400 sd_get_caching_mode_page(sd_ssc_t *ssc, uchar_t page_control, uchar_t **header,
9401     int *bdlen)
9402 {
9403 	struct sd_lun	*un = ssc->ssc_un;
9404 	struct mode_caching *mode_caching_page;
9405 	size_t		buflen = SDC_BUFLEN(un);
9406 	int		hdrlen = SDC_HDRLEN(un);
9407 	int		rval;
9408 
9409 	/*
9410 	 * Do a test unit ready, otherwise a mode sense may not work if this
9411 	 * is the first command sent to the device after boot.
9412 	 */
9413 	if (sd_send_scsi_TEST_UNIT_READY(ssc, 0) != 0)
9414 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9415 
9416 	/*
9417 	 * Allocate memory for the retrieved mode page and its headers.  Set
9418 	 * a pointer to the page itself.
9419 	 */
9420 	*header = kmem_zalloc(buflen, KM_SLEEP);
9421 
9422 	/* Get the information from the device */
9423 	rval = sd_send_scsi_MODE_SENSE(ssc, SDC_CDB_GROUP(un), *header, buflen,
9424 	    page_control | MODEPAGE_CACHING, SD_PATH_DIRECT);
9425 	if (rval != 0) {
9426 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, "%s: Mode Sense Failed\n",
9427 		    __func__);
9428 		goto mode_sense_failed;
9429 	}
9430 
9431 	/*
9432 	 * Determine size of Block Descriptors in order to locate
9433 	 * the mode page data. ATAPI devices return 0, SCSI devices
9434 	 * should return MODE_BLK_DESC_LENGTH.
9435 	 */
9436 	if (un->un_f_cfg_is_atapi == TRUE) {
9437 		struct mode_header_grp2 *mhp =
9438 		    (struct mode_header_grp2 *)(*header);
9439 		*bdlen = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9440 	} else {
9441 		*bdlen = ((struct mode_header *)(*header))->bdesc_length;
9442 	}
9443 
9444 	if (*bdlen > MODE_BLK_DESC_LENGTH) {
9445 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9446 		    "%s: Mode Sense returned invalid block descriptor length\n",
9447 		    __func__);
9448 		rval = EIO;
9449 		goto mode_sense_failed;
9450 	}
9451 
9452 	mode_caching_page = (struct mode_caching *)(*header + hdrlen + *bdlen);
9453 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9454 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9455 		    "%s: Mode Sense caching page code mismatch %d\n",
9456 		    __func__, mode_caching_page->mode_page.code);
9457 		rval = EIO;
9458 	}
9459 
9460 mode_sense_failed:
9461 	if (rval != 0) {
9462 		kmem_free(*header, buflen);
9463 		*header = NULL;
9464 		*bdlen = 0;
9465 	}
9466 	return (rval);
9467 }
9468 
9469 /*
9470  *    Function: sd_cache_control()
9471  *
9472  * Description: This routine is the driver entry point for setting
9473  *		read and write caching by modifying the WCE (write cache
9474  *		enable) and RCD (read cache disable) bits of mode
9475  *		page 8 (MODEPAGE_CACHING).
9476  *
9477  *   Arguments: ssc		- ssc contains pointer to driver soft state
9478  *				  (unit) structure for this target.
9479  *		rcd_flag	- flag for controlling the read cache
9480  *		wce_flag	- flag for controlling the write cache
9481  *
9482  * Return Code: EIO
9483  *		code returned by sd_send_scsi_MODE_SENSE and
9484  *		sd_send_scsi_MODE_SELECT
9485  *
9486  *     Context: Kernel Thread
9487  */
9488 
9489 static int
9490 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9491 {
9492 	struct sd_lun	*un = ssc->ssc_un;
9493 	struct mode_caching *mode_caching_page;
9494 	uchar_t		*header;
9495 	size_t		buflen = SDC_BUFLEN(un);
9496 	int		hdrlen = SDC_HDRLEN(un);
9497 	int		bdlen;
9498 	int		rval;
9499 
9500 	rval = sd_get_caching_mode_page(ssc, MODEPAGE_CURRENT, &header, &bdlen);
9501 	switch (rval) {
9502 	case 0:
9503 		/* Check the relevant bits on successful mode sense */
9504 		mode_caching_page = (struct mode_caching *)(header + hdrlen +
9505 		    bdlen);
9506 		if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9507 		    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9508 		    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9509 		    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9510 			size_t sbuflen;
9511 			uchar_t save_pg;
9512 
9513 			/*
9514 			 * Construct select buffer length based on the
9515 			 * length of the sense data returned.
9516 			 */
9517 			sbuflen = hdrlen + bdlen + sizeof (struct mode_page) +
9518 			    (int)mode_caching_page->mode_page.length;
9519 
9520 			/* Set the caching bits as requested */
9521 			if (rcd_flag == SD_CACHE_ENABLE)
9522 				mode_caching_page->rcd = 0;
9523 			else if (rcd_flag == SD_CACHE_DISABLE)
9524 				mode_caching_page->rcd = 1;
9525 
9526 			if (wce_flag == SD_CACHE_ENABLE)
9527 				mode_caching_page->wce = 1;
9528 			else if (wce_flag == SD_CACHE_DISABLE)
9529 				mode_caching_page->wce = 0;
9530 
9531 			/*
9532 			 * Save the page if the mode sense says the
9533 			 * drive supports it.
9534 			 */
9535 			save_pg = mode_caching_page->mode_page.ps ?
9536 			    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9537 
9538 			/* Clear reserved bits before mode select */
9539 			mode_caching_page->mode_page.ps = 0;
9540 
9541 			/*
9542 			 * Clear out mode header for mode select.
9543 			 * The rest of the retrieved page will be reused.
9544 			 */
9545 			bzero(header, hdrlen);
9546 
9547 			if (un->un_f_cfg_is_atapi == TRUE) {
9548 				struct mode_header_grp2 *mhp =
9549 				    (struct mode_header_grp2 *)header;
9550 				mhp->bdesc_length_hi = bdlen >> 8;
9551 				mhp->bdesc_length_lo = (uchar_t)bdlen & 0xff;
9552 			} else {
9553 				((struct mode_header *)header)->bdesc_length =
9554 				    bdlen;
9555 			}
9556 
9557 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9558 
9559 			/* Issue mode select to change the cache settings */
9560 			rval = sd_send_scsi_MODE_SELECT(ssc, SDC_CDB_GROUP(un),
9561 			    header, sbuflen, save_pg, SD_PATH_DIRECT);
9562 		}
9563 		kmem_free(header, buflen);
9564 		break;
9565 	case EIO:
9566 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9567 		break;
9568 	default:
9569 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9570 		break;
9571 	}
9572 
9573 	return (rval);
9574 }
9575 
9576 
9577 /*
9578  *    Function: sd_get_write_cache_enabled()
9579  *
9580  * Description: This routine is the driver entry point for determining if write
9581  *		caching is enabled.  It examines the WCE (write cache enable)
9582  *		bits of mode page 8 (MODEPAGE_CACHING) with Page Control field
9583  *		bits set to MODEPAGE_CURRENT.
9584  *
9585  *   Arguments: ssc		- ssc contains pointer to driver soft state
9586  *				  (unit) structure for this target.
9587  *		is_enabled	- pointer to int where write cache enabled state
9588  *				  is returned (non-zero -> write cache enabled)
9589  *
9590  * Return Code: EIO
9591  *		code returned by sd_send_scsi_MODE_SENSE
9592  *
9593  *     Context: Kernel Thread
9594  *
9595  * NOTE: If ioctl is added to disable write cache, this sequence should
9596  * be followed so that no locking is required for accesses to
9597  * un->un_f_write_cache_enabled:
9598  * 	do mode select to clear wce
9599  * 	do synchronize cache to flush cache
9600  * 	set un->un_f_write_cache_enabled = FALSE
9601  *
9602  * Conversely, an ioctl to enable the write cache should be done
9603  * in this order:
9604  * 	set un->un_f_write_cache_enabled = TRUE
9605  * 	do mode select to set wce
9606  */
9607 
9608 static int
9609 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9610 {
9611 	struct sd_lun	*un = ssc->ssc_un;
9612 	struct mode_caching *mode_caching_page;
9613 	uchar_t		*header;
9614 	size_t		buflen = SDC_BUFLEN(un);
9615 	int		hdrlen = SDC_HDRLEN(un);
9616 	int		bdlen;
9617 	int		rval;
9618 
9619 	/* In case of error, flag as enabled */
9620 	*is_enabled = TRUE;
9621 
9622 	rval = sd_get_caching_mode_page(ssc, MODEPAGE_CURRENT, &header, &bdlen);
9623 	switch (rval) {
9624 	case 0:
9625 		mode_caching_page = (struct mode_caching *)(header + hdrlen +
9626 		    bdlen);
9627 		*is_enabled = mode_caching_page->wce;
9628 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9629 		kmem_free(header, buflen);
9630 		break;
9631 	case EIO: {
9632 		/*
9633 		 * Some disks do not support Mode Sense(6), we
9634 		 * should ignore this kind of error (sense key is
9635 		 * 0x5 - illegal request).
9636 		 */
9637 		uint8_t *sensep;
9638 		int senlen;
9639 
9640 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9641 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9642 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9643 
9644 		if (senlen > 0 &&
9645 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9646 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9647 		} else {
9648 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9649 		}
9650 		break;
9651 	}
9652 	default:
9653 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9654 		break;
9655 	}
9656 
9657 	return (rval);
9658 }
9659 
9660 /*
9661  *    Function: sd_get_write_cache_changeable()
9662  *
9663  * Description: This routine is the driver entry point for determining if write
9664  *		caching is changeable.  It examines the WCE (write cache enable)
9665  *		bits of mode page 8 (MODEPAGE_CACHING) with Page Control field
9666  *		bits set to MODEPAGE_CHANGEABLE.
9667  *
9668  *   Arguments: ssc		- ssc contains pointer to driver soft state
9669  *				  (unit) structure for this target.
9670  *		is_changeable	- pointer to int where write cache changeable
9671  *				  state is returned (non-zero -> write cache
9672  *				  changeable)
9673  *
9674  *     Context: Kernel Thread
9675  */
9676 
9677 static void
9678 sd_get_write_cache_changeable(sd_ssc_t *ssc, int *is_changeable)
9679 {
9680 	struct sd_lun	*un = ssc->ssc_un;
9681 	struct mode_caching *mode_caching_page;
9682 	uchar_t		*header;
9683 	size_t		buflen = SDC_BUFLEN(un);
9684 	int		hdrlen = SDC_HDRLEN(un);
9685 	int		bdlen;
9686 	int		rval;
9687 
9688 	/* In case of error, flag as enabled */
9689 	*is_changeable = TRUE;
9690 
9691 	rval = sd_get_caching_mode_page(ssc, MODEPAGE_CHANGEABLE, &header,
9692 	    &bdlen);
9693 	switch (rval) {
9694 	case 0:
9695 		mode_caching_page = (struct mode_caching *)(header + hdrlen +
9696 		    bdlen);
9697 		*is_changeable = mode_caching_page->wce;
9698 		kmem_free(header, buflen);
9699 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9700 		break;
9701 	case EIO:
9702 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9703 		break;
9704 	default:
9705 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9706 		break;
9707 	}
9708 }
9709 
9710 /*
9711  *    Function: sd_get_nv_sup()
9712  *
9713  * Description: This routine is the driver entry point for
9714  * determining whether non-volatile cache is supported. This
9715  * determination process works as follows:
9716  *
9717  * 1. sd first queries sd.conf on whether
9718  * suppress_cache_flush bit is set for this device.
9719  *
9720  * 2. if not there, then queries the internal disk table.
9721  *
9722  * 3. if either sd.conf or internal disk table specifies
9723  * cache flush be suppressed, we don't bother checking
9724  * NV_SUP bit.
9725  *
9726  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9727  * the optional INQUIRY VPD page 0x86. If the device
9728  * supports VPD page 0x86, sd examines the NV_SUP
9729  * (non-volatile cache support) bit in the INQUIRY VPD page
9730  * 0x86:
9731  *   o If NV_SUP bit is set, sd assumes the device has a
9732  *   non-volatile cache and set the
9733  *   un_f_sync_nv_supported to TRUE.
9734  *   o Otherwise cache is not non-volatile,
9735  *   un_f_sync_nv_supported is set to FALSE.
9736  *
9737  * Arguments: un - driver soft state (unit) structure
9738  *
9739  * Return Code:
9740  *
9741  *     Context: Kernel Thread
9742  */
9743 
9744 static void
9745 sd_get_nv_sup(sd_ssc_t *ssc)
9746 {
9747 	int		rval		= 0;
9748 	uchar_t		*inq86		= NULL;
9749 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9750 	size_t		inq86_resid	= 0;
9751 	struct		dk_callback *dkc;
9752 	struct sd_lun	*un;
9753 
9754 	ASSERT(ssc != NULL);
9755 	un = ssc->ssc_un;
9756 	ASSERT(un != NULL);
9757 
9758 	mutex_enter(SD_MUTEX(un));
9759 
9760 	/*
9761 	 * Be conservative on the device's support of
9762 	 * SYNC_NV bit: un_f_sync_nv_supported is
9763 	 * initialized to be false.
9764 	 */
9765 	un->un_f_sync_nv_supported = FALSE;
9766 
9767 	/*
9768 	 * If either sd.conf or internal disk table
9769 	 * specifies cache flush be suppressed, then
9770 	 * we don't bother checking NV_SUP bit.
9771 	 */
9772 	if (un->un_f_suppress_cache_flush == TRUE) {
9773 		mutex_exit(SD_MUTEX(un));
9774 		return;
9775 	}
9776 
9777 	if (sd_check_vpd_page_support(ssc) == 0 &&
9778 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9779 		mutex_exit(SD_MUTEX(un));
9780 		/* collect page 86 data if available */
9781 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9782 
9783 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9784 		    0x01, 0x86, &inq86_resid);
9785 
9786 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9787 			SD_TRACE(SD_LOG_COMMON, un,
9788 			    "sd_get_nv_sup: \
9789 			    successfully get VPD page: %x \
9790 			    PAGE LENGTH: %x BYTE 6: %x\n",
9791 			    inq86[1], inq86[3], inq86[6]);
9792 
9793 			mutex_enter(SD_MUTEX(un));
9794 			/*
9795 			 * check the value of NV_SUP bit: only if the device
9796 			 * reports NV_SUP bit to be 1, the
9797 			 * un_f_sync_nv_supported bit will be set to true.
9798 			 */
9799 			if (inq86[6] & SD_VPD_NV_SUP) {
9800 				un->un_f_sync_nv_supported = TRUE;
9801 			}
9802 			mutex_exit(SD_MUTEX(un));
9803 		} else if (rval != 0) {
9804 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9805 		}
9806 
9807 		kmem_free(inq86, inq86_len);
9808 	} else {
9809 		mutex_exit(SD_MUTEX(un));
9810 	}
9811 
9812 	/*
9813 	 * Send a SYNC CACHE command to check whether
9814 	 * SYNC_NV bit is supported. This command should have
9815 	 * un_f_sync_nv_supported set to correct value.
9816 	 */
9817 	mutex_enter(SD_MUTEX(un));
9818 	if (un->un_f_sync_nv_supported) {
9819 		mutex_exit(SD_MUTEX(un));
9820 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9821 		dkc->dkc_flag = FLUSH_VOLATILE;
9822 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9823 
9824 		/*
9825 		 * Send a TEST UNIT READY command to the device. This should
9826 		 * clear any outstanding UNIT ATTENTION that may be present.
9827 		 */
9828 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9829 		if (rval != 0)
9830 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9831 
9832 		kmem_free(dkc, sizeof (struct dk_callback));
9833 	} else {
9834 		mutex_exit(SD_MUTEX(un));
9835 	}
9836 
9837 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9838 	    un_f_suppress_cache_flush is set to %d\n",
9839 	    un->un_f_suppress_cache_flush);
9840 }
9841 
9842 /*
9843  *    Function: sd_make_device
9844  *
9845  * Description: Utility routine to return the Solaris device number from
9846  *		the data in the device's dev_info structure.
9847  *
9848  * Return Code: The Solaris device number
9849  *
9850  *     Context: Any
9851  */
9852 
9853 static dev_t
9854 sd_make_device(dev_info_t *devi)
9855 {
9856 	return (makedevice(ddi_driver_major(devi),
9857 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9858 }
9859 
9860 
9861 /*
9862  *    Function: sd_pm_entry
9863  *
9864  * Description: Called at the start of a new command to manage power
9865  *		and busy status of a device. This includes determining whether
9866  *		the current power state of the device is sufficient for
9867  *		performing the command or whether it must be changed.
9868  *		The PM framework is notified appropriately.
9869  *		Only with a return status of DDI_SUCCESS will the
9870  *		component be busy to the framework.
9871  *
9872  *		All callers of sd_pm_entry must check the return status
9873  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9874  *		of DDI_FAILURE indicates the device failed to power up.
9875  *		In this case un_pm_count has been adjusted so the result
9876  *		on exit is still powered down, ie. count is less than 0.
9877  *		Calling sd_pm_exit with this count value hits an ASSERT.
9878  *
9879  * Return Code: DDI_SUCCESS or DDI_FAILURE
9880  *
9881  *     Context: Kernel thread context.
9882  */
9883 
9884 static int
9885 sd_pm_entry(struct sd_lun *un)
9886 {
9887 	int return_status = DDI_SUCCESS;
9888 
9889 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9890 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9891 
9892 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9893 
9894 	if (un->un_f_pm_is_enabled == FALSE) {
9895 		SD_TRACE(SD_LOG_IO_PM, un,
9896 		    "sd_pm_entry: exiting, PM not enabled\n");
9897 		return (return_status);
9898 	}
9899 
9900 	/*
9901 	 * Just increment a counter if PM is enabled. On the transition from
9902 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9903 	 * the count with each IO and mark the device as idle when the count
9904 	 * hits 0.
9905 	 *
9906 	 * If the count is less than 0 the device is powered down. If a powered
9907 	 * down device is successfully powered up then the count must be
9908 	 * incremented to reflect the power up. Note that it'll get incremented
9909 	 * a second time to become busy.
9910 	 *
9911 	 * Because the following has the potential to change the device state
9912 	 * and must release the un_pm_mutex to do so, only one thread can be
9913 	 * allowed through at a time.
9914 	 */
9915 
9916 	mutex_enter(&un->un_pm_mutex);
9917 	while (un->un_pm_busy == TRUE) {
9918 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9919 	}
9920 	un->un_pm_busy = TRUE;
9921 
9922 	if (un->un_pm_count < 1) {
9923 
9924 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9925 
9926 		/*
9927 		 * Indicate we are now busy so the framework won't attempt to
9928 		 * power down the device. This call will only fail if either
9929 		 * we passed a bad component number or the device has no
9930 		 * components. Neither of these should ever happen.
9931 		 */
9932 		mutex_exit(&un->un_pm_mutex);
9933 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9934 		ASSERT(return_status == DDI_SUCCESS);
9935 
9936 		mutex_enter(&un->un_pm_mutex);
9937 
9938 		if (un->un_pm_count < 0) {
9939 			mutex_exit(&un->un_pm_mutex);
9940 
9941 			SD_TRACE(SD_LOG_IO_PM, un,
9942 			    "sd_pm_entry: power up component\n");
9943 
9944 			/*
9945 			 * pm_raise_power will cause sdpower to be called
9946 			 * which brings the device power level to the
9947 			 * desired state, If successful, un_pm_count and
9948 			 * un_power_level will be updated appropriately.
9949 			 */
9950 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9951 			    SD_PM_STATE_ACTIVE(un));
9952 
9953 			mutex_enter(&un->un_pm_mutex);
9954 
9955 			if (return_status != DDI_SUCCESS) {
9956 				/*
9957 				 * Power up failed.
9958 				 * Idle the device and adjust the count
9959 				 * so the result on exit is that we're
9960 				 * still powered down, ie. count is less than 0.
9961 				 */
9962 				SD_TRACE(SD_LOG_IO_PM, un,
9963 				    "sd_pm_entry: power up failed,"
9964 				    " idle the component\n");
9965 
9966 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9967 				un->un_pm_count--;
9968 			} else {
9969 				/*
9970 				 * Device is powered up, verify the
9971 				 * count is non-negative.
9972 				 * This is debug only.
9973 				 */
9974 				ASSERT(un->un_pm_count == 0);
9975 			}
9976 		}
9977 
9978 		if (return_status == DDI_SUCCESS) {
9979 			/*
9980 			 * For performance, now that the device has been tagged
9981 			 * as busy, and it's known to be powered up, update the
9982 			 * chain types to use jump tables that do not include
9983 			 * pm. This significantly lowers the overhead and
9984 			 * therefore improves performance.
9985 			 */
9986 
9987 			mutex_exit(&un->un_pm_mutex);
9988 			mutex_enter(SD_MUTEX(un));
9989 			SD_TRACE(SD_LOG_IO_PM, un,
9990 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9991 			    un->un_uscsi_chain_type);
9992 
9993 			if (un->un_f_non_devbsize_supported) {
9994 				un->un_buf_chain_type =
9995 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9996 			} else {
9997 				un->un_buf_chain_type =
9998 				    SD_CHAIN_INFO_DISK_NO_PM;
9999 			}
10000 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10001 
10002 			SD_TRACE(SD_LOG_IO_PM, un,
10003 			    "             changed  uscsi_chain_type to   %d\n",
10004 			    un->un_uscsi_chain_type);
10005 			mutex_exit(SD_MUTEX(un));
10006 			mutex_enter(&un->un_pm_mutex);
10007 
10008 			if (un->un_pm_idle_timeid == NULL) {
10009 				/* 300 ms. */
10010 				un->un_pm_idle_timeid =
10011 				    timeout(sd_pm_idletimeout_handler, un,
10012 				    (drv_usectohz((clock_t)300000)));
10013 				/*
10014 				 * Include an extra call to busy which keeps the
10015 				 * device busy with-respect-to the PM layer
10016 				 * until the timer fires, at which time it'll
10017 				 * get the extra idle call.
10018 				 */
10019 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10020 			}
10021 		}
10022 	}
10023 	un->un_pm_busy = FALSE;
10024 	/* Next... */
10025 	cv_signal(&un->un_pm_busy_cv);
10026 
10027 	un->un_pm_count++;
10028 
10029 	SD_TRACE(SD_LOG_IO_PM, un,
10030 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10031 
10032 	mutex_exit(&un->un_pm_mutex);
10033 
10034 	return (return_status);
10035 }
10036 
10037 
10038 /*
10039  *    Function: sd_pm_exit
10040  *
10041  * Description: Called at the completion of a command to manage busy
10042  *		status for the device. If the device becomes idle the
10043  *		PM framework is notified.
10044  *
10045  *     Context: Kernel thread context
10046  */
10047 
10048 static void
10049 sd_pm_exit(struct sd_lun *un)
10050 {
10051 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10052 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10053 
10054 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10055 
10056 	/*
10057 	 * After attach the following flag is only read, so don't
10058 	 * take the penalty of acquiring a mutex for it.
10059 	 */
10060 	if (un->un_f_pm_is_enabled == TRUE) {
10061 
10062 		mutex_enter(&un->un_pm_mutex);
10063 		un->un_pm_count--;
10064 
10065 		SD_TRACE(SD_LOG_IO_PM, un,
10066 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10067 
10068 		ASSERT(un->un_pm_count >= 0);
10069 		if (un->un_pm_count == 0) {
10070 			mutex_exit(&un->un_pm_mutex);
10071 
10072 			SD_TRACE(SD_LOG_IO_PM, un,
10073 			    "sd_pm_exit: idle component\n");
10074 
10075 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10076 
10077 		} else {
10078 			mutex_exit(&un->un_pm_mutex);
10079 		}
10080 	}
10081 
10082 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10083 }
10084 
10085 
10086 /*
10087  *    Function: sdopen
10088  *
10089  * Description: Driver's open(9e) entry point function.
10090  *
10091  *   Arguments: dev_i   - pointer to device number
10092  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10093  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10094  *		cred_p  - user credential pointer
10095  *
10096  * Return Code: EINVAL
10097  *		ENXIO
10098  *		EIO
10099  *		EROFS
10100  *		EBUSY
10101  *
10102  *     Context: Kernel thread context
10103  */
10104 /* ARGSUSED */
10105 static int
10106 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10107 {
10108 	struct sd_lun	*un;
10109 	int		nodelay;
10110 	int		part;
10111 	uint64_t	partmask;
10112 	int		instance;
10113 	dev_t		dev;
10114 	int		rval = EIO;
10115 	diskaddr_t	nblks = 0;
10116 	diskaddr_t	label_cap;
10117 
10118 	/* Validate the open type */
10119 	if (otyp >= OTYPCNT) {
10120 		return (EINVAL);
10121 	}
10122 
10123 	dev = *dev_p;
10124 	instance = SDUNIT(dev);
10125 	mutex_enter(&sd_detach_mutex);
10126 
10127 	/*
10128 	 * Fail the open if there is no softstate for the instance, or
10129 	 * if another thread somewhere is trying to detach the instance.
10130 	 */
10131 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10132 	    (un->un_detach_count != 0)) {
10133 		mutex_exit(&sd_detach_mutex);
10134 		/*
10135 		 * The probe cache only needs to be cleared when open (9e) fails
10136 		 * with ENXIO (4238046).
10137 		 */
10138 		/*
10139 		 * un-conditionally clearing probe cache is ok with
10140 		 * separate sd/ssd binaries
10141 		 * x86 platform can be an issue with both parallel
10142 		 * and fibre in 1 binary
10143 		 */
10144 		sd_scsi_clear_probe_cache();
10145 		return (ENXIO);
10146 	}
10147 
10148 	/*
10149 	 * The un_layer_count is to prevent another thread in specfs from
10150 	 * trying to detach the instance, which can happen when we are
10151 	 * called from a higher-layer driver instead of thru specfs.
10152 	 * This will not be needed when DDI provides a layered driver
10153 	 * interface that allows specfs to know that an instance is in
10154 	 * use by a layered driver & should not be detached.
10155 	 *
10156 	 * Note: the semantics for layered driver opens are exactly one
10157 	 * close for every open.
10158 	 */
10159 	if (otyp == OTYP_LYR) {
10160 		un->un_layer_count++;
10161 	}
10162 
10163 	/*
10164 	 * Keep a count of the current # of opens in progress. This is because
10165 	 * some layered drivers try to call us as a regular open. This can
10166 	 * cause problems that we cannot prevent, however by keeping this count
10167 	 * we can at least keep our open and detach routines from racing against
10168 	 * each other under such conditions.
10169 	 */
10170 	un->un_opens_in_progress++;
10171 	mutex_exit(&sd_detach_mutex);
10172 
10173 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10174 	part	 = SDPART(dev);
10175 	partmask = 1 << part;
10176 
10177 	/*
10178 	 * We use a semaphore here in order to serialize
10179 	 * open and close requests on the device.
10180 	 */
10181 	sema_p(&un->un_semoclose);
10182 
10183 	mutex_enter(SD_MUTEX(un));
10184 
10185 	/*
10186 	 * All device accesses go thru sdstrategy() where we check
10187 	 * on suspend status but there could be a scsi_poll command,
10188 	 * which bypasses sdstrategy(), so we need to check pm
10189 	 * status.
10190 	 */
10191 
10192 	if (!nodelay) {
10193 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10194 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10195 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10196 		}
10197 
10198 		mutex_exit(SD_MUTEX(un));
10199 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10200 			rval = EIO;
10201 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10202 			    "sdopen: sd_pm_entry failed\n");
10203 			goto open_failed_with_pm;
10204 		}
10205 		mutex_enter(SD_MUTEX(un));
10206 	}
10207 
10208 	/* check for previous exclusive open */
10209 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10210 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10211 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10212 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10213 
10214 	if (un->un_exclopen & (partmask)) {
10215 		goto excl_open_fail;
10216 	}
10217 
10218 	if (flag & FEXCL) {
10219 		int i;
10220 		if (un->un_ocmap.lyropen[part]) {
10221 			goto excl_open_fail;
10222 		}
10223 		for (i = 0; i < (OTYPCNT - 1); i++) {
10224 			if (un->un_ocmap.regopen[i] & (partmask)) {
10225 				goto excl_open_fail;
10226 			}
10227 		}
10228 	}
10229 
10230 	/*
10231 	 * Check the write permission if this is a removable media device,
10232 	 * NDELAY has not been set, and writable permission is requested.
10233 	 *
10234 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10235 	 * attempt will fail with EIO as part of the I/O processing. This is a
10236 	 * more permissive implementation that allows the open to succeed and
10237 	 * WRITE attempts to fail when appropriate.
10238 	 */
10239 	if (un->un_f_chk_wp_open) {
10240 		if ((flag & FWRITE) && (!nodelay)) {
10241 			mutex_exit(SD_MUTEX(un));
10242 			/*
10243 			 * Defer the check for write permission on writable
10244 			 * DVD drive till sdstrategy and will not fail open even
10245 			 * if FWRITE is set as the device can be writable
10246 			 * depending upon the media and the media can change
10247 			 * after the call to open().
10248 			 */
10249 			if (un->un_f_dvdram_writable_device == FALSE) {
10250 				if (ISCD(un) || sr_check_wp(dev)) {
10251 				rval = EROFS;
10252 				mutex_enter(SD_MUTEX(un));
10253 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10254 				    "write to cd or write protected media\n");
10255 				goto open_fail;
10256 				}
10257 			}
10258 			mutex_enter(SD_MUTEX(un));
10259 		}
10260 	}
10261 
10262 	/*
10263 	 * If opening in NDELAY/NONBLOCK mode, just return.
10264 	 * Check if disk is ready and has a valid geometry later.
10265 	 */
10266 	if (!nodelay) {
10267 		sd_ssc_t	*ssc;
10268 
10269 		mutex_exit(SD_MUTEX(un));
10270 		ssc = sd_ssc_init(un);
10271 		rval = sd_ready_and_valid(ssc, part);
10272 		sd_ssc_fini(ssc);
10273 		mutex_enter(SD_MUTEX(un));
10274 		/*
10275 		 * Fail if device is not ready or if the number of disk
10276 		 * blocks is zero or negative for non CD devices.
10277 		 */
10278 
10279 		nblks = 0;
10280 
10281 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10282 			/* if cmlb_partinfo fails, nblks remains 0 */
10283 			mutex_exit(SD_MUTEX(un));
10284 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10285 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10286 			mutex_enter(SD_MUTEX(un));
10287 		}
10288 
10289 		if ((rval != SD_READY_VALID) ||
10290 		    (!ISCD(un) && nblks <= 0)) {
10291 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10292 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10293 			    "device not ready or invalid disk block value\n");
10294 			goto open_fail;
10295 		}
10296 #if defined(__i386) || defined(__amd64)
10297 	} else {
10298 		uchar_t *cp;
10299 		/*
10300 		 * x86 requires special nodelay handling, so that p0 is
10301 		 * always defined and accessible.
10302 		 * Invalidate geometry only if device is not already open.
10303 		 */
10304 		cp = &un->un_ocmap.chkd[0];
10305 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10306 			if (*cp != (uchar_t)0) {
10307 				break;
10308 			}
10309 			cp++;
10310 		}
10311 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10312 			mutex_exit(SD_MUTEX(un));
10313 			cmlb_invalidate(un->un_cmlbhandle,
10314 			    (void *)SD_PATH_DIRECT);
10315 			mutex_enter(SD_MUTEX(un));
10316 		}
10317 
10318 #endif
10319 	}
10320 
10321 	if (otyp == OTYP_LYR) {
10322 		un->un_ocmap.lyropen[part]++;
10323 	} else {
10324 		un->un_ocmap.regopen[otyp] |= partmask;
10325 	}
10326 
10327 	/* Set up open and exclusive open flags */
10328 	if (flag & FEXCL) {
10329 		un->un_exclopen |= (partmask);
10330 	}
10331 
10332 	/*
10333 	 * If the lun is EFI labeled and lun capacity is greater than the
10334 	 * capacity contained in the label, log a sys-event to notify the
10335 	 * interested module.
10336 	 * To avoid an infinite loop of logging sys-event, we only log the
10337 	 * event when the lun is not opened in NDELAY mode. The event handler
10338 	 * should open the lun in NDELAY mode.
10339 	 */
10340 	if (!nodelay) {
10341 		mutex_exit(SD_MUTEX(un));
10342 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10343 		    (void*)SD_PATH_DIRECT) == 0) {
10344 			mutex_enter(SD_MUTEX(un));
10345 			if (un->un_f_blockcount_is_valid &&
10346 			    un->un_blockcount > label_cap &&
10347 			    un->un_f_expnevent == B_FALSE) {
10348 				un->un_f_expnevent = B_TRUE;
10349 				mutex_exit(SD_MUTEX(un));
10350 				sd_log_lun_expansion_event(un,
10351 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10352 				mutex_enter(SD_MUTEX(un));
10353 			}
10354 		} else {
10355 			mutex_enter(SD_MUTEX(un));
10356 		}
10357 	}
10358 
10359 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10360 	    "open of part %d type %d\n", part, otyp);
10361 
10362 	mutex_exit(SD_MUTEX(un));
10363 	if (!nodelay) {
10364 		sd_pm_exit(un);
10365 	}
10366 
10367 	sema_v(&un->un_semoclose);
10368 
10369 	mutex_enter(&sd_detach_mutex);
10370 	un->un_opens_in_progress--;
10371 	mutex_exit(&sd_detach_mutex);
10372 
10373 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10374 	return (DDI_SUCCESS);
10375 
10376 excl_open_fail:
10377 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10378 	rval = EBUSY;
10379 
10380 open_fail:
10381 	mutex_exit(SD_MUTEX(un));
10382 
10383 	/*
10384 	 * On a failed open we must exit the pm management.
10385 	 */
10386 	if (!nodelay) {
10387 		sd_pm_exit(un);
10388 	}
10389 open_failed_with_pm:
10390 	sema_v(&un->un_semoclose);
10391 
10392 	mutex_enter(&sd_detach_mutex);
10393 	un->un_opens_in_progress--;
10394 	if (otyp == OTYP_LYR) {
10395 		un->un_layer_count--;
10396 	}
10397 	mutex_exit(&sd_detach_mutex);
10398 
10399 	return (rval);
10400 }
10401 
10402 
10403 /*
10404  *    Function: sdclose
10405  *
10406  * Description: Driver's close(9e) entry point function.
10407  *
10408  *   Arguments: dev    - device number
10409  *		flag   - file status flag, informational only
10410  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10411  *		cred_p - user credential pointer
10412  *
10413  * Return Code: ENXIO
10414  *
10415  *     Context: Kernel thread context
10416  */
10417 /* ARGSUSED */
10418 static int
10419 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10420 {
10421 	struct sd_lun	*un;
10422 	uchar_t		*cp;
10423 	int		part;
10424 	int		nodelay;
10425 	int		rval = 0;
10426 
10427 	/* Validate the open type */
10428 	if (otyp >= OTYPCNT) {
10429 		return (ENXIO);
10430 	}
10431 
10432 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10433 		return (ENXIO);
10434 	}
10435 
10436 	part = SDPART(dev);
10437 	nodelay = flag & (FNDELAY | FNONBLOCK);
10438 
10439 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10440 	    "sdclose: close of part %d type %d\n", part, otyp);
10441 
10442 	/*
10443 	 * We use a semaphore here in order to serialize
10444 	 * open and close requests on the device.
10445 	 */
10446 	sema_p(&un->un_semoclose);
10447 
10448 	mutex_enter(SD_MUTEX(un));
10449 
10450 	/* Don't proceed if power is being changed. */
10451 	while (un->un_state == SD_STATE_PM_CHANGING) {
10452 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10453 	}
10454 
10455 	if (un->un_exclopen & (1 << part)) {
10456 		un->un_exclopen &= ~(1 << part);
10457 	}
10458 
10459 	/* Update the open partition map */
10460 	if (otyp == OTYP_LYR) {
10461 		un->un_ocmap.lyropen[part] -= 1;
10462 	} else {
10463 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10464 	}
10465 
10466 	cp = &un->un_ocmap.chkd[0];
10467 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10468 		if (*cp != NULL) {
10469 			break;
10470 		}
10471 		cp++;
10472 	}
10473 
10474 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10475 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10476 
10477 		/*
10478 		 * We avoid persistance upon the last close, and set
10479 		 * the throttle back to the maximum.
10480 		 */
10481 		un->un_throttle = un->un_saved_throttle;
10482 
10483 		if (un->un_state == SD_STATE_OFFLINE) {
10484 			if (un->un_f_is_fibre == FALSE) {
10485 				scsi_log(SD_DEVINFO(un), sd_label,
10486 				    CE_WARN, "offline\n");
10487 			}
10488 			mutex_exit(SD_MUTEX(un));
10489 			cmlb_invalidate(un->un_cmlbhandle,
10490 			    (void *)SD_PATH_DIRECT);
10491 			mutex_enter(SD_MUTEX(un));
10492 
10493 		} else {
10494 			/*
10495 			 * Flush any outstanding writes in NVRAM cache.
10496 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10497 			 * cmd, it may not work for non-Pluto devices.
10498 			 * SYNCHRONIZE CACHE is not required for removables,
10499 			 * except DVD-RAM drives.
10500 			 *
10501 			 * Also note: because SYNCHRONIZE CACHE is currently
10502 			 * the only command issued here that requires the
10503 			 * drive be powered up, only do the power up before
10504 			 * sending the Sync Cache command. If additional
10505 			 * commands are added which require a powered up
10506 			 * drive, the following sequence may have to change.
10507 			 *
10508 			 * And finally, note that parallel SCSI on SPARC
10509 			 * only issues a Sync Cache to DVD-RAM, a newly
10510 			 * supported device.
10511 			 */
10512 #if defined(__i386) || defined(__amd64)
10513 			if ((un->un_f_sync_cache_supported &&
10514 			    un->un_f_sync_cache_required) ||
10515 			    un->un_f_dvdram_writable_device == TRUE) {
10516 #else
10517 			if (un->un_f_dvdram_writable_device == TRUE) {
10518 #endif
10519 				mutex_exit(SD_MUTEX(un));
10520 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10521 					rval =
10522 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10523 					    NULL);
10524 					/* ignore error if not supported */
10525 					if (rval == ENOTSUP) {
10526 						rval = 0;
10527 					} else if (rval != 0) {
10528 						rval = EIO;
10529 					}
10530 					sd_pm_exit(un);
10531 				} else {
10532 					rval = EIO;
10533 				}
10534 				mutex_enter(SD_MUTEX(un));
10535 			}
10536 
10537 			/*
10538 			 * For devices which supports DOOR_LOCK, send an ALLOW
10539 			 * MEDIA REMOVAL command, but don't get upset if it
10540 			 * fails. We need to raise the power of the drive before
10541 			 * we can call sd_send_scsi_DOORLOCK()
10542 			 */
10543 			if (un->un_f_doorlock_supported) {
10544 				mutex_exit(SD_MUTEX(un));
10545 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10546 					sd_ssc_t	*ssc;
10547 
10548 					ssc = sd_ssc_init(un);
10549 					rval = sd_send_scsi_DOORLOCK(ssc,
10550 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10551 					if (rval != 0)
10552 						sd_ssc_assessment(ssc,
10553 						    SD_FMT_IGNORE);
10554 					sd_ssc_fini(ssc);
10555 
10556 					sd_pm_exit(un);
10557 					if (ISCD(un) && (rval != 0) &&
10558 					    (nodelay != 0)) {
10559 						rval = ENXIO;
10560 					}
10561 				} else {
10562 					rval = EIO;
10563 				}
10564 				mutex_enter(SD_MUTEX(un));
10565 			}
10566 
10567 			/*
10568 			 * If a device has removable media, invalidate all
10569 			 * parameters related to media, such as geometry,
10570 			 * blocksize, and blockcount.
10571 			 */
10572 			if (un->un_f_has_removable_media) {
10573 				sr_ejected(un);
10574 			}
10575 
10576 			/*
10577 			 * Destroy the cache (if it exists) which was
10578 			 * allocated for the write maps since this is
10579 			 * the last close for this media.
10580 			 */
10581 			if (un->un_wm_cache) {
10582 				/*
10583 				 * Check if there are pending commands.
10584 				 * and if there are give a warning and
10585 				 * do not destroy the cache.
10586 				 */
10587 				if (un->un_ncmds_in_driver > 0) {
10588 					scsi_log(SD_DEVINFO(un),
10589 					    sd_label, CE_WARN,
10590 					    "Unable to clean up memory "
10591 					    "because of pending I/O\n");
10592 				} else {
10593 					kmem_cache_destroy(
10594 					    un->un_wm_cache);
10595 					un->un_wm_cache = NULL;
10596 				}
10597 			}
10598 		}
10599 	}
10600 
10601 	mutex_exit(SD_MUTEX(un));
10602 	sema_v(&un->un_semoclose);
10603 
10604 	if (otyp == OTYP_LYR) {
10605 		mutex_enter(&sd_detach_mutex);
10606 		/*
10607 		 * The detach routine may run when the layer count
10608 		 * drops to zero.
10609 		 */
10610 		un->un_layer_count--;
10611 		mutex_exit(&sd_detach_mutex);
10612 	}
10613 
10614 	return (rval);
10615 }
10616 
10617 
10618 /*
10619  *    Function: sd_ready_and_valid
10620  *
10621  * Description: Test if device is ready and has a valid geometry.
10622  *
10623  *   Arguments: ssc - sd_ssc_t will contain un
10624  *		un  - driver soft state (unit) structure
10625  *
10626  * Return Code: SD_READY_VALID		ready and valid label
10627  *		SD_NOT_READY_VALID	not ready, no label
10628  *		SD_RESERVED_BY_OTHERS	reservation conflict
10629  *
10630  *     Context: Never called at interrupt context.
10631  */
10632 
10633 static int
10634 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10635 {
10636 	struct sd_errstats	*stp;
10637 	uint64_t		capacity;
10638 	uint_t			lbasize;
10639 	int			rval = SD_READY_VALID;
10640 	char			name_str[48];
10641 	boolean_t		is_valid;
10642 	struct sd_lun		*un;
10643 	int			status;
10644 
10645 	ASSERT(ssc != NULL);
10646 	un = ssc->ssc_un;
10647 	ASSERT(un != NULL);
10648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10649 
10650 	mutex_enter(SD_MUTEX(un));
10651 	/*
10652 	 * If a device has removable media, we must check if media is
10653 	 * ready when checking if this device is ready and valid.
10654 	 */
10655 	if (un->un_f_has_removable_media) {
10656 		mutex_exit(SD_MUTEX(un));
10657 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10658 
10659 		if (status != 0) {
10660 			rval = SD_NOT_READY_VALID;
10661 			mutex_enter(SD_MUTEX(un));
10662 
10663 			/* Ignore all failed status for removalbe media */
10664 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10665 
10666 			goto done;
10667 		}
10668 
10669 		is_valid = SD_IS_VALID_LABEL(un);
10670 		mutex_enter(SD_MUTEX(un));
10671 		if (!is_valid ||
10672 		    (un->un_f_blockcount_is_valid == FALSE) ||
10673 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10674 
10675 			/* capacity has to be read every open. */
10676 			mutex_exit(SD_MUTEX(un));
10677 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10678 			    &lbasize, SD_PATH_DIRECT);
10679 
10680 			if (status != 0) {
10681 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10682 
10683 				cmlb_invalidate(un->un_cmlbhandle,
10684 				    (void *)SD_PATH_DIRECT);
10685 				mutex_enter(SD_MUTEX(un));
10686 				rval = SD_NOT_READY_VALID;
10687 
10688 				goto done;
10689 			} else {
10690 				mutex_enter(SD_MUTEX(un));
10691 				sd_update_block_info(un, lbasize, capacity);
10692 			}
10693 		}
10694 
10695 		/*
10696 		 * Check if the media in the device is writable or not.
10697 		 */
10698 		if (!is_valid && ISCD(un)) {
10699 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10700 		}
10701 
10702 	} else {
10703 		/*
10704 		 * Do a test unit ready to clear any unit attention from non-cd
10705 		 * devices.
10706 		 */
10707 		mutex_exit(SD_MUTEX(un));
10708 
10709 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10710 		if (status != 0) {
10711 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10712 		}
10713 
10714 		mutex_enter(SD_MUTEX(un));
10715 	}
10716 
10717 
10718 	/*
10719 	 * If this is a non 512 block device, allocate space for
10720 	 * the wmap cache. This is being done here since every time
10721 	 * a media is changed this routine will be called and the
10722 	 * block size is a function of media rather than device.
10723 	 */
10724 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10725 	    un->un_f_non_devbsize_supported) &&
10726 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10727 	    un->un_f_enable_rmw) {
10728 		if (!(un->un_wm_cache)) {
10729 			(void) snprintf(name_str, sizeof (name_str),
10730 			    "%s%d_cache",
10731 			    ddi_driver_name(SD_DEVINFO(un)),
10732 			    ddi_get_instance(SD_DEVINFO(un)));
10733 			un->un_wm_cache = kmem_cache_create(
10734 			    name_str, sizeof (struct sd_w_map),
10735 			    8, sd_wm_cache_constructor,
10736 			    sd_wm_cache_destructor, NULL,
10737 			    (void *)un, NULL, 0);
10738 			if (!(un->un_wm_cache)) {
10739 				rval = ENOMEM;
10740 				goto done;
10741 			}
10742 		}
10743 	}
10744 
10745 	if (un->un_state == SD_STATE_NORMAL) {
10746 		/*
10747 		 * If the target is not yet ready here (defined by a TUR
10748 		 * failure), invalidate the geometry and print an 'offline'
10749 		 * message. This is a legacy message, as the state of the
10750 		 * target is not actually changed to SD_STATE_OFFLINE.
10751 		 *
10752 		 * If the TUR fails for EACCES (Reservation Conflict),
10753 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10754 		 * reservation conflict. If the TUR fails for other
10755 		 * reasons, SD_NOT_READY_VALID will be returned.
10756 		 */
10757 		int err;
10758 
10759 		mutex_exit(SD_MUTEX(un));
10760 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10761 		mutex_enter(SD_MUTEX(un));
10762 
10763 		if (err != 0) {
10764 			mutex_exit(SD_MUTEX(un));
10765 			cmlb_invalidate(un->un_cmlbhandle,
10766 			    (void *)SD_PATH_DIRECT);
10767 			mutex_enter(SD_MUTEX(un));
10768 			if (err == EACCES) {
10769 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10770 				    "reservation conflict\n");
10771 				rval = SD_RESERVED_BY_OTHERS;
10772 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10773 			} else {
10774 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10775 				    "drive offline\n");
10776 				rval = SD_NOT_READY_VALID;
10777 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10778 			}
10779 			goto done;
10780 		}
10781 	}
10782 
10783 	if (un->un_f_format_in_progress == FALSE) {
10784 		mutex_exit(SD_MUTEX(un));
10785 
10786 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10787 		    (void *)SD_PATH_DIRECT);
10788 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10789 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10790 			rval = SD_NOT_READY_VALID;
10791 			mutex_enter(SD_MUTEX(un));
10792 
10793 			goto done;
10794 		}
10795 		if (un->un_f_pkstats_enabled) {
10796 			sd_set_pstats(un);
10797 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10798 			    "sd_ready_and_valid: un:0x%p pstats created and "
10799 			    "set\n", un);
10800 		}
10801 		mutex_enter(SD_MUTEX(un));
10802 	}
10803 
10804 	/*
10805 	 * If this device supports DOOR_LOCK command, try and send
10806 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10807 	 * if it fails. For a CD, however, it is an error
10808 	 */
10809 	if (un->un_f_doorlock_supported) {
10810 		mutex_exit(SD_MUTEX(un));
10811 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10812 		    SD_PATH_DIRECT);
10813 
10814 		if ((status != 0) && ISCD(un)) {
10815 			rval = SD_NOT_READY_VALID;
10816 			mutex_enter(SD_MUTEX(un));
10817 
10818 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10819 
10820 			goto done;
10821 		} else if (status != 0)
10822 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10823 		mutex_enter(SD_MUTEX(un));
10824 	}
10825 
10826 	/* The state has changed, inform the media watch routines */
10827 	un->un_mediastate = DKIO_INSERTED;
10828 	cv_broadcast(&un->un_state_cv);
10829 	rval = SD_READY_VALID;
10830 
10831 done:
10832 
10833 	/*
10834 	 * Initialize the capacity kstat value, if no media previously
10835 	 * (capacity kstat is 0) and a media has been inserted
10836 	 * (un_blockcount > 0).
10837 	 */
10838 	if (un->un_errstats != NULL) {
10839 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10840 		if ((stp->sd_capacity.value.ui64 == 0) &&
10841 		    (un->un_f_blockcount_is_valid == TRUE)) {
10842 			stp->sd_capacity.value.ui64 =
10843 			    (uint64_t)((uint64_t)un->un_blockcount *
10844 			    un->un_sys_blocksize);
10845 		}
10846 	}
10847 
10848 	mutex_exit(SD_MUTEX(un));
10849 	return (rval);
10850 }
10851 
10852 
10853 /*
10854  *    Function: sdmin
10855  *
10856  * Description: Routine to limit the size of a data transfer. Used in
10857  *		conjunction with physio(9F).
10858  *
10859  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10860  *
10861  *     Context: Kernel thread context.
10862  */
10863 
10864 static void
10865 sdmin(struct buf *bp)
10866 {
10867 	struct sd_lun	*un;
10868 	int		instance;
10869 
10870 	instance = SDUNIT(bp->b_edev);
10871 
10872 	un = ddi_get_soft_state(sd_state, instance);
10873 	ASSERT(un != NULL);
10874 
10875 	/*
10876 	 * We depend on buf breakup to restrict
10877 	 * IO size if it is enabled.
10878 	 */
10879 	if (un->un_buf_breakup_supported) {
10880 		return;
10881 	}
10882 
10883 	if (bp->b_bcount > un->un_max_xfer_size) {
10884 		bp->b_bcount = un->un_max_xfer_size;
10885 	}
10886 }
10887 
10888 
10889 /*
10890  *    Function: sdread
10891  *
10892  * Description: Driver's read(9e) entry point function.
10893  *
10894  *   Arguments: dev   - device number
10895  *		uio   - structure pointer describing where data is to be stored
10896  *			in user's space
10897  *		cred_p  - user credential pointer
10898  *
10899  * Return Code: ENXIO
10900  *		EIO
10901  *		EINVAL
10902  *		value returned by physio
10903  *
10904  *     Context: Kernel thread context.
10905  */
10906 /* ARGSUSED */
10907 static int
10908 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10909 {
10910 	struct sd_lun	*un = NULL;
10911 	int		secmask;
10912 	int		err = 0;
10913 	sd_ssc_t	*ssc;
10914 
10915 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10916 		return (ENXIO);
10917 	}
10918 
10919 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10920 
10921 
10922 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10923 		mutex_enter(SD_MUTEX(un));
10924 		/*
10925 		 * Because the call to sd_ready_and_valid will issue I/O we
10926 		 * must wait here if either the device is suspended or
10927 		 * if it's power level is changing.
10928 		 */
10929 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10930 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10931 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10932 		}
10933 		un->un_ncmds_in_driver++;
10934 		mutex_exit(SD_MUTEX(un));
10935 
10936 		/* Initialize sd_ssc_t for internal uscsi commands */
10937 		ssc = sd_ssc_init(un);
10938 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10939 			err = EIO;
10940 		} else {
10941 			err = 0;
10942 		}
10943 		sd_ssc_fini(ssc);
10944 
10945 		mutex_enter(SD_MUTEX(un));
10946 		un->un_ncmds_in_driver--;
10947 		ASSERT(un->un_ncmds_in_driver >= 0);
10948 		mutex_exit(SD_MUTEX(un));
10949 		if (err != 0)
10950 			return (err);
10951 	}
10952 
10953 	/*
10954 	 * Read requests are restricted to multiples of the system block size.
10955 	 */
10956 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10957 	    !un->un_f_enable_rmw)
10958 		secmask = un->un_tgt_blocksize - 1;
10959 	else
10960 		secmask = DEV_BSIZE - 1;
10961 
10962 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10963 		SD_ERROR(SD_LOG_READ_WRITE, un,
10964 		    "sdread: file offset not modulo %d\n",
10965 		    secmask + 1);
10966 		err = EINVAL;
10967 	} else if (uio->uio_iov->iov_len & (secmask)) {
10968 		SD_ERROR(SD_LOG_READ_WRITE, un,
10969 		    "sdread: transfer length not modulo %d\n",
10970 		    secmask + 1);
10971 		err = EINVAL;
10972 	} else {
10973 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10974 	}
10975 
10976 	return (err);
10977 }
10978 
10979 
10980 /*
10981  *    Function: sdwrite
10982  *
10983  * Description: Driver's write(9e) entry point function.
10984  *
10985  *   Arguments: dev   - device number
10986  *		uio   - structure pointer describing where data is stored in
10987  *			user's space
10988  *		cred_p  - user credential pointer
10989  *
10990  * Return Code: ENXIO
10991  *		EIO
10992  *		EINVAL
10993  *		value returned by physio
10994  *
10995  *     Context: Kernel thread context.
10996  */
10997 /* ARGSUSED */
10998 static int
10999 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11000 {
11001 	struct sd_lun	*un = NULL;
11002 	int		secmask;
11003 	int		err = 0;
11004 	sd_ssc_t	*ssc;
11005 
11006 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11007 		return (ENXIO);
11008 	}
11009 
11010 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11011 
11012 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11013 		mutex_enter(SD_MUTEX(un));
11014 		/*
11015 		 * Because the call to sd_ready_and_valid will issue I/O we
11016 		 * must wait here if either the device is suspended or
11017 		 * if it's power level is changing.
11018 		 */
11019 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11020 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11021 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11022 		}
11023 		un->un_ncmds_in_driver++;
11024 		mutex_exit(SD_MUTEX(un));
11025 
11026 		/* Initialize sd_ssc_t for internal uscsi commands */
11027 		ssc = sd_ssc_init(un);
11028 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11029 			err = EIO;
11030 		} else {
11031 			err = 0;
11032 		}
11033 		sd_ssc_fini(ssc);
11034 
11035 		mutex_enter(SD_MUTEX(un));
11036 		un->un_ncmds_in_driver--;
11037 		ASSERT(un->un_ncmds_in_driver >= 0);
11038 		mutex_exit(SD_MUTEX(un));
11039 		if (err != 0)
11040 			return (err);
11041 	}
11042 
11043 	/*
11044 	 * Write requests are restricted to multiples of the system block size.
11045 	 */
11046 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11047 	    !un->un_f_enable_rmw)
11048 		secmask = un->un_tgt_blocksize - 1;
11049 	else
11050 		secmask = DEV_BSIZE - 1;
11051 
11052 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11053 		SD_ERROR(SD_LOG_READ_WRITE, un,
11054 		    "sdwrite: file offset not modulo %d\n",
11055 		    secmask + 1);
11056 		err = EINVAL;
11057 	} else if (uio->uio_iov->iov_len & (secmask)) {
11058 		SD_ERROR(SD_LOG_READ_WRITE, un,
11059 		    "sdwrite: transfer length not modulo %d\n",
11060 		    secmask + 1);
11061 		err = EINVAL;
11062 	} else {
11063 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11064 	}
11065 
11066 	return (err);
11067 }
11068 
11069 
11070 /*
11071  *    Function: sdaread
11072  *
11073  * Description: Driver's aread(9e) entry point function.
11074  *
11075  *   Arguments: dev   - device number
11076  *		aio   - structure pointer describing where data is to be stored
11077  *		cred_p  - user credential pointer
11078  *
11079  * Return Code: ENXIO
11080  *		EIO
11081  *		EINVAL
11082  *		value returned by aphysio
11083  *
11084  *     Context: Kernel thread context.
11085  */
11086 /* ARGSUSED */
11087 static int
11088 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11089 {
11090 	struct sd_lun	*un = NULL;
11091 	struct uio	*uio = aio->aio_uio;
11092 	int		secmask;
11093 	int		err = 0;
11094 	sd_ssc_t	*ssc;
11095 
11096 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11097 		return (ENXIO);
11098 	}
11099 
11100 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11101 
11102 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11103 		mutex_enter(SD_MUTEX(un));
11104 		/*
11105 		 * Because the call to sd_ready_and_valid will issue I/O we
11106 		 * must wait here if either the device is suspended or
11107 		 * if it's power level is changing.
11108 		 */
11109 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11110 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11111 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11112 		}
11113 		un->un_ncmds_in_driver++;
11114 		mutex_exit(SD_MUTEX(un));
11115 
11116 		/* Initialize sd_ssc_t for internal uscsi commands */
11117 		ssc = sd_ssc_init(un);
11118 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11119 			err = EIO;
11120 		} else {
11121 			err = 0;
11122 		}
11123 		sd_ssc_fini(ssc);
11124 
11125 		mutex_enter(SD_MUTEX(un));
11126 		un->un_ncmds_in_driver--;
11127 		ASSERT(un->un_ncmds_in_driver >= 0);
11128 		mutex_exit(SD_MUTEX(un));
11129 		if (err != 0)
11130 			return (err);
11131 	}
11132 
11133 	/*
11134 	 * Read requests are restricted to multiples of the system block size.
11135 	 */
11136 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11137 	    !un->un_f_enable_rmw)
11138 		secmask = un->un_tgt_blocksize - 1;
11139 	else
11140 		secmask = DEV_BSIZE - 1;
11141 
11142 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11143 		SD_ERROR(SD_LOG_READ_WRITE, un,
11144 		    "sdaread: file offset not modulo %d\n",
11145 		    secmask + 1);
11146 		err = EINVAL;
11147 	} else if (uio->uio_iov->iov_len & (secmask)) {
11148 		SD_ERROR(SD_LOG_READ_WRITE, un,
11149 		    "sdaread: transfer length not modulo %d\n",
11150 		    secmask + 1);
11151 		err = EINVAL;
11152 	} else {
11153 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11154 	}
11155 
11156 	return (err);
11157 }
11158 
11159 
11160 /*
11161  *    Function: sdawrite
11162  *
11163  * Description: Driver's awrite(9e) entry point function.
11164  *
11165  *   Arguments: dev   - device number
11166  *		aio   - structure pointer describing where data is stored
11167  *		cred_p  - user credential pointer
11168  *
11169  * Return Code: ENXIO
11170  *		EIO
11171  *		EINVAL
11172  *		value returned by aphysio
11173  *
11174  *     Context: Kernel thread context.
11175  */
11176 /* ARGSUSED */
11177 static int
11178 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11179 {
11180 	struct sd_lun	*un = NULL;
11181 	struct uio	*uio = aio->aio_uio;
11182 	int		secmask;
11183 	int		err = 0;
11184 	sd_ssc_t	*ssc;
11185 
11186 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11187 		return (ENXIO);
11188 	}
11189 
11190 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11191 
11192 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11193 		mutex_enter(SD_MUTEX(un));
11194 		/*
11195 		 * Because the call to sd_ready_and_valid will issue I/O we
11196 		 * must wait here if either the device is suspended or
11197 		 * if it's power level is changing.
11198 		 */
11199 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11200 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11201 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11202 		}
11203 		un->un_ncmds_in_driver++;
11204 		mutex_exit(SD_MUTEX(un));
11205 
11206 		/* Initialize sd_ssc_t for internal uscsi commands */
11207 		ssc = sd_ssc_init(un);
11208 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11209 			err = EIO;
11210 		} else {
11211 			err = 0;
11212 		}
11213 		sd_ssc_fini(ssc);
11214 
11215 		mutex_enter(SD_MUTEX(un));
11216 		un->un_ncmds_in_driver--;
11217 		ASSERT(un->un_ncmds_in_driver >= 0);
11218 		mutex_exit(SD_MUTEX(un));
11219 		if (err != 0)
11220 			return (err);
11221 	}
11222 
11223 	/*
11224 	 * Write requests are restricted to multiples of the system block size.
11225 	 */
11226 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11227 	    !un->un_f_enable_rmw)
11228 		secmask = un->un_tgt_blocksize - 1;
11229 	else
11230 		secmask = DEV_BSIZE - 1;
11231 
11232 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11233 		SD_ERROR(SD_LOG_READ_WRITE, un,
11234 		    "sdawrite: file offset not modulo %d\n",
11235 		    secmask + 1);
11236 		err = EINVAL;
11237 	} else if (uio->uio_iov->iov_len & (secmask)) {
11238 		SD_ERROR(SD_LOG_READ_WRITE, un,
11239 		    "sdawrite: transfer length not modulo %d\n",
11240 		    secmask + 1);
11241 		err = EINVAL;
11242 	} else {
11243 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11244 	}
11245 
11246 	return (err);
11247 }
11248 
11249 
11250 
11251 
11252 
11253 /*
11254  * Driver IO processing follows the following sequence:
11255  *
11256  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11257  *         |                |                     ^
11258  *         v                v                     |
11259  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11260  *         |                |                     |                   |
11261  *         v                |                     |                   |
11262  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11263  *         |                |                     ^                   ^
11264  *         v                v                     |                   |
11265  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11266  *         |                |                     |                   |
11267  *     +---+                |                     +------------+      +-------+
11268  *     |                    |                                  |              |
11269  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11270  *     |                    v                                  |              |
11271  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11272  *     |                    |                                  ^              |
11273  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11274  *     |                    v                                  |              |
11275  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11276  *     |                    |                                  ^              |
11277  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11278  *     |                    v                                  |              |
11279  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11280  *     |                    |                                  ^              |
11281  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11282  *     |                    v                                  |              |
11283  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11284  *     |                    |                                  ^              |
11285  *     |                    |                                  |              |
11286  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11287  *                          |                           ^
11288  *                          v                           |
11289  *                   sd_core_iostart()                  |
11290  *                          |                           |
11291  *                          |                           +------>(*destroypkt)()
11292  *                          +-> sd_start_cmds() <-+     |           |
11293  *                          |                     |     |           v
11294  *                          |                     |     |  scsi_destroy_pkt(9F)
11295  *                          |                     |     |
11296  *                          +->(*initpkt)()       +- sdintr()
11297  *                          |  |                        |  |
11298  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11299  *                          |  +-> scsi_setup_cdb(9F)   |
11300  *                          |                           |
11301  *                          +--> scsi_transport(9F)     |
11302  *                                     |                |
11303  *                                     +----> SCSA ---->+
11304  *
11305  *
11306  * This code is based upon the following presumptions:
11307  *
11308  *   - iostart and iodone functions operate on buf(9S) structures. These
11309  *     functions perform the necessary operations on the buf(9S) and pass
11310  *     them along to the next function in the chain by using the macros
11311  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11312  *     (for iodone side functions).
11313  *
11314  *   - The iostart side functions may sleep. The iodone side functions
11315  *     are called under interrupt context and may NOT sleep. Therefore
11316  *     iodone side functions also may not call iostart side functions.
11317  *     (NOTE: iostart side functions should NOT sleep for memory, as
11318  *     this could result in deadlock.)
11319  *
11320  *   - An iostart side function may call its corresponding iodone side
11321  *     function directly (if necessary).
11322  *
11323  *   - In the event of an error, an iostart side function can return a buf(9S)
11324  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11325  *     b_error in the usual way of course).
11326  *
11327  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11328  *     requests to the iostart side functions.  The iostart side functions in
11329  *     this case would be called under the context of a taskq thread, so it's
11330  *     OK for them to block/sleep/spin in this case.
11331  *
11332  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11333  *     pass them along to the next function in the chain.  The corresponding
11334  *     iodone side functions must coalesce the "shadow" bufs and return
11335  *     the "original" buf to the next higher layer.
11336  *
11337  *   - The b_private field of the buf(9S) struct holds a pointer to
11338  *     an sd_xbuf struct, which contains information needed to
11339  *     construct the scsi_pkt for the command.
11340  *
11341  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11342  *     layer must acquire & release the SD_MUTEX(un) as needed.
11343  */
11344 
11345 
11346 /*
11347  * Create taskq for all targets in the system. This is created at
11348  * _init(9E) and destroyed at _fini(9E).
11349  *
11350  * Note: here we set the minalloc to a reasonably high number to ensure that
11351  * we will have an adequate supply of task entries available at interrupt time.
11352  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11353  * sd_create_taskq().  Since we do not want to sleep for allocations at
11354  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11355  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11356  * requests any one instant in time.
11357  */
11358 #define	SD_TASKQ_NUMTHREADS	8
11359 #define	SD_TASKQ_MINALLOC	256
11360 #define	SD_TASKQ_MAXALLOC	256
11361 
11362 static taskq_t	*sd_tq = NULL;
11363 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11364 
11365 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11366 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11367 
11368 /*
11369  * The following task queue is being created for the write part of
11370  * read-modify-write of non-512 block size devices.
11371  * Limit the number of threads to 1 for now. This number has been chosen
11372  * considering the fact that it applies only to dvd ram drives/MO drives
11373  * currently. Performance for which is not main criteria at this stage.
11374  * Note: It needs to be explored if we can use a single taskq in future
11375  */
11376 #define	SD_WMR_TASKQ_NUMTHREADS	1
11377 static taskq_t	*sd_wmr_tq = NULL;
11378 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11379 
11380 /*
11381  *    Function: sd_taskq_create
11382  *
11383  * Description: Create taskq thread(s) and preallocate task entries
11384  *
11385  * Return Code: Returns a pointer to the allocated taskq_t.
11386  *
11387  *     Context: Can sleep. Requires blockable context.
11388  *
11389  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11390  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11391  *		- taskq_create() will block for memory, also it will panic
11392  *		  if it cannot create the requested number of threads.
11393  *		- Currently taskq_create() creates threads that cannot be
11394  *		  swapped.
11395  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11396  *		  supply of taskq entries at interrupt time (ie, so that we
11397  *		  do not have to sleep for memory)
11398  */
11399 
11400 static void
11401 sd_taskq_create(void)
11402 {
11403 	char	taskq_name[TASKQ_NAMELEN];
11404 
11405 	ASSERT(sd_tq == NULL);
11406 	ASSERT(sd_wmr_tq == NULL);
11407 
11408 	(void) snprintf(taskq_name, sizeof (taskq_name),
11409 	    "%s_drv_taskq", sd_label);
11410 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11411 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11412 	    TASKQ_PREPOPULATE));
11413 
11414 	(void) snprintf(taskq_name, sizeof (taskq_name),
11415 	    "%s_rmw_taskq", sd_label);
11416 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11417 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11418 	    TASKQ_PREPOPULATE));
11419 }
11420 
11421 
11422 /*
11423  *    Function: sd_taskq_delete
11424  *
11425  * Description: Complementary cleanup routine for sd_taskq_create().
11426  *
11427  *     Context: Kernel thread context.
11428  */
11429 
11430 static void
11431 sd_taskq_delete(void)
11432 {
11433 	ASSERT(sd_tq != NULL);
11434 	ASSERT(sd_wmr_tq != NULL);
11435 	taskq_destroy(sd_tq);
11436 	taskq_destroy(sd_wmr_tq);
11437 	sd_tq = NULL;
11438 	sd_wmr_tq = NULL;
11439 }
11440 
11441 
11442 /*
11443  *    Function: sdstrategy
11444  *
11445  * Description: Driver's strategy (9E) entry point function.
11446  *
11447  *   Arguments: bp - pointer to buf(9S)
11448  *
11449  * Return Code: Always returns zero
11450  *
11451  *     Context: Kernel thread context.
11452  */
11453 
11454 static int
11455 sdstrategy(struct buf *bp)
11456 {
11457 	struct sd_lun *un;
11458 
11459 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11460 	if (un == NULL) {
11461 		bioerror(bp, EIO);
11462 		bp->b_resid = bp->b_bcount;
11463 		biodone(bp);
11464 		return (0);
11465 	}
11466 
11467 	/* As was done in the past, fail new cmds. if state is dumping. */
11468 	if (un->un_state == SD_STATE_DUMPING) {
11469 		bioerror(bp, ENXIO);
11470 		bp->b_resid = bp->b_bcount;
11471 		biodone(bp);
11472 		return (0);
11473 	}
11474 
11475 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11476 
11477 	/*
11478 	 * Commands may sneak in while we released the mutex in
11479 	 * DDI_SUSPEND, we should block new commands. However, old
11480 	 * commands that are still in the driver at this point should
11481 	 * still be allowed to drain.
11482 	 */
11483 	mutex_enter(SD_MUTEX(un));
11484 	/*
11485 	 * Must wait here if either the device is suspended or
11486 	 * if it's power level is changing.
11487 	 */
11488 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11489 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11490 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11491 	}
11492 
11493 	un->un_ncmds_in_driver++;
11494 
11495 	/*
11496 	 * atapi: Since we are running the CD for now in PIO mode we need to
11497 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11498 	 * the HBA's init_pkt routine.
11499 	 */
11500 	if (un->un_f_cfg_is_atapi == TRUE) {
11501 		mutex_exit(SD_MUTEX(un));
11502 		bp_mapin(bp);
11503 		mutex_enter(SD_MUTEX(un));
11504 	}
11505 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11506 	    un->un_ncmds_in_driver);
11507 
11508 	if (bp->b_flags & B_WRITE)
11509 		un->un_f_sync_cache_required = TRUE;
11510 
11511 	mutex_exit(SD_MUTEX(un));
11512 
11513 	/*
11514 	 * This will (eventually) allocate the sd_xbuf area and
11515 	 * call sd_xbuf_strategy().  We just want to return the
11516 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11517 	 * imized tail call which saves us a stack frame.
11518 	 */
11519 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11520 }
11521 
11522 
11523 /*
11524  *    Function: sd_xbuf_strategy
11525  *
11526  * Description: Function for initiating IO operations via the
11527  *		ddi_xbuf_qstrategy() mechanism.
11528  *
11529  *     Context: Kernel thread context.
11530  */
11531 
11532 static void
11533 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11534 {
11535 	struct sd_lun *un = arg;
11536 
11537 	ASSERT(bp != NULL);
11538 	ASSERT(xp != NULL);
11539 	ASSERT(un != NULL);
11540 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11541 
11542 	/*
11543 	 * Initialize the fields in the xbuf and save a pointer to the
11544 	 * xbuf in bp->b_private.
11545 	 */
11546 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11547 
11548 	/* Send the buf down the iostart chain */
11549 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11550 }
11551 
11552 
11553 /*
11554  *    Function: sd_xbuf_init
11555  *
11556  * Description: Prepare the given sd_xbuf struct for use.
11557  *
11558  *   Arguments: un - ptr to softstate
11559  *		bp - ptr to associated buf(9S)
11560  *		xp - ptr to associated sd_xbuf
11561  *		chain_type - IO chain type to use:
11562  *			SD_CHAIN_NULL
11563  *			SD_CHAIN_BUFIO
11564  *			SD_CHAIN_USCSI
11565  *			SD_CHAIN_DIRECT
11566  *			SD_CHAIN_DIRECT_PRIORITY
11567  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11568  *			initialization; may be NULL if none.
11569  *
11570  *     Context: Kernel thread context
11571  */
11572 
11573 static void
11574 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11575     uchar_t chain_type, void *pktinfop)
11576 {
11577 	int index;
11578 
11579 	ASSERT(un != NULL);
11580 	ASSERT(bp != NULL);
11581 	ASSERT(xp != NULL);
11582 
11583 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11584 	    bp, chain_type);
11585 
11586 	xp->xb_un	= un;
11587 	xp->xb_pktp	= NULL;
11588 	xp->xb_pktinfo	= pktinfop;
11589 	xp->xb_private	= bp->b_private;
11590 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11591 
11592 	/*
11593 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11594 	 * upon the specified chain type to use.
11595 	 */
11596 	switch (chain_type) {
11597 	case SD_CHAIN_NULL:
11598 		/*
11599 		 * Fall thru to just use the values for the buf type, even
11600 		 * tho for the NULL chain these values will never be used.
11601 		 */
11602 		/* FALLTHRU */
11603 	case SD_CHAIN_BUFIO:
11604 		index = un->un_buf_chain_type;
11605 		if ((!un->un_f_has_removable_media) &&
11606 		    (un->un_tgt_blocksize != 0) &&
11607 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11608 		    un->un_f_enable_rmw)) {
11609 			int secmask = 0, blknomask = 0;
11610 			if (un->un_f_enable_rmw) {
11611 				blknomask =
11612 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11613 				secmask = un->un_phy_blocksize - 1;
11614 			} else {
11615 				blknomask =
11616 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11617 				secmask = un->un_tgt_blocksize - 1;
11618 			}
11619 
11620 			if ((bp->b_lblkno & (blknomask)) ||
11621 			    (bp->b_bcount & (secmask))) {
11622 				if ((un->un_f_rmw_type !=
11623 				    SD_RMW_TYPE_RETURN_ERROR) ||
11624 				    un->un_f_enable_rmw) {
11625 					if (un->un_f_pm_is_enabled == FALSE)
11626 						index =
11627 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11628 					else
11629 						index =
11630 						    SD_CHAIN_INFO_MSS_DISK;
11631 				}
11632 			}
11633 		}
11634 		break;
11635 	case SD_CHAIN_USCSI:
11636 		index = un->un_uscsi_chain_type;
11637 		break;
11638 	case SD_CHAIN_DIRECT:
11639 		index = un->un_direct_chain_type;
11640 		break;
11641 	case SD_CHAIN_DIRECT_PRIORITY:
11642 		index = un->un_priority_chain_type;
11643 		break;
11644 	default:
11645 		/* We're really broken if we ever get here... */
11646 		panic("sd_xbuf_init: illegal chain type!");
11647 		/*NOTREACHED*/
11648 	}
11649 
11650 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11651 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11652 
11653 	/*
11654 	 * It might be a bit easier to simply bzero the entire xbuf above,
11655 	 * but it turns out that since we init a fair number of members anyway,
11656 	 * we save a fair number cycles by doing explicit assignment of zero.
11657 	 */
11658 	xp->xb_pkt_flags	= 0;
11659 	xp->xb_dma_resid	= 0;
11660 	xp->xb_retry_count	= 0;
11661 	xp->xb_victim_retry_count = 0;
11662 	xp->xb_ua_retry_count	= 0;
11663 	xp->xb_nr_retry_count	= 0;
11664 	xp->xb_sense_bp		= NULL;
11665 	xp->xb_sense_status	= 0;
11666 	xp->xb_sense_state	= 0;
11667 	xp->xb_sense_resid	= 0;
11668 	xp->xb_ena		= 0;
11669 
11670 	bp->b_private	= xp;
11671 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11672 	bp->b_resid	= 0;
11673 	bp->av_forw	= NULL;
11674 	bp->av_back	= NULL;
11675 	bioerror(bp, 0);
11676 
11677 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11678 }
11679 
11680 
11681 /*
11682  *    Function: sd_uscsi_strategy
11683  *
11684  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11685  *
11686  *   Arguments: bp - buf struct ptr
11687  *
11688  * Return Code: Always returns 0
11689  *
11690  *     Context: Kernel thread context
11691  */
11692 
11693 static int
11694 sd_uscsi_strategy(struct buf *bp)
11695 {
11696 	struct sd_lun		*un;
11697 	struct sd_uscsi_info	*uip;
11698 	struct sd_xbuf		*xp;
11699 	uchar_t			chain_type;
11700 	uchar_t			cmd;
11701 
11702 	ASSERT(bp != NULL);
11703 
11704 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11705 	if (un == NULL) {
11706 		bioerror(bp, EIO);
11707 		bp->b_resid = bp->b_bcount;
11708 		biodone(bp);
11709 		return (0);
11710 	}
11711 
11712 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11713 
11714 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11715 
11716 	/*
11717 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11718 	 */
11719 	ASSERT(bp->b_private != NULL);
11720 	uip = (struct sd_uscsi_info *)bp->b_private;
11721 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11722 
11723 	mutex_enter(SD_MUTEX(un));
11724 	/*
11725 	 * atapi: Since we are running the CD for now in PIO mode we need to
11726 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11727 	 * the HBA's init_pkt routine.
11728 	 */
11729 	if (un->un_f_cfg_is_atapi == TRUE) {
11730 		mutex_exit(SD_MUTEX(un));
11731 		bp_mapin(bp);
11732 		mutex_enter(SD_MUTEX(un));
11733 	}
11734 	un->un_ncmds_in_driver++;
11735 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11736 	    un->un_ncmds_in_driver);
11737 
11738 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11739 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11740 		un->un_f_sync_cache_required = TRUE;
11741 
11742 	mutex_exit(SD_MUTEX(un));
11743 
11744 	switch (uip->ui_flags) {
11745 	case SD_PATH_DIRECT:
11746 		chain_type = SD_CHAIN_DIRECT;
11747 		break;
11748 	case SD_PATH_DIRECT_PRIORITY:
11749 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11750 		break;
11751 	default:
11752 		chain_type = SD_CHAIN_USCSI;
11753 		break;
11754 	}
11755 
11756 	/*
11757 	 * We may allocate extra buf for external USCSI commands. If the
11758 	 * application asks for bigger than 20-byte sense data via USCSI,
11759 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11760 	 */
11761 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11762 	    SENSE_LENGTH) {
11763 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11764 		    MAX_SENSE_LENGTH, KM_SLEEP);
11765 	} else {
11766 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11767 	}
11768 
11769 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11770 
11771 	/* Use the index obtained within xbuf_init */
11772 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11773 
11774 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11775 
11776 	return (0);
11777 }
11778 
11779 /*
11780  *    Function: sd_send_scsi_cmd
11781  *
11782  * Description: Runs a USCSI command for user (when called thru sdioctl),
11783  *		or for the driver
11784  *
11785  *   Arguments: dev - the dev_t for the device
11786  *		incmd - ptr to a valid uscsi_cmd struct
11787  *		flag - bit flag, indicating open settings, 32/64 bit type
11788  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11789  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11790  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11791  *			to use the USCSI "direct" chain and bypass the normal
11792  *			command waitq.
11793  *
11794  * Return Code: 0 -  successful completion of the given command
11795  *		EIO - scsi_uscsi_handle_command() failed
11796  *		ENXIO  - soft state not found for specified dev
11797  *		EINVAL
11798  *		EFAULT - copyin/copyout error
11799  *		return code of scsi_uscsi_handle_command():
11800  *			EIO
11801  *			ENXIO
11802  *			EACCES
11803  *
11804  *     Context: Waits for command to complete. Can sleep.
11805  */
11806 
11807 static int
11808 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11809     enum uio_seg dataspace, int path_flag)
11810 {
11811 	struct sd_lun	*un;
11812 	sd_ssc_t	*ssc;
11813 	int		rval;
11814 
11815 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11816 	if (un == NULL) {
11817 		return (ENXIO);
11818 	}
11819 
11820 	/*
11821 	 * Using sd_ssc_send to handle uscsi cmd
11822 	 */
11823 	ssc = sd_ssc_init(un);
11824 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11825 	sd_ssc_fini(ssc);
11826 
11827 	return (rval);
11828 }
11829 
11830 /*
11831  *    Function: sd_ssc_init
11832  *
11833  * Description: Uscsi end-user call this function to initialize necessary
11834  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11835  *
11836  *              The return value of sd_send_scsi_cmd will be treated as a
11837  *              fault in various conditions. Even it is not Zero, some
11838  *              callers may ignore the return value. That is to say, we can
11839  *              not make an accurate assessment in sdintr, since if a
11840  *              command is failed in sdintr it does not mean the caller of
11841  *              sd_send_scsi_cmd will treat it as a real failure.
11842  *
11843  *              To avoid printing too many error logs for a failed uscsi
11844  *              packet that the caller may not treat it as a failure, the
11845  *              sd will keep silent for handling all uscsi commands.
11846  *
11847  *              During detach->attach and attach-open, for some types of
11848  *              problems, the driver should be providing information about
11849  *              the problem encountered. Device use USCSI_SILENT, which
11850  *              suppresses all driver information. The result is that no
11851  *              information about the problem is available. Being
11852  *              completely silent during this time is inappropriate. The
11853  *              driver needs a more selective filter than USCSI_SILENT, so
11854  *              that information related to faults is provided.
11855  *
11856  *              To make the accurate accessment, the caller  of
11857  *              sd_send_scsi_USCSI_CMD should take the ownership and
11858  *              get necessary information to print error messages.
11859  *
11860  *              If we want to print necessary info of uscsi command, we need to
11861  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11862  *              assessment. We use sd_ssc_init to alloc necessary
11863  *              structs for sending an uscsi command and we are also
11864  *              responsible for free the memory by calling
11865  *              sd_ssc_fini.
11866  *
11867  *              The calling secquences will look like:
11868  *              sd_ssc_init->
11869  *
11870  *                  ...
11871  *
11872  *                  sd_send_scsi_USCSI_CMD->
11873  *                      sd_ssc_send-> - - - sdintr
11874  *                  ...
11875  *
11876  *                  if we think the return value should be treated as a
11877  *                  failure, we make the accessment here and print out
11878  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11879  *
11880  *                  ...
11881  *
11882  *              sd_ssc_fini
11883  *
11884  *
11885  *   Arguments: un - pointer to driver soft state (unit) structure for this
11886  *                   target.
11887  *
11888  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11889  *                         uscsi_cmd and sd_uscsi_info.
11890  *                  NULL - if can not alloc memory for sd_ssc_t struct
11891  *
11892  *     Context: Kernel Thread.
11893  */
11894 static sd_ssc_t *
11895 sd_ssc_init(struct sd_lun *un)
11896 {
11897 	sd_ssc_t		*ssc;
11898 	struct uscsi_cmd	*ucmdp;
11899 	struct sd_uscsi_info	*uip;
11900 
11901 	ASSERT(un != NULL);
11902 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11903 
11904 	/*
11905 	 * Allocate sd_ssc_t structure
11906 	 */
11907 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11908 
11909 	/*
11910 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11911 	 */
11912 	ucmdp = scsi_uscsi_alloc();
11913 
11914 	/*
11915 	 * Allocate sd_uscsi_info structure
11916 	 */
11917 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11918 
11919 	ssc->ssc_uscsi_cmd = ucmdp;
11920 	ssc->ssc_uscsi_info = uip;
11921 	ssc->ssc_un = un;
11922 
11923 	return (ssc);
11924 }
11925 
11926 /*
11927  * Function: sd_ssc_fini
11928  *
11929  * Description: To free sd_ssc_t and it's hanging off
11930  *
11931  * Arguments: ssc - struct pointer of sd_ssc_t.
11932  */
11933 static void
11934 sd_ssc_fini(sd_ssc_t *ssc)
11935 {
11936 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11937 
11938 	if (ssc->ssc_uscsi_info != NULL) {
11939 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11940 		ssc->ssc_uscsi_info = NULL;
11941 	}
11942 
11943 	kmem_free(ssc, sizeof (sd_ssc_t));
11944 	ssc = NULL;
11945 }
11946 
11947 /*
11948  * Function: sd_ssc_send
11949  *
11950  * Description: Runs a USCSI command for user when called through sdioctl,
11951  *              or for the driver.
11952  *
11953  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11954  *                    sd_uscsi_info in.
11955  *		incmd - ptr to a valid uscsi_cmd struct
11956  *		flag - bit flag, indicating open settings, 32/64 bit type
11957  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11958  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11959  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11960  *			to use the USCSI "direct" chain and bypass the normal
11961  *			command waitq.
11962  *
11963  * Return Code: 0 -  successful completion of the given command
11964  *		EIO - scsi_uscsi_handle_command() failed
11965  *		ENXIO  - soft state not found for specified dev
11966  *		ECANCELED - command cancelled due to low power
11967  *		EINVAL
11968  *		EFAULT - copyin/copyout error
11969  *		return code of scsi_uscsi_handle_command():
11970  *			EIO
11971  *			ENXIO
11972  *			EACCES
11973  *
11974  *     Context: Kernel Thread;
11975  *              Waits for command to complete. Can sleep.
11976  */
11977 static int
11978 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11979     enum uio_seg dataspace, int path_flag)
11980 {
11981 	struct sd_uscsi_info	*uip;
11982 	struct uscsi_cmd	*uscmd;
11983 	struct sd_lun		*un;
11984 	dev_t			dev;
11985 
11986 	int	format = 0;
11987 	int	rval;
11988 
11989 	ASSERT(ssc != NULL);
11990 	un = ssc->ssc_un;
11991 	ASSERT(un != NULL);
11992 	uscmd = ssc->ssc_uscsi_cmd;
11993 	ASSERT(uscmd != NULL);
11994 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11995 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11996 		/*
11997 		 * If enter here, it indicates that the previous uscsi
11998 		 * command has not been processed by sd_ssc_assessment.
11999 		 * This is violating our rules of FMA telemetry processing.
12000 		 * We should print out this message and the last undisposed
12001 		 * uscsi command.
12002 		 */
12003 		if (uscmd->uscsi_cdb != NULL) {
12004 			SD_INFO(SD_LOG_SDTEST, un,
12005 			    "sd_ssc_send is missing the alternative "
12006 			    "sd_ssc_assessment when running command 0x%x.\n",
12007 			    uscmd->uscsi_cdb[0]);
12008 		}
12009 		/*
12010 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
12011 		 * the initial status.
12012 		 */
12013 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12014 	}
12015 
12016 	/*
12017 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
12018 	 * followed to avoid missing FMA telemetries.
12019 	 */
12020 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12021 
12022 	/*
12023 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
12024 	 * command immediately.
12025 	 */
12026 	mutex_enter(SD_MUTEX(un));
12027 	mutex_enter(&un->un_pm_mutex);
12028 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12029 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
12030 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12031 		    "un:0x%p is in low power\n", un);
12032 		mutex_exit(&un->un_pm_mutex);
12033 		mutex_exit(SD_MUTEX(un));
12034 		return (ECANCELED);
12035 	}
12036 	mutex_exit(&un->un_pm_mutex);
12037 	mutex_exit(SD_MUTEX(un));
12038 
12039 #ifdef SDDEBUG
12040 	switch (dataspace) {
12041 	case UIO_USERSPACE:
12042 		SD_TRACE(SD_LOG_IO, un,
12043 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12044 		break;
12045 	case UIO_SYSSPACE:
12046 		SD_TRACE(SD_LOG_IO, un,
12047 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12048 		break;
12049 	default:
12050 		SD_TRACE(SD_LOG_IO, un,
12051 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12052 		break;
12053 	}
12054 #endif
12055 
12056 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12057 	    SD_ADDRESS(un), &uscmd);
12058 	if (rval != 0) {
12059 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12060 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12061 		return (rval);
12062 	}
12063 
12064 	if ((uscmd->uscsi_cdb != NULL) &&
12065 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12066 		mutex_enter(SD_MUTEX(un));
12067 		un->un_f_format_in_progress = TRUE;
12068 		mutex_exit(SD_MUTEX(un));
12069 		format = 1;
12070 	}
12071 
12072 	/*
12073 	 * Allocate an sd_uscsi_info struct and fill it with the info
12074 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12075 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12076 	 * since we allocate the buf here in this function, we do not
12077 	 * need to preserve the prior contents of b_private.
12078 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12079 	 */
12080 	uip = ssc->ssc_uscsi_info;
12081 	uip->ui_flags = path_flag;
12082 	uip->ui_cmdp = uscmd;
12083 
12084 	/*
12085 	 * Commands sent with priority are intended for error recovery
12086 	 * situations, and do not have retries performed.
12087 	 */
12088 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12089 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12090 	}
12091 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12092 
12093 	dev = SD_GET_DEV(un);
12094 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12095 	    sd_uscsi_strategy, NULL, uip);
12096 
12097 	/*
12098 	 * mark ssc_flags right after handle_cmd to make sure
12099 	 * the uscsi has been sent
12100 	 */
12101 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12102 
12103 #ifdef SDDEBUG
12104 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12105 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12106 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12107 	if (uscmd->uscsi_bufaddr != NULL) {
12108 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12109 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12110 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12111 		if (dataspace == UIO_SYSSPACE) {
12112 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12113 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12114 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12115 		}
12116 	}
12117 #endif
12118 
12119 	if (format == 1) {
12120 		mutex_enter(SD_MUTEX(un));
12121 		un->un_f_format_in_progress = FALSE;
12122 		mutex_exit(SD_MUTEX(un));
12123 	}
12124 
12125 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12126 
12127 	return (rval);
12128 }
12129 
12130 /*
12131  *     Function: sd_ssc_print
12132  *
12133  * Description: Print information available to the console.
12134  *
12135  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12136  *                    sd_uscsi_info in.
12137  *            sd_severity - log level.
12138  *     Context: Kernel thread or interrupt context.
12139  */
12140 static void
12141 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12142 {
12143 	struct uscsi_cmd	*ucmdp;
12144 	struct scsi_device	*devp;
12145 	dev_info_t 		*devinfo;
12146 	uchar_t			*sensep;
12147 	int			senlen;
12148 	union scsi_cdb		*cdbp;
12149 	uchar_t			com;
12150 	extern struct scsi_key_strings scsi_cmds[];
12151 
12152 	ASSERT(ssc != NULL);
12153 	ASSERT(ssc->ssc_un != NULL);
12154 
12155 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12156 		return;
12157 	ucmdp = ssc->ssc_uscsi_cmd;
12158 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12159 	devinfo = SD_DEVINFO(ssc->ssc_un);
12160 	ASSERT(ucmdp != NULL);
12161 	ASSERT(devp != NULL);
12162 	ASSERT(devinfo != NULL);
12163 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12164 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12165 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12166 
12167 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12168 	if (cdbp == NULL)
12169 		return;
12170 	/* We don't print log if no sense data available. */
12171 	if (senlen == 0)
12172 		sensep = NULL;
12173 	com = cdbp->scc_cmd;
12174 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12175 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12176 }
12177 
12178 /*
12179  *     Function: sd_ssc_assessment
12180  *
12181  * Description: We use this function to make an assessment at the point
12182  *              where SD driver may encounter a potential error.
12183  *
12184  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12185  *                  sd_uscsi_info in.
12186  *            tp_assess - a hint of strategy for ereport posting.
12187  *            Possible values of tp_assess include:
12188  *                SD_FMT_IGNORE - we don't post any ereport because we're
12189  *                sure that it is ok to ignore the underlying problems.
12190  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12191  *                but it might be not correct to ignore the underlying hardware
12192  *                error.
12193  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12194  *                payload driver-assessment of value "fail" or
12195  *                "fatal"(depending on what information we have here). This
12196  *                assessment value is usually set when SD driver think there
12197  *                is a potential error occurred(Typically, when return value
12198  *                of the SCSI command is EIO).
12199  *                SD_FMT_STANDARD - we will post an ereport with the payload
12200  *                driver-assessment of value "info". This assessment value is
12201  *                set when the SCSI command returned successfully and with
12202  *                sense data sent back.
12203  *
12204  *     Context: Kernel thread.
12205  */
12206 static void
12207 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12208 {
12209 	int senlen = 0;
12210 	struct uscsi_cmd *ucmdp = NULL;
12211 	struct sd_lun *un;
12212 
12213 	ASSERT(ssc != NULL);
12214 	un = ssc->ssc_un;
12215 	ASSERT(un != NULL);
12216 	ucmdp = ssc->ssc_uscsi_cmd;
12217 	ASSERT(ucmdp != NULL);
12218 
12219 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12220 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12221 	} else {
12222 		/*
12223 		 * If enter here, it indicates that we have a wrong
12224 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12225 		 * both of which should be called in a pair in case of
12226 		 * loss of FMA telemetries.
12227 		 */
12228 		if (ucmdp->uscsi_cdb != NULL) {
12229 			SD_INFO(SD_LOG_SDTEST, un,
12230 			    "sd_ssc_assessment is missing the "
12231 			    "alternative sd_ssc_send when running 0x%x, "
12232 			    "or there are superfluous sd_ssc_assessment for "
12233 			    "the same sd_ssc_send.\n",
12234 			    ucmdp->uscsi_cdb[0]);
12235 		}
12236 		/*
12237 		 * Set the ssc_flags to the initial value to avoid passing
12238 		 * down dirty flags to the following sd_ssc_send function.
12239 		 */
12240 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12241 		return;
12242 	}
12243 
12244 	/*
12245 	 * Only handle an issued command which is waiting for assessment.
12246 	 * A command which is not issued will not have
12247 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12248 	 */
12249 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12250 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12251 		return;
12252 	} else {
12253 		/*
12254 		 * For an issued command, we should clear this flag in
12255 		 * order to make the sd_ssc_t structure be used off
12256 		 * multiple uscsi commands.
12257 		 */
12258 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12259 	}
12260 
12261 	/*
12262 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12263 	 * commands here. And we should clear the ssc_flags before return.
12264 	 */
12265 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12266 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12267 		return;
12268 	}
12269 
12270 	switch (tp_assess) {
12271 	case SD_FMT_IGNORE:
12272 	case SD_FMT_IGNORE_COMPROMISE:
12273 		break;
12274 	case SD_FMT_STATUS_CHECK:
12275 		/*
12276 		 * For a failed command(including the succeeded command
12277 		 * with invalid data sent back).
12278 		 */
12279 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12280 		break;
12281 	case SD_FMT_STANDARD:
12282 		/*
12283 		 * Always for the succeeded commands probably with sense
12284 		 * data sent back.
12285 		 * Limitation:
12286 		 *	We can only handle a succeeded command with sense
12287 		 *	data sent back when auto-request-sense is enabled.
12288 		 */
12289 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12290 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12291 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12292 		    (un->un_f_arq_enabled == TRUE) &&
12293 		    senlen > 0 &&
12294 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12295 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12296 		}
12297 		break;
12298 	default:
12299 		/*
12300 		 * Should not have other type of assessment.
12301 		 */
12302 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12303 		    "sd_ssc_assessment got wrong "
12304 		    "sd_type_assessment %d.\n", tp_assess);
12305 		break;
12306 	}
12307 	/*
12308 	 * Clear up the ssc_flags before return.
12309 	 */
12310 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12311 }
12312 
12313 /*
12314  *    Function: sd_ssc_post
12315  *
12316  * Description: 1. read the driver property to get fm-scsi-log flag.
12317  *              2. print log if fm_log_capable is non-zero.
12318  *              3. call sd_ssc_ereport_post to post ereport if possible.
12319  *
12320  *    Context: May be called from kernel thread or interrupt context.
12321  */
12322 static void
12323 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12324 {
12325 	struct sd_lun	*un;
12326 	int		sd_severity;
12327 
12328 	ASSERT(ssc != NULL);
12329 	un = ssc->ssc_un;
12330 	ASSERT(un != NULL);
12331 
12332 	/*
12333 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12334 	 * by directly called from sdintr context.
12335 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12336 	 * Clear the ssc_flags before return in case we've set
12337 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12338 	 * driver.
12339 	 */
12340 	if (ISCD(un) || un->un_f_has_removable_media) {
12341 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12342 		return;
12343 	}
12344 
12345 	switch (sd_assess) {
12346 		case SD_FM_DRV_FATAL:
12347 			sd_severity = SCSI_ERR_FATAL;
12348 			break;
12349 		case SD_FM_DRV_RECOVERY:
12350 			sd_severity = SCSI_ERR_RECOVERED;
12351 			break;
12352 		case SD_FM_DRV_RETRY:
12353 			sd_severity = SCSI_ERR_RETRYABLE;
12354 			break;
12355 		case SD_FM_DRV_NOTICE:
12356 			sd_severity = SCSI_ERR_INFO;
12357 			break;
12358 		default:
12359 			sd_severity = SCSI_ERR_UNKNOWN;
12360 	}
12361 	/* print log */
12362 	sd_ssc_print(ssc, sd_severity);
12363 
12364 	/* always post ereport */
12365 	sd_ssc_ereport_post(ssc, sd_assess);
12366 }
12367 
12368 /*
12369  *    Function: sd_ssc_set_info
12370  *
12371  * Description: Mark ssc_flags and set ssc_info which would be the
12372  *              payload of uderr ereport. This function will cause
12373  *              sd_ssc_ereport_post to post uderr ereport only.
12374  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12375  *              the function will also call SD_ERROR or scsi_log for a
12376  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12377  *
12378  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12379  *                  sd_uscsi_info in.
12380  *            ssc_flags - indicate the sub-category of a uderr.
12381  *            comp - this argument is meaningful only when
12382  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12383  *                   values include:
12384  *                   > 0, SD_ERROR is used with comp as the driver logging
12385  *                   component;
12386  *                   = 0, scsi-log is used to log error telemetries;
12387  *                   < 0, no log available for this telemetry.
12388  *
12389  *    Context: Kernel thread or interrupt context
12390  */
12391 static void
12392 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12393 {
12394 	va_list	ap;
12395 
12396 	ASSERT(ssc != NULL);
12397 	ASSERT(ssc->ssc_un != NULL);
12398 
12399 	ssc->ssc_flags |= ssc_flags;
12400 	va_start(ap, fmt);
12401 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12402 	va_end(ap);
12403 
12404 	/*
12405 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12406 	 * with invalid data sent back. For non-uscsi command, the
12407 	 * following code will be bypassed.
12408 	 */
12409 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12410 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12411 			/*
12412 			 * If the error belong to certain component and we
12413 			 * do not want it to show up on the console, we
12414 			 * will use SD_ERROR, otherwise scsi_log is
12415 			 * preferred.
12416 			 */
12417 			if (comp > 0) {
12418 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12419 			} else if (comp == 0) {
12420 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12421 				    CE_WARN, ssc->ssc_info);
12422 			}
12423 		}
12424 	}
12425 }
12426 
12427 /*
12428  *    Function: sd_buf_iodone
12429  *
12430  * Description: Frees the sd_xbuf & returns the buf to its originator.
12431  *
12432  *     Context: May be called from interrupt context.
12433  */
12434 /* ARGSUSED */
12435 static void
12436 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12437 {
12438 	struct sd_xbuf *xp;
12439 
12440 	ASSERT(un != NULL);
12441 	ASSERT(bp != NULL);
12442 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12443 
12444 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12445 
12446 	xp = SD_GET_XBUF(bp);
12447 	ASSERT(xp != NULL);
12448 
12449 	/* xbuf is gone after this */
12450 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12451 		mutex_enter(SD_MUTEX(un));
12452 
12453 		/*
12454 		 * Grab time when the cmd completed.
12455 		 * This is used for determining if the system has been
12456 		 * idle long enough to make it idle to the PM framework.
12457 		 * This is for lowering the overhead, and therefore improving
12458 		 * performance per I/O operation.
12459 		 */
12460 		un->un_pm_idle_time = gethrtime();
12461 
12462 		un->un_ncmds_in_driver--;
12463 		ASSERT(un->un_ncmds_in_driver >= 0);
12464 		SD_INFO(SD_LOG_IO, un,
12465 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12466 		    un->un_ncmds_in_driver);
12467 
12468 		mutex_exit(SD_MUTEX(un));
12469 	}
12470 
12471 	biodone(bp);				/* bp is gone after this */
12472 
12473 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12474 }
12475 
12476 
12477 /*
12478  *    Function: sd_uscsi_iodone
12479  *
12480  * Description: Frees the sd_xbuf & returns the buf to its originator.
12481  *
12482  *     Context: May be called from interrupt context.
12483  */
12484 /* ARGSUSED */
12485 static void
12486 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12487 {
12488 	struct sd_xbuf *xp;
12489 
12490 	ASSERT(un != NULL);
12491 	ASSERT(bp != NULL);
12492 
12493 	xp = SD_GET_XBUF(bp);
12494 	ASSERT(xp != NULL);
12495 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12496 
12497 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12498 
12499 	bp->b_private = xp->xb_private;
12500 
12501 	mutex_enter(SD_MUTEX(un));
12502 
12503 	/*
12504 	 * Grab time when the cmd completed.
12505 	 * This is used for determining if the system has been
12506 	 * idle long enough to make it idle to the PM framework.
12507 	 * This is for lowering the overhead, and therefore improving
12508 	 * performance per I/O operation.
12509 	 */
12510 	un->un_pm_idle_time = gethrtime();
12511 
12512 	un->un_ncmds_in_driver--;
12513 	ASSERT(un->un_ncmds_in_driver >= 0);
12514 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12515 	    un->un_ncmds_in_driver);
12516 
12517 	mutex_exit(SD_MUTEX(un));
12518 
12519 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12520 	    SENSE_LENGTH) {
12521 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12522 		    MAX_SENSE_LENGTH);
12523 	} else {
12524 		kmem_free(xp, sizeof (struct sd_xbuf));
12525 	}
12526 
12527 	biodone(bp);
12528 
12529 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12530 }
12531 
12532 
12533 /*
12534  *    Function: sd_mapblockaddr_iostart
12535  *
12536  * Description: Verify request lies within the partition limits for
12537  *		the indicated minor device.  Issue "overrun" buf if
12538  *		request would exceed partition range.  Converts
12539  *		partition-relative block address to absolute.
12540  *
12541  *              Upon exit of this function:
12542  *              1.I/O is aligned
12543  *                 xp->xb_blkno represents the absolute sector address
12544  *              2.I/O is misaligned
12545  *                 xp->xb_blkno represents the absolute logical block address
12546  *                 based on DEV_BSIZE. The logical block address will be
12547  *                 converted to physical sector address in sd_mapblocksize_\
12548  *                 iostart.
12549  *              3.I/O is misaligned but is aligned in "overrun" buf
12550  *                 xp->xb_blkno represents the absolute logical block address
12551  *                 based on DEV_BSIZE. The logical block address will be
12552  *                 converted to physical sector address in sd_mapblocksize_\
12553  *                 iostart. But no RMW will be issued in this case.
12554  *
12555  *     Context: Can sleep
12556  *
12557  *      Issues: This follows what the old code did, in terms of accessing
12558  *		some of the partition info in the unit struct without holding
12559  *		the mutext.  This is a general issue, if the partition info
12560  *		can be altered while IO is in progress... as soon as we send
12561  *		a buf, its partitioning can be invalid before it gets to the
12562  *		device.  Probably the right fix is to move partitioning out
12563  *		of the driver entirely.
12564  */
12565 
12566 static void
12567 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12568 {
12569 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12570 	daddr_t	blocknum;	/* Block number specified by the buf */
12571 	size_t	requested_nblocks;
12572 	size_t	available_nblocks;
12573 	int	partition;
12574 	diskaddr_t	partition_offset;
12575 	struct sd_xbuf *xp;
12576 	int secmask = 0, blknomask = 0;
12577 	ushort_t is_aligned = TRUE;
12578 
12579 	ASSERT(un != NULL);
12580 	ASSERT(bp != NULL);
12581 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12582 
12583 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12584 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12585 
12586 	xp = SD_GET_XBUF(bp);
12587 	ASSERT(xp != NULL);
12588 
12589 	/*
12590 	 * If the geometry is not indicated as valid, attempt to access
12591 	 * the unit & verify the geometry/label. This can be the case for
12592 	 * removable-media devices, of if the device was opened in
12593 	 * NDELAY/NONBLOCK mode.
12594 	 */
12595 	partition = SDPART(bp->b_edev);
12596 
12597 	if (!SD_IS_VALID_LABEL(un)) {
12598 		sd_ssc_t *ssc;
12599 		/*
12600 		 * Initialize sd_ssc_t for internal uscsi commands
12601 		 * In case of potential porformance issue, we need
12602 		 * to alloc memory only if there is invalid label
12603 		 */
12604 		ssc = sd_ssc_init(un);
12605 
12606 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12607 			/*
12608 			 * For removable devices it is possible to start an
12609 			 * I/O without a media by opening the device in nodelay
12610 			 * mode. Also for writable CDs there can be many
12611 			 * scenarios where there is no geometry yet but volume
12612 			 * manager is trying to issue a read() just because
12613 			 * it can see TOC on the CD. So do not print a message
12614 			 * for removables.
12615 			 */
12616 			if (!un->un_f_has_removable_media) {
12617 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12618 				    "i/o to invalid geometry\n");
12619 			}
12620 			bioerror(bp, EIO);
12621 			bp->b_resid = bp->b_bcount;
12622 			SD_BEGIN_IODONE(index, un, bp);
12623 
12624 			sd_ssc_fini(ssc);
12625 			return;
12626 		}
12627 		sd_ssc_fini(ssc);
12628 	}
12629 
12630 	nblocks = 0;
12631 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12632 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12633 
12634 	if (un->un_f_enable_rmw) {
12635 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12636 		secmask = un->un_phy_blocksize - 1;
12637 	} else {
12638 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12639 		secmask = un->un_tgt_blocksize - 1;
12640 	}
12641 
12642 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12643 		is_aligned = FALSE;
12644 	}
12645 
12646 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12647 		/*
12648 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12649 		 * Convert the logical block number to target's physical sector
12650 		 * number.
12651 		 */
12652 		if (is_aligned) {
12653 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12654 		} else {
12655 			/*
12656 			 * There is no RMW if we're just reading, so don't
12657 			 * warn or error out because of it.
12658 			 */
12659 			if (bp->b_flags & B_READ) {
12660 				/*EMPTY*/
12661 			} else if (!un->un_f_enable_rmw &&
12662 			    un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) {
12663 				bp->b_flags |= B_ERROR;
12664 				goto error_exit;
12665 			} else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) {
12666 				mutex_enter(SD_MUTEX(un));
12667 				if (!un->un_f_enable_rmw &&
12668 				    un->un_rmw_msg_timeid == NULL) {
12669 					scsi_log(SD_DEVINFO(un), sd_label,
12670 					    CE_WARN, "I/O request is not "
12671 					    "aligned with %d disk sector size. "
12672 					    "It is handled through Read Modify "
12673 					    "Write but the performance is "
12674 					    "very low.\n",
12675 					    un->un_tgt_blocksize);
12676 					un->un_rmw_msg_timeid =
12677 					    timeout(sd_rmw_msg_print_handler,
12678 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12679 				} else {
12680 					un->un_rmw_incre_count ++;
12681 				}
12682 				mutex_exit(SD_MUTEX(un));
12683 			}
12684 
12685 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12686 			partition_offset = SD_TGT2SYSBLOCK(un,
12687 			    partition_offset);
12688 		}
12689 	}
12690 
12691 	/*
12692 	 * blocknum is the starting block number of the request. At this
12693 	 * point it is still relative to the start of the minor device.
12694 	 */
12695 	blocknum = xp->xb_blkno;
12696 
12697 	/*
12698 	 * Legacy: If the starting block number is one past the last block
12699 	 * in the partition, do not set B_ERROR in the buf.
12700 	 */
12701 	if (blocknum == nblocks)  {
12702 		goto error_exit;
12703 	}
12704 
12705 	/*
12706 	 * Confirm that the first block of the request lies within the
12707 	 * partition limits. Also the requested number of bytes must be
12708 	 * a multiple of the system block size.
12709 	 */
12710 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12711 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12712 		bp->b_flags |= B_ERROR;
12713 		goto error_exit;
12714 	}
12715 
12716 	/*
12717 	 * If the requsted # blocks exceeds the available # blocks, that
12718 	 * is an overrun of the partition.
12719 	 */
12720 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12721 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12722 	} else {
12723 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12724 	}
12725 
12726 	available_nblocks = (size_t)(nblocks - blocknum);
12727 	ASSERT(nblocks >= blocknum);
12728 
12729 	if (requested_nblocks > available_nblocks) {
12730 		size_t resid;
12731 
12732 		/*
12733 		 * Allocate an "overrun" buf to allow the request to proceed
12734 		 * for the amount of space available in the partition. The
12735 		 * amount not transferred will be added into the b_resid
12736 		 * when the operation is complete. The overrun buf
12737 		 * replaces the original buf here, and the original buf
12738 		 * is saved inside the overrun buf, for later use.
12739 		 */
12740 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12741 			resid = SD_TGTBLOCKS2BYTES(un,
12742 			    (offset_t)(requested_nblocks - available_nblocks));
12743 		} else {
12744 			resid = SD_SYSBLOCKS2BYTES(
12745 			    (offset_t)(requested_nblocks - available_nblocks));
12746 		}
12747 
12748 		size_t count = bp->b_bcount - resid;
12749 		/*
12750 		 * Note: count is an unsigned entity thus it'll NEVER
12751 		 * be less than 0 so ASSERT the original values are
12752 		 * correct.
12753 		 */
12754 		ASSERT(bp->b_bcount >= resid);
12755 
12756 		bp = sd_bioclone_alloc(bp, count, blocknum,
12757 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12758 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12759 		ASSERT(xp != NULL);
12760 	}
12761 
12762 	/* At this point there should be no residual for this buf. */
12763 	ASSERT(bp->b_resid == 0);
12764 
12765 	/* Convert the block number to an absolute address. */
12766 	xp->xb_blkno += partition_offset;
12767 
12768 	SD_NEXT_IOSTART(index, un, bp);
12769 
12770 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12771 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12772 
12773 	return;
12774 
12775 error_exit:
12776 	bp->b_resid = bp->b_bcount;
12777 	SD_BEGIN_IODONE(index, un, bp);
12778 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12779 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12780 }
12781 
12782 
12783 /*
12784  *    Function: sd_mapblockaddr_iodone
12785  *
12786  * Description: Completion-side processing for partition management.
12787  *
12788  *     Context: May be called under interrupt context
12789  */
12790 
12791 static void
12792 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12793 {
12794 	/* int	partition; */	/* Not used, see below. */
12795 	ASSERT(un != NULL);
12796 	ASSERT(bp != NULL);
12797 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12798 
12799 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12800 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12801 
12802 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12803 		/*
12804 		 * We have an "overrun" buf to deal with...
12805 		 */
12806 		struct sd_xbuf	*xp;
12807 		struct buf	*obp;	/* ptr to the original buf */
12808 
12809 		xp = SD_GET_XBUF(bp);
12810 		ASSERT(xp != NULL);
12811 
12812 		/* Retrieve the pointer to the original buf */
12813 		obp = (struct buf *)xp->xb_private;
12814 		ASSERT(obp != NULL);
12815 
12816 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12817 		bioerror(obp, bp->b_error);
12818 
12819 		sd_bioclone_free(bp);
12820 
12821 		/*
12822 		 * Get back the original buf.
12823 		 * Note that since the restoration of xb_blkno below
12824 		 * was removed, the sd_xbuf is not needed.
12825 		 */
12826 		bp = obp;
12827 		/*
12828 		 * xp = SD_GET_XBUF(bp);
12829 		 * ASSERT(xp != NULL);
12830 		 */
12831 	}
12832 
12833 	/*
12834 	 * Convert sd->xb_blkno back to a minor-device relative value.
12835 	 * Note: this has been commented out, as it is not needed in the
12836 	 * current implementation of the driver (ie, since this function
12837 	 * is at the top of the layering chains, so the info will be
12838 	 * discarded) and it is in the "hot" IO path.
12839 	 *
12840 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12841 	 * xp->xb_blkno -= un->un_offset[partition];
12842 	 */
12843 
12844 	SD_NEXT_IODONE(index, un, bp);
12845 
12846 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12847 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12848 }
12849 
12850 
12851 /*
12852  *    Function: sd_mapblocksize_iostart
12853  *
12854  * Description: Convert between system block size (un->un_sys_blocksize)
12855  *		and target block size (un->un_tgt_blocksize).
12856  *
12857  *     Context: Can sleep to allocate resources.
12858  *
12859  * Assumptions: A higher layer has already performed any partition validation,
12860  *		and converted the xp->xb_blkno to an absolute value relative
12861  *		to the start of the device.
12862  *
12863  *		It is also assumed that the higher layer has implemented
12864  *		an "overrun" mechanism for the case where the request would
12865  *		read/write beyond the end of a partition.  In this case we
12866  *		assume (and ASSERT) that bp->b_resid == 0.
12867  *
12868  *		Note: The implementation for this routine assumes the target
12869  *		block size remains constant between allocation and transport.
12870  */
12871 
12872 static void
12873 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12874 {
12875 	struct sd_mapblocksize_info	*bsp;
12876 	struct sd_xbuf			*xp;
12877 	offset_t first_byte;
12878 	daddr_t	start_block, end_block;
12879 	daddr_t	request_bytes;
12880 	ushort_t is_aligned = FALSE;
12881 
12882 	ASSERT(un != NULL);
12883 	ASSERT(bp != NULL);
12884 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12885 	ASSERT(bp->b_resid == 0);
12886 
12887 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12888 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12889 
12890 	/*
12891 	 * For a non-writable CD, a write request is an error
12892 	 */
12893 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12894 	    (un->un_f_mmc_writable_media == FALSE)) {
12895 		bioerror(bp, EIO);
12896 		bp->b_resid = bp->b_bcount;
12897 		SD_BEGIN_IODONE(index, un, bp);
12898 		return;
12899 	}
12900 
12901 	/*
12902 	 * We do not need a shadow buf if the device is using
12903 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12904 	 * In this case there is no layer-private data block allocated.
12905 	 */
12906 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12907 	    (bp->b_bcount == 0)) {
12908 		goto done;
12909 	}
12910 
12911 #if defined(__i386) || defined(__amd64)
12912 	/* We do not support non-block-aligned transfers for ROD devices */
12913 	ASSERT(!ISROD(un));
12914 #endif
12915 
12916 	xp = SD_GET_XBUF(bp);
12917 	ASSERT(xp != NULL);
12918 
12919 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12920 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12921 	    un->un_tgt_blocksize, DEV_BSIZE);
12922 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12923 	    "request start block:0x%x\n", xp->xb_blkno);
12924 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12925 	    "request len:0x%x\n", bp->b_bcount);
12926 
12927 	/*
12928 	 * Allocate the layer-private data area for the mapblocksize layer.
12929 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12930 	 * struct to store the pointer to their layer-private data block, but
12931 	 * each layer also has the responsibility of restoring the prior
12932 	 * contents of xb_private before returning the buf/xbuf to the
12933 	 * higher layer that sent it.
12934 	 *
12935 	 * Here we save the prior contents of xp->xb_private into the
12936 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12937 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12938 	 * the layer-private area and returning the buf/xbuf to the layer
12939 	 * that sent it.
12940 	 *
12941 	 * Note that here we use kmem_zalloc for the allocation as there are
12942 	 * parts of the mapblocksize code that expect certain fields to be
12943 	 * zero unless explicitly set to a required value.
12944 	 */
12945 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12946 	bsp->mbs_oprivate = xp->xb_private;
12947 	xp->xb_private = bsp;
12948 
12949 	/*
12950 	 * This treats the data on the disk (target) as an array of bytes.
12951 	 * first_byte is the byte offset, from the beginning of the device,
12952 	 * to the location of the request. This is converted from a
12953 	 * un->un_sys_blocksize block address to a byte offset, and then back
12954 	 * to a block address based upon a un->un_tgt_blocksize block size.
12955 	 *
12956 	 * xp->xb_blkno should be absolute upon entry into this function,
12957 	 * but, but it is based upon partitions that use the "system"
12958 	 * block size. It must be adjusted to reflect the block size of
12959 	 * the target.
12960 	 *
12961 	 * Note that end_block is actually the block that follows the last
12962 	 * block of the request, but that's what is needed for the computation.
12963 	 */
12964 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12965 	if (un->un_f_enable_rmw) {
12966 		start_block = xp->xb_blkno =
12967 		    (first_byte / un->un_phy_blocksize) *
12968 		    (un->un_phy_blocksize / DEV_BSIZE);
12969 		end_block   = ((first_byte + bp->b_bcount +
12970 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12971 		    (un->un_phy_blocksize / DEV_BSIZE);
12972 	} else {
12973 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12974 		end_block   = (first_byte + bp->b_bcount +
12975 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12976 	}
12977 
12978 	/* request_bytes is rounded up to a multiple of the target block size */
12979 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12980 
12981 	/*
12982 	 * See if the starting address of the request and the request
12983 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12984 	 * then we do not need to allocate a shadow buf to handle the request.
12985 	 */
12986 	if (un->un_f_enable_rmw) {
12987 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12988 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12989 			is_aligned = TRUE;
12990 		}
12991 	} else {
12992 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12993 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12994 			is_aligned = TRUE;
12995 		}
12996 	}
12997 
12998 	if ((bp->b_flags & B_READ) == 0) {
12999 		/*
13000 		 * Lock the range for a write operation. An aligned request is
13001 		 * considered a simple write; otherwise the request must be a
13002 		 * read-modify-write.
13003 		 */
13004 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
13005 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
13006 	}
13007 
13008 	/*
13009 	 * Alloc a shadow buf if the request is not aligned. Also, this is
13010 	 * where the READ command is generated for a read-modify-write. (The
13011 	 * write phase is deferred until after the read completes.)
13012 	 */
13013 	if (is_aligned == FALSE) {
13014 
13015 		struct sd_mapblocksize_info	*shadow_bsp;
13016 		struct sd_xbuf	*shadow_xp;
13017 		struct buf	*shadow_bp;
13018 
13019 		/*
13020 		 * Allocate the shadow buf and it associated xbuf. Note that
13021 		 * after this call the xb_blkno value in both the original
13022 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13023 		 * same: absolute relative to the start of the device, and
13024 		 * adjusted for the target block size. The b_blkno in the
13025 		 * shadow buf will also be set to this value. We should never
13026 		 * change b_blkno in the original bp however.
13027 		 *
13028 		 * Note also that the shadow buf will always need to be a
13029 		 * READ command, regardless of whether the incoming command
13030 		 * is a READ or a WRITE.
13031 		 */
13032 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13033 		    xp->xb_blkno,
13034 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13035 
13036 		shadow_xp = SD_GET_XBUF(shadow_bp);
13037 
13038 		/*
13039 		 * Allocate the layer-private data for the shadow buf.
13040 		 * (No need to preserve xb_private in the shadow xbuf.)
13041 		 */
13042 		shadow_xp->xb_private = shadow_bsp =
13043 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13044 
13045 		/*
13046 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13047 		 * to figure out where the start of the user data is (based upon
13048 		 * the system block size) in the data returned by the READ
13049 		 * command (which will be based upon the target blocksize). Note
13050 		 * that this is only really used if the request is unaligned.
13051 		 */
13052 		if (un->un_f_enable_rmw) {
13053 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13054 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13055 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13056 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13057 		} else {
13058 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13059 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13060 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13061 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13062 		}
13063 
13064 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13065 
13066 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13067 
13068 		/* Transfer the wmap (if any) to the shadow buf */
13069 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13070 		bsp->mbs_wmp = NULL;
13071 
13072 		/*
13073 		 * The shadow buf goes on from here in place of the
13074 		 * original buf.
13075 		 */
13076 		shadow_bsp->mbs_orig_bp = bp;
13077 		bp = shadow_bp;
13078 	}
13079 
13080 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13081 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13082 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13083 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13084 	    request_bytes);
13085 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13086 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13087 
13088 done:
13089 	SD_NEXT_IOSTART(index, un, bp);
13090 
13091 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13092 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13093 }
13094 
13095 
13096 /*
13097  *    Function: sd_mapblocksize_iodone
13098  *
13099  * Description: Completion side processing for block-size mapping.
13100  *
13101  *     Context: May be called under interrupt context
13102  */
13103 
13104 static void
13105 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13106 {
13107 	struct sd_mapblocksize_info	*bsp;
13108 	struct sd_xbuf	*xp;
13109 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13110 	struct buf	*orig_bp;	/* ptr to the original buf */
13111 	offset_t	shadow_end;
13112 	offset_t	request_end;
13113 	offset_t	shadow_start;
13114 	ssize_t		copy_offset;
13115 	size_t		copy_length;
13116 	size_t		shortfall;
13117 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13118 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13119 
13120 	ASSERT(un != NULL);
13121 	ASSERT(bp != NULL);
13122 
13123 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13124 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13125 
13126 	/*
13127 	 * There is no shadow buf or layer-private data if the target is
13128 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13129 	 */
13130 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13131 	    (bp->b_bcount == 0)) {
13132 		goto exit;
13133 	}
13134 
13135 	xp = SD_GET_XBUF(bp);
13136 	ASSERT(xp != NULL);
13137 
13138 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13139 	bsp = xp->xb_private;
13140 
13141 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13142 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13143 
13144 	if (is_write) {
13145 		/*
13146 		 * For a WRITE request we must free up the block range that
13147 		 * we have locked up.  This holds regardless of whether this is
13148 		 * an aligned write request or a read-modify-write request.
13149 		 */
13150 		sd_range_unlock(un, bsp->mbs_wmp);
13151 		bsp->mbs_wmp = NULL;
13152 	}
13153 
13154 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13155 		/*
13156 		 * An aligned read or write command will have no shadow buf;
13157 		 * there is not much else to do with it.
13158 		 */
13159 		goto done;
13160 	}
13161 
13162 	orig_bp = bsp->mbs_orig_bp;
13163 	ASSERT(orig_bp != NULL);
13164 	orig_xp = SD_GET_XBUF(orig_bp);
13165 	ASSERT(orig_xp != NULL);
13166 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13167 
13168 	if (!is_write && has_wmap) {
13169 		/*
13170 		 * A READ with a wmap means this is the READ phase of a
13171 		 * read-modify-write. If an error occurred on the READ then
13172 		 * we do not proceed with the WRITE phase or copy any data.
13173 		 * Just release the write maps and return with an error.
13174 		 */
13175 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13176 			orig_bp->b_resid = orig_bp->b_bcount;
13177 			bioerror(orig_bp, bp->b_error);
13178 			sd_range_unlock(un, bsp->mbs_wmp);
13179 			goto freebuf_done;
13180 		}
13181 	}
13182 
13183 	/*
13184 	 * Here is where we set up to copy the data from the shadow buf
13185 	 * into the space associated with the original buf.
13186 	 *
13187 	 * To deal with the conversion between block sizes, these
13188 	 * computations treat the data as an array of bytes, with the
13189 	 * first byte (byte 0) corresponding to the first byte in the
13190 	 * first block on the disk.
13191 	 */
13192 
13193 	/*
13194 	 * shadow_start and shadow_len indicate the location and size of
13195 	 * the data returned with the shadow IO request.
13196 	 */
13197 	if (un->un_f_enable_rmw) {
13198 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13199 	} else {
13200 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13201 	}
13202 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13203 
13204 	/*
13205 	 * copy_offset gives the offset (in bytes) from the start of the first
13206 	 * block of the READ request to the beginning of the data.  We retrieve
13207 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13208 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13209 	 * data to be copied (in bytes).
13210 	 */
13211 	copy_offset  = bsp->mbs_copy_offset;
13212 	if (un->un_f_enable_rmw) {
13213 		ASSERT((copy_offset >= 0) &&
13214 		    (copy_offset < un->un_phy_blocksize));
13215 	} else {
13216 		ASSERT((copy_offset >= 0) &&
13217 		    (copy_offset < un->un_tgt_blocksize));
13218 	}
13219 
13220 	copy_length  = orig_bp->b_bcount;
13221 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13222 
13223 	/*
13224 	 * Set up the resid and error fields of orig_bp as appropriate.
13225 	 */
13226 	if (shadow_end >= request_end) {
13227 		/* We got all the requested data; set resid to zero */
13228 		orig_bp->b_resid = 0;
13229 	} else {
13230 		/*
13231 		 * We failed to get enough data to fully satisfy the original
13232 		 * request. Just copy back whatever data we got and set
13233 		 * up the residual and error code as required.
13234 		 *
13235 		 * 'shortfall' is the amount by which the data received with the
13236 		 * shadow buf has "fallen short" of the requested amount.
13237 		 */
13238 		shortfall = (size_t)(request_end - shadow_end);
13239 
13240 		if (shortfall > orig_bp->b_bcount) {
13241 			/*
13242 			 * We did not get enough data to even partially
13243 			 * fulfill the original request.  The residual is
13244 			 * equal to the amount requested.
13245 			 */
13246 			orig_bp->b_resid = orig_bp->b_bcount;
13247 		} else {
13248 			/*
13249 			 * We did not get all the data that we requested
13250 			 * from the device, but we will try to return what
13251 			 * portion we did get.
13252 			 */
13253 			orig_bp->b_resid = shortfall;
13254 		}
13255 		ASSERT(copy_length >= orig_bp->b_resid);
13256 		copy_length  -= orig_bp->b_resid;
13257 	}
13258 
13259 	/* Propagate the error code from the shadow buf to the original buf */
13260 	bioerror(orig_bp, bp->b_error);
13261 
13262 	if (is_write) {
13263 		goto freebuf_done;	/* No data copying for a WRITE */
13264 	}
13265 
13266 	if (has_wmap) {
13267 		/*
13268 		 * This is a READ command from the READ phase of a
13269 		 * read-modify-write request. We have to copy the data given
13270 		 * by the user OVER the data returned by the READ command,
13271 		 * then convert the command from a READ to a WRITE and send
13272 		 * it back to the target.
13273 		 */
13274 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13275 		    copy_length);
13276 
13277 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13278 
13279 		/*
13280 		 * Dispatch the WRITE command to the taskq thread, which
13281 		 * will in turn send the command to the target. When the
13282 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13283 		 * will get called again as part of the iodone chain
13284 		 * processing for it. Note that we will still be dealing
13285 		 * with the shadow buf at that point.
13286 		 */
13287 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13288 		    KM_NOSLEEP) != 0) {
13289 			/*
13290 			 * Dispatch was successful so we are done. Return
13291 			 * without going any higher up the iodone chain. Do
13292 			 * not free up any layer-private data until after the
13293 			 * WRITE completes.
13294 			 */
13295 			return;
13296 		}
13297 
13298 		/*
13299 		 * Dispatch of the WRITE command failed; set up the error
13300 		 * condition and send this IO back up the iodone chain.
13301 		 */
13302 		bioerror(orig_bp, EIO);
13303 		orig_bp->b_resid = orig_bp->b_bcount;
13304 
13305 	} else {
13306 		/*
13307 		 * This is a regular READ request (ie, not a RMW). Copy the
13308 		 * data from the shadow buf into the original buf. The
13309 		 * copy_offset compensates for any "misalignment" between the
13310 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13311 		 * original buf (with its un->un_sys_blocksize blocks).
13312 		 */
13313 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13314 		    copy_length);
13315 	}
13316 
13317 freebuf_done:
13318 
13319 	/*
13320 	 * At this point we still have both the shadow buf AND the original
13321 	 * buf to deal with, as well as the layer-private data area in each.
13322 	 * Local variables are as follows:
13323 	 *
13324 	 * bp -- points to shadow buf
13325 	 * xp -- points to xbuf of shadow buf
13326 	 * bsp -- points to layer-private data area of shadow buf
13327 	 * orig_bp -- points to original buf
13328 	 *
13329 	 * First free the shadow buf and its associated xbuf, then free the
13330 	 * layer-private data area from the shadow buf. There is no need to
13331 	 * restore xb_private in the shadow xbuf.
13332 	 */
13333 	sd_shadow_buf_free(bp);
13334 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13335 
13336 	/*
13337 	 * Now update the local variables to point to the original buf, xbuf,
13338 	 * and layer-private area.
13339 	 */
13340 	bp = orig_bp;
13341 	xp = SD_GET_XBUF(bp);
13342 	ASSERT(xp != NULL);
13343 	ASSERT(xp == orig_xp);
13344 	bsp = xp->xb_private;
13345 	ASSERT(bsp != NULL);
13346 
13347 done:
13348 	/*
13349 	 * Restore xb_private to whatever it was set to by the next higher
13350 	 * layer in the chain, then free the layer-private data area.
13351 	 */
13352 	xp->xb_private = bsp->mbs_oprivate;
13353 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13354 
13355 exit:
13356 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13357 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13358 
13359 	SD_NEXT_IODONE(index, un, bp);
13360 }
13361 
13362 
13363 /*
13364  *    Function: sd_checksum_iostart
13365  *
13366  * Description: A stub function for a layer that's currently not used.
13367  *		For now just a placeholder.
13368  *
13369  *     Context: Kernel thread context
13370  */
13371 
13372 static void
13373 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13374 {
13375 	ASSERT(un != NULL);
13376 	ASSERT(bp != NULL);
13377 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13378 	SD_NEXT_IOSTART(index, un, bp);
13379 }
13380 
13381 
13382 /*
13383  *    Function: sd_checksum_iodone
13384  *
13385  * Description: A stub function for a layer that's currently not used.
13386  *		For now just a placeholder.
13387  *
13388  *     Context: May be called under interrupt context
13389  */
13390 
13391 static void
13392 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13393 {
13394 	ASSERT(un != NULL);
13395 	ASSERT(bp != NULL);
13396 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13397 	SD_NEXT_IODONE(index, un, bp);
13398 }
13399 
13400 
13401 /*
13402  *    Function: sd_checksum_uscsi_iostart
13403  *
13404  * Description: A stub function for a layer that's currently not used.
13405  *		For now just a placeholder.
13406  *
13407  *     Context: Kernel thread context
13408  */
13409 
13410 static void
13411 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13412 {
13413 	ASSERT(un != NULL);
13414 	ASSERT(bp != NULL);
13415 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13416 	SD_NEXT_IOSTART(index, un, bp);
13417 }
13418 
13419 
13420 /*
13421  *    Function: sd_checksum_uscsi_iodone
13422  *
13423  * Description: A stub function for a layer that's currently not used.
13424  *		For now just a placeholder.
13425  *
13426  *     Context: May be called under interrupt context
13427  */
13428 
13429 static void
13430 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13431 {
13432 	ASSERT(un != NULL);
13433 	ASSERT(bp != NULL);
13434 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13435 	SD_NEXT_IODONE(index, un, bp);
13436 }
13437 
13438 
13439 /*
13440  *    Function: sd_pm_iostart
13441  *
13442  * Description: iostart-side routine for Power mangement.
13443  *
13444  *     Context: Kernel thread context
13445  */
13446 
13447 static void
13448 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13449 {
13450 	ASSERT(un != NULL);
13451 	ASSERT(bp != NULL);
13452 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13453 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13454 
13455 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13456 
13457 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13458 		/*
13459 		 * Set up to return the failed buf back up the 'iodone'
13460 		 * side of the calling chain.
13461 		 */
13462 		bioerror(bp, EIO);
13463 		bp->b_resid = bp->b_bcount;
13464 
13465 		SD_BEGIN_IODONE(index, un, bp);
13466 
13467 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13468 		return;
13469 	}
13470 
13471 	SD_NEXT_IOSTART(index, un, bp);
13472 
13473 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13474 }
13475 
13476 
13477 /*
13478  *    Function: sd_pm_iodone
13479  *
13480  * Description: iodone-side routine for power mangement.
13481  *
13482  *     Context: may be called from interrupt context
13483  */
13484 
13485 static void
13486 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13487 {
13488 	ASSERT(un != NULL);
13489 	ASSERT(bp != NULL);
13490 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13491 
13492 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13493 
13494 	/*
13495 	 * After attach the following flag is only read, so don't
13496 	 * take the penalty of acquiring a mutex for it.
13497 	 */
13498 	if (un->un_f_pm_is_enabled == TRUE) {
13499 		sd_pm_exit(un);
13500 	}
13501 
13502 	SD_NEXT_IODONE(index, un, bp);
13503 
13504 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13505 }
13506 
13507 
13508 /*
13509  *    Function: sd_core_iostart
13510  *
13511  * Description: Primary driver function for enqueuing buf(9S) structs from
13512  *		the system and initiating IO to the target device
13513  *
13514  *     Context: Kernel thread context. Can sleep.
13515  *
13516  * Assumptions:  - The given xp->xb_blkno is absolute
13517  *		   (ie, relative to the start of the device).
13518  *		 - The IO is to be done using the native blocksize of
13519  *		   the device, as specified in un->un_tgt_blocksize.
13520  */
13521 /* ARGSUSED */
13522 static void
13523 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13524 {
13525 	struct sd_xbuf *xp;
13526 
13527 	ASSERT(un != NULL);
13528 	ASSERT(bp != NULL);
13529 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13530 	ASSERT(bp->b_resid == 0);
13531 
13532 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13533 
13534 	xp = SD_GET_XBUF(bp);
13535 	ASSERT(xp != NULL);
13536 
13537 	mutex_enter(SD_MUTEX(un));
13538 
13539 	/*
13540 	 * If we are currently in the failfast state, fail any new IO
13541 	 * that has B_FAILFAST set, then return.
13542 	 */
13543 	if ((bp->b_flags & B_FAILFAST) &&
13544 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13545 		mutex_exit(SD_MUTEX(un));
13546 		bioerror(bp, EIO);
13547 		bp->b_resid = bp->b_bcount;
13548 		SD_BEGIN_IODONE(index, un, bp);
13549 		return;
13550 	}
13551 
13552 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13553 		/*
13554 		 * Priority command -- transport it immediately.
13555 		 *
13556 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13557 		 * because all direct priority commands should be associated
13558 		 * with error recovery actions which we don't want to retry.
13559 		 */
13560 		sd_start_cmds(un, bp);
13561 	} else {
13562 		/*
13563 		 * Normal command -- add it to the wait queue, then start
13564 		 * transporting commands from the wait queue.
13565 		 */
13566 		sd_add_buf_to_waitq(un, bp);
13567 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13568 		sd_start_cmds(un, NULL);
13569 	}
13570 
13571 	mutex_exit(SD_MUTEX(un));
13572 
13573 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13574 }
13575 
13576 
13577 /*
13578  *    Function: sd_init_cdb_limits
13579  *
13580  * Description: This is to handle scsi_pkt initialization differences
13581  *		between the driver platforms.
13582  *
13583  *		Legacy behaviors:
13584  *
13585  *		If the block number or the sector count exceeds the
13586  *		capabilities of a Group 0 command, shift over to a
13587  *		Group 1 command. We don't blindly use Group 1
13588  *		commands because a) some drives (CDC Wren IVs) get a
13589  *		bit confused, and b) there is probably a fair amount
13590  *		of speed difference for a target to receive and decode
13591  *		a 10 byte command instead of a 6 byte command.
13592  *
13593  *		The xfer time difference of 6 vs 10 byte CDBs is
13594  *		still significant so this code is still worthwhile.
13595  *		10 byte CDBs are very inefficient with the fas HBA driver
13596  *		and older disks. Each CDB byte took 1 usec with some
13597  *		popular disks.
13598  *
13599  *     Context: Must be called at attach time
13600  */
13601 
13602 static void
13603 sd_init_cdb_limits(struct sd_lun *un)
13604 {
13605 	int hba_cdb_limit;
13606 
13607 	/*
13608 	 * Use CDB_GROUP1 commands for most devices except for
13609 	 * parallel SCSI fixed drives in which case we get better
13610 	 * performance using CDB_GROUP0 commands (where applicable).
13611 	 */
13612 	un->un_mincdb = SD_CDB_GROUP1;
13613 #if !defined(__fibre)
13614 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13615 	    !un->un_f_has_removable_media) {
13616 		un->un_mincdb = SD_CDB_GROUP0;
13617 	}
13618 #endif
13619 
13620 	/*
13621 	 * Try to read the max-cdb-length supported by HBA.
13622 	 */
13623 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13624 	if (0 >= un->un_max_hba_cdb) {
13625 		un->un_max_hba_cdb = CDB_GROUP4;
13626 		hba_cdb_limit = SD_CDB_GROUP4;
13627 	} else if (0 < un->un_max_hba_cdb &&
13628 	    un->un_max_hba_cdb < CDB_GROUP1) {
13629 		hba_cdb_limit = SD_CDB_GROUP0;
13630 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13631 	    un->un_max_hba_cdb < CDB_GROUP5) {
13632 		hba_cdb_limit = SD_CDB_GROUP1;
13633 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13634 	    un->un_max_hba_cdb < CDB_GROUP4) {
13635 		hba_cdb_limit = SD_CDB_GROUP5;
13636 	} else {
13637 		hba_cdb_limit = SD_CDB_GROUP4;
13638 	}
13639 
13640 	/*
13641 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13642 	 * commands for fixed disks unless we are building for a 32 bit
13643 	 * kernel.
13644 	 */
13645 #ifdef _LP64
13646 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13647 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13648 #else
13649 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13650 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13651 #endif
13652 
13653 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13654 	    ? sizeof (struct scsi_arq_status) : 1);
13655 	if (!ISCD(un))
13656 		un->un_cmd_timeout = (ushort_t)sd_io_time;
13657 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13658 }
13659 
13660 
13661 /*
13662  *    Function: sd_initpkt_for_buf
13663  *
13664  * Description: Allocate and initialize for transport a scsi_pkt struct,
13665  *		based upon the info specified in the given buf struct.
13666  *
13667  *		Assumes the xb_blkno in the request is absolute (ie,
13668  *		relative to the start of the device (NOT partition!).
13669  *		Also assumes that the request is using the native block
13670  *		size of the device (as returned by the READ CAPACITY
13671  *		command).
13672  *
13673  * Return Code: SD_PKT_ALLOC_SUCCESS
13674  *		SD_PKT_ALLOC_FAILURE
13675  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13676  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13677  *
13678  *     Context: Kernel thread and may be called from software interrupt context
13679  *		as part of a sdrunout callback. This function may not block or
13680  *		call routines that block
13681  */
13682 
13683 static int
13684 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13685 {
13686 	struct sd_xbuf	*xp;
13687 	struct scsi_pkt *pktp = NULL;
13688 	struct sd_lun	*un;
13689 	size_t		blockcount;
13690 	daddr_t		startblock;
13691 	int		rval;
13692 	int		cmd_flags;
13693 
13694 	ASSERT(bp != NULL);
13695 	ASSERT(pktpp != NULL);
13696 	xp = SD_GET_XBUF(bp);
13697 	ASSERT(xp != NULL);
13698 	un = SD_GET_UN(bp);
13699 	ASSERT(un != NULL);
13700 	ASSERT(mutex_owned(SD_MUTEX(un)));
13701 	ASSERT(bp->b_resid == 0);
13702 
13703 	SD_TRACE(SD_LOG_IO_CORE, un,
13704 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13705 
13706 	mutex_exit(SD_MUTEX(un));
13707 
13708 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13709 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13710 		/*
13711 		 * Already have a scsi_pkt -- just need DMA resources.
13712 		 * We must recompute the CDB in case the mapping returns
13713 		 * a nonzero pkt_resid.
13714 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13715 		 * that is being retried, the unmap/remap of the DMA resouces
13716 		 * will result in the entire transfer starting over again
13717 		 * from the very first block.
13718 		 */
13719 		ASSERT(xp->xb_pktp != NULL);
13720 		pktp = xp->xb_pktp;
13721 	} else {
13722 		pktp = NULL;
13723 	}
13724 #endif /* __i386 || __amd64 */
13725 
13726 	startblock = xp->xb_blkno;	/* Absolute block num. */
13727 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13728 
13729 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13730 
13731 	/*
13732 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13733 	 * call scsi_init_pkt, and build the CDB.
13734 	 */
13735 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13736 	    cmd_flags, sdrunout, (caddr_t)un,
13737 	    startblock, blockcount);
13738 
13739 	if (rval == 0) {
13740 		/*
13741 		 * Success.
13742 		 *
13743 		 * If partial DMA is being used and required for this transfer.
13744 		 * set it up here.
13745 		 */
13746 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13747 		    (pktp->pkt_resid != 0)) {
13748 
13749 			/*
13750 			 * Save the CDB length and pkt_resid for the
13751 			 * next xfer
13752 			 */
13753 			xp->xb_dma_resid = pktp->pkt_resid;
13754 
13755 			/* rezero resid */
13756 			pktp->pkt_resid = 0;
13757 
13758 		} else {
13759 			xp->xb_dma_resid = 0;
13760 		}
13761 
13762 		pktp->pkt_flags = un->un_tagflags;
13763 		pktp->pkt_time  = un->un_cmd_timeout;
13764 		pktp->pkt_comp  = sdintr;
13765 
13766 		pktp->pkt_private = bp;
13767 		*pktpp = pktp;
13768 
13769 		SD_TRACE(SD_LOG_IO_CORE, un,
13770 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13771 
13772 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13773 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13774 #endif
13775 
13776 		mutex_enter(SD_MUTEX(un));
13777 		return (SD_PKT_ALLOC_SUCCESS);
13778 
13779 	}
13780 
13781 	/*
13782 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13783 	 * from sd_setup_rw_pkt.
13784 	 */
13785 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13786 
13787 	if (rval == SD_PKT_ALLOC_FAILURE) {
13788 		*pktpp = NULL;
13789 		/*
13790 		 * Set the driver state to RWAIT to indicate the driver
13791 		 * is waiting on resource allocations. The driver will not
13792 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13793 		 */
13794 		mutex_enter(SD_MUTEX(un));
13795 		New_state(un, SD_STATE_RWAIT);
13796 
13797 		SD_ERROR(SD_LOG_IO_CORE, un,
13798 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13799 
13800 		if ((bp->b_flags & B_ERROR) != 0) {
13801 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13802 		}
13803 		return (SD_PKT_ALLOC_FAILURE);
13804 	} else {
13805 		/*
13806 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13807 		 *
13808 		 * This should never happen.  Maybe someone messed with the
13809 		 * kernel's minphys?
13810 		 */
13811 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13812 		    "Request rejected: too large for CDB: "
13813 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13814 		SD_ERROR(SD_LOG_IO_CORE, un,
13815 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13816 		mutex_enter(SD_MUTEX(un));
13817 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13818 
13819 	}
13820 }
13821 
13822 
13823 /*
13824  *    Function: sd_destroypkt_for_buf
13825  *
13826  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13827  *
13828  *     Context: Kernel thread or interrupt context
13829  */
13830 
13831 static void
13832 sd_destroypkt_for_buf(struct buf *bp)
13833 {
13834 	ASSERT(bp != NULL);
13835 	ASSERT(SD_GET_UN(bp) != NULL);
13836 
13837 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13838 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13839 
13840 	ASSERT(SD_GET_PKTP(bp) != NULL);
13841 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13842 
13843 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13844 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13845 }
13846 
13847 /*
13848  *    Function: sd_setup_rw_pkt
13849  *
13850  * Description: Determines appropriate CDB group for the requested LBA
13851  *		and transfer length, calls scsi_init_pkt, and builds
13852  *		the CDB.  Do not use for partial DMA transfers except
13853  *		for the initial transfer since the CDB size must
13854  *		remain constant.
13855  *
13856  *     Context: Kernel thread and may be called from software interrupt
13857  *		context as part of a sdrunout callback. This function may not
13858  *		block or call routines that block
13859  */
13860 
13861 
13862 int
13863 sd_setup_rw_pkt(struct sd_lun *un,
13864     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13865     int (*callback)(caddr_t), caddr_t callback_arg,
13866     diskaddr_t lba, uint32_t blockcount)
13867 {
13868 	struct scsi_pkt *return_pktp;
13869 	union scsi_cdb *cdbp;
13870 	struct sd_cdbinfo *cp = NULL;
13871 	int i;
13872 
13873 	/*
13874 	 * See which size CDB to use, based upon the request.
13875 	 */
13876 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13877 
13878 		/*
13879 		 * Check lba and block count against sd_cdbtab limits.
13880 		 * In the partial DMA case, we have to use the same size
13881 		 * CDB for all the transfers.  Check lba + blockcount
13882 		 * against the max LBA so we know that segment of the
13883 		 * transfer can use the CDB we select.
13884 		 */
13885 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13886 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13887 
13888 			/*
13889 			 * The command will fit into the CDB type
13890 			 * specified by sd_cdbtab[i].
13891 			 */
13892 			cp = sd_cdbtab + i;
13893 
13894 			/*
13895 			 * Call scsi_init_pkt so we can fill in the
13896 			 * CDB.
13897 			 */
13898 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13899 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13900 			    flags, callback, callback_arg);
13901 
13902 			if (return_pktp != NULL) {
13903 
13904 				/*
13905 				 * Return new value of pkt
13906 				 */
13907 				*pktpp = return_pktp;
13908 
13909 				/*
13910 				 * To be safe, zero the CDB insuring there is
13911 				 * no leftover data from a previous command.
13912 				 */
13913 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13914 
13915 				/*
13916 				 * Handle partial DMA mapping
13917 				 */
13918 				if (return_pktp->pkt_resid != 0) {
13919 
13920 					/*
13921 					 * Not going to xfer as many blocks as
13922 					 * originally expected
13923 					 */
13924 					blockcount -=
13925 					    SD_BYTES2TGTBLOCKS(un,
13926 					    return_pktp->pkt_resid);
13927 				}
13928 
13929 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13930 
13931 				/*
13932 				 * Set command byte based on the CDB
13933 				 * type we matched.
13934 				 */
13935 				cdbp->scc_cmd = cp->sc_grpmask |
13936 				    ((bp->b_flags & B_READ) ?
13937 				    SCMD_READ : SCMD_WRITE);
13938 
13939 				SD_FILL_SCSI1_LUN(un, return_pktp);
13940 
13941 				/*
13942 				 * Fill in LBA and length
13943 				 */
13944 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13945 				    (cp->sc_grpcode == CDB_GROUP4) ||
13946 				    (cp->sc_grpcode == CDB_GROUP0) ||
13947 				    (cp->sc_grpcode == CDB_GROUP5));
13948 
13949 				if (cp->sc_grpcode == CDB_GROUP1) {
13950 					FORMG1ADDR(cdbp, lba);
13951 					FORMG1COUNT(cdbp, blockcount);
13952 					return (0);
13953 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13954 					FORMG4LONGADDR(cdbp, lba);
13955 					FORMG4COUNT(cdbp, blockcount);
13956 					return (0);
13957 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13958 					FORMG0ADDR(cdbp, lba);
13959 					FORMG0COUNT(cdbp, blockcount);
13960 					return (0);
13961 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13962 					FORMG5ADDR(cdbp, lba);
13963 					FORMG5COUNT(cdbp, blockcount);
13964 					return (0);
13965 				}
13966 
13967 				/*
13968 				 * It should be impossible to not match one
13969 				 * of the CDB types above, so we should never
13970 				 * reach this point.  Set the CDB command byte
13971 				 * to test-unit-ready to avoid writing
13972 				 * to somewhere we don't intend.
13973 				 */
13974 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13975 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13976 			} else {
13977 				/*
13978 				 * Couldn't get scsi_pkt
13979 				 */
13980 				return (SD_PKT_ALLOC_FAILURE);
13981 			}
13982 		}
13983 	}
13984 
13985 	/*
13986 	 * None of the available CDB types were suitable.  This really
13987 	 * should never happen:  on a 64 bit system we support
13988 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13989 	 * and on a 32 bit system we will refuse to bind to a device
13990 	 * larger than 2TB so addresses will never be larger than 32 bits.
13991 	 */
13992 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13993 }
13994 
13995 /*
13996  *    Function: sd_setup_next_rw_pkt
13997  *
13998  * Description: Setup packet for partial DMA transfers, except for the
13999  * 		initial transfer.  sd_setup_rw_pkt should be used for
14000  *		the initial transfer.
14001  *
14002  *     Context: Kernel thread and may be called from interrupt context.
14003  */
14004 
14005 int
14006 sd_setup_next_rw_pkt(struct sd_lun *un,
14007     struct scsi_pkt *pktp, struct buf *bp,
14008     diskaddr_t lba, uint32_t blockcount)
14009 {
14010 	uchar_t com;
14011 	union scsi_cdb *cdbp;
14012 	uchar_t cdb_group_id;
14013 
14014 	ASSERT(pktp != NULL);
14015 	ASSERT(pktp->pkt_cdbp != NULL);
14016 
14017 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14018 	com = cdbp->scc_cmd;
14019 	cdb_group_id = CDB_GROUPID(com);
14020 
14021 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14022 	    (cdb_group_id == CDB_GROUPID_1) ||
14023 	    (cdb_group_id == CDB_GROUPID_4) ||
14024 	    (cdb_group_id == CDB_GROUPID_5));
14025 
14026 	/*
14027 	 * Move pkt to the next portion of the xfer.
14028 	 * func is NULL_FUNC so we do not have to release
14029 	 * the disk mutex here.
14030 	 */
14031 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14032 	    NULL_FUNC, NULL) == pktp) {
14033 		/* Success.  Handle partial DMA */
14034 		if (pktp->pkt_resid != 0) {
14035 			blockcount -=
14036 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14037 		}
14038 
14039 		cdbp->scc_cmd = com;
14040 		SD_FILL_SCSI1_LUN(un, pktp);
14041 		if (cdb_group_id == CDB_GROUPID_1) {
14042 			FORMG1ADDR(cdbp, lba);
14043 			FORMG1COUNT(cdbp, blockcount);
14044 			return (0);
14045 		} else if (cdb_group_id == CDB_GROUPID_4) {
14046 			FORMG4LONGADDR(cdbp, lba);
14047 			FORMG4COUNT(cdbp, blockcount);
14048 			return (0);
14049 		} else if (cdb_group_id == CDB_GROUPID_0) {
14050 			FORMG0ADDR(cdbp, lba);
14051 			FORMG0COUNT(cdbp, blockcount);
14052 			return (0);
14053 		} else if (cdb_group_id == CDB_GROUPID_5) {
14054 			FORMG5ADDR(cdbp, lba);
14055 			FORMG5COUNT(cdbp, blockcount);
14056 			return (0);
14057 		}
14058 
14059 		/* Unreachable */
14060 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14061 	}
14062 
14063 	/*
14064 	 * Error setting up next portion of cmd transfer.
14065 	 * Something is definitely very wrong and this
14066 	 * should not happen.
14067 	 */
14068 	return (SD_PKT_ALLOC_FAILURE);
14069 }
14070 
14071 /*
14072  *    Function: sd_initpkt_for_uscsi
14073  *
14074  * Description: Allocate and initialize for transport a scsi_pkt struct,
14075  *		based upon the info specified in the given uscsi_cmd struct.
14076  *
14077  * Return Code: SD_PKT_ALLOC_SUCCESS
14078  *		SD_PKT_ALLOC_FAILURE
14079  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14080  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14081  *
14082  *     Context: Kernel thread and may be called from software interrupt context
14083  *		as part of a sdrunout callback. This function may not block or
14084  *		call routines that block
14085  */
14086 
14087 static int
14088 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14089 {
14090 	struct uscsi_cmd *uscmd;
14091 	struct sd_xbuf	*xp;
14092 	struct scsi_pkt	*pktp;
14093 	struct sd_lun	*un;
14094 	uint32_t	flags = 0;
14095 
14096 	ASSERT(bp != NULL);
14097 	ASSERT(pktpp != NULL);
14098 	xp = SD_GET_XBUF(bp);
14099 	ASSERT(xp != NULL);
14100 	un = SD_GET_UN(bp);
14101 	ASSERT(un != NULL);
14102 	ASSERT(mutex_owned(SD_MUTEX(un)));
14103 
14104 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14105 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14106 	ASSERT(uscmd != NULL);
14107 
14108 	SD_TRACE(SD_LOG_IO_CORE, un,
14109 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14110 
14111 	/*
14112 	 * Allocate the scsi_pkt for the command.
14113 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14114 	 *	 during scsi_init_pkt time and will continue to use the
14115 	 *	 same path as long as the same scsi_pkt is used without
14116 	 *	 intervening scsi_dma_free(). Since uscsi command does
14117 	 *	 not call scsi_dmafree() before retry failed command, it
14118 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14119 	 *	 set such that scsi_vhci can use other available path for
14120 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14121 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14122 	 */
14123 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14124 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14125 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14126 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14127 		    - sizeof (struct scsi_extended_sense)), 0,
14128 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14129 		    sdrunout, (caddr_t)un);
14130 	} else {
14131 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14132 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14133 		    sizeof (struct scsi_arq_status), 0,
14134 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14135 		    sdrunout, (caddr_t)un);
14136 	}
14137 
14138 	if (pktp == NULL) {
14139 		*pktpp = NULL;
14140 		/*
14141 		 * Set the driver state to RWAIT to indicate the driver
14142 		 * is waiting on resource allocations. The driver will not
14143 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14144 		 */
14145 		New_state(un, SD_STATE_RWAIT);
14146 
14147 		SD_ERROR(SD_LOG_IO_CORE, un,
14148 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14149 
14150 		if ((bp->b_flags & B_ERROR) != 0) {
14151 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14152 		}
14153 		return (SD_PKT_ALLOC_FAILURE);
14154 	}
14155 
14156 	/*
14157 	 * We do not do DMA breakup for USCSI commands, so return failure
14158 	 * here if all the needed DMA resources were not allocated.
14159 	 */
14160 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14161 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14162 		scsi_destroy_pkt(pktp);
14163 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14164 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14165 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14166 	}
14167 
14168 	/* Init the cdb from the given uscsi struct */
14169 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14170 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14171 
14172 	SD_FILL_SCSI1_LUN(un, pktp);
14173 
14174 	/*
14175 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14176 	 * for listing of the supported flags.
14177 	 */
14178 
14179 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14180 		flags |= FLAG_SILENT;
14181 	}
14182 
14183 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14184 		flags |= FLAG_DIAGNOSE;
14185 	}
14186 
14187 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14188 		flags |= FLAG_ISOLATE;
14189 	}
14190 
14191 	if (un->un_f_is_fibre == FALSE) {
14192 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14193 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14194 		}
14195 	}
14196 
14197 	/*
14198 	 * Set the pkt flags here so we save time later.
14199 	 * Note: These flags are NOT in the uscsi man page!!!
14200 	 */
14201 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14202 		flags |= FLAG_HEAD;
14203 	}
14204 
14205 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14206 		flags |= FLAG_NOINTR;
14207 	}
14208 
14209 	/*
14210 	 * For tagged queueing, things get a bit complicated.
14211 	 * Check first for head of queue and last for ordered queue.
14212 	 * If neither head nor order, use the default driver tag flags.
14213 	 */
14214 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14215 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14216 			flags |= FLAG_HTAG;
14217 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14218 			flags |= FLAG_OTAG;
14219 		} else {
14220 			flags |= un->un_tagflags & FLAG_TAGMASK;
14221 		}
14222 	}
14223 
14224 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14225 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14226 	}
14227 
14228 	pktp->pkt_flags = flags;
14229 
14230 	/* Transfer uscsi information to scsi_pkt */
14231 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14232 
14233 	/* Copy the caller's CDB into the pkt... */
14234 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14235 
14236 	if (uscmd->uscsi_timeout == 0) {
14237 		pktp->pkt_time = un->un_uscsi_timeout;
14238 	} else {
14239 		pktp->pkt_time = uscmd->uscsi_timeout;
14240 	}
14241 
14242 	/* need it later to identify USCSI request in sdintr */
14243 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14244 
14245 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14246 
14247 	pktp->pkt_private = bp;
14248 	pktp->pkt_comp = sdintr;
14249 	*pktpp = pktp;
14250 
14251 	SD_TRACE(SD_LOG_IO_CORE, un,
14252 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14253 
14254 	return (SD_PKT_ALLOC_SUCCESS);
14255 }
14256 
14257 
14258 /*
14259  *    Function: sd_destroypkt_for_uscsi
14260  *
14261  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14262  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14263  *		struct.
14264  *
14265  *     Context: May be called under interrupt context
14266  */
14267 
14268 static void
14269 sd_destroypkt_for_uscsi(struct buf *bp)
14270 {
14271 	struct uscsi_cmd *uscmd;
14272 	struct sd_xbuf	*xp;
14273 	struct scsi_pkt	*pktp;
14274 	struct sd_lun	*un;
14275 	struct sd_uscsi_info *suip;
14276 
14277 	ASSERT(bp != NULL);
14278 	xp = SD_GET_XBUF(bp);
14279 	ASSERT(xp != NULL);
14280 	un = SD_GET_UN(bp);
14281 	ASSERT(un != NULL);
14282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14283 	pktp = SD_GET_PKTP(bp);
14284 	ASSERT(pktp != NULL);
14285 
14286 	SD_TRACE(SD_LOG_IO_CORE, un,
14287 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14288 
14289 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14290 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14291 	ASSERT(uscmd != NULL);
14292 
14293 	/* Save the status and the residual into the uscsi_cmd struct */
14294 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14295 	uscmd->uscsi_resid  = bp->b_resid;
14296 
14297 	/* Transfer scsi_pkt information to uscsi */
14298 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14299 
14300 	/*
14301 	 * If enabled, copy any saved sense data into the area specified
14302 	 * by the uscsi command.
14303 	 */
14304 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14305 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14306 		/*
14307 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14308 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14309 		 */
14310 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14311 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14312 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14313 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14314 			    MAX_SENSE_LENGTH);
14315 		} else {
14316 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14317 			    SENSE_LENGTH);
14318 		}
14319 	}
14320 	/*
14321 	 * The following assignments are for SCSI FMA.
14322 	 */
14323 	ASSERT(xp->xb_private != NULL);
14324 	suip = (struct sd_uscsi_info *)xp->xb_private;
14325 	suip->ui_pkt_reason = pktp->pkt_reason;
14326 	suip->ui_pkt_state = pktp->pkt_state;
14327 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14328 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14329 
14330 	/* We are done with the scsi_pkt; free it now */
14331 	ASSERT(SD_GET_PKTP(bp) != NULL);
14332 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14333 
14334 	SD_TRACE(SD_LOG_IO_CORE, un,
14335 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14336 }
14337 
14338 
14339 /*
14340  *    Function: sd_bioclone_alloc
14341  *
14342  * Description: Allocate a buf(9S) and init it as per the given buf
14343  *		and the various arguments.  The associated sd_xbuf
14344  *		struct is (nearly) duplicated.  The struct buf *bp
14345  *		argument is saved in new_xp->xb_private.
14346  *
14347  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14348  *		datalen - size of data area for the shadow bp
14349  *		blkno - starting LBA
14350  *		func - function pointer for b_iodone in the shadow buf. (May
14351  *			be NULL if none.)
14352  *
14353  * Return Code: Pointer to allocates buf(9S) struct
14354  *
14355  *     Context: Can sleep.
14356  */
14357 
14358 static struct buf *
14359 sd_bioclone_alloc(struct buf *bp, size_t datalen, daddr_t blkno,
14360     int (*func)(struct buf *))
14361 {
14362 	struct	sd_lun	*un;
14363 	struct	sd_xbuf	*xp;
14364 	struct	sd_xbuf	*new_xp;
14365 	struct	buf	*new_bp;
14366 
14367 	ASSERT(bp != NULL);
14368 	xp = SD_GET_XBUF(bp);
14369 	ASSERT(xp != NULL);
14370 	un = SD_GET_UN(bp);
14371 	ASSERT(un != NULL);
14372 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14373 
14374 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14375 	    NULL, KM_SLEEP);
14376 
14377 	new_bp->b_lblkno	= blkno;
14378 
14379 	/*
14380 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14381 	 * original xbuf into it.
14382 	 */
14383 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14384 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14385 
14386 	/*
14387 	 * The given bp is automatically saved in the xb_private member
14388 	 * of the new xbuf.  Callers are allowed to depend on this.
14389 	 */
14390 	new_xp->xb_private = bp;
14391 
14392 	new_bp->b_private  = new_xp;
14393 
14394 	return (new_bp);
14395 }
14396 
14397 /*
14398  *    Function: sd_shadow_buf_alloc
14399  *
14400  * Description: Allocate a buf(9S) and init it as per the given buf
14401  *		and the various arguments.  The associated sd_xbuf
14402  *		struct is (nearly) duplicated.  The struct buf *bp
14403  *		argument is saved in new_xp->xb_private.
14404  *
14405  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14406  *		datalen - size of data area for the shadow bp
14407  *		bflags - B_READ or B_WRITE (pseudo flag)
14408  *		blkno - starting LBA
14409  *		func - function pointer for b_iodone in the shadow buf. (May
14410  *			be NULL if none.)
14411  *
14412  * Return Code: Pointer to allocates buf(9S) struct
14413  *
14414  *     Context: Can sleep.
14415  */
14416 
14417 static struct buf *
14418 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14419     daddr_t blkno, int (*func)(struct buf *))
14420 {
14421 	struct	sd_lun	*un;
14422 	struct	sd_xbuf	*xp;
14423 	struct	sd_xbuf	*new_xp;
14424 	struct	buf	*new_bp;
14425 
14426 	ASSERT(bp != NULL);
14427 	xp = SD_GET_XBUF(bp);
14428 	ASSERT(xp != NULL);
14429 	un = SD_GET_UN(bp);
14430 	ASSERT(un != NULL);
14431 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14432 
14433 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14434 		bp_mapin(bp);
14435 	}
14436 
14437 	bflags &= (B_READ | B_WRITE);
14438 #if defined(__i386) || defined(__amd64)
14439 	new_bp = getrbuf(KM_SLEEP);
14440 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14441 	new_bp->b_bcount = datalen;
14442 	new_bp->b_flags = bflags |
14443 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14444 #else
14445 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14446 	    datalen, bflags, SLEEP_FUNC, NULL);
14447 #endif
14448 	new_bp->av_forw	= NULL;
14449 	new_bp->av_back	= NULL;
14450 	new_bp->b_dev	= bp->b_dev;
14451 	new_bp->b_blkno	= blkno;
14452 	new_bp->b_iodone = func;
14453 	new_bp->b_edev	= bp->b_edev;
14454 	new_bp->b_resid	= 0;
14455 
14456 	/* We need to preserve the B_FAILFAST flag */
14457 	if (bp->b_flags & B_FAILFAST) {
14458 		new_bp->b_flags |= B_FAILFAST;
14459 	}
14460 
14461 	/*
14462 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14463 	 * original xbuf into it.
14464 	 */
14465 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14466 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14467 
14468 	/* Need later to copy data between the shadow buf & original buf! */
14469 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14470 
14471 	/*
14472 	 * The given bp is automatically saved in the xb_private member
14473 	 * of the new xbuf.  Callers are allowed to depend on this.
14474 	 */
14475 	new_xp->xb_private = bp;
14476 
14477 	new_bp->b_private  = new_xp;
14478 
14479 	return (new_bp);
14480 }
14481 
14482 /*
14483  *    Function: sd_bioclone_free
14484  *
14485  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14486  *		in the larger than partition operation.
14487  *
14488  *     Context: May be called under interrupt context
14489  */
14490 
14491 static void
14492 sd_bioclone_free(struct buf *bp)
14493 {
14494 	struct sd_xbuf	*xp;
14495 
14496 	ASSERT(bp != NULL);
14497 	xp = SD_GET_XBUF(bp);
14498 	ASSERT(xp != NULL);
14499 
14500 	/*
14501 	 * Call bp_mapout() before freeing the buf,  in case a lower
14502 	 * layer or HBA  had done a bp_mapin().  we must do this here
14503 	 * as we are the "originator" of the shadow buf.
14504 	 */
14505 	bp_mapout(bp);
14506 
14507 	/*
14508 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14509 	 * never gets confused by a stale value in this field. (Just a little
14510 	 * extra defensiveness here.)
14511 	 */
14512 	bp->b_iodone = NULL;
14513 
14514 	freerbuf(bp);
14515 
14516 	kmem_free(xp, sizeof (struct sd_xbuf));
14517 }
14518 
14519 /*
14520  *    Function: sd_shadow_buf_free
14521  *
14522  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14523  *
14524  *     Context: May be called under interrupt context
14525  */
14526 
14527 static void
14528 sd_shadow_buf_free(struct buf *bp)
14529 {
14530 	struct sd_xbuf	*xp;
14531 
14532 	ASSERT(bp != NULL);
14533 	xp = SD_GET_XBUF(bp);
14534 	ASSERT(xp != NULL);
14535 
14536 #if defined(__sparc)
14537 	/*
14538 	 * Call bp_mapout() before freeing the buf,  in case a lower
14539 	 * layer or HBA  had done a bp_mapin().  we must do this here
14540 	 * as we are the "originator" of the shadow buf.
14541 	 */
14542 	bp_mapout(bp);
14543 #endif
14544 
14545 	/*
14546 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14547 	 * never gets confused by a stale value in this field. (Just a little
14548 	 * extra defensiveness here.)
14549 	 */
14550 	bp->b_iodone = NULL;
14551 
14552 #if defined(__i386) || defined(__amd64)
14553 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14554 	freerbuf(bp);
14555 #else
14556 	scsi_free_consistent_buf(bp);
14557 #endif
14558 
14559 	kmem_free(xp, sizeof (struct sd_xbuf));
14560 }
14561 
14562 
14563 /*
14564  *    Function: sd_print_transport_rejected_message
14565  *
14566  * Description: This implements the ludicrously complex rules for printing
14567  *		a "transport rejected" message.  This is to address the
14568  *		specific problem of having a flood of this error message
14569  *		produced when a failover occurs.
14570  *
14571  *     Context: Any.
14572  */
14573 
14574 static void
14575 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14576     int code)
14577 {
14578 	ASSERT(un != NULL);
14579 	ASSERT(mutex_owned(SD_MUTEX(un)));
14580 	ASSERT(xp != NULL);
14581 
14582 	/*
14583 	 * Print the "transport rejected" message under the following
14584 	 * conditions:
14585 	 *
14586 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14587 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14588 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14589 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14590 	 *   scsi_transport(9F) (which indicates that the target might have
14591 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14592 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14593 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14594 	 *   from scsi_transport().
14595 	 *
14596 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14597 	 * the preceeding cases in order for the message to be printed.
14598 	 */
14599 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14600 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14601 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14602 		    (code != TRAN_FATAL_ERROR) ||
14603 		    (un->un_tran_fatal_count == 1)) {
14604 			switch (code) {
14605 			case TRAN_BADPKT:
14606 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14607 				    "transport rejected bad packet\n");
14608 				break;
14609 			case TRAN_FATAL_ERROR:
14610 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14611 				    "transport rejected fatal error\n");
14612 				break;
14613 			default:
14614 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14615 				    "transport rejected (%d)\n", code);
14616 				break;
14617 			}
14618 		}
14619 	}
14620 }
14621 
14622 
14623 /*
14624  *    Function: sd_add_buf_to_waitq
14625  *
14626  * Description: Add the given buf(9S) struct to the wait queue for the
14627  *		instance.  If sorting is enabled, then the buf is added
14628  *		to the queue via an elevator sort algorithm (a la
14629  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14630  *		If sorting is not enabled, then the buf is just added
14631  *		to the end of the wait queue.
14632  *
14633  * Return Code: void
14634  *
14635  *     Context: Does not sleep/block, therefore technically can be called
14636  *		from any context.  However if sorting is enabled then the
14637  *		execution time is indeterminate, and may take long if
14638  *		the wait queue grows large.
14639  */
14640 
14641 static void
14642 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14643 {
14644 	struct buf *ap;
14645 
14646 	ASSERT(bp != NULL);
14647 	ASSERT(un != NULL);
14648 	ASSERT(mutex_owned(SD_MUTEX(un)));
14649 
14650 	/* If the queue is empty, add the buf as the only entry & return. */
14651 	if (un->un_waitq_headp == NULL) {
14652 		ASSERT(un->un_waitq_tailp == NULL);
14653 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14654 		bp->av_forw = NULL;
14655 		return;
14656 	}
14657 
14658 	ASSERT(un->un_waitq_tailp != NULL);
14659 
14660 	/*
14661 	 * If sorting is disabled, just add the buf to the tail end of
14662 	 * the wait queue and return.
14663 	 */
14664 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14665 		un->un_waitq_tailp->av_forw = bp;
14666 		un->un_waitq_tailp = bp;
14667 		bp->av_forw = NULL;
14668 		return;
14669 	}
14670 
14671 	/*
14672 	 * Sort thru the list of requests currently on the wait queue
14673 	 * and add the new buf request at the appropriate position.
14674 	 *
14675 	 * The un->un_waitq_headp is an activity chain pointer on which
14676 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14677 	 * first queue holds those requests which are positioned after
14678 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14679 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14680 	 * Thus we implement a one way scan, retracting after reaching
14681 	 * the end of the drive to the first request on the second
14682 	 * queue, at which time it becomes the first queue.
14683 	 * A one-way scan is natural because of the way UNIX read-ahead
14684 	 * blocks are allocated.
14685 	 *
14686 	 * If we lie after the first request, then we must locate the
14687 	 * second request list and add ourselves to it.
14688 	 */
14689 	ap = un->un_waitq_headp;
14690 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14691 		while (ap->av_forw != NULL) {
14692 			/*
14693 			 * Look for an "inversion" in the (normally
14694 			 * ascending) block numbers. This indicates
14695 			 * the start of the second request list.
14696 			 */
14697 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14698 				/*
14699 				 * Search the second request list for the
14700 				 * first request at a larger block number.
14701 				 * We go before that; however if there is
14702 				 * no such request, we go at the end.
14703 				 */
14704 				do {
14705 					if (SD_GET_BLKNO(bp) <
14706 					    SD_GET_BLKNO(ap->av_forw)) {
14707 						goto insert;
14708 					}
14709 					ap = ap->av_forw;
14710 				} while (ap->av_forw != NULL);
14711 				goto insert;		/* after last */
14712 			}
14713 			ap = ap->av_forw;
14714 		}
14715 
14716 		/*
14717 		 * No inversions... we will go after the last, and
14718 		 * be the first request in the second request list.
14719 		 */
14720 		goto insert;
14721 	}
14722 
14723 	/*
14724 	 * Request is at/after the current request...
14725 	 * sort in the first request list.
14726 	 */
14727 	while (ap->av_forw != NULL) {
14728 		/*
14729 		 * We want to go after the current request (1) if
14730 		 * there is an inversion after it (i.e. it is the end
14731 		 * of the first request list), or (2) if the next
14732 		 * request is a larger block no. than our request.
14733 		 */
14734 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14735 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14736 			goto insert;
14737 		}
14738 		ap = ap->av_forw;
14739 	}
14740 
14741 	/*
14742 	 * Neither a second list nor a larger request, therefore
14743 	 * we go at the end of the first list (which is the same
14744 	 * as the end of the whole schebang).
14745 	 */
14746 insert:
14747 	bp->av_forw = ap->av_forw;
14748 	ap->av_forw = bp;
14749 
14750 	/*
14751 	 * If we inserted onto the tail end of the waitq, make sure the
14752 	 * tail pointer is updated.
14753 	 */
14754 	if (ap == un->un_waitq_tailp) {
14755 		un->un_waitq_tailp = bp;
14756 	}
14757 }
14758 
14759 
14760 /*
14761  *    Function: sd_start_cmds
14762  *
14763  * Description: Remove and transport cmds from the driver queues.
14764  *
14765  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14766  *
14767  *		immed_bp - ptr to a buf to be transported immediately. Only
14768  *		the immed_bp is transported; bufs on the waitq are not
14769  *		processed and the un_retry_bp is not checked.  If immed_bp is
14770  *		NULL, then normal queue processing is performed.
14771  *
14772  *     Context: May be called from kernel thread context, interrupt context,
14773  *		or runout callback context. This function may not block or
14774  *		call routines that block.
14775  */
14776 
14777 static void
14778 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14779 {
14780 	struct	sd_xbuf	*xp;
14781 	struct	buf	*bp;
14782 	void	(*statp)(kstat_io_t *);
14783 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14784 	void	(*saved_statp)(kstat_io_t *);
14785 #endif
14786 	int	rval;
14787 	struct sd_fm_internal *sfip = NULL;
14788 
14789 	ASSERT(un != NULL);
14790 	ASSERT(mutex_owned(SD_MUTEX(un)));
14791 	ASSERT(un->un_ncmds_in_transport >= 0);
14792 	ASSERT(un->un_throttle >= 0);
14793 
14794 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14795 
14796 	do {
14797 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14798 		saved_statp = NULL;
14799 #endif
14800 
14801 		/*
14802 		 * If we are syncing or dumping, fail the command to
14803 		 * avoid recursively calling back into scsi_transport().
14804 		 * The dump I/O itself uses a separate code path so this
14805 		 * only prevents non-dump I/O from being sent while dumping.
14806 		 * File system sync takes place before dumping begins.
14807 		 * During panic, filesystem I/O is allowed provided
14808 		 * un_in_callback is <= 1.  This is to prevent recursion
14809 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14810 		 * sd_start_cmds and so on.  See panic.c for more information
14811 		 * about the states the system can be in during panic.
14812 		 */
14813 		if ((un->un_state == SD_STATE_DUMPING) ||
14814 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14815 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14816 			    "sd_start_cmds: panicking\n");
14817 			goto exit;
14818 		}
14819 
14820 		if ((bp = immed_bp) != NULL) {
14821 			/*
14822 			 * We have a bp that must be transported immediately.
14823 			 * It's OK to transport the immed_bp here without doing
14824 			 * the throttle limit check because the immed_bp is
14825 			 * always used in a retry/recovery case. This means
14826 			 * that we know we are not at the throttle limit by
14827 			 * virtue of the fact that to get here we must have
14828 			 * already gotten a command back via sdintr(). This also
14829 			 * relies on (1) the command on un_retry_bp preventing
14830 			 * further commands from the waitq from being issued;
14831 			 * and (2) the code in sd_retry_command checking the
14832 			 * throttle limit before issuing a delayed or immediate
14833 			 * retry. This holds even if the throttle limit is
14834 			 * currently ratcheted down from its maximum value.
14835 			 */
14836 			statp = kstat_runq_enter;
14837 			if (bp == un->un_retry_bp) {
14838 				ASSERT((un->un_retry_statp == NULL) ||
14839 				    (un->un_retry_statp == kstat_waitq_enter) ||
14840 				    (un->un_retry_statp ==
14841 				    kstat_runq_back_to_waitq));
14842 				/*
14843 				 * If the waitq kstat was incremented when
14844 				 * sd_set_retry_bp() queued this bp for a retry,
14845 				 * then we must set up statp so that the waitq
14846 				 * count will get decremented correctly below.
14847 				 * Also we must clear un->un_retry_statp to
14848 				 * ensure that we do not act on a stale value
14849 				 * in this field.
14850 				 */
14851 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14852 				    (un->un_retry_statp ==
14853 				    kstat_runq_back_to_waitq)) {
14854 					statp = kstat_waitq_to_runq;
14855 				}
14856 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14857 				saved_statp = un->un_retry_statp;
14858 #endif
14859 				un->un_retry_statp = NULL;
14860 
14861 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14862 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14863 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14864 				    un, un->un_retry_bp, un->un_throttle,
14865 				    un->un_ncmds_in_transport);
14866 			} else {
14867 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14868 				    "processing priority bp:0x%p\n", bp);
14869 			}
14870 
14871 		} else if ((bp = un->un_waitq_headp) != NULL) {
14872 			/*
14873 			 * A command on the waitq is ready to go, but do not
14874 			 * send it if:
14875 			 *
14876 			 * (1) the throttle limit has been reached, or
14877 			 * (2) a retry is pending, or
14878 			 * (3) a START_STOP_UNIT callback pending, or
14879 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14880 			 *	command is pending.
14881 			 *
14882 			 * For all of these conditions, IO processing will
14883 			 * restart after the condition is cleared.
14884 			 */
14885 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14886 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14887 				    "sd_start_cmds: exiting, "
14888 				    "throttle limit reached!\n");
14889 				goto exit;
14890 			}
14891 			if (un->un_retry_bp != NULL) {
14892 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14893 				    "sd_start_cmds: exiting, retry pending!\n");
14894 				goto exit;
14895 			}
14896 			if (un->un_startstop_timeid != NULL) {
14897 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14898 				    "sd_start_cmds: exiting, "
14899 				    "START_STOP pending!\n");
14900 				goto exit;
14901 			}
14902 			if (un->un_direct_priority_timeid != NULL) {
14903 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14904 				    "sd_start_cmds: exiting, "
14905 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14906 				goto exit;
14907 			}
14908 
14909 			/* Dequeue the command */
14910 			un->un_waitq_headp = bp->av_forw;
14911 			if (un->un_waitq_headp == NULL) {
14912 				un->un_waitq_tailp = NULL;
14913 			}
14914 			bp->av_forw = NULL;
14915 			statp = kstat_waitq_to_runq;
14916 			SD_TRACE(SD_LOG_IO_CORE, un,
14917 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14918 
14919 		} else {
14920 			/* No work to do so bail out now */
14921 			SD_TRACE(SD_LOG_IO_CORE, un,
14922 			    "sd_start_cmds: no more work, exiting!\n");
14923 			goto exit;
14924 		}
14925 
14926 		/*
14927 		 * Reset the state to normal. This is the mechanism by which
14928 		 * the state transitions from either SD_STATE_RWAIT or
14929 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14930 		 * If state is SD_STATE_PM_CHANGING then this command is
14931 		 * part of the device power control and the state must
14932 		 * not be put back to normal. Doing so would would
14933 		 * allow new commands to proceed when they shouldn't,
14934 		 * the device may be going off.
14935 		 */
14936 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14937 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14938 			New_state(un, SD_STATE_NORMAL);
14939 		}
14940 
14941 		xp = SD_GET_XBUF(bp);
14942 		ASSERT(xp != NULL);
14943 
14944 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14945 		/*
14946 		 * Allocate the scsi_pkt if we need one, or attach DMA
14947 		 * resources if we have a scsi_pkt that needs them. The
14948 		 * latter should only occur for commands that are being
14949 		 * retried.
14950 		 */
14951 		if ((xp->xb_pktp == NULL) ||
14952 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14953 #else
14954 		if (xp->xb_pktp == NULL) {
14955 #endif
14956 			/*
14957 			 * There is no scsi_pkt allocated for this buf. Call
14958 			 * the initpkt function to allocate & init one.
14959 			 *
14960 			 * The scsi_init_pkt runout callback functionality is
14961 			 * implemented as follows:
14962 			 *
14963 			 * 1) The initpkt function always calls
14964 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14965 			 *    callback routine.
14966 			 * 2) A successful packet allocation is initialized and
14967 			 *    the I/O is transported.
14968 			 * 3) The I/O associated with an allocation resource
14969 			 *    failure is left on its queue to be retried via
14970 			 *    runout or the next I/O.
14971 			 * 4) The I/O associated with a DMA error is removed
14972 			 *    from the queue and failed with EIO. Processing of
14973 			 *    the transport queues is also halted to be
14974 			 *    restarted via runout or the next I/O.
14975 			 * 5) The I/O associated with a CDB size or packet
14976 			 *    size error is removed from the queue and failed
14977 			 *    with EIO. Processing of the transport queues is
14978 			 *    continued.
14979 			 *
14980 			 * Note: there is no interface for canceling a runout
14981 			 * callback. To prevent the driver from detaching or
14982 			 * suspending while a runout is pending the driver
14983 			 * state is set to SD_STATE_RWAIT
14984 			 *
14985 			 * Note: using the scsi_init_pkt callback facility can
14986 			 * result in an I/O request persisting at the head of
14987 			 * the list which cannot be satisfied even after
14988 			 * multiple retries. In the future the driver may
14989 			 * implement some kind of maximum runout count before
14990 			 * failing an I/O.
14991 			 *
14992 			 * Note: the use of funcp below may seem superfluous,
14993 			 * but it helps warlock figure out the correct
14994 			 * initpkt function calls (see [s]sd.wlcmd).
14995 			 */
14996 			struct scsi_pkt	*pktp;
14997 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14998 
14999 			ASSERT(bp != un->un_rqs_bp);
15000 
15001 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
15002 			switch ((*funcp)(bp, &pktp)) {
15003 			case  SD_PKT_ALLOC_SUCCESS:
15004 				xp->xb_pktp = pktp;
15005 				SD_TRACE(SD_LOG_IO_CORE, un,
15006 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
15007 				    pktp);
15008 				goto got_pkt;
15009 
15010 			case SD_PKT_ALLOC_FAILURE:
15011 				/*
15012 				 * Temporary (hopefully) resource depletion.
15013 				 * Since retries and RQS commands always have a
15014 				 * scsi_pkt allocated, these cases should never
15015 				 * get here. So the only cases this needs to
15016 				 * handle is a bp from the waitq (which we put
15017 				 * back onto the waitq for sdrunout), or a bp
15018 				 * sent as an immed_bp (which we just fail).
15019 				 */
15020 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15021 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15022 
15023 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15024 
15025 				if (bp == immed_bp) {
15026 					/*
15027 					 * If SD_XB_DMA_FREED is clear, then
15028 					 * this is a failure to allocate a
15029 					 * scsi_pkt, and we must fail the
15030 					 * command.
15031 					 */
15032 					if ((xp->xb_pkt_flags &
15033 					    SD_XB_DMA_FREED) == 0) {
15034 						break;
15035 					}
15036 
15037 					/*
15038 					 * If this immediate command is NOT our
15039 					 * un_retry_bp, then we must fail it.
15040 					 */
15041 					if (bp != un->un_retry_bp) {
15042 						break;
15043 					}
15044 
15045 					/*
15046 					 * We get here if this cmd is our
15047 					 * un_retry_bp that was DMAFREED, but
15048 					 * scsi_init_pkt() failed to reallocate
15049 					 * DMA resources when we attempted to
15050 					 * retry it. This can happen when an
15051 					 * mpxio failover is in progress, but
15052 					 * we don't want to just fail the
15053 					 * command in this case.
15054 					 *
15055 					 * Use timeout(9F) to restart it after
15056 					 * a 100ms delay.  We don't want to
15057 					 * let sdrunout() restart it, because
15058 					 * sdrunout() is just supposed to start
15059 					 * commands that are sitting on the
15060 					 * wait queue.  The un_retry_bp stays
15061 					 * set until the command completes, but
15062 					 * sdrunout can be called many times
15063 					 * before that happens.  Since sdrunout
15064 					 * cannot tell if the un_retry_bp is
15065 					 * already in the transport, it could
15066 					 * end up calling scsi_transport() for
15067 					 * the un_retry_bp multiple times.
15068 					 *
15069 					 * Also: don't schedule the callback
15070 					 * if some other callback is already
15071 					 * pending.
15072 					 */
15073 					if (un->un_retry_statp == NULL) {
15074 						/*
15075 						 * restore the kstat pointer to
15076 						 * keep kstat counts coherent
15077 						 * when we do retry the command.
15078 						 */
15079 						un->un_retry_statp =
15080 						    saved_statp;
15081 					}
15082 
15083 					if ((un->un_startstop_timeid == NULL) &&
15084 					    (un->un_retry_timeid == NULL) &&
15085 					    (un->un_direct_priority_timeid ==
15086 					    NULL)) {
15087 
15088 						un->un_retry_timeid =
15089 						    timeout(
15090 						    sd_start_retry_command,
15091 						    un, SD_RESTART_TIMEOUT);
15092 					}
15093 					goto exit;
15094 				}
15095 
15096 #else
15097 				if (bp == immed_bp) {
15098 					break;	/* Just fail the command */
15099 				}
15100 #endif
15101 
15102 				/* Add the buf back to the head of the waitq */
15103 				bp->av_forw = un->un_waitq_headp;
15104 				un->un_waitq_headp = bp;
15105 				if (un->un_waitq_tailp == NULL) {
15106 					un->un_waitq_tailp = bp;
15107 				}
15108 				goto exit;
15109 
15110 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15111 				/*
15112 				 * HBA DMA resource failure. Fail the command
15113 				 * and continue processing of the queues.
15114 				 */
15115 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15116 				    "sd_start_cmds: "
15117 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15118 				break;
15119 
15120 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15121 				/*
15122 				 * Note:x86: Partial DMA mapping not supported
15123 				 * for USCSI commands, and all the needed DMA
15124 				 * resources were not allocated.
15125 				 */
15126 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15127 				    "sd_start_cmds: "
15128 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15129 				break;
15130 
15131 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15132 				/*
15133 				 * Note:x86: Request cannot fit into CDB based
15134 				 * on lba and len.
15135 				 */
15136 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15137 				    "sd_start_cmds: "
15138 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15139 				break;
15140 
15141 			default:
15142 				/* Should NEVER get here! */
15143 				panic("scsi_initpkt error");
15144 				/*NOTREACHED*/
15145 			}
15146 
15147 			/*
15148 			 * Fatal error in allocating a scsi_pkt for this buf.
15149 			 * Update kstats & return the buf with an error code.
15150 			 * We must use sd_return_failed_command_no_restart() to
15151 			 * avoid a recursive call back into sd_start_cmds().
15152 			 * However this also means that we must keep processing
15153 			 * the waitq here in order to avoid stalling.
15154 			 */
15155 			if (statp == kstat_waitq_to_runq) {
15156 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15157 			}
15158 			sd_return_failed_command_no_restart(un, bp, EIO);
15159 			if (bp == immed_bp) {
15160 				/* immed_bp is gone by now, so clear this */
15161 				immed_bp = NULL;
15162 			}
15163 			continue;
15164 		}
15165 got_pkt:
15166 		if (bp == immed_bp) {
15167 			/* goto the head of the class.... */
15168 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15169 		}
15170 
15171 		un->un_ncmds_in_transport++;
15172 		SD_UPDATE_KSTATS(un, statp, bp);
15173 
15174 		/*
15175 		 * Call scsi_transport() to send the command to the target.
15176 		 * According to SCSA architecture, we must drop the mutex here
15177 		 * before calling scsi_transport() in order to avoid deadlock.
15178 		 * Note that the scsi_pkt's completion routine can be executed
15179 		 * (from interrupt context) even before the call to
15180 		 * scsi_transport() returns.
15181 		 */
15182 		SD_TRACE(SD_LOG_IO_CORE, un,
15183 		    "sd_start_cmds: calling scsi_transport()\n");
15184 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15185 
15186 		mutex_exit(SD_MUTEX(un));
15187 		rval = scsi_transport(xp->xb_pktp);
15188 		mutex_enter(SD_MUTEX(un));
15189 
15190 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15191 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15192 
15193 		switch (rval) {
15194 		case TRAN_ACCEPT:
15195 			/* Clear this with every pkt accepted by the HBA */
15196 			un->un_tran_fatal_count = 0;
15197 			break;	/* Success; try the next cmd (if any) */
15198 
15199 		case TRAN_BUSY:
15200 			un->un_ncmds_in_transport--;
15201 			ASSERT(un->un_ncmds_in_transport >= 0);
15202 
15203 			/*
15204 			 * Don't retry request sense, the sense data
15205 			 * is lost when another request is sent.
15206 			 * Free up the rqs buf and retry
15207 			 * the original failed cmd.  Update kstat.
15208 			 */
15209 			if (bp == un->un_rqs_bp) {
15210 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15211 				bp = sd_mark_rqs_idle(un, xp);
15212 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15213 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15214 				    kstat_waitq_enter);
15215 				goto exit;
15216 			}
15217 
15218 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15219 			/*
15220 			 * Free the DMA resources for the  scsi_pkt. This will
15221 			 * allow mpxio to select another path the next time
15222 			 * we call scsi_transport() with this scsi_pkt.
15223 			 * See sdintr() for the rationalization behind this.
15224 			 */
15225 			if ((un->un_f_is_fibre == TRUE) &&
15226 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15227 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15228 				scsi_dmafree(xp->xb_pktp);
15229 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15230 			}
15231 #endif
15232 
15233 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15234 				/*
15235 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15236 				 * are for error recovery situations. These do
15237 				 * not use the normal command waitq, so if they
15238 				 * get a TRAN_BUSY we cannot put them back onto
15239 				 * the waitq for later retry. One possible
15240 				 * problem is that there could already be some
15241 				 * other command on un_retry_bp that is waiting
15242 				 * for this one to complete, so we would be
15243 				 * deadlocked if we put this command back onto
15244 				 * the waitq for later retry (since un_retry_bp
15245 				 * must complete before the driver gets back to
15246 				 * commands on the waitq).
15247 				 *
15248 				 * To avoid deadlock we must schedule a callback
15249 				 * that will restart this command after a set
15250 				 * interval.  This should keep retrying for as
15251 				 * long as the underlying transport keeps
15252 				 * returning TRAN_BUSY (just like for other
15253 				 * commands).  Use the same timeout interval as
15254 				 * for the ordinary TRAN_BUSY retry.
15255 				 */
15256 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15257 				    "sd_start_cmds: scsi_transport() returned "
15258 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15259 
15260 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15261 				un->un_direct_priority_timeid =
15262 				    timeout(sd_start_direct_priority_command,
15263 				    bp, un->un_busy_timeout / 500);
15264 
15265 				goto exit;
15266 			}
15267 
15268 			/*
15269 			 * For TRAN_BUSY, we want to reduce the throttle value,
15270 			 * unless we are retrying a command.
15271 			 */
15272 			if (bp != un->un_retry_bp) {
15273 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15274 			}
15275 
15276 			/*
15277 			 * Set up the bp to be tried again 10 ms later.
15278 			 * Note:x86: Is there a timeout value in the sd_lun
15279 			 * for this condition?
15280 			 */
15281 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15282 			    kstat_runq_back_to_waitq);
15283 			goto exit;
15284 
15285 		case TRAN_FATAL_ERROR:
15286 			un->un_tran_fatal_count++;
15287 			/* FALLTHRU */
15288 
15289 		case TRAN_BADPKT:
15290 		default:
15291 			un->un_ncmds_in_transport--;
15292 			ASSERT(un->un_ncmds_in_transport >= 0);
15293 
15294 			/*
15295 			 * If this is our REQUEST SENSE command with a
15296 			 * transport error, we must get back the pointers
15297 			 * to the original buf, and mark the REQUEST
15298 			 * SENSE command as "available".
15299 			 */
15300 			if (bp == un->un_rqs_bp) {
15301 				bp = sd_mark_rqs_idle(un, xp);
15302 				xp = SD_GET_XBUF(bp);
15303 			} else {
15304 				/*
15305 				 * Legacy behavior: do not update transport
15306 				 * error count for request sense commands.
15307 				 */
15308 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15309 			}
15310 
15311 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15312 			sd_print_transport_rejected_message(un, xp, rval);
15313 
15314 			/*
15315 			 * This command will be terminated by SD driver due
15316 			 * to a fatal transport error. We should post
15317 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15318 			 * of "fail" for any command to indicate this
15319 			 * situation.
15320 			 */
15321 			if (xp->xb_ena > 0) {
15322 				ASSERT(un->un_fm_private != NULL);
15323 				sfip = un->un_fm_private;
15324 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15325 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15326 				    xp->xb_pktp, bp, xp);
15327 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15328 			}
15329 
15330 			/*
15331 			 * We must use sd_return_failed_command_no_restart() to
15332 			 * avoid a recursive call back into sd_start_cmds().
15333 			 * However this also means that we must keep processing
15334 			 * the waitq here in order to avoid stalling.
15335 			 */
15336 			sd_return_failed_command_no_restart(un, bp, EIO);
15337 
15338 			/*
15339 			 * Notify any threads waiting in sd_ddi_suspend() that
15340 			 * a command completion has occurred.
15341 			 */
15342 			if (un->un_state == SD_STATE_SUSPENDED) {
15343 				cv_broadcast(&un->un_disk_busy_cv);
15344 			}
15345 
15346 			if (bp == immed_bp) {
15347 				/* immed_bp is gone by now, so clear this */
15348 				immed_bp = NULL;
15349 			}
15350 			break;
15351 		}
15352 
15353 	} while (immed_bp == NULL);
15354 
15355 exit:
15356 	ASSERT(mutex_owned(SD_MUTEX(un)));
15357 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15358 }
15359 
15360 
15361 /*
15362  *    Function: sd_return_command
15363  *
15364  * Description: Returns a command to its originator (with or without an
15365  *		error).  Also starts commands waiting to be transported
15366  *		to the target.
15367  *
15368  *     Context: May be called from interrupt, kernel, or timeout context
15369  */
15370 
15371 static void
15372 sd_return_command(struct sd_lun *un, struct buf *bp)
15373 {
15374 	struct sd_xbuf *xp;
15375 	struct scsi_pkt *pktp;
15376 	struct sd_fm_internal *sfip;
15377 
15378 	ASSERT(bp != NULL);
15379 	ASSERT(un != NULL);
15380 	ASSERT(mutex_owned(SD_MUTEX(un)));
15381 	ASSERT(bp != un->un_rqs_bp);
15382 	xp = SD_GET_XBUF(bp);
15383 	ASSERT(xp != NULL);
15384 
15385 	pktp = SD_GET_PKTP(bp);
15386 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15387 	ASSERT(sfip != NULL);
15388 
15389 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15390 
15391 	/*
15392 	 * Note: check for the "sdrestart failed" case.
15393 	 */
15394 	if ((un->un_partial_dma_supported == 1) &&
15395 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15396 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15397 	    (xp->xb_pktp->pkt_resid == 0)) {
15398 
15399 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15400 			/*
15401 			 * Successfully set up next portion of cmd
15402 			 * transfer, try sending it
15403 			 */
15404 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15405 			    NULL, NULL, 0, (clock_t)0, NULL);
15406 			sd_start_cmds(un, NULL);
15407 			return;	/* Note:x86: need a return here? */
15408 		}
15409 	}
15410 
15411 	/*
15412 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15413 	 * can happen if upon being re-tried the failfast bp either
15414 	 * succeeded or encountered another error (possibly even a different
15415 	 * error than the one that precipitated the failfast state, but in
15416 	 * that case it would have had to exhaust retries as well). Regardless,
15417 	 * this should not occur whenever the instance is in the active
15418 	 * failfast state.
15419 	 */
15420 	if (bp == un->un_failfast_bp) {
15421 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15422 		un->un_failfast_bp = NULL;
15423 	}
15424 
15425 	/*
15426 	 * Clear the failfast state upon successful completion of ANY cmd.
15427 	 */
15428 	if (bp->b_error == 0) {
15429 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15430 		/*
15431 		 * If this is a successful command, but used to be retried,
15432 		 * we will take it as a recovered command and post an
15433 		 * ereport with driver-assessment of "recovered".
15434 		 */
15435 		if (xp->xb_ena > 0) {
15436 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15437 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15438 		}
15439 	} else {
15440 		/*
15441 		 * If this is a failed non-USCSI command we will post an
15442 		 * ereport with driver-assessment set accordingly("fail" or
15443 		 * "fatal").
15444 		 */
15445 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15446 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15447 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15448 		}
15449 	}
15450 
15451 	/*
15452 	 * This is used if the command was retried one or more times. Show that
15453 	 * we are done with it, and allow processing of the waitq to resume.
15454 	 */
15455 	if (bp == un->un_retry_bp) {
15456 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15457 		    "sd_return_command: un:0x%p: "
15458 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15459 		un->un_retry_bp = NULL;
15460 		un->un_retry_statp = NULL;
15461 	}
15462 
15463 	SD_UPDATE_RDWR_STATS(un, bp);
15464 	SD_UPDATE_PARTITION_STATS(un, bp);
15465 
15466 	switch (un->un_state) {
15467 	case SD_STATE_SUSPENDED:
15468 		/*
15469 		 * Notify any threads waiting in sd_ddi_suspend() that
15470 		 * a command completion has occurred.
15471 		 */
15472 		cv_broadcast(&un->un_disk_busy_cv);
15473 		break;
15474 	default:
15475 		sd_start_cmds(un, NULL);
15476 		break;
15477 	}
15478 
15479 	/* Return this command up the iodone chain to its originator. */
15480 	mutex_exit(SD_MUTEX(un));
15481 
15482 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15483 	xp->xb_pktp = NULL;
15484 
15485 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15486 
15487 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15488 	mutex_enter(SD_MUTEX(un));
15489 
15490 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15491 }
15492 
15493 
15494 /*
15495  *    Function: sd_return_failed_command
15496  *
15497  * Description: Command completion when an error occurred.
15498  *
15499  *     Context: May be called from interrupt context
15500  */
15501 
15502 static void
15503 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15504 {
15505 	ASSERT(bp != NULL);
15506 	ASSERT(un != NULL);
15507 	ASSERT(mutex_owned(SD_MUTEX(un)));
15508 
15509 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15510 	    "sd_return_failed_command: entry\n");
15511 
15512 	/*
15513 	 * b_resid could already be nonzero due to a partial data
15514 	 * transfer, so do not change it here.
15515 	 */
15516 	SD_BIOERROR(bp, errcode);
15517 
15518 	sd_return_command(un, bp);
15519 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15520 	    "sd_return_failed_command: exit\n");
15521 }
15522 
15523 
15524 /*
15525  *    Function: sd_return_failed_command_no_restart
15526  *
15527  * Description: Same as sd_return_failed_command, but ensures that no
15528  *		call back into sd_start_cmds will be issued.
15529  *
15530  *     Context: May be called from interrupt context
15531  */
15532 
15533 static void
15534 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15535     int errcode)
15536 {
15537 	struct sd_xbuf *xp;
15538 
15539 	ASSERT(bp != NULL);
15540 	ASSERT(un != NULL);
15541 	ASSERT(mutex_owned(SD_MUTEX(un)));
15542 	xp = SD_GET_XBUF(bp);
15543 	ASSERT(xp != NULL);
15544 	ASSERT(errcode != 0);
15545 
15546 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15547 	    "sd_return_failed_command_no_restart: entry\n");
15548 
15549 	/*
15550 	 * b_resid could already be nonzero due to a partial data
15551 	 * transfer, so do not change it here.
15552 	 */
15553 	SD_BIOERROR(bp, errcode);
15554 
15555 	/*
15556 	 * If this is the failfast bp, clear it. This can happen if the
15557 	 * failfast bp encounterd a fatal error when we attempted to
15558 	 * re-try it (such as a scsi_transport(9F) failure).  However
15559 	 * we should NOT be in an active failfast state if the failfast
15560 	 * bp is not NULL.
15561 	 */
15562 	if (bp == un->un_failfast_bp) {
15563 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15564 		un->un_failfast_bp = NULL;
15565 	}
15566 
15567 	if (bp == un->un_retry_bp) {
15568 		/*
15569 		 * This command was retried one or more times. Show that we are
15570 		 * done with it, and allow processing of the waitq to resume.
15571 		 */
15572 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15573 		    "sd_return_failed_command_no_restart: "
15574 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15575 		un->un_retry_bp = NULL;
15576 		un->un_retry_statp = NULL;
15577 	}
15578 
15579 	SD_UPDATE_RDWR_STATS(un, bp);
15580 	SD_UPDATE_PARTITION_STATS(un, bp);
15581 
15582 	mutex_exit(SD_MUTEX(un));
15583 
15584 	if (xp->xb_pktp != NULL) {
15585 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15586 		xp->xb_pktp = NULL;
15587 	}
15588 
15589 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15590 
15591 	mutex_enter(SD_MUTEX(un));
15592 
15593 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15594 	    "sd_return_failed_command_no_restart: exit\n");
15595 }
15596 
15597 
15598 /*
15599  *    Function: sd_retry_command
15600  *
15601  * Description: queue up a command for retry, or (optionally) fail it
15602  *		if retry counts are exhausted.
15603  *
15604  *   Arguments: un - Pointer to the sd_lun struct for the target.
15605  *
15606  *		bp - Pointer to the buf for the command to be retried.
15607  *
15608  *		retry_check_flag - Flag to see which (if any) of the retry
15609  *		   counts should be decremented/checked. If the indicated
15610  *		   retry count is exhausted, then the command will not be
15611  *		   retried; it will be failed instead. This should use a
15612  *		   value equal to one of the following:
15613  *
15614  *			SD_RETRIES_NOCHECK
15615  *			SD_RESD_RETRIES_STANDARD
15616  *			SD_RETRIES_VICTIM
15617  *
15618  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15619  *		   if the check should be made to see of FLAG_ISOLATE is set
15620  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15621  *		   not retried, it is simply failed.
15622  *
15623  *		user_funcp - Ptr to function to call before dispatching the
15624  *		   command. May be NULL if no action needs to be performed.
15625  *		   (Primarily intended for printing messages.)
15626  *
15627  *		user_arg - Optional argument to be passed along to
15628  *		   the user_funcp call.
15629  *
15630  *		failure_code - errno return code to set in the bp if the
15631  *		   command is going to be failed.
15632  *
15633  *		retry_delay - Retry delay interval in (clock_t) units. May
15634  *		   be zero which indicates that the retry should be retried
15635  *		   immediately (ie, without an intervening delay).
15636  *
15637  *		statp - Ptr to kstat function to be updated if the command
15638  *		   is queued for a delayed retry. May be NULL if no kstat
15639  *		   update is desired.
15640  *
15641  *     Context: May be called from interrupt context.
15642  */
15643 
15644 static void
15645 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15646     void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int code),
15647     void *user_arg, int failure_code, clock_t retry_delay,
15648     void (*statp)(kstat_io_t *))
15649 {
15650 	struct sd_xbuf	*xp;
15651 	struct scsi_pkt	*pktp;
15652 	struct sd_fm_internal *sfip;
15653 
15654 	ASSERT(un != NULL);
15655 	ASSERT(mutex_owned(SD_MUTEX(un)));
15656 	ASSERT(bp != NULL);
15657 	xp = SD_GET_XBUF(bp);
15658 	ASSERT(xp != NULL);
15659 	pktp = SD_GET_PKTP(bp);
15660 	ASSERT(pktp != NULL);
15661 
15662 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15663 	ASSERT(sfip != NULL);
15664 
15665 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15666 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15667 
15668 	/*
15669 	 * If we are syncing or dumping, fail the command to avoid
15670 	 * recursively calling back into scsi_transport().
15671 	 */
15672 	if (ddi_in_panic()) {
15673 		goto fail_command_no_log;
15674 	}
15675 
15676 	/*
15677 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15678 	 * log an error and fail the command.
15679 	 */
15680 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15681 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15682 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15683 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15684 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15685 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15686 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15687 		goto fail_command;
15688 	}
15689 
15690 	/*
15691 	 * If we are suspended, then put the command onto head of the
15692 	 * wait queue since we don't want to start more commands, and
15693 	 * clear the un_retry_bp. Next time when we are resumed, will
15694 	 * handle the command in the wait queue.
15695 	 */
15696 	switch (un->un_state) {
15697 	case SD_STATE_SUSPENDED:
15698 	case SD_STATE_DUMPING:
15699 		bp->av_forw = un->un_waitq_headp;
15700 		un->un_waitq_headp = bp;
15701 		if (un->un_waitq_tailp == NULL) {
15702 			un->un_waitq_tailp = bp;
15703 		}
15704 		if (bp == un->un_retry_bp) {
15705 			un->un_retry_bp = NULL;
15706 			un->un_retry_statp = NULL;
15707 		}
15708 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15709 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15710 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15711 		return;
15712 	default:
15713 		break;
15714 	}
15715 
15716 	/*
15717 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15718 	 * is set; if it is then we do not want to retry the command.
15719 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15720 	 */
15721 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15722 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15723 			goto fail_command;
15724 		}
15725 	}
15726 
15727 
15728 	/*
15729 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15730 	 * command timeout or a selection timeout has occurred. This means
15731 	 * that we were unable to establish an kind of communication with
15732 	 * the target, and subsequent retries and/or commands are likely
15733 	 * to encounter similar results and take a long time to complete.
15734 	 *
15735 	 * If this is a failfast error condition, we need to update the
15736 	 * failfast state, even if this bp does not have B_FAILFAST set.
15737 	 */
15738 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15739 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15740 			ASSERT(un->un_failfast_bp == NULL);
15741 			/*
15742 			 * If we are already in the active failfast state, and
15743 			 * another failfast error condition has been detected,
15744 			 * then fail this command if it has B_FAILFAST set.
15745 			 * If B_FAILFAST is clear, then maintain the legacy
15746 			 * behavior of retrying heroically, even tho this will
15747 			 * take a lot more time to fail the command.
15748 			 */
15749 			if (bp->b_flags & B_FAILFAST) {
15750 				goto fail_command;
15751 			}
15752 		} else {
15753 			/*
15754 			 * We're not in the active failfast state, but we
15755 			 * have a failfast error condition, so we must begin
15756 			 * transition to the next state. We do this regardless
15757 			 * of whether or not this bp has B_FAILFAST set.
15758 			 */
15759 			if (un->un_failfast_bp == NULL) {
15760 				/*
15761 				 * This is the first bp to meet a failfast
15762 				 * condition so save it on un_failfast_bp &
15763 				 * do normal retry processing. Do not enter
15764 				 * active failfast state yet. This marks
15765 				 * entry into the "failfast pending" state.
15766 				 */
15767 				un->un_failfast_bp = bp;
15768 
15769 			} else if (un->un_failfast_bp == bp) {
15770 				/*
15771 				 * This is the second time *this* bp has
15772 				 * encountered a failfast error condition,
15773 				 * so enter active failfast state & flush
15774 				 * queues as appropriate.
15775 				 */
15776 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15777 				un->un_failfast_bp = NULL;
15778 				sd_failfast_flushq(un);
15779 
15780 				/*
15781 				 * Fail this bp now if B_FAILFAST set;
15782 				 * otherwise continue with retries. (It would
15783 				 * be pretty ironic if this bp succeeded on a
15784 				 * subsequent retry after we just flushed all
15785 				 * the queues).
15786 				 */
15787 				if (bp->b_flags & B_FAILFAST) {
15788 					goto fail_command;
15789 				}
15790 
15791 #if !defined(lint) && !defined(__lint)
15792 			} else {
15793 				/*
15794 				 * If neither of the preceeding conditionals
15795 				 * was true, it means that there is some
15796 				 * *other* bp that has met an inital failfast
15797 				 * condition and is currently either being
15798 				 * retried or is waiting to be retried. In
15799 				 * that case we should perform normal retry
15800 				 * processing on *this* bp, since there is a
15801 				 * chance that the current failfast condition
15802 				 * is transient and recoverable. If that does
15803 				 * not turn out to be the case, then retries
15804 				 * will be cleared when the wait queue is
15805 				 * flushed anyway.
15806 				 */
15807 #endif
15808 			}
15809 		}
15810 	} else {
15811 		/*
15812 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15813 		 * likely were able to at least establish some level of
15814 		 * communication with the target and subsequent commands
15815 		 * and/or retries are likely to get through to the target,
15816 		 * In this case we want to be aggressive about clearing
15817 		 * the failfast state. Note that this does not affect
15818 		 * the "failfast pending" condition.
15819 		 */
15820 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15821 	}
15822 
15823 
15824 	/*
15825 	 * Check the specified retry count to see if we can still do
15826 	 * any retries with this pkt before we should fail it.
15827 	 */
15828 	switch (retry_check_flag & SD_RETRIES_MASK) {
15829 	case SD_RETRIES_VICTIM:
15830 		/*
15831 		 * Check the victim retry count. If exhausted, then fall
15832 		 * thru & check against the standard retry count.
15833 		 */
15834 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15835 			/* Increment count & proceed with the retry */
15836 			xp->xb_victim_retry_count++;
15837 			break;
15838 		}
15839 		/* Victim retries exhausted, fall back to std. retries... */
15840 		/* FALLTHRU */
15841 
15842 	case SD_RETRIES_STANDARD:
15843 		if (xp->xb_retry_count >= un->un_retry_count) {
15844 			/* Retries exhausted, fail the command */
15845 			SD_TRACE(SD_LOG_IO_CORE, un,
15846 			    "sd_retry_command: retries exhausted!\n");
15847 			/*
15848 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15849 			 * commands with nonzero pkt_resid.
15850 			 */
15851 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15852 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15853 			    (pktp->pkt_resid != 0)) {
15854 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15855 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15856 					SD_UPDATE_B_RESID(bp, pktp);
15857 				}
15858 			}
15859 			goto fail_command;
15860 		}
15861 		xp->xb_retry_count++;
15862 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15863 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15864 		break;
15865 
15866 	case SD_RETRIES_UA:
15867 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15868 			/* Retries exhausted, fail the command */
15869 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15870 			    "Unit Attention retries exhausted. "
15871 			    "Check the target.\n");
15872 			goto fail_command;
15873 		}
15874 		xp->xb_ua_retry_count++;
15875 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15876 		    "sd_retry_command: retry count:%d\n",
15877 		    xp->xb_ua_retry_count);
15878 		break;
15879 
15880 	case SD_RETRIES_BUSY:
15881 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15882 			/* Retries exhausted, fail the command */
15883 			SD_TRACE(SD_LOG_IO_CORE, un,
15884 			    "sd_retry_command: retries exhausted!\n");
15885 			goto fail_command;
15886 		}
15887 		xp->xb_retry_count++;
15888 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15889 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15890 		break;
15891 
15892 	case SD_RETRIES_NOCHECK:
15893 	default:
15894 		/* No retry count to check. Just proceed with the retry */
15895 		break;
15896 	}
15897 
15898 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15899 
15900 	/*
15901 	 * If this is a non-USCSI command being retried
15902 	 * during execution last time, we should post an ereport with
15903 	 * driver-assessment of the value "retry".
15904 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15905 	 * hardware errors, we bypass ereport posting.
15906 	 */
15907 	if (failure_code != 0) {
15908 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15909 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15910 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15911 		}
15912 	}
15913 
15914 	/*
15915 	 * If we were given a zero timeout, we must attempt to retry the
15916 	 * command immediately (ie, without a delay).
15917 	 */
15918 	if (retry_delay == 0) {
15919 		/*
15920 		 * Check some limiting conditions to see if we can actually
15921 		 * do the immediate retry.  If we cannot, then we must
15922 		 * fall back to queueing up a delayed retry.
15923 		 */
15924 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15925 			/*
15926 			 * We are at the throttle limit for the target,
15927 			 * fall back to delayed retry.
15928 			 */
15929 			retry_delay = un->un_busy_timeout;
15930 			statp = kstat_waitq_enter;
15931 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15932 			    "sd_retry_command: immed. retry hit "
15933 			    "throttle!\n");
15934 		} else {
15935 			/*
15936 			 * We're clear to proceed with the immediate retry.
15937 			 * First call the user-provided function (if any)
15938 			 */
15939 			if (user_funcp != NULL) {
15940 				(*user_funcp)(un, bp, user_arg,
15941 				    SD_IMMEDIATE_RETRY_ISSUED);
15942 #ifdef __lock_lint
15943 				sd_print_incomplete_msg(un, bp, user_arg,
15944 				    SD_IMMEDIATE_RETRY_ISSUED);
15945 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15946 				    SD_IMMEDIATE_RETRY_ISSUED);
15947 				sd_print_sense_failed_msg(un, bp, user_arg,
15948 				    SD_IMMEDIATE_RETRY_ISSUED);
15949 #endif
15950 			}
15951 
15952 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15953 			    "sd_retry_command: issuing immediate retry\n");
15954 
15955 			/*
15956 			 * Call sd_start_cmds() to transport the command to
15957 			 * the target.
15958 			 */
15959 			sd_start_cmds(un, bp);
15960 
15961 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15962 			    "sd_retry_command exit\n");
15963 			return;
15964 		}
15965 	}
15966 
15967 	/*
15968 	 * Set up to retry the command after a delay.
15969 	 * First call the user-provided function (if any)
15970 	 */
15971 	if (user_funcp != NULL) {
15972 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15973 	}
15974 
15975 	sd_set_retry_bp(un, bp, retry_delay, statp);
15976 
15977 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15978 	return;
15979 
15980 fail_command:
15981 
15982 	if (user_funcp != NULL) {
15983 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15984 	}
15985 
15986 fail_command_no_log:
15987 
15988 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15989 	    "sd_retry_command: returning failed command\n");
15990 
15991 	sd_return_failed_command(un, bp, failure_code);
15992 
15993 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15994 }
15995 
15996 
15997 /*
15998  *    Function: sd_set_retry_bp
15999  *
16000  * Description: Set up the given bp for retry.
16001  *
16002  *   Arguments: un - ptr to associated softstate
16003  *		bp - ptr to buf(9S) for the command
16004  *		retry_delay - time interval before issuing retry (may be 0)
16005  *		statp - optional pointer to kstat function
16006  *
16007  *     Context: May be called under interrupt context
16008  */
16009 
16010 static void
16011 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
16012     void (*statp)(kstat_io_t *))
16013 {
16014 	ASSERT(un != NULL);
16015 	ASSERT(mutex_owned(SD_MUTEX(un)));
16016 	ASSERT(bp != NULL);
16017 
16018 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16019 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16020 
16021 	/*
16022 	 * Indicate that the command is being retried. This will not allow any
16023 	 * other commands on the wait queue to be transported to the target
16024 	 * until this command has been completed (success or failure). The
16025 	 * "retry command" is not transported to the target until the given
16026 	 * time delay expires, unless the user specified a 0 retry_delay.
16027 	 *
16028 	 * Note: the timeout(9F) callback routine is what actually calls
16029 	 * sd_start_cmds() to transport the command, with the exception of a
16030 	 * zero retry_delay. The only current implementor of a zero retry delay
16031 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16032 	 */
16033 	if (un->un_retry_bp == NULL) {
16034 		ASSERT(un->un_retry_statp == NULL);
16035 		un->un_retry_bp = bp;
16036 
16037 		/*
16038 		 * If the user has not specified a delay the command should
16039 		 * be queued and no timeout should be scheduled.
16040 		 */
16041 		if (retry_delay == 0) {
16042 			/*
16043 			 * Save the kstat pointer that will be used in the
16044 			 * call to SD_UPDATE_KSTATS() below, so that
16045 			 * sd_start_cmds() can correctly decrement the waitq
16046 			 * count when it is time to transport this command.
16047 			 */
16048 			un->un_retry_statp = statp;
16049 			goto done;
16050 		}
16051 	}
16052 
16053 	if (un->un_retry_bp == bp) {
16054 		/*
16055 		 * Save the kstat pointer that will be used in the call to
16056 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16057 		 * correctly decrement the waitq count when it is time to
16058 		 * transport this command.
16059 		 */
16060 		un->un_retry_statp = statp;
16061 
16062 		/*
16063 		 * Schedule a timeout if:
16064 		 *   1) The user has specified a delay.
16065 		 *   2) There is not a START_STOP_UNIT callback pending.
16066 		 *
16067 		 * If no delay has been specified, then it is up to the caller
16068 		 * to ensure that IO processing continues without stalling.
16069 		 * Effectively, this means that the caller will issue the
16070 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16071 		 * callback does this after the START STOP UNIT command has
16072 		 * completed. In either of these cases we should not schedule
16073 		 * a timeout callback here.  Also don't schedule the timeout if
16074 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16075 		 */
16076 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16077 		    (un->un_direct_priority_timeid == NULL)) {
16078 			un->un_retry_timeid =
16079 			    timeout(sd_start_retry_command, un, retry_delay);
16080 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16081 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16082 			    " bp:0x%p un_retry_timeid:0x%p\n",
16083 			    un, bp, un->un_retry_timeid);
16084 		}
16085 	} else {
16086 		/*
16087 		 * We only get in here if there is already another command
16088 		 * waiting to be retried.  In this case, we just put the
16089 		 * given command onto the wait queue, so it can be transported
16090 		 * after the current retry command has completed.
16091 		 *
16092 		 * Also we have to make sure that if the command at the head
16093 		 * of the wait queue is the un_failfast_bp, that we do not
16094 		 * put ahead of it any other commands that are to be retried.
16095 		 */
16096 		if ((un->un_failfast_bp != NULL) &&
16097 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16098 			/*
16099 			 * Enqueue this command AFTER the first command on
16100 			 * the wait queue (which is also un_failfast_bp).
16101 			 */
16102 			bp->av_forw = un->un_waitq_headp->av_forw;
16103 			un->un_waitq_headp->av_forw = bp;
16104 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16105 				un->un_waitq_tailp = bp;
16106 			}
16107 		} else {
16108 			/* Enqueue this command at the head of the waitq. */
16109 			bp->av_forw = un->un_waitq_headp;
16110 			un->un_waitq_headp = bp;
16111 			if (un->un_waitq_tailp == NULL) {
16112 				un->un_waitq_tailp = bp;
16113 			}
16114 		}
16115 
16116 		if (statp == NULL) {
16117 			statp = kstat_waitq_enter;
16118 		}
16119 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16120 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16121 	}
16122 
16123 done:
16124 	if (statp != NULL) {
16125 		SD_UPDATE_KSTATS(un, statp, bp);
16126 	}
16127 
16128 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16129 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16130 }
16131 
16132 
16133 /*
16134  *    Function: sd_start_retry_command
16135  *
16136  * Description: Start the command that has been waiting on the target's
16137  *		retry queue.  Called from timeout(9F) context after the
16138  *		retry delay interval has expired.
16139  *
16140  *   Arguments: arg - pointer to associated softstate for the device.
16141  *
16142  *     Context: timeout(9F) thread context.  May not sleep.
16143  */
16144 
16145 static void
16146 sd_start_retry_command(void *arg)
16147 {
16148 	struct sd_lun *un = arg;
16149 
16150 	ASSERT(un != NULL);
16151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16152 
16153 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16154 	    "sd_start_retry_command: entry\n");
16155 
16156 	mutex_enter(SD_MUTEX(un));
16157 
16158 	un->un_retry_timeid = NULL;
16159 
16160 	if (un->un_retry_bp != NULL) {
16161 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16162 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16163 		    un, un->un_retry_bp);
16164 		sd_start_cmds(un, un->un_retry_bp);
16165 	}
16166 
16167 	mutex_exit(SD_MUTEX(un));
16168 
16169 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16170 	    "sd_start_retry_command: exit\n");
16171 }
16172 
16173 /*
16174  *    Function: sd_rmw_msg_print_handler
16175  *
16176  * Description: If RMW mode is enabled and warning message is triggered
16177  *              print I/O count during a fixed interval.
16178  *
16179  *   Arguments: arg - pointer to associated softstate for the device.
16180  *
16181  *     Context: timeout(9F) thread context. May not sleep.
16182  */
16183 static void
16184 sd_rmw_msg_print_handler(void *arg)
16185 {
16186 	struct sd_lun *un = arg;
16187 
16188 	ASSERT(un != NULL);
16189 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16190 
16191 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16192 	    "sd_rmw_msg_print_handler: entry\n");
16193 
16194 	mutex_enter(SD_MUTEX(un));
16195 
16196 	if (un->un_rmw_incre_count > 0) {
16197 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16198 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16199 		    "sector size in %ld seconds. They are handled through "
16200 		    "Read Modify Write but the performance is very low!\n",
16201 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16202 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16203 		un->un_rmw_incre_count = 0;
16204 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16205 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16206 	} else {
16207 		un->un_rmw_msg_timeid = NULL;
16208 	}
16209 
16210 	mutex_exit(SD_MUTEX(un));
16211 
16212 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16213 	    "sd_rmw_msg_print_handler: exit\n");
16214 }
16215 
16216 /*
16217  *    Function: sd_start_direct_priority_command
16218  *
16219  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16220  *		received TRAN_BUSY when we called scsi_transport() to send it
16221  *		to the underlying HBA. This function is called from timeout(9F)
16222  *		context after the delay interval has expired.
16223  *
16224  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16225  *
16226  *     Context: timeout(9F) thread context.  May not sleep.
16227  */
16228 
16229 static void
16230 sd_start_direct_priority_command(void *arg)
16231 {
16232 	struct buf	*priority_bp = arg;
16233 	struct sd_lun	*un;
16234 
16235 	ASSERT(priority_bp != NULL);
16236 	un = SD_GET_UN(priority_bp);
16237 	ASSERT(un != NULL);
16238 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16239 
16240 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16241 	    "sd_start_direct_priority_command: entry\n");
16242 
16243 	mutex_enter(SD_MUTEX(un));
16244 	un->un_direct_priority_timeid = NULL;
16245 	sd_start_cmds(un, priority_bp);
16246 	mutex_exit(SD_MUTEX(un));
16247 
16248 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16249 	    "sd_start_direct_priority_command: exit\n");
16250 }
16251 
16252 
16253 /*
16254  *    Function: sd_send_request_sense_command
16255  *
16256  * Description: Sends a REQUEST SENSE command to the target
16257  *
16258  *     Context: May be called from interrupt context.
16259  */
16260 
16261 static void
16262 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16263     struct scsi_pkt *pktp)
16264 {
16265 	ASSERT(bp != NULL);
16266 	ASSERT(un != NULL);
16267 	ASSERT(mutex_owned(SD_MUTEX(un)));
16268 
16269 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16270 	    "entry: buf:0x%p\n", bp);
16271 
16272 	/*
16273 	 * If we are syncing or dumping, then fail the command to avoid a
16274 	 * recursive callback into scsi_transport(). Also fail the command
16275 	 * if we are suspended (legacy behavior).
16276 	 */
16277 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16278 	    (un->un_state == SD_STATE_DUMPING)) {
16279 		sd_return_failed_command(un, bp, EIO);
16280 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16281 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16282 		return;
16283 	}
16284 
16285 	/*
16286 	 * Retry the failed command and don't issue the request sense if:
16287 	 *    1) the sense buf is busy
16288 	 *    2) we have 1 or more outstanding commands on the target
16289 	 *    (the sense data will be cleared or invalidated any way)
16290 	 *
16291 	 * Note: There could be an issue with not checking a retry limit here,
16292 	 * the problem is determining which retry limit to check.
16293 	 */
16294 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16295 		/* Don't retry if the command is flagged as non-retryable */
16296 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16297 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16298 			    NULL, NULL, 0, un->un_busy_timeout,
16299 			    kstat_waitq_enter);
16300 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16301 			    "sd_send_request_sense_command: "
16302 			    "at full throttle, retrying exit\n");
16303 		} else {
16304 			sd_return_failed_command(un, bp, EIO);
16305 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16306 			    "sd_send_request_sense_command: "
16307 			    "at full throttle, non-retryable exit\n");
16308 		}
16309 		return;
16310 	}
16311 
16312 	sd_mark_rqs_busy(un, bp);
16313 	sd_start_cmds(un, un->un_rqs_bp);
16314 
16315 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16316 	    "sd_send_request_sense_command: exit\n");
16317 }
16318 
16319 
16320 /*
16321  *    Function: sd_mark_rqs_busy
16322  *
16323  * Description: Indicate that the request sense bp for this instance is
16324  *		in use.
16325  *
16326  *     Context: May be called under interrupt context
16327  */
16328 
16329 static void
16330 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16331 {
16332 	struct sd_xbuf	*sense_xp;
16333 
16334 	ASSERT(un != NULL);
16335 	ASSERT(bp != NULL);
16336 	ASSERT(mutex_owned(SD_MUTEX(un)));
16337 	ASSERT(un->un_sense_isbusy == 0);
16338 
16339 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16340 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16341 
16342 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16343 	ASSERT(sense_xp != NULL);
16344 
16345 	SD_INFO(SD_LOG_IO, un,
16346 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16347 
16348 	ASSERT(sense_xp->xb_pktp != NULL);
16349 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16350 	    == (FLAG_SENSING | FLAG_HEAD));
16351 
16352 	un->un_sense_isbusy = 1;
16353 	un->un_rqs_bp->b_resid = 0;
16354 	sense_xp->xb_pktp->pkt_resid  = 0;
16355 	sense_xp->xb_pktp->pkt_reason = 0;
16356 
16357 	/* So we can get back the bp at interrupt time! */
16358 	sense_xp->xb_sense_bp = bp;
16359 
16360 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16361 
16362 	/*
16363 	 * Mark this buf as awaiting sense data. (This is already set in
16364 	 * the pkt_flags for the RQS packet.)
16365 	 */
16366 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16367 
16368 	/* Request sense down same path */
16369 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16370 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16371 		sense_xp->xb_pktp->pkt_path_instance =
16372 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16373 
16374 	sense_xp->xb_retry_count	= 0;
16375 	sense_xp->xb_victim_retry_count = 0;
16376 	sense_xp->xb_ua_retry_count	= 0;
16377 	sense_xp->xb_nr_retry_count 	= 0;
16378 	sense_xp->xb_dma_resid  = 0;
16379 
16380 	/* Clean up the fields for auto-request sense */
16381 	sense_xp->xb_sense_status = 0;
16382 	sense_xp->xb_sense_state  = 0;
16383 	sense_xp->xb_sense_resid  = 0;
16384 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16385 
16386 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16387 }
16388 
16389 
16390 /*
16391  *    Function: sd_mark_rqs_idle
16392  *
16393  * Description: SD_MUTEX must be held continuously through this routine
16394  *		to prevent reuse of the rqs struct before the caller can
16395  *		complete it's processing.
16396  *
16397  * Return Code: Pointer to the RQS buf
16398  *
16399  *     Context: May be called under interrupt context
16400  */
16401 
16402 static struct buf *
16403 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16404 {
16405 	struct buf *bp;
16406 	ASSERT(un != NULL);
16407 	ASSERT(sense_xp != NULL);
16408 	ASSERT(mutex_owned(SD_MUTEX(un)));
16409 	ASSERT(un->un_sense_isbusy != 0);
16410 
16411 	un->un_sense_isbusy = 0;
16412 	bp = sense_xp->xb_sense_bp;
16413 	sense_xp->xb_sense_bp = NULL;
16414 
16415 	/* This pkt is no longer interested in getting sense data */
16416 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16417 
16418 	return (bp);
16419 }
16420 
16421 
16422 
16423 /*
16424  *    Function: sd_alloc_rqs
16425  *
16426  * Description: Set up the unit to receive auto request sense data
16427  *
16428  * Return Code: DDI_SUCCESS or DDI_FAILURE
16429  *
16430  *     Context: Called under attach(9E) context
16431  */
16432 
16433 static int
16434 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16435 {
16436 	struct sd_xbuf *xp;
16437 
16438 	ASSERT(un != NULL);
16439 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16440 	ASSERT(un->un_rqs_bp == NULL);
16441 	ASSERT(un->un_rqs_pktp == NULL);
16442 
16443 	/*
16444 	 * First allocate the required buf and scsi_pkt structs, then set up
16445 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16446 	 */
16447 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16448 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16449 	if (un->un_rqs_bp == NULL) {
16450 		return (DDI_FAILURE);
16451 	}
16452 
16453 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16454 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16455 
16456 	if (un->un_rqs_pktp == NULL) {
16457 		sd_free_rqs(un);
16458 		return (DDI_FAILURE);
16459 	}
16460 
16461 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16462 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16463 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16464 
16465 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16466 
16467 	/* Set up the other needed members in the ARQ scsi_pkt. */
16468 	un->un_rqs_pktp->pkt_comp   = sdintr;
16469 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16470 	un->un_rqs_pktp->pkt_flags |=
16471 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16472 
16473 	/*
16474 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16475 	 * provide any intpkt, destroypkt routines as we take care of
16476 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16477 	 */
16478 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16479 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16480 	xp->xb_pktp = un->un_rqs_pktp;
16481 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16482 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16483 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16484 
16485 	/*
16486 	 * Save the pointer to the request sense private bp so it can
16487 	 * be retrieved in sdintr.
16488 	 */
16489 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16490 	ASSERT(un->un_rqs_bp->b_private == xp);
16491 
16492 	/*
16493 	 * See if the HBA supports auto-request sense for the specified
16494 	 * target/lun. If it does, then try to enable it (if not already
16495 	 * enabled).
16496 	 *
16497 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16498 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16499 	 * return success.  However, in both of these cases ARQ is always
16500 	 * enabled and scsi_ifgetcap will always return true. The best approach
16501 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16502 	 *
16503 	 * The 3rd case is the HBA (adp) always return enabled on
16504 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16505 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16506 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16507 	 */
16508 
16509 	if (un->un_f_is_fibre == TRUE) {
16510 		un->un_f_arq_enabled = TRUE;
16511 	} else {
16512 #if defined(__i386) || defined(__amd64)
16513 		/*
16514 		 * Circumvent the Adaptec bug, remove this code when
16515 		 * the bug is fixed
16516 		 */
16517 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16518 #endif
16519 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16520 		case 0:
16521 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16522 			    "sd_alloc_rqs: HBA supports ARQ\n");
16523 			/*
16524 			 * ARQ is supported by this HBA but currently is not
16525 			 * enabled. Attempt to enable it and if successful then
16526 			 * mark this instance as ARQ enabled.
16527 			 */
16528 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16529 			    == 1) {
16530 				/* Successfully enabled ARQ in the HBA */
16531 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16532 				    "sd_alloc_rqs: ARQ enabled\n");
16533 				un->un_f_arq_enabled = TRUE;
16534 			} else {
16535 				/* Could not enable ARQ in the HBA */
16536 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16537 				    "sd_alloc_rqs: failed ARQ enable\n");
16538 				un->un_f_arq_enabled = FALSE;
16539 			}
16540 			break;
16541 		case 1:
16542 			/*
16543 			 * ARQ is supported by this HBA and is already enabled.
16544 			 * Just mark ARQ as enabled for this instance.
16545 			 */
16546 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16547 			    "sd_alloc_rqs: ARQ already enabled\n");
16548 			un->un_f_arq_enabled = TRUE;
16549 			break;
16550 		default:
16551 			/*
16552 			 * ARQ is not supported by this HBA; disable it for this
16553 			 * instance.
16554 			 */
16555 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16556 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16557 			un->un_f_arq_enabled = FALSE;
16558 			break;
16559 		}
16560 	}
16561 
16562 	return (DDI_SUCCESS);
16563 }
16564 
16565 
16566 /*
16567  *    Function: sd_free_rqs
16568  *
16569  * Description: Cleanup for the pre-instance RQS command.
16570  *
16571  *     Context: Kernel thread context
16572  */
16573 
16574 static void
16575 sd_free_rqs(struct sd_lun *un)
16576 {
16577 	ASSERT(un != NULL);
16578 
16579 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16580 
16581 	/*
16582 	 * If consistent memory is bound to a scsi_pkt, the pkt
16583 	 * has to be destroyed *before* freeing the consistent memory.
16584 	 * Don't change the sequence of this operations.
16585 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16586 	 * after it was freed in scsi_free_consistent_buf().
16587 	 */
16588 	if (un->un_rqs_pktp != NULL) {
16589 		scsi_destroy_pkt(un->un_rqs_pktp);
16590 		un->un_rqs_pktp = NULL;
16591 	}
16592 
16593 	if (un->un_rqs_bp != NULL) {
16594 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16595 		if (xp != NULL) {
16596 			kmem_free(xp, sizeof (struct sd_xbuf));
16597 		}
16598 		scsi_free_consistent_buf(un->un_rqs_bp);
16599 		un->un_rqs_bp = NULL;
16600 	}
16601 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16602 }
16603 
16604 
16605 
16606 /*
16607  *    Function: sd_reduce_throttle
16608  *
16609  * Description: Reduces the maximum # of outstanding commands on a
16610  *		target to the current number of outstanding commands.
16611  *		Queues a tiemout(9F) callback to restore the limit
16612  *		after a specified interval has elapsed.
16613  *		Typically used when we get a TRAN_BUSY return code
16614  *		back from scsi_transport().
16615  *
16616  *   Arguments: un - ptr to the sd_lun softstate struct
16617  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16618  *
16619  *     Context: May be called from interrupt context
16620  */
16621 
16622 static void
16623 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16624 {
16625 	ASSERT(un != NULL);
16626 	ASSERT(mutex_owned(SD_MUTEX(un)));
16627 	ASSERT(un->un_ncmds_in_transport >= 0);
16628 
16629 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16630 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16631 	    un, un->un_throttle, un->un_ncmds_in_transport);
16632 
16633 	if (un->un_throttle > 1) {
16634 		if (un->un_f_use_adaptive_throttle == TRUE) {
16635 			switch (throttle_type) {
16636 			case SD_THROTTLE_TRAN_BUSY:
16637 				if (un->un_busy_throttle == 0) {
16638 					un->un_busy_throttle = un->un_throttle;
16639 				}
16640 				break;
16641 			case SD_THROTTLE_QFULL:
16642 				un->un_busy_throttle = 0;
16643 				break;
16644 			default:
16645 				ASSERT(FALSE);
16646 			}
16647 
16648 			if (un->un_ncmds_in_transport > 0) {
16649 				un->un_throttle = un->un_ncmds_in_transport;
16650 			}
16651 
16652 		} else {
16653 			if (un->un_ncmds_in_transport == 0) {
16654 				un->un_throttle = 1;
16655 			} else {
16656 				un->un_throttle = un->un_ncmds_in_transport;
16657 			}
16658 		}
16659 	}
16660 
16661 	/* Reschedule the timeout if none is currently active */
16662 	if (un->un_reset_throttle_timeid == NULL) {
16663 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16664 		    un, SD_THROTTLE_RESET_INTERVAL);
16665 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16666 		    "sd_reduce_throttle: timeout scheduled!\n");
16667 	}
16668 
16669 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16670 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16671 }
16672 
16673 
16674 
16675 /*
16676  *    Function: sd_restore_throttle
16677  *
16678  * Description: Callback function for timeout(9F).  Resets the current
16679  *		value of un->un_throttle to its default.
16680  *
16681  *   Arguments: arg - pointer to associated softstate for the device.
16682  *
16683  *     Context: May be called from interrupt context
16684  */
16685 
16686 static void
16687 sd_restore_throttle(void *arg)
16688 {
16689 	struct sd_lun	*un = arg;
16690 
16691 	ASSERT(un != NULL);
16692 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16693 
16694 	mutex_enter(SD_MUTEX(un));
16695 
16696 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16697 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16698 
16699 	un->un_reset_throttle_timeid = NULL;
16700 
16701 	if (un->un_f_use_adaptive_throttle == TRUE) {
16702 		/*
16703 		 * If un_busy_throttle is nonzero, then it contains the
16704 		 * value that un_throttle was when we got a TRAN_BUSY back
16705 		 * from scsi_transport(). We want to revert back to this
16706 		 * value.
16707 		 *
16708 		 * In the QFULL case, the throttle limit will incrementally
16709 		 * increase until it reaches max throttle.
16710 		 */
16711 		if (un->un_busy_throttle > 0) {
16712 			un->un_throttle = un->un_busy_throttle;
16713 			un->un_busy_throttle = 0;
16714 		} else {
16715 			/*
16716 			 * increase throttle by 10% open gate slowly, schedule
16717 			 * another restore if saved throttle has not been
16718 			 * reached
16719 			 */
16720 			short throttle;
16721 			if (sd_qfull_throttle_enable) {
16722 				throttle = un->un_throttle +
16723 				    max((un->un_throttle / 10), 1);
16724 				un->un_throttle =
16725 				    (throttle < un->un_saved_throttle) ?
16726 				    throttle : un->un_saved_throttle;
16727 				if (un->un_throttle < un->un_saved_throttle) {
16728 					un->un_reset_throttle_timeid =
16729 					    timeout(sd_restore_throttle,
16730 					    un,
16731 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16732 				}
16733 			}
16734 		}
16735 
16736 		/*
16737 		 * If un_throttle has fallen below the low-water mark, we
16738 		 * restore the maximum value here (and allow it to ratchet
16739 		 * down again if necessary).
16740 		 */
16741 		if (un->un_throttle < un->un_min_throttle) {
16742 			un->un_throttle = un->un_saved_throttle;
16743 		}
16744 	} else {
16745 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16746 		    "restoring limit from 0x%x to 0x%x\n",
16747 		    un->un_throttle, un->un_saved_throttle);
16748 		un->un_throttle = un->un_saved_throttle;
16749 	}
16750 
16751 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16752 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16753 
16754 	sd_start_cmds(un, NULL);
16755 
16756 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16757 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16758 	    un, un->un_throttle);
16759 
16760 	mutex_exit(SD_MUTEX(un));
16761 
16762 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16763 }
16764 
16765 /*
16766  *    Function: sdrunout
16767  *
16768  * Description: Callback routine for scsi_init_pkt when a resource allocation
16769  *		fails.
16770  *
16771  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16772  *		soft state instance.
16773  *
16774  * Return Code: The scsi_init_pkt routine allows for the callback function to
16775  *		return a 0 indicating the callback should be rescheduled or a 1
16776  *		indicating not to reschedule. This routine always returns 1
16777  *		because the driver always provides a callback function to
16778  *		scsi_init_pkt. This results in a callback always being scheduled
16779  *		(via the scsi_init_pkt callback implementation) if a resource
16780  *		failure occurs.
16781  *
16782  *     Context: This callback function may not block or call routines that block
16783  *
16784  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16785  *		request persisting at the head of the list which cannot be
16786  *		satisfied even after multiple retries. In the future the driver
16787  *		may implement some time of maximum runout count before failing
16788  *		an I/O.
16789  */
16790 
16791 static int
16792 sdrunout(caddr_t arg)
16793 {
16794 	struct sd_lun	*un = (struct sd_lun *)arg;
16795 
16796 	ASSERT(un != NULL);
16797 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16798 
16799 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16800 
16801 	mutex_enter(SD_MUTEX(un));
16802 	sd_start_cmds(un, NULL);
16803 	mutex_exit(SD_MUTEX(un));
16804 	/*
16805 	 * This callback routine always returns 1 (i.e. do not reschedule)
16806 	 * because we always specify sdrunout as the callback handler for
16807 	 * scsi_init_pkt inside the call to sd_start_cmds.
16808 	 */
16809 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16810 	return (1);
16811 }
16812 
16813 
16814 /*
16815  *    Function: sdintr
16816  *
16817  * Description: Completion callback routine for scsi_pkt(9S) structs
16818  *		sent to the HBA driver via scsi_transport(9F).
16819  *
16820  *     Context: Interrupt context
16821  */
16822 
16823 static void
16824 sdintr(struct scsi_pkt *pktp)
16825 {
16826 	struct buf	*bp;
16827 	struct sd_xbuf	*xp;
16828 	struct sd_lun	*un;
16829 	size_t		actual_len;
16830 	sd_ssc_t	*sscp;
16831 
16832 	ASSERT(pktp != NULL);
16833 	bp = (struct buf *)pktp->pkt_private;
16834 	ASSERT(bp != NULL);
16835 	xp = SD_GET_XBUF(bp);
16836 	ASSERT(xp != NULL);
16837 	ASSERT(xp->xb_pktp != NULL);
16838 	un = SD_GET_UN(bp);
16839 	ASSERT(un != NULL);
16840 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16841 
16842 #ifdef SD_FAULT_INJECTION
16843 
16844 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16845 	/* SD FaultInjection */
16846 	sd_faultinjection(pktp);
16847 
16848 #endif /* SD_FAULT_INJECTION */
16849 
16850 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16851 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16852 
16853 	mutex_enter(SD_MUTEX(un));
16854 
16855 	ASSERT(un->un_fm_private != NULL);
16856 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16857 	ASSERT(sscp != NULL);
16858 
16859 	/* Reduce the count of the #commands currently in transport */
16860 	un->un_ncmds_in_transport--;
16861 	ASSERT(un->un_ncmds_in_transport >= 0);
16862 
16863 	/* Increment counter to indicate that the callback routine is active */
16864 	un->un_in_callback++;
16865 
16866 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16867 
16868 #ifdef	SDDEBUG
16869 	if (bp == un->un_retry_bp) {
16870 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16871 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16872 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16873 	}
16874 #endif
16875 
16876 	/*
16877 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16878 	 * state if needed.
16879 	 */
16880 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16881 		/* Prevent multiple console messages for the same failure. */
16882 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16883 			un->un_last_pkt_reason = CMD_DEV_GONE;
16884 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16885 			    "Command failed to complete...Device is gone\n");
16886 		}
16887 		if (un->un_mediastate != DKIO_DEV_GONE) {
16888 			un->un_mediastate = DKIO_DEV_GONE;
16889 			cv_broadcast(&un->un_state_cv);
16890 		}
16891 		/*
16892 		 * If the command happens to be the REQUEST SENSE command,
16893 		 * free up the rqs buf and fail the original command.
16894 		 */
16895 		if (bp == un->un_rqs_bp) {
16896 			bp = sd_mark_rqs_idle(un, xp);
16897 		}
16898 		sd_return_failed_command(un, bp, EIO);
16899 		goto exit;
16900 	}
16901 
16902 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16903 		SD_TRACE(SD_LOG_COMMON, un,
16904 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16905 	}
16906 
16907 	/*
16908 	 * First see if the pkt has auto-request sense data with it....
16909 	 * Look at the packet state first so we don't take a performance
16910 	 * hit looking at the arq enabled flag unless absolutely necessary.
16911 	 */
16912 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16913 	    (un->un_f_arq_enabled == TRUE)) {
16914 		/*
16915 		 * The HBA did an auto request sense for this command so check
16916 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16917 		 * driver command that should not be retried.
16918 		 */
16919 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16920 			/*
16921 			 * Save the relevant sense info into the xp for the
16922 			 * original cmd.
16923 			 */
16924 			struct scsi_arq_status *asp;
16925 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16926 			xp->xb_sense_status =
16927 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16928 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16929 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16930 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16931 				actual_len = MAX_SENSE_LENGTH -
16932 				    xp->xb_sense_resid;
16933 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16934 				    MAX_SENSE_LENGTH);
16935 			} else {
16936 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16937 					actual_len = MAX_SENSE_LENGTH -
16938 					    xp->xb_sense_resid;
16939 				} else {
16940 					actual_len = SENSE_LENGTH -
16941 					    xp->xb_sense_resid;
16942 				}
16943 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16944 					if ((((struct uscsi_cmd *)
16945 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16946 					    actual_len) {
16947 						xp->xb_sense_resid =
16948 						    (((struct uscsi_cmd *)
16949 						    (xp->xb_pktinfo))->
16950 						    uscsi_rqlen) - actual_len;
16951 					} else {
16952 						xp->xb_sense_resid = 0;
16953 					}
16954 				}
16955 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16956 				    SENSE_LENGTH);
16957 			}
16958 
16959 			/* fail the command */
16960 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16961 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16962 			sd_return_failed_command(un, bp, EIO);
16963 			goto exit;
16964 		}
16965 
16966 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16967 		/*
16968 		 * We want to either retry or fail this command, so free
16969 		 * the DMA resources here.  If we retry the command then
16970 		 * the DMA resources will be reallocated in sd_start_cmds().
16971 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16972 		 * causes the *entire* transfer to start over again from the
16973 		 * beginning of the request, even for PARTIAL chunks that
16974 		 * have already transferred successfully.
16975 		 */
16976 		if ((un->un_f_is_fibre == TRUE) &&
16977 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16978 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16979 			scsi_dmafree(pktp);
16980 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16981 		}
16982 #endif
16983 
16984 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16985 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16986 
16987 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16988 		goto exit;
16989 	}
16990 
16991 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16992 	if (pktp->pkt_flags & FLAG_SENSING)  {
16993 		/* This pktp is from the unit's REQUEST_SENSE command */
16994 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16995 		    "sdintr: sd_handle_request_sense\n");
16996 		sd_handle_request_sense(un, bp, xp, pktp);
16997 		goto exit;
16998 	}
16999 
17000 	/*
17001 	 * Check to see if the command successfully completed as requested;
17002 	 * this is the most common case (and also the hot performance path).
17003 	 *
17004 	 * Requirements for successful completion are:
17005 	 * pkt_reason is CMD_CMPLT and packet status is status good.
17006 	 * In addition:
17007 	 * - A residual of zero indicates successful completion no matter what
17008 	 *   the command is.
17009 	 * - If the residual is not zero and the command is not a read or
17010 	 *   write, then it's still defined as successful completion. In other
17011 	 *   words, if the command is a read or write the residual must be
17012 	 *   zero for successful completion.
17013 	 * - If the residual is not zero and the command is a read or
17014 	 *   write, and it's a USCSICMD, then it's still defined as
17015 	 *   successful completion.
17016 	 */
17017 	if ((pktp->pkt_reason == CMD_CMPLT) &&
17018 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17019 
17020 		/*
17021 		 * Since this command is returned with a good status, we
17022 		 * can reset the count for Sonoma failover.
17023 		 */
17024 		un->un_sonoma_failure_count = 0;
17025 
17026 		/*
17027 		 * Return all USCSI commands on good status
17028 		 */
17029 		if (pktp->pkt_resid == 0) {
17030 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17031 			    "sdintr: returning command for resid == 0\n");
17032 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17033 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17034 			SD_UPDATE_B_RESID(bp, pktp);
17035 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17036 			    "sdintr: returning command for resid != 0\n");
17037 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17038 			SD_UPDATE_B_RESID(bp, pktp);
17039 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17040 			    "sdintr: returning uscsi command\n");
17041 		} else {
17042 			goto not_successful;
17043 		}
17044 		sd_return_command(un, bp);
17045 
17046 		/*
17047 		 * Decrement counter to indicate that the callback routine
17048 		 * is done.
17049 		 */
17050 		un->un_in_callback--;
17051 		ASSERT(un->un_in_callback >= 0);
17052 		mutex_exit(SD_MUTEX(un));
17053 
17054 		return;
17055 	}
17056 
17057 not_successful:
17058 
17059 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17060 	/*
17061 	 * The following is based upon knowledge of the underlying transport
17062 	 * and its use of DMA resources.  This code should be removed when
17063 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17064 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17065 	 * and sd_start_cmds().
17066 	 *
17067 	 * Free any DMA resources associated with this command if there
17068 	 * is a chance it could be retried or enqueued for later retry.
17069 	 * If we keep the DMA binding then mpxio cannot reissue the
17070 	 * command on another path whenever a path failure occurs.
17071 	 *
17072 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17073 	 * causes the *entire* transfer to start over again from the
17074 	 * beginning of the request, even for PARTIAL chunks that
17075 	 * have already transferred successfully.
17076 	 *
17077 	 * This is only done for non-uscsi commands (and also skipped for the
17078 	 * driver's internal RQS command). Also just do this for Fibre Channel
17079 	 * devices as these are the only ones that support mpxio.
17080 	 */
17081 	if ((un->un_f_is_fibre == TRUE) &&
17082 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17083 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17084 		scsi_dmafree(pktp);
17085 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17086 	}
17087 #endif
17088 
17089 	/*
17090 	 * The command did not successfully complete as requested so check
17091 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17092 	 * driver command that should not be retried so just return. If
17093 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17094 	 */
17095 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17096 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17097 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17098 		/*
17099 		 * Issue a request sense if a check condition caused the error
17100 		 * (we handle the auto request sense case above), otherwise
17101 		 * just fail the command.
17102 		 */
17103 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17104 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17105 			sd_send_request_sense_command(un, bp, pktp);
17106 		} else {
17107 			sd_return_failed_command(un, bp, EIO);
17108 		}
17109 		goto exit;
17110 	}
17111 
17112 	/*
17113 	 * The command did not successfully complete as requested so process
17114 	 * the error, retry, and/or attempt recovery.
17115 	 */
17116 	switch (pktp->pkt_reason) {
17117 	case CMD_CMPLT:
17118 		switch (SD_GET_PKT_STATUS(pktp)) {
17119 		case STATUS_GOOD:
17120 			/*
17121 			 * The command completed successfully with a non-zero
17122 			 * residual
17123 			 */
17124 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17125 			    "sdintr: STATUS_GOOD \n");
17126 			sd_pkt_status_good(un, bp, xp, pktp);
17127 			break;
17128 
17129 		case STATUS_CHECK:
17130 		case STATUS_TERMINATED:
17131 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17132 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17133 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17134 			break;
17135 
17136 		case STATUS_BUSY:
17137 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17138 			    "sdintr: STATUS_BUSY\n");
17139 			sd_pkt_status_busy(un, bp, xp, pktp);
17140 			break;
17141 
17142 		case STATUS_RESERVATION_CONFLICT:
17143 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17144 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17145 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17146 			break;
17147 
17148 		case STATUS_QFULL:
17149 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17150 			    "sdintr: STATUS_QFULL\n");
17151 			sd_pkt_status_qfull(un, bp, xp, pktp);
17152 			break;
17153 
17154 		case STATUS_MET:
17155 		case STATUS_INTERMEDIATE:
17156 		case STATUS_SCSI2:
17157 		case STATUS_INTERMEDIATE_MET:
17158 		case STATUS_ACA_ACTIVE:
17159 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17160 			    "Unexpected SCSI status received: 0x%x\n",
17161 			    SD_GET_PKT_STATUS(pktp));
17162 			/*
17163 			 * Mark the ssc_flags when detected invalid status
17164 			 * code for non-USCSI command.
17165 			 */
17166 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17167 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17168 				    0, "stat-code");
17169 			}
17170 			sd_return_failed_command(un, bp, EIO);
17171 			break;
17172 
17173 		default:
17174 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17175 			    "Invalid SCSI status received: 0x%x\n",
17176 			    SD_GET_PKT_STATUS(pktp));
17177 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17178 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17179 				    0, "stat-code");
17180 			}
17181 			sd_return_failed_command(un, bp, EIO);
17182 			break;
17183 
17184 		}
17185 		break;
17186 
17187 	case CMD_INCOMPLETE:
17188 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17189 		    "sdintr:  CMD_INCOMPLETE\n");
17190 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17191 		break;
17192 	case CMD_TRAN_ERR:
17193 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17194 		    "sdintr: CMD_TRAN_ERR\n");
17195 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17196 		break;
17197 	case CMD_RESET:
17198 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17199 		    "sdintr: CMD_RESET \n");
17200 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17201 		break;
17202 	case CMD_ABORTED:
17203 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17204 		    "sdintr: CMD_ABORTED \n");
17205 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17206 		break;
17207 	case CMD_TIMEOUT:
17208 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17209 		    "sdintr: CMD_TIMEOUT\n");
17210 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17211 		break;
17212 	case CMD_UNX_BUS_FREE:
17213 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17214 		    "sdintr: CMD_UNX_BUS_FREE \n");
17215 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17216 		break;
17217 	case CMD_TAG_REJECT:
17218 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17219 		    "sdintr: CMD_TAG_REJECT\n");
17220 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17221 		break;
17222 	default:
17223 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17224 		    "sdintr: default\n");
17225 		/*
17226 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17227 		 */
17228 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17229 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17230 			    0, "pkt-reason");
17231 		}
17232 		sd_pkt_reason_default(un, bp, xp, pktp);
17233 		break;
17234 	}
17235 
17236 exit:
17237 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17238 
17239 	/* Decrement counter to indicate that the callback routine is done. */
17240 	un->un_in_callback--;
17241 	ASSERT(un->un_in_callback >= 0);
17242 
17243 	/*
17244 	 * At this point, the pkt has been dispatched, ie, it is either
17245 	 * being re-tried or has been returned to its caller and should
17246 	 * not be referenced.
17247 	 */
17248 
17249 	mutex_exit(SD_MUTEX(un));
17250 }
17251 
17252 
17253 /*
17254  *    Function: sd_print_incomplete_msg
17255  *
17256  * Description: Prints the error message for a CMD_INCOMPLETE error.
17257  *
17258  *   Arguments: un - ptr to associated softstate for the device.
17259  *		bp - ptr to the buf(9S) for the command.
17260  *		arg - message string ptr
17261  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17262  *			or SD_NO_RETRY_ISSUED.
17263  *
17264  *     Context: May be called under interrupt context
17265  */
17266 
17267 static void
17268 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17269 {
17270 	struct scsi_pkt	*pktp;
17271 	char	*msgp;
17272 	char	*cmdp = arg;
17273 
17274 	ASSERT(un != NULL);
17275 	ASSERT(mutex_owned(SD_MUTEX(un)));
17276 	ASSERT(bp != NULL);
17277 	ASSERT(arg != NULL);
17278 	pktp = SD_GET_PKTP(bp);
17279 	ASSERT(pktp != NULL);
17280 
17281 	switch (code) {
17282 	case SD_DELAYED_RETRY_ISSUED:
17283 	case SD_IMMEDIATE_RETRY_ISSUED:
17284 		msgp = "retrying";
17285 		break;
17286 	case SD_NO_RETRY_ISSUED:
17287 	default:
17288 		msgp = "giving up";
17289 		break;
17290 	}
17291 
17292 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17293 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17294 		    "incomplete %s- %s\n", cmdp, msgp);
17295 	}
17296 }
17297 
17298 
17299 
17300 /*
17301  *    Function: sd_pkt_status_good
17302  *
17303  * Description: Processing for a STATUS_GOOD code in pkt_status.
17304  *
17305  *     Context: May be called under interrupt context
17306  */
17307 
17308 static void
17309 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17310     struct sd_xbuf *xp, struct scsi_pkt *pktp)
17311 {
17312 	char	*cmdp;
17313 
17314 	ASSERT(un != NULL);
17315 	ASSERT(mutex_owned(SD_MUTEX(un)));
17316 	ASSERT(bp != NULL);
17317 	ASSERT(xp != NULL);
17318 	ASSERT(pktp != NULL);
17319 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17320 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17321 	ASSERT(pktp->pkt_resid != 0);
17322 
17323 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17324 
17325 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17326 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17327 	case SCMD_READ:
17328 		cmdp = "read";
17329 		break;
17330 	case SCMD_WRITE:
17331 		cmdp = "write";
17332 		break;
17333 	default:
17334 		SD_UPDATE_B_RESID(bp, pktp);
17335 		sd_return_command(un, bp);
17336 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17337 		return;
17338 	}
17339 
17340 	/*
17341 	 * See if we can retry the read/write, preferrably immediately.
17342 	 * If retries are exhaused, then sd_retry_command() will update
17343 	 * the b_resid count.
17344 	 */
17345 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17346 	    cmdp, EIO, (clock_t)0, NULL);
17347 
17348 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17349 }
17350 
17351 
17352 
17353 
17354 
17355 /*
17356  *    Function: sd_handle_request_sense
17357  *
17358  * Description: Processing for non-auto Request Sense command.
17359  *
17360  *   Arguments: un - ptr to associated softstate
17361  *		sense_bp - ptr to buf(9S) for the RQS command
17362  *		sense_xp - ptr to the sd_xbuf for the RQS command
17363  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17364  *
17365  *     Context: May be called under interrupt context
17366  */
17367 
17368 static void
17369 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17370     struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17371 {
17372 	struct buf	*cmd_bp;	/* buf for the original command */
17373 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17374 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17375 	size_t		actual_len;	/* actual sense data length */
17376 
17377 	ASSERT(un != NULL);
17378 	ASSERT(mutex_owned(SD_MUTEX(un)));
17379 	ASSERT(sense_bp != NULL);
17380 	ASSERT(sense_xp != NULL);
17381 	ASSERT(sense_pktp != NULL);
17382 
17383 	/*
17384 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17385 	 * RQS command and not the original command.
17386 	 */
17387 	ASSERT(sense_pktp == un->un_rqs_pktp);
17388 	ASSERT(sense_bp   == un->un_rqs_bp);
17389 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17390 	    (FLAG_SENSING | FLAG_HEAD));
17391 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17392 	    FLAG_SENSING) == FLAG_SENSING);
17393 
17394 	/* These are the bp, xp, and pktp for the original command */
17395 	cmd_bp = sense_xp->xb_sense_bp;
17396 	cmd_xp = SD_GET_XBUF(cmd_bp);
17397 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17398 
17399 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17400 		/*
17401 		 * The REQUEST SENSE command failed.  Release the REQUEST
17402 		 * SENSE command for re-use, get back the bp for the original
17403 		 * command, and attempt to re-try the original command if
17404 		 * FLAG_DIAGNOSE is not set in the original packet.
17405 		 */
17406 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17407 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17408 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17409 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17410 			    NULL, NULL, EIO, (clock_t)0, NULL);
17411 			return;
17412 		}
17413 	}
17414 
17415 	/*
17416 	 * Save the relevant sense info into the xp for the original cmd.
17417 	 *
17418 	 * Note: if the request sense failed the state info will be zero
17419 	 * as set in sd_mark_rqs_busy()
17420 	 */
17421 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17422 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17423 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17424 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17425 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17426 	    SENSE_LENGTH)) {
17427 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17428 		    MAX_SENSE_LENGTH);
17429 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17430 	} else {
17431 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17432 		    SENSE_LENGTH);
17433 		if (actual_len < SENSE_LENGTH) {
17434 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17435 		} else {
17436 			cmd_xp->xb_sense_resid = 0;
17437 		}
17438 	}
17439 
17440 	/*
17441 	 *  Free up the RQS command....
17442 	 *  NOTE:
17443 	 *	Must do this BEFORE calling sd_validate_sense_data!
17444 	 *	sd_validate_sense_data may return the original command in
17445 	 *	which case the pkt will be freed and the flags can no
17446 	 *	longer be touched.
17447 	 *	SD_MUTEX is held through this process until the command
17448 	 *	is dispatched based upon the sense data, so there are
17449 	 *	no race conditions.
17450 	 */
17451 	(void) sd_mark_rqs_idle(un, sense_xp);
17452 
17453 	/*
17454 	 * For a retryable command see if we have valid sense data, if so then
17455 	 * turn it over to sd_decode_sense() to figure out the right course of
17456 	 * action. Just fail a non-retryable command.
17457 	 */
17458 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17459 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17460 		    SD_SENSE_DATA_IS_VALID) {
17461 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17462 		}
17463 	} else {
17464 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17465 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17466 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17467 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17468 		sd_return_failed_command(un, cmd_bp, EIO);
17469 	}
17470 }
17471 
17472 
17473 
17474 
17475 /*
17476  *    Function: sd_handle_auto_request_sense
17477  *
17478  * Description: Processing for auto-request sense information.
17479  *
17480  *   Arguments: un - ptr to associated softstate
17481  *		bp - ptr to buf(9S) for the command
17482  *		xp - ptr to the sd_xbuf for the command
17483  *		pktp - ptr to the scsi_pkt(9S) for the command
17484  *
17485  *     Context: May be called under interrupt context
17486  */
17487 
17488 static void
17489 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17490     struct sd_xbuf *xp, struct scsi_pkt *pktp)
17491 {
17492 	struct scsi_arq_status *asp;
17493 	size_t actual_len;
17494 
17495 	ASSERT(un != NULL);
17496 	ASSERT(mutex_owned(SD_MUTEX(un)));
17497 	ASSERT(bp != NULL);
17498 	ASSERT(xp != NULL);
17499 	ASSERT(pktp != NULL);
17500 	ASSERT(pktp != un->un_rqs_pktp);
17501 	ASSERT(bp   != un->un_rqs_bp);
17502 
17503 	/*
17504 	 * For auto-request sense, we get a scsi_arq_status back from
17505 	 * the HBA, with the sense data in the sts_sensedata member.
17506 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17507 	 */
17508 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17509 
17510 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17511 		/*
17512 		 * The auto REQUEST SENSE failed; see if we can re-try
17513 		 * the original command.
17514 		 */
17515 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17516 		    "auto request sense failed (reason=%s)\n",
17517 		    scsi_rname(asp->sts_rqpkt_reason));
17518 
17519 		sd_reset_target(un, pktp);
17520 
17521 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17522 		    NULL, NULL, EIO, (clock_t)0, NULL);
17523 		return;
17524 	}
17525 
17526 	/* Save the relevant sense info into the xp for the original cmd. */
17527 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17528 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17529 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17530 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17531 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17532 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17533 		    MAX_SENSE_LENGTH);
17534 	} else {
17535 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17536 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17537 		} else {
17538 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17539 		}
17540 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17541 			if ((((struct uscsi_cmd *)
17542 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17543 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17544 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17545 				    actual_len;
17546 			} else {
17547 				xp->xb_sense_resid = 0;
17548 			}
17549 		}
17550 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17551 	}
17552 
17553 	/*
17554 	 * See if we have valid sense data, if so then turn it over to
17555 	 * sd_decode_sense() to figure out the right course of action.
17556 	 */
17557 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17558 	    SD_SENSE_DATA_IS_VALID) {
17559 		sd_decode_sense(un, bp, xp, pktp);
17560 	}
17561 }
17562 
17563 
17564 /*
17565  *    Function: sd_print_sense_failed_msg
17566  *
17567  * Description: Print log message when RQS has failed.
17568  *
17569  *   Arguments: un - ptr to associated softstate
17570  *		bp - ptr to buf(9S) for the command
17571  *		arg - generic message string ptr
17572  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17573  *			or SD_NO_RETRY_ISSUED
17574  *
17575  *     Context: May be called from interrupt context
17576  */
17577 
17578 static void
17579 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17580     int code)
17581 {
17582 	char	*msgp = arg;
17583 
17584 	ASSERT(un != NULL);
17585 	ASSERT(mutex_owned(SD_MUTEX(un)));
17586 	ASSERT(bp != NULL);
17587 
17588 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17589 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17590 	}
17591 }
17592 
17593 
17594 /*
17595  *    Function: sd_validate_sense_data
17596  *
17597  * Description: Check the given sense data for validity.
17598  *		If the sense data is not valid, the command will
17599  *		be either failed or retried!
17600  *
17601  * Return Code: SD_SENSE_DATA_IS_INVALID
17602  *		SD_SENSE_DATA_IS_VALID
17603  *
17604  *     Context: May be called from interrupt context
17605  */
17606 
17607 static int
17608 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17609     size_t actual_len)
17610 {
17611 	struct scsi_extended_sense *esp;
17612 	struct	scsi_pkt *pktp;
17613 	char	*msgp = NULL;
17614 	sd_ssc_t *sscp;
17615 
17616 	ASSERT(un != NULL);
17617 	ASSERT(mutex_owned(SD_MUTEX(un)));
17618 	ASSERT(bp != NULL);
17619 	ASSERT(bp != un->un_rqs_bp);
17620 	ASSERT(xp != NULL);
17621 	ASSERT(un->un_fm_private != NULL);
17622 
17623 	pktp = SD_GET_PKTP(bp);
17624 	ASSERT(pktp != NULL);
17625 
17626 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17627 	ASSERT(sscp != NULL);
17628 
17629 	/*
17630 	 * Check the status of the RQS command (auto or manual).
17631 	 */
17632 	switch (xp->xb_sense_status & STATUS_MASK) {
17633 	case STATUS_GOOD:
17634 		break;
17635 
17636 	case STATUS_RESERVATION_CONFLICT:
17637 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17638 		return (SD_SENSE_DATA_IS_INVALID);
17639 
17640 	case STATUS_BUSY:
17641 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17642 		    "Busy Status on REQUEST SENSE\n");
17643 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17644 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17645 		return (SD_SENSE_DATA_IS_INVALID);
17646 
17647 	case STATUS_QFULL:
17648 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17649 		    "QFULL Status on REQUEST SENSE\n");
17650 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17651 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17652 		return (SD_SENSE_DATA_IS_INVALID);
17653 
17654 	case STATUS_CHECK:
17655 	case STATUS_TERMINATED:
17656 		msgp = "Check Condition on REQUEST SENSE\n";
17657 		goto sense_failed;
17658 
17659 	default:
17660 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17661 		goto sense_failed;
17662 	}
17663 
17664 	/*
17665 	 * See if we got the minimum required amount of sense data.
17666 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17667 	 * or less.
17668 	 */
17669 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17670 	    (actual_len == 0)) {
17671 		msgp = "Request Sense couldn't get sense data\n";
17672 		goto sense_failed;
17673 	}
17674 
17675 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17676 		msgp = "Not enough sense information\n";
17677 		/* Mark the ssc_flags for detecting invalid sense data */
17678 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17679 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17680 			    "sense-data");
17681 		}
17682 		goto sense_failed;
17683 	}
17684 
17685 	/*
17686 	 * We require the extended sense data
17687 	 */
17688 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17689 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17690 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17691 			static char tmp[8];
17692 			static char buf[148];
17693 			char *p = (char *)(xp->xb_sense_data);
17694 			int i;
17695 
17696 			mutex_enter(&sd_sense_mutex);
17697 			(void) strcpy(buf, "undecodable sense information:");
17698 			for (i = 0; i < actual_len; i++) {
17699 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17700 				(void) strcpy(&buf[strlen(buf)], tmp);
17701 			}
17702 			i = strlen(buf);
17703 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17704 
17705 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17706 				scsi_log(SD_DEVINFO(un), sd_label,
17707 				    CE_WARN, buf);
17708 			}
17709 			mutex_exit(&sd_sense_mutex);
17710 		}
17711 
17712 		/* Mark the ssc_flags for detecting invalid sense data */
17713 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17714 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17715 			    "sense-data");
17716 		}
17717 
17718 		/* Note: Legacy behavior, fail the command with no retry */
17719 		sd_return_failed_command(un, bp, EIO);
17720 		return (SD_SENSE_DATA_IS_INVALID);
17721 	}
17722 
17723 	/*
17724 	 * Check that es_code is valid (es_class concatenated with es_code
17725 	 * make up the "response code" field.  es_class will always be 7, so
17726 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17727 	 * format.
17728 	 */
17729 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17730 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17731 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17732 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17733 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17734 		/* Mark the ssc_flags for detecting invalid sense data */
17735 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17736 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17737 			    "sense-data");
17738 		}
17739 		goto sense_failed;
17740 	}
17741 
17742 	return (SD_SENSE_DATA_IS_VALID);
17743 
17744 sense_failed:
17745 	/*
17746 	 * If the request sense failed (for whatever reason), attempt
17747 	 * to retry the original command.
17748 	 */
17749 #if defined(__i386) || defined(__amd64)
17750 	/*
17751 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17752 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17753 	 * for both SCSI/FC.
17754 	 * The SD_RETRY_DELAY value need to be adjusted here
17755 	 * when SD_RETRY_DELAY change in sddef.h
17756 	 */
17757 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17758 	    sd_print_sense_failed_msg, msgp, EIO,
17759 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17760 #else
17761 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17762 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17763 #endif
17764 
17765 	return (SD_SENSE_DATA_IS_INVALID);
17766 }
17767 
17768 /*
17769  *    Function: sd_decode_sense
17770  *
17771  * Description: Take recovery action(s) when SCSI Sense Data is received.
17772  *
17773  *     Context: Interrupt context.
17774  */
17775 
17776 static void
17777 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17778     struct scsi_pkt *pktp)
17779 {
17780 	uint8_t sense_key;
17781 
17782 	ASSERT(un != NULL);
17783 	ASSERT(mutex_owned(SD_MUTEX(un)));
17784 	ASSERT(bp != NULL);
17785 	ASSERT(bp != un->un_rqs_bp);
17786 	ASSERT(xp != NULL);
17787 	ASSERT(pktp != NULL);
17788 
17789 	sense_key = scsi_sense_key(xp->xb_sense_data);
17790 
17791 	switch (sense_key) {
17792 	case KEY_NO_SENSE:
17793 		sd_sense_key_no_sense(un, bp, xp, pktp);
17794 		break;
17795 	case KEY_RECOVERABLE_ERROR:
17796 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17797 		    bp, xp, pktp);
17798 		break;
17799 	case KEY_NOT_READY:
17800 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17801 		    bp, xp, pktp);
17802 		break;
17803 	case KEY_MEDIUM_ERROR:
17804 	case KEY_HARDWARE_ERROR:
17805 		sd_sense_key_medium_or_hardware_error(un,
17806 		    xp->xb_sense_data, bp, xp, pktp);
17807 		break;
17808 	case KEY_ILLEGAL_REQUEST:
17809 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17810 		break;
17811 	case KEY_UNIT_ATTENTION:
17812 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17813 		    bp, xp, pktp);
17814 		break;
17815 	case KEY_WRITE_PROTECT:
17816 	case KEY_VOLUME_OVERFLOW:
17817 	case KEY_MISCOMPARE:
17818 		sd_sense_key_fail_command(un, bp, xp, pktp);
17819 		break;
17820 	case KEY_BLANK_CHECK:
17821 		sd_sense_key_blank_check(un, bp, xp, pktp);
17822 		break;
17823 	case KEY_ABORTED_COMMAND:
17824 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17825 		break;
17826 	case KEY_VENDOR_UNIQUE:
17827 	case KEY_COPY_ABORTED:
17828 	case KEY_EQUAL:
17829 	case KEY_RESERVED:
17830 	default:
17831 		sd_sense_key_default(un, xp->xb_sense_data,
17832 		    bp, xp, pktp);
17833 		break;
17834 	}
17835 }
17836 
17837 
17838 /*
17839  *    Function: sd_dump_memory
17840  *
17841  * Description: Debug logging routine to print the contents of a user provided
17842  *		buffer. The output of the buffer is broken up into 256 byte
17843  *		segments due to a size constraint of the scsi_log.
17844  *		implementation.
17845  *
17846  *   Arguments: un - ptr to softstate
17847  *		comp - component mask
17848  *		title - "title" string to preceed data when printed
17849  *		data - ptr to data block to be printed
17850  *		len - size of data block to be printed
17851  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17852  *
17853  *     Context: May be called from interrupt context
17854  */
17855 
17856 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17857 
17858 static char *sd_dump_format_string[] = {
17859 		" 0x%02x",
17860 		" %c"
17861 };
17862 
17863 static void
17864 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17865     int len, int fmt)
17866 {
17867 	int	i, j;
17868 	int	avail_count;
17869 	int	start_offset;
17870 	int	end_offset;
17871 	size_t	entry_len;
17872 	char	*bufp;
17873 	char	*local_buf;
17874 	char	*format_string;
17875 
17876 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17877 
17878 	/*
17879 	 * In the debug version of the driver, this function is called from a
17880 	 * number of places which are NOPs in the release driver.
17881 	 * The debug driver therefore has additional methods of filtering
17882 	 * debug output.
17883 	 */
17884 #ifdef SDDEBUG
17885 	/*
17886 	 * In the debug version of the driver we can reduce the amount of debug
17887 	 * messages by setting sd_error_level to something other than
17888 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17889 	 * sd_component_mask.
17890 	 */
17891 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17892 	    (sd_error_level != SCSI_ERR_ALL)) {
17893 		return;
17894 	}
17895 	if (((sd_component_mask & comp) == 0) ||
17896 	    (sd_error_level != SCSI_ERR_ALL)) {
17897 		return;
17898 	}
17899 #else
17900 	if (sd_error_level != SCSI_ERR_ALL) {
17901 		return;
17902 	}
17903 #endif
17904 
17905 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17906 	bufp = local_buf;
17907 	/*
17908 	 * Available length is the length of local_buf[], minus the
17909 	 * length of the title string, minus one for the ":", minus
17910 	 * one for the newline, minus one for the NULL terminator.
17911 	 * This gives the #bytes available for holding the printed
17912 	 * values from the given data buffer.
17913 	 */
17914 	if (fmt == SD_LOG_HEX) {
17915 		format_string = sd_dump_format_string[0];
17916 	} else /* SD_LOG_CHAR */ {
17917 		format_string = sd_dump_format_string[1];
17918 	}
17919 	/*
17920 	 * Available count is the number of elements from the given
17921 	 * data buffer that we can fit into the available length.
17922 	 * This is based upon the size of the format string used.
17923 	 * Make one entry and find it's size.
17924 	 */
17925 	(void) sprintf(bufp, format_string, data[0]);
17926 	entry_len = strlen(bufp);
17927 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17928 
17929 	j = 0;
17930 	while (j < len) {
17931 		bufp = local_buf;
17932 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17933 		start_offset = j;
17934 
17935 		end_offset = start_offset + avail_count;
17936 
17937 		(void) sprintf(bufp, "%s:", title);
17938 		bufp += strlen(bufp);
17939 		for (i = start_offset; ((i < end_offset) && (j < len));
17940 		    i++, j++) {
17941 			(void) sprintf(bufp, format_string, data[i]);
17942 			bufp += entry_len;
17943 		}
17944 		(void) sprintf(bufp, "\n");
17945 
17946 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17947 	}
17948 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17949 }
17950 
17951 /*
17952  *    Function: sd_print_sense_msg
17953  *
17954  * Description: Log a message based upon the given sense data.
17955  *
17956  *   Arguments: un - ptr to associated softstate
17957  *		bp - ptr to buf(9S) for the command
17958  *		arg - ptr to associate sd_sense_info struct
17959  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17960  *			or SD_NO_RETRY_ISSUED
17961  *
17962  *     Context: May be called from interrupt context
17963  */
17964 
17965 static void
17966 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17967 {
17968 	struct sd_xbuf	*xp;
17969 	struct scsi_pkt	*pktp;
17970 	uint8_t *sensep;
17971 	daddr_t request_blkno;
17972 	diskaddr_t err_blkno;
17973 	int severity;
17974 	int pfa_flag;
17975 	extern struct scsi_key_strings scsi_cmds[];
17976 
17977 	ASSERT(un != NULL);
17978 	ASSERT(mutex_owned(SD_MUTEX(un)));
17979 	ASSERT(bp != NULL);
17980 	xp = SD_GET_XBUF(bp);
17981 	ASSERT(xp != NULL);
17982 	pktp = SD_GET_PKTP(bp);
17983 	ASSERT(pktp != NULL);
17984 	ASSERT(arg != NULL);
17985 
17986 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17987 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17988 
17989 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17990 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17991 		severity = SCSI_ERR_RETRYABLE;
17992 	}
17993 
17994 	/* Use absolute block number for the request block number */
17995 	request_blkno = xp->xb_blkno;
17996 
17997 	/*
17998 	 * Now try to get the error block number from the sense data
17999 	 */
18000 	sensep = xp->xb_sense_data;
18001 
18002 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
18003 	    (uint64_t *)&err_blkno)) {
18004 		/*
18005 		 * We retrieved the error block number from the information
18006 		 * portion of the sense data.
18007 		 *
18008 		 * For USCSI commands we are better off using the error
18009 		 * block no. as the requested block no. (This is the best
18010 		 * we can estimate.)
18011 		 */
18012 		if ((SD_IS_BUFIO(xp) == FALSE) &&
18013 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
18014 			request_blkno = err_blkno;
18015 		}
18016 	} else {
18017 		/*
18018 		 * Without the es_valid bit set (for fixed format) or an
18019 		 * information descriptor (for descriptor format) we cannot
18020 		 * be certain of the error blkno, so just use the
18021 		 * request_blkno.
18022 		 */
18023 		err_blkno = (diskaddr_t)request_blkno;
18024 	}
18025 
18026 	/*
18027 	 * The following will log the buffer contents for the release driver
18028 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18029 	 * level is set to verbose.
18030 	 */
18031 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18032 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18033 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18034 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18035 
18036 	if (pfa_flag == FALSE) {
18037 		/* This is normally only set for USCSI */
18038 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18039 			return;
18040 		}
18041 
18042 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18043 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18044 		    (severity < sd_error_level))) {
18045 			return;
18046 		}
18047 	}
18048 	/*
18049 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18050 	 */
18051 	if ((SD_IS_LSI(un)) &&
18052 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18053 	    (scsi_sense_asc(sensep) == 0x94) &&
18054 	    (scsi_sense_ascq(sensep) == 0x01)) {
18055 		un->un_sonoma_failure_count++;
18056 		if (un->un_sonoma_failure_count > 1) {
18057 			return;
18058 		}
18059 	}
18060 
18061 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18062 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18063 	    (pktp->pkt_resid == 0))) {
18064 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18065 		    request_blkno, err_blkno, scsi_cmds,
18066 		    (struct scsi_extended_sense *)sensep,
18067 		    un->un_additional_codes, NULL);
18068 	}
18069 }
18070 
18071 /*
18072  *    Function: sd_sense_key_no_sense
18073  *
18074  * Description: Recovery action when sense data was not received.
18075  *
18076  *     Context: May be called from interrupt context
18077  */
18078 
18079 static void
18080 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18081     struct scsi_pkt *pktp)
18082 {
18083 	struct sd_sense_info	si;
18084 
18085 	ASSERT(un != NULL);
18086 	ASSERT(mutex_owned(SD_MUTEX(un)));
18087 	ASSERT(bp != NULL);
18088 	ASSERT(xp != NULL);
18089 	ASSERT(pktp != NULL);
18090 
18091 	si.ssi_severity = SCSI_ERR_FATAL;
18092 	si.ssi_pfa_flag = FALSE;
18093 
18094 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18095 
18096 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18097 	    &si, EIO, (clock_t)0, NULL);
18098 }
18099 
18100 
18101 /*
18102  *    Function: sd_sense_key_recoverable_error
18103  *
18104  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18105  *
18106  *     Context: May be called from interrupt context
18107  */
18108 
18109 static void
18110 sd_sense_key_recoverable_error(struct sd_lun *un, uint8_t *sense_datap,
18111     struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18112 {
18113 	struct sd_sense_info	si;
18114 	uint8_t asc = scsi_sense_asc(sense_datap);
18115 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18116 
18117 	ASSERT(un != NULL);
18118 	ASSERT(mutex_owned(SD_MUTEX(un)));
18119 	ASSERT(bp != NULL);
18120 	ASSERT(xp != NULL);
18121 	ASSERT(pktp != NULL);
18122 
18123 	/*
18124 	 * 0x00, 0x1D: ATA PASSTHROUGH INFORMATION AVAILABLE
18125 	 */
18126 	if (asc == 0x00 && ascq == 0x1D) {
18127 		sd_return_command(un, bp);
18128 		return;
18129 	}
18130 
18131 	/*
18132 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18133 	 */
18134 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18135 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18136 		si.ssi_severity = SCSI_ERR_INFO;
18137 		si.ssi_pfa_flag = TRUE;
18138 	} else {
18139 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18140 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18141 		si.ssi_severity = SCSI_ERR_RECOVERED;
18142 		si.ssi_pfa_flag = FALSE;
18143 	}
18144 
18145 	if (pktp->pkt_resid == 0) {
18146 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18147 		sd_return_command(un, bp);
18148 		return;
18149 	}
18150 
18151 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18152 	    &si, EIO, (clock_t)0, NULL);
18153 }
18154 
18155 
18156 
18157 
18158 /*
18159  *    Function: sd_sense_key_not_ready
18160  *
18161  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18162  *
18163  *     Context: May be called from interrupt context
18164  */
18165 
18166 static void
18167 sd_sense_key_not_ready(struct sd_lun *un, uint8_t *sense_datap, struct buf *bp,
18168     struct sd_xbuf *xp, struct scsi_pkt *pktp)
18169 {
18170 	struct sd_sense_info	si;
18171 	uint8_t asc = scsi_sense_asc(sense_datap);
18172 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18173 
18174 	ASSERT(un != NULL);
18175 	ASSERT(mutex_owned(SD_MUTEX(un)));
18176 	ASSERT(bp != NULL);
18177 	ASSERT(xp != NULL);
18178 	ASSERT(pktp != NULL);
18179 
18180 	si.ssi_severity = SCSI_ERR_FATAL;
18181 	si.ssi_pfa_flag = FALSE;
18182 
18183 	/*
18184 	 * Update error stats after first NOT READY error. Disks may have
18185 	 * been powered down and may need to be restarted.  For CDROMs,
18186 	 * report NOT READY errors only if media is present.
18187 	 */
18188 	if ((ISCD(un) && (asc == 0x3A)) ||
18189 	    (xp->xb_nr_retry_count > 0)) {
18190 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18191 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18192 	}
18193 
18194 	/*
18195 	 * Just fail if the "not ready" retry limit has been reached.
18196 	 */
18197 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18198 		/* Special check for error message printing for removables. */
18199 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18200 		    (ascq >= 0x04)) {
18201 			si.ssi_severity = SCSI_ERR_ALL;
18202 		}
18203 		goto fail_command;
18204 	}
18205 
18206 	/*
18207 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18208 	 * what to do.
18209 	 */
18210 	switch (asc) {
18211 	case 0x04:	/* LOGICAL UNIT NOT READY */
18212 		/*
18213 		 * disk drives that don't spin up result in a very long delay
18214 		 * in format without warning messages. We will log a message
18215 		 * if the error level is set to verbose.
18216 		 */
18217 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18218 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18219 			    "logical unit not ready, resetting disk\n");
18220 		}
18221 
18222 		/*
18223 		 * There are different requirements for CDROMs and disks for
18224 		 * the number of retries.  If a CD-ROM is giving this, it is
18225 		 * probably reading TOC and is in the process of getting
18226 		 * ready, so we should keep on trying for a long time to make
18227 		 * sure that all types of media are taken in account (for
18228 		 * some media the drive takes a long time to read TOC).  For
18229 		 * disks we do not want to retry this too many times as this
18230 		 * can cause a long hang in format when the drive refuses to
18231 		 * spin up (a very common failure).
18232 		 */
18233 		switch (ascq) {
18234 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18235 			/*
18236 			 * Disk drives frequently refuse to spin up which
18237 			 * results in a very long hang in format without
18238 			 * warning messages.
18239 			 *
18240 			 * Note: This code preserves the legacy behavior of
18241 			 * comparing xb_nr_retry_count against zero for fibre
18242 			 * channel targets instead of comparing against the
18243 			 * un_reset_retry_count value.  The reason for this
18244 			 * discrepancy has been so utterly lost beneath the
18245 			 * Sands of Time that even Indiana Jones could not
18246 			 * find it.
18247 			 */
18248 			if (un->un_f_is_fibre == TRUE) {
18249 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18250 				    (xp->xb_nr_retry_count > 0)) &&
18251 				    (un->un_startstop_timeid == NULL)) {
18252 					scsi_log(SD_DEVINFO(un), sd_label,
18253 					    CE_WARN, "logical unit not ready, "
18254 					    "resetting disk\n");
18255 					sd_reset_target(un, pktp);
18256 				}
18257 			} else {
18258 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18259 				    (xp->xb_nr_retry_count >
18260 				    un->un_reset_retry_count)) &&
18261 				    (un->un_startstop_timeid == NULL)) {
18262 					scsi_log(SD_DEVINFO(un), sd_label,
18263 					    CE_WARN, "logical unit not ready, "
18264 					    "resetting disk\n");
18265 					sd_reset_target(un, pktp);
18266 				}
18267 			}
18268 			break;
18269 
18270 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18271 			/*
18272 			 * If the target is in the process of becoming
18273 			 * ready, just proceed with the retry. This can
18274 			 * happen with CD-ROMs that take a long time to
18275 			 * read TOC after a power cycle or reset.
18276 			 */
18277 			goto do_retry;
18278 
18279 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18280 			break;
18281 
18282 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18283 			/*
18284 			 * Retries cannot help here so just fail right away.
18285 			 */
18286 			goto fail_command;
18287 
18288 		case 0x88:
18289 			/*
18290 			 * Vendor-unique code for T3/T4: it indicates a
18291 			 * path problem in a mutipathed config, but as far as
18292 			 * the target driver is concerned it equates to a fatal
18293 			 * error, so we should just fail the command right away
18294 			 * (without printing anything to the console). If this
18295 			 * is not a T3/T4, fall thru to the default recovery
18296 			 * action.
18297 			 * T3/T4 is FC only, don't need to check is_fibre
18298 			 */
18299 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18300 				sd_return_failed_command(un, bp, EIO);
18301 				return;
18302 			}
18303 			/* FALLTHRU */
18304 
18305 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18306 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18307 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18308 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18309 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18310 		default:    /* Possible future codes in SCSI spec? */
18311 			/*
18312 			 * For removable-media devices, do not retry if
18313 			 * ASCQ > 2 as these result mostly from USCSI commands
18314 			 * on MMC devices issued to check status of an
18315 			 * operation initiated in immediate mode.  Also for
18316 			 * ASCQ >= 4 do not print console messages as these
18317 			 * mainly represent a user-initiated operation
18318 			 * instead of a system failure.
18319 			 */
18320 			if (un->un_f_has_removable_media) {
18321 				si.ssi_severity = SCSI_ERR_ALL;
18322 				goto fail_command;
18323 			}
18324 			break;
18325 		}
18326 
18327 		/*
18328 		 * As part of our recovery attempt for the NOT READY
18329 		 * condition, we issue a START STOP UNIT command. However
18330 		 * we want to wait for a short delay before attempting this
18331 		 * as there may still be more commands coming back from the
18332 		 * target with the check condition. To do this we use
18333 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18334 		 * the delay interval expires. (sd_start_stop_unit_callback()
18335 		 * dispatches sd_start_stop_unit_task(), which will issue
18336 		 * the actual START STOP UNIT command. The delay interval
18337 		 * is one-half of the delay that we will use to retry the
18338 		 * command that generated the NOT READY condition.
18339 		 *
18340 		 * Note that we could just dispatch sd_start_stop_unit_task()
18341 		 * from here and allow it to sleep for the delay interval,
18342 		 * but then we would be tying up the taskq thread
18343 		 * uncesessarily for the duration of the delay.
18344 		 *
18345 		 * Do not issue the START STOP UNIT if the current command
18346 		 * is already a START STOP UNIT.
18347 		 */
18348 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18349 			break;
18350 		}
18351 
18352 		/*
18353 		 * Do not schedule the timeout if one is already pending.
18354 		 */
18355 		if (un->un_startstop_timeid != NULL) {
18356 			SD_INFO(SD_LOG_ERROR, un,
18357 			    "sd_sense_key_not_ready: restart already issued to"
18358 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18359 			    ddi_get_instance(SD_DEVINFO(un)));
18360 			break;
18361 		}
18362 
18363 		/*
18364 		 * Schedule the START STOP UNIT command, then queue the command
18365 		 * for a retry.
18366 		 *
18367 		 * Note: A timeout is not scheduled for this retry because we
18368 		 * want the retry to be serial with the START_STOP_UNIT. The
18369 		 * retry will be started when the START_STOP_UNIT is completed
18370 		 * in sd_start_stop_unit_task.
18371 		 */
18372 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18373 		    un, un->un_busy_timeout / 2);
18374 		xp->xb_nr_retry_count++;
18375 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18376 		return;
18377 
18378 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18379 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18380 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18381 			    "unit does not respond to selection\n");
18382 		}
18383 		break;
18384 
18385 	case 0x3A:	/* MEDIUM NOT PRESENT */
18386 		if (sd_error_level >= SCSI_ERR_FATAL) {
18387 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18388 			    "Caddy not inserted in drive\n");
18389 		}
18390 
18391 		sr_ejected(un);
18392 		un->un_mediastate = DKIO_EJECTED;
18393 		/* The state has changed, inform the media watch routines */
18394 		cv_broadcast(&un->un_state_cv);
18395 		/* Just fail if no media is present in the drive. */
18396 		goto fail_command;
18397 
18398 	default:
18399 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18400 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18401 			    "Unit not Ready. Additional sense code 0x%x\n",
18402 			    asc);
18403 		}
18404 		break;
18405 	}
18406 
18407 do_retry:
18408 
18409 	/*
18410 	 * Retry the command, as some targets may report NOT READY for
18411 	 * several seconds after being reset.
18412 	 */
18413 	xp->xb_nr_retry_count++;
18414 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18415 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18416 	    &si, EIO, un->un_busy_timeout, NULL);
18417 
18418 	return;
18419 
18420 fail_command:
18421 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18422 	sd_return_failed_command(un, bp, EIO);
18423 }
18424 
18425 
18426 
18427 /*
18428  *    Function: sd_sense_key_medium_or_hardware_error
18429  *
18430  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18431  *		sense key.
18432  *
18433  *     Context: May be called from interrupt context
18434  */
18435 
18436 static void
18437 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, uint8_t *sense_datap,
18438     struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18439 {
18440 	struct sd_sense_info	si;
18441 	uint8_t sense_key = scsi_sense_key(sense_datap);
18442 	uint8_t asc = scsi_sense_asc(sense_datap);
18443 
18444 	ASSERT(un != NULL);
18445 	ASSERT(mutex_owned(SD_MUTEX(un)));
18446 	ASSERT(bp != NULL);
18447 	ASSERT(xp != NULL);
18448 	ASSERT(pktp != NULL);
18449 
18450 	si.ssi_severity = SCSI_ERR_FATAL;
18451 	si.ssi_pfa_flag = FALSE;
18452 
18453 	if (sense_key == KEY_MEDIUM_ERROR) {
18454 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18455 	}
18456 
18457 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18458 
18459 	if ((un->un_reset_retry_count != 0) &&
18460 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18461 		mutex_exit(SD_MUTEX(un));
18462 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18463 		if (un->un_f_allow_bus_device_reset == TRUE) {
18464 
18465 			boolean_t try_resetting_target = B_TRUE;
18466 
18467 			/*
18468 			 * We need to be able to handle specific ASC when we are
18469 			 * handling a KEY_HARDWARE_ERROR. In particular
18470 			 * taking the default action of resetting the target may
18471 			 * not be the appropriate way to attempt recovery.
18472 			 * Resetting a target because of a single LUN failure
18473 			 * victimizes all LUNs on that target.
18474 			 *
18475 			 * This is true for the LSI arrays, if an LSI
18476 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18477 			 * should trust it.
18478 			 */
18479 
18480 			if (sense_key == KEY_HARDWARE_ERROR) {
18481 				switch (asc) {
18482 				case 0x84:
18483 					if (SD_IS_LSI(un)) {
18484 						try_resetting_target = B_FALSE;
18485 					}
18486 					break;
18487 				default:
18488 					break;
18489 				}
18490 			}
18491 
18492 			if (try_resetting_target == B_TRUE) {
18493 				int reset_retval = 0;
18494 				if (un->un_f_lun_reset_enabled == TRUE) {
18495 					SD_TRACE(SD_LOG_IO_CORE, un,
18496 					    "sd_sense_key_medium_or_hardware_"
18497 					    "error: issuing RESET_LUN\n");
18498 					reset_retval =
18499 					    scsi_reset(SD_ADDRESS(un),
18500 					    RESET_LUN);
18501 				}
18502 				if (reset_retval == 0) {
18503 					SD_TRACE(SD_LOG_IO_CORE, un,
18504 					    "sd_sense_key_medium_or_hardware_"
18505 					    "error: issuing RESET_TARGET\n");
18506 					(void) scsi_reset(SD_ADDRESS(un),
18507 					    RESET_TARGET);
18508 				}
18509 			}
18510 		}
18511 		mutex_enter(SD_MUTEX(un));
18512 	}
18513 
18514 	/*
18515 	 * This really ought to be a fatal error, but we will retry anyway
18516 	 * as some drives report this as a spurious error.
18517 	 */
18518 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18519 	    &si, EIO, (clock_t)0, NULL);
18520 }
18521 
18522 
18523 
18524 /*
18525  *    Function: sd_sense_key_illegal_request
18526  *
18527  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18528  *
18529  *     Context: May be called from interrupt context
18530  */
18531 
18532 static void
18533 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18534     struct sd_xbuf *xp, struct scsi_pkt *pktp)
18535 {
18536 	struct sd_sense_info	si;
18537 
18538 	ASSERT(un != NULL);
18539 	ASSERT(mutex_owned(SD_MUTEX(un)));
18540 	ASSERT(bp != NULL);
18541 	ASSERT(xp != NULL);
18542 	ASSERT(pktp != NULL);
18543 
18544 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18545 
18546 	si.ssi_severity = SCSI_ERR_INFO;
18547 	si.ssi_pfa_flag = FALSE;
18548 
18549 	/* Pointless to retry if the target thinks it's an illegal request */
18550 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18551 	sd_return_failed_command(un, bp, EIO);
18552 }
18553 
18554 
18555 
18556 
18557 /*
18558  *    Function: sd_sense_key_unit_attention
18559  *
18560  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18561  *
18562  *     Context: May be called from interrupt context
18563  */
18564 
18565 static void
18566 sd_sense_key_unit_attention(struct sd_lun *un, 	uint8_t *sense_datap,
18567     struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18568 {
18569 	/*
18570 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18571 	 * like Sonoma can return UNIT ATTENTION close to a minute
18572 	 * under certain conditions.
18573 	 */
18574 	int	retry_check_flag = SD_RETRIES_UA;
18575 	boolean_t	kstat_updated = B_FALSE;
18576 	struct	sd_sense_info		si;
18577 	uint8_t asc = scsi_sense_asc(sense_datap);
18578 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18579 
18580 	ASSERT(un != NULL);
18581 	ASSERT(mutex_owned(SD_MUTEX(un)));
18582 	ASSERT(bp != NULL);
18583 	ASSERT(xp != NULL);
18584 	ASSERT(pktp != NULL);
18585 
18586 	si.ssi_severity = SCSI_ERR_INFO;
18587 	si.ssi_pfa_flag = FALSE;
18588 
18589 
18590 	switch (asc) {
18591 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18592 		if (sd_report_pfa != 0) {
18593 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18594 			si.ssi_pfa_flag = TRUE;
18595 			retry_check_flag = SD_RETRIES_STANDARD;
18596 			goto do_retry;
18597 		}
18598 
18599 		break;
18600 
18601 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18602 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18603 			un->un_resvd_status |=
18604 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18605 		}
18606 #ifdef _LP64
18607 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18608 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18609 			    un, KM_NOSLEEP) == 0) {
18610 				/*
18611 				 * If we can't dispatch the task we'll just
18612 				 * live without descriptor sense.  We can
18613 				 * try again on the next "unit attention"
18614 				 */
18615 				SD_ERROR(SD_LOG_ERROR, un,
18616 				    "sd_sense_key_unit_attention: "
18617 				    "Could not dispatch "
18618 				    "sd_reenable_dsense_task\n");
18619 			}
18620 		}
18621 #endif /* _LP64 */
18622 		/* FALLTHRU */
18623 
18624 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18625 		if (!un->un_f_has_removable_media) {
18626 			break;
18627 		}
18628 
18629 		/*
18630 		 * When we get a unit attention from a removable-media device,
18631 		 * it may be in a state that will take a long time to recover
18632 		 * (e.g., from a reset).  Since we are executing in interrupt
18633 		 * context here, we cannot wait around for the device to come
18634 		 * back. So hand this command off to sd_media_change_task()
18635 		 * for deferred processing under taskq thread context. (Note
18636 		 * that the command still may be failed if a problem is
18637 		 * encountered at a later time.)
18638 		 */
18639 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18640 		    KM_NOSLEEP) == 0) {
18641 			/*
18642 			 * Cannot dispatch the request so fail the command.
18643 			 */
18644 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18645 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18646 			si.ssi_severity = SCSI_ERR_FATAL;
18647 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18648 			sd_return_failed_command(un, bp, EIO);
18649 		}
18650 
18651 		/*
18652 		 * If failed to dispatch sd_media_change_task(), we already
18653 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18654 		 * we should update kstat later if it encounters an error. So,
18655 		 * we update kstat_updated flag here.
18656 		 */
18657 		kstat_updated = B_TRUE;
18658 
18659 		/*
18660 		 * Either the command has been successfully dispatched to a
18661 		 * task Q for retrying, or the dispatch failed. In either case
18662 		 * do NOT retry again by calling sd_retry_command. This sets up
18663 		 * two retries of the same command and when one completes and
18664 		 * frees the resources the other will access freed memory,
18665 		 * a bad thing.
18666 		 */
18667 		return;
18668 
18669 	default:
18670 		break;
18671 	}
18672 
18673 	/*
18674 	 * ASC  ASCQ
18675 	 *  2A   09	Capacity data has changed
18676 	 *  2A   01	Mode parameters changed
18677 	 *  3F   0E	Reported luns data has changed
18678 	 * Arrays that support logical unit expansion should report
18679 	 * capacity changes(2Ah/09). Mode parameters changed and
18680 	 * reported luns data has changed are the approximation.
18681 	 */
18682 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18683 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18684 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18685 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18686 		    KM_NOSLEEP) == 0) {
18687 			SD_ERROR(SD_LOG_ERROR, un,
18688 			    "sd_sense_key_unit_attention: "
18689 			    "Could not dispatch sd_target_change_task\n");
18690 		}
18691 	}
18692 
18693 	/*
18694 	 * Update kstat if we haven't done that.
18695 	 */
18696 	if (!kstat_updated) {
18697 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18698 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18699 	}
18700 
18701 do_retry:
18702 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18703 	    EIO, SD_UA_RETRY_DELAY, NULL);
18704 }
18705 
18706 
18707 
18708 /*
18709  *    Function: sd_sense_key_fail_command
18710  *
18711  * Description: Use to fail a command when we don't like the sense key that
18712  *		was returned.
18713  *
18714  *     Context: May be called from interrupt context
18715  */
18716 
18717 static void
18718 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18719     struct scsi_pkt *pktp)
18720 {
18721 	struct sd_sense_info	si;
18722 
18723 	ASSERT(un != NULL);
18724 	ASSERT(mutex_owned(SD_MUTEX(un)));
18725 	ASSERT(bp != NULL);
18726 	ASSERT(xp != NULL);
18727 	ASSERT(pktp != NULL);
18728 
18729 	si.ssi_severity = SCSI_ERR_FATAL;
18730 	si.ssi_pfa_flag = FALSE;
18731 
18732 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18733 	sd_return_failed_command(un, bp, EIO);
18734 }
18735 
18736 
18737 
18738 /*
18739  *    Function: sd_sense_key_blank_check
18740  *
18741  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18742  *		Has no monetary connotation.
18743  *
18744  *     Context: May be called from interrupt context
18745  */
18746 
18747 static void
18748 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18749     struct scsi_pkt *pktp)
18750 {
18751 	struct sd_sense_info	si;
18752 
18753 	ASSERT(un != NULL);
18754 	ASSERT(mutex_owned(SD_MUTEX(un)));
18755 	ASSERT(bp != NULL);
18756 	ASSERT(xp != NULL);
18757 	ASSERT(pktp != NULL);
18758 
18759 	/*
18760 	 * Blank check is not fatal for removable devices, therefore
18761 	 * it does not require a console message.
18762 	 */
18763 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18764 	    SCSI_ERR_FATAL;
18765 	si.ssi_pfa_flag = FALSE;
18766 
18767 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18768 	sd_return_failed_command(un, bp, EIO);
18769 }
18770 
18771 
18772 
18773 
18774 /*
18775  *    Function: sd_sense_key_aborted_command
18776  *
18777  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18778  *
18779  *     Context: May be called from interrupt context
18780  */
18781 
18782 static void
18783 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18784     struct sd_xbuf *xp, struct scsi_pkt *pktp)
18785 {
18786 	struct sd_sense_info	si;
18787 
18788 	ASSERT(un != NULL);
18789 	ASSERT(mutex_owned(SD_MUTEX(un)));
18790 	ASSERT(bp != NULL);
18791 	ASSERT(xp != NULL);
18792 	ASSERT(pktp != NULL);
18793 
18794 	si.ssi_severity = SCSI_ERR_FATAL;
18795 	si.ssi_pfa_flag = FALSE;
18796 
18797 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18798 
18799 	/*
18800 	 * This really ought to be a fatal error, but we will retry anyway
18801 	 * as some drives report this as a spurious error.
18802 	 */
18803 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18804 	    &si, EIO, drv_usectohz(100000), NULL);
18805 }
18806 
18807 
18808 
18809 /*
18810  *    Function: sd_sense_key_default
18811  *
18812  * Description: Default recovery action for several SCSI sense keys (basically
18813  *		attempts a retry).
18814  *
18815  *     Context: May be called from interrupt context
18816  */
18817 
18818 static void
18819 sd_sense_key_default(struct sd_lun *un, uint8_t *sense_datap, struct buf *bp,
18820     struct sd_xbuf *xp, struct scsi_pkt *pktp)
18821 {
18822 	struct sd_sense_info	si;
18823 	uint8_t sense_key = scsi_sense_key(sense_datap);
18824 
18825 	ASSERT(un != NULL);
18826 	ASSERT(mutex_owned(SD_MUTEX(un)));
18827 	ASSERT(bp != NULL);
18828 	ASSERT(xp != NULL);
18829 	ASSERT(pktp != NULL);
18830 
18831 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18832 
18833 	/*
18834 	 * Undecoded sense key.	Attempt retries and hope that will fix
18835 	 * the problem.  Otherwise, we're dead.
18836 	 */
18837 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18838 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18839 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18840 	}
18841 
18842 	si.ssi_severity = SCSI_ERR_FATAL;
18843 	si.ssi_pfa_flag = FALSE;
18844 
18845 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18846 	    &si, EIO, (clock_t)0, NULL);
18847 }
18848 
18849 
18850 
18851 /*
18852  *    Function: sd_print_retry_msg
18853  *
18854  * Description: Print a message indicating the retry action being taken.
18855  *
18856  *   Arguments: un - ptr to associated softstate
18857  *		bp - ptr to buf(9S) for the command
18858  *		arg - not used.
18859  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18860  *			or SD_NO_RETRY_ISSUED
18861  *
18862  *     Context: May be called from interrupt context
18863  */
18864 /* ARGSUSED */
18865 static void
18866 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18867 {
18868 	struct sd_xbuf	*xp;
18869 	struct scsi_pkt *pktp;
18870 	char *reasonp;
18871 	char *msgp;
18872 
18873 	ASSERT(un != NULL);
18874 	ASSERT(mutex_owned(SD_MUTEX(un)));
18875 	ASSERT(bp != NULL);
18876 	pktp = SD_GET_PKTP(bp);
18877 	ASSERT(pktp != NULL);
18878 	xp = SD_GET_XBUF(bp);
18879 	ASSERT(xp != NULL);
18880 
18881 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18882 	mutex_enter(&un->un_pm_mutex);
18883 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18884 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18885 	    (pktp->pkt_flags & FLAG_SILENT)) {
18886 		mutex_exit(&un->un_pm_mutex);
18887 		goto update_pkt_reason;
18888 	}
18889 	mutex_exit(&un->un_pm_mutex);
18890 
18891 	/*
18892 	 * Suppress messages if they are all the same pkt_reason; with
18893 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18894 	 * If we are in panic, then suppress the retry messages.
18895 	 */
18896 	switch (flag) {
18897 	case SD_NO_RETRY_ISSUED:
18898 		msgp = "giving up";
18899 		break;
18900 	case SD_IMMEDIATE_RETRY_ISSUED:
18901 	case SD_DELAYED_RETRY_ISSUED:
18902 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18903 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18904 		    (sd_error_level != SCSI_ERR_ALL))) {
18905 			return;
18906 		}
18907 		msgp = "retrying command";
18908 		break;
18909 	default:
18910 		goto update_pkt_reason;
18911 	}
18912 
18913 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18914 	    scsi_rname(pktp->pkt_reason));
18915 
18916 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18917 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18918 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18919 	}
18920 
18921 update_pkt_reason:
18922 	/*
18923 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18924 	 * This is to prevent multiple console messages for the same failure
18925 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18926 	 * when the command is retried successfully because there still may be
18927 	 * more commands coming back with the same value of pktp->pkt_reason.
18928 	 */
18929 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18930 		un->un_last_pkt_reason = pktp->pkt_reason;
18931 	}
18932 }
18933 
18934 
18935 /*
18936  *    Function: sd_print_cmd_incomplete_msg
18937  *
18938  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18939  *
18940  *   Arguments: un - ptr to associated softstate
18941  *		bp - ptr to buf(9S) for the command
18942  *		arg - passed to sd_print_retry_msg()
18943  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18944  *			or SD_NO_RETRY_ISSUED
18945  *
18946  *     Context: May be called from interrupt context
18947  */
18948 
18949 static void
18950 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18951     int code)
18952 {
18953 	dev_info_t	*dip;
18954 
18955 	ASSERT(un != NULL);
18956 	ASSERT(mutex_owned(SD_MUTEX(un)));
18957 	ASSERT(bp != NULL);
18958 
18959 	switch (code) {
18960 	case SD_NO_RETRY_ISSUED:
18961 		/* Command was failed. Someone turned off this target? */
18962 		if (un->un_state != SD_STATE_OFFLINE) {
18963 			/*
18964 			 * Suppress message if we are detaching and
18965 			 * device has been disconnected
18966 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18967 			 * private interface and not part of the DDI
18968 			 */
18969 			dip = un->un_sd->sd_dev;
18970 			if (!(DEVI_IS_DETACHING(dip) &&
18971 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18972 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18973 				"disk not responding to selection\n");
18974 			}
18975 			New_state(un, SD_STATE_OFFLINE);
18976 		}
18977 		break;
18978 
18979 	case SD_DELAYED_RETRY_ISSUED:
18980 	case SD_IMMEDIATE_RETRY_ISSUED:
18981 	default:
18982 		/* Command was successfully queued for retry */
18983 		sd_print_retry_msg(un, bp, arg, code);
18984 		break;
18985 	}
18986 }
18987 
18988 
18989 /*
18990  *    Function: sd_pkt_reason_cmd_incomplete
18991  *
18992  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18993  *
18994  *     Context: May be called from interrupt context
18995  */
18996 
18997 static void
18998 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18999     struct sd_xbuf *xp, struct scsi_pkt *pktp)
19000 {
19001 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
19002 
19003 	ASSERT(un != NULL);
19004 	ASSERT(mutex_owned(SD_MUTEX(un)));
19005 	ASSERT(bp != NULL);
19006 	ASSERT(xp != NULL);
19007 	ASSERT(pktp != NULL);
19008 
19009 	/* Do not do a reset if selection did not complete */
19010 	/* Note: Should this not just check the bit? */
19011 	if (pktp->pkt_state != STATE_GOT_BUS) {
19012 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19013 		sd_reset_target(un, pktp);
19014 	}
19015 
19016 	/*
19017 	 * If the target was not successfully selected, then set
19018 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
19019 	 * with the target, and further retries and/or commands are
19020 	 * likely to take a long time.
19021 	 */
19022 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19023 		flag |= SD_RETRIES_FAILFAST;
19024 	}
19025 
19026 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19027 
19028 	sd_retry_command(un, bp, flag,
19029 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19030 }
19031 
19032 
19033 
19034 /*
19035  *    Function: sd_pkt_reason_cmd_tran_err
19036  *
19037  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19038  *
19039  *     Context: May be called from interrupt context
19040  */
19041 
19042 static void
19043 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19044     struct sd_xbuf *xp, struct scsi_pkt *pktp)
19045 {
19046 	ASSERT(un != NULL);
19047 	ASSERT(mutex_owned(SD_MUTEX(un)));
19048 	ASSERT(bp != NULL);
19049 	ASSERT(xp != NULL);
19050 	ASSERT(pktp != NULL);
19051 
19052 	/*
19053 	 * Do not reset if we got a parity error, or if
19054 	 * selection did not complete.
19055 	 */
19056 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19057 	/* Note: Should this not just check the bit for pkt_state? */
19058 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19059 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19060 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19061 		sd_reset_target(un, pktp);
19062 	}
19063 
19064 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19065 
19066 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19067 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19068 }
19069 
19070 
19071 
19072 /*
19073  *    Function: sd_pkt_reason_cmd_reset
19074  *
19075  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19076  *
19077  *     Context: May be called from interrupt context
19078  */
19079 
19080 static void
19081 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19082     struct scsi_pkt *pktp)
19083 {
19084 	ASSERT(un != NULL);
19085 	ASSERT(mutex_owned(SD_MUTEX(un)));
19086 	ASSERT(bp != NULL);
19087 	ASSERT(xp != NULL);
19088 	ASSERT(pktp != NULL);
19089 
19090 	/* The target may still be running the command, so try to reset. */
19091 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19092 	sd_reset_target(un, pktp);
19093 
19094 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19095 
19096 	/*
19097 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19098 	 * reset because another target on this bus caused it. The target
19099 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19100 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19101 	 */
19102 
19103 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19104 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19105 }
19106 
19107 
19108 
19109 
19110 /*
19111  *    Function: sd_pkt_reason_cmd_aborted
19112  *
19113  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19114  *
19115  *     Context: May be called from interrupt context
19116  */
19117 
19118 static void
19119 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19120     struct scsi_pkt *pktp)
19121 {
19122 	ASSERT(un != NULL);
19123 	ASSERT(mutex_owned(SD_MUTEX(un)));
19124 	ASSERT(bp != NULL);
19125 	ASSERT(xp != NULL);
19126 	ASSERT(pktp != NULL);
19127 
19128 	/* The target may still be running the command, so try to reset. */
19129 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19130 	sd_reset_target(un, pktp);
19131 
19132 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19133 
19134 	/*
19135 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19136 	 * aborted because another target on this bus caused it. The target
19137 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19138 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19139 	 */
19140 
19141 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19142 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19143 }
19144 
19145 
19146 
19147 /*
19148  *    Function: sd_pkt_reason_cmd_timeout
19149  *
19150  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19151  *
19152  *     Context: May be called from interrupt context
19153  */
19154 
19155 static void
19156 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19157     struct scsi_pkt *pktp)
19158 {
19159 	ASSERT(un != NULL);
19160 	ASSERT(mutex_owned(SD_MUTEX(un)));
19161 	ASSERT(bp != NULL);
19162 	ASSERT(xp != NULL);
19163 	ASSERT(pktp != NULL);
19164 
19165 
19166 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19167 	sd_reset_target(un, pktp);
19168 
19169 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19170 
19171 	/*
19172 	 * A command timeout indicates that we could not establish
19173 	 * communication with the target, so set SD_RETRIES_FAILFAST
19174 	 * as further retries/commands are likely to take a long time.
19175 	 */
19176 	sd_retry_command(un, bp,
19177 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19178 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19179 }
19180 
19181 
19182 
19183 /*
19184  *    Function: sd_pkt_reason_cmd_unx_bus_free
19185  *
19186  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19187  *
19188  *     Context: May be called from interrupt context
19189  */
19190 
19191 static void
19192 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19193     struct sd_xbuf *xp, struct scsi_pkt *pktp)
19194 {
19195 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19196 
19197 	ASSERT(un != NULL);
19198 	ASSERT(mutex_owned(SD_MUTEX(un)));
19199 	ASSERT(bp != NULL);
19200 	ASSERT(xp != NULL);
19201 	ASSERT(pktp != NULL);
19202 
19203 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19204 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19205 
19206 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19207 	    sd_print_retry_msg : NULL;
19208 
19209 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19210 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19211 }
19212 
19213 
19214 /*
19215  *    Function: sd_pkt_reason_cmd_tag_reject
19216  *
19217  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19218  *
19219  *     Context: May be called from interrupt context
19220  */
19221 
19222 static void
19223 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19224     struct sd_xbuf *xp, struct scsi_pkt *pktp)
19225 {
19226 	ASSERT(un != NULL);
19227 	ASSERT(mutex_owned(SD_MUTEX(un)));
19228 	ASSERT(bp != NULL);
19229 	ASSERT(xp != NULL);
19230 	ASSERT(pktp != NULL);
19231 
19232 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19233 	pktp->pkt_flags = 0;
19234 	un->un_tagflags = 0;
19235 	if (un->un_f_opt_queueing == TRUE) {
19236 		un->un_throttle = min(un->un_throttle, 3);
19237 	} else {
19238 		un->un_throttle = 1;
19239 	}
19240 	mutex_exit(SD_MUTEX(un));
19241 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19242 	mutex_enter(SD_MUTEX(un));
19243 
19244 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19245 
19246 	/* Legacy behavior not to check retry counts here. */
19247 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19248 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19249 }
19250 
19251 
19252 /*
19253  *    Function: sd_pkt_reason_default
19254  *
19255  * Description: Default recovery actions for SCSA pkt_reason values that
19256  *		do not have more explicit recovery actions.
19257  *
19258  *     Context: May be called from interrupt context
19259  */
19260 
19261 static void
19262 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19263     struct scsi_pkt *pktp)
19264 {
19265 	ASSERT(un != NULL);
19266 	ASSERT(mutex_owned(SD_MUTEX(un)));
19267 	ASSERT(bp != NULL);
19268 	ASSERT(xp != NULL);
19269 	ASSERT(pktp != NULL);
19270 
19271 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19272 	sd_reset_target(un, pktp);
19273 
19274 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19275 
19276 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19277 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19278 }
19279 
19280 
19281 
19282 /*
19283  *    Function: sd_pkt_status_check_condition
19284  *
19285  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19286  *
19287  *     Context: May be called from interrupt context
19288  */
19289 
19290 static void
19291 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19292     struct sd_xbuf *xp, struct scsi_pkt *pktp)
19293 {
19294 	ASSERT(un != NULL);
19295 	ASSERT(mutex_owned(SD_MUTEX(un)));
19296 	ASSERT(bp != NULL);
19297 	ASSERT(xp != NULL);
19298 	ASSERT(pktp != NULL);
19299 
19300 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19301 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19302 
19303 	/*
19304 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19305 	 * command will be retried after the request sense). Otherwise, retry
19306 	 * the command. Note: we are issuing the request sense even though the
19307 	 * retry limit may have been reached for the failed command.
19308 	 */
19309 	if (un->un_f_arq_enabled == FALSE) {
19310 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19311 		    "no ARQ, sending request sense command\n");
19312 		sd_send_request_sense_command(un, bp, pktp);
19313 	} else {
19314 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19315 		    "ARQ,retrying request sense command\n");
19316 #if defined(__i386) || defined(__amd64)
19317 		/*
19318 		 * The SD_RETRY_DELAY value need to be adjusted here
19319 		 * when SD_RETRY_DELAY change in sddef.h
19320 		 */
19321 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19322 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19323 		    NULL);
19324 #else
19325 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19326 		    EIO, SD_RETRY_DELAY, NULL);
19327 #endif
19328 	}
19329 
19330 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19331 }
19332 
19333 
19334 /*
19335  *    Function: sd_pkt_status_busy
19336  *
19337  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19338  *
19339  *     Context: May be called from interrupt context
19340  */
19341 
19342 static void
19343 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19344     struct scsi_pkt *pktp)
19345 {
19346 	ASSERT(un != NULL);
19347 	ASSERT(mutex_owned(SD_MUTEX(un)));
19348 	ASSERT(bp != NULL);
19349 	ASSERT(xp != NULL);
19350 	ASSERT(pktp != NULL);
19351 
19352 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19353 	    "sd_pkt_status_busy: entry\n");
19354 
19355 	/* If retries are exhausted, just fail the command. */
19356 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19357 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19358 		    "device busy too long\n");
19359 		sd_return_failed_command(un, bp, EIO);
19360 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19361 		    "sd_pkt_status_busy: exit\n");
19362 		return;
19363 	}
19364 	xp->xb_retry_count++;
19365 
19366 	/*
19367 	 * Try to reset the target. However, we do not want to perform
19368 	 * more than one reset if the device continues to fail. The reset
19369 	 * will be performed when the retry count reaches the reset
19370 	 * threshold.  This threshold should be set such that at least
19371 	 * one retry is issued before the reset is performed.
19372 	 */
19373 	if (xp->xb_retry_count ==
19374 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19375 		int rval = 0;
19376 		mutex_exit(SD_MUTEX(un));
19377 		if (un->un_f_allow_bus_device_reset == TRUE) {
19378 			/*
19379 			 * First try to reset the LUN; if we cannot then
19380 			 * try to reset the target.
19381 			 */
19382 			if (un->un_f_lun_reset_enabled == TRUE) {
19383 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19384 				    "sd_pkt_status_busy: RESET_LUN\n");
19385 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19386 			}
19387 			if (rval == 0) {
19388 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19389 				    "sd_pkt_status_busy: RESET_TARGET\n");
19390 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19391 			}
19392 		}
19393 		if (rval == 0) {
19394 			/*
19395 			 * If the RESET_LUN and/or RESET_TARGET failed,
19396 			 * try RESET_ALL
19397 			 */
19398 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19399 			    "sd_pkt_status_busy: RESET_ALL\n");
19400 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19401 		}
19402 		mutex_enter(SD_MUTEX(un));
19403 		if (rval == 0) {
19404 			/*
19405 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19406 			 * At this point we give up & fail the command.
19407 			 */
19408 			sd_return_failed_command(un, bp, EIO);
19409 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19410 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19411 			return;
19412 		}
19413 	}
19414 
19415 	/*
19416 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19417 	 * we have already checked the retry counts above.
19418 	 */
19419 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19420 	    EIO, un->un_busy_timeout, NULL);
19421 
19422 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19423 	    "sd_pkt_status_busy: exit\n");
19424 }
19425 
19426 
19427 /*
19428  *    Function: sd_pkt_status_reservation_conflict
19429  *
19430  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19431  *		command status.
19432  *
19433  *     Context: May be called from interrupt context
19434  */
19435 
19436 static void
19437 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19438     struct sd_xbuf *xp, struct scsi_pkt *pktp)
19439 {
19440 	ASSERT(un != NULL);
19441 	ASSERT(mutex_owned(SD_MUTEX(un)));
19442 	ASSERT(bp != NULL);
19443 	ASSERT(xp != NULL);
19444 	ASSERT(pktp != NULL);
19445 
19446 	/*
19447 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19448 	 * conflict could be due to various reasons like incorrect keys, not
19449 	 * registered or not reserved etc. So, we return EACCES to the caller.
19450 	 */
19451 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19452 		int cmd = SD_GET_PKT_OPCODE(pktp);
19453 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19454 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19455 			sd_return_failed_command(un, bp, EACCES);
19456 			return;
19457 		}
19458 	}
19459 
19460 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19461 
19462 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19463 		if (sd_failfast_enable != 0) {
19464 			/* By definition, we must panic here.... */
19465 			sd_panic_for_res_conflict(un);
19466 			/*NOTREACHED*/
19467 		}
19468 		SD_ERROR(SD_LOG_IO, un,
19469 		    "sd_handle_resv_conflict: Disk Reserved\n");
19470 		sd_return_failed_command(un, bp, EACCES);
19471 		return;
19472 	}
19473 
19474 	/*
19475 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19476 	 * property is set (default is 1). Retries will not succeed
19477 	 * on a disk reserved by another initiator. HA systems
19478 	 * may reset this via sd.conf to avoid these retries.
19479 	 *
19480 	 * Note: The legacy return code for this failure is EIO, however EACCES
19481 	 * seems more appropriate for a reservation conflict.
19482 	 */
19483 	if (sd_retry_on_reservation_conflict == 0) {
19484 		SD_ERROR(SD_LOG_IO, un,
19485 		    "sd_handle_resv_conflict: Device Reserved\n");
19486 		sd_return_failed_command(un, bp, EIO);
19487 		return;
19488 	}
19489 
19490 	/*
19491 	 * Retry the command if we can.
19492 	 *
19493 	 * Note: The legacy return code for this failure is EIO, however EACCES
19494 	 * seems more appropriate for a reservation conflict.
19495 	 */
19496 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19497 	    (clock_t)2, NULL);
19498 }
19499 
19500 
19501 
19502 /*
19503  *    Function: sd_pkt_status_qfull
19504  *
19505  * Description: Handle a QUEUE FULL condition from the target.  This can
19506  *		occur if the HBA does not handle the queue full condition.
19507  *		(Basically this means third-party HBAs as Sun HBAs will
19508  *		handle the queue full condition.)  Note that if there are
19509  *		some commands already in the transport, then the queue full
19510  *		has occurred because the queue for this nexus is actually
19511  *		full. If there are no commands in the transport, then the
19512  *		queue full is resulting from some other initiator or lun
19513  *		consuming all the resources at the target.
19514  *
19515  *     Context: May be called from interrupt context
19516  */
19517 
19518 static void
19519 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19520     struct scsi_pkt *pktp)
19521 {
19522 	ASSERT(un != NULL);
19523 	ASSERT(mutex_owned(SD_MUTEX(un)));
19524 	ASSERT(bp != NULL);
19525 	ASSERT(xp != NULL);
19526 	ASSERT(pktp != NULL);
19527 
19528 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19529 	    "sd_pkt_status_qfull: entry\n");
19530 
19531 	/*
19532 	 * Just lower the QFULL throttle and retry the command.  Note that
19533 	 * we do not limit the number of retries here.
19534 	 */
19535 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19536 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19537 	    SD_RESTART_TIMEOUT, NULL);
19538 
19539 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19540 	    "sd_pkt_status_qfull: exit\n");
19541 }
19542 
19543 
19544 /*
19545  *    Function: sd_reset_target
19546  *
19547  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19548  *		RESET_TARGET, or RESET_ALL.
19549  *
19550  *     Context: May be called under interrupt context.
19551  */
19552 
19553 static void
19554 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19555 {
19556 	int rval = 0;
19557 
19558 	ASSERT(un != NULL);
19559 	ASSERT(mutex_owned(SD_MUTEX(un)));
19560 	ASSERT(pktp != NULL);
19561 
19562 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19563 
19564 	/*
19565 	 * No need to reset if the transport layer has already done so.
19566 	 */
19567 	if ((pktp->pkt_statistics &
19568 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19569 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19570 		    "sd_reset_target: no reset\n");
19571 		return;
19572 	}
19573 
19574 	mutex_exit(SD_MUTEX(un));
19575 
19576 	if (un->un_f_allow_bus_device_reset == TRUE) {
19577 		if (un->un_f_lun_reset_enabled == TRUE) {
19578 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19579 			    "sd_reset_target: RESET_LUN\n");
19580 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19581 		}
19582 		if (rval == 0) {
19583 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19584 			    "sd_reset_target: RESET_TARGET\n");
19585 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19586 		}
19587 	}
19588 
19589 	if (rval == 0) {
19590 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19591 		    "sd_reset_target: RESET_ALL\n");
19592 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19593 	}
19594 
19595 	mutex_enter(SD_MUTEX(un));
19596 
19597 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19598 }
19599 
19600 /*
19601  *    Function: sd_target_change_task
19602  *
19603  * Description: Handle dynamic target change
19604  *
19605  *     Context: Executes in a taskq() thread context
19606  */
19607 static void
19608 sd_target_change_task(void *arg)
19609 {
19610 	struct sd_lun		*un = arg;
19611 	uint64_t		capacity;
19612 	diskaddr_t		label_cap;
19613 	uint_t			lbasize;
19614 	sd_ssc_t		*ssc;
19615 
19616 	ASSERT(un != NULL);
19617 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19618 
19619 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19620 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19621 		return;
19622 	}
19623 
19624 	ssc = sd_ssc_init(un);
19625 
19626 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19627 	    &lbasize, SD_PATH_DIRECT) != 0) {
19628 		SD_ERROR(SD_LOG_ERROR, un,
19629 		    "sd_target_change_task: fail to read capacity\n");
19630 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19631 		goto task_exit;
19632 	}
19633 
19634 	mutex_enter(SD_MUTEX(un));
19635 	if (capacity <= un->un_blockcount) {
19636 		mutex_exit(SD_MUTEX(un));
19637 		goto task_exit;
19638 	}
19639 
19640 	sd_update_block_info(un, lbasize, capacity);
19641 	mutex_exit(SD_MUTEX(un));
19642 
19643 	/*
19644 	 * If lun is EFI labeled and lun capacity is greater than the
19645 	 * capacity contained in the label, log a sys event.
19646 	 */
19647 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19648 	    (void*)SD_PATH_DIRECT) == 0) {
19649 		mutex_enter(SD_MUTEX(un));
19650 		if (un->un_f_blockcount_is_valid &&
19651 		    un->un_blockcount > label_cap) {
19652 			mutex_exit(SD_MUTEX(un));
19653 			sd_log_lun_expansion_event(un, KM_SLEEP);
19654 		} else {
19655 			mutex_exit(SD_MUTEX(un));
19656 		}
19657 	}
19658 
19659 task_exit:
19660 	sd_ssc_fini(ssc);
19661 }
19662 
19663 
19664 /*
19665  *    Function: sd_log_dev_status_event
19666  *
19667  * Description: Log EC_dev_status sysevent
19668  *
19669  *     Context: Never called from interrupt context
19670  */
19671 static void
19672 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19673 {
19674 	int err;
19675 	char			*path;
19676 	nvlist_t		*attr_list;
19677 
19678 	/* Allocate and build sysevent attribute list */
19679 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19680 	if (err != 0) {
19681 		SD_ERROR(SD_LOG_ERROR, un,
19682 		    "sd_log_dev_status_event: fail to allocate space\n");
19683 		return;
19684 	}
19685 
19686 	path = kmem_alloc(MAXPATHLEN, km_flag);
19687 	if (path == NULL) {
19688 		nvlist_free(attr_list);
19689 		SD_ERROR(SD_LOG_ERROR, un,
19690 		    "sd_log_dev_status_event: fail to allocate space\n");
19691 		return;
19692 	}
19693 	/*
19694 	 * Add path attribute to identify the lun.
19695 	 * We are using minor node 'a' as the sysevent attribute.
19696 	 */
19697 	(void) snprintf(path, MAXPATHLEN, "/devices");
19698 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19699 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19700 	    ":a");
19701 
19702 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19703 	if (err != 0) {
19704 		nvlist_free(attr_list);
19705 		kmem_free(path, MAXPATHLEN);
19706 		SD_ERROR(SD_LOG_ERROR, un,
19707 		    "sd_log_dev_status_event: fail to add attribute\n");
19708 		return;
19709 	}
19710 
19711 	/* Log dynamic lun expansion sysevent */
19712 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19713 	    esc, attr_list, NULL, km_flag);
19714 	if (err != DDI_SUCCESS) {
19715 		SD_ERROR(SD_LOG_ERROR, un,
19716 		    "sd_log_dev_status_event: fail to log sysevent\n");
19717 	}
19718 
19719 	nvlist_free(attr_list);
19720 	kmem_free(path, MAXPATHLEN);
19721 }
19722 
19723 
19724 /*
19725  *    Function: sd_log_lun_expansion_event
19726  *
19727  * Description: Log lun expansion sys event
19728  *
19729  *     Context: Never called from interrupt context
19730  */
19731 static void
19732 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19733 {
19734 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19735 }
19736 
19737 
19738 /*
19739  *    Function: sd_log_eject_request_event
19740  *
19741  * Description: Log eject request sysevent
19742  *
19743  *     Context: Never called from interrupt context
19744  */
19745 static void
19746 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19747 {
19748 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19749 }
19750 
19751 
19752 /*
19753  *    Function: sd_media_change_task
19754  *
19755  * Description: Recovery action for CDROM to become available.
19756  *
19757  *     Context: Executes in a taskq() thread context
19758  */
19759 
19760 static void
19761 sd_media_change_task(void *arg)
19762 {
19763 	struct	scsi_pkt	*pktp = arg;
19764 	struct	sd_lun		*un;
19765 	struct	buf		*bp;
19766 	struct	sd_xbuf		*xp;
19767 	int	err		= 0;
19768 	int	retry_count	= 0;
19769 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19770 	struct	sd_sense_info	si;
19771 
19772 	ASSERT(pktp != NULL);
19773 	bp = (struct buf *)pktp->pkt_private;
19774 	ASSERT(bp != NULL);
19775 	xp = SD_GET_XBUF(bp);
19776 	ASSERT(xp != NULL);
19777 	un = SD_GET_UN(bp);
19778 	ASSERT(un != NULL);
19779 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19780 	ASSERT(un->un_f_monitor_media_state);
19781 
19782 	si.ssi_severity = SCSI_ERR_INFO;
19783 	si.ssi_pfa_flag = FALSE;
19784 
19785 	/*
19786 	 * When a reset is issued on a CDROM, it takes a long time to
19787 	 * recover. First few attempts to read capacity and other things
19788 	 * related to handling unit attention fail (with a ASC 0x4 and
19789 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19790 	 * to limit the retries in other cases of genuine failures like
19791 	 * no media in drive.
19792 	 */
19793 	while (retry_count++ < retry_limit) {
19794 		if ((err = sd_handle_mchange(un)) == 0) {
19795 			break;
19796 		}
19797 		if (err == EAGAIN) {
19798 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19799 		}
19800 		/* Sleep for 0.5 sec. & try again */
19801 		delay(drv_usectohz(500000));
19802 	}
19803 
19804 	/*
19805 	 * Dispatch (retry or fail) the original command here,
19806 	 * along with appropriate console messages....
19807 	 *
19808 	 * Must grab the mutex before calling sd_retry_command,
19809 	 * sd_print_sense_msg and sd_return_failed_command.
19810 	 */
19811 	mutex_enter(SD_MUTEX(un));
19812 	if (err != SD_CMD_SUCCESS) {
19813 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19814 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19815 		si.ssi_severity = SCSI_ERR_FATAL;
19816 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19817 		sd_return_failed_command(un, bp, EIO);
19818 	} else {
19819 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19820 		    &si, EIO, (clock_t)0, NULL);
19821 	}
19822 	mutex_exit(SD_MUTEX(un));
19823 }
19824 
19825 
19826 
19827 /*
19828  *    Function: sd_handle_mchange
19829  *
19830  * Description: Perform geometry validation & other recovery when CDROM
19831  *		has been removed from drive.
19832  *
19833  * Return Code: 0 for success
19834  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19835  *		sd_send_scsi_READ_CAPACITY()
19836  *
19837  *     Context: Executes in a taskq() thread context
19838  */
19839 
19840 static int
19841 sd_handle_mchange(struct sd_lun *un)
19842 {
19843 	uint64_t	capacity;
19844 	uint32_t	lbasize;
19845 	int		rval;
19846 	sd_ssc_t	*ssc;
19847 
19848 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19849 	ASSERT(un->un_f_monitor_media_state);
19850 
19851 	ssc = sd_ssc_init(un);
19852 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19853 	    SD_PATH_DIRECT_PRIORITY);
19854 
19855 	if (rval != 0)
19856 		goto failed;
19857 
19858 	mutex_enter(SD_MUTEX(un));
19859 	sd_update_block_info(un, lbasize, capacity);
19860 
19861 	if (un->un_errstats != NULL) {
19862 		struct	sd_errstats *stp =
19863 		    (struct sd_errstats *)un->un_errstats->ks_data;
19864 		stp->sd_capacity.value.ui64 = (uint64_t)
19865 		    ((uint64_t)un->un_blockcount *
19866 		    (uint64_t)un->un_tgt_blocksize);
19867 	}
19868 
19869 	/*
19870 	 * Check if the media in the device is writable or not
19871 	 */
19872 	if (ISCD(un)) {
19873 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19874 	}
19875 
19876 	/*
19877 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19878 	 * valid geometry.
19879 	 */
19880 	mutex_exit(SD_MUTEX(un));
19881 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19882 
19883 
19884 	if (cmlb_validate(un->un_cmlbhandle, 0,
19885 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19886 		sd_ssc_fini(ssc);
19887 		return (EIO);
19888 	} else {
19889 		if (un->un_f_pkstats_enabled) {
19890 			sd_set_pstats(un);
19891 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19892 			    "sd_handle_mchange: un:0x%p pstats created and "
19893 			    "set\n", un);
19894 		}
19895 	}
19896 
19897 	/*
19898 	 * Try to lock the door
19899 	 */
19900 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19901 	    SD_PATH_DIRECT_PRIORITY);
19902 failed:
19903 	if (rval != 0)
19904 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19905 	sd_ssc_fini(ssc);
19906 	return (rval);
19907 }
19908 
19909 
19910 /*
19911  *    Function: sd_send_scsi_DOORLOCK
19912  *
19913  * Description: Issue the scsi DOOR LOCK command
19914  *
19915  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19916  *                      structure for this target.
19917  *		flag  - SD_REMOVAL_ALLOW
19918  *			SD_REMOVAL_PREVENT
19919  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19920  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19921  *			to use the USCSI "direct" chain and bypass the normal
19922  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19923  *			command is issued as part of an error recovery action.
19924  *
19925  * Return Code: 0   - Success
19926  *		errno return code from sd_ssc_send()
19927  *
19928  *     Context: Can sleep.
19929  */
19930 
19931 static int
19932 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19933 {
19934 	struct scsi_extended_sense	sense_buf;
19935 	union scsi_cdb		cdb;
19936 	struct uscsi_cmd	ucmd_buf;
19937 	int			status;
19938 	struct sd_lun		*un;
19939 
19940 	ASSERT(ssc != NULL);
19941 	un = ssc->ssc_un;
19942 	ASSERT(un != NULL);
19943 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19944 
19945 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19946 
19947 	/* already determined doorlock is not supported, fake success */
19948 	if (un->un_f_doorlock_supported == FALSE) {
19949 		return (0);
19950 	}
19951 
19952 	/*
19953 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19954 	 * ignore the command so we can complete the eject
19955 	 * operation.
19956 	 */
19957 	if (flag == SD_REMOVAL_PREVENT) {
19958 		mutex_enter(SD_MUTEX(un));
19959 		if (un->un_f_ejecting == TRUE) {
19960 			mutex_exit(SD_MUTEX(un));
19961 			return (EAGAIN);
19962 		}
19963 		mutex_exit(SD_MUTEX(un));
19964 	}
19965 
19966 	bzero(&cdb, sizeof (cdb));
19967 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19968 
19969 	cdb.scc_cmd = SCMD_DOORLOCK;
19970 	cdb.cdb_opaque[4] = (uchar_t)flag;
19971 
19972 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19973 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19974 	ucmd_buf.uscsi_bufaddr	= NULL;
19975 	ucmd_buf.uscsi_buflen	= 0;
19976 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19977 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19978 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19979 	ucmd_buf.uscsi_timeout	= 15;
19980 
19981 	SD_TRACE(SD_LOG_IO, un,
19982 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19983 
19984 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19985 	    UIO_SYSSPACE, path_flag);
19986 
19987 	if (status == 0)
19988 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19989 
19990 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19991 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19992 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19993 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19994 
19995 		/* fake success and skip subsequent doorlock commands */
19996 		un->un_f_doorlock_supported = FALSE;
19997 		return (0);
19998 	}
19999 
20000 	return (status);
20001 }
20002 
20003 /*
20004  *    Function: sd_send_scsi_READ_CAPACITY
20005  *
20006  * Description: This routine uses the scsi READ CAPACITY command to determine
20007  *		the device capacity in number of blocks and the device native
20008  *		block size. If this function returns a failure, then the
20009  *		values in *capp and *lbap are undefined.  If the capacity
20010  *		returned is 0xffffffff then the lun is too large for a
20011  *		normal READ CAPACITY command and the results of a
20012  *		READ CAPACITY 16 will be used instead.
20013  *
20014  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20015  *		capp - ptr to unsigned 64-bit variable to receive the
20016  *			capacity value from the command.
20017  *		lbap - ptr to unsigned 32-bit varaible to receive the
20018  *			block size value from the command
20019  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20020  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20021  *			to use the USCSI "direct" chain and bypass the normal
20022  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20023  *			command is issued as part of an error recovery action.
20024  *
20025  * Return Code: 0   - Success
20026  *		EIO - IO error
20027  *		EACCES - Reservation conflict detected
20028  *		EAGAIN - Device is becoming ready
20029  *		errno return code from sd_ssc_send()
20030  *
20031  *     Context: Can sleep.  Blocks until command completes.
20032  */
20033 
20034 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20035 
20036 static int
20037 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20038     int path_flag)
20039 {
20040 	struct	scsi_extended_sense	sense_buf;
20041 	struct	uscsi_cmd	ucmd_buf;
20042 	union	scsi_cdb	cdb;
20043 	uint32_t		*capacity_buf;
20044 	uint64_t		capacity;
20045 	uint32_t		lbasize;
20046 	uint32_t		pbsize;
20047 	int			status;
20048 	struct sd_lun		*un;
20049 
20050 	ASSERT(ssc != NULL);
20051 
20052 	un = ssc->ssc_un;
20053 	ASSERT(un != NULL);
20054 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20055 	ASSERT(capp != NULL);
20056 	ASSERT(lbap != NULL);
20057 
20058 	SD_TRACE(SD_LOG_IO, un,
20059 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20060 
20061 	/*
20062 	 * First send a READ_CAPACITY command to the target.
20063 	 * (This command is mandatory under SCSI-2.)
20064 	 *
20065 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20066 	 * Medium Indicator bit is cleared.  The address field must be
20067 	 * zero if the PMI bit is zero.
20068 	 */
20069 	bzero(&cdb, sizeof (cdb));
20070 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20071 
20072 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20073 
20074 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20075 
20076 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20077 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20078 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20079 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20080 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20081 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20082 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20083 	ucmd_buf.uscsi_timeout	= 60;
20084 
20085 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20086 	    UIO_SYSSPACE, path_flag);
20087 
20088 	switch (status) {
20089 	case 0:
20090 		/* Return failure if we did not get valid capacity data. */
20091 		if (ucmd_buf.uscsi_resid != 0) {
20092 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20093 			    "sd_send_scsi_READ_CAPACITY received invalid "
20094 			    "capacity data");
20095 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20096 			return (EIO);
20097 		}
20098 		/*
20099 		 * Read capacity and block size from the READ CAPACITY 10 data.
20100 		 * This data may be adjusted later due to device specific
20101 		 * issues.
20102 		 *
20103 		 * According to the SCSI spec, the READ CAPACITY 10
20104 		 * command returns the following:
20105 		 *
20106 		 *  bytes 0-3: Maximum logical block address available.
20107 		 *		(MSB in byte:0 & LSB in byte:3)
20108 		 *
20109 		 *  bytes 4-7: Block length in bytes
20110 		 *		(MSB in byte:4 & LSB in byte:7)
20111 		 *
20112 		 */
20113 		capacity = BE_32(capacity_buf[0]);
20114 		lbasize = BE_32(capacity_buf[1]);
20115 
20116 		/*
20117 		 * Done with capacity_buf
20118 		 */
20119 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20120 
20121 		/*
20122 		 * if the reported capacity is set to all 0xf's, then
20123 		 * this disk is too large and requires SBC-2 commands.
20124 		 * Reissue the request using READ CAPACITY 16.
20125 		 */
20126 		if (capacity == 0xffffffff) {
20127 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20128 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20129 			    &lbasize, &pbsize, path_flag);
20130 			if (status != 0) {
20131 				return (status);
20132 			} else {
20133 				goto rc16_done;
20134 			}
20135 		}
20136 		break;	/* Success! */
20137 	case EIO:
20138 		switch (ucmd_buf.uscsi_status) {
20139 		case STATUS_RESERVATION_CONFLICT:
20140 			status = EACCES;
20141 			break;
20142 		case STATUS_CHECK:
20143 			/*
20144 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20145 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20146 			 */
20147 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20148 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20149 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20150 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20151 				return (EAGAIN);
20152 			}
20153 			break;
20154 		default:
20155 			break;
20156 		}
20157 		/* FALLTHRU */
20158 	default:
20159 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20160 		return (status);
20161 	}
20162 
20163 	/*
20164 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20165 	 * (2352 and 0 are common) so for these devices always force the value
20166 	 * to 2048 as required by the ATAPI specs.
20167 	 */
20168 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20169 		lbasize = 2048;
20170 	}
20171 
20172 	/*
20173 	 * Get the maximum LBA value from the READ CAPACITY data.
20174 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20175 	 * was cleared when issuing the command. This means that the LBA
20176 	 * returned from the device is the LBA of the last logical block
20177 	 * on the logical unit.  The actual logical block count will be
20178 	 * this value plus one.
20179 	 */
20180 	capacity += 1;
20181 
20182 	/*
20183 	 * Currently, for removable media, the capacity is saved in terms
20184 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20185 	 */
20186 	if (un->un_f_has_removable_media)
20187 		capacity *= (lbasize / un->un_sys_blocksize);
20188 
20189 rc16_done:
20190 
20191 	/*
20192 	 * Copy the values from the READ CAPACITY command into the space
20193 	 * provided by the caller.
20194 	 */
20195 	*capp = capacity;
20196 	*lbap = lbasize;
20197 
20198 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20199 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20200 
20201 	/*
20202 	 * Both the lbasize and capacity from the device must be nonzero,
20203 	 * otherwise we assume that the values are not valid and return
20204 	 * failure to the caller. (4203735)
20205 	 */
20206 	if ((capacity == 0) || (lbasize == 0)) {
20207 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20208 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20209 		    "capacity %llu lbasize %d", capacity, lbasize);
20210 		return (EIO);
20211 	}
20212 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20213 	return (0);
20214 }
20215 
20216 /*
20217  *    Function: sd_send_scsi_READ_CAPACITY_16
20218  *
20219  * Description: This routine uses the scsi READ CAPACITY 16 command to
20220  *		determine the device capacity in number of blocks and the
20221  *		device native block size.  If this function returns a failure,
20222  *		then the values in *capp and *lbap are undefined.
20223  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20224  *              which will apply any device specific adjustments to capacity
20225  *              and lbasize. One exception is it is also called by
20226  *              sd_get_media_info_ext. In that function, there is no need to
20227  *              adjust the capacity and lbasize.
20228  *
20229  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20230  *		capp - ptr to unsigned 64-bit variable to receive the
20231  *			capacity value from the command.
20232  *		lbap - ptr to unsigned 32-bit varaible to receive the
20233  *			block size value from the command
20234  *              psp  - ptr to unsigned 32-bit variable to receive the
20235  *                      physical block size value from the command
20236  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20237  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20238  *			to use the USCSI "direct" chain and bypass the normal
20239  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20240  *			this command is issued as part of an error recovery
20241  *			action.
20242  *
20243  * Return Code: 0   - Success
20244  *		EIO - IO error
20245  *		EACCES - Reservation conflict detected
20246  *		EAGAIN - Device is becoming ready
20247  *		errno return code from sd_ssc_send()
20248  *
20249  *     Context: Can sleep.  Blocks until command completes.
20250  */
20251 
20252 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20253 
20254 static int
20255 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20256     uint32_t *psp, int path_flag)
20257 {
20258 	struct	scsi_extended_sense	sense_buf;
20259 	struct	uscsi_cmd	ucmd_buf;
20260 	union	scsi_cdb	cdb;
20261 	uint64_t		*capacity16_buf;
20262 	uint64_t		capacity;
20263 	uint32_t		lbasize;
20264 	uint32_t		pbsize;
20265 	uint32_t		lbpb_exp;
20266 	int			status;
20267 	struct sd_lun		*un;
20268 
20269 	ASSERT(ssc != NULL);
20270 
20271 	un = ssc->ssc_un;
20272 	ASSERT(un != NULL);
20273 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20274 	ASSERT(capp != NULL);
20275 	ASSERT(lbap != NULL);
20276 
20277 	SD_TRACE(SD_LOG_IO, un,
20278 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20279 
20280 	/*
20281 	 * First send a READ_CAPACITY_16 command to the target.
20282 	 *
20283 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20284 	 * Medium Indicator bit is cleared.  The address field must be
20285 	 * zero if the PMI bit is zero.
20286 	 */
20287 	bzero(&cdb, sizeof (cdb));
20288 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20289 
20290 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20291 
20292 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20293 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20294 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20295 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20296 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20297 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20298 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20299 	ucmd_buf.uscsi_timeout	= 60;
20300 
20301 	/*
20302 	 * Read Capacity (16) is a Service Action In command.  One
20303 	 * command byte (0x9E) is overloaded for multiple operations,
20304 	 * with the second CDB byte specifying the desired operation
20305 	 */
20306 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20307 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20308 
20309 	/*
20310 	 * Fill in allocation length field
20311 	 */
20312 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20313 
20314 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20315 	    UIO_SYSSPACE, path_flag);
20316 
20317 	switch (status) {
20318 	case 0:
20319 		/* Return failure if we did not get valid capacity data. */
20320 		if (ucmd_buf.uscsi_resid > 20) {
20321 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20322 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20323 			    "capacity data");
20324 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20325 			return (EIO);
20326 		}
20327 
20328 		/*
20329 		 * Read capacity and block size from the READ CAPACITY 16 data.
20330 		 * This data may be adjusted later due to device specific
20331 		 * issues.
20332 		 *
20333 		 * According to the SCSI spec, the READ CAPACITY 16
20334 		 * command returns the following:
20335 		 *
20336 		 *  bytes 0-7: Maximum logical block address available.
20337 		 *		(MSB in byte:0 & LSB in byte:7)
20338 		 *
20339 		 *  bytes 8-11: Block length in bytes
20340 		 *		(MSB in byte:8 & LSB in byte:11)
20341 		 *
20342 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20343 		 */
20344 		capacity = BE_64(capacity16_buf[0]);
20345 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20346 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20347 
20348 		pbsize = lbasize << lbpb_exp;
20349 
20350 		/*
20351 		 * Done with capacity16_buf
20352 		 */
20353 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20354 
20355 		/*
20356 		 * if the reported capacity is set to all 0xf's, then
20357 		 * this disk is too large.  This could only happen with
20358 		 * a device that supports LBAs larger than 64 bits which
20359 		 * are not defined by any current T10 standards.
20360 		 */
20361 		if (capacity == 0xffffffffffffffff) {
20362 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20363 			    "disk is too large");
20364 			return (EIO);
20365 		}
20366 		break;	/* Success! */
20367 	case EIO:
20368 		switch (ucmd_buf.uscsi_status) {
20369 		case STATUS_RESERVATION_CONFLICT:
20370 			status = EACCES;
20371 			break;
20372 		case STATUS_CHECK:
20373 			/*
20374 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20375 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20376 			 */
20377 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20378 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20379 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20380 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20381 				return (EAGAIN);
20382 			}
20383 			break;
20384 		default:
20385 			break;
20386 		}
20387 		/* FALLTHRU */
20388 	default:
20389 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20390 		return (status);
20391 	}
20392 
20393 	/*
20394 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20395 	 * (2352 and 0 are common) so for these devices always force the value
20396 	 * to 2048 as required by the ATAPI specs.
20397 	 */
20398 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20399 		lbasize = 2048;
20400 	}
20401 
20402 	/*
20403 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20404 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20405 	 * was cleared when issuing the command. This means that the LBA
20406 	 * returned from the device is the LBA of the last logical block
20407 	 * on the logical unit.  The actual logical block count will be
20408 	 * this value plus one.
20409 	 */
20410 	capacity += 1;
20411 
20412 	/*
20413 	 * Currently, for removable media, the capacity is saved in terms
20414 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20415 	 */
20416 	if (un->un_f_has_removable_media)
20417 		capacity *= (lbasize / un->un_sys_blocksize);
20418 
20419 	*capp = capacity;
20420 	*lbap = lbasize;
20421 	*psp = pbsize;
20422 
20423 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20424 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20425 	    capacity, lbasize, pbsize);
20426 
20427 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20428 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20429 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20430 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20431 		return (EIO);
20432 	}
20433 
20434 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20435 	return (0);
20436 }
20437 
20438 
20439 /*
20440  *    Function: sd_send_scsi_START_STOP_UNIT
20441  *
20442  * Description: Issue a scsi START STOP UNIT command to the target.
20443  *
20444  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20445  *                       structure for this target.
20446  *      pc_flag - SD_POWER_CONDITION
20447  *                SD_START_STOP
20448  *		flag  - SD_TARGET_START
20449  *			SD_TARGET_STOP
20450  *			SD_TARGET_EJECT
20451  *			SD_TARGET_CLOSE
20452  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20453  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20454  *			to use the USCSI "direct" chain and bypass the normal
20455  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20456  *			command is issued as part of an error recovery action.
20457  *
20458  * Return Code: 0   - Success
20459  *		EIO - IO error
20460  *		EACCES - Reservation conflict detected
20461  *		ENXIO  - Not Ready, medium not present
20462  *		errno return code from sd_ssc_send()
20463  *
20464  *     Context: Can sleep.
20465  */
20466 
20467 static int
20468 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20469     int path_flag)
20470 {
20471 	struct	scsi_extended_sense	sense_buf;
20472 	union scsi_cdb		cdb;
20473 	struct uscsi_cmd	ucmd_buf;
20474 	int			status;
20475 	struct sd_lun		*un;
20476 
20477 	ASSERT(ssc != NULL);
20478 	un = ssc->ssc_un;
20479 	ASSERT(un != NULL);
20480 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20481 
20482 	SD_TRACE(SD_LOG_IO, un,
20483 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20484 
20485 	if (un->un_f_check_start_stop &&
20486 	    (pc_flag == SD_START_STOP) &&
20487 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20488 	    (un->un_f_start_stop_supported != TRUE)) {
20489 		return (0);
20490 	}
20491 
20492 	/*
20493 	 * If we are performing an eject operation and
20494 	 * we receive any command other than SD_TARGET_EJECT
20495 	 * we should immediately return.
20496 	 */
20497 	if (flag != SD_TARGET_EJECT) {
20498 		mutex_enter(SD_MUTEX(un));
20499 		if (un->un_f_ejecting == TRUE) {
20500 			mutex_exit(SD_MUTEX(un));
20501 			return (EAGAIN);
20502 		}
20503 		mutex_exit(SD_MUTEX(un));
20504 	}
20505 
20506 	bzero(&cdb, sizeof (cdb));
20507 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20508 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20509 
20510 	cdb.scc_cmd = SCMD_START_STOP;
20511 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20512 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20513 
20514 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20515 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20516 	ucmd_buf.uscsi_bufaddr	= NULL;
20517 	ucmd_buf.uscsi_buflen	= 0;
20518 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20519 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20520 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20521 	ucmd_buf.uscsi_timeout	= 200;
20522 
20523 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20524 	    UIO_SYSSPACE, path_flag);
20525 
20526 	switch (status) {
20527 	case 0:
20528 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20529 		break;	/* Success! */
20530 	case EIO:
20531 		switch (ucmd_buf.uscsi_status) {
20532 		case STATUS_RESERVATION_CONFLICT:
20533 			status = EACCES;
20534 			break;
20535 		case STATUS_CHECK:
20536 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20537 				switch (scsi_sense_key(
20538 				    (uint8_t *)&sense_buf)) {
20539 				case KEY_ILLEGAL_REQUEST:
20540 					status = ENOTSUP;
20541 					break;
20542 				case KEY_NOT_READY:
20543 					if (scsi_sense_asc(
20544 					    (uint8_t *)&sense_buf)
20545 					    == 0x3A) {
20546 						status = ENXIO;
20547 					}
20548 					break;
20549 				default:
20550 					break;
20551 				}
20552 			}
20553 			break;
20554 		default:
20555 			break;
20556 		}
20557 		break;
20558 	default:
20559 		break;
20560 	}
20561 
20562 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20563 
20564 	return (status);
20565 }
20566 
20567 
20568 /*
20569  *    Function: sd_start_stop_unit_callback
20570  *
20571  * Description: timeout(9F) callback to begin recovery process for a
20572  *		device that has spun down.
20573  *
20574  *   Arguments: arg - pointer to associated softstate struct.
20575  *
20576  *     Context: Executes in a timeout(9F) thread context
20577  */
20578 
20579 static void
20580 sd_start_stop_unit_callback(void *arg)
20581 {
20582 	struct sd_lun	*un = arg;
20583 	ASSERT(un != NULL);
20584 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20585 
20586 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20587 
20588 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20589 }
20590 
20591 
20592 /*
20593  *    Function: sd_start_stop_unit_task
20594  *
20595  * Description: Recovery procedure when a drive is spun down.
20596  *
20597  *   Arguments: arg - pointer to associated softstate struct.
20598  *
20599  *     Context: Executes in a taskq() thread context
20600  */
20601 
20602 static void
20603 sd_start_stop_unit_task(void *arg)
20604 {
20605 	struct sd_lun	*un = arg;
20606 	sd_ssc_t	*ssc;
20607 	int		power_level;
20608 	int		rval;
20609 
20610 	ASSERT(un != NULL);
20611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20612 
20613 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20614 
20615 	/*
20616 	 * Some unformatted drives report not ready error, no need to
20617 	 * restart if format has been initiated.
20618 	 */
20619 	mutex_enter(SD_MUTEX(un));
20620 	if (un->un_f_format_in_progress == TRUE) {
20621 		mutex_exit(SD_MUTEX(un));
20622 		return;
20623 	}
20624 	mutex_exit(SD_MUTEX(un));
20625 
20626 	ssc = sd_ssc_init(un);
20627 	/*
20628 	 * When a START STOP command is issued from here, it is part of a
20629 	 * failure recovery operation and must be issued before any other
20630 	 * commands, including any pending retries. Thus it must be sent
20631 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20632 	 * succeeds or not, we will start I/O after the attempt.
20633 	 * If power condition is supported and the current power level
20634 	 * is capable of performing I/O, we should set the power condition
20635 	 * to that level. Otherwise, set the power condition to ACTIVE.
20636 	 */
20637 	if (un->un_f_power_condition_supported) {
20638 		mutex_enter(SD_MUTEX(un));
20639 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20640 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20641 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20642 		mutex_exit(SD_MUTEX(un));
20643 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20644 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20645 	} else {
20646 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20647 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20648 	}
20649 
20650 	if (rval != 0)
20651 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20652 	sd_ssc_fini(ssc);
20653 	/*
20654 	 * The above call blocks until the START_STOP_UNIT command completes.
20655 	 * Now that it has completed, we must re-try the original IO that
20656 	 * received the NOT READY condition in the first place. There are
20657 	 * three possible conditions here:
20658 	 *
20659 	 *  (1) The original IO is on un_retry_bp.
20660 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20661 	 *	is NULL.
20662 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20663 	 *	points to some other, unrelated bp.
20664 	 *
20665 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20666 	 * as the argument. If un_retry_bp is NULL, this will initiate
20667 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20668 	 * then this will process the bp on un_retry_bp. That may or may not
20669 	 * be the original IO, but that does not matter: the important thing
20670 	 * is to keep the IO processing going at this point.
20671 	 *
20672 	 * Note: This is a very specific error recovery sequence associated
20673 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20674 	 * serialize the I/O with completion of the spin-up.
20675 	 */
20676 	mutex_enter(SD_MUTEX(un));
20677 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20678 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20679 	    un, un->un_retry_bp);
20680 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20681 	sd_start_cmds(un, un->un_retry_bp);
20682 	mutex_exit(SD_MUTEX(un));
20683 
20684 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20685 }
20686 
20687 
20688 /*
20689  *    Function: sd_send_scsi_INQUIRY
20690  *
20691  * Description: Issue the scsi INQUIRY command.
20692  *
20693  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20694  *                      structure for this target.
20695  *		bufaddr
20696  *		buflen
20697  *		evpd
20698  *		page_code
20699  *		page_length
20700  *
20701  * Return Code: 0   - Success
20702  *		errno return code from sd_ssc_send()
20703  *
20704  *     Context: Can sleep. Does not return until command is completed.
20705  */
20706 
20707 static int
20708 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20709     uchar_t evpd, uchar_t page_code, size_t *residp)
20710 {
20711 	union scsi_cdb		cdb;
20712 	struct uscsi_cmd	ucmd_buf;
20713 	int			status;
20714 	struct sd_lun		*un;
20715 
20716 	ASSERT(ssc != NULL);
20717 	un = ssc->ssc_un;
20718 	ASSERT(un != NULL);
20719 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20720 	ASSERT(bufaddr != NULL);
20721 
20722 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20723 
20724 	bzero(&cdb, sizeof (cdb));
20725 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20726 	bzero(bufaddr, buflen);
20727 
20728 	cdb.scc_cmd = SCMD_INQUIRY;
20729 	cdb.cdb_opaque[1] = evpd;
20730 	cdb.cdb_opaque[2] = page_code;
20731 	FORMG0COUNT(&cdb, buflen);
20732 
20733 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20734 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20735 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20736 	ucmd_buf.uscsi_buflen	= buflen;
20737 	ucmd_buf.uscsi_rqbuf	= NULL;
20738 	ucmd_buf.uscsi_rqlen	= 0;
20739 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20740 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20741 
20742 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20743 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20744 
20745 	/*
20746 	 * Only handle status == 0, the upper-level caller
20747 	 * will put different assessment based on the context.
20748 	 */
20749 	if (status == 0)
20750 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20751 
20752 	if ((status == 0) && (residp != NULL)) {
20753 		*residp = ucmd_buf.uscsi_resid;
20754 	}
20755 
20756 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20757 
20758 	return (status);
20759 }
20760 
20761 
20762 /*
20763  *    Function: sd_send_scsi_TEST_UNIT_READY
20764  *
20765  * Description: Issue the scsi TEST UNIT READY command.
20766  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20767  *		prevent retrying failed commands. Use this when the intent
20768  *		is either to check for device readiness, to clear a Unit
20769  *		Attention, or to clear any outstanding sense data.
20770  *		However under specific conditions the expected behavior
20771  *		is for retries to bring a device ready, so use the flag
20772  *		with caution.
20773  *
20774  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20775  *                      structure for this target.
20776  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20777  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20778  *			0: dont check for media present, do retries on cmd.
20779  *
20780  * Return Code: 0   - Success
20781  *		EIO - IO error
20782  *		EACCES - Reservation conflict detected
20783  *		ENXIO  - Not Ready, medium not present
20784  *		errno return code from sd_ssc_send()
20785  *
20786  *     Context: Can sleep. Does not return until command is completed.
20787  */
20788 
20789 static int
20790 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20791 {
20792 	struct	scsi_extended_sense	sense_buf;
20793 	union scsi_cdb		cdb;
20794 	struct uscsi_cmd	ucmd_buf;
20795 	int			status;
20796 	struct sd_lun		*un;
20797 
20798 	ASSERT(ssc != NULL);
20799 	un = ssc->ssc_un;
20800 	ASSERT(un != NULL);
20801 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20802 
20803 	SD_TRACE(SD_LOG_IO, un,
20804 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20805 
20806 	/*
20807 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20808 	 * timeouts when they receive a TUR and the queue is not empty. Check
20809 	 * the configuration flag set during attach (indicating the drive has
20810 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20811 	 * TUR. If there are
20812 	 * pending commands return success, this is a bit arbitrary but is ok
20813 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20814 	 * configurations.
20815 	 */
20816 	if (un->un_f_cfg_tur_check == TRUE) {
20817 		mutex_enter(SD_MUTEX(un));
20818 		if (un->un_ncmds_in_transport != 0) {
20819 			mutex_exit(SD_MUTEX(un));
20820 			return (0);
20821 		}
20822 		mutex_exit(SD_MUTEX(un));
20823 	}
20824 
20825 	bzero(&cdb, sizeof (cdb));
20826 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20827 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20828 
20829 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20830 
20831 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20832 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20833 	ucmd_buf.uscsi_bufaddr	= NULL;
20834 	ucmd_buf.uscsi_buflen	= 0;
20835 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20836 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20837 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20838 
20839 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20840 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20841 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20842 	}
20843 	ucmd_buf.uscsi_timeout	= 60;
20844 
20845 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20846 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20847 	    SD_PATH_STANDARD));
20848 
20849 	switch (status) {
20850 	case 0:
20851 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20852 		break;	/* Success! */
20853 	case EIO:
20854 		switch (ucmd_buf.uscsi_status) {
20855 		case STATUS_RESERVATION_CONFLICT:
20856 			status = EACCES;
20857 			break;
20858 		case STATUS_CHECK:
20859 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20860 				break;
20861 			}
20862 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20863 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20864 			    KEY_NOT_READY) &&
20865 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20866 				status = ENXIO;
20867 			}
20868 			break;
20869 		default:
20870 			break;
20871 		}
20872 		break;
20873 	default:
20874 		break;
20875 	}
20876 
20877 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20878 
20879 	return (status);
20880 }
20881 
20882 /*
20883  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20884  *
20885  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20886  *
20887  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20888  *                      structure for this target.
20889  *
20890  * Return Code: 0   - Success
20891  *		EACCES
20892  *		ENOTSUP
20893  *		errno return code from sd_ssc_send()
20894  *
20895  *     Context: Can sleep. Does not return until command is completed.
20896  */
20897 
20898 static int
20899 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd,
20900     uint16_t data_len, uchar_t *data_bufp)
20901 {
20902 	struct scsi_extended_sense	sense_buf;
20903 	union scsi_cdb		cdb;
20904 	struct uscsi_cmd	ucmd_buf;
20905 	int			status;
20906 	int			no_caller_buf = FALSE;
20907 	struct sd_lun		*un;
20908 
20909 	ASSERT(ssc != NULL);
20910 	un = ssc->ssc_un;
20911 	ASSERT(un != NULL);
20912 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20913 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20914 
20915 	SD_TRACE(SD_LOG_IO, un,
20916 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20917 
20918 	bzero(&cdb, sizeof (cdb));
20919 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20920 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20921 	if (data_bufp == NULL) {
20922 		/* Allocate a default buf if the caller did not give one */
20923 		ASSERT(data_len == 0);
20924 		data_len  = MHIOC_RESV_KEY_SIZE;
20925 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20926 		no_caller_buf = TRUE;
20927 	}
20928 
20929 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20930 	cdb.cdb_opaque[1] = usr_cmd;
20931 	FORMG1COUNT(&cdb, data_len);
20932 
20933 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20934 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20935 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20936 	ucmd_buf.uscsi_buflen	= data_len;
20937 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20938 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20939 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20940 	ucmd_buf.uscsi_timeout	= 60;
20941 
20942 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20943 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20944 
20945 	switch (status) {
20946 	case 0:
20947 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20948 
20949 		break;	/* Success! */
20950 	case EIO:
20951 		switch (ucmd_buf.uscsi_status) {
20952 		case STATUS_RESERVATION_CONFLICT:
20953 			status = EACCES;
20954 			break;
20955 		case STATUS_CHECK:
20956 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20957 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20958 			    KEY_ILLEGAL_REQUEST)) {
20959 				status = ENOTSUP;
20960 			}
20961 			break;
20962 		default:
20963 			break;
20964 		}
20965 		break;
20966 	default:
20967 		break;
20968 	}
20969 
20970 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20971 
20972 	if (no_caller_buf == TRUE) {
20973 		kmem_free(data_bufp, data_len);
20974 	}
20975 
20976 	return (status);
20977 }
20978 
20979 
20980 /*
20981  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20982  *
20983  * Description: This routine is the driver entry point for handling CD-ROM
20984  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20985  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20986  *		device.
20987  *
20988  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20989  *                      for the target.
20990  *		usr_cmd SCSI-3 reservation facility command (one of
20991  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20992  *			SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
20993  *		usr_bufp - user provided pointer register, reserve descriptor or
20994  *			preempt and abort structure (mhioc_register_t,
20995  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20996  *
20997  * Return Code: 0   - Success
20998  *		EACCES
20999  *		ENOTSUP
21000  *		errno return code from sd_ssc_send()
21001  *
21002  *     Context: Can sleep. Does not return until command is completed.
21003  */
21004 
21005 static int
21006 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
21007     uchar_t *usr_bufp)
21008 {
21009 	struct scsi_extended_sense	sense_buf;
21010 	union scsi_cdb		cdb;
21011 	struct uscsi_cmd	ucmd_buf;
21012 	int			status;
21013 	uchar_t			data_len = sizeof (sd_prout_t);
21014 	sd_prout_t		*prp;
21015 	struct sd_lun		*un;
21016 
21017 	ASSERT(ssc != NULL);
21018 	un = ssc->ssc_un;
21019 	ASSERT(un != NULL);
21020 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21021 	ASSERT(data_len == 24);	/* required by scsi spec */
21022 
21023 	SD_TRACE(SD_LOG_IO, un,
21024 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21025 
21026 	if (usr_bufp == NULL) {
21027 		return (EINVAL);
21028 	}
21029 
21030 	bzero(&cdb, sizeof (cdb));
21031 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21032 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21033 	prp = kmem_zalloc(data_len, KM_SLEEP);
21034 
21035 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21036 	cdb.cdb_opaque[1] = usr_cmd;
21037 	FORMG1COUNT(&cdb, data_len);
21038 
21039 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21040 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21041 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21042 	ucmd_buf.uscsi_buflen	= data_len;
21043 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21044 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21045 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21046 	ucmd_buf.uscsi_timeout	= 60;
21047 
21048 	switch (usr_cmd) {
21049 	case SD_SCSI3_REGISTER: {
21050 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21051 
21052 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21053 		bcopy(ptr->newkey.key, prp->service_key,
21054 		    MHIOC_RESV_KEY_SIZE);
21055 		prp->aptpl = ptr->aptpl;
21056 		break;
21057 	}
21058 	case SD_SCSI3_CLEAR: {
21059 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21060 
21061 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21062 		break;
21063 	}
21064 	case SD_SCSI3_RESERVE:
21065 	case SD_SCSI3_RELEASE: {
21066 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21067 
21068 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21069 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21070 		cdb.cdb_opaque[2] = ptr->type;
21071 		break;
21072 	}
21073 	case SD_SCSI3_PREEMPTANDABORT: {
21074 		mhioc_preemptandabort_t *ptr =
21075 		    (mhioc_preemptandabort_t *)usr_bufp;
21076 
21077 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21078 		bcopy(ptr->victim_key.key, prp->service_key,
21079 		    MHIOC_RESV_KEY_SIZE);
21080 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21081 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21082 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21083 		break;
21084 	}
21085 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21086 	{
21087 		mhioc_registerandignorekey_t *ptr;
21088 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21089 		bcopy(ptr->newkey.key,
21090 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21091 		prp->aptpl = ptr->aptpl;
21092 		break;
21093 	}
21094 	default:
21095 		ASSERT(FALSE);
21096 		break;
21097 	}
21098 
21099 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21100 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21101 
21102 	switch (status) {
21103 	case 0:
21104 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21105 		break;	/* Success! */
21106 	case EIO:
21107 		switch (ucmd_buf.uscsi_status) {
21108 		case STATUS_RESERVATION_CONFLICT:
21109 			status = EACCES;
21110 			break;
21111 		case STATUS_CHECK:
21112 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21113 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21114 			    KEY_ILLEGAL_REQUEST)) {
21115 				status = ENOTSUP;
21116 			}
21117 			break;
21118 		default:
21119 			break;
21120 		}
21121 		break;
21122 	default:
21123 		break;
21124 	}
21125 
21126 	kmem_free(prp, data_len);
21127 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21128 	return (status);
21129 }
21130 
21131 
21132 /*
21133  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21134  *
21135  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21136  *
21137  *   Arguments: un - pointer to the target's soft state struct
21138  *              dkc - pointer to the callback structure
21139  *
21140  * Return Code: 0 - success
21141  *		errno-type error code
21142  *
21143  *     Context: kernel thread context only.
21144  *
21145  *  _______________________________________________________________
21146  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21147  * |FLUSH_VOLATILE|              | operation                       |
21148  * |______________|______________|_________________________________|
21149  * | 0            | NULL         | Synchronous flush on both       |
21150  * |              |              | volatile and non-volatile cache |
21151  * |______________|______________|_________________________________|
21152  * | 1            | NULL         | Synchronous flush on volatile   |
21153  * |              |              | cache; disk drivers may suppress|
21154  * |              |              | flush if disk table indicates   |
21155  * |              |              | non-volatile cache              |
21156  * |______________|______________|_________________________________|
21157  * | 0            | !NULL        | Asynchronous flush on both      |
21158  * |              |              | volatile and non-volatile cache;|
21159  * |______________|______________|_________________________________|
21160  * | 1            | !NULL        | Asynchronous flush on volatile  |
21161  * |              |              | cache; disk drivers may suppress|
21162  * |              |              | flush if disk table indicates   |
21163  * |              |              | non-volatile cache              |
21164  * |______________|______________|_________________________________|
21165  *
21166  */
21167 
21168 static int
21169 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21170 {
21171 	struct sd_uscsi_info	*uip;
21172 	struct uscsi_cmd	*uscmd;
21173 	union scsi_cdb		*cdb;
21174 	struct buf		*bp;
21175 	int			rval = 0;
21176 	int			is_async;
21177 
21178 	SD_TRACE(SD_LOG_IO, un,
21179 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21180 
21181 	ASSERT(un != NULL);
21182 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21183 
21184 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21185 		is_async = FALSE;
21186 	} else {
21187 		is_async = TRUE;
21188 	}
21189 
21190 	mutex_enter(SD_MUTEX(un));
21191 	/* check whether cache flush should be suppressed */
21192 	if (un->un_f_suppress_cache_flush == TRUE) {
21193 		mutex_exit(SD_MUTEX(un));
21194 		/*
21195 		 * suppress the cache flush if the device is told to do
21196 		 * so by sd.conf or disk table
21197 		 */
21198 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21199 		    skip the cache flush since suppress_cache_flush is %d!\n",
21200 		    un->un_f_suppress_cache_flush);
21201 
21202 		if (is_async == TRUE) {
21203 			/* invoke callback for asynchronous flush */
21204 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21205 		}
21206 		return (rval);
21207 	}
21208 	mutex_exit(SD_MUTEX(un));
21209 
21210 	/*
21211 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21212 	 * set properly
21213 	 */
21214 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21215 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21216 
21217 	mutex_enter(SD_MUTEX(un));
21218 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21219 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21220 		/*
21221 		 * if the device supports SYNC_NV bit, turn on
21222 		 * the SYNC_NV bit to only flush volatile cache
21223 		 */
21224 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21225 	}
21226 	mutex_exit(SD_MUTEX(un));
21227 
21228 	/*
21229 	 * First get some memory for the uscsi_cmd struct and cdb
21230 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21231 	 */
21232 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21233 	uscmd->uscsi_cdblen = CDB_GROUP1;
21234 	uscmd->uscsi_cdb = (caddr_t)cdb;
21235 	uscmd->uscsi_bufaddr = NULL;
21236 	uscmd->uscsi_buflen = 0;
21237 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21238 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21239 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21240 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21241 	uscmd->uscsi_timeout = sd_io_time;
21242 
21243 	/*
21244 	 * Allocate an sd_uscsi_info struct and fill it with the info
21245 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21246 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21247 	 * since we allocate the buf here in this function, we do not
21248 	 * need to preserve the prior contents of b_private.
21249 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21250 	 */
21251 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21252 	uip->ui_flags = SD_PATH_DIRECT;
21253 	uip->ui_cmdp  = uscmd;
21254 
21255 	bp = getrbuf(KM_SLEEP);
21256 	bp->b_private = uip;
21257 
21258 	/*
21259 	 * Setup buffer to carry uscsi request.
21260 	 */
21261 	bp->b_flags  = B_BUSY;
21262 	bp->b_bcount = 0;
21263 	bp->b_blkno  = 0;
21264 
21265 	if (is_async == TRUE) {
21266 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21267 		uip->ui_dkc = *dkc;
21268 	}
21269 
21270 	bp->b_edev = SD_GET_DEV(un);
21271 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21272 
21273 	/*
21274 	 * Unset un_f_sync_cache_required flag
21275 	 */
21276 	mutex_enter(SD_MUTEX(un));
21277 	un->un_f_sync_cache_required = FALSE;
21278 	mutex_exit(SD_MUTEX(un));
21279 
21280 	(void) sd_uscsi_strategy(bp);
21281 
21282 	/*
21283 	 * If synchronous request, wait for completion
21284 	 * If async just return and let b_iodone callback
21285 	 * cleanup.
21286 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21287 	 * but it was also incremented in sd_uscsi_strategy(), so
21288 	 * we should be ok.
21289 	 */
21290 	if (is_async == FALSE) {
21291 		(void) biowait(bp);
21292 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21293 	}
21294 
21295 	return (rval);
21296 }
21297 
21298 
21299 static int
21300 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21301 {
21302 	struct sd_uscsi_info *uip;
21303 	struct uscsi_cmd *uscmd;
21304 	uint8_t *sense_buf;
21305 	struct sd_lun *un;
21306 	int status;
21307 	union scsi_cdb *cdb;
21308 
21309 	uip = (struct sd_uscsi_info *)(bp->b_private);
21310 	ASSERT(uip != NULL);
21311 
21312 	uscmd = uip->ui_cmdp;
21313 	ASSERT(uscmd != NULL);
21314 
21315 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21316 	ASSERT(sense_buf != NULL);
21317 
21318 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21319 	ASSERT(un != NULL);
21320 
21321 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21322 
21323 	status = geterror(bp);
21324 	switch (status) {
21325 	case 0:
21326 		break;	/* Success! */
21327 	case EIO:
21328 		switch (uscmd->uscsi_status) {
21329 		case STATUS_RESERVATION_CONFLICT:
21330 			/* Ignore reservation conflict */
21331 			status = 0;
21332 			goto done;
21333 
21334 		case STATUS_CHECK:
21335 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21336 			    (scsi_sense_key(sense_buf) ==
21337 			    KEY_ILLEGAL_REQUEST)) {
21338 				/* Ignore Illegal Request error */
21339 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21340 					mutex_enter(SD_MUTEX(un));
21341 					un->un_f_sync_nv_supported = FALSE;
21342 					mutex_exit(SD_MUTEX(un));
21343 					status = 0;
21344 					SD_TRACE(SD_LOG_IO, un,
21345 					    "un_f_sync_nv_supported \
21346 					    is set to false.\n");
21347 					goto done;
21348 				}
21349 
21350 				mutex_enter(SD_MUTEX(un));
21351 				un->un_f_sync_cache_supported = FALSE;
21352 				mutex_exit(SD_MUTEX(un));
21353 				SD_TRACE(SD_LOG_IO, un,
21354 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21355 				    un_f_sync_cache_supported set to false \
21356 				    with asc = %x, ascq = %x\n",
21357 				    scsi_sense_asc(sense_buf),
21358 				    scsi_sense_ascq(sense_buf));
21359 				status = ENOTSUP;
21360 				goto done;
21361 			}
21362 			break;
21363 		default:
21364 			break;
21365 		}
21366 		/* FALLTHRU */
21367 	default:
21368 		/*
21369 		 * Turn on the un_f_sync_cache_required flag
21370 		 * since the SYNC CACHE command failed
21371 		 */
21372 		mutex_enter(SD_MUTEX(un));
21373 		un->un_f_sync_cache_required = TRUE;
21374 		mutex_exit(SD_MUTEX(un));
21375 
21376 		/*
21377 		 * Don't log an error message if this device
21378 		 * has removable media.
21379 		 */
21380 		if (!un->un_f_has_removable_media) {
21381 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21382 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21383 		}
21384 		break;
21385 	}
21386 
21387 done:
21388 	if (uip->ui_dkc.dkc_callback != NULL) {
21389 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21390 	}
21391 
21392 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21393 	freerbuf(bp);
21394 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21395 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21396 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21397 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21398 
21399 	return (status);
21400 }
21401 
21402 
21403 /*
21404  *    Function: sd_send_scsi_GET_CONFIGURATION
21405  *
21406  * Description: Issues the get configuration command to the device.
21407  *		Called from sd_check_for_writable_cd & sd_get_media_info
21408  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21409  *   Arguments: ssc
21410  *		ucmdbuf
21411  *		rqbuf
21412  *		rqbuflen
21413  *		bufaddr
21414  *		buflen
21415  *		path_flag
21416  *
21417  * Return Code: 0   - Success
21418  *		errno return code from sd_ssc_send()
21419  *
21420  *     Context: Can sleep. Does not return until command is completed.
21421  *
21422  */
21423 
21424 static int
21425 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21426     uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21427     int path_flag)
21428 {
21429 	char	cdb[CDB_GROUP1];
21430 	int	status;
21431 	struct sd_lun	*un;
21432 
21433 	ASSERT(ssc != NULL);
21434 	un = ssc->ssc_un;
21435 	ASSERT(un != NULL);
21436 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21437 	ASSERT(bufaddr != NULL);
21438 	ASSERT(ucmdbuf != NULL);
21439 	ASSERT(rqbuf != NULL);
21440 
21441 	SD_TRACE(SD_LOG_IO, un,
21442 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21443 
21444 	bzero(cdb, sizeof (cdb));
21445 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21446 	bzero(rqbuf, rqbuflen);
21447 	bzero(bufaddr, buflen);
21448 
21449 	/*
21450 	 * Set up cdb field for the get configuration command.
21451 	 */
21452 	cdb[0] = SCMD_GET_CONFIGURATION;
21453 	cdb[1] = 0x02;  /* Requested Type */
21454 	cdb[8] = SD_PROFILE_HEADER_LEN;
21455 	ucmdbuf->uscsi_cdb = cdb;
21456 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21457 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21458 	ucmdbuf->uscsi_buflen = buflen;
21459 	ucmdbuf->uscsi_timeout = sd_io_time;
21460 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21461 	ucmdbuf->uscsi_rqlen = rqbuflen;
21462 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21463 
21464 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21465 	    UIO_SYSSPACE, path_flag);
21466 
21467 	switch (status) {
21468 	case 0:
21469 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21470 		break;  /* Success! */
21471 	case EIO:
21472 		switch (ucmdbuf->uscsi_status) {
21473 		case STATUS_RESERVATION_CONFLICT:
21474 			status = EACCES;
21475 			break;
21476 		default:
21477 			break;
21478 		}
21479 		break;
21480 	default:
21481 		break;
21482 	}
21483 
21484 	if (status == 0) {
21485 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21486 		    "sd_send_scsi_GET_CONFIGURATION: data",
21487 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21488 	}
21489 
21490 	SD_TRACE(SD_LOG_IO, un,
21491 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21492 
21493 	return (status);
21494 }
21495 
21496 /*
21497  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21498  *
21499  * Description: Issues the get configuration command to the device to
21500  *              retrieve a specific feature. Called from
21501  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21502  *   Arguments: ssc
21503  *              ucmdbuf
21504  *              rqbuf
21505  *              rqbuflen
21506  *              bufaddr
21507  *              buflen
21508  *		feature
21509  *
21510  * Return Code: 0   - Success
21511  *              errno return code from sd_ssc_send()
21512  *
21513  *     Context: Can sleep. Does not return until command is completed.
21514  *
21515  */
21516 static int
21517 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21518     uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21519     char feature, int path_flag)
21520 {
21521 	char    cdb[CDB_GROUP1];
21522 	int	status;
21523 	struct sd_lun	*un;
21524 
21525 	ASSERT(ssc != NULL);
21526 	un = ssc->ssc_un;
21527 	ASSERT(un != NULL);
21528 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21529 	ASSERT(bufaddr != NULL);
21530 	ASSERT(ucmdbuf != NULL);
21531 	ASSERT(rqbuf != NULL);
21532 
21533 	SD_TRACE(SD_LOG_IO, un,
21534 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21535 
21536 	bzero(cdb, sizeof (cdb));
21537 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21538 	bzero(rqbuf, rqbuflen);
21539 	bzero(bufaddr, buflen);
21540 
21541 	/*
21542 	 * Set up cdb field for the get configuration command.
21543 	 */
21544 	cdb[0] = SCMD_GET_CONFIGURATION;
21545 	cdb[1] = 0x02;  /* Requested Type */
21546 	cdb[3] = feature;
21547 	cdb[8] = buflen;
21548 	ucmdbuf->uscsi_cdb = cdb;
21549 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21550 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21551 	ucmdbuf->uscsi_buflen = buflen;
21552 	ucmdbuf->uscsi_timeout = sd_io_time;
21553 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21554 	ucmdbuf->uscsi_rqlen = rqbuflen;
21555 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21556 
21557 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21558 	    UIO_SYSSPACE, path_flag);
21559 
21560 	switch (status) {
21561 	case 0:
21562 
21563 		break;  /* Success! */
21564 	case EIO:
21565 		switch (ucmdbuf->uscsi_status) {
21566 		case STATUS_RESERVATION_CONFLICT:
21567 			status = EACCES;
21568 			break;
21569 		default:
21570 			break;
21571 		}
21572 		break;
21573 	default:
21574 		break;
21575 	}
21576 
21577 	if (status == 0) {
21578 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21579 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21580 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21581 	}
21582 
21583 	SD_TRACE(SD_LOG_IO, un,
21584 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21585 
21586 	return (status);
21587 }
21588 
21589 
21590 /*
21591  *    Function: sd_send_scsi_MODE_SENSE
21592  *
21593  * Description: Utility function for issuing a scsi MODE SENSE command.
21594  *		Note: This routine uses a consistent implementation for Group0,
21595  *		Group1, and Group2 commands across all platforms. ATAPI devices
21596  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21597  *
21598  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21599  *                      structure for this target.
21600  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21601  *			  CDB_GROUP[1|2] (10 byte).
21602  *		bufaddr - buffer for page data retrieved from the target.
21603  *		buflen - size of page to be retrieved.
21604  *		page_code - page code of data to be retrieved from the target.
21605  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21606  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21607  *			to use the USCSI "direct" chain and bypass the normal
21608  *			command waitq.
21609  *
21610  * Return Code: 0   - Success
21611  *		errno return code from sd_ssc_send()
21612  *
21613  *     Context: Can sleep. Does not return until command is completed.
21614  */
21615 
21616 static int
21617 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21618     size_t buflen,  uchar_t page_code, int path_flag)
21619 {
21620 	struct	scsi_extended_sense	sense_buf;
21621 	union scsi_cdb		cdb;
21622 	struct uscsi_cmd	ucmd_buf;
21623 	int			status;
21624 	int			headlen;
21625 	struct sd_lun		*un;
21626 
21627 	ASSERT(ssc != NULL);
21628 	un = ssc->ssc_un;
21629 	ASSERT(un != NULL);
21630 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21631 	ASSERT(bufaddr != NULL);
21632 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21633 	    (cdbsize == CDB_GROUP2));
21634 
21635 	SD_TRACE(SD_LOG_IO, un,
21636 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21637 
21638 	bzero(&cdb, sizeof (cdb));
21639 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21640 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21641 	bzero(bufaddr, buflen);
21642 
21643 	if (cdbsize == CDB_GROUP0) {
21644 		cdb.scc_cmd = SCMD_MODE_SENSE;
21645 		cdb.cdb_opaque[2] = page_code;
21646 		FORMG0COUNT(&cdb, buflen);
21647 		headlen = MODE_HEADER_LENGTH;
21648 	} else {
21649 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21650 		cdb.cdb_opaque[2] = page_code;
21651 		FORMG1COUNT(&cdb, buflen);
21652 		headlen = MODE_HEADER_LENGTH_GRP2;
21653 	}
21654 
21655 	ASSERT(headlen <= buflen);
21656 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21657 
21658 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21659 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21660 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21661 	ucmd_buf.uscsi_buflen	= buflen;
21662 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21663 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21664 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21665 	ucmd_buf.uscsi_timeout	= 60;
21666 
21667 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21668 	    UIO_SYSSPACE, path_flag);
21669 
21670 	switch (status) {
21671 	case 0:
21672 		/*
21673 		 * sr_check_wp() uses 0x3f page code and check the header of
21674 		 * mode page to determine if target device is write-protected.
21675 		 * But some USB devices return 0 bytes for 0x3f page code. For
21676 		 * this case, make sure that mode page header is returned at
21677 		 * least.
21678 		 */
21679 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21680 			status = EIO;
21681 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21682 			    "mode page header is not returned");
21683 		}
21684 		break;	/* Success! */
21685 	case EIO:
21686 		switch (ucmd_buf.uscsi_status) {
21687 		case STATUS_RESERVATION_CONFLICT:
21688 			status = EACCES;
21689 			break;
21690 		default:
21691 			break;
21692 		}
21693 		break;
21694 	default:
21695 		break;
21696 	}
21697 
21698 	if (status == 0) {
21699 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21700 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21701 	}
21702 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21703 
21704 	return (status);
21705 }
21706 
21707 
21708 /*
21709  *    Function: sd_send_scsi_MODE_SELECT
21710  *
21711  * Description: Utility function for issuing a scsi MODE SELECT command.
21712  *		Note: This routine uses a consistent implementation for Group0,
21713  *		Group1, and Group2 commands across all platforms. ATAPI devices
21714  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21715  *
21716  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21717  *                      structure for this target.
21718  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21719  *			  CDB_GROUP[1|2] (10 byte).
21720  *		bufaddr - buffer for page data retrieved from the target.
21721  *		buflen - size of page to be retrieved.
21722  *		save_page - boolean to determin if SP bit should be set.
21723  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21724  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21725  *			to use the USCSI "direct" chain and bypass the normal
21726  *			command waitq.
21727  *
21728  * Return Code: 0   - Success
21729  *		errno return code from sd_ssc_send()
21730  *
21731  *     Context: Can sleep. Does not return until command is completed.
21732  */
21733 
21734 static int
21735 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21736     size_t buflen,  uchar_t save_page, int path_flag)
21737 {
21738 	struct	scsi_extended_sense	sense_buf;
21739 	union scsi_cdb		cdb;
21740 	struct uscsi_cmd	ucmd_buf;
21741 	int			status;
21742 	struct sd_lun		*un;
21743 
21744 	ASSERT(ssc != NULL);
21745 	un = ssc->ssc_un;
21746 	ASSERT(un != NULL);
21747 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21748 	ASSERT(bufaddr != NULL);
21749 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21750 	    (cdbsize == CDB_GROUP2));
21751 
21752 	SD_TRACE(SD_LOG_IO, un,
21753 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21754 
21755 	bzero(&cdb, sizeof (cdb));
21756 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21757 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21758 
21759 	/* Set the PF bit for many third party drives */
21760 	cdb.cdb_opaque[1] = 0x10;
21761 
21762 	/* Set the savepage(SP) bit if given */
21763 	if (save_page == SD_SAVE_PAGE) {
21764 		cdb.cdb_opaque[1] |= 0x01;
21765 	}
21766 
21767 	if (cdbsize == CDB_GROUP0) {
21768 		cdb.scc_cmd = SCMD_MODE_SELECT;
21769 		FORMG0COUNT(&cdb, buflen);
21770 	} else {
21771 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21772 		FORMG1COUNT(&cdb, buflen);
21773 	}
21774 
21775 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21776 
21777 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21778 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21779 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21780 	ucmd_buf.uscsi_buflen	= buflen;
21781 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21782 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21783 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21784 	ucmd_buf.uscsi_timeout	= 60;
21785 
21786 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21787 	    UIO_SYSSPACE, path_flag);
21788 
21789 	switch (status) {
21790 	case 0:
21791 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21792 		break;	/* Success! */
21793 	case EIO:
21794 		switch (ucmd_buf.uscsi_status) {
21795 		case STATUS_RESERVATION_CONFLICT:
21796 			status = EACCES;
21797 			break;
21798 		default:
21799 			break;
21800 		}
21801 		break;
21802 	default:
21803 		break;
21804 	}
21805 
21806 	if (status == 0) {
21807 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21808 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21809 	}
21810 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21811 
21812 	return (status);
21813 }
21814 
21815 
21816 /*
21817  *    Function: sd_send_scsi_RDWR
21818  *
21819  * Description: Issue a scsi READ or WRITE command with the given parameters.
21820  *
21821  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21822  *                      structure for this target.
21823  *		cmd:	 SCMD_READ or SCMD_WRITE
21824  *		bufaddr: Address of caller's buffer to receive the RDWR data
21825  *		buflen:  Length of caller's buffer receive the RDWR data.
21826  *		start_block: Block number for the start of the RDWR operation.
21827  *			 (Assumes target-native block size.)
21828  *		residp:  Pointer to variable to receive the redisual of the
21829  *			 RDWR operation (may be NULL of no residual requested).
21830  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21831  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21832  *			to use the USCSI "direct" chain and bypass the normal
21833  *			command waitq.
21834  *
21835  * Return Code: 0   - Success
21836  *		errno return code from sd_ssc_send()
21837  *
21838  *     Context: Can sleep. Does not return until command is completed.
21839  */
21840 
21841 static int
21842 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21843     size_t buflen, daddr_t start_block, int path_flag)
21844 {
21845 	struct	scsi_extended_sense	sense_buf;
21846 	union scsi_cdb		cdb;
21847 	struct uscsi_cmd	ucmd_buf;
21848 	uint32_t		block_count;
21849 	int			status;
21850 	int			cdbsize;
21851 	uchar_t			flag;
21852 	struct sd_lun		*un;
21853 
21854 	ASSERT(ssc != NULL);
21855 	un = ssc->ssc_un;
21856 	ASSERT(un != NULL);
21857 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21858 	ASSERT(bufaddr != NULL);
21859 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21860 
21861 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21862 
21863 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21864 		return (EINVAL);
21865 	}
21866 
21867 	mutex_enter(SD_MUTEX(un));
21868 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21869 	mutex_exit(SD_MUTEX(un));
21870 
21871 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21872 
21873 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21874 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21875 	    bufaddr, buflen, start_block, block_count);
21876 
21877 	bzero(&cdb, sizeof (cdb));
21878 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21879 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21880 
21881 	/* Compute CDB size to use */
21882 	if (start_block > 0xffffffff)
21883 		cdbsize = CDB_GROUP4;
21884 	else if ((start_block & 0xFFE00000) ||
21885 	    (un->un_f_cfg_is_atapi == TRUE))
21886 		cdbsize = CDB_GROUP1;
21887 	else
21888 		cdbsize = CDB_GROUP0;
21889 
21890 	switch (cdbsize) {
21891 	case CDB_GROUP0:	/* 6-byte CDBs */
21892 		cdb.scc_cmd = cmd;
21893 		FORMG0ADDR(&cdb, start_block);
21894 		FORMG0COUNT(&cdb, block_count);
21895 		break;
21896 	case CDB_GROUP1:	/* 10-byte CDBs */
21897 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21898 		FORMG1ADDR(&cdb, start_block);
21899 		FORMG1COUNT(&cdb, block_count);
21900 		break;
21901 	case CDB_GROUP4:	/* 16-byte CDBs */
21902 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21903 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21904 		FORMG4COUNT(&cdb, block_count);
21905 		break;
21906 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21907 	default:
21908 		/* All others reserved */
21909 		return (EINVAL);
21910 	}
21911 
21912 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21913 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21914 
21915 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21916 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21917 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21918 	ucmd_buf.uscsi_buflen	= buflen;
21919 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21920 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21921 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21922 	ucmd_buf.uscsi_timeout	= 60;
21923 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21924 	    UIO_SYSSPACE, path_flag);
21925 
21926 	switch (status) {
21927 	case 0:
21928 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21929 		break;	/* Success! */
21930 	case EIO:
21931 		switch (ucmd_buf.uscsi_status) {
21932 		case STATUS_RESERVATION_CONFLICT:
21933 			status = EACCES;
21934 			break;
21935 		default:
21936 			break;
21937 		}
21938 		break;
21939 	default:
21940 		break;
21941 	}
21942 
21943 	if (status == 0) {
21944 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21945 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21946 	}
21947 
21948 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21949 
21950 	return (status);
21951 }
21952 
21953 
21954 /*
21955  *    Function: sd_send_scsi_LOG_SENSE
21956  *
21957  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21958  *
21959  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21960  *                      structure for this target.
21961  *
21962  * Return Code: 0   - Success
21963  *		errno return code from sd_ssc_send()
21964  *
21965  *     Context: Can sleep. Does not return until command is completed.
21966  */
21967 
21968 static int
21969 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21970     uchar_t page_code, uchar_t page_control, uint16_t param_ptr, int path_flag)
21971 {
21972 	struct scsi_extended_sense	sense_buf;
21973 	union scsi_cdb		cdb;
21974 	struct uscsi_cmd	ucmd_buf;
21975 	int			status;
21976 	struct sd_lun		*un;
21977 
21978 	ASSERT(ssc != NULL);
21979 	un = ssc->ssc_un;
21980 	ASSERT(un != NULL);
21981 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21982 
21983 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21984 
21985 	bzero(&cdb, sizeof (cdb));
21986 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21987 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21988 
21989 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21990 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21991 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21992 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21993 	FORMG1COUNT(&cdb, buflen);
21994 
21995 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21996 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21997 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21998 	ucmd_buf.uscsi_buflen	= buflen;
21999 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
22000 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
22001 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
22002 	ucmd_buf.uscsi_timeout	= 60;
22003 
22004 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22005 	    UIO_SYSSPACE, path_flag);
22006 
22007 	switch (status) {
22008 	case 0:
22009 		break;
22010 	case EIO:
22011 		switch (ucmd_buf.uscsi_status) {
22012 		case STATUS_RESERVATION_CONFLICT:
22013 			status = EACCES;
22014 			break;
22015 		case STATUS_CHECK:
22016 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
22017 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
22018 			    KEY_ILLEGAL_REQUEST) &&
22019 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22020 				/*
22021 				 * ASC 0x24: INVALID FIELD IN CDB
22022 				 */
22023 				switch (page_code) {
22024 				case START_STOP_CYCLE_PAGE:
22025 					/*
22026 					 * The start stop cycle counter is
22027 					 * implemented as page 0x31 in earlier
22028 					 * generation disks. In new generation
22029 					 * disks the start stop cycle counter is
22030 					 * implemented as page 0xE. To properly
22031 					 * handle this case if an attempt for
22032 					 * log page 0xE is made and fails we
22033 					 * will try again using page 0x31.
22034 					 *
22035 					 * Network storage BU committed to
22036 					 * maintain the page 0x31 for this
22037 					 * purpose and will not have any other
22038 					 * page implemented with page code 0x31
22039 					 * until all disks transition to the
22040 					 * standard page.
22041 					 */
22042 					mutex_enter(SD_MUTEX(un));
22043 					un->un_start_stop_cycle_page =
22044 					    START_STOP_CYCLE_VU_PAGE;
22045 					cdb.cdb_opaque[2] =
22046 					    (char)(page_control << 6) |
22047 					    un->un_start_stop_cycle_page;
22048 					mutex_exit(SD_MUTEX(un));
22049 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22050 					status = sd_ssc_send(
22051 					    ssc, &ucmd_buf, FKIOCTL,
22052 					    UIO_SYSSPACE, path_flag);
22053 
22054 					break;
22055 				case TEMPERATURE_PAGE:
22056 					status = ENOTTY;
22057 					break;
22058 				default:
22059 					break;
22060 				}
22061 			}
22062 			break;
22063 		default:
22064 			break;
22065 		}
22066 		break;
22067 	default:
22068 		break;
22069 	}
22070 
22071 	if (status == 0) {
22072 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22073 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22074 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22075 	}
22076 
22077 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22078 
22079 	return (status);
22080 }
22081 
22082 
22083 /*
22084  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22085  *
22086  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22087  *
22088  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22089  *                      structure for this target.
22090  *		bufaddr
22091  *		buflen
22092  *		class_req
22093  *
22094  * Return Code: 0   - Success
22095  *		errno return code from sd_ssc_send()
22096  *
22097  *     Context: Can sleep. Does not return until command is completed.
22098  */
22099 
22100 static int
22101 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22102     size_t buflen, uchar_t class_req)
22103 {
22104 	union scsi_cdb		cdb;
22105 	struct uscsi_cmd	ucmd_buf;
22106 	int			status;
22107 	struct sd_lun		*un;
22108 
22109 	ASSERT(ssc != NULL);
22110 	un = ssc->ssc_un;
22111 	ASSERT(un != NULL);
22112 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22113 	ASSERT(bufaddr != NULL);
22114 
22115 	SD_TRACE(SD_LOG_IO, un,
22116 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22117 
22118 	bzero(&cdb, sizeof (cdb));
22119 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22120 	bzero(bufaddr, buflen);
22121 
22122 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22123 	cdb.cdb_opaque[1] = 1; /* polled */
22124 	cdb.cdb_opaque[4] = class_req;
22125 	FORMG1COUNT(&cdb, buflen);
22126 
22127 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22128 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22129 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22130 	ucmd_buf.uscsi_buflen	= buflen;
22131 	ucmd_buf.uscsi_rqbuf	= NULL;
22132 	ucmd_buf.uscsi_rqlen	= 0;
22133 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22134 	ucmd_buf.uscsi_timeout	= 60;
22135 
22136 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22137 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22138 
22139 	/*
22140 	 * Only handle status == 0, the upper-level caller
22141 	 * will put different assessment based on the context.
22142 	 */
22143 	if (status == 0) {
22144 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22145 
22146 		if (ucmd_buf.uscsi_resid != 0) {
22147 			status = EIO;
22148 		}
22149 	}
22150 
22151 	SD_TRACE(SD_LOG_IO, un,
22152 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22153 
22154 	return (status);
22155 }
22156 
22157 
22158 static boolean_t
22159 sd_gesn_media_data_valid(uchar_t *data)
22160 {
22161 	uint16_t			len;
22162 
22163 	len = (data[1] << 8) | data[0];
22164 	return ((len >= 6) &&
22165 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22166 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22167 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22168 }
22169 
22170 
22171 /*
22172  *    Function: sdioctl
22173  *
22174  * Description: Driver's ioctl(9e) entry point function.
22175  *
22176  *   Arguments: dev     - device number
22177  *		cmd     - ioctl operation to be performed
22178  *		arg     - user argument, contains data to be set or reference
22179  *			  parameter for get
22180  *		flag    - bit flag, indicating open settings, 32/64 bit type
22181  *		cred_p  - user credential pointer
22182  *		rval_p  - calling process return value (OPT)
22183  *
22184  * Return Code: EINVAL
22185  *		ENOTTY
22186  *		ENXIO
22187  *		EIO
22188  *		EFAULT
22189  *		ENOTSUP
22190  *		EPERM
22191  *
22192  *     Context: Called from the device switch at normal priority.
22193  */
22194 
22195 static int
22196 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22197 {
22198 	struct sd_lun	*un = NULL;
22199 	int		err = 0;
22200 	int		i = 0;
22201 	cred_t		*cr;
22202 	int		tmprval = EINVAL;
22203 	boolean_t	is_valid;
22204 	sd_ssc_t	*ssc;
22205 
22206 	/*
22207 	 * All device accesses go thru sdstrategy where we check on suspend
22208 	 * status
22209 	 */
22210 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22211 		return (ENXIO);
22212 	}
22213 
22214 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22215 
22216 	/* Initialize sd_ssc_t for internal uscsi commands */
22217 	ssc = sd_ssc_init(un);
22218 
22219 	is_valid = SD_IS_VALID_LABEL(un);
22220 
22221 	/*
22222 	 * Moved this wait from sd_uscsi_strategy to here for
22223 	 * reasons of deadlock prevention. Internal driver commands,
22224 	 * specifically those to change a devices power level, result
22225 	 * in a call to sd_uscsi_strategy.
22226 	 */
22227 	mutex_enter(SD_MUTEX(un));
22228 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22229 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22230 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22231 	}
22232 	/*
22233 	 * Twiddling the counter here protects commands from now
22234 	 * through to the top of sd_uscsi_strategy. Without the
22235 	 * counter inc. a power down, for example, could get in
22236 	 * after the above check for state is made and before
22237 	 * execution gets to the top of sd_uscsi_strategy.
22238 	 * That would cause problems.
22239 	 */
22240 	un->un_ncmds_in_driver++;
22241 
22242 	if (!is_valid &&
22243 	    (flag & (FNDELAY | FNONBLOCK))) {
22244 		switch (cmd) {
22245 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22246 		case DKIOCGVTOC:
22247 		case DKIOCGEXTVTOC:
22248 		case DKIOCGAPART:
22249 		case DKIOCPARTINFO:
22250 		case DKIOCEXTPARTINFO:
22251 		case DKIOCSGEOM:
22252 		case DKIOCSAPART:
22253 		case DKIOCGETEFI:
22254 		case DKIOCPARTITION:
22255 		case DKIOCSVTOC:
22256 		case DKIOCSEXTVTOC:
22257 		case DKIOCSETEFI:
22258 		case DKIOCGMBOOT:
22259 		case DKIOCSMBOOT:
22260 		case DKIOCG_PHYGEOM:
22261 		case DKIOCG_VIRTGEOM:
22262 #if defined(__i386) || defined(__amd64)
22263 		case DKIOCSETEXTPART:
22264 #endif
22265 			/* let cmlb handle it */
22266 			goto skip_ready_valid;
22267 
22268 		case CDROMPAUSE:
22269 		case CDROMRESUME:
22270 		case CDROMPLAYMSF:
22271 		case CDROMPLAYTRKIND:
22272 		case CDROMREADTOCHDR:
22273 		case CDROMREADTOCENTRY:
22274 		case CDROMSTOP:
22275 		case CDROMSTART:
22276 		case CDROMVOLCTRL:
22277 		case CDROMSUBCHNL:
22278 		case CDROMREADMODE2:
22279 		case CDROMREADMODE1:
22280 		case CDROMREADOFFSET:
22281 		case CDROMSBLKMODE:
22282 		case CDROMGBLKMODE:
22283 		case CDROMGDRVSPEED:
22284 		case CDROMSDRVSPEED:
22285 		case CDROMCDDA:
22286 		case CDROMCDXA:
22287 		case CDROMSUBCODE:
22288 			if (!ISCD(un)) {
22289 				un->un_ncmds_in_driver--;
22290 				ASSERT(un->un_ncmds_in_driver >= 0);
22291 				mutex_exit(SD_MUTEX(un));
22292 				err = ENOTTY;
22293 				goto done_without_assess;
22294 			}
22295 			break;
22296 		case FDEJECT:
22297 		case DKIOCEJECT:
22298 		case CDROMEJECT:
22299 			if (!un->un_f_eject_media_supported) {
22300 				un->un_ncmds_in_driver--;
22301 				ASSERT(un->un_ncmds_in_driver >= 0);
22302 				mutex_exit(SD_MUTEX(un));
22303 				err = ENOTTY;
22304 				goto done_without_assess;
22305 			}
22306 			break;
22307 		case DKIOCFLUSHWRITECACHE:
22308 			mutex_exit(SD_MUTEX(un));
22309 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22310 			if (err != 0) {
22311 				mutex_enter(SD_MUTEX(un));
22312 				un->un_ncmds_in_driver--;
22313 				ASSERT(un->un_ncmds_in_driver >= 0);
22314 				mutex_exit(SD_MUTEX(un));
22315 				err = EIO;
22316 				goto done_quick_assess;
22317 			}
22318 			mutex_enter(SD_MUTEX(un));
22319 			/* FALLTHROUGH */
22320 		case DKIOCREMOVABLE:
22321 		case DKIOCHOTPLUGGABLE:
22322 		case DKIOCINFO:
22323 		case DKIOCGMEDIAINFO:
22324 		case DKIOCGMEDIAINFOEXT:
22325 		case DKIOCSOLIDSTATE:
22326 		case MHIOCENFAILFAST:
22327 		case MHIOCSTATUS:
22328 		case MHIOCTKOWN:
22329 		case MHIOCRELEASE:
22330 		case MHIOCGRP_INKEYS:
22331 		case MHIOCGRP_INRESV:
22332 		case MHIOCGRP_REGISTER:
22333 		case MHIOCGRP_CLEAR:
22334 		case MHIOCGRP_RESERVE:
22335 		case MHIOCGRP_PREEMPTANDABORT:
22336 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22337 		case CDROMCLOSETRAY:
22338 		case USCSICMD:
22339 			goto skip_ready_valid;
22340 		default:
22341 			break;
22342 		}
22343 
22344 		mutex_exit(SD_MUTEX(un));
22345 		err = sd_ready_and_valid(ssc, SDPART(dev));
22346 		mutex_enter(SD_MUTEX(un));
22347 
22348 		if (err != SD_READY_VALID) {
22349 			switch (cmd) {
22350 			case DKIOCSTATE:
22351 			case CDROMGDRVSPEED:
22352 			case CDROMSDRVSPEED:
22353 			case FDEJECT:	/* for eject command */
22354 			case DKIOCEJECT:
22355 			case CDROMEJECT:
22356 			case DKIOCREMOVABLE:
22357 			case DKIOCHOTPLUGGABLE:
22358 				break;
22359 			default:
22360 				if (un->un_f_has_removable_media) {
22361 					err = ENXIO;
22362 				} else {
22363 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22364 					if (err == SD_RESERVED_BY_OTHERS) {
22365 						err = EACCES;
22366 					} else {
22367 						err = EIO;
22368 					}
22369 				}
22370 				un->un_ncmds_in_driver--;
22371 				ASSERT(un->un_ncmds_in_driver >= 0);
22372 				mutex_exit(SD_MUTEX(un));
22373 
22374 				goto done_without_assess;
22375 			}
22376 		}
22377 	}
22378 
22379 skip_ready_valid:
22380 	mutex_exit(SD_MUTEX(un));
22381 
22382 	switch (cmd) {
22383 	case DKIOCINFO:
22384 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22385 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22386 		break;
22387 
22388 	case DKIOCGMEDIAINFO:
22389 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22390 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22391 		break;
22392 
22393 	case DKIOCGMEDIAINFOEXT:
22394 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22395 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22396 		break;
22397 
22398 	case DKIOCGGEOM:
22399 	case DKIOCGVTOC:
22400 	case DKIOCGEXTVTOC:
22401 	case DKIOCGAPART:
22402 	case DKIOCPARTINFO:
22403 	case DKIOCEXTPARTINFO:
22404 	case DKIOCSGEOM:
22405 	case DKIOCSAPART:
22406 	case DKIOCGETEFI:
22407 	case DKIOCPARTITION:
22408 	case DKIOCSVTOC:
22409 	case DKIOCSEXTVTOC:
22410 	case DKIOCSETEFI:
22411 	case DKIOCGMBOOT:
22412 	case DKIOCSMBOOT:
22413 	case DKIOCG_PHYGEOM:
22414 	case DKIOCG_VIRTGEOM:
22415 #if defined(__i386) || defined(__amd64)
22416 	case DKIOCSETEXTPART:
22417 #endif
22418 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22419 
22420 		/* TUR should spin up */
22421 
22422 		if (un->un_f_has_removable_media)
22423 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22424 			    SD_CHECK_FOR_MEDIA);
22425 
22426 		else
22427 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22428 
22429 		if (err != 0)
22430 			goto done_with_assess;
22431 
22432 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22433 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22434 
22435 		if ((err == 0) &&
22436 		    ((cmd == DKIOCSETEFI) ||
22437 		    ((un->un_f_pkstats_enabled) &&
22438 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22439 		    cmd == DKIOCSEXTVTOC)))) {
22440 
22441 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22442 			    (void *)SD_PATH_DIRECT);
22443 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22444 				sd_set_pstats(un);
22445 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22446 				    "sd_ioctl: un:0x%p pstats created and "
22447 				    "set\n", un);
22448 			}
22449 		}
22450 
22451 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22452 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22453 
22454 			mutex_enter(SD_MUTEX(un));
22455 			if (un->un_f_devid_supported &&
22456 			    (un->un_f_opt_fab_devid == TRUE)) {
22457 				if (un->un_devid == NULL) {
22458 					sd_register_devid(ssc, SD_DEVINFO(un),
22459 					    SD_TARGET_IS_UNRESERVED);
22460 				} else {
22461 					/*
22462 					 * The device id for this disk
22463 					 * has been fabricated. The
22464 					 * device id must be preserved
22465 					 * by writing it back out to
22466 					 * disk.
22467 					 */
22468 					if (sd_write_deviceid(ssc) != 0) {
22469 						ddi_devid_free(un->un_devid);
22470 						un->un_devid = NULL;
22471 					}
22472 				}
22473 			}
22474 			mutex_exit(SD_MUTEX(un));
22475 		}
22476 
22477 		break;
22478 
22479 	case DKIOCLOCK:
22480 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22481 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22482 		    SD_PATH_STANDARD);
22483 		goto done_with_assess;
22484 
22485 	case DKIOCUNLOCK:
22486 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22487 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22488 		    SD_PATH_STANDARD);
22489 		goto done_with_assess;
22490 
22491 	case DKIOCSTATE: {
22492 		enum dkio_state		state;
22493 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22494 
22495 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22496 			err = EFAULT;
22497 		} else {
22498 			err = sd_check_media(dev, state);
22499 			if (err == 0) {
22500 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22501 				    sizeof (int), flag) != 0)
22502 					err = EFAULT;
22503 			}
22504 		}
22505 		break;
22506 	}
22507 
22508 	case DKIOCREMOVABLE:
22509 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22510 		i = un->un_f_has_removable_media ? 1 : 0;
22511 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22512 			err = EFAULT;
22513 		} else {
22514 			err = 0;
22515 		}
22516 		break;
22517 
22518 	case DKIOCSOLIDSTATE:
22519 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSOLIDSTATE\n");
22520 		i = un->un_f_is_solid_state ? 1 : 0;
22521 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22522 			err = EFAULT;
22523 		} else {
22524 			err = 0;
22525 		}
22526 		break;
22527 
22528 	case DKIOCHOTPLUGGABLE:
22529 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22530 		i = un->un_f_is_hotpluggable ? 1 : 0;
22531 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22532 			err = EFAULT;
22533 		} else {
22534 			err = 0;
22535 		}
22536 		break;
22537 
22538 	case DKIOCREADONLY:
22539 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22540 		i = 0;
22541 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22542 		    (sr_check_wp(dev) != 0)) {
22543 			i = 1;
22544 		}
22545 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22546 			err = EFAULT;
22547 		} else {
22548 			err = 0;
22549 		}
22550 		break;
22551 
22552 	case DKIOCGTEMPERATURE:
22553 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22554 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22555 		break;
22556 
22557 	case MHIOCENFAILFAST:
22558 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22559 		if ((err = drv_priv(cred_p)) == 0) {
22560 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22561 		}
22562 		break;
22563 
22564 	case MHIOCTKOWN:
22565 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22566 		if ((err = drv_priv(cred_p)) == 0) {
22567 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22568 		}
22569 		break;
22570 
22571 	case MHIOCRELEASE:
22572 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22573 		if ((err = drv_priv(cred_p)) == 0) {
22574 			err = sd_mhdioc_release(dev);
22575 		}
22576 		break;
22577 
22578 	case MHIOCSTATUS:
22579 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22580 		if ((err = drv_priv(cred_p)) == 0) {
22581 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22582 			case 0:
22583 				err = 0;
22584 				break;
22585 			case EACCES:
22586 				*rval_p = 1;
22587 				err = 0;
22588 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22589 				break;
22590 			default:
22591 				err = EIO;
22592 				goto done_with_assess;
22593 			}
22594 		}
22595 		break;
22596 
22597 	case MHIOCQRESERVE:
22598 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22599 		if ((err = drv_priv(cred_p)) == 0) {
22600 			err = sd_reserve_release(dev, SD_RESERVE);
22601 		}
22602 		break;
22603 
22604 	case MHIOCREREGISTERDEVID:
22605 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22606 		if (drv_priv(cred_p) == EPERM) {
22607 			err = EPERM;
22608 		} else if (!un->un_f_devid_supported) {
22609 			err = ENOTTY;
22610 		} else {
22611 			err = sd_mhdioc_register_devid(dev);
22612 		}
22613 		break;
22614 
22615 	case MHIOCGRP_INKEYS:
22616 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22617 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22618 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22619 				err = ENOTSUP;
22620 			} else {
22621 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22622 				    flag);
22623 			}
22624 		}
22625 		break;
22626 
22627 	case MHIOCGRP_INRESV:
22628 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22629 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22630 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22631 				err = ENOTSUP;
22632 			} else {
22633 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22634 			}
22635 		}
22636 		break;
22637 
22638 	case MHIOCGRP_REGISTER:
22639 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22640 		if ((err = drv_priv(cred_p)) != EPERM) {
22641 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22642 				err = ENOTSUP;
22643 			} else if (arg != NULL) {
22644 				mhioc_register_t reg;
22645 				if (ddi_copyin((void *)arg, &reg,
22646 				    sizeof (mhioc_register_t), flag) != 0) {
22647 					err = EFAULT;
22648 				} else {
22649 					err =
22650 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22651 					    ssc, SD_SCSI3_REGISTER,
22652 					    (uchar_t *)&reg);
22653 					if (err != 0)
22654 						goto done_with_assess;
22655 				}
22656 			}
22657 		}
22658 		break;
22659 
22660 	case MHIOCGRP_CLEAR:
22661 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22662 		if ((err = drv_priv(cred_p)) != EPERM) {
22663 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22664 				err = ENOTSUP;
22665 			} else if (arg != NULL) {
22666 				mhioc_register_t reg;
22667 				if (ddi_copyin((void *)arg, &reg,
22668 				    sizeof (mhioc_register_t), flag) != 0) {
22669 					err = EFAULT;
22670 				} else {
22671 					err =
22672 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22673 					    ssc, SD_SCSI3_CLEAR,
22674 					    (uchar_t *)&reg);
22675 					if (err != 0)
22676 						goto done_with_assess;
22677 				}
22678 			}
22679 		}
22680 		break;
22681 
22682 	case MHIOCGRP_RESERVE:
22683 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22684 		if ((err = drv_priv(cred_p)) != EPERM) {
22685 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22686 				err = ENOTSUP;
22687 			} else if (arg != NULL) {
22688 				mhioc_resv_desc_t resv_desc;
22689 				if (ddi_copyin((void *)arg, &resv_desc,
22690 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22691 					err = EFAULT;
22692 				} else {
22693 					err =
22694 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22695 					    ssc, SD_SCSI3_RESERVE,
22696 					    (uchar_t *)&resv_desc);
22697 					if (err != 0)
22698 						goto done_with_assess;
22699 				}
22700 			}
22701 		}
22702 		break;
22703 
22704 	case MHIOCGRP_PREEMPTANDABORT:
22705 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22706 		if ((err = drv_priv(cred_p)) != EPERM) {
22707 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22708 				err = ENOTSUP;
22709 			} else if (arg != NULL) {
22710 				mhioc_preemptandabort_t preempt_abort;
22711 				if (ddi_copyin((void *)arg, &preempt_abort,
22712 				    sizeof (mhioc_preemptandabort_t),
22713 				    flag) != 0) {
22714 					err = EFAULT;
22715 				} else {
22716 					err =
22717 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22718 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22719 					    (uchar_t *)&preempt_abort);
22720 					if (err != 0)
22721 						goto done_with_assess;
22722 				}
22723 			}
22724 		}
22725 		break;
22726 
22727 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22728 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22729 		if ((err = drv_priv(cred_p)) != EPERM) {
22730 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22731 				err = ENOTSUP;
22732 			} else if (arg != NULL) {
22733 				mhioc_registerandignorekey_t r_and_i;
22734 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22735 				    sizeof (mhioc_registerandignorekey_t),
22736 				    flag) != 0) {
22737 					err = EFAULT;
22738 				} else {
22739 					err =
22740 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22741 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22742 					    (uchar_t *)&r_and_i);
22743 					if (err != 0)
22744 						goto done_with_assess;
22745 				}
22746 			}
22747 		}
22748 		break;
22749 
22750 	case USCSICMD:
22751 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22752 		cr = ddi_get_cred();
22753 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22754 			err = EPERM;
22755 		} else {
22756 			enum uio_seg	uioseg;
22757 
22758 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22759 			    UIO_USERSPACE;
22760 			if (un->un_f_format_in_progress == TRUE) {
22761 				err = EAGAIN;
22762 				break;
22763 			}
22764 
22765 			err = sd_ssc_send(ssc,
22766 			    (struct uscsi_cmd *)arg,
22767 			    flag, uioseg, SD_PATH_STANDARD);
22768 			if (err != 0)
22769 				goto done_with_assess;
22770 			else
22771 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22772 		}
22773 		break;
22774 
22775 	case CDROMPAUSE:
22776 	case CDROMRESUME:
22777 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22778 		if (!ISCD(un)) {
22779 			err = ENOTTY;
22780 		} else {
22781 			err = sr_pause_resume(dev, cmd);
22782 		}
22783 		break;
22784 
22785 	case CDROMPLAYMSF:
22786 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22787 		if (!ISCD(un)) {
22788 			err = ENOTTY;
22789 		} else {
22790 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22791 		}
22792 		break;
22793 
22794 	case CDROMPLAYTRKIND:
22795 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22796 #if defined(__i386) || defined(__amd64)
22797 		/*
22798 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22799 		 */
22800 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22801 #else
22802 		if (!ISCD(un)) {
22803 #endif
22804 			err = ENOTTY;
22805 		} else {
22806 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22807 		}
22808 		break;
22809 
22810 	case CDROMREADTOCHDR:
22811 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22812 		if (!ISCD(un)) {
22813 			err = ENOTTY;
22814 		} else {
22815 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22816 		}
22817 		break;
22818 
22819 	case CDROMREADTOCENTRY:
22820 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22821 		if (!ISCD(un)) {
22822 			err = ENOTTY;
22823 		} else {
22824 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22825 		}
22826 		break;
22827 
22828 	case CDROMSTOP:
22829 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22830 		if (!ISCD(un)) {
22831 			err = ENOTTY;
22832 		} else {
22833 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22834 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22835 			goto done_with_assess;
22836 		}
22837 		break;
22838 
22839 	case CDROMSTART:
22840 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22841 		if (!ISCD(un)) {
22842 			err = ENOTTY;
22843 		} else {
22844 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22845 			    SD_TARGET_START, SD_PATH_STANDARD);
22846 			goto done_with_assess;
22847 		}
22848 		break;
22849 
22850 	case CDROMCLOSETRAY:
22851 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22852 		if (!ISCD(un)) {
22853 			err = ENOTTY;
22854 		} else {
22855 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22856 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22857 			goto done_with_assess;
22858 		}
22859 		break;
22860 
22861 	case FDEJECT:	/* for eject command */
22862 	case DKIOCEJECT:
22863 	case CDROMEJECT:
22864 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22865 		if (!un->un_f_eject_media_supported) {
22866 			err = ENOTTY;
22867 		} else {
22868 			err = sr_eject(dev);
22869 		}
22870 		break;
22871 
22872 	case CDROMVOLCTRL:
22873 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22874 		if (!ISCD(un)) {
22875 			err = ENOTTY;
22876 		} else {
22877 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22878 		}
22879 		break;
22880 
22881 	case CDROMSUBCHNL:
22882 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22883 		if (!ISCD(un)) {
22884 			err = ENOTTY;
22885 		} else {
22886 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22887 		}
22888 		break;
22889 
22890 	case CDROMREADMODE2:
22891 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22892 		if (!ISCD(un)) {
22893 			err = ENOTTY;
22894 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22895 			/*
22896 			 * If the drive supports READ CD, use that instead of
22897 			 * switching the LBA size via a MODE SELECT
22898 			 * Block Descriptor
22899 			 */
22900 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22901 		} else {
22902 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22903 		}
22904 		break;
22905 
22906 	case CDROMREADMODE1:
22907 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22908 		if (!ISCD(un)) {
22909 			err = ENOTTY;
22910 		} else {
22911 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22912 		}
22913 		break;
22914 
22915 	case CDROMREADOFFSET:
22916 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22917 		if (!ISCD(un)) {
22918 			err = ENOTTY;
22919 		} else {
22920 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22921 			    flag);
22922 		}
22923 		break;
22924 
22925 	case CDROMSBLKMODE:
22926 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22927 		/*
22928 		 * There is no means of changing block size in case of atapi
22929 		 * drives, thus return ENOTTY if drive type is atapi
22930 		 */
22931 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22932 			err = ENOTTY;
22933 		} else if (un->un_f_mmc_cap == TRUE) {
22934 
22935 			/*
22936 			 * MMC Devices do not support changing the
22937 			 * logical block size
22938 			 *
22939 			 * Note: EINVAL is being returned instead of ENOTTY to
22940 			 * maintain consistancy with the original mmc
22941 			 * driver update.
22942 			 */
22943 			err = EINVAL;
22944 		} else {
22945 			mutex_enter(SD_MUTEX(un));
22946 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22947 			    (un->un_ncmds_in_transport > 0)) {
22948 				mutex_exit(SD_MUTEX(un));
22949 				err = EINVAL;
22950 			} else {
22951 				mutex_exit(SD_MUTEX(un));
22952 				err = sr_change_blkmode(dev, cmd, arg, flag);
22953 			}
22954 		}
22955 		break;
22956 
22957 	case CDROMGBLKMODE:
22958 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22959 		if (!ISCD(un)) {
22960 			err = ENOTTY;
22961 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22962 		    (un->un_f_blockcount_is_valid != FALSE)) {
22963 			/*
22964 			 * Drive is an ATAPI drive so return target block
22965 			 * size for ATAPI drives since we cannot change the
22966 			 * blocksize on ATAPI drives. Used primarily to detect
22967 			 * if an ATAPI cdrom is present.
22968 			 */
22969 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22970 			    sizeof (int), flag) != 0) {
22971 				err = EFAULT;
22972 			} else {
22973 				err = 0;
22974 			}
22975 
22976 		} else {
22977 			/*
22978 			 * Drive supports changing block sizes via a Mode
22979 			 * Select.
22980 			 */
22981 			err = sr_change_blkmode(dev, cmd, arg, flag);
22982 		}
22983 		break;
22984 
22985 	case CDROMGDRVSPEED:
22986 	case CDROMSDRVSPEED:
22987 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22988 		if (!ISCD(un)) {
22989 			err = ENOTTY;
22990 		} else if (un->un_f_mmc_cap == TRUE) {
22991 			/*
22992 			 * Note: In the future the driver implementation
22993 			 * for getting and
22994 			 * setting cd speed should entail:
22995 			 * 1) If non-mmc try the Toshiba mode page
22996 			 *    (sr_change_speed)
22997 			 * 2) If mmc but no support for Real Time Streaming try
22998 			 *    the SET CD SPEED (0xBB) command
22999 			 *   (sr_atapi_change_speed)
23000 			 * 3) If mmc and support for Real Time Streaming
23001 			 *    try the GET PERFORMANCE and SET STREAMING
23002 			 *    commands (not yet implemented, 4380808)
23003 			 */
23004 			/*
23005 			 * As per recent MMC spec, CD-ROM speed is variable
23006 			 * and changes with LBA. Since there is no such
23007 			 * things as drive speed now, fail this ioctl.
23008 			 *
23009 			 * Note: EINVAL is returned for consistancy of original
23010 			 * implementation which included support for getting
23011 			 * the drive speed of mmc devices but not setting
23012 			 * the drive speed. Thus EINVAL would be returned
23013 			 * if a set request was made for an mmc device.
23014 			 * We no longer support get or set speed for
23015 			 * mmc but need to remain consistent with regard
23016 			 * to the error code returned.
23017 			 */
23018 			err = EINVAL;
23019 		} else if (un->un_f_cfg_is_atapi == TRUE) {
23020 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
23021 		} else {
23022 			err = sr_change_speed(dev, cmd, arg, flag);
23023 		}
23024 		break;
23025 
23026 	case CDROMCDDA:
23027 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
23028 		if (!ISCD(un)) {
23029 			err = ENOTTY;
23030 		} else {
23031 			err = sr_read_cdda(dev, (void *)arg, flag);
23032 		}
23033 		break;
23034 
23035 	case CDROMCDXA:
23036 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23037 		if (!ISCD(un)) {
23038 			err = ENOTTY;
23039 		} else {
23040 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23041 		}
23042 		break;
23043 
23044 	case CDROMSUBCODE:
23045 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23046 		if (!ISCD(un)) {
23047 			err = ENOTTY;
23048 		} else {
23049 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23050 		}
23051 		break;
23052 
23053 
23054 #ifdef SDDEBUG
23055 /* RESET/ABORTS testing ioctls */
23056 	case DKIOCRESET: {
23057 		int	reset_level;
23058 
23059 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23060 			err = EFAULT;
23061 		} else {
23062 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23063 			    "reset_level = 0x%lx\n", reset_level);
23064 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23065 				err = 0;
23066 			} else {
23067 				err = EIO;
23068 			}
23069 		}
23070 		break;
23071 	}
23072 
23073 	case DKIOCABORT:
23074 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23075 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23076 			err = 0;
23077 		} else {
23078 			err = EIO;
23079 		}
23080 		break;
23081 #endif
23082 
23083 #ifdef SD_FAULT_INJECTION
23084 /* SDIOC FaultInjection testing ioctls */
23085 	case SDIOCSTART:
23086 	case SDIOCSTOP:
23087 	case SDIOCINSERTPKT:
23088 	case SDIOCINSERTXB:
23089 	case SDIOCINSERTUN:
23090 	case SDIOCINSERTARQ:
23091 	case SDIOCPUSH:
23092 	case SDIOCRETRIEVE:
23093 	case SDIOCRUN:
23094 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23095 		    "SDIOC detected cmd:0x%X:\n", cmd);
23096 		/* call error generator */
23097 		sd_faultinjection_ioctl(cmd, arg, un);
23098 		err = 0;
23099 		break;
23100 
23101 #endif /* SD_FAULT_INJECTION */
23102 
23103 	case DKIOCFLUSHWRITECACHE:
23104 		{
23105 			struct dk_callback *dkc = (struct dk_callback *)arg;
23106 
23107 			mutex_enter(SD_MUTEX(un));
23108 			if (!un->un_f_sync_cache_supported ||
23109 			    !un->un_f_write_cache_enabled) {
23110 				err = un->un_f_sync_cache_supported ?
23111 				    0 : ENOTSUP;
23112 				mutex_exit(SD_MUTEX(un));
23113 				if ((flag & FKIOCTL) && dkc != NULL &&
23114 				    dkc->dkc_callback != NULL) {
23115 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23116 					    err);
23117 					/*
23118 					 * Did callback and reported error.
23119 					 * Since we did a callback, ioctl
23120 					 * should return 0.
23121 					 */
23122 					err = 0;
23123 				}
23124 				break;
23125 			}
23126 			mutex_exit(SD_MUTEX(un));
23127 
23128 			if ((flag & FKIOCTL) && dkc != NULL &&
23129 			    dkc->dkc_callback != NULL) {
23130 				/* async SYNC CACHE request */
23131 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23132 			} else {
23133 				/* synchronous SYNC CACHE request */
23134 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23135 			}
23136 		}
23137 		break;
23138 
23139 	case DKIOCGETWCE: {
23140 
23141 		int wce;
23142 
23143 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23144 			break;
23145 		}
23146 
23147 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23148 			err = EFAULT;
23149 		}
23150 		break;
23151 	}
23152 
23153 	case DKIOCSETWCE: {
23154 
23155 		int wce, sync_supported;
23156 		int cur_wce = 0;
23157 
23158 		if (!un->un_f_cache_mode_changeable) {
23159 			err = EINVAL;
23160 			break;
23161 		}
23162 
23163 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23164 			err = EFAULT;
23165 			break;
23166 		}
23167 
23168 		/*
23169 		 * Synchronize multiple threads trying to enable
23170 		 * or disable the cache via the un_f_wcc_cv
23171 		 * condition variable.
23172 		 */
23173 		mutex_enter(SD_MUTEX(un));
23174 
23175 		/*
23176 		 * Don't allow the cache to be enabled if the
23177 		 * config file has it disabled.
23178 		 */
23179 		if (un->un_f_opt_disable_cache && wce) {
23180 			mutex_exit(SD_MUTEX(un));
23181 			err = EINVAL;
23182 			break;
23183 		}
23184 
23185 		/*
23186 		 * Wait for write cache change in progress
23187 		 * bit to be clear before proceeding.
23188 		 */
23189 		while (un->un_f_wcc_inprog)
23190 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23191 
23192 		un->un_f_wcc_inprog = 1;
23193 
23194 		mutex_exit(SD_MUTEX(un));
23195 
23196 		/*
23197 		 * Get the current write cache state
23198 		 */
23199 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23200 			mutex_enter(SD_MUTEX(un));
23201 			un->un_f_wcc_inprog = 0;
23202 			cv_broadcast(&un->un_wcc_cv);
23203 			mutex_exit(SD_MUTEX(un));
23204 			break;
23205 		}
23206 
23207 		mutex_enter(SD_MUTEX(un));
23208 		un->un_f_write_cache_enabled = (cur_wce != 0);
23209 
23210 		if (un->un_f_write_cache_enabled && wce == 0) {
23211 			/*
23212 			 * Disable the write cache.  Don't clear
23213 			 * un_f_write_cache_enabled until after
23214 			 * the mode select and flush are complete.
23215 			 */
23216 			sync_supported = un->un_f_sync_cache_supported;
23217 
23218 			/*
23219 			 * If cache flush is suppressed, we assume that the
23220 			 * controller firmware will take care of managing the
23221 			 * write cache for us: no need to explicitly
23222 			 * disable it.
23223 			 */
23224 			if (!un->un_f_suppress_cache_flush) {
23225 				mutex_exit(SD_MUTEX(un));
23226 				if ((err = sd_cache_control(ssc,
23227 				    SD_CACHE_NOCHANGE,
23228 				    SD_CACHE_DISABLE)) == 0 &&
23229 				    sync_supported) {
23230 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23231 					    NULL);
23232 				}
23233 			} else {
23234 				mutex_exit(SD_MUTEX(un));
23235 			}
23236 
23237 			mutex_enter(SD_MUTEX(un));
23238 			if (err == 0) {
23239 				un->un_f_write_cache_enabled = 0;
23240 			}
23241 
23242 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23243 			/*
23244 			 * Set un_f_write_cache_enabled first, so there is
23245 			 * no window where the cache is enabled, but the
23246 			 * bit says it isn't.
23247 			 */
23248 			un->un_f_write_cache_enabled = 1;
23249 
23250 			/*
23251 			 * If cache flush is suppressed, we assume that the
23252 			 * controller firmware will take care of managing the
23253 			 * write cache for us: no need to explicitly
23254 			 * enable it.
23255 			 */
23256 			if (!un->un_f_suppress_cache_flush) {
23257 				mutex_exit(SD_MUTEX(un));
23258 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23259 				    SD_CACHE_ENABLE);
23260 			} else {
23261 				mutex_exit(SD_MUTEX(un));
23262 			}
23263 
23264 			mutex_enter(SD_MUTEX(un));
23265 
23266 			if (err) {
23267 				un->un_f_write_cache_enabled = 0;
23268 			}
23269 		}
23270 
23271 		un->un_f_wcc_inprog = 0;
23272 		cv_broadcast(&un->un_wcc_cv);
23273 		mutex_exit(SD_MUTEX(un));
23274 		break;
23275 	}
23276 
23277 	default:
23278 		err = ENOTTY;
23279 		break;
23280 	}
23281 	mutex_enter(SD_MUTEX(un));
23282 	un->un_ncmds_in_driver--;
23283 	ASSERT(un->un_ncmds_in_driver >= 0);
23284 	mutex_exit(SD_MUTEX(un));
23285 
23286 
23287 done_without_assess:
23288 	sd_ssc_fini(ssc);
23289 
23290 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23291 	return (err);
23292 
23293 done_with_assess:
23294 	mutex_enter(SD_MUTEX(un));
23295 	un->un_ncmds_in_driver--;
23296 	ASSERT(un->un_ncmds_in_driver >= 0);
23297 	mutex_exit(SD_MUTEX(un));
23298 
23299 done_quick_assess:
23300 	if (err != 0)
23301 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23302 	/* Uninitialize sd_ssc_t pointer */
23303 	sd_ssc_fini(ssc);
23304 
23305 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23306 	return (err);
23307 }
23308 
23309 
23310 /*
23311  *    Function: sd_dkio_ctrl_info
23312  *
23313  * Description: This routine is the driver entry point for handling controller
23314  *		information ioctl requests (DKIOCINFO).
23315  *
23316  *   Arguments: dev  - the device number
23317  *		arg  - pointer to user provided dk_cinfo structure
23318  *		       specifying the controller type and attributes.
23319  *		flag - this argument is a pass through to ddi_copyxxx()
23320  *		       directly from the mode argument of ioctl().
23321  *
23322  * Return Code: 0
23323  *		EFAULT
23324  *		ENXIO
23325  */
23326 
23327 static int
23328 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23329 {
23330 	struct sd_lun	*un = NULL;
23331 	struct dk_cinfo	*info;
23332 	dev_info_t	*pdip;
23333 	int		lun, tgt;
23334 
23335 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23336 		return (ENXIO);
23337 	}
23338 
23339 	info = (struct dk_cinfo *)
23340 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23341 
23342 	switch (un->un_ctype) {
23343 	case CTYPE_CDROM:
23344 		info->dki_ctype = DKC_CDROM;
23345 		break;
23346 	default:
23347 		info->dki_ctype = DKC_SCSI_CCS;
23348 		break;
23349 	}
23350 	pdip = ddi_get_parent(SD_DEVINFO(un));
23351 	info->dki_cnum = ddi_get_instance(pdip);
23352 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23353 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23354 	} else {
23355 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23356 		    DK_DEVLEN - 1);
23357 	}
23358 
23359 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23360 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23361 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23362 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23363 
23364 	/* Unit Information */
23365 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23366 	info->dki_slave = ((tgt << 3) | lun);
23367 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23368 	    DK_DEVLEN - 1);
23369 	info->dki_flags = DKI_FMTVOL;
23370 	info->dki_partition = SDPART(dev);
23371 
23372 	/* Max Transfer size of this device in blocks */
23373 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23374 	info->dki_addr = 0;
23375 	info->dki_space = 0;
23376 	info->dki_prio = 0;
23377 	info->dki_vec = 0;
23378 
23379 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23380 		kmem_free(info, sizeof (struct dk_cinfo));
23381 		return (EFAULT);
23382 	} else {
23383 		kmem_free(info, sizeof (struct dk_cinfo));
23384 		return (0);
23385 	}
23386 }
23387 
23388 /*
23389  *    Function: sd_get_media_info_com
23390  *
23391  * Description: This routine returns the information required to populate
23392  *		the fields for the dk_minfo/dk_minfo_ext structures.
23393  *
23394  *   Arguments: dev		- the device number
23395  *		dki_media_type	- media_type
23396  *		dki_lbsize	- logical block size
23397  *		dki_capacity	- capacity in blocks
23398  *		dki_pbsize	- physical block size (if requested)
23399  *
23400  * Return Code: 0
23401  *		EACCESS
23402  *		EFAULT
23403  *		ENXIO
23404  *		EIO
23405  */
23406 static int
23407 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23408     diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23409 {
23410 	struct sd_lun		*un = NULL;
23411 	struct uscsi_cmd	com;
23412 	struct scsi_inquiry	*sinq;
23413 	u_longlong_t		media_capacity;
23414 	uint64_t		capacity;
23415 	uint_t			lbasize;
23416 	uint_t			pbsize;
23417 	uchar_t			*out_data;
23418 	uchar_t			*rqbuf;
23419 	int			rval = 0;
23420 	int			rtn;
23421 	sd_ssc_t		*ssc;
23422 
23423 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23424 	    (un->un_state == SD_STATE_OFFLINE)) {
23425 		return (ENXIO);
23426 	}
23427 
23428 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23429 
23430 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23431 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23432 	ssc = sd_ssc_init(un);
23433 
23434 	/* Issue a TUR to determine if the drive is ready with media present */
23435 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23436 	if (rval == ENXIO) {
23437 		goto done;
23438 	} else if (rval != 0) {
23439 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23440 	}
23441 
23442 	/* Now get configuration data */
23443 	if (ISCD(un)) {
23444 		*dki_media_type = DK_CDROM;
23445 
23446 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23447 		if (un->un_f_mmc_cap == TRUE) {
23448 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23449 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23450 			    SD_PATH_STANDARD);
23451 
23452 			if (rtn) {
23453 				/*
23454 				 * We ignore all failures for CD and need to
23455 				 * put the assessment before processing code
23456 				 * to avoid missing assessment for FMA.
23457 				 */
23458 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23459 				/*
23460 				 * Failed for other than an illegal request
23461 				 * or command not supported
23462 				 */
23463 				if ((com.uscsi_status == STATUS_CHECK) &&
23464 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23465 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23466 					    (rqbuf[12] != 0x20)) {
23467 						rval = EIO;
23468 						goto no_assessment;
23469 					}
23470 				}
23471 			} else {
23472 				/*
23473 				 * The GET CONFIGURATION command succeeded
23474 				 * so set the media type according to the
23475 				 * returned data
23476 				 */
23477 				*dki_media_type = out_data[6];
23478 				*dki_media_type <<= 8;
23479 				*dki_media_type |= out_data[7];
23480 			}
23481 		}
23482 	} else {
23483 		/*
23484 		 * The profile list is not available, so we attempt to identify
23485 		 * the media type based on the inquiry data
23486 		 */
23487 		sinq = un->un_sd->sd_inq;
23488 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23489 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23490 			/* This is a direct access device  or optical disk */
23491 			*dki_media_type = DK_FIXED_DISK;
23492 
23493 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23494 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23495 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23496 					*dki_media_type = DK_ZIP;
23497 				} else if (
23498 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23499 					*dki_media_type = DK_JAZ;
23500 				}
23501 			}
23502 		} else {
23503 			/*
23504 			 * Not a CD, direct access or optical disk so return
23505 			 * unknown media
23506 			 */
23507 			*dki_media_type = DK_UNKNOWN;
23508 		}
23509 	}
23510 
23511 	/*
23512 	 * Now read the capacity so we can provide the lbasize,
23513 	 * pbsize and capacity.
23514 	 */
23515 	if (dki_pbsize && un->un_f_descr_format_supported) {
23516 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23517 		    &pbsize, SD_PATH_DIRECT);
23518 
23519 		/*
23520 		 * Override the physical blocksize if the instance already
23521 		 * has a larger value.
23522 		 */
23523 		pbsize = MAX(pbsize, un->un_phy_blocksize);
23524 	}
23525 
23526 	if (dki_pbsize == NULL || rval != 0 ||
23527 	    !un->un_f_descr_format_supported) {
23528 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23529 		    SD_PATH_DIRECT);
23530 
23531 		switch (rval) {
23532 		case 0:
23533 			if (un->un_f_enable_rmw &&
23534 			    un->un_phy_blocksize != 0) {
23535 				pbsize = un->un_phy_blocksize;
23536 			} else {
23537 				pbsize = lbasize;
23538 			}
23539 			media_capacity = capacity;
23540 
23541 			/*
23542 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23543 			 * un->un_sys_blocksize chunks. So we need to convert
23544 			 * it into cap.lbsize chunks.
23545 			 */
23546 			if (un->un_f_has_removable_media) {
23547 				media_capacity *= un->un_sys_blocksize;
23548 				media_capacity /= lbasize;
23549 			}
23550 			break;
23551 		case EACCES:
23552 			rval = EACCES;
23553 			goto done;
23554 		default:
23555 			rval = EIO;
23556 			goto done;
23557 		}
23558 	} else {
23559 		if (un->un_f_enable_rmw &&
23560 		    !ISP2(pbsize % DEV_BSIZE)) {
23561 			pbsize = SSD_SECSIZE;
23562 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23563 		    !ISP2(pbsize % DEV_BSIZE)) {
23564 			pbsize = lbasize = DEV_BSIZE;
23565 		}
23566 		media_capacity = capacity;
23567 	}
23568 
23569 	/*
23570 	 * If lun is expanded dynamically, update the un structure.
23571 	 */
23572 	mutex_enter(SD_MUTEX(un));
23573 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23574 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23575 	    (capacity > un->un_blockcount)) {
23576 		un->un_f_expnevent = B_FALSE;
23577 		sd_update_block_info(un, lbasize, capacity);
23578 	}
23579 	mutex_exit(SD_MUTEX(un));
23580 
23581 	*dki_lbsize = lbasize;
23582 	*dki_capacity = media_capacity;
23583 	if (dki_pbsize)
23584 		*dki_pbsize = pbsize;
23585 
23586 done:
23587 	if (rval != 0) {
23588 		if (rval == EIO)
23589 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23590 		else
23591 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23592 	}
23593 no_assessment:
23594 	sd_ssc_fini(ssc);
23595 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23596 	kmem_free(rqbuf, SENSE_LENGTH);
23597 	return (rval);
23598 }
23599 
23600 /*
23601  *    Function: sd_get_media_info
23602  *
23603  * Description: This routine is the driver entry point for handling ioctl
23604  *		requests for the media type or command set profile used by the
23605  *		drive to operate on the media (DKIOCGMEDIAINFO).
23606  *
23607  *   Arguments: dev	- the device number
23608  *		arg	- pointer to user provided dk_minfo structure
23609  *			  specifying the media type, logical block size and
23610  *			  drive capacity.
23611  *		flag	- this argument is a pass through to ddi_copyxxx()
23612  *			  directly from the mode argument of ioctl().
23613  *
23614  * Return Code: returns the value from sd_get_media_info_com
23615  */
23616 static int
23617 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23618 {
23619 	struct dk_minfo		mi;
23620 	int			rval;
23621 
23622 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23623 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23624 
23625 	if (rval)
23626 		return (rval);
23627 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23628 		rval = EFAULT;
23629 	return (rval);
23630 }
23631 
23632 /*
23633  *    Function: sd_get_media_info_ext
23634  *
23635  * Description: This routine is the driver entry point for handling ioctl
23636  *		requests for the media type or command set profile used by the
23637  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23638  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23639  *		of this ioctl contains both logical block size and physical
23640  *		block size.
23641  *
23642  *
23643  *   Arguments: dev	- the device number
23644  *		arg	- pointer to user provided dk_minfo_ext structure
23645  *			  specifying the media type, logical block size,
23646  *			  physical block size and disk capacity.
23647  *		flag	- this argument is a pass through to ddi_copyxxx()
23648  *			  directly from the mode argument of ioctl().
23649  *
23650  * Return Code: returns the value from sd_get_media_info_com
23651  */
23652 static int
23653 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23654 {
23655 	struct dk_minfo_ext	mie;
23656 	int			rval = 0;
23657 
23658 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23659 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23660 
23661 	if (rval)
23662 		return (rval);
23663 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23664 		rval = EFAULT;
23665 	return (rval);
23666 
23667 }
23668 
23669 /*
23670  *    Function: sd_watch_request_submit
23671  *
23672  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23673  *		depending on which is supported by device.
23674  */
23675 static opaque_t
23676 sd_watch_request_submit(struct sd_lun *un)
23677 {
23678 	dev_t			dev;
23679 
23680 	/* All submissions are unified to use same device number */
23681 	dev = sd_make_device(SD_DEVINFO(un));
23682 
23683 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23684 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23685 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23686 		    (caddr_t)dev));
23687 	} else {
23688 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23689 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23690 		    (caddr_t)dev));
23691 	}
23692 }
23693 
23694 
23695 /*
23696  *    Function: sd_check_media
23697  *
23698  * Description: This utility routine implements the functionality for the
23699  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23700  *		driver state changes from that specified by the user
23701  *		(inserted or ejected). For example, if the user specifies
23702  *		DKIO_EJECTED and the current media state is inserted this
23703  *		routine will immediately return DKIO_INSERTED. However, if the
23704  *		current media state is not inserted the user thread will be
23705  *		blocked until the drive state changes. If DKIO_NONE is specified
23706  *		the user thread will block until a drive state change occurs.
23707  *
23708  *   Arguments: dev  - the device number
23709  *		state  - user pointer to a dkio_state, updated with the current
23710  *			drive state at return.
23711  *
23712  * Return Code: ENXIO
23713  *		EIO
23714  *		EAGAIN
23715  *		EINTR
23716  */
23717 
23718 static int
23719 sd_check_media(dev_t dev, enum dkio_state state)
23720 {
23721 	struct sd_lun		*un = NULL;
23722 	enum dkio_state		prev_state;
23723 	opaque_t		token = NULL;
23724 	int			rval = 0;
23725 	sd_ssc_t		*ssc;
23726 
23727 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23728 		return (ENXIO);
23729 	}
23730 
23731 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23732 
23733 	ssc = sd_ssc_init(un);
23734 
23735 	mutex_enter(SD_MUTEX(un));
23736 
23737 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23738 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23739 
23740 	prev_state = un->un_mediastate;
23741 
23742 	/* is there anything to do? */
23743 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23744 		/*
23745 		 * submit the request to the scsi_watch service;
23746 		 * scsi_media_watch_cb() does the real work
23747 		 */
23748 		mutex_exit(SD_MUTEX(un));
23749 
23750 		/*
23751 		 * This change handles the case where a scsi watch request is
23752 		 * added to a device that is powered down. To accomplish this
23753 		 * we power up the device before adding the scsi watch request,
23754 		 * since the scsi watch sends a TUR directly to the device
23755 		 * which the device cannot handle if it is powered down.
23756 		 */
23757 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23758 			mutex_enter(SD_MUTEX(un));
23759 			goto done;
23760 		}
23761 
23762 		token = sd_watch_request_submit(un);
23763 
23764 		sd_pm_exit(un);
23765 
23766 		mutex_enter(SD_MUTEX(un));
23767 		if (token == NULL) {
23768 			rval = EAGAIN;
23769 			goto done;
23770 		}
23771 
23772 		/*
23773 		 * This is a special case IOCTL that doesn't return
23774 		 * until the media state changes. Routine sdpower
23775 		 * knows about and handles this so don't count it
23776 		 * as an active cmd in the driver, which would
23777 		 * keep the device busy to the pm framework.
23778 		 * If the count isn't decremented the device can't
23779 		 * be powered down.
23780 		 */
23781 		un->un_ncmds_in_driver--;
23782 		ASSERT(un->un_ncmds_in_driver >= 0);
23783 
23784 		/*
23785 		 * if a prior request had been made, this will be the same
23786 		 * token, as scsi_watch was designed that way.
23787 		 */
23788 		un->un_swr_token = token;
23789 		un->un_specified_mediastate = state;
23790 
23791 		/*
23792 		 * now wait for media change
23793 		 * we will not be signalled unless mediastate == state but it is
23794 		 * still better to test for this condition, since there is a
23795 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23796 		 */
23797 		SD_TRACE(SD_LOG_COMMON, un,
23798 		    "sd_check_media: waiting for media state change\n");
23799 		while (un->un_mediastate == state) {
23800 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23801 				SD_TRACE(SD_LOG_COMMON, un,
23802 				    "sd_check_media: waiting for media state "
23803 				    "was interrupted\n");
23804 				un->un_ncmds_in_driver++;
23805 				rval = EINTR;
23806 				goto done;
23807 			}
23808 			SD_TRACE(SD_LOG_COMMON, un,
23809 			    "sd_check_media: received signal, state=%x\n",
23810 			    un->un_mediastate);
23811 		}
23812 		/*
23813 		 * Inc the counter to indicate the device once again
23814 		 * has an active outstanding cmd.
23815 		 */
23816 		un->un_ncmds_in_driver++;
23817 	}
23818 
23819 	/* invalidate geometry */
23820 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23821 		sr_ejected(un);
23822 	}
23823 
23824 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23825 		uint64_t	capacity;
23826 		uint_t		lbasize;
23827 
23828 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23829 		mutex_exit(SD_MUTEX(un));
23830 		/*
23831 		 * Since the following routines use SD_PATH_DIRECT, we must
23832 		 * call PM directly before the upcoming disk accesses. This
23833 		 * may cause the disk to be power/spin up.
23834 		 */
23835 
23836 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23837 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23838 			    &capacity, &lbasize, SD_PATH_DIRECT);
23839 			if (rval != 0) {
23840 				sd_pm_exit(un);
23841 				if (rval == EIO)
23842 					sd_ssc_assessment(ssc,
23843 					    SD_FMT_STATUS_CHECK);
23844 				else
23845 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23846 				mutex_enter(SD_MUTEX(un));
23847 				goto done;
23848 			}
23849 		} else {
23850 			rval = EIO;
23851 			mutex_enter(SD_MUTEX(un));
23852 			goto done;
23853 		}
23854 		mutex_enter(SD_MUTEX(un));
23855 
23856 		sd_update_block_info(un, lbasize, capacity);
23857 
23858 		/*
23859 		 *  Check if the media in the device is writable or not
23860 		 */
23861 		if (ISCD(un)) {
23862 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23863 		}
23864 
23865 		mutex_exit(SD_MUTEX(un));
23866 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23867 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23868 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23869 			sd_set_pstats(un);
23870 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23871 			    "sd_check_media: un:0x%p pstats created and "
23872 			    "set\n", un);
23873 		}
23874 
23875 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23876 		    SD_PATH_DIRECT);
23877 
23878 		sd_pm_exit(un);
23879 
23880 		if (rval != 0) {
23881 			if (rval == EIO)
23882 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23883 			else
23884 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23885 		}
23886 
23887 		mutex_enter(SD_MUTEX(un));
23888 	}
23889 done:
23890 	sd_ssc_fini(ssc);
23891 	un->un_f_watcht_stopped = FALSE;
23892 	if (token != NULL && un->un_swr_token != NULL) {
23893 		/*
23894 		 * Use of this local token and the mutex ensures that we avoid
23895 		 * some race conditions associated with terminating the
23896 		 * scsi watch.
23897 		 */
23898 		token = un->un_swr_token;
23899 		mutex_exit(SD_MUTEX(un));
23900 		(void) scsi_watch_request_terminate(token,
23901 		    SCSI_WATCH_TERMINATE_WAIT);
23902 		if (scsi_watch_get_ref_count(token) == 0) {
23903 			mutex_enter(SD_MUTEX(un));
23904 			un->un_swr_token = (opaque_t)NULL;
23905 		} else {
23906 			mutex_enter(SD_MUTEX(un));
23907 		}
23908 	}
23909 
23910 	/*
23911 	 * Update the capacity kstat value, if no media previously
23912 	 * (capacity kstat is 0) and a media has been inserted
23913 	 * (un_f_blockcount_is_valid == TRUE)
23914 	 */
23915 	if (un->un_errstats) {
23916 		struct sd_errstats	*stp = NULL;
23917 
23918 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23919 		if ((stp->sd_capacity.value.ui64 == 0) &&
23920 		    (un->un_f_blockcount_is_valid == TRUE)) {
23921 			stp->sd_capacity.value.ui64 =
23922 			    (uint64_t)((uint64_t)un->un_blockcount *
23923 			    un->un_sys_blocksize);
23924 		}
23925 	}
23926 	mutex_exit(SD_MUTEX(un));
23927 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23928 	return (rval);
23929 }
23930 
23931 
23932 /*
23933  *    Function: sd_delayed_cv_broadcast
23934  *
23935  * Description: Delayed cv_broadcast to allow for target to recover from media
23936  *		insertion.
23937  *
23938  *   Arguments: arg - driver soft state (unit) structure
23939  */
23940 
23941 static void
23942 sd_delayed_cv_broadcast(void *arg)
23943 {
23944 	struct sd_lun *un = arg;
23945 
23946 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23947 
23948 	mutex_enter(SD_MUTEX(un));
23949 	un->un_dcvb_timeid = NULL;
23950 	cv_broadcast(&un->un_state_cv);
23951 	mutex_exit(SD_MUTEX(un));
23952 }
23953 
23954 
23955 /*
23956  *    Function: sd_media_watch_cb
23957  *
23958  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23959  *		routine processes the TUR sense data and updates the driver
23960  *		state if a transition has occurred. The user thread
23961  *		(sd_check_media) is then signalled.
23962  *
23963  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23964  *			among multiple watches that share this callback function
23965  *		resultp - scsi watch facility result packet containing scsi
23966  *			  packet, status byte and sense data
23967  *
23968  * Return Code: 0 for success, -1 for failure
23969  */
23970 
23971 static int
23972 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23973 {
23974 	struct sd_lun			*un;
23975 	struct scsi_status		*statusp = resultp->statusp;
23976 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23977 	enum dkio_state			state = DKIO_NONE;
23978 	dev_t				dev = (dev_t)arg;
23979 	uchar_t				actual_sense_length;
23980 	uint8_t				skey, asc, ascq;
23981 
23982 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23983 		return (-1);
23984 	}
23985 	actual_sense_length = resultp->actual_sense_length;
23986 
23987 	mutex_enter(SD_MUTEX(un));
23988 	SD_TRACE(SD_LOG_COMMON, un,
23989 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23990 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23991 
23992 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23993 		un->un_mediastate = DKIO_DEV_GONE;
23994 		cv_broadcast(&un->un_state_cv);
23995 		mutex_exit(SD_MUTEX(un));
23996 
23997 		return (0);
23998 	}
23999 
24000 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
24001 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
24002 			if ((resultp->mmc_data[5] &
24003 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
24004 				state = DKIO_INSERTED;
24005 			} else {
24006 				state = DKIO_EJECTED;
24007 			}
24008 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
24009 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
24010 				sd_log_eject_request_event(un, KM_NOSLEEP);
24011 			}
24012 		}
24013 	} else if (sensep != NULL) {
24014 		/*
24015 		 * If there was a check condition then sensep points to valid
24016 		 * sense data. If status was not a check condition but a
24017 		 * reservation or busy status then the new state is DKIO_NONE.
24018 		 */
24019 		skey = scsi_sense_key(sensep);
24020 		asc = scsi_sense_asc(sensep);
24021 		ascq = scsi_sense_ascq(sensep);
24022 
24023 		SD_INFO(SD_LOG_COMMON, un,
24024 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24025 		    skey, asc, ascq);
24026 		/* This routine only uses up to 13 bytes of sense data. */
24027 		if (actual_sense_length >= 13) {
24028 			if (skey == KEY_UNIT_ATTENTION) {
24029 				if (asc == 0x28) {
24030 					state = DKIO_INSERTED;
24031 				}
24032 			} else if (skey == KEY_NOT_READY) {
24033 				/*
24034 				 * Sense data of 02/06/00 means that the
24035 				 * drive could not read the media (No
24036 				 * reference position found). In this case
24037 				 * to prevent a hang on the DKIOCSTATE IOCTL
24038 				 * we set the media state to DKIO_INSERTED.
24039 				 */
24040 				if (asc == 0x06 && ascq == 0x00)
24041 					state = DKIO_INSERTED;
24042 
24043 				/*
24044 				 * if 02/04/02  means that the host
24045 				 * should send start command. Explicitly
24046 				 * leave the media state as is
24047 				 * (inserted) as the media is inserted
24048 				 * and host has stopped device for PM
24049 				 * reasons. Upon next true read/write
24050 				 * to this media will bring the
24051 				 * device to the right state good for
24052 				 * media access.
24053 				 */
24054 				if (asc == 0x3a) {
24055 					state = DKIO_EJECTED;
24056 				} else {
24057 					/*
24058 					 * If the drive is busy with an
24059 					 * operation or long write, keep the
24060 					 * media in an inserted state.
24061 					 */
24062 
24063 					if ((asc == 0x04) &&
24064 					    ((ascq == 0x02) ||
24065 					    (ascq == 0x07) ||
24066 					    (ascq == 0x08))) {
24067 						state = DKIO_INSERTED;
24068 					}
24069 				}
24070 			} else if (skey == KEY_NO_SENSE) {
24071 				if ((asc == 0x00) && (ascq == 0x00)) {
24072 					/*
24073 					 * Sense Data 00/00/00 does not provide
24074 					 * any information about the state of
24075 					 * the media. Ignore it.
24076 					 */
24077 					mutex_exit(SD_MUTEX(un));
24078 					return (0);
24079 				}
24080 			}
24081 		}
24082 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24083 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24084 		state = DKIO_INSERTED;
24085 	}
24086 
24087 	SD_TRACE(SD_LOG_COMMON, un,
24088 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24089 	    state, un->un_specified_mediastate);
24090 
24091 	/*
24092 	 * now signal the waiting thread if this is *not* the specified state;
24093 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24094 	 * to recover
24095 	 */
24096 	if (state != un->un_specified_mediastate) {
24097 		un->un_mediastate = state;
24098 		if (state == DKIO_INSERTED) {
24099 			/*
24100 			 * delay the signal to give the drive a chance
24101 			 * to do what it apparently needs to do
24102 			 */
24103 			SD_TRACE(SD_LOG_COMMON, un,
24104 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24105 			if (un->un_dcvb_timeid == NULL) {
24106 				un->un_dcvb_timeid =
24107 				    timeout(sd_delayed_cv_broadcast, un,
24108 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24109 			}
24110 		} else {
24111 			SD_TRACE(SD_LOG_COMMON, un,
24112 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24113 			cv_broadcast(&un->un_state_cv);
24114 		}
24115 	}
24116 	mutex_exit(SD_MUTEX(un));
24117 	return (0);
24118 }
24119 
24120 
24121 /*
24122  *    Function: sd_dkio_get_temp
24123  *
24124  * Description: This routine is the driver entry point for handling ioctl
24125  *		requests to get the disk temperature.
24126  *
24127  *   Arguments: dev  - the device number
24128  *		arg  - pointer to user provided dk_temperature structure.
24129  *		flag - this argument is a pass through to ddi_copyxxx()
24130  *		       directly from the mode argument of ioctl().
24131  *
24132  * Return Code: 0
24133  *		EFAULT
24134  *		ENXIO
24135  *		EAGAIN
24136  */
24137 
24138 static int
24139 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24140 {
24141 	struct sd_lun		*un = NULL;
24142 	struct dk_temperature	*dktemp = NULL;
24143 	uchar_t			*temperature_page;
24144 	int			rval = 0;
24145 	int			path_flag = SD_PATH_STANDARD;
24146 	sd_ssc_t		*ssc;
24147 
24148 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24149 		return (ENXIO);
24150 	}
24151 
24152 	ssc = sd_ssc_init(un);
24153 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24154 
24155 	/* copyin the disk temp argument to get the user flags */
24156 	if (ddi_copyin((void *)arg, dktemp,
24157 	    sizeof (struct dk_temperature), flag) != 0) {
24158 		rval = EFAULT;
24159 		goto done;
24160 	}
24161 
24162 	/* Initialize the temperature to invalid. */
24163 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24164 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24165 
24166 	/*
24167 	 * Note: Investigate removing the "bypass pm" semantic.
24168 	 * Can we just bypass PM always?
24169 	 */
24170 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24171 		path_flag = SD_PATH_DIRECT;
24172 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24173 		mutex_enter(&un->un_pm_mutex);
24174 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24175 			/*
24176 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24177 			 * in low power mode, we can not wake it up, Need to
24178 			 * return EAGAIN.
24179 			 */
24180 			mutex_exit(&un->un_pm_mutex);
24181 			rval = EAGAIN;
24182 			goto done;
24183 		} else {
24184 			/*
24185 			 * Indicate to PM the device is busy. This is required
24186 			 * to avoid a race - i.e. the ioctl is issuing a
24187 			 * command and the pm framework brings down the device
24188 			 * to low power mode (possible power cut-off on some
24189 			 * platforms).
24190 			 */
24191 			mutex_exit(&un->un_pm_mutex);
24192 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24193 				rval = EAGAIN;
24194 				goto done;
24195 			}
24196 		}
24197 	}
24198 
24199 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24200 
24201 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24202 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24203 	if (rval != 0)
24204 		goto done2;
24205 
24206 	/*
24207 	 * For the current temperature verify that the parameter length is 0x02
24208 	 * and the parameter code is 0x00
24209 	 */
24210 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24211 	    (temperature_page[5] == 0x00)) {
24212 		if (temperature_page[9] == 0xFF) {
24213 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24214 		} else {
24215 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24216 		}
24217 	}
24218 
24219 	/*
24220 	 * For the reference temperature verify that the parameter
24221 	 * length is 0x02 and the parameter code is 0x01
24222 	 */
24223 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24224 	    (temperature_page[11] == 0x01)) {
24225 		if (temperature_page[15] == 0xFF) {
24226 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24227 		} else {
24228 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24229 		}
24230 	}
24231 
24232 	/* Do the copyout regardless of the temperature commands status. */
24233 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24234 	    flag) != 0) {
24235 		rval = EFAULT;
24236 		goto done1;
24237 	}
24238 
24239 done2:
24240 	if (rval != 0) {
24241 		if (rval == EIO)
24242 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24243 		else
24244 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24245 	}
24246 done1:
24247 	if (path_flag == SD_PATH_DIRECT) {
24248 		sd_pm_exit(un);
24249 	}
24250 
24251 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24252 done:
24253 	sd_ssc_fini(ssc);
24254 	if (dktemp != NULL) {
24255 		kmem_free(dktemp, sizeof (struct dk_temperature));
24256 	}
24257 
24258 	return (rval);
24259 }
24260 
24261 
24262 /*
24263  *    Function: sd_log_page_supported
24264  *
24265  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24266  *		supported log pages.
24267  *
24268  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24269  *                      structure for this target.
24270  *		log_page -
24271  *
24272  * Return Code: -1 - on error (log sense is optional and may not be supported).
24273  *		0  - log page not found.
24274  *  		1  - log page found.
24275  */
24276 
24277 static int
24278 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24279 {
24280 	uchar_t *log_page_data;
24281 	int	i;
24282 	int	match = 0;
24283 	int	log_size;
24284 	int	status = 0;
24285 	struct sd_lun	*un;
24286 
24287 	ASSERT(ssc != NULL);
24288 	un = ssc->ssc_un;
24289 	ASSERT(un != NULL);
24290 
24291 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24292 
24293 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24294 	    SD_PATH_DIRECT);
24295 
24296 	if (status != 0) {
24297 		if (status == EIO) {
24298 			/*
24299 			 * Some disks do not support log sense, we
24300 			 * should ignore this kind of error(sense key is
24301 			 * 0x5 - illegal request).
24302 			 */
24303 			uint8_t *sensep;
24304 			int senlen;
24305 
24306 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24307 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24308 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24309 
24310 			if (senlen > 0 &&
24311 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24312 				sd_ssc_assessment(ssc,
24313 				    SD_FMT_IGNORE_COMPROMISE);
24314 			} else {
24315 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24316 			}
24317 		} else {
24318 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24319 		}
24320 
24321 		SD_ERROR(SD_LOG_COMMON, un,
24322 		    "sd_log_page_supported: failed log page retrieval\n");
24323 		kmem_free(log_page_data, 0xFF);
24324 		return (-1);
24325 	}
24326 
24327 	log_size = log_page_data[3];
24328 
24329 	/*
24330 	 * The list of supported log pages start from the fourth byte. Check
24331 	 * until we run out of log pages or a match is found.
24332 	 */
24333 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24334 		if (log_page_data[i] == log_page) {
24335 			match++;
24336 		}
24337 	}
24338 	kmem_free(log_page_data, 0xFF);
24339 	return (match);
24340 }
24341 
24342 
24343 /*
24344  *    Function: sd_mhdioc_failfast
24345  *
24346  * Description: This routine is the driver entry point for handling ioctl
24347  *		requests to enable/disable the multihost failfast option.
24348  *		(MHIOCENFAILFAST)
24349  *
24350  *   Arguments: dev	- the device number
24351  *		arg	- user specified probing interval.
24352  *		flag	- this argument is a pass through to ddi_copyxxx()
24353  *			  directly from the mode argument of ioctl().
24354  *
24355  * Return Code: 0
24356  *		EFAULT
24357  *		ENXIO
24358  */
24359 
24360 static int
24361 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24362 {
24363 	struct sd_lun	*un = NULL;
24364 	int		mh_time;
24365 	int		rval = 0;
24366 
24367 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24368 		return (ENXIO);
24369 	}
24370 
24371 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24372 		return (EFAULT);
24373 
24374 	if (mh_time) {
24375 		mutex_enter(SD_MUTEX(un));
24376 		un->un_resvd_status |= SD_FAILFAST;
24377 		mutex_exit(SD_MUTEX(un));
24378 		/*
24379 		 * If mh_time is INT_MAX, then this ioctl is being used for
24380 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24381 		 */
24382 		if (mh_time != INT_MAX) {
24383 			rval = sd_check_mhd(dev, mh_time);
24384 		}
24385 	} else {
24386 		(void) sd_check_mhd(dev, 0);
24387 		mutex_enter(SD_MUTEX(un));
24388 		un->un_resvd_status &= ~SD_FAILFAST;
24389 		mutex_exit(SD_MUTEX(un));
24390 	}
24391 	return (rval);
24392 }
24393 
24394 
24395 /*
24396  *    Function: sd_mhdioc_takeown
24397  *
24398  * Description: This routine is the driver entry point for handling ioctl
24399  *		requests to forcefully acquire exclusive access rights to the
24400  *		multihost disk (MHIOCTKOWN).
24401  *
24402  *   Arguments: dev	- the device number
24403  *		arg	- user provided structure specifying the delay
24404  *			  parameters in milliseconds
24405  *		flag	- this argument is a pass through to ddi_copyxxx()
24406  *			  directly from the mode argument of ioctl().
24407  *
24408  * Return Code: 0
24409  *		EFAULT
24410  *		ENXIO
24411  */
24412 
24413 static int
24414 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24415 {
24416 	struct sd_lun		*un = NULL;
24417 	struct mhioctkown	*tkown = NULL;
24418 	int			rval = 0;
24419 
24420 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24421 		return (ENXIO);
24422 	}
24423 
24424 	if (arg != NULL) {
24425 		tkown = (struct mhioctkown *)
24426 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24427 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24428 		if (rval != 0) {
24429 			rval = EFAULT;
24430 			goto error;
24431 		}
24432 	}
24433 
24434 	rval = sd_take_ownership(dev, tkown);
24435 	mutex_enter(SD_MUTEX(un));
24436 	if (rval == 0) {
24437 		un->un_resvd_status |= SD_RESERVE;
24438 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24439 			sd_reinstate_resv_delay =
24440 			    tkown->reinstate_resv_delay * 1000;
24441 		} else {
24442 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24443 		}
24444 		/*
24445 		 * Give the scsi_watch routine interval set by
24446 		 * the MHIOCENFAILFAST ioctl precedence here.
24447 		 */
24448 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24449 			mutex_exit(SD_MUTEX(un));
24450 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24451 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24452 			    "sd_mhdioc_takeown : %d\n",
24453 			    sd_reinstate_resv_delay);
24454 		} else {
24455 			mutex_exit(SD_MUTEX(un));
24456 		}
24457 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24458 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24459 	} else {
24460 		un->un_resvd_status &= ~SD_RESERVE;
24461 		mutex_exit(SD_MUTEX(un));
24462 	}
24463 
24464 error:
24465 	if (tkown != NULL) {
24466 		kmem_free(tkown, sizeof (struct mhioctkown));
24467 	}
24468 	return (rval);
24469 }
24470 
24471 
24472 /*
24473  *    Function: sd_mhdioc_release
24474  *
24475  * Description: This routine is the driver entry point for handling ioctl
24476  *		requests to release exclusive access rights to the multihost
24477  *		disk (MHIOCRELEASE).
24478  *
24479  *   Arguments: dev	- the device number
24480  *
24481  * Return Code: 0
24482  *		ENXIO
24483  */
24484 
24485 static int
24486 sd_mhdioc_release(dev_t dev)
24487 {
24488 	struct sd_lun		*un = NULL;
24489 	timeout_id_t		resvd_timeid_save;
24490 	int			resvd_status_save;
24491 	int			rval = 0;
24492 
24493 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24494 		return (ENXIO);
24495 	}
24496 
24497 	mutex_enter(SD_MUTEX(un));
24498 	resvd_status_save = un->un_resvd_status;
24499 	un->un_resvd_status &=
24500 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24501 	if (un->un_resvd_timeid) {
24502 		resvd_timeid_save = un->un_resvd_timeid;
24503 		un->un_resvd_timeid = NULL;
24504 		mutex_exit(SD_MUTEX(un));
24505 		(void) untimeout(resvd_timeid_save);
24506 	} else {
24507 		mutex_exit(SD_MUTEX(un));
24508 	}
24509 
24510 	/*
24511 	 * destroy any pending timeout thread that may be attempting to
24512 	 * reinstate reservation on this device.
24513 	 */
24514 	sd_rmv_resv_reclaim_req(dev);
24515 
24516 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24517 		mutex_enter(SD_MUTEX(un));
24518 		if ((un->un_mhd_token) &&
24519 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24520 			mutex_exit(SD_MUTEX(un));
24521 			(void) sd_check_mhd(dev, 0);
24522 		} else {
24523 			mutex_exit(SD_MUTEX(un));
24524 		}
24525 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24526 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24527 	} else {
24528 		/*
24529 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24530 		 */
24531 		mutex_enter(SD_MUTEX(un));
24532 		un->un_resvd_status = resvd_status_save;
24533 		mutex_exit(SD_MUTEX(un));
24534 	}
24535 	return (rval);
24536 }
24537 
24538 
24539 /*
24540  *    Function: sd_mhdioc_register_devid
24541  *
24542  * Description: This routine is the driver entry point for handling ioctl
24543  *		requests to register the device id (MHIOCREREGISTERDEVID).
24544  *
24545  *		Note: The implementation for this ioctl has been updated to
24546  *		be consistent with the original PSARC case (1999/357)
24547  *		(4375899, 4241671, 4220005)
24548  *
24549  *   Arguments: dev	- the device number
24550  *
24551  * Return Code: 0
24552  *		ENXIO
24553  */
24554 
24555 static int
24556 sd_mhdioc_register_devid(dev_t dev)
24557 {
24558 	struct sd_lun	*un = NULL;
24559 	int		rval = 0;
24560 	sd_ssc_t	*ssc;
24561 
24562 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24563 		return (ENXIO);
24564 	}
24565 
24566 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24567 
24568 	mutex_enter(SD_MUTEX(un));
24569 
24570 	/* If a devid already exists, de-register it */
24571 	if (un->un_devid != NULL) {
24572 		ddi_devid_unregister(SD_DEVINFO(un));
24573 		/*
24574 		 * After unregister devid, needs to free devid memory
24575 		 */
24576 		ddi_devid_free(un->un_devid);
24577 		un->un_devid = NULL;
24578 	}
24579 
24580 	/* Check for reservation conflict */
24581 	mutex_exit(SD_MUTEX(un));
24582 	ssc = sd_ssc_init(un);
24583 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24584 	mutex_enter(SD_MUTEX(un));
24585 
24586 	switch (rval) {
24587 	case 0:
24588 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24589 		break;
24590 	case EACCES:
24591 		break;
24592 	default:
24593 		rval = EIO;
24594 	}
24595 
24596 	mutex_exit(SD_MUTEX(un));
24597 	if (rval != 0) {
24598 		if (rval == EIO)
24599 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24600 		else
24601 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24602 	}
24603 	sd_ssc_fini(ssc);
24604 	return (rval);
24605 }
24606 
24607 
24608 /*
24609  *    Function: sd_mhdioc_inkeys
24610  *
24611  * Description: This routine is the driver entry point for handling ioctl
24612  *		requests to issue the SCSI-3 Persistent In Read Keys command
24613  *		to the device (MHIOCGRP_INKEYS).
24614  *
24615  *   Arguments: dev	- the device number
24616  *		arg	- user provided in_keys structure
24617  *		flag	- this argument is a pass through to ddi_copyxxx()
24618  *			  directly from the mode argument of ioctl().
24619  *
24620  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24621  *		ENXIO
24622  *		EFAULT
24623  */
24624 
24625 static int
24626 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24627 {
24628 	struct sd_lun		*un;
24629 	mhioc_inkeys_t		inkeys;
24630 	int			rval = 0;
24631 
24632 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24633 		return (ENXIO);
24634 	}
24635 
24636 #ifdef _MULTI_DATAMODEL
24637 	switch (ddi_model_convert_from(flag & FMODELS)) {
24638 	case DDI_MODEL_ILP32: {
24639 		struct mhioc_inkeys32	inkeys32;
24640 
24641 		if (ddi_copyin(arg, &inkeys32,
24642 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24643 			return (EFAULT);
24644 		}
24645 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24646 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24647 		    &inkeys, flag)) != 0) {
24648 			return (rval);
24649 		}
24650 		inkeys32.generation = inkeys.generation;
24651 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24652 		    flag) != 0) {
24653 			return (EFAULT);
24654 		}
24655 		break;
24656 	}
24657 	case DDI_MODEL_NONE:
24658 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24659 		    flag) != 0) {
24660 			return (EFAULT);
24661 		}
24662 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24663 		    &inkeys, flag)) != 0) {
24664 			return (rval);
24665 		}
24666 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24667 		    flag) != 0) {
24668 			return (EFAULT);
24669 		}
24670 		break;
24671 	}
24672 
24673 #else /* ! _MULTI_DATAMODEL */
24674 
24675 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24676 		return (EFAULT);
24677 	}
24678 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24679 	if (rval != 0) {
24680 		return (rval);
24681 	}
24682 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24683 		return (EFAULT);
24684 	}
24685 
24686 #endif /* _MULTI_DATAMODEL */
24687 
24688 	return (rval);
24689 }
24690 
24691 
24692 /*
24693  *    Function: sd_mhdioc_inresv
24694  *
24695  * Description: This routine is the driver entry point for handling ioctl
24696  *		requests to issue the SCSI-3 Persistent In Read Reservations
24697  *		command to the device (MHIOCGRP_INKEYS).
24698  *
24699  *   Arguments: dev	- the device number
24700  *		arg	- user provided in_resv structure
24701  *		flag	- this argument is a pass through to ddi_copyxxx()
24702  *			  directly from the mode argument of ioctl().
24703  *
24704  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24705  *		ENXIO
24706  *		EFAULT
24707  */
24708 
24709 static int
24710 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24711 {
24712 	struct sd_lun		*un;
24713 	mhioc_inresvs_t		inresvs;
24714 	int			rval = 0;
24715 
24716 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24717 		return (ENXIO);
24718 	}
24719 
24720 #ifdef _MULTI_DATAMODEL
24721 
24722 	switch (ddi_model_convert_from(flag & FMODELS)) {
24723 	case DDI_MODEL_ILP32: {
24724 		struct mhioc_inresvs32	inresvs32;
24725 
24726 		if (ddi_copyin(arg, &inresvs32,
24727 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24728 			return (EFAULT);
24729 		}
24730 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24731 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24732 		    &inresvs, flag)) != 0) {
24733 			return (rval);
24734 		}
24735 		inresvs32.generation = inresvs.generation;
24736 		if (ddi_copyout(&inresvs32, arg,
24737 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24738 			return (EFAULT);
24739 		}
24740 		break;
24741 	}
24742 	case DDI_MODEL_NONE:
24743 		if (ddi_copyin(arg, &inresvs,
24744 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24745 			return (EFAULT);
24746 		}
24747 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24748 		    &inresvs, flag)) != 0) {
24749 			return (rval);
24750 		}
24751 		if (ddi_copyout(&inresvs, arg,
24752 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24753 			return (EFAULT);
24754 		}
24755 		break;
24756 	}
24757 
24758 #else /* ! _MULTI_DATAMODEL */
24759 
24760 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24761 		return (EFAULT);
24762 	}
24763 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24764 	if (rval != 0) {
24765 		return (rval);
24766 	}
24767 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24768 		return (EFAULT);
24769 	}
24770 
24771 #endif /* ! _MULTI_DATAMODEL */
24772 
24773 	return (rval);
24774 }
24775 
24776 
24777 /*
24778  * The following routines support the clustering functionality described below
24779  * and implement lost reservation reclaim functionality.
24780  *
24781  * Clustering
24782  * ----------
24783  * The clustering code uses two different, independent forms of SCSI
24784  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24785  * Persistent Group Reservations. For any particular disk, it will use either
24786  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24787  *
24788  * SCSI-2
24789  * The cluster software takes ownership of a multi-hosted disk by issuing the
24790  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24791  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24792  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24793  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24794  * driver. The meaning of failfast is that if the driver (on this host) ever
24795  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24796  * it should immediately panic the host. The motivation for this ioctl is that
24797  * if this host does encounter reservation conflict, the underlying cause is
24798  * that some other host of the cluster has decided that this host is no longer
24799  * in the cluster and has seized control of the disks for itself. Since this
24800  * host is no longer in the cluster, it ought to panic itself. The
24801  * MHIOCENFAILFAST ioctl does two things:
24802  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24803  *      error to panic the host
24804  *      (b) it sets up a periodic timer to test whether this host still has
24805  *      "access" (in that no other host has reserved the device):  if the
24806  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24807  *      purpose of that periodic timer is to handle scenarios where the host is
24808  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24809  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24810  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24811  * the device itself.
24812  *
24813  * SCSI-3 PGR
24814  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24815  * facility is supported through the shared multihost disk ioctls
24816  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24817  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24818  *
24819  * Reservation Reclaim:
24820  * --------------------
24821  * To support the lost reservation reclaim operations this driver creates a
24822  * single thread to handle reinstating reservations on all devices that have
24823  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24824  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24825  * and the reservation reclaim thread loops through the requests to regain the
24826  * lost reservations.
24827  */
24828 
24829 /*
24830  *    Function: sd_check_mhd()
24831  *
24832  * Description: This function sets up and submits a scsi watch request or
24833  *		terminates an existing watch request. This routine is used in
24834  *		support of reservation reclaim.
24835  *
24836  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24837  *			 among multiple watches that share the callback function
24838  *		interval - the number of microseconds specifying the watch
24839  *			   interval for issuing TEST UNIT READY commands. If
24840  *			   set to 0 the watch should be terminated. If the
24841  *			   interval is set to 0 and if the device is required
24842  *			   to hold reservation while disabling failfast, the
24843  *			   watch is restarted with an interval of
24844  *			   reinstate_resv_delay.
24845  *
24846  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24847  *		ENXIO      - Indicates an invalid device was specified
24848  *		EAGAIN     - Unable to submit the scsi watch request
24849  */
24850 
24851 static int
24852 sd_check_mhd(dev_t dev, int interval)
24853 {
24854 	struct sd_lun	*un;
24855 	opaque_t	token;
24856 
24857 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24858 		return (ENXIO);
24859 	}
24860 
24861 	/* is this a watch termination request? */
24862 	if (interval == 0) {
24863 		mutex_enter(SD_MUTEX(un));
24864 		/* if there is an existing watch task then terminate it */
24865 		if (un->un_mhd_token) {
24866 			token = un->un_mhd_token;
24867 			un->un_mhd_token = NULL;
24868 			mutex_exit(SD_MUTEX(un));
24869 			(void) scsi_watch_request_terminate(token,
24870 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24871 			mutex_enter(SD_MUTEX(un));
24872 		} else {
24873 			mutex_exit(SD_MUTEX(un));
24874 			/*
24875 			 * Note: If we return here we don't check for the
24876 			 * failfast case. This is the original legacy
24877 			 * implementation but perhaps we should be checking
24878 			 * the failfast case.
24879 			 */
24880 			return (0);
24881 		}
24882 		/*
24883 		 * If the device is required to hold reservation while
24884 		 * disabling failfast, we need to restart the scsi_watch
24885 		 * routine with an interval of reinstate_resv_delay.
24886 		 */
24887 		if (un->un_resvd_status & SD_RESERVE) {
24888 			interval = sd_reinstate_resv_delay/1000;
24889 		} else {
24890 			/* no failfast so bail */
24891 			mutex_exit(SD_MUTEX(un));
24892 			return (0);
24893 		}
24894 		mutex_exit(SD_MUTEX(un));
24895 	}
24896 
24897 	/*
24898 	 * adjust minimum time interval to 1 second,
24899 	 * and convert from msecs to usecs
24900 	 */
24901 	if (interval > 0 && interval < 1000) {
24902 		interval = 1000;
24903 	}
24904 	interval *= 1000;
24905 
24906 	/*
24907 	 * submit the request to the scsi_watch service
24908 	 */
24909 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24910 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24911 	if (token == NULL) {
24912 		return (EAGAIN);
24913 	}
24914 
24915 	/*
24916 	 * save token for termination later on
24917 	 */
24918 	mutex_enter(SD_MUTEX(un));
24919 	un->un_mhd_token = token;
24920 	mutex_exit(SD_MUTEX(un));
24921 	return (0);
24922 }
24923 
24924 
24925 /*
24926  *    Function: sd_mhd_watch_cb()
24927  *
24928  * Description: This function is the call back function used by the scsi watch
24929  *		facility. The scsi watch facility sends the "Test Unit Ready"
24930  *		and processes the status. If applicable (i.e. a "Unit Attention"
24931  *		status and automatic "Request Sense" not used) the scsi watch
24932  *		facility will send a "Request Sense" and retrieve the sense data
24933  *		to be passed to this callback function. In either case the
24934  *		automatic "Request Sense" or the facility submitting one, this
24935  *		callback is passed the status and sense data.
24936  *
24937  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24938  *			among multiple watches that share this callback function
24939  *		resultp - scsi watch facility result packet containing scsi
24940  *			  packet, status byte and sense data
24941  *
24942  * Return Code: 0 - continue the watch task
24943  *		non-zero - terminate the watch task
24944  */
24945 
24946 static int
24947 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24948 {
24949 	struct sd_lun			*un;
24950 	struct scsi_status		*statusp;
24951 	uint8_t				*sensep;
24952 	struct scsi_pkt			*pkt;
24953 	uchar_t				actual_sense_length;
24954 	dev_t  				dev = (dev_t)arg;
24955 
24956 	ASSERT(resultp != NULL);
24957 	statusp			= resultp->statusp;
24958 	sensep			= (uint8_t *)resultp->sensep;
24959 	pkt			= resultp->pkt;
24960 	actual_sense_length	= resultp->actual_sense_length;
24961 
24962 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24963 		return (ENXIO);
24964 	}
24965 
24966 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24967 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24968 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24969 
24970 	/* Begin processing of the status and/or sense data */
24971 	if (pkt->pkt_reason != CMD_CMPLT) {
24972 		/* Handle the incomplete packet */
24973 		sd_mhd_watch_incomplete(un, pkt);
24974 		return (0);
24975 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24976 		if (*((unsigned char *)statusp)
24977 		    == STATUS_RESERVATION_CONFLICT) {
24978 			/*
24979 			 * Handle a reservation conflict by panicking if
24980 			 * configured for failfast or by logging the conflict
24981 			 * and updating the reservation status
24982 			 */
24983 			mutex_enter(SD_MUTEX(un));
24984 			if ((un->un_resvd_status & SD_FAILFAST) &&
24985 			    (sd_failfast_enable)) {
24986 				sd_panic_for_res_conflict(un);
24987 				/*NOTREACHED*/
24988 			}
24989 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24990 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24991 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24992 			mutex_exit(SD_MUTEX(un));
24993 		}
24994 	}
24995 
24996 	if (sensep != NULL) {
24997 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24998 			mutex_enter(SD_MUTEX(un));
24999 			if ((scsi_sense_asc(sensep) ==
25000 			    SD_SCSI_RESET_SENSE_CODE) &&
25001 			    (un->un_resvd_status & SD_RESERVE)) {
25002 				/*
25003 				 * The additional sense code indicates a power
25004 				 * on or bus device reset has occurred; update
25005 				 * the reservation status.
25006 				 */
25007 				un->un_resvd_status |=
25008 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25009 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25010 				    "sd_mhd_watch_cb: Lost Reservation\n");
25011 			}
25012 		} else {
25013 			return (0);
25014 		}
25015 	} else {
25016 		mutex_enter(SD_MUTEX(un));
25017 	}
25018 
25019 	if ((un->un_resvd_status & SD_RESERVE) &&
25020 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25021 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25022 			/*
25023 			 * A reset occurred in between the last probe and this
25024 			 * one so if a timeout is pending cancel it.
25025 			 */
25026 			if (un->un_resvd_timeid) {
25027 				timeout_id_t temp_id = un->un_resvd_timeid;
25028 				un->un_resvd_timeid = NULL;
25029 				mutex_exit(SD_MUTEX(un));
25030 				(void) untimeout(temp_id);
25031 				mutex_enter(SD_MUTEX(un));
25032 			}
25033 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25034 		}
25035 		if (un->un_resvd_timeid == 0) {
25036 			/* Schedule a timeout to handle the lost reservation */
25037 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25038 			    (void *)dev,
25039 			    drv_usectohz(sd_reinstate_resv_delay));
25040 		}
25041 	}
25042 	mutex_exit(SD_MUTEX(un));
25043 	return (0);
25044 }
25045 
25046 
25047 /*
25048  *    Function: sd_mhd_watch_incomplete()
25049  *
25050  * Description: This function is used to find out why a scsi pkt sent by the
25051  *		scsi watch facility was not completed. Under some scenarios this
25052  *		routine will return. Otherwise it will send a bus reset to see
25053  *		if the drive is still online.
25054  *
25055  *   Arguments: un  - driver soft state (unit) structure
25056  *		pkt - incomplete scsi pkt
25057  */
25058 
25059 static void
25060 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25061 {
25062 	int	be_chatty;
25063 	int	perr;
25064 
25065 	ASSERT(pkt != NULL);
25066 	ASSERT(un != NULL);
25067 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25068 	perr		= (pkt->pkt_statistics & STAT_PERR);
25069 
25070 	mutex_enter(SD_MUTEX(un));
25071 	if (un->un_state == SD_STATE_DUMPING) {
25072 		mutex_exit(SD_MUTEX(un));
25073 		return;
25074 	}
25075 
25076 	switch (pkt->pkt_reason) {
25077 	case CMD_UNX_BUS_FREE:
25078 		/*
25079 		 * If we had a parity error that caused the target to drop BSY*,
25080 		 * don't be chatty about it.
25081 		 */
25082 		if (perr && be_chatty) {
25083 			be_chatty = 0;
25084 		}
25085 		break;
25086 	case CMD_TAG_REJECT:
25087 		/*
25088 		 * The SCSI-2 spec states that a tag reject will be sent by the
25089 		 * target if tagged queuing is not supported. A tag reject may
25090 		 * also be sent during certain initialization periods or to
25091 		 * control internal resources. For the latter case the target
25092 		 * may also return Queue Full.
25093 		 *
25094 		 * If this driver receives a tag reject from a target that is
25095 		 * going through an init period or controlling internal
25096 		 * resources tagged queuing will be disabled. This is a less
25097 		 * than optimal behavior but the driver is unable to determine
25098 		 * the target state and assumes tagged queueing is not supported
25099 		 */
25100 		pkt->pkt_flags = 0;
25101 		un->un_tagflags = 0;
25102 
25103 		if (un->un_f_opt_queueing == TRUE) {
25104 			un->un_throttle = min(un->un_throttle, 3);
25105 		} else {
25106 			un->un_throttle = 1;
25107 		}
25108 		mutex_exit(SD_MUTEX(un));
25109 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25110 		mutex_enter(SD_MUTEX(un));
25111 		break;
25112 	case CMD_INCOMPLETE:
25113 		/*
25114 		 * The transport stopped with an abnormal state, fallthrough and
25115 		 * reset the target and/or bus unless selection did not complete
25116 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25117 		 * go through a target/bus reset
25118 		 */
25119 		if (pkt->pkt_state == STATE_GOT_BUS) {
25120 			break;
25121 		}
25122 		/*FALLTHROUGH*/
25123 
25124 	case CMD_TIMEOUT:
25125 	default:
25126 		/*
25127 		 * The lun may still be running the command, so a lun reset
25128 		 * should be attempted. If the lun reset fails or cannot be
25129 		 * issued, than try a target reset. Lastly try a bus reset.
25130 		 */
25131 		if ((pkt->pkt_statistics &
25132 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25133 			int reset_retval = 0;
25134 			mutex_exit(SD_MUTEX(un));
25135 			if (un->un_f_allow_bus_device_reset == TRUE) {
25136 				if (un->un_f_lun_reset_enabled == TRUE) {
25137 					reset_retval =
25138 					    scsi_reset(SD_ADDRESS(un),
25139 					    RESET_LUN);
25140 				}
25141 				if (reset_retval == 0) {
25142 					reset_retval =
25143 					    scsi_reset(SD_ADDRESS(un),
25144 					    RESET_TARGET);
25145 				}
25146 			}
25147 			if (reset_retval == 0) {
25148 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25149 			}
25150 			mutex_enter(SD_MUTEX(un));
25151 		}
25152 		break;
25153 	}
25154 
25155 	/* A device/bus reset has occurred; update the reservation status. */
25156 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25157 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25158 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25159 			un->un_resvd_status |=
25160 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25161 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25162 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25163 		}
25164 	}
25165 
25166 	/*
25167 	 * The disk has been turned off; Update the device state.
25168 	 *
25169 	 * Note: Should we be offlining the disk here?
25170 	 */
25171 	if (pkt->pkt_state == STATE_GOT_BUS) {
25172 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25173 		    "Disk not responding to selection\n");
25174 		if (un->un_state != SD_STATE_OFFLINE) {
25175 			New_state(un, SD_STATE_OFFLINE);
25176 		}
25177 	} else if (be_chatty) {
25178 		/*
25179 		 * suppress messages if they are all the same pkt reason;
25180 		 * with TQ, many (up to 256) are returned with the same
25181 		 * pkt_reason
25182 		 */
25183 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25184 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25185 			    "sd_mhd_watch_incomplete: "
25186 			    "SCSI transport failed: reason '%s'\n",
25187 			    scsi_rname(pkt->pkt_reason));
25188 		}
25189 	}
25190 	un->un_last_pkt_reason = pkt->pkt_reason;
25191 	mutex_exit(SD_MUTEX(un));
25192 }
25193 
25194 
25195 /*
25196  *    Function: sd_sname()
25197  *
25198  * Description: This is a simple little routine to return a string containing
25199  *		a printable description of command status byte for use in
25200  *		logging.
25201  *
25202  *   Arguments: status - pointer to a status byte
25203  *
25204  * Return Code: char * - string containing status description.
25205  */
25206 
25207 static char *
25208 sd_sname(uchar_t status)
25209 {
25210 	switch (status & STATUS_MASK) {
25211 	case STATUS_GOOD:
25212 		return ("good status");
25213 	case STATUS_CHECK:
25214 		return ("check condition");
25215 	case STATUS_MET:
25216 		return ("condition met");
25217 	case STATUS_BUSY:
25218 		return ("busy");
25219 	case STATUS_INTERMEDIATE:
25220 		return ("intermediate");
25221 	case STATUS_INTERMEDIATE_MET:
25222 		return ("intermediate - condition met");
25223 	case STATUS_RESERVATION_CONFLICT:
25224 		return ("reservation_conflict");
25225 	case STATUS_TERMINATED:
25226 		return ("command terminated");
25227 	case STATUS_QFULL:
25228 		return ("queue full");
25229 	default:
25230 		return ("<unknown status>");
25231 	}
25232 }
25233 
25234 
25235 /*
25236  *    Function: sd_mhd_resvd_recover()
25237  *
25238  * Description: This function adds a reservation entry to the
25239  *		sd_resv_reclaim_request list and signals the reservation
25240  *		reclaim thread that there is work pending. If the reservation
25241  *		reclaim thread has not been previously created this function
25242  *		will kick it off.
25243  *
25244  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25245  *			among multiple watches that share this callback function
25246  *
25247  *     Context: This routine is called by timeout() and is run in interrupt
25248  *		context. It must not sleep or call other functions which may
25249  *		sleep.
25250  */
25251 
25252 static void
25253 sd_mhd_resvd_recover(void *arg)
25254 {
25255 	dev_t			dev = (dev_t)arg;
25256 	struct sd_lun		*un;
25257 	struct sd_thr_request	*sd_treq = NULL;
25258 	struct sd_thr_request	*sd_cur = NULL;
25259 	struct sd_thr_request	*sd_prev = NULL;
25260 	int			already_there = 0;
25261 
25262 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25263 		return;
25264 	}
25265 
25266 	mutex_enter(SD_MUTEX(un));
25267 	un->un_resvd_timeid = NULL;
25268 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25269 		/*
25270 		 * There was a reset so don't issue the reserve, allow the
25271 		 * sd_mhd_watch_cb callback function to notice this and
25272 		 * reschedule the timeout for reservation.
25273 		 */
25274 		mutex_exit(SD_MUTEX(un));
25275 		return;
25276 	}
25277 	mutex_exit(SD_MUTEX(un));
25278 
25279 	/*
25280 	 * Add this device to the sd_resv_reclaim_request list and the
25281 	 * sd_resv_reclaim_thread should take care of the rest.
25282 	 *
25283 	 * Note: We can't sleep in this context so if the memory allocation
25284 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25285 	 * reschedule the timeout for reservation.  (4378460)
25286 	 */
25287 	sd_treq = (struct sd_thr_request *)
25288 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25289 	if (sd_treq == NULL) {
25290 		return;
25291 	}
25292 
25293 	sd_treq->sd_thr_req_next = NULL;
25294 	sd_treq->dev = dev;
25295 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25296 	if (sd_tr.srq_thr_req_head == NULL) {
25297 		sd_tr.srq_thr_req_head = sd_treq;
25298 	} else {
25299 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25300 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25301 			if (sd_cur->dev == dev) {
25302 				/*
25303 				 * already in Queue so don't log
25304 				 * another request for the device
25305 				 */
25306 				already_there = 1;
25307 				break;
25308 			}
25309 			sd_prev = sd_cur;
25310 		}
25311 		if (!already_there) {
25312 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25313 			    "logging request for %lx\n", dev);
25314 			sd_prev->sd_thr_req_next = sd_treq;
25315 		} else {
25316 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25317 		}
25318 	}
25319 
25320 	/*
25321 	 * Create a kernel thread to do the reservation reclaim and free up this
25322 	 * thread. We cannot block this thread while we go away to do the
25323 	 * reservation reclaim
25324 	 */
25325 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25326 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25327 		    sd_resv_reclaim_thread, NULL,
25328 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25329 
25330 	/* Tell the reservation reclaim thread that it has work to do */
25331 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25332 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25333 }
25334 
25335 /*
25336  *    Function: sd_resv_reclaim_thread()
25337  *
25338  * Description: This function implements the reservation reclaim operations
25339  *
25340  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25341  *		      among multiple watches that share this callback function
25342  */
25343 
25344 static void
25345 sd_resv_reclaim_thread()
25346 {
25347 	struct sd_lun		*un;
25348 	struct sd_thr_request	*sd_mhreq;
25349 
25350 	/* Wait for work */
25351 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25352 	if (sd_tr.srq_thr_req_head == NULL) {
25353 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25354 		    &sd_tr.srq_resv_reclaim_mutex);
25355 	}
25356 
25357 	/* Loop while we have work */
25358 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25359 		un = ddi_get_soft_state(sd_state,
25360 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25361 		if (un == NULL) {
25362 			/*
25363 			 * softstate structure is NULL so just
25364 			 * dequeue the request and continue
25365 			 */
25366 			sd_tr.srq_thr_req_head =
25367 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25368 			kmem_free(sd_tr.srq_thr_cur_req,
25369 			    sizeof (struct sd_thr_request));
25370 			continue;
25371 		}
25372 
25373 		/* dequeue the request */
25374 		sd_mhreq = sd_tr.srq_thr_cur_req;
25375 		sd_tr.srq_thr_req_head =
25376 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25377 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25378 
25379 		/*
25380 		 * Reclaim reservation only if SD_RESERVE is still set. There
25381 		 * may have been a call to MHIOCRELEASE before we got here.
25382 		 */
25383 		mutex_enter(SD_MUTEX(un));
25384 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25385 			/*
25386 			 * Note: The SD_LOST_RESERVE flag is cleared before
25387 			 * reclaiming the reservation. If this is done after the
25388 			 * call to sd_reserve_release a reservation loss in the
25389 			 * window between pkt completion of reserve cmd and
25390 			 * mutex_enter below may not be recognized
25391 			 */
25392 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25393 			mutex_exit(SD_MUTEX(un));
25394 
25395 			if (sd_reserve_release(sd_mhreq->dev,
25396 			    SD_RESERVE) == 0) {
25397 				mutex_enter(SD_MUTEX(un));
25398 				un->un_resvd_status |= SD_RESERVE;
25399 				mutex_exit(SD_MUTEX(un));
25400 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25401 				    "sd_resv_reclaim_thread: "
25402 				    "Reservation Recovered\n");
25403 			} else {
25404 				mutex_enter(SD_MUTEX(un));
25405 				un->un_resvd_status |= SD_LOST_RESERVE;
25406 				mutex_exit(SD_MUTEX(un));
25407 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25408 				    "sd_resv_reclaim_thread: Failed "
25409 				    "Reservation Recovery\n");
25410 			}
25411 		} else {
25412 			mutex_exit(SD_MUTEX(un));
25413 		}
25414 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25415 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25416 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25417 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25418 		/*
25419 		 * wakeup the destroy thread if anyone is waiting on
25420 		 * us to complete.
25421 		 */
25422 		cv_signal(&sd_tr.srq_inprocess_cv);
25423 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25424 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25425 	}
25426 
25427 	/*
25428 	 * cleanup the sd_tr structure now that this thread will not exist
25429 	 */
25430 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25431 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25432 	sd_tr.srq_resv_reclaim_thread = NULL;
25433 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25434 	thread_exit();
25435 }
25436 
25437 
25438 /*
25439  *    Function: sd_rmv_resv_reclaim_req()
25440  *
25441  * Description: This function removes any pending reservation reclaim requests
25442  *		for the specified device.
25443  *
25444  *   Arguments: dev - the device 'dev_t'
25445  */
25446 
25447 static void
25448 sd_rmv_resv_reclaim_req(dev_t dev)
25449 {
25450 	struct sd_thr_request *sd_mhreq;
25451 	struct sd_thr_request *sd_prev;
25452 
25453 	/* Remove a reservation reclaim request from the list */
25454 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25455 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25456 		/*
25457 		 * We are attempting to reinstate reservation for
25458 		 * this device. We wait for sd_reserve_release()
25459 		 * to return before we return.
25460 		 */
25461 		cv_wait(&sd_tr.srq_inprocess_cv,
25462 		    &sd_tr.srq_resv_reclaim_mutex);
25463 	} else {
25464 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25465 		if (sd_mhreq && sd_mhreq->dev == dev) {
25466 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25467 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25468 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25469 			return;
25470 		}
25471 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25472 			if (sd_mhreq && sd_mhreq->dev == dev) {
25473 				break;
25474 			}
25475 			sd_prev = sd_mhreq;
25476 		}
25477 		if (sd_mhreq != NULL) {
25478 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25479 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25480 		}
25481 	}
25482 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25483 }
25484 
25485 
25486 /*
25487  *    Function: sd_mhd_reset_notify_cb()
25488  *
25489  * Description: This is a call back function for scsi_reset_notify. This
25490  *		function updates the softstate reserved status and logs the
25491  *		reset. The driver scsi watch facility callback function
25492  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25493  *		will reclaim the reservation.
25494  *
25495  *   Arguments: arg  - driver soft state (unit) structure
25496  */
25497 
25498 static void
25499 sd_mhd_reset_notify_cb(caddr_t arg)
25500 {
25501 	struct sd_lun *un = (struct sd_lun *)arg;
25502 
25503 	mutex_enter(SD_MUTEX(un));
25504 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25505 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25506 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25507 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25508 	}
25509 	mutex_exit(SD_MUTEX(un));
25510 }
25511 
25512 
25513 /*
25514  *    Function: sd_take_ownership()
25515  *
25516  * Description: This routine implements an algorithm to achieve a stable
25517  *		reservation on disks which don't implement priority reserve,
25518  *		and makes sure that other host lose re-reservation attempts.
25519  *		This algorithm contains of a loop that keeps issuing the RESERVE
25520  *		for some period of time (min_ownership_delay, default 6 seconds)
25521  *		During that loop, it looks to see if there has been a bus device
25522  *		reset or bus reset (both of which cause an existing reservation
25523  *		to be lost). If the reservation is lost issue RESERVE until a
25524  *		period of min_ownership_delay with no resets has gone by, or
25525  *		until max_ownership_delay has expired. This loop ensures that
25526  *		the host really did manage to reserve the device, in spite of
25527  *		resets. The looping for min_ownership_delay (default six
25528  *		seconds) is important to early generation clustering products,
25529  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25530  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25531  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25532  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25533  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25534  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25535  *		no longer "owns" the disk and will have panicked itself.  Thus,
25536  *		the host issuing the MHIOCTKOWN is assured (with timing
25537  *		dependencies) that by the time it actually starts to use the
25538  *		disk for real work, the old owner is no longer accessing it.
25539  *
25540  *		min_ownership_delay is the minimum amount of time for which the
25541  *		disk must be reserved continuously devoid of resets before the
25542  *		MHIOCTKOWN ioctl will return success.
25543  *
25544  *		max_ownership_delay indicates the amount of time by which the
25545  *		take ownership should succeed or timeout with an error.
25546  *
25547  *   Arguments: dev - the device 'dev_t'
25548  *		*p  - struct containing timing info.
25549  *
25550  * Return Code: 0 for success or error code
25551  */
25552 
25553 static int
25554 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25555 {
25556 	struct sd_lun	*un;
25557 	int		rval;
25558 	int		err;
25559 	int		reservation_count   = 0;
25560 	int		min_ownership_delay =  6000000; /* in usec */
25561 	int		max_ownership_delay = 30000000; /* in usec */
25562 	clock_t		start_time;	/* starting time of this algorithm */
25563 	clock_t		end_time;	/* time limit for giving up */
25564 	clock_t		ownership_time;	/* time limit for stable ownership */
25565 	clock_t		current_time;
25566 	clock_t		previous_current_time;
25567 
25568 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25569 		return (ENXIO);
25570 	}
25571 
25572 	/*
25573 	 * Attempt a device reservation. A priority reservation is requested.
25574 	 */
25575 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25576 	    != SD_SUCCESS) {
25577 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25578 		    "sd_take_ownership: return(1)=%d\n", rval);
25579 		return (rval);
25580 	}
25581 
25582 	/* Update the softstate reserved status to indicate the reservation */
25583 	mutex_enter(SD_MUTEX(un));
25584 	un->un_resvd_status |= SD_RESERVE;
25585 	un->un_resvd_status &=
25586 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25587 	mutex_exit(SD_MUTEX(un));
25588 
25589 	if (p != NULL) {
25590 		if (p->min_ownership_delay != 0) {
25591 			min_ownership_delay = p->min_ownership_delay * 1000;
25592 		}
25593 		if (p->max_ownership_delay != 0) {
25594 			max_ownership_delay = p->max_ownership_delay * 1000;
25595 		}
25596 	}
25597 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25598 	    "sd_take_ownership: min, max delays: %d, %d\n",
25599 	    min_ownership_delay, max_ownership_delay);
25600 
25601 	start_time = ddi_get_lbolt();
25602 	current_time	= start_time;
25603 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25604 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25605 
25606 	while (current_time - end_time < 0) {
25607 		delay(drv_usectohz(500000));
25608 
25609 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25610 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25611 				mutex_enter(SD_MUTEX(un));
25612 				rval = (un->un_resvd_status &
25613 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25614 				mutex_exit(SD_MUTEX(un));
25615 				break;
25616 			}
25617 		}
25618 		previous_current_time = current_time;
25619 		current_time = ddi_get_lbolt();
25620 		mutex_enter(SD_MUTEX(un));
25621 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25622 			ownership_time = ddi_get_lbolt() +
25623 			    drv_usectohz(min_ownership_delay);
25624 			reservation_count = 0;
25625 		} else {
25626 			reservation_count++;
25627 		}
25628 		un->un_resvd_status |= SD_RESERVE;
25629 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25630 		mutex_exit(SD_MUTEX(un));
25631 
25632 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25633 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25634 		    "reservation=%s\n", (current_time - previous_current_time),
25635 		    reservation_count ? "ok" : "reclaimed");
25636 
25637 		if (current_time - ownership_time >= 0 &&
25638 		    reservation_count >= 4) {
25639 			rval = 0; /* Achieved a stable ownership */
25640 			break;
25641 		}
25642 		if (current_time - end_time >= 0) {
25643 			rval = EACCES; /* No ownership in max possible time */
25644 			break;
25645 		}
25646 	}
25647 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25648 	    "sd_take_ownership: return(2)=%d\n", rval);
25649 	return (rval);
25650 }
25651 
25652 
25653 /*
25654  *    Function: sd_reserve_release()
25655  *
25656  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25657  *		PRIORITY RESERVE commands based on a user specified command type
25658  *
25659  *   Arguments: dev - the device 'dev_t'
25660  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25661  *		      SD_RESERVE, SD_RELEASE
25662  *
25663  * Return Code: 0 or Error Code
25664  */
25665 
25666 static int
25667 sd_reserve_release(dev_t dev, int cmd)
25668 {
25669 	struct uscsi_cmd	*com = NULL;
25670 	struct sd_lun		*un = NULL;
25671 	char			cdb[CDB_GROUP0];
25672 	int			rval;
25673 
25674 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25675 	    (cmd == SD_PRIORITY_RESERVE));
25676 
25677 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25678 		return (ENXIO);
25679 	}
25680 
25681 	/* instantiate and initialize the command and cdb */
25682 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25683 	bzero(cdb, CDB_GROUP0);
25684 	com->uscsi_flags   = USCSI_SILENT;
25685 	com->uscsi_timeout = un->un_reserve_release_time;
25686 	com->uscsi_cdblen  = CDB_GROUP0;
25687 	com->uscsi_cdb	   = cdb;
25688 	if (cmd == SD_RELEASE) {
25689 		cdb[0] = SCMD_RELEASE;
25690 	} else {
25691 		cdb[0] = SCMD_RESERVE;
25692 	}
25693 
25694 	/* Send the command. */
25695 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25696 	    SD_PATH_STANDARD);
25697 
25698 	/*
25699 	 * "break" a reservation that is held by another host, by issuing a
25700 	 * reset if priority reserve is desired, and we could not get the
25701 	 * device.
25702 	 */
25703 	if ((cmd == SD_PRIORITY_RESERVE) &&
25704 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25705 		/*
25706 		 * First try to reset the LUN. If we cannot, then try a target
25707 		 * reset, followed by a bus reset if the target reset fails.
25708 		 */
25709 		int reset_retval = 0;
25710 		if (un->un_f_lun_reset_enabled == TRUE) {
25711 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25712 		}
25713 		if (reset_retval == 0) {
25714 			/* The LUN reset either failed or was not issued */
25715 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25716 		}
25717 		if ((reset_retval == 0) &&
25718 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25719 			rval = EIO;
25720 			kmem_free(com, sizeof (*com));
25721 			return (rval);
25722 		}
25723 
25724 		bzero(com, sizeof (struct uscsi_cmd));
25725 		com->uscsi_flags   = USCSI_SILENT;
25726 		com->uscsi_cdb	   = cdb;
25727 		com->uscsi_cdblen  = CDB_GROUP0;
25728 		com->uscsi_timeout = 5;
25729 
25730 		/*
25731 		 * Reissue the last reserve command, this time without request
25732 		 * sense.  Assume that it is just a regular reserve command.
25733 		 */
25734 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25735 		    SD_PATH_STANDARD);
25736 	}
25737 
25738 	/* Return an error if still getting a reservation conflict. */
25739 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25740 		rval = EACCES;
25741 	}
25742 
25743 	kmem_free(com, sizeof (*com));
25744 	return (rval);
25745 }
25746 
25747 
25748 #define	SD_NDUMP_RETRIES	12
25749 /*
25750  *	System Crash Dump routine
25751  */
25752 
25753 static int
25754 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25755 {
25756 	int		instance;
25757 	int		partition;
25758 	int		i;
25759 	int		err;
25760 	struct sd_lun	*un;
25761 	struct scsi_pkt *wr_pktp;
25762 	struct buf	*wr_bp;
25763 	struct buf	wr_buf;
25764 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25765 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25766 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25767 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25768 	size_t		io_start_offset;
25769 	int		doing_rmw = FALSE;
25770 	int		rval;
25771 	ssize_t		dma_resid;
25772 	daddr_t		oblkno;
25773 	diskaddr_t	nblks = 0;
25774 	diskaddr_t	start_block;
25775 
25776 	instance = SDUNIT(dev);
25777 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25778 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25779 		return (ENXIO);
25780 	}
25781 
25782 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25783 
25784 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25785 
25786 	partition = SDPART(dev);
25787 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25788 
25789 	if (!(NOT_DEVBSIZE(un))) {
25790 		int secmask = 0;
25791 		int blknomask = 0;
25792 
25793 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25794 		secmask = un->un_tgt_blocksize - 1;
25795 
25796 		if (blkno & blknomask) {
25797 			SD_TRACE(SD_LOG_DUMP, un,
25798 			    "sddump: dump start block not modulo %d\n",
25799 			    un->un_tgt_blocksize);
25800 			return (EINVAL);
25801 		}
25802 
25803 		if ((nblk * DEV_BSIZE) & secmask) {
25804 			SD_TRACE(SD_LOG_DUMP, un,
25805 			    "sddump: dump length not modulo %d\n",
25806 			    un->un_tgt_blocksize);
25807 			return (EINVAL);
25808 		}
25809 
25810 	}
25811 
25812 	/* Validate blocks to dump at against partition size. */
25813 
25814 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25815 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25816 
25817 	if (NOT_DEVBSIZE(un)) {
25818 		if ((blkno + nblk) > nblks) {
25819 			SD_TRACE(SD_LOG_DUMP, un,
25820 			    "sddump: dump range larger than partition: "
25821 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25822 			    blkno, nblk, nblks);
25823 			return (EINVAL);
25824 		}
25825 	} else {
25826 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25827 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25828 			SD_TRACE(SD_LOG_DUMP, un,
25829 			    "sddump: dump range larger than partition: "
25830 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25831 			    blkno, nblk, nblks);
25832 			return (EINVAL);
25833 		}
25834 	}
25835 
25836 	mutex_enter(&un->un_pm_mutex);
25837 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25838 		struct scsi_pkt *start_pktp;
25839 
25840 		mutex_exit(&un->un_pm_mutex);
25841 
25842 		/*
25843 		 * use pm framework to power on HBA 1st
25844 		 */
25845 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25846 		    SD_PM_STATE_ACTIVE(un));
25847 
25848 		/*
25849 		 * Dump no long uses sdpower to power on a device, it's
25850 		 * in-line here so it can be done in polled mode.
25851 		 */
25852 
25853 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25854 
25855 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25856 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25857 
25858 		if (start_pktp == NULL) {
25859 			/* We were not given a SCSI packet, fail. */
25860 			return (EIO);
25861 		}
25862 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25863 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25864 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25865 		start_pktp->pkt_flags = FLAG_NOINTR;
25866 
25867 		mutex_enter(SD_MUTEX(un));
25868 		SD_FILL_SCSI1_LUN(un, start_pktp);
25869 		mutex_exit(SD_MUTEX(un));
25870 		/*
25871 		 * Scsi_poll returns 0 (success) if the command completes and
25872 		 * the status block is STATUS_GOOD.
25873 		 */
25874 		if (sd_scsi_poll(un, start_pktp) != 0) {
25875 			scsi_destroy_pkt(start_pktp);
25876 			return (EIO);
25877 		}
25878 		scsi_destroy_pkt(start_pktp);
25879 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25880 		    SD_PM_STATE_CHANGE);
25881 	} else {
25882 		mutex_exit(&un->un_pm_mutex);
25883 	}
25884 
25885 	mutex_enter(SD_MUTEX(un));
25886 	un->un_throttle = 0;
25887 
25888 	/*
25889 	 * The first time through, reset the specific target device.
25890 	 * However, when cpr calls sddump we know that sd is in a
25891 	 * a good state so no bus reset is required.
25892 	 * Clear sense data via Request Sense cmd.
25893 	 * In sddump we don't care about allow_bus_device_reset anymore
25894 	 */
25895 
25896 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25897 	    (un->un_state != SD_STATE_DUMPING)) {
25898 
25899 		New_state(un, SD_STATE_DUMPING);
25900 
25901 		if (un->un_f_is_fibre == FALSE) {
25902 			mutex_exit(SD_MUTEX(un));
25903 			/*
25904 			 * Attempt a bus reset for parallel scsi.
25905 			 *
25906 			 * Note: A bus reset is required because on some host
25907 			 * systems (i.e. E420R) a bus device reset is
25908 			 * insufficient to reset the state of the target.
25909 			 *
25910 			 * Note: Don't issue the reset for fibre-channel,
25911 			 * because this tends to hang the bus (loop) for
25912 			 * too long while everyone is logging out and in
25913 			 * and the deadman timer for dumping will fire
25914 			 * before the dump is complete.
25915 			 */
25916 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25917 				mutex_enter(SD_MUTEX(un));
25918 				Restore_state(un);
25919 				mutex_exit(SD_MUTEX(un));
25920 				return (EIO);
25921 			}
25922 
25923 			/* Delay to give the device some recovery time. */
25924 			drv_usecwait(10000);
25925 
25926 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25927 				SD_INFO(SD_LOG_DUMP, un,
25928 				    "sddump: sd_send_polled_RQS failed\n");
25929 			}
25930 			mutex_enter(SD_MUTEX(un));
25931 		}
25932 	}
25933 
25934 	/*
25935 	 * Convert the partition-relative block number to a
25936 	 * disk physical block number.
25937 	 */
25938 	if (NOT_DEVBSIZE(un)) {
25939 		blkno += start_block;
25940 	} else {
25941 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25942 		blkno += start_block;
25943 	}
25944 
25945 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25946 
25947 
25948 	/*
25949 	 * Check if the device has a non-512 block size.
25950 	 */
25951 	wr_bp = NULL;
25952 	if (NOT_DEVBSIZE(un)) {
25953 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25954 		tgt_byte_count = nblk * un->un_sys_blocksize;
25955 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25956 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25957 			doing_rmw = TRUE;
25958 			/*
25959 			 * Calculate the block number and number of block
25960 			 * in terms of the media block size.
25961 			 */
25962 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25963 			tgt_nblk =
25964 			    ((tgt_byte_offset + tgt_byte_count +
25965 			    (un->un_tgt_blocksize - 1)) /
25966 			    un->un_tgt_blocksize) - tgt_blkno;
25967 
25968 			/*
25969 			 * Invoke the routine which is going to do read part
25970 			 * of read-modify-write.
25971 			 * Note that this routine returns a pointer to
25972 			 * a valid bp in wr_bp.
25973 			 */
25974 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25975 			    &wr_bp);
25976 			if (err) {
25977 				mutex_exit(SD_MUTEX(un));
25978 				return (err);
25979 			}
25980 			/*
25981 			 * Offset is being calculated as -
25982 			 * (original block # * system block size) -
25983 			 * (new block # * target block size)
25984 			 */
25985 			io_start_offset =
25986 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25987 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25988 
25989 			ASSERT(io_start_offset < un->un_tgt_blocksize);
25990 			/*
25991 			 * Do the modify portion of read modify write.
25992 			 */
25993 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25994 			    (size_t)nblk * un->un_sys_blocksize);
25995 		} else {
25996 			doing_rmw = FALSE;
25997 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25998 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25999 		}
26000 
26001 		/* Convert blkno and nblk to target blocks */
26002 		blkno = tgt_blkno;
26003 		nblk = tgt_nblk;
26004 	} else {
26005 		wr_bp = &wr_buf;
26006 		bzero(wr_bp, sizeof (struct buf));
26007 		wr_bp->b_flags		= B_BUSY;
26008 		wr_bp->b_un.b_addr	= addr;
26009 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26010 		wr_bp->b_resid		= 0;
26011 	}
26012 
26013 	mutex_exit(SD_MUTEX(un));
26014 
26015 	/*
26016 	 * Obtain a SCSI packet for the write command.
26017 	 * It should be safe to call the allocator here without
26018 	 * worrying about being locked for DVMA mapping because
26019 	 * the address we're passed is already a DVMA mapping
26020 	 *
26021 	 * We are also not going to worry about semaphore ownership
26022 	 * in the dump buffer. Dumping is single threaded at present.
26023 	 */
26024 
26025 	wr_pktp = NULL;
26026 
26027 	dma_resid = wr_bp->b_bcount;
26028 	oblkno = blkno;
26029 
26030 	if (!(NOT_DEVBSIZE(un))) {
26031 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
26032 	}
26033 
26034 	while (dma_resid != 0) {
26035 
26036 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26037 		wr_bp->b_flags &= ~B_ERROR;
26038 
26039 		if (un->un_partial_dma_supported == 1) {
26040 			blkno = oblkno +
26041 			    ((wr_bp->b_bcount - dma_resid) /
26042 			    un->un_tgt_blocksize);
26043 			nblk = dma_resid / un->un_tgt_blocksize;
26044 
26045 			if (wr_pktp) {
26046 				/*
26047 				 * Partial DMA transfers after initial transfer
26048 				 */
26049 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26050 				    blkno, nblk);
26051 			} else {
26052 				/* Initial transfer */
26053 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26054 				    un->un_pkt_flags, NULL_FUNC, NULL,
26055 				    blkno, nblk);
26056 			}
26057 		} else {
26058 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26059 			    0, NULL_FUNC, NULL, blkno, nblk);
26060 		}
26061 
26062 		if (rval == 0) {
26063 			/* We were given a SCSI packet, continue. */
26064 			break;
26065 		}
26066 
26067 		if (i == 0) {
26068 			if (wr_bp->b_flags & B_ERROR) {
26069 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26070 				    "no resources for dumping; "
26071 				    "error code: 0x%x, retrying",
26072 				    geterror(wr_bp));
26073 			} else {
26074 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26075 				    "no resources for dumping; retrying");
26076 			}
26077 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26078 			if (wr_bp->b_flags & B_ERROR) {
26079 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26080 				    "no resources for dumping; error code: "
26081 				    "0x%x, retrying\n", geterror(wr_bp));
26082 			}
26083 		} else {
26084 			if (wr_bp->b_flags & B_ERROR) {
26085 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26086 				    "no resources for dumping; "
26087 				    "error code: 0x%x, retries failed, "
26088 				    "giving up.\n", geterror(wr_bp));
26089 			} else {
26090 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26091 				    "no resources for dumping; "
26092 				    "retries failed, giving up.\n");
26093 			}
26094 			mutex_enter(SD_MUTEX(un));
26095 			Restore_state(un);
26096 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26097 				mutex_exit(SD_MUTEX(un));
26098 				scsi_free_consistent_buf(wr_bp);
26099 			} else {
26100 				mutex_exit(SD_MUTEX(un));
26101 			}
26102 			return (EIO);
26103 		}
26104 		drv_usecwait(10000);
26105 	}
26106 
26107 	if (un->un_partial_dma_supported == 1) {
26108 		/*
26109 		 * save the resid from PARTIAL_DMA
26110 		 */
26111 		dma_resid = wr_pktp->pkt_resid;
26112 		if (dma_resid != 0)
26113 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26114 		wr_pktp->pkt_resid = 0;
26115 	} else {
26116 		dma_resid = 0;
26117 	}
26118 
26119 	/* SunBug 1222170 */
26120 	wr_pktp->pkt_flags = FLAG_NOINTR;
26121 
26122 	err = EIO;
26123 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26124 
26125 		/*
26126 		 * Scsi_poll returns 0 (success) if the command completes and
26127 		 * the status block is STATUS_GOOD.  We should only check
26128 		 * errors if this condition is not true.  Even then we should
26129 		 * send our own request sense packet only if we have a check
26130 		 * condition and auto request sense has not been performed by
26131 		 * the hba.
26132 		 */
26133 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26134 
26135 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26136 		    (wr_pktp->pkt_resid == 0)) {
26137 			err = SD_SUCCESS;
26138 			break;
26139 		}
26140 
26141 		/*
26142 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26143 		 */
26144 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26145 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26146 			    "Error while dumping state...Device is gone\n");
26147 			break;
26148 		}
26149 
26150 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26151 			SD_INFO(SD_LOG_DUMP, un,
26152 			    "sddump: write failed with CHECK, try # %d\n", i);
26153 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26154 				(void) sd_send_polled_RQS(un);
26155 			}
26156 
26157 			continue;
26158 		}
26159 
26160 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26161 			int reset_retval = 0;
26162 
26163 			SD_INFO(SD_LOG_DUMP, un,
26164 			    "sddump: write failed with BUSY, try # %d\n", i);
26165 
26166 			if (un->un_f_lun_reset_enabled == TRUE) {
26167 				reset_retval = scsi_reset(SD_ADDRESS(un),
26168 				    RESET_LUN);
26169 			}
26170 			if (reset_retval == 0) {
26171 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26172 			}
26173 			(void) sd_send_polled_RQS(un);
26174 
26175 		} else {
26176 			SD_INFO(SD_LOG_DUMP, un,
26177 			    "sddump: write failed with 0x%x, try # %d\n",
26178 			    SD_GET_PKT_STATUS(wr_pktp), i);
26179 			mutex_enter(SD_MUTEX(un));
26180 			sd_reset_target(un, wr_pktp);
26181 			mutex_exit(SD_MUTEX(un));
26182 		}
26183 
26184 		/*
26185 		 * If we are not getting anywhere with lun/target resets,
26186 		 * let's reset the bus.
26187 		 */
26188 		if (i == SD_NDUMP_RETRIES/2) {
26189 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26190 			(void) sd_send_polled_RQS(un);
26191 		}
26192 	}
26193 	}
26194 
26195 	scsi_destroy_pkt(wr_pktp);
26196 	mutex_enter(SD_MUTEX(un));
26197 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26198 		mutex_exit(SD_MUTEX(un));
26199 		scsi_free_consistent_buf(wr_bp);
26200 	} else {
26201 		mutex_exit(SD_MUTEX(un));
26202 	}
26203 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26204 	return (err);
26205 }
26206 
26207 /*
26208  *    Function: sd_scsi_poll()
26209  *
26210  * Description: This is a wrapper for the scsi_poll call.
26211  *
26212  *   Arguments: sd_lun - The unit structure
26213  *              scsi_pkt - The scsi packet being sent to the device.
26214  *
26215  * Return Code: 0 - Command completed successfully with good status
26216  *             -1 - Command failed.  This could indicate a check condition
26217  *                  or other status value requiring recovery action.
26218  *
26219  * NOTE: This code is only called off sddump().
26220  */
26221 
26222 static int
26223 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26224 {
26225 	int status;
26226 
26227 	ASSERT(un != NULL);
26228 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26229 	ASSERT(pktp != NULL);
26230 
26231 	status = SD_SUCCESS;
26232 
26233 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26234 		pktp->pkt_flags |= un->un_tagflags;
26235 		pktp->pkt_flags &= ~FLAG_NODISCON;
26236 	}
26237 
26238 	status = sd_ddi_scsi_poll(pktp);
26239 	/*
26240 	 * Scsi_poll returns 0 (success) if the command completes and the
26241 	 * status block is STATUS_GOOD.  We should only check errors if this
26242 	 * condition is not true.  Even then we should send our own request
26243 	 * sense packet only if we have a check condition and auto
26244 	 * request sense has not been performed by the hba.
26245 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26246 	 */
26247 	if ((status != SD_SUCCESS) &&
26248 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26249 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26250 	    (pktp->pkt_reason != CMD_DEV_GONE))
26251 		(void) sd_send_polled_RQS(un);
26252 
26253 	return (status);
26254 }
26255 
26256 /*
26257  *    Function: sd_send_polled_RQS()
26258  *
26259  * Description: This sends the request sense command to a device.
26260  *
26261  *   Arguments: sd_lun - The unit structure
26262  *
26263  * Return Code: 0 - Command completed successfully with good status
26264  *             -1 - Command failed.
26265  *
26266  */
26267 
26268 static int
26269 sd_send_polled_RQS(struct sd_lun *un)
26270 {
26271 	int	ret_val;
26272 	struct	scsi_pkt	*rqs_pktp;
26273 	struct	buf		*rqs_bp;
26274 
26275 	ASSERT(un != NULL);
26276 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26277 
26278 	ret_val = SD_SUCCESS;
26279 
26280 	rqs_pktp = un->un_rqs_pktp;
26281 	rqs_bp	 = un->un_rqs_bp;
26282 
26283 	mutex_enter(SD_MUTEX(un));
26284 
26285 	if (un->un_sense_isbusy) {
26286 		ret_val = SD_FAILURE;
26287 		mutex_exit(SD_MUTEX(un));
26288 		return (ret_val);
26289 	}
26290 
26291 	/*
26292 	 * If the request sense buffer (and packet) is not in use,
26293 	 * let's set the un_sense_isbusy and send our packet
26294 	 */
26295 	un->un_sense_isbusy 	= 1;
26296 	rqs_pktp->pkt_resid  	= 0;
26297 	rqs_pktp->pkt_reason 	= 0;
26298 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26299 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26300 
26301 	mutex_exit(SD_MUTEX(un));
26302 
26303 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26304 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26305 
26306 	/*
26307 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26308 	 * axle - it has a call into us!
26309 	 */
26310 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26311 		SD_INFO(SD_LOG_COMMON, un,
26312 		    "sd_send_polled_RQS: RQS failed\n");
26313 	}
26314 
26315 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26316 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26317 
26318 	mutex_enter(SD_MUTEX(un));
26319 	un->un_sense_isbusy = 0;
26320 	mutex_exit(SD_MUTEX(un));
26321 
26322 	return (ret_val);
26323 }
26324 
26325 /*
26326  * Defines needed for localized version of the scsi_poll routine.
26327  */
26328 #define	CSEC		10000			/* usecs */
26329 #define	SEC_TO_CSEC	(1000000/CSEC)
26330 
26331 /*
26332  *    Function: sd_ddi_scsi_poll()
26333  *
26334  * Description: Localized version of the scsi_poll routine.  The purpose is to
26335  *		send a scsi_pkt to a device as a polled command.  This version
26336  *		is to ensure more robust handling of transport errors.
26337  *		Specifically this routine cures not ready, coming ready
26338  *		transition for power up and reset of sonoma's.  This can take
26339  *		up to 45 seconds for power-on and 20 seconds for reset of a
26340  * 		sonoma lun.
26341  *
26342  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26343  *
26344  * Return Code: 0 - Command completed successfully with good status
26345  *             -1 - Command failed.
26346  *
26347  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26348  * be fixed (removing this code), we need to determine how to handle the
26349  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26350  *
26351  * NOTE: This code is only called off sddump().
26352  */
26353 static int
26354 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26355 {
26356 	int			rval = -1;
26357 	int			savef;
26358 	long			savet;
26359 	void			(*savec)();
26360 	int			timeout;
26361 	int			busy_count;
26362 	int			poll_delay;
26363 	int			rc;
26364 	uint8_t			*sensep;
26365 	struct scsi_arq_status	*arqstat;
26366 	extern int		do_polled_io;
26367 
26368 	ASSERT(pkt->pkt_scbp);
26369 
26370 	/*
26371 	 * save old flags..
26372 	 */
26373 	savef = pkt->pkt_flags;
26374 	savec = pkt->pkt_comp;
26375 	savet = pkt->pkt_time;
26376 
26377 	pkt->pkt_flags |= FLAG_NOINTR;
26378 
26379 	/*
26380 	 * XXX there is nothing in the SCSA spec that states that we should not
26381 	 * do a callback for polled cmds; however, removing this will break sd
26382 	 * and probably other target drivers
26383 	 */
26384 	pkt->pkt_comp = NULL;
26385 
26386 	/*
26387 	 * we don't like a polled command without timeout.
26388 	 * 60 seconds seems long enough.
26389 	 */
26390 	if (pkt->pkt_time == 0)
26391 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26392 
26393 	/*
26394 	 * Send polled cmd.
26395 	 *
26396 	 * We do some error recovery for various errors.  Tran_busy,
26397 	 * queue full, and non-dispatched commands are retried every 10 msec.
26398 	 * as they are typically transient failures.  Busy status and Not
26399 	 * Ready are retried every second as this status takes a while to
26400 	 * change.
26401 	 */
26402 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26403 
26404 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26405 		/*
26406 		 * Initialize pkt status variables.
26407 		 */
26408 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26409 
26410 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26411 			if (rc != TRAN_BUSY) {
26412 				/* Transport failed - give up. */
26413 				break;
26414 			} else {
26415 				/* Transport busy - try again. */
26416 				poll_delay = 1 * CSEC;		/* 10 msec. */
26417 			}
26418 		} else {
26419 			/*
26420 			 * Transport accepted - check pkt status.
26421 			 */
26422 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26423 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26424 			    (rc == STATUS_CHECK) &&
26425 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26426 				arqstat =
26427 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26428 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26429 			} else {
26430 				sensep = NULL;
26431 			}
26432 
26433 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26434 			    (rc == STATUS_GOOD)) {
26435 				/* No error - we're done */
26436 				rval = 0;
26437 				break;
26438 
26439 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26440 				/* Lost connection - give up */
26441 				break;
26442 
26443 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26444 			    (pkt->pkt_state == 0)) {
26445 				/* Pkt not dispatched - try again. */
26446 				poll_delay = 1 * CSEC;		/* 10 msec. */
26447 
26448 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26449 			    (rc == STATUS_QFULL)) {
26450 				/* Queue full - try again. */
26451 				poll_delay = 1 * CSEC;		/* 10 msec. */
26452 
26453 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26454 			    (rc == STATUS_BUSY)) {
26455 				/* Busy - try again. */
26456 				poll_delay = 100 * CSEC;	/* 1 sec. */
26457 				busy_count += (SEC_TO_CSEC - 1);
26458 
26459 			} else if ((sensep != NULL) &&
26460 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26461 				/*
26462 				 * Unit Attention - try again.
26463 				 * Pretend it took 1 sec.
26464 				 * NOTE: 'continue' avoids poll_delay
26465 				 */
26466 				busy_count += (SEC_TO_CSEC - 1);
26467 				continue;
26468 
26469 			} else if ((sensep != NULL) &&
26470 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26471 			    (scsi_sense_asc(sensep) == 0x04) &&
26472 			    (scsi_sense_ascq(sensep) == 0x01)) {
26473 				/*
26474 				 * Not ready -> ready - try again.
26475 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26476 				 * ...same as STATUS_BUSY
26477 				 */
26478 				poll_delay = 100 * CSEC;	/* 1 sec. */
26479 				busy_count += (SEC_TO_CSEC - 1);
26480 
26481 			} else {
26482 				/* BAD status - give up. */
26483 				break;
26484 			}
26485 		}
26486 
26487 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26488 		    !do_polled_io) {
26489 			delay(drv_usectohz(poll_delay));
26490 		} else {
26491 			/* we busy wait during cpr_dump or interrupt threads */
26492 			drv_usecwait(poll_delay);
26493 		}
26494 	}
26495 
26496 	pkt->pkt_flags = savef;
26497 	pkt->pkt_comp = savec;
26498 	pkt->pkt_time = savet;
26499 
26500 	/* return on error */
26501 	if (rval)
26502 		return (rval);
26503 
26504 	/*
26505 	 * This is not a performance critical code path.
26506 	 *
26507 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26508 	 * issues associated with looking at DMA memory prior to
26509 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26510 	 */
26511 	scsi_sync_pkt(pkt);
26512 	return (0);
26513 }
26514 
26515 
26516 
26517 /*
26518  *    Function: sd_persistent_reservation_in_read_keys
26519  *
26520  * Description: This routine is the driver entry point for handling CD-ROM
26521  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26522  *		by sending the SCSI-3 PRIN commands to the device.
26523  *		Processes the read keys command response by copying the
26524  *		reservation key information into the user provided buffer.
26525  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26526  *
26527  *   Arguments: un   -  Pointer to soft state struct for the target.
26528  *		usrp -	user provided pointer to multihost Persistent In Read
26529  *			Keys structure (mhioc_inkeys_t)
26530  *		flag -	this argument is a pass through to ddi_copyxxx()
26531  *			directly from the mode argument of ioctl().
26532  *
26533  * Return Code: 0   - Success
26534  *		EACCES
26535  *		ENOTSUP
26536  *		errno return code from sd_send_scsi_cmd()
26537  *
26538  *     Context: Can sleep. Does not return until command is completed.
26539  */
26540 
26541 static int
26542 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26543     mhioc_inkeys_t *usrp, int flag)
26544 {
26545 #ifdef _MULTI_DATAMODEL
26546 	struct mhioc_key_list32	li32;
26547 #endif
26548 	sd_prin_readkeys_t	*in;
26549 	mhioc_inkeys_t		*ptr;
26550 	mhioc_key_list_t	li;
26551 	uchar_t			*data_bufp = NULL;
26552 	int 			data_len = 0;
26553 	int			rval = 0;
26554 	size_t			copysz = 0;
26555 	sd_ssc_t		*ssc;
26556 
26557 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26558 		return (EINVAL);
26559 	}
26560 	bzero(&li, sizeof (mhioc_key_list_t));
26561 
26562 	ssc = sd_ssc_init(un);
26563 
26564 	/*
26565 	 * Get the listsize from user
26566 	 */
26567 #ifdef _MULTI_DATAMODEL
26568 	switch (ddi_model_convert_from(flag & FMODELS)) {
26569 	case DDI_MODEL_ILP32:
26570 		copysz = sizeof (struct mhioc_key_list32);
26571 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26572 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26573 			    "sd_persistent_reservation_in_read_keys: "
26574 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26575 			rval = EFAULT;
26576 			goto done;
26577 		}
26578 		li.listsize = li32.listsize;
26579 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26580 		break;
26581 
26582 	case DDI_MODEL_NONE:
26583 		copysz = sizeof (mhioc_key_list_t);
26584 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26585 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26586 			    "sd_persistent_reservation_in_read_keys: "
26587 			    "failed ddi_copyin: mhioc_key_list_t\n");
26588 			rval = EFAULT;
26589 			goto done;
26590 		}
26591 		break;
26592 	}
26593 
26594 #else /* ! _MULTI_DATAMODEL */
26595 	copysz = sizeof (mhioc_key_list_t);
26596 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26597 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26598 		    "sd_persistent_reservation_in_read_keys: "
26599 		    "failed ddi_copyin: mhioc_key_list_t\n");
26600 		rval = EFAULT;
26601 		goto done;
26602 	}
26603 #endif
26604 
26605 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26606 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26607 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26608 
26609 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26610 	    data_len, data_bufp);
26611 	if (rval != 0) {
26612 		if (rval == EIO)
26613 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26614 		else
26615 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26616 		goto done;
26617 	}
26618 	in = (sd_prin_readkeys_t *)data_bufp;
26619 	ptr->generation = BE_32(in->generation);
26620 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26621 
26622 	/*
26623 	 * Return the min(listsize, listlen) keys
26624 	 */
26625 #ifdef _MULTI_DATAMODEL
26626 
26627 	switch (ddi_model_convert_from(flag & FMODELS)) {
26628 	case DDI_MODEL_ILP32:
26629 		li32.listlen = li.listlen;
26630 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26631 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26632 			    "sd_persistent_reservation_in_read_keys: "
26633 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26634 			rval = EFAULT;
26635 			goto done;
26636 		}
26637 		break;
26638 
26639 	case DDI_MODEL_NONE:
26640 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26641 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26642 			    "sd_persistent_reservation_in_read_keys: "
26643 			    "failed ddi_copyout: mhioc_key_list_t\n");
26644 			rval = EFAULT;
26645 			goto done;
26646 		}
26647 		break;
26648 	}
26649 
26650 #else /* ! _MULTI_DATAMODEL */
26651 
26652 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26653 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26654 		    "sd_persistent_reservation_in_read_keys: "
26655 		    "failed ddi_copyout: mhioc_key_list_t\n");
26656 		rval = EFAULT;
26657 		goto done;
26658 	}
26659 
26660 #endif /* _MULTI_DATAMODEL */
26661 
26662 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26663 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26664 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26665 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26666 		    "sd_persistent_reservation_in_read_keys: "
26667 		    "failed ddi_copyout: keylist\n");
26668 		rval = EFAULT;
26669 	}
26670 done:
26671 	sd_ssc_fini(ssc);
26672 	kmem_free(data_bufp, data_len);
26673 	return (rval);
26674 }
26675 
26676 
26677 /*
26678  *    Function: sd_persistent_reservation_in_read_resv
26679  *
26680  * Description: This routine is the driver entry point for handling CD-ROM
26681  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26682  *		by sending the SCSI-3 PRIN commands to the device.
26683  *		Process the read persistent reservations command response by
26684  *		copying the reservation information into the user provided
26685  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26686  *
26687  *   Arguments: un   -  Pointer to soft state struct for the target.
26688  *		usrp -	user provided pointer to multihost Persistent In Read
26689  *			Keys structure (mhioc_inkeys_t)
26690  *		flag -	this argument is a pass through to ddi_copyxxx()
26691  *			directly from the mode argument of ioctl().
26692  *
26693  * Return Code: 0   - Success
26694  *		EACCES
26695  *		ENOTSUP
26696  *		errno return code from sd_send_scsi_cmd()
26697  *
26698  *     Context: Can sleep. Does not return until command is completed.
26699  */
26700 
26701 static int
26702 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26703     mhioc_inresvs_t *usrp, int flag)
26704 {
26705 #ifdef _MULTI_DATAMODEL
26706 	struct mhioc_resv_desc_list32 resvlist32;
26707 #endif
26708 	sd_prin_readresv_t	*in;
26709 	mhioc_inresvs_t		*ptr;
26710 	sd_readresv_desc_t	*readresv_ptr;
26711 	mhioc_resv_desc_list_t	resvlist;
26712 	mhioc_resv_desc_t 	resvdesc;
26713 	uchar_t			*data_bufp = NULL;
26714 	int 			data_len;
26715 	int			rval = 0;
26716 	int			i;
26717 	size_t			copysz = 0;
26718 	mhioc_resv_desc_t	*bufp;
26719 	sd_ssc_t		*ssc;
26720 
26721 	if ((ptr = usrp) == NULL) {
26722 		return (EINVAL);
26723 	}
26724 
26725 	ssc = sd_ssc_init(un);
26726 
26727 	/*
26728 	 * Get the listsize from user
26729 	 */
26730 #ifdef _MULTI_DATAMODEL
26731 	switch (ddi_model_convert_from(flag & FMODELS)) {
26732 	case DDI_MODEL_ILP32:
26733 		copysz = sizeof (struct mhioc_resv_desc_list32);
26734 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26735 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26736 			    "sd_persistent_reservation_in_read_resv: "
26737 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26738 			rval = EFAULT;
26739 			goto done;
26740 		}
26741 		resvlist.listsize = resvlist32.listsize;
26742 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26743 		break;
26744 
26745 	case DDI_MODEL_NONE:
26746 		copysz = sizeof (mhioc_resv_desc_list_t);
26747 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26748 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26749 			    "sd_persistent_reservation_in_read_resv: "
26750 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26751 			rval = EFAULT;
26752 			goto done;
26753 		}
26754 		break;
26755 	}
26756 #else /* ! _MULTI_DATAMODEL */
26757 	copysz = sizeof (mhioc_resv_desc_list_t);
26758 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26759 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26760 		    "sd_persistent_reservation_in_read_resv: "
26761 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26762 		rval = EFAULT;
26763 		goto done;
26764 	}
26765 #endif /* ! _MULTI_DATAMODEL */
26766 
26767 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26768 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26769 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26770 
26771 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26772 	    data_len, data_bufp);
26773 	if (rval != 0) {
26774 		if (rval == EIO)
26775 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26776 		else
26777 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26778 		goto done;
26779 	}
26780 	in = (sd_prin_readresv_t *)data_bufp;
26781 	ptr->generation = BE_32(in->generation);
26782 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26783 
26784 	/*
26785 	 * Return the min(listsize, listlen( keys
26786 	 */
26787 #ifdef _MULTI_DATAMODEL
26788 
26789 	switch (ddi_model_convert_from(flag & FMODELS)) {
26790 	case DDI_MODEL_ILP32:
26791 		resvlist32.listlen = resvlist.listlen;
26792 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26793 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26794 			    "sd_persistent_reservation_in_read_resv: "
26795 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26796 			rval = EFAULT;
26797 			goto done;
26798 		}
26799 		break;
26800 
26801 	case DDI_MODEL_NONE:
26802 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26803 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26804 			    "sd_persistent_reservation_in_read_resv: "
26805 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26806 			rval = EFAULT;
26807 			goto done;
26808 		}
26809 		break;
26810 	}
26811 
26812 #else /* ! _MULTI_DATAMODEL */
26813 
26814 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26815 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26816 		    "sd_persistent_reservation_in_read_resv: "
26817 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26818 		rval = EFAULT;
26819 		goto done;
26820 	}
26821 
26822 #endif /* ! _MULTI_DATAMODEL */
26823 
26824 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26825 	bufp = resvlist.list;
26826 	copysz = sizeof (mhioc_resv_desc_t);
26827 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26828 	    i++, readresv_ptr++, bufp++) {
26829 
26830 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26831 		    MHIOC_RESV_KEY_SIZE);
26832 		resvdesc.type  = readresv_ptr->type;
26833 		resvdesc.scope = readresv_ptr->scope;
26834 		resvdesc.scope_specific_addr =
26835 		    BE_32(readresv_ptr->scope_specific_addr);
26836 
26837 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26838 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26839 			    "sd_persistent_reservation_in_read_resv: "
26840 			    "failed ddi_copyout: resvlist\n");
26841 			rval = EFAULT;
26842 			goto done;
26843 		}
26844 	}
26845 done:
26846 	sd_ssc_fini(ssc);
26847 	/* only if data_bufp is allocated, we need to free it */
26848 	if (data_bufp) {
26849 		kmem_free(data_bufp, data_len);
26850 	}
26851 	return (rval);
26852 }
26853 
26854 
26855 /*
26856  *    Function: sr_change_blkmode()
26857  *
26858  * Description: This routine is the driver entry point for handling CD-ROM
26859  *		block mode ioctl requests. Support for returning and changing
26860  *		the current block size in use by the device is implemented. The
26861  *		LBA size is changed via a MODE SELECT Block Descriptor.
26862  *
26863  *		This routine issues a mode sense with an allocation length of
26864  *		12 bytes for the mode page header and a single block descriptor.
26865  *
26866  *   Arguments: dev - the device 'dev_t'
26867  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26868  *		      CDROMSBLKMODE (set)
26869  *		data - current block size or requested block size
26870  *		flag - this argument is a pass through to ddi_copyxxx() directly
26871  *		       from the mode argument of ioctl().
26872  *
26873  * Return Code: the code returned by sd_send_scsi_cmd()
26874  *		EINVAL if invalid arguments are provided
26875  *		EFAULT if ddi_copyxxx() fails
26876  *		ENXIO if fail ddi_get_soft_state
26877  *		EIO if invalid mode sense block descriptor length
26878  *
26879  */
26880 
26881 static int
26882 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26883 {
26884 	struct sd_lun			*un = NULL;
26885 	struct mode_header		*sense_mhp, *select_mhp;
26886 	struct block_descriptor		*sense_desc, *select_desc;
26887 	int				current_bsize;
26888 	int				rval = EINVAL;
26889 	uchar_t				*sense = NULL;
26890 	uchar_t				*select = NULL;
26891 	sd_ssc_t			*ssc;
26892 
26893 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26894 
26895 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26896 		return (ENXIO);
26897 	}
26898 
26899 	/*
26900 	 * The block length is changed via the Mode Select block descriptor, the
26901 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26902 	 * required as part of this routine. Therefore the mode sense allocation
26903 	 * length is specified to be the length of a mode page header and a
26904 	 * block descriptor.
26905 	 */
26906 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26907 
26908 	ssc = sd_ssc_init(un);
26909 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26910 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26911 	sd_ssc_fini(ssc);
26912 	if (rval != 0) {
26913 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26914 		    "sr_change_blkmode: Mode Sense Failed\n");
26915 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26916 		return (rval);
26917 	}
26918 
26919 	/* Check the block descriptor len to handle only 1 block descriptor */
26920 	sense_mhp = (struct mode_header *)sense;
26921 	if ((sense_mhp->bdesc_length == 0) ||
26922 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26923 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26924 		    "sr_change_blkmode: Mode Sense returned invalid block"
26925 		    " descriptor length\n");
26926 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26927 		return (EIO);
26928 	}
26929 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26930 	current_bsize = ((sense_desc->blksize_hi << 16) |
26931 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26932 
26933 	/* Process command */
26934 	switch (cmd) {
26935 	case CDROMGBLKMODE:
26936 		/* Return the block size obtained during the mode sense */
26937 		if (ddi_copyout(&current_bsize, (void *)data,
26938 		    sizeof (int), flag) != 0)
26939 			rval = EFAULT;
26940 		break;
26941 	case CDROMSBLKMODE:
26942 		/* Validate the requested block size */
26943 		switch (data) {
26944 		case CDROM_BLK_512:
26945 		case CDROM_BLK_1024:
26946 		case CDROM_BLK_2048:
26947 		case CDROM_BLK_2056:
26948 		case CDROM_BLK_2336:
26949 		case CDROM_BLK_2340:
26950 		case CDROM_BLK_2352:
26951 		case CDROM_BLK_2368:
26952 		case CDROM_BLK_2448:
26953 		case CDROM_BLK_2646:
26954 		case CDROM_BLK_2647:
26955 			break;
26956 		default:
26957 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26958 			    "sr_change_blkmode: "
26959 			    "Block Size '%ld' Not Supported\n", data);
26960 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26961 			return (EINVAL);
26962 		}
26963 
26964 		/*
26965 		 * The current block size matches the requested block size so
26966 		 * there is no need to send the mode select to change the size
26967 		 */
26968 		if (current_bsize == data) {
26969 			break;
26970 		}
26971 
26972 		/* Build the select data for the requested block size */
26973 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26974 		select_mhp = (struct mode_header *)select;
26975 		select_desc =
26976 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26977 		/*
26978 		 * The LBA size is changed via the block descriptor, so the
26979 		 * descriptor is built according to the user data
26980 		 */
26981 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26982 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26983 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26984 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26985 
26986 		/* Send the mode select for the requested block size */
26987 		ssc = sd_ssc_init(un);
26988 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26989 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26990 		    SD_PATH_STANDARD);
26991 		sd_ssc_fini(ssc);
26992 		if (rval != 0) {
26993 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26994 			    "sr_change_blkmode: Mode Select Failed\n");
26995 			/*
26996 			 * The mode select failed for the requested block size,
26997 			 * so reset the data for the original block size and
26998 			 * send it to the target. The error is indicated by the
26999 			 * return value for the failed mode select.
27000 			 */
27001 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27002 			select_desc->blksize_mid = sense_desc->blksize_mid;
27003 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27004 			ssc = sd_ssc_init(un);
27005 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
27006 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27007 			    SD_PATH_STANDARD);
27008 			sd_ssc_fini(ssc);
27009 		} else {
27010 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27011 			mutex_enter(SD_MUTEX(un));
27012 			sd_update_block_info(un, (uint32_t)data, 0);
27013 			mutex_exit(SD_MUTEX(un));
27014 		}
27015 		break;
27016 	default:
27017 		/* should not reach here, but check anyway */
27018 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27019 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27020 		rval = EINVAL;
27021 		break;
27022 	}
27023 
27024 	if (select) {
27025 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27026 	}
27027 	if (sense) {
27028 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27029 	}
27030 	return (rval);
27031 }
27032 
27033 
27034 /*
27035  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27036  * implement driver support for getting and setting the CD speed. The command
27037  * set used will be based on the device type. If the device has not been
27038  * identified as MMC the Toshiba vendor specific mode page will be used. If
27039  * the device is MMC but does not support the Real Time Streaming feature
27040  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27041  * be used to read the speed.
27042  */
27043 
27044 /*
27045  *    Function: sr_change_speed()
27046  *
27047  * Description: This routine is the driver entry point for handling CD-ROM
27048  *		drive speed ioctl requests for devices supporting the Toshiba
27049  *		vendor specific drive speed mode page. Support for returning
27050  *		and changing the current drive speed in use by the device is
27051  *		implemented.
27052  *
27053  *   Arguments: dev - the device 'dev_t'
27054  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27055  *		      CDROMSDRVSPEED (set)
27056  *		data - current drive speed or requested drive speed
27057  *		flag - this argument is a pass through to ddi_copyxxx() directly
27058  *		       from the mode argument of ioctl().
27059  *
27060  * Return Code: the code returned by sd_send_scsi_cmd()
27061  *		EINVAL if invalid arguments are provided
27062  *		EFAULT if ddi_copyxxx() fails
27063  *		ENXIO if fail ddi_get_soft_state
27064  *		EIO if invalid mode sense block descriptor length
27065  */
27066 
27067 static int
27068 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27069 {
27070 	struct sd_lun			*un = NULL;
27071 	struct mode_header		*sense_mhp, *select_mhp;
27072 	struct mode_speed		*sense_page, *select_page;
27073 	int				current_speed;
27074 	int				rval = EINVAL;
27075 	int				bd_len;
27076 	uchar_t				*sense = NULL;
27077 	uchar_t				*select = NULL;
27078 	sd_ssc_t			*ssc;
27079 
27080 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27081 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27082 		return (ENXIO);
27083 	}
27084 
27085 	/*
27086 	 * Note: The drive speed is being modified here according to a Toshiba
27087 	 * vendor specific mode page (0x31).
27088 	 */
27089 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27090 
27091 	ssc = sd_ssc_init(un);
27092 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27093 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27094 	    SD_PATH_STANDARD);
27095 	sd_ssc_fini(ssc);
27096 	if (rval != 0) {
27097 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27098 		    "sr_change_speed: Mode Sense Failed\n");
27099 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27100 		return (rval);
27101 	}
27102 	sense_mhp  = (struct mode_header *)sense;
27103 
27104 	/* Check the block descriptor len to handle only 1 block descriptor */
27105 	bd_len = sense_mhp->bdesc_length;
27106 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27107 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27108 		    "sr_change_speed: Mode Sense returned invalid block "
27109 		    "descriptor length\n");
27110 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27111 		return (EIO);
27112 	}
27113 
27114 	sense_page = (struct mode_speed *)
27115 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27116 	current_speed = sense_page->speed;
27117 
27118 	/* Process command */
27119 	switch (cmd) {
27120 	case CDROMGDRVSPEED:
27121 		/* Return the drive speed obtained during the mode sense */
27122 		if (current_speed == 0x2) {
27123 			current_speed = CDROM_TWELVE_SPEED;
27124 		}
27125 		if (ddi_copyout(&current_speed, (void *)data,
27126 		    sizeof (int), flag) != 0) {
27127 			rval = EFAULT;
27128 		}
27129 		break;
27130 	case CDROMSDRVSPEED:
27131 		/* Validate the requested drive speed */
27132 		switch ((uchar_t)data) {
27133 		case CDROM_TWELVE_SPEED:
27134 			data = 0x2;
27135 			/*FALLTHROUGH*/
27136 		case CDROM_NORMAL_SPEED:
27137 		case CDROM_DOUBLE_SPEED:
27138 		case CDROM_QUAD_SPEED:
27139 		case CDROM_MAXIMUM_SPEED:
27140 			break;
27141 		default:
27142 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27143 			    "sr_change_speed: "
27144 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27145 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27146 			return (EINVAL);
27147 		}
27148 
27149 		/*
27150 		 * The current drive speed matches the requested drive speed so
27151 		 * there is no need to send the mode select to change the speed
27152 		 */
27153 		if (current_speed == data) {
27154 			break;
27155 		}
27156 
27157 		/* Build the select data for the requested drive speed */
27158 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27159 		select_mhp = (struct mode_header *)select;
27160 		select_mhp->bdesc_length = 0;
27161 		select_page =
27162 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27163 		select_page =
27164 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27165 		select_page->mode_page.code = CDROM_MODE_SPEED;
27166 		select_page->mode_page.length = 2;
27167 		select_page->speed = (uchar_t)data;
27168 
27169 		/* Send the mode select for the requested block size */
27170 		ssc = sd_ssc_init(un);
27171 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27172 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27173 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27174 		sd_ssc_fini(ssc);
27175 		if (rval != 0) {
27176 			/*
27177 			 * The mode select failed for the requested drive speed,
27178 			 * so reset the data for the original drive speed and
27179 			 * send it to the target. The error is indicated by the
27180 			 * return value for the failed mode select.
27181 			 */
27182 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27183 			    "sr_drive_speed: Mode Select Failed\n");
27184 			select_page->speed = sense_page->speed;
27185 			ssc = sd_ssc_init(un);
27186 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27187 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27188 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27189 			sd_ssc_fini(ssc);
27190 		}
27191 		break;
27192 	default:
27193 		/* should not reach here, but check anyway */
27194 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27195 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27196 		rval = EINVAL;
27197 		break;
27198 	}
27199 
27200 	if (select) {
27201 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27202 	}
27203 	if (sense) {
27204 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27205 	}
27206 
27207 	return (rval);
27208 }
27209 
27210 
27211 /*
27212  *    Function: sr_atapi_change_speed()
27213  *
27214  * Description: This routine is the driver entry point for handling CD-ROM
27215  *		drive speed ioctl requests for MMC devices that do not support
27216  *		the Real Time Streaming feature (0x107).
27217  *
27218  *		Note: This routine will use the SET SPEED command which may not
27219  *		be supported by all devices.
27220  *
27221  *   Arguments: dev- the device 'dev_t'
27222  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27223  *		     CDROMSDRVSPEED (set)
27224  *		data- current drive speed or requested drive speed
27225  *		flag- this argument is a pass through to ddi_copyxxx() directly
27226  *		      from the mode argument of ioctl().
27227  *
27228  * Return Code: the code returned by sd_send_scsi_cmd()
27229  *		EINVAL if invalid arguments are provided
27230  *		EFAULT if ddi_copyxxx() fails
27231  *		ENXIO if fail ddi_get_soft_state
27232  *		EIO if invalid mode sense block descriptor length
27233  */
27234 
27235 static int
27236 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27237 {
27238 	struct sd_lun			*un;
27239 	struct uscsi_cmd		*com = NULL;
27240 	struct mode_header_grp2		*sense_mhp;
27241 	uchar_t				*sense_page;
27242 	uchar_t				*sense = NULL;
27243 	char				cdb[CDB_GROUP5];
27244 	int				bd_len;
27245 	int				current_speed = 0;
27246 	int				max_speed = 0;
27247 	int				rval;
27248 	sd_ssc_t			*ssc;
27249 
27250 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27251 
27252 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27253 		return (ENXIO);
27254 	}
27255 
27256 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27257 
27258 	ssc = sd_ssc_init(un);
27259 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27260 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27261 	    SD_PATH_STANDARD);
27262 	sd_ssc_fini(ssc);
27263 	if (rval != 0) {
27264 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27265 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27266 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27267 		return (rval);
27268 	}
27269 
27270 	/* Check the block descriptor len to handle only 1 block descriptor */
27271 	sense_mhp = (struct mode_header_grp2 *)sense;
27272 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27273 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27274 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27275 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27276 		    "block descriptor length\n");
27277 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27278 		return (EIO);
27279 	}
27280 
27281 	/* Calculate the current and maximum drive speeds */
27282 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27283 	current_speed = (sense_page[14] << 8) | sense_page[15];
27284 	max_speed = (sense_page[8] << 8) | sense_page[9];
27285 
27286 	/* Process the command */
27287 	switch (cmd) {
27288 	case CDROMGDRVSPEED:
27289 		current_speed /= SD_SPEED_1X;
27290 		if (ddi_copyout(&current_speed, (void *)data,
27291 		    sizeof (int), flag) != 0)
27292 			rval = EFAULT;
27293 		break;
27294 	case CDROMSDRVSPEED:
27295 		/* Convert the speed code to KB/sec */
27296 		switch ((uchar_t)data) {
27297 		case CDROM_NORMAL_SPEED:
27298 			current_speed = SD_SPEED_1X;
27299 			break;
27300 		case CDROM_DOUBLE_SPEED:
27301 			current_speed = 2 * SD_SPEED_1X;
27302 			break;
27303 		case CDROM_QUAD_SPEED:
27304 			current_speed = 4 * SD_SPEED_1X;
27305 			break;
27306 		case CDROM_TWELVE_SPEED:
27307 			current_speed = 12 * SD_SPEED_1X;
27308 			break;
27309 		case CDROM_MAXIMUM_SPEED:
27310 			current_speed = 0xffff;
27311 			break;
27312 		default:
27313 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27314 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27315 			    (uchar_t)data);
27316 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27317 			return (EINVAL);
27318 		}
27319 
27320 		/* Check the request against the drive's max speed. */
27321 		if (current_speed != 0xffff) {
27322 			if (current_speed > max_speed) {
27323 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27324 				return (EINVAL);
27325 			}
27326 		}
27327 
27328 		/*
27329 		 * Build and send the SET SPEED command
27330 		 *
27331 		 * Note: The SET SPEED (0xBB) command used in this routine is
27332 		 * obsolete per the SCSI MMC spec but still supported in the
27333 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27334 		 * therefore the command is still implemented in this routine.
27335 		 */
27336 		bzero(cdb, sizeof (cdb));
27337 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27338 		cdb[2] = (uchar_t)(current_speed >> 8);
27339 		cdb[3] = (uchar_t)current_speed;
27340 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27341 		com->uscsi_cdb	   = (caddr_t)cdb;
27342 		com->uscsi_cdblen  = CDB_GROUP5;
27343 		com->uscsi_bufaddr = NULL;
27344 		com->uscsi_buflen  = 0;
27345 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27346 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27347 		break;
27348 	default:
27349 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27350 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27351 		rval = EINVAL;
27352 	}
27353 
27354 	if (sense) {
27355 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27356 	}
27357 	if (com) {
27358 		kmem_free(com, sizeof (*com));
27359 	}
27360 	return (rval);
27361 }
27362 
27363 
27364 /*
27365  *    Function: sr_pause_resume()
27366  *
27367  * Description: This routine is the driver entry point for handling CD-ROM
27368  *		pause/resume ioctl requests. This only affects the audio play
27369  *		operation.
27370  *
27371  *   Arguments: dev - the device 'dev_t'
27372  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27373  *		      for setting the resume bit of the cdb.
27374  *
27375  * Return Code: the code returned by sd_send_scsi_cmd()
27376  *		EINVAL if invalid mode specified
27377  *
27378  */
27379 
27380 static int
27381 sr_pause_resume(dev_t dev, int cmd)
27382 {
27383 	struct sd_lun		*un;
27384 	struct uscsi_cmd	*com;
27385 	char			cdb[CDB_GROUP1];
27386 	int			rval;
27387 
27388 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27389 		return (ENXIO);
27390 	}
27391 
27392 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27393 	bzero(cdb, CDB_GROUP1);
27394 	cdb[0] = SCMD_PAUSE_RESUME;
27395 	switch (cmd) {
27396 	case CDROMRESUME:
27397 		cdb[8] = 1;
27398 		break;
27399 	case CDROMPAUSE:
27400 		cdb[8] = 0;
27401 		break;
27402 	default:
27403 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27404 		    " Command '%x' Not Supported\n", cmd);
27405 		rval = EINVAL;
27406 		goto done;
27407 	}
27408 
27409 	com->uscsi_cdb    = cdb;
27410 	com->uscsi_cdblen = CDB_GROUP1;
27411 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27412 
27413 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27414 	    SD_PATH_STANDARD);
27415 
27416 done:
27417 	kmem_free(com, sizeof (*com));
27418 	return (rval);
27419 }
27420 
27421 
27422 /*
27423  *    Function: sr_play_msf()
27424  *
27425  * Description: This routine is the driver entry point for handling CD-ROM
27426  *		ioctl requests to output the audio signals at the specified
27427  *		starting address and continue the audio play until the specified
27428  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27429  *		Frame (MSF) format.
27430  *
27431  *   Arguments: dev	- the device 'dev_t'
27432  *		data	- pointer to user provided audio msf structure,
27433  *		          specifying start/end addresses.
27434  *		flag	- this argument is a pass through to ddi_copyxxx()
27435  *		          directly from the mode argument of ioctl().
27436  *
27437  * Return Code: the code returned by sd_send_scsi_cmd()
27438  *		EFAULT if ddi_copyxxx() fails
27439  *		ENXIO if fail ddi_get_soft_state
27440  *		EINVAL if data pointer is NULL
27441  */
27442 
27443 static int
27444 sr_play_msf(dev_t dev, caddr_t data, int flag)
27445 {
27446 	struct sd_lun		*un;
27447 	struct uscsi_cmd	*com;
27448 	struct cdrom_msf	msf_struct;
27449 	struct cdrom_msf	*msf = &msf_struct;
27450 	char			cdb[CDB_GROUP1];
27451 	int			rval;
27452 
27453 	if (data == NULL) {
27454 		return (EINVAL);
27455 	}
27456 
27457 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27458 		return (ENXIO);
27459 	}
27460 
27461 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27462 		return (EFAULT);
27463 	}
27464 
27465 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27466 	bzero(cdb, CDB_GROUP1);
27467 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27468 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27469 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27470 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27471 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27472 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27473 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27474 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27475 	} else {
27476 		cdb[3] = msf->cdmsf_min0;
27477 		cdb[4] = msf->cdmsf_sec0;
27478 		cdb[5] = msf->cdmsf_frame0;
27479 		cdb[6] = msf->cdmsf_min1;
27480 		cdb[7] = msf->cdmsf_sec1;
27481 		cdb[8] = msf->cdmsf_frame1;
27482 	}
27483 	com->uscsi_cdb    = cdb;
27484 	com->uscsi_cdblen = CDB_GROUP1;
27485 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27486 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27487 	    SD_PATH_STANDARD);
27488 	kmem_free(com, sizeof (*com));
27489 	return (rval);
27490 }
27491 
27492 
27493 /*
27494  *    Function: sr_play_trkind()
27495  *
27496  * Description: This routine is the driver entry point for handling CD-ROM
27497  *		ioctl requests to output the audio signals at the specified
27498  *		starting address and continue the audio play until the specified
27499  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27500  *		format.
27501  *
27502  *   Arguments: dev	- the device 'dev_t'
27503  *		data	- pointer to user provided audio track/index structure,
27504  *		          specifying start/end addresses.
27505  *		flag	- this argument is a pass through to ddi_copyxxx()
27506  *		          directly from the mode argument of ioctl().
27507  *
27508  * Return Code: the code returned by sd_send_scsi_cmd()
27509  *		EFAULT if ddi_copyxxx() fails
27510  *		ENXIO if fail ddi_get_soft_state
27511  *		EINVAL if data pointer is NULL
27512  */
27513 
27514 static int
27515 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27516 {
27517 	struct cdrom_ti		ti_struct;
27518 	struct cdrom_ti		*ti = &ti_struct;
27519 	struct uscsi_cmd	*com = NULL;
27520 	char			cdb[CDB_GROUP1];
27521 	int			rval;
27522 
27523 	if (data == NULL) {
27524 		return (EINVAL);
27525 	}
27526 
27527 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27528 		return (EFAULT);
27529 	}
27530 
27531 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27532 	bzero(cdb, CDB_GROUP1);
27533 	cdb[0] = SCMD_PLAYAUDIO_TI;
27534 	cdb[4] = ti->cdti_trk0;
27535 	cdb[5] = ti->cdti_ind0;
27536 	cdb[7] = ti->cdti_trk1;
27537 	cdb[8] = ti->cdti_ind1;
27538 	com->uscsi_cdb    = cdb;
27539 	com->uscsi_cdblen = CDB_GROUP1;
27540 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27541 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27542 	    SD_PATH_STANDARD);
27543 	kmem_free(com, sizeof (*com));
27544 	return (rval);
27545 }
27546 
27547 
27548 /*
27549  *    Function: sr_read_all_subcodes()
27550  *
27551  * Description: This routine is the driver entry point for handling CD-ROM
27552  *		ioctl requests to return raw subcode data while the target is
27553  *		playing audio (CDROMSUBCODE).
27554  *
27555  *   Arguments: dev	- the device 'dev_t'
27556  *		data	- pointer to user provided cdrom subcode structure,
27557  *		          specifying the transfer length and address.
27558  *		flag	- this argument is a pass through to ddi_copyxxx()
27559  *		          directly from the mode argument of ioctl().
27560  *
27561  * Return Code: the code returned by sd_send_scsi_cmd()
27562  *		EFAULT if ddi_copyxxx() fails
27563  *		ENXIO if fail ddi_get_soft_state
27564  *		EINVAL if data pointer is NULL
27565  */
27566 
27567 static int
27568 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27569 {
27570 	struct sd_lun		*un = NULL;
27571 	struct uscsi_cmd	*com = NULL;
27572 	struct cdrom_subcode	*subcode = NULL;
27573 	int			rval;
27574 	size_t			buflen;
27575 	char			cdb[CDB_GROUP5];
27576 
27577 #ifdef _MULTI_DATAMODEL
27578 	/* To support ILP32 applications in an LP64 world */
27579 	struct cdrom_subcode32		cdrom_subcode32;
27580 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27581 #endif
27582 	if (data == NULL) {
27583 		return (EINVAL);
27584 	}
27585 
27586 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27587 		return (ENXIO);
27588 	}
27589 
27590 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27591 
27592 #ifdef _MULTI_DATAMODEL
27593 	switch (ddi_model_convert_from(flag & FMODELS)) {
27594 	case DDI_MODEL_ILP32:
27595 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27596 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27597 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27598 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27599 			return (EFAULT);
27600 		}
27601 		/* Convert the ILP32 uscsi data from the application to LP64 */
27602 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27603 		break;
27604 	case DDI_MODEL_NONE:
27605 		if (ddi_copyin(data, subcode,
27606 		    sizeof (struct cdrom_subcode), flag)) {
27607 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27608 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27609 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27610 			return (EFAULT);
27611 		}
27612 		break;
27613 	}
27614 #else /* ! _MULTI_DATAMODEL */
27615 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27616 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27617 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27618 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27619 		return (EFAULT);
27620 	}
27621 #endif /* _MULTI_DATAMODEL */
27622 
27623 	/*
27624 	 * Since MMC-2 expects max 3 bytes for length, check if the
27625 	 * length input is greater than 3 bytes
27626 	 */
27627 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27628 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27629 		    "sr_read_all_subcodes: "
27630 		    "cdrom transfer length too large: %d (limit %d)\n",
27631 		    subcode->cdsc_length, 0xFFFFFF);
27632 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27633 		return (EINVAL);
27634 	}
27635 
27636 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27637 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27638 	bzero(cdb, CDB_GROUP5);
27639 
27640 	if (un->un_f_mmc_cap == TRUE) {
27641 		cdb[0] = (char)SCMD_READ_CD;
27642 		cdb[2] = (char)0xff;
27643 		cdb[3] = (char)0xff;
27644 		cdb[4] = (char)0xff;
27645 		cdb[5] = (char)0xff;
27646 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27647 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27648 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27649 		cdb[10] = 1;
27650 	} else {
27651 		/*
27652 		 * Note: A vendor specific command (0xDF) is being used here to
27653 		 * request a read of all subcodes.
27654 		 */
27655 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27656 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27657 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27658 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27659 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27660 	}
27661 	com->uscsi_cdb	   = cdb;
27662 	com->uscsi_cdblen  = CDB_GROUP5;
27663 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27664 	com->uscsi_buflen  = buflen;
27665 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27666 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27667 	    SD_PATH_STANDARD);
27668 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27669 	kmem_free(com, sizeof (*com));
27670 	return (rval);
27671 }
27672 
27673 
27674 /*
27675  *    Function: sr_read_subchannel()
27676  *
27677  * Description: This routine is the driver entry point for handling CD-ROM
27678  *		ioctl requests to return the Q sub-channel data of the CD
27679  *		current position block. (CDROMSUBCHNL) The data includes the
27680  *		track number, index number, absolute CD-ROM address (LBA or MSF
27681  *		format per the user) , track relative CD-ROM address (LBA or MSF
27682  *		format per the user), control data and audio status.
27683  *
27684  *   Arguments: dev	- the device 'dev_t'
27685  *		data	- pointer to user provided cdrom sub-channel structure
27686  *		flag	- this argument is a pass through to ddi_copyxxx()
27687  *		          directly from the mode argument of ioctl().
27688  *
27689  * Return Code: the code returned by sd_send_scsi_cmd()
27690  *		EFAULT if ddi_copyxxx() fails
27691  *		ENXIO if fail ddi_get_soft_state
27692  *		EINVAL if data pointer is NULL
27693  */
27694 
27695 static int
27696 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27697 {
27698 	struct sd_lun		*un;
27699 	struct uscsi_cmd	*com;
27700 	struct cdrom_subchnl	subchanel;
27701 	struct cdrom_subchnl	*subchnl = &subchanel;
27702 	char			cdb[CDB_GROUP1];
27703 	caddr_t			buffer;
27704 	int			rval;
27705 
27706 	if (data == NULL) {
27707 		return (EINVAL);
27708 	}
27709 
27710 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27711 	    (un->un_state == SD_STATE_OFFLINE)) {
27712 		return (ENXIO);
27713 	}
27714 
27715 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27716 		return (EFAULT);
27717 	}
27718 
27719 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27720 	bzero(cdb, CDB_GROUP1);
27721 	cdb[0] = SCMD_READ_SUBCHANNEL;
27722 	/* Set the MSF bit based on the user requested address format */
27723 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27724 	/*
27725 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27726 	 * returned
27727 	 */
27728 	cdb[2] = 0x40;
27729 	/*
27730 	 * Set byte 3 to specify the return data format. A value of 0x01
27731 	 * indicates that the CD-ROM current position should be returned.
27732 	 */
27733 	cdb[3] = 0x01;
27734 	cdb[8] = 0x10;
27735 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27736 	com->uscsi_cdb	   = cdb;
27737 	com->uscsi_cdblen  = CDB_GROUP1;
27738 	com->uscsi_bufaddr = buffer;
27739 	com->uscsi_buflen  = 16;
27740 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27741 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27742 	    SD_PATH_STANDARD);
27743 	if (rval != 0) {
27744 		kmem_free(buffer, 16);
27745 		kmem_free(com, sizeof (*com));
27746 		return (rval);
27747 	}
27748 
27749 	/* Process the returned Q sub-channel data */
27750 	subchnl->cdsc_audiostatus = buffer[1];
27751 	subchnl->cdsc_adr	= (buffer[5] & 0xF0) >> 4;
27752 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27753 	subchnl->cdsc_trk	= buffer[6];
27754 	subchnl->cdsc_ind	= buffer[7];
27755 	if (subchnl->cdsc_format & CDROM_LBA) {
27756 		subchnl->cdsc_absaddr.lba =
27757 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27758 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27759 		subchnl->cdsc_reladdr.lba =
27760 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27761 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27762 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27763 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27764 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27765 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27766 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27767 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27768 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27769 	} else {
27770 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27771 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27772 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27773 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27774 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27775 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27776 	}
27777 	kmem_free(buffer, 16);
27778 	kmem_free(com, sizeof (*com));
27779 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27780 	    != 0) {
27781 		return (EFAULT);
27782 	}
27783 	return (rval);
27784 }
27785 
27786 
27787 /*
27788  *    Function: sr_read_tocentry()
27789  *
27790  * Description: This routine is the driver entry point for handling CD-ROM
27791  *		ioctl requests to read from the Table of Contents (TOC)
27792  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27793  *		fields, the starting address (LBA or MSF format per the user)
27794  *		and the data mode if the user specified track is a data track.
27795  *
27796  *		Note: The READ HEADER (0x44) command used in this routine is
27797  *		obsolete per the SCSI MMC spec but still supported in the
27798  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27799  *		therefore the command is still implemented in this routine.
27800  *
27801  *   Arguments: dev	- the device 'dev_t'
27802  *		data	- pointer to user provided toc entry structure,
27803  *			  specifying the track # and the address format
27804  *			  (LBA or MSF).
27805  *		flag	- this argument is a pass through to ddi_copyxxx()
27806  *		          directly from the mode argument of ioctl().
27807  *
27808  * Return Code: the code returned by sd_send_scsi_cmd()
27809  *		EFAULT if ddi_copyxxx() fails
27810  *		ENXIO if fail ddi_get_soft_state
27811  *		EINVAL if data pointer is NULL
27812  */
27813 
27814 static int
27815 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27816 {
27817 	struct sd_lun		*un = NULL;
27818 	struct uscsi_cmd	*com;
27819 	struct cdrom_tocentry	toc_entry;
27820 	struct cdrom_tocentry	*entry = &toc_entry;
27821 	caddr_t			buffer;
27822 	int			rval;
27823 	char			cdb[CDB_GROUP1];
27824 
27825 	if (data == NULL) {
27826 		return (EINVAL);
27827 	}
27828 
27829 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27830 	    (un->un_state == SD_STATE_OFFLINE)) {
27831 		return (ENXIO);
27832 	}
27833 
27834 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27835 		return (EFAULT);
27836 	}
27837 
27838 	/* Validate the requested track and address format */
27839 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27840 		return (EINVAL);
27841 	}
27842 
27843 	if (entry->cdte_track == 0) {
27844 		return (EINVAL);
27845 	}
27846 
27847 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27848 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27849 	bzero(cdb, CDB_GROUP1);
27850 
27851 	cdb[0] = SCMD_READ_TOC;
27852 	/* Set the MSF bit based on the user requested address format  */
27853 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27854 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27855 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27856 	} else {
27857 		cdb[6] = entry->cdte_track;
27858 	}
27859 
27860 	/*
27861 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27862 	 * (4 byte TOC response header + 8 byte track descriptor)
27863 	 */
27864 	cdb[8] = 12;
27865 	com->uscsi_cdb	   = cdb;
27866 	com->uscsi_cdblen  = CDB_GROUP1;
27867 	com->uscsi_bufaddr = buffer;
27868 	com->uscsi_buflen  = 0x0C;
27869 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27870 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27871 	    SD_PATH_STANDARD);
27872 	if (rval != 0) {
27873 		kmem_free(buffer, 12);
27874 		kmem_free(com, sizeof (*com));
27875 		return (rval);
27876 	}
27877 
27878 	/* Process the toc entry */
27879 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27880 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27881 	if (entry->cdte_format & CDROM_LBA) {
27882 		entry->cdte_addr.lba =
27883 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27884 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27885 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27886 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27887 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27888 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27889 		/*
27890 		 * Send a READ TOC command using the LBA address format to get
27891 		 * the LBA for the track requested so it can be used in the
27892 		 * READ HEADER request
27893 		 *
27894 		 * Note: The MSF bit of the READ HEADER command specifies the
27895 		 * output format. The block address specified in that command
27896 		 * must be in LBA format.
27897 		 */
27898 		cdb[1] = 0;
27899 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27900 		    SD_PATH_STANDARD);
27901 		if (rval != 0) {
27902 			kmem_free(buffer, 12);
27903 			kmem_free(com, sizeof (*com));
27904 			return (rval);
27905 		}
27906 	} else {
27907 		entry->cdte_addr.msf.minute	= buffer[9];
27908 		entry->cdte_addr.msf.second	= buffer[10];
27909 		entry->cdte_addr.msf.frame	= buffer[11];
27910 		/*
27911 		 * Send a READ TOC command using the LBA address format to get
27912 		 * the LBA for the track requested so it can be used in the
27913 		 * READ HEADER request
27914 		 *
27915 		 * Note: The MSF bit of the READ HEADER command specifies the
27916 		 * output format. The block address specified in that command
27917 		 * must be in LBA format.
27918 		 */
27919 		cdb[1] = 0;
27920 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27921 		    SD_PATH_STANDARD);
27922 		if (rval != 0) {
27923 			kmem_free(buffer, 12);
27924 			kmem_free(com, sizeof (*com));
27925 			return (rval);
27926 		}
27927 	}
27928 
27929 	/*
27930 	 * Build and send the READ HEADER command to determine the data mode of
27931 	 * the user specified track.
27932 	 */
27933 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27934 	    (entry->cdte_track != CDROM_LEADOUT)) {
27935 		bzero(cdb, CDB_GROUP1);
27936 		cdb[0] = SCMD_READ_HEADER;
27937 		cdb[2] = buffer[8];
27938 		cdb[3] = buffer[9];
27939 		cdb[4] = buffer[10];
27940 		cdb[5] = buffer[11];
27941 		cdb[8] = 0x08;
27942 		com->uscsi_buflen = 0x08;
27943 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27944 		    SD_PATH_STANDARD);
27945 		if (rval == 0) {
27946 			entry->cdte_datamode = buffer[0];
27947 		} else {
27948 			/*
27949 			 * READ HEADER command failed, since this is
27950 			 * obsoleted in one spec, its better to return
27951 			 * -1 for an invlid track so that we can still
27952 			 * receive the rest of the TOC data.
27953 			 */
27954 			entry->cdte_datamode = (uchar_t)-1;
27955 		}
27956 	} else {
27957 		entry->cdte_datamode = (uchar_t)-1;
27958 	}
27959 
27960 	kmem_free(buffer, 12);
27961 	kmem_free(com, sizeof (*com));
27962 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27963 		return (EFAULT);
27964 
27965 	return (rval);
27966 }
27967 
27968 
27969 /*
27970  *    Function: sr_read_tochdr()
27971  *
27972  * Description: This routine is the driver entry point for handling CD-ROM
27973  * 		ioctl requests to read the Table of Contents (TOC) header
27974  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27975  *		and ending track numbers
27976  *
27977  *   Arguments: dev	- the device 'dev_t'
27978  *		data	- pointer to user provided toc header structure,
27979  *			  specifying the starting and ending track numbers.
27980  *		flag	- this argument is a pass through to ddi_copyxxx()
27981  *			  directly from the mode argument of ioctl().
27982  *
27983  * Return Code: the code returned by sd_send_scsi_cmd()
27984  *		EFAULT if ddi_copyxxx() fails
27985  *		ENXIO if fail ddi_get_soft_state
27986  *		EINVAL if data pointer is NULL
27987  */
27988 
27989 static int
27990 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27991 {
27992 	struct sd_lun		*un;
27993 	struct uscsi_cmd	*com;
27994 	struct cdrom_tochdr	toc_header;
27995 	struct cdrom_tochdr	*hdr = &toc_header;
27996 	char			cdb[CDB_GROUP1];
27997 	int			rval;
27998 	caddr_t			buffer;
27999 
28000 	if (data == NULL) {
28001 		return (EINVAL);
28002 	}
28003 
28004 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28005 	    (un->un_state == SD_STATE_OFFLINE)) {
28006 		return (ENXIO);
28007 	}
28008 
28009 	buffer = kmem_zalloc(4, KM_SLEEP);
28010 	bzero(cdb, CDB_GROUP1);
28011 	cdb[0] = SCMD_READ_TOC;
28012 	/*
28013 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28014 	 * that the TOC header should be returned
28015 	 */
28016 	cdb[6] = 0x00;
28017 	/*
28018 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28019 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28020 	 */
28021 	cdb[8] = 0x04;
28022 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28023 	com->uscsi_cdb	   = cdb;
28024 	com->uscsi_cdblen  = CDB_GROUP1;
28025 	com->uscsi_bufaddr = buffer;
28026 	com->uscsi_buflen  = 0x04;
28027 	com->uscsi_timeout = 300;
28028 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28029 
28030 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28031 	    SD_PATH_STANDARD);
28032 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28033 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28034 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28035 	} else {
28036 		hdr->cdth_trk0 = buffer[2];
28037 		hdr->cdth_trk1 = buffer[3];
28038 	}
28039 	kmem_free(buffer, 4);
28040 	kmem_free(com, sizeof (*com));
28041 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28042 		return (EFAULT);
28043 	}
28044 	return (rval);
28045 }
28046 
28047 
28048 /*
28049  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28050  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28051  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28052  * digital audio and extended architecture digital audio. These modes are
28053  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28054  * MMC specs.
28055  *
28056  * In addition to support for the various data formats these routines also
28057  * include support for devices that implement only the direct access READ
28058  * commands (0x08, 0x28), devices that implement the READ_CD commands
28059  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28060  * READ CDXA commands (0xD8, 0xDB)
28061  */
28062 
28063 /*
28064  *    Function: sr_read_mode1()
28065  *
28066  * Description: This routine is the driver entry point for handling CD-ROM
28067  *		ioctl read mode1 requests (CDROMREADMODE1).
28068  *
28069  *   Arguments: dev	- the device 'dev_t'
28070  *		data	- pointer to user provided cd read structure specifying
28071  *			  the lba buffer address and length.
28072  *		flag	- this argument is a pass through to ddi_copyxxx()
28073  *			  directly from the mode argument of ioctl().
28074  *
28075  * Return Code: the code returned by sd_send_scsi_cmd()
28076  *		EFAULT if ddi_copyxxx() fails
28077  *		ENXIO if fail ddi_get_soft_state
28078  *		EINVAL if data pointer is NULL
28079  */
28080 
28081 static int
28082 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28083 {
28084 	struct sd_lun		*un;
28085 	struct cdrom_read	mode1_struct;
28086 	struct cdrom_read	*mode1 = &mode1_struct;
28087 	int			rval;
28088 	sd_ssc_t		*ssc;
28089 
28090 #ifdef _MULTI_DATAMODEL
28091 	/* To support ILP32 applications in an LP64 world */
28092 	struct cdrom_read32	cdrom_read32;
28093 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28094 #endif /* _MULTI_DATAMODEL */
28095 
28096 	if (data == NULL) {
28097 		return (EINVAL);
28098 	}
28099 
28100 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28101 	    (un->un_state == SD_STATE_OFFLINE)) {
28102 		return (ENXIO);
28103 	}
28104 
28105 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28106 	    "sd_read_mode1: entry: un:0x%p\n", un);
28107 
28108 #ifdef _MULTI_DATAMODEL
28109 	switch (ddi_model_convert_from(flag & FMODELS)) {
28110 	case DDI_MODEL_ILP32:
28111 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28112 			return (EFAULT);
28113 		}
28114 		/* Convert the ILP32 uscsi data from the application to LP64 */
28115 		cdrom_read32tocdrom_read(cdrd32, mode1);
28116 		break;
28117 	case DDI_MODEL_NONE:
28118 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28119 			return (EFAULT);
28120 		}
28121 	}
28122 #else /* ! _MULTI_DATAMODEL */
28123 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28124 		return (EFAULT);
28125 	}
28126 #endif /* _MULTI_DATAMODEL */
28127 
28128 	ssc = sd_ssc_init(un);
28129 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28130 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28131 	sd_ssc_fini(ssc);
28132 
28133 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28134 	    "sd_read_mode1: exit: un:0x%p\n", un);
28135 
28136 	return (rval);
28137 }
28138 
28139 
28140 /*
28141  *    Function: sr_read_cd_mode2()
28142  *
28143  * Description: This routine is the driver entry point for handling CD-ROM
28144  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28145  *		support the READ CD (0xBE) command or the 1st generation
28146  *		READ CD (0xD4) command.
28147  *
28148  *   Arguments: dev	- the device 'dev_t'
28149  *		data	- pointer to user provided cd read structure specifying
28150  *			  the lba buffer address and length.
28151  *		flag	- this argument is a pass through to ddi_copyxxx()
28152  *			  directly from the mode argument of ioctl().
28153  *
28154  * Return Code: the code returned by sd_send_scsi_cmd()
28155  *		EFAULT if ddi_copyxxx() fails
28156  *		ENXIO if fail ddi_get_soft_state
28157  *		EINVAL if data pointer is NULL
28158  */
28159 
28160 static int
28161 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28162 {
28163 	struct sd_lun		*un;
28164 	struct uscsi_cmd	*com;
28165 	struct cdrom_read	mode2_struct;
28166 	struct cdrom_read	*mode2 = &mode2_struct;
28167 	uchar_t			cdb[CDB_GROUP5];
28168 	int			nblocks;
28169 	int			rval;
28170 #ifdef _MULTI_DATAMODEL
28171 	/*  To support ILP32 applications in an LP64 world */
28172 	struct cdrom_read32	cdrom_read32;
28173 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28174 #endif /* _MULTI_DATAMODEL */
28175 
28176 	if (data == NULL) {
28177 		return (EINVAL);
28178 	}
28179 
28180 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28181 	    (un->un_state == SD_STATE_OFFLINE)) {
28182 		return (ENXIO);
28183 	}
28184 
28185 #ifdef _MULTI_DATAMODEL
28186 	switch (ddi_model_convert_from(flag & FMODELS)) {
28187 	case DDI_MODEL_ILP32:
28188 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28189 			return (EFAULT);
28190 		}
28191 		/* Convert the ILP32 uscsi data from the application to LP64 */
28192 		cdrom_read32tocdrom_read(cdrd32, mode2);
28193 		break;
28194 	case DDI_MODEL_NONE:
28195 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28196 			return (EFAULT);
28197 		}
28198 		break;
28199 	}
28200 
28201 #else /* ! _MULTI_DATAMODEL */
28202 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28203 		return (EFAULT);
28204 	}
28205 #endif /* _MULTI_DATAMODEL */
28206 
28207 	bzero(cdb, sizeof (cdb));
28208 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28209 		/* Read command supported by 1st generation atapi drives */
28210 		cdb[0] = SCMD_READ_CDD4;
28211 	} else {
28212 		/* Universal CD Access Command */
28213 		cdb[0] = SCMD_READ_CD;
28214 	}
28215 
28216 	/*
28217 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28218 	 */
28219 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28220 
28221 	/* set the start address */
28222 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28223 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28224 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28225 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28226 
28227 	/* set the transfer length */
28228 	nblocks = mode2->cdread_buflen / 2336;
28229 	cdb[6] = (uchar_t)(nblocks >> 16);
28230 	cdb[7] = (uchar_t)(nblocks >> 8);
28231 	cdb[8] = (uchar_t)nblocks;
28232 
28233 	/* set the filter bits */
28234 	cdb[9] = CDROM_READ_CD_USERDATA;
28235 
28236 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28237 	com->uscsi_cdb = (caddr_t)cdb;
28238 	com->uscsi_cdblen = sizeof (cdb);
28239 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28240 	com->uscsi_buflen = mode2->cdread_buflen;
28241 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28242 
28243 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28244 	    SD_PATH_STANDARD);
28245 	kmem_free(com, sizeof (*com));
28246 	return (rval);
28247 }
28248 
28249 
28250 /*
28251  *    Function: sr_read_mode2()
28252  *
28253  * Description: This routine is the driver entry point for handling CD-ROM
28254  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28255  *		do not support the READ CD (0xBE) command.
28256  *
28257  *   Arguments: dev	- the device 'dev_t'
28258  *		data	- pointer to user provided cd read structure specifying
28259  *			  the lba buffer address and length.
28260  *		flag	- this argument is a pass through to ddi_copyxxx()
28261  *			  directly from the mode argument of ioctl().
28262  *
28263  * Return Code: the code returned by sd_send_scsi_cmd()
28264  *		EFAULT if ddi_copyxxx() fails
28265  *		ENXIO if fail ddi_get_soft_state
28266  *		EINVAL if data pointer is NULL
28267  *		EIO if fail to reset block size
28268  *		EAGAIN if commands are in progress in the driver
28269  */
28270 
28271 static int
28272 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28273 {
28274 	struct sd_lun		*un;
28275 	struct cdrom_read	mode2_struct;
28276 	struct cdrom_read	*mode2 = &mode2_struct;
28277 	int			rval;
28278 	uint32_t		restore_blksize;
28279 	struct uscsi_cmd	*com;
28280 	uchar_t			cdb[CDB_GROUP0];
28281 	int			nblocks;
28282 
28283 #ifdef _MULTI_DATAMODEL
28284 	/* To support ILP32 applications in an LP64 world */
28285 	struct cdrom_read32	cdrom_read32;
28286 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28287 #endif /* _MULTI_DATAMODEL */
28288 
28289 	if (data == NULL) {
28290 		return (EINVAL);
28291 	}
28292 
28293 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28294 	    (un->un_state == SD_STATE_OFFLINE)) {
28295 		return (ENXIO);
28296 	}
28297 
28298 	/*
28299 	 * Because this routine will update the device and driver block size
28300 	 * being used we want to make sure there are no commands in progress.
28301 	 * If commands are in progress the user will have to try again.
28302 	 *
28303 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28304 	 * in sdioctl to protect commands from sdioctl through to the top of
28305 	 * sd_uscsi_strategy. See sdioctl for details.
28306 	 */
28307 	mutex_enter(SD_MUTEX(un));
28308 	if (un->un_ncmds_in_driver != 1) {
28309 		mutex_exit(SD_MUTEX(un));
28310 		return (EAGAIN);
28311 	}
28312 	mutex_exit(SD_MUTEX(un));
28313 
28314 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28315 	    "sd_read_mode2: entry: un:0x%p\n", un);
28316 
28317 #ifdef _MULTI_DATAMODEL
28318 	switch (ddi_model_convert_from(flag & FMODELS)) {
28319 	case DDI_MODEL_ILP32:
28320 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28321 			return (EFAULT);
28322 		}
28323 		/* Convert the ILP32 uscsi data from the application to LP64 */
28324 		cdrom_read32tocdrom_read(cdrd32, mode2);
28325 		break;
28326 	case DDI_MODEL_NONE:
28327 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28328 			return (EFAULT);
28329 		}
28330 		break;
28331 	}
28332 #else /* ! _MULTI_DATAMODEL */
28333 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28334 		return (EFAULT);
28335 	}
28336 #endif /* _MULTI_DATAMODEL */
28337 
28338 	/* Store the current target block size for restoration later */
28339 	restore_blksize = un->un_tgt_blocksize;
28340 
28341 	/* Change the device and soft state target block size to 2336 */
28342 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28343 		rval = EIO;
28344 		goto done;
28345 	}
28346 
28347 
28348 	bzero(cdb, sizeof (cdb));
28349 
28350 	/* set READ operation */
28351 	cdb[0] = SCMD_READ;
28352 
28353 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28354 	mode2->cdread_lba >>= 2;
28355 
28356 	/* set the start address */
28357 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28358 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28359 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28360 
28361 	/* set the transfer length */
28362 	nblocks = mode2->cdread_buflen / 2336;
28363 	cdb[4] = (uchar_t)nblocks & 0xFF;
28364 
28365 	/* build command */
28366 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28367 	com->uscsi_cdb = (caddr_t)cdb;
28368 	com->uscsi_cdblen = sizeof (cdb);
28369 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28370 	com->uscsi_buflen = mode2->cdread_buflen;
28371 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28372 
28373 	/*
28374 	 * Issue SCSI command with user space address for read buffer.
28375 	 *
28376 	 * This sends the command through main channel in the driver.
28377 	 *
28378 	 * Since this is accessed via an IOCTL call, we go through the
28379 	 * standard path, so that if the device was powered down, then
28380 	 * it would be 'awakened' to handle the command.
28381 	 */
28382 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28383 	    SD_PATH_STANDARD);
28384 
28385 	kmem_free(com, sizeof (*com));
28386 
28387 	/* Restore the device and soft state target block size */
28388 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28389 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28390 		    "can't do switch back to mode 1\n");
28391 		/*
28392 		 * If sd_send_scsi_READ succeeded we still need to report
28393 		 * an error because we failed to reset the block size
28394 		 */
28395 		if (rval == 0) {
28396 			rval = EIO;
28397 		}
28398 	}
28399 
28400 done:
28401 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28402 	    "sd_read_mode2: exit: un:0x%p\n", un);
28403 
28404 	return (rval);
28405 }
28406 
28407 
28408 /*
28409  *    Function: sr_sector_mode()
28410  *
28411  * Description: This utility function is used by sr_read_mode2 to set the target
28412  *		block size based on the user specified size. This is a legacy
28413  *		implementation based upon a vendor specific mode page
28414  *
28415  *   Arguments: dev	- the device 'dev_t'
28416  *		data	- flag indicating if block size is being set to 2336 or
28417  *			  512.
28418  *
28419  * Return Code: the code returned by sd_send_scsi_cmd()
28420  *		EFAULT if ddi_copyxxx() fails
28421  *		ENXIO if fail ddi_get_soft_state
28422  *		EINVAL if data pointer is NULL
28423  */
28424 
28425 static int
28426 sr_sector_mode(dev_t dev, uint32_t blksize)
28427 {
28428 	struct sd_lun	*un;
28429 	uchar_t		*sense;
28430 	uchar_t		*select;
28431 	int		rval;
28432 	sd_ssc_t	*ssc;
28433 
28434 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28435 	    (un->un_state == SD_STATE_OFFLINE)) {
28436 		return (ENXIO);
28437 	}
28438 
28439 	sense = kmem_zalloc(20, KM_SLEEP);
28440 
28441 	/* Note: This is a vendor specific mode page (0x81) */
28442 	ssc = sd_ssc_init(un);
28443 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28444 	    SD_PATH_STANDARD);
28445 	sd_ssc_fini(ssc);
28446 	if (rval != 0) {
28447 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28448 		    "sr_sector_mode: Mode Sense failed\n");
28449 		kmem_free(sense, 20);
28450 		return (rval);
28451 	}
28452 	select = kmem_zalloc(20, KM_SLEEP);
28453 	select[3] = 0x08;
28454 	select[10] = ((blksize >> 8) & 0xff);
28455 	select[11] = (blksize & 0xff);
28456 	select[12] = 0x01;
28457 	select[13] = 0x06;
28458 	select[14] = sense[14];
28459 	select[15] = sense[15];
28460 	if (blksize == SD_MODE2_BLKSIZE) {
28461 		select[14] |= 0x01;
28462 	}
28463 
28464 	ssc = sd_ssc_init(un);
28465 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28466 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28467 	sd_ssc_fini(ssc);
28468 	if (rval != 0) {
28469 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28470 		    "sr_sector_mode: Mode Select failed\n");
28471 	} else {
28472 		/*
28473 		 * Only update the softstate block size if we successfully
28474 		 * changed the device block mode.
28475 		 */
28476 		mutex_enter(SD_MUTEX(un));
28477 		sd_update_block_info(un, blksize, 0);
28478 		mutex_exit(SD_MUTEX(un));
28479 	}
28480 	kmem_free(sense, 20);
28481 	kmem_free(select, 20);
28482 	return (rval);
28483 }
28484 
28485 
28486 /*
28487  *    Function: sr_read_cdda()
28488  *
28489  * Description: This routine is the driver entry point for handling CD-ROM
28490  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28491  *		the target supports CDDA these requests are handled via a vendor
28492  *		specific command (0xD8) If the target does not support CDDA
28493  *		these requests are handled via the READ CD command (0xBE).
28494  *
28495  *   Arguments: dev	- the device 'dev_t'
28496  *		data	- pointer to user provided CD-DA structure specifying
28497  *			  the track starting address, transfer length, and
28498  *			  subcode options.
28499  *		flag	- this argument is a pass through to ddi_copyxxx()
28500  *			  directly from the mode argument of ioctl().
28501  *
28502  * Return Code: the code returned by sd_send_scsi_cmd()
28503  *		EFAULT if ddi_copyxxx() fails
28504  *		ENXIO if fail ddi_get_soft_state
28505  *		EINVAL if invalid arguments are provided
28506  *		ENOTTY
28507  */
28508 
28509 static int
28510 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28511 {
28512 	struct sd_lun			*un;
28513 	struct uscsi_cmd		*com;
28514 	struct cdrom_cdda		*cdda;
28515 	int				rval;
28516 	size_t				buflen;
28517 	char				cdb[CDB_GROUP5];
28518 
28519 #ifdef _MULTI_DATAMODEL
28520 	/* To support ILP32 applications in an LP64 world */
28521 	struct cdrom_cdda32	cdrom_cdda32;
28522 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28523 #endif /* _MULTI_DATAMODEL */
28524 
28525 	if (data == NULL) {
28526 		return (EINVAL);
28527 	}
28528 
28529 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28530 		return (ENXIO);
28531 	}
28532 
28533 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28534 
28535 #ifdef _MULTI_DATAMODEL
28536 	switch (ddi_model_convert_from(flag & FMODELS)) {
28537 	case DDI_MODEL_ILP32:
28538 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28539 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28540 			    "sr_read_cdda: ddi_copyin Failed\n");
28541 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28542 			return (EFAULT);
28543 		}
28544 		/* Convert the ILP32 uscsi data from the application to LP64 */
28545 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28546 		break;
28547 	case DDI_MODEL_NONE:
28548 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28549 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28550 			    "sr_read_cdda: ddi_copyin Failed\n");
28551 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28552 			return (EFAULT);
28553 		}
28554 		break;
28555 	}
28556 #else /* ! _MULTI_DATAMODEL */
28557 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28558 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28559 		    "sr_read_cdda: ddi_copyin Failed\n");
28560 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28561 		return (EFAULT);
28562 	}
28563 #endif /* _MULTI_DATAMODEL */
28564 
28565 	/*
28566 	 * Since MMC-2 expects max 3 bytes for length, check if the
28567 	 * length input is greater than 3 bytes
28568 	 */
28569 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28570 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28571 		    "cdrom transfer length too large: %d (limit %d)\n",
28572 		    cdda->cdda_length, 0xFFFFFF);
28573 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28574 		return (EINVAL);
28575 	}
28576 
28577 	switch (cdda->cdda_subcode) {
28578 	case CDROM_DA_NO_SUBCODE:
28579 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28580 		break;
28581 	case CDROM_DA_SUBQ:
28582 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28583 		break;
28584 	case CDROM_DA_ALL_SUBCODE:
28585 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28586 		break;
28587 	case CDROM_DA_SUBCODE_ONLY:
28588 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28589 		break;
28590 	default:
28591 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28592 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28593 		    cdda->cdda_subcode);
28594 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28595 		return (EINVAL);
28596 	}
28597 
28598 	/* Build and send the command */
28599 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28600 	bzero(cdb, CDB_GROUP5);
28601 
28602 	if (un->un_f_cfg_cdda == TRUE) {
28603 		cdb[0] = (char)SCMD_READ_CD;
28604 		cdb[1] = 0x04;
28605 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28606 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28607 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28608 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28609 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28610 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28611 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28612 		cdb[9] = 0x10;
28613 		switch (cdda->cdda_subcode) {
28614 		case CDROM_DA_NO_SUBCODE :
28615 			cdb[10] = 0x0;
28616 			break;
28617 		case CDROM_DA_SUBQ :
28618 			cdb[10] = 0x2;
28619 			break;
28620 		case CDROM_DA_ALL_SUBCODE :
28621 			cdb[10] = 0x1;
28622 			break;
28623 		case CDROM_DA_SUBCODE_ONLY :
28624 			/* FALLTHROUGH */
28625 		default :
28626 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28627 			kmem_free(com, sizeof (*com));
28628 			return (ENOTTY);
28629 		}
28630 	} else {
28631 		cdb[0] = (char)SCMD_READ_CDDA;
28632 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28633 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28634 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28635 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28636 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28637 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28638 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28639 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28640 		cdb[10] = cdda->cdda_subcode;
28641 	}
28642 
28643 	com->uscsi_cdb = cdb;
28644 	com->uscsi_cdblen = CDB_GROUP5;
28645 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28646 	com->uscsi_buflen = buflen;
28647 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28648 
28649 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28650 	    SD_PATH_STANDARD);
28651 
28652 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28653 	kmem_free(com, sizeof (*com));
28654 	return (rval);
28655 }
28656 
28657 
28658 /*
28659  *    Function: sr_read_cdxa()
28660  *
28661  * Description: This routine is the driver entry point for handling CD-ROM
28662  *		ioctl requests to return CD-XA (Extended Architecture) data.
28663  *		(CDROMCDXA).
28664  *
28665  *   Arguments: dev	- the device 'dev_t'
28666  *		data	- pointer to user provided CD-XA structure specifying
28667  *			  the data starting address, transfer length, and format
28668  *		flag	- this argument is a pass through to ddi_copyxxx()
28669  *			  directly from the mode argument of ioctl().
28670  *
28671  * Return Code: the code returned by sd_send_scsi_cmd()
28672  *		EFAULT if ddi_copyxxx() fails
28673  *		ENXIO if fail ddi_get_soft_state
28674  *		EINVAL if data pointer is NULL
28675  */
28676 
28677 static int
28678 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28679 {
28680 	struct sd_lun		*un;
28681 	struct uscsi_cmd	*com;
28682 	struct cdrom_cdxa	*cdxa;
28683 	int			rval;
28684 	size_t			buflen;
28685 	char			cdb[CDB_GROUP5];
28686 	uchar_t			read_flags;
28687 
28688 #ifdef _MULTI_DATAMODEL
28689 	/* To support ILP32 applications in an LP64 world */
28690 	struct cdrom_cdxa32		cdrom_cdxa32;
28691 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28692 #endif /* _MULTI_DATAMODEL */
28693 
28694 	if (data == NULL) {
28695 		return (EINVAL);
28696 	}
28697 
28698 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28699 		return (ENXIO);
28700 	}
28701 
28702 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28703 
28704 #ifdef _MULTI_DATAMODEL
28705 	switch (ddi_model_convert_from(flag & FMODELS)) {
28706 	case DDI_MODEL_ILP32:
28707 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28708 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28709 			return (EFAULT);
28710 		}
28711 		/*
28712 		 * Convert the ILP32 uscsi data from the
28713 		 * application to LP64 for internal use.
28714 		 */
28715 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28716 		break;
28717 	case DDI_MODEL_NONE:
28718 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28719 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28720 			return (EFAULT);
28721 		}
28722 		break;
28723 	}
28724 #else /* ! _MULTI_DATAMODEL */
28725 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28726 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28727 		return (EFAULT);
28728 	}
28729 #endif /* _MULTI_DATAMODEL */
28730 
28731 	/*
28732 	 * Since MMC-2 expects max 3 bytes for length, check if the
28733 	 * length input is greater than 3 bytes
28734 	 */
28735 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28736 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28737 		    "cdrom transfer length too large: %d (limit %d)\n",
28738 		    cdxa->cdxa_length, 0xFFFFFF);
28739 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28740 		return (EINVAL);
28741 	}
28742 
28743 	switch (cdxa->cdxa_format) {
28744 	case CDROM_XA_DATA:
28745 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28746 		read_flags = 0x10;
28747 		break;
28748 	case CDROM_XA_SECTOR_DATA:
28749 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28750 		read_flags = 0xf8;
28751 		break;
28752 	case CDROM_XA_DATA_W_ERROR:
28753 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28754 		read_flags = 0xfc;
28755 		break;
28756 	default:
28757 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28758 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28759 		    cdxa->cdxa_format);
28760 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28761 		return (EINVAL);
28762 	}
28763 
28764 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28765 	bzero(cdb, CDB_GROUP5);
28766 	if (un->un_f_mmc_cap == TRUE) {
28767 		cdb[0] = (char)SCMD_READ_CD;
28768 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28769 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28770 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28771 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28772 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28773 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28774 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28775 		cdb[9] = (char)read_flags;
28776 	} else {
28777 		/*
28778 		 * Note: A vendor specific command (0xDB) is being used her to
28779 		 * request a read of all subcodes.
28780 		 */
28781 		cdb[0] = (char)SCMD_READ_CDXA;
28782 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28783 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28784 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28785 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28786 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28787 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28788 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28789 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28790 		cdb[10] = cdxa->cdxa_format;
28791 	}
28792 	com->uscsi_cdb	   = cdb;
28793 	com->uscsi_cdblen  = CDB_GROUP5;
28794 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28795 	com->uscsi_buflen  = buflen;
28796 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28797 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28798 	    SD_PATH_STANDARD);
28799 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28800 	kmem_free(com, sizeof (*com));
28801 	return (rval);
28802 }
28803 
28804 
28805 /*
28806  *    Function: sr_eject()
28807  *
28808  * Description: This routine is the driver entry point for handling CD-ROM
28809  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28810  *
28811  *   Arguments: dev	- the device 'dev_t'
28812  *
28813  * Return Code: the code returned by sd_send_scsi_cmd()
28814  */
28815 
28816 static int
28817 sr_eject(dev_t dev)
28818 {
28819 	struct sd_lun	*un;
28820 	int		rval;
28821 	sd_ssc_t	*ssc;
28822 
28823 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28824 	    (un->un_state == SD_STATE_OFFLINE)) {
28825 		return (ENXIO);
28826 	}
28827 
28828 	/*
28829 	 * To prevent race conditions with the eject
28830 	 * command, keep track of an eject command as
28831 	 * it progresses. If we are already handling
28832 	 * an eject command in the driver for the given
28833 	 * unit and another request to eject is received
28834 	 * immediately return EAGAIN so we don't lose
28835 	 * the command if the current eject command fails.
28836 	 */
28837 	mutex_enter(SD_MUTEX(un));
28838 	if (un->un_f_ejecting == TRUE) {
28839 		mutex_exit(SD_MUTEX(un));
28840 		return (EAGAIN);
28841 	}
28842 	un->un_f_ejecting = TRUE;
28843 	mutex_exit(SD_MUTEX(un));
28844 
28845 	ssc = sd_ssc_init(un);
28846 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28847 	    SD_PATH_STANDARD);
28848 	sd_ssc_fini(ssc);
28849 
28850 	if (rval != 0) {
28851 		mutex_enter(SD_MUTEX(un));
28852 		un->un_f_ejecting = FALSE;
28853 		mutex_exit(SD_MUTEX(un));
28854 		return (rval);
28855 	}
28856 
28857 	ssc = sd_ssc_init(un);
28858 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28859 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28860 	sd_ssc_fini(ssc);
28861 
28862 	if (rval == 0) {
28863 		mutex_enter(SD_MUTEX(un));
28864 		sr_ejected(un);
28865 		un->un_mediastate = DKIO_EJECTED;
28866 		un->un_f_ejecting = FALSE;
28867 		cv_broadcast(&un->un_state_cv);
28868 		mutex_exit(SD_MUTEX(un));
28869 	} else {
28870 		mutex_enter(SD_MUTEX(un));
28871 		un->un_f_ejecting = FALSE;
28872 		mutex_exit(SD_MUTEX(un));
28873 	}
28874 	return (rval);
28875 }
28876 
28877 
28878 /*
28879  *    Function: sr_ejected()
28880  *
28881  * Description: This routine updates the soft state structure to invalidate the
28882  *		geometry information after the media has been ejected or a
28883  *		media eject has been detected.
28884  *
28885  *   Arguments: un - driver soft state (unit) structure
28886  */
28887 
28888 static void
28889 sr_ejected(struct sd_lun *un)
28890 {
28891 	struct sd_errstats *stp;
28892 
28893 	ASSERT(un != NULL);
28894 	ASSERT(mutex_owned(SD_MUTEX(un)));
28895 
28896 	un->un_f_blockcount_is_valid	= FALSE;
28897 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28898 	mutex_exit(SD_MUTEX(un));
28899 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28900 	mutex_enter(SD_MUTEX(un));
28901 
28902 	if (un->un_errstats != NULL) {
28903 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28904 		stp->sd_capacity.value.ui64 = 0;
28905 	}
28906 }
28907 
28908 
28909 /*
28910  *    Function: sr_check_wp()
28911  *
28912  * Description: This routine checks the write protection of a removable
28913  *      media disk and hotpluggable devices via the write protect bit of
28914  *      the Mode Page Header device specific field. Some devices choke
28915  *      on unsupported mode page. In order to workaround this issue,
28916  *      this routine has been implemented to use 0x3f mode page(request
28917  *      for all pages) for all device types.
28918  *
28919  *   Arguments: dev             - the device 'dev_t'
28920  *
28921  * Return Code: int indicating if the device is write protected (1) or not (0)
28922  *
28923  *     Context: Kernel thread.
28924  *
28925  */
28926 
28927 static int
28928 sr_check_wp(dev_t dev)
28929 {
28930 	struct sd_lun	*un;
28931 	uchar_t		device_specific;
28932 	uchar_t		*sense;
28933 	int		hdrlen;
28934 	int		rval = FALSE;
28935 	int		status;
28936 	sd_ssc_t	*ssc;
28937 
28938 	/*
28939 	 * Note: The return codes for this routine should be reworked to
28940 	 * properly handle the case of a NULL softstate.
28941 	 */
28942 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28943 		return (FALSE);
28944 	}
28945 
28946 	if (un->un_f_cfg_is_atapi == TRUE) {
28947 		/*
28948 		 * The mode page contents are not required; set the allocation
28949 		 * length for the mode page header only
28950 		 */
28951 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28952 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28953 		ssc = sd_ssc_init(un);
28954 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28955 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28956 		sd_ssc_fini(ssc);
28957 		if (status != 0)
28958 			goto err_exit;
28959 		device_specific =
28960 		    ((struct mode_header_grp2 *)sense)->device_specific;
28961 	} else {
28962 		hdrlen = MODE_HEADER_LENGTH;
28963 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28964 		ssc = sd_ssc_init(un);
28965 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28966 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28967 		sd_ssc_fini(ssc);
28968 		if (status != 0)
28969 			goto err_exit;
28970 		device_specific =
28971 		    ((struct mode_header *)sense)->device_specific;
28972 	}
28973 
28974 
28975 	/*
28976 	 * Write protect mode sense failed; not all disks
28977 	 * understand this query. Return FALSE assuming that
28978 	 * these devices are not writable.
28979 	 */
28980 	if (device_specific & WRITE_PROTECT) {
28981 		rval = TRUE;
28982 	}
28983 
28984 err_exit:
28985 	kmem_free(sense, hdrlen);
28986 	return (rval);
28987 }
28988 
28989 /*
28990  *    Function: sr_volume_ctrl()
28991  *
28992  * Description: This routine is the driver entry point for handling CD-ROM
28993  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28994  *
28995  *   Arguments: dev	- the device 'dev_t'
28996  *		data	- pointer to user audio volume control structure
28997  *		flag	- this argument is a pass through to ddi_copyxxx()
28998  *			  directly from the mode argument of ioctl().
28999  *
29000  * Return Code: the code returned by sd_send_scsi_cmd()
29001  *		EFAULT if ddi_copyxxx() fails
29002  *		ENXIO if fail ddi_get_soft_state
29003  *		EINVAL if data pointer is NULL
29004  *
29005  */
29006 
29007 static int
29008 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29009 {
29010 	struct sd_lun		*un;
29011 	struct cdrom_volctrl    volume;
29012 	struct cdrom_volctrl    *vol = &volume;
29013 	uchar_t			*sense_page;
29014 	uchar_t			*select_page;
29015 	uchar_t			*sense;
29016 	uchar_t			*select;
29017 	int			sense_buflen;
29018 	int			select_buflen;
29019 	int			rval;
29020 	sd_ssc_t		*ssc;
29021 
29022 	if (data == NULL) {
29023 		return (EINVAL);
29024 	}
29025 
29026 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29027 	    (un->un_state == SD_STATE_OFFLINE)) {
29028 		return (ENXIO);
29029 	}
29030 
29031 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29032 		return (EFAULT);
29033 	}
29034 
29035 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29036 		struct mode_header_grp2		*sense_mhp;
29037 		struct mode_header_grp2		*select_mhp;
29038 		int				bd_len;
29039 
29040 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29041 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29042 		    MODEPAGE_AUDIO_CTRL_LEN;
29043 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29044 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29045 		ssc = sd_ssc_init(un);
29046 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29047 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29048 		    SD_PATH_STANDARD);
29049 		sd_ssc_fini(ssc);
29050 
29051 		if (rval != 0) {
29052 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29053 			    "sr_volume_ctrl: Mode Sense Failed\n");
29054 			kmem_free(sense, sense_buflen);
29055 			kmem_free(select, select_buflen);
29056 			return (rval);
29057 		}
29058 		sense_mhp = (struct mode_header_grp2 *)sense;
29059 		select_mhp = (struct mode_header_grp2 *)select;
29060 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29061 		    sense_mhp->bdesc_length_lo;
29062 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29063 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29064 			    "sr_volume_ctrl: Mode Sense returned invalid "
29065 			    "block descriptor length\n");
29066 			kmem_free(sense, sense_buflen);
29067 			kmem_free(select, select_buflen);
29068 			return (EIO);
29069 		}
29070 		sense_page = (uchar_t *)
29071 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29072 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29073 		select_mhp->length_msb = 0;
29074 		select_mhp->length_lsb = 0;
29075 		select_mhp->bdesc_length_hi = 0;
29076 		select_mhp->bdesc_length_lo = 0;
29077 	} else {
29078 		struct mode_header		*sense_mhp, *select_mhp;
29079 
29080 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29081 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29082 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29083 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29084 		ssc = sd_ssc_init(un);
29085 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29086 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29087 		    SD_PATH_STANDARD);
29088 		sd_ssc_fini(ssc);
29089 
29090 		if (rval != 0) {
29091 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29092 			    "sr_volume_ctrl: Mode Sense Failed\n");
29093 			kmem_free(sense, sense_buflen);
29094 			kmem_free(select, select_buflen);
29095 			return (rval);
29096 		}
29097 		sense_mhp  = (struct mode_header *)sense;
29098 		select_mhp = (struct mode_header *)select;
29099 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29100 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29101 			    "sr_volume_ctrl: Mode Sense returned invalid "
29102 			    "block descriptor length\n");
29103 			kmem_free(sense, sense_buflen);
29104 			kmem_free(select, select_buflen);
29105 			return (EIO);
29106 		}
29107 		sense_page = (uchar_t *)
29108 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29109 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29110 		select_mhp->length = 0;
29111 		select_mhp->bdesc_length = 0;
29112 	}
29113 	/*
29114 	 * Note: An audio control data structure could be created and overlayed
29115 	 * on the following in place of the array indexing method implemented.
29116 	 */
29117 
29118 	/* Build the select data for the user volume data */
29119 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29120 	select_page[1] = 0xE;
29121 	/* Set the immediate bit */
29122 	select_page[2] = 0x04;
29123 	/* Zero out reserved fields */
29124 	select_page[3] = 0x00;
29125 	select_page[4] = 0x00;
29126 	/* Return sense data for fields not to be modified */
29127 	select_page[5] = sense_page[5];
29128 	select_page[6] = sense_page[6];
29129 	select_page[7] = sense_page[7];
29130 	/* Set the user specified volume levels for channel 0 and 1 */
29131 	select_page[8] = 0x01;
29132 	select_page[9] = vol->channel0;
29133 	select_page[10] = 0x02;
29134 	select_page[11] = vol->channel1;
29135 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29136 	select_page[12] = sense_page[12];
29137 	select_page[13] = sense_page[13];
29138 	select_page[14] = sense_page[14];
29139 	select_page[15] = sense_page[15];
29140 
29141 	ssc = sd_ssc_init(un);
29142 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29143 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29144 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29145 	} else {
29146 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29147 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29148 	}
29149 	sd_ssc_fini(ssc);
29150 
29151 	kmem_free(sense, sense_buflen);
29152 	kmem_free(select, select_buflen);
29153 	return (rval);
29154 }
29155 
29156 
29157 /*
29158  *    Function: sr_read_sony_session_offset()
29159  *
29160  * Description: This routine is the driver entry point for handling CD-ROM
29161  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29162  *		The address of the first track in the last session of a
29163  *		multi-session CD-ROM is returned
29164  *
29165  *		Note: This routine uses a vendor specific key value in the
29166  *		command control field without implementing any vendor check here
29167  *		or in the ioctl routine.
29168  *
29169  *   Arguments: dev	- the device 'dev_t'
29170  *		data	- pointer to an int to hold the requested address
29171  *		flag	- this argument is a pass through to ddi_copyxxx()
29172  *			  directly from the mode argument of ioctl().
29173  *
29174  * Return Code: the code returned by sd_send_scsi_cmd()
29175  *		EFAULT if ddi_copyxxx() fails
29176  *		ENXIO if fail ddi_get_soft_state
29177  *		EINVAL if data pointer is NULL
29178  */
29179 
29180 static int
29181 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29182 {
29183 	struct sd_lun		*un;
29184 	struct uscsi_cmd	*com;
29185 	caddr_t			buffer;
29186 	char			cdb[CDB_GROUP1];
29187 	int			session_offset = 0;
29188 	int			rval;
29189 
29190 	if (data == NULL) {
29191 		return (EINVAL);
29192 	}
29193 
29194 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29195 	    (un->un_state == SD_STATE_OFFLINE)) {
29196 		return (ENXIO);
29197 	}
29198 
29199 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29200 	bzero(cdb, CDB_GROUP1);
29201 	cdb[0] = SCMD_READ_TOC;
29202 	/*
29203 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29204 	 * (4 byte TOC response header + 8 byte response data)
29205 	 */
29206 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29207 	/* Byte 9 is the control byte. A vendor specific value is used */
29208 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29209 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29210 	com->uscsi_cdb = cdb;
29211 	com->uscsi_cdblen = CDB_GROUP1;
29212 	com->uscsi_bufaddr = buffer;
29213 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29214 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29215 
29216 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29217 	    SD_PATH_STANDARD);
29218 	if (rval != 0) {
29219 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29220 		kmem_free(com, sizeof (*com));
29221 		return (rval);
29222 	}
29223 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29224 		session_offset =
29225 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29226 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29227 		/*
29228 		 * Offset returned offset in current lbasize block's. Convert to
29229 		 * 2k block's to return to the user
29230 		 */
29231 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29232 			session_offset >>= 2;
29233 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29234 			session_offset >>= 1;
29235 		}
29236 	}
29237 
29238 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29239 		rval = EFAULT;
29240 	}
29241 
29242 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29243 	kmem_free(com, sizeof (*com));
29244 	return (rval);
29245 }
29246 
29247 
29248 /*
29249  *    Function: sd_wm_cache_constructor()
29250  *
29251  * Description: Cache Constructor for the wmap cache for the read/modify/write
29252  * 		devices.
29253  *
29254  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29255  *		un	- sd_lun structure for the device.
29256  *		flag	- the km flags passed to constructor
29257  *
29258  * Return Code: 0 on success.
29259  *		-1 on failure.
29260  */
29261 
29262 /*ARGSUSED*/
29263 static int
29264 sd_wm_cache_constructor(void *wm, void *un, int flags)
29265 {
29266 	bzero(wm, sizeof (struct sd_w_map));
29267 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29268 	return (0);
29269 }
29270 
29271 
29272 /*
29273  *    Function: sd_wm_cache_destructor()
29274  *
29275  * Description: Cache destructor for the wmap cache for the read/modify/write
29276  * 		devices.
29277  *
29278  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29279  *		un	- sd_lun structure for the device.
29280  */
29281 /*ARGSUSED*/
29282 static void
29283 sd_wm_cache_destructor(void *wm, void *un)
29284 {
29285 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29286 }
29287 
29288 
29289 /*
29290  *    Function: sd_range_lock()
29291  *
29292  * Description: Lock the range of blocks specified as parameter to ensure
29293  *		that read, modify write is atomic and no other i/o writes
29294  *		to the same location. The range is specified in terms
29295  *		of start and end blocks. Block numbers are the actual
29296  *		media block numbers and not system.
29297  *
29298  *   Arguments: un	- sd_lun structure for the device.
29299  *		startb - The starting block number
29300  *		endb - The end block number
29301  *		typ - type of i/o - simple/read_modify_write
29302  *
29303  * Return Code: wm  - pointer to the wmap structure.
29304  *
29305  *     Context: This routine can sleep.
29306  */
29307 
29308 static struct sd_w_map *
29309 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29310 {
29311 	struct sd_w_map *wmp = NULL;
29312 	struct sd_w_map *sl_wmp = NULL;
29313 	struct sd_w_map *tmp_wmp;
29314 	wm_state state = SD_WM_CHK_LIST;
29315 
29316 
29317 	ASSERT(un != NULL);
29318 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29319 
29320 	mutex_enter(SD_MUTEX(un));
29321 
29322 	while (state != SD_WM_DONE) {
29323 
29324 		switch (state) {
29325 		case SD_WM_CHK_LIST:
29326 			/*
29327 			 * This is the starting state. Check the wmap list
29328 			 * to see if the range is currently available.
29329 			 */
29330 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29331 				/*
29332 				 * If this is a simple write and no rmw
29333 				 * i/o is pending then try to lock the
29334 				 * range as the range should be available.
29335 				 */
29336 				state = SD_WM_LOCK_RANGE;
29337 			} else {
29338 				tmp_wmp = sd_get_range(un, startb, endb);
29339 				if (tmp_wmp != NULL) {
29340 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29341 						/*
29342 						 * Should not keep onlist wmps
29343 						 * while waiting this macro
29344 						 * will also do wmp = NULL;
29345 						 */
29346 						FREE_ONLIST_WMAP(un, wmp);
29347 					}
29348 					/*
29349 					 * sl_wmp is the wmap on which wait
29350 					 * is done, since the tmp_wmp points
29351 					 * to the inuse wmap, set sl_wmp to
29352 					 * tmp_wmp and change the state to sleep
29353 					 */
29354 					sl_wmp = tmp_wmp;
29355 					state = SD_WM_WAIT_MAP;
29356 				} else {
29357 					state = SD_WM_LOCK_RANGE;
29358 				}
29359 
29360 			}
29361 			break;
29362 
29363 		case SD_WM_LOCK_RANGE:
29364 			ASSERT(un->un_wm_cache);
29365 			/*
29366 			 * The range need to be locked, try to get a wmap.
29367 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29368 			 * if possible as we will have to release the sd mutex
29369 			 * if we have to sleep.
29370 			 */
29371 			if (wmp == NULL)
29372 				wmp = kmem_cache_alloc(un->un_wm_cache,
29373 				    KM_NOSLEEP);
29374 			if (wmp == NULL) {
29375 				mutex_exit(SD_MUTEX(un));
29376 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29377 				    (sd_lun::un_wm_cache))
29378 				wmp = kmem_cache_alloc(un->un_wm_cache,
29379 				    KM_SLEEP);
29380 				mutex_enter(SD_MUTEX(un));
29381 				/*
29382 				 * we released the mutex so recheck and go to
29383 				 * check list state.
29384 				 */
29385 				state = SD_WM_CHK_LIST;
29386 			} else {
29387 				/*
29388 				 * We exit out of state machine since we
29389 				 * have the wmap. Do the housekeeping first.
29390 				 * place the wmap on the wmap list if it is not
29391 				 * on it already and then set the state to done.
29392 				 */
29393 				wmp->wm_start = startb;
29394 				wmp->wm_end = endb;
29395 				wmp->wm_flags = typ | SD_WM_BUSY;
29396 				if (typ & SD_WTYPE_RMW) {
29397 					un->un_rmw_count++;
29398 				}
29399 				/*
29400 				 * If not already on the list then link
29401 				 */
29402 				if (!ONLIST(un, wmp)) {
29403 					wmp->wm_next = un->un_wm;
29404 					wmp->wm_prev = NULL;
29405 					if (wmp->wm_next)
29406 						wmp->wm_next->wm_prev = wmp;
29407 					un->un_wm = wmp;
29408 				}
29409 				state = SD_WM_DONE;
29410 			}
29411 			break;
29412 
29413 		case SD_WM_WAIT_MAP:
29414 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29415 			/*
29416 			 * Wait is done on sl_wmp, which is set in the
29417 			 * check_list state.
29418 			 */
29419 			sl_wmp->wm_wanted_count++;
29420 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29421 			sl_wmp->wm_wanted_count--;
29422 			/*
29423 			 * We can reuse the memory from the completed sl_wmp
29424 			 * lock range for our new lock, but only if noone is
29425 			 * waiting for it.
29426 			 */
29427 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29428 			if (sl_wmp->wm_wanted_count == 0) {
29429 				if (wmp != NULL) {
29430 					CHK_N_FREEWMP(un, wmp);
29431 				}
29432 				wmp = sl_wmp;
29433 			}
29434 			sl_wmp = NULL;
29435 			/*
29436 			 * After waking up, need to recheck for availability of
29437 			 * range.
29438 			 */
29439 			state = SD_WM_CHK_LIST;
29440 			break;
29441 
29442 		default:
29443 			panic("sd_range_lock: "
29444 			    "Unknown state %d in sd_range_lock", state);
29445 			/*NOTREACHED*/
29446 		} /* switch(state) */
29447 
29448 	} /* while(state != SD_WM_DONE) */
29449 
29450 	mutex_exit(SD_MUTEX(un));
29451 
29452 	ASSERT(wmp != NULL);
29453 
29454 	return (wmp);
29455 }
29456 
29457 
29458 /*
29459  *    Function: sd_get_range()
29460  *
29461  * Description: Find if there any overlapping I/O to this one
29462  *		Returns the write-map of 1st such I/O, NULL otherwise.
29463  *
29464  *   Arguments: un	- sd_lun structure for the device.
29465  *		startb - The starting block number
29466  *		endb - The end block number
29467  *
29468  * Return Code: wm  - pointer to the wmap structure.
29469  */
29470 
29471 static struct sd_w_map *
29472 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29473 {
29474 	struct sd_w_map *wmp;
29475 
29476 	ASSERT(un != NULL);
29477 
29478 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29479 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29480 			continue;
29481 		}
29482 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29483 			break;
29484 		}
29485 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29486 			break;
29487 		}
29488 	}
29489 
29490 	return (wmp);
29491 }
29492 
29493 
29494 /*
29495  *    Function: sd_free_inlist_wmap()
29496  *
29497  * Description: Unlink and free a write map struct.
29498  *
29499  *   Arguments: un      - sd_lun structure for the device.
29500  *		wmp	- sd_w_map which needs to be unlinked.
29501  */
29502 
29503 static void
29504 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29505 {
29506 	ASSERT(un != NULL);
29507 
29508 	if (un->un_wm == wmp) {
29509 		un->un_wm = wmp->wm_next;
29510 	} else {
29511 		wmp->wm_prev->wm_next = wmp->wm_next;
29512 	}
29513 
29514 	if (wmp->wm_next) {
29515 		wmp->wm_next->wm_prev = wmp->wm_prev;
29516 	}
29517 
29518 	wmp->wm_next = wmp->wm_prev = NULL;
29519 
29520 	kmem_cache_free(un->un_wm_cache, wmp);
29521 }
29522 
29523 
29524 /*
29525  *    Function: sd_range_unlock()
29526  *
29527  * Description: Unlock the range locked by wm.
29528  *		Free write map if nobody else is waiting on it.
29529  *
29530  *   Arguments: un      - sd_lun structure for the device.
29531  *              wmp     - sd_w_map which needs to be unlinked.
29532  */
29533 
29534 static void
29535 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29536 {
29537 	ASSERT(un != NULL);
29538 	ASSERT(wm != NULL);
29539 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29540 
29541 	mutex_enter(SD_MUTEX(un));
29542 
29543 	if (wm->wm_flags & SD_WTYPE_RMW) {
29544 		un->un_rmw_count--;
29545 	}
29546 
29547 	if (wm->wm_wanted_count) {
29548 		wm->wm_flags = 0;
29549 		/*
29550 		 * Broadcast that the wmap is available now.
29551 		 */
29552 		cv_broadcast(&wm->wm_avail);
29553 	} else {
29554 		/*
29555 		 * If no one is waiting on the map, it should be free'ed.
29556 		 */
29557 		sd_free_inlist_wmap(un, wm);
29558 	}
29559 
29560 	mutex_exit(SD_MUTEX(un));
29561 }
29562 
29563 
29564 /*
29565  *    Function: sd_read_modify_write_task
29566  *
29567  * Description: Called from a taskq thread to initiate the write phase of
29568  *		a read-modify-write request.  This is used for targets where
29569  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29570  *
29571  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29572  *
29573  *     Context: Called under taskq thread context.
29574  */
29575 
29576 static void
29577 sd_read_modify_write_task(void *arg)
29578 {
29579 	struct sd_mapblocksize_info	*bsp;
29580 	struct buf	*bp;
29581 	struct sd_xbuf	*xp;
29582 	struct sd_lun	*un;
29583 
29584 	bp = arg;	/* The bp is given in arg */
29585 	ASSERT(bp != NULL);
29586 
29587 	/* Get the pointer to the layer-private data struct */
29588 	xp = SD_GET_XBUF(bp);
29589 	ASSERT(xp != NULL);
29590 	bsp = xp->xb_private;
29591 	ASSERT(bsp != NULL);
29592 
29593 	un = SD_GET_UN(bp);
29594 	ASSERT(un != NULL);
29595 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29596 
29597 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29598 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29599 
29600 	/*
29601 	 * This is the write phase of a read-modify-write request, called
29602 	 * under the context of a taskq thread in response to the completion
29603 	 * of the read portion of the rmw request completing under interrupt
29604 	 * context. The write request must be sent from here down the iostart
29605 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29606 	 * we use the layer index saved in the layer-private data area.
29607 	 */
29608 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29609 
29610 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29611 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29612 }
29613 
29614 
29615 /*
29616  *    Function: sddump_do_read_of_rmw()
29617  *
29618  * Description: This routine will be called from sddump, If sddump is called
29619  *		with an I/O which not aligned on device blocksize boundary
29620  *		then the write has to be converted to read-modify-write.
29621  *		Do the read part here in order to keep sddump simple.
29622  *		Note - That the sd_mutex is held across the call to this
29623  *		routine.
29624  *
29625  *   Arguments: un	- sd_lun
29626  *		blkno	- block number in terms of media block size.
29627  *		nblk	- number of blocks.
29628  *		bpp	- pointer to pointer to the buf structure. On return
29629  *			from this function, *bpp points to the valid buffer
29630  *			to which the write has to be done.
29631  *
29632  * Return Code: 0 for success or errno-type return code
29633  */
29634 
29635 static int
29636 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29637     struct buf **bpp)
29638 {
29639 	int err;
29640 	int i;
29641 	int rval;
29642 	struct buf *bp;
29643 	struct scsi_pkt *pkt = NULL;
29644 	uint32_t target_blocksize;
29645 
29646 	ASSERT(un != NULL);
29647 	ASSERT(mutex_owned(SD_MUTEX(un)));
29648 
29649 	target_blocksize = un->un_tgt_blocksize;
29650 
29651 	mutex_exit(SD_MUTEX(un));
29652 
29653 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29654 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29655 	if (bp == NULL) {
29656 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29657 		    "no resources for dumping; giving up");
29658 		err = ENOMEM;
29659 		goto done;
29660 	}
29661 
29662 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29663 	    blkno, nblk);
29664 	if (rval != 0) {
29665 		scsi_free_consistent_buf(bp);
29666 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29667 		    "no resources for dumping; giving up");
29668 		err = ENOMEM;
29669 		goto done;
29670 	}
29671 
29672 	pkt->pkt_flags |= FLAG_NOINTR;
29673 
29674 	err = EIO;
29675 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29676 
29677 		/*
29678 		 * Scsi_poll returns 0 (success) if the command completes and
29679 		 * the status block is STATUS_GOOD.  We should only check
29680 		 * errors if this condition is not true.  Even then we should
29681 		 * send our own request sense packet only if we have a check
29682 		 * condition and auto request sense has not been performed by
29683 		 * the hba.
29684 		 */
29685 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29686 
29687 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29688 			err = 0;
29689 			break;
29690 		}
29691 
29692 		/*
29693 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29694 		 * no need to read RQS data.
29695 		 */
29696 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29697 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29698 			    "Error while dumping state with rmw..."
29699 			    "Device is gone\n");
29700 			break;
29701 		}
29702 
29703 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29704 			SD_INFO(SD_LOG_DUMP, un,
29705 			    "sddump: read failed with CHECK, try # %d\n", i);
29706 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29707 				(void) sd_send_polled_RQS(un);
29708 			}
29709 
29710 			continue;
29711 		}
29712 
29713 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29714 			int reset_retval = 0;
29715 
29716 			SD_INFO(SD_LOG_DUMP, un,
29717 			    "sddump: read failed with BUSY, try # %d\n", i);
29718 
29719 			if (un->un_f_lun_reset_enabled == TRUE) {
29720 				reset_retval = scsi_reset(SD_ADDRESS(un),
29721 				    RESET_LUN);
29722 			}
29723 			if (reset_retval == 0) {
29724 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29725 			}
29726 			(void) sd_send_polled_RQS(un);
29727 
29728 		} else {
29729 			SD_INFO(SD_LOG_DUMP, un,
29730 			    "sddump: read failed with 0x%x, try # %d\n",
29731 			    SD_GET_PKT_STATUS(pkt), i);
29732 			mutex_enter(SD_MUTEX(un));
29733 			sd_reset_target(un, pkt);
29734 			mutex_exit(SD_MUTEX(un));
29735 		}
29736 
29737 		/*
29738 		 * If we are not getting anywhere with lun/target resets,
29739 		 * let's reset the bus.
29740 		 */
29741 		if (i > SD_NDUMP_RETRIES/2) {
29742 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29743 			(void) sd_send_polled_RQS(un);
29744 		}
29745 
29746 	}
29747 	scsi_destroy_pkt(pkt);
29748 
29749 	if (err != 0) {
29750 		scsi_free_consistent_buf(bp);
29751 		*bpp = NULL;
29752 	} else {
29753 		*bpp = bp;
29754 	}
29755 
29756 done:
29757 	mutex_enter(SD_MUTEX(un));
29758 	return (err);
29759 }
29760 
29761 
29762 /*
29763  *    Function: sd_failfast_flushq
29764  *
29765  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29766  *		in b_flags and move them onto the failfast queue, then kick
29767  *		off a thread to return all bp's on the failfast queue to
29768  *		their owners with an error set.
29769  *
29770  *   Arguments: un - pointer to the soft state struct for the instance.
29771  *
29772  *     Context: may execute in interrupt context.
29773  */
29774 
29775 static void
29776 sd_failfast_flushq(struct sd_lun *un)
29777 {
29778 	struct buf *bp;
29779 	struct buf *next_waitq_bp;
29780 	struct buf *prev_waitq_bp = NULL;
29781 
29782 	ASSERT(un != NULL);
29783 	ASSERT(mutex_owned(SD_MUTEX(un)));
29784 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29785 	ASSERT(un->un_failfast_bp == NULL);
29786 
29787 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29788 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29789 
29790 	/*
29791 	 * Check if we should flush all bufs when entering failfast state, or
29792 	 * just those with B_FAILFAST set.
29793 	 */
29794 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29795 		/*
29796 		 * Move *all* bp's on the wait queue to the failfast flush
29797 		 * queue, including those that do NOT have B_FAILFAST set.
29798 		 */
29799 		if (un->un_failfast_headp == NULL) {
29800 			ASSERT(un->un_failfast_tailp == NULL);
29801 			un->un_failfast_headp = un->un_waitq_headp;
29802 		} else {
29803 			ASSERT(un->un_failfast_tailp != NULL);
29804 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29805 		}
29806 
29807 		un->un_failfast_tailp = un->un_waitq_tailp;
29808 
29809 		/* update kstat for each bp moved out of the waitq */
29810 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29811 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29812 		}
29813 
29814 		/* empty the waitq */
29815 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29816 
29817 	} else {
29818 		/*
29819 		 * Go thru the wait queue, pick off all entries with
29820 		 * B_FAILFAST set, and move these onto the failfast queue.
29821 		 */
29822 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29823 			/*
29824 			 * Save the pointer to the next bp on the wait queue,
29825 			 * so we get to it on the next iteration of this loop.
29826 			 */
29827 			next_waitq_bp = bp->av_forw;
29828 
29829 			/*
29830 			 * If this bp from the wait queue does NOT have
29831 			 * B_FAILFAST set, just move on to the next element
29832 			 * in the wait queue. Note, this is the only place
29833 			 * where it is correct to set prev_waitq_bp.
29834 			 */
29835 			if ((bp->b_flags & B_FAILFAST) == 0) {
29836 				prev_waitq_bp = bp;
29837 				continue;
29838 			}
29839 
29840 			/*
29841 			 * Remove the bp from the wait queue.
29842 			 */
29843 			if (bp == un->un_waitq_headp) {
29844 				/* The bp is the first element of the waitq. */
29845 				un->un_waitq_headp = next_waitq_bp;
29846 				if (un->un_waitq_headp == NULL) {
29847 					/* The wait queue is now empty */
29848 					un->un_waitq_tailp = NULL;
29849 				}
29850 			} else {
29851 				/*
29852 				 * The bp is either somewhere in the middle
29853 				 * or at the end of the wait queue.
29854 				 */
29855 				ASSERT(un->un_waitq_headp != NULL);
29856 				ASSERT(prev_waitq_bp != NULL);
29857 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29858 				    == 0);
29859 				if (bp == un->un_waitq_tailp) {
29860 					/* bp is the last entry on the waitq. */
29861 					ASSERT(next_waitq_bp == NULL);
29862 					un->un_waitq_tailp = prev_waitq_bp;
29863 				}
29864 				prev_waitq_bp->av_forw = next_waitq_bp;
29865 			}
29866 			bp->av_forw = NULL;
29867 
29868 			/*
29869 			 * update kstat since the bp is moved out of
29870 			 * the waitq
29871 			 */
29872 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29873 
29874 			/*
29875 			 * Now put the bp onto the failfast queue.
29876 			 */
29877 			if (un->un_failfast_headp == NULL) {
29878 				/* failfast queue is currently empty */
29879 				ASSERT(un->un_failfast_tailp == NULL);
29880 				un->un_failfast_headp =
29881 				    un->un_failfast_tailp = bp;
29882 			} else {
29883 				/* Add the bp to the end of the failfast q */
29884 				ASSERT(un->un_failfast_tailp != NULL);
29885 				ASSERT(un->un_failfast_tailp->b_flags &
29886 				    B_FAILFAST);
29887 				un->un_failfast_tailp->av_forw = bp;
29888 				un->un_failfast_tailp = bp;
29889 			}
29890 		}
29891 	}
29892 
29893 	/*
29894 	 * Now return all bp's on the failfast queue to their owners.
29895 	 */
29896 	while ((bp = un->un_failfast_headp) != NULL) {
29897 
29898 		un->un_failfast_headp = bp->av_forw;
29899 		if (un->un_failfast_headp == NULL) {
29900 			un->un_failfast_tailp = NULL;
29901 		}
29902 
29903 		/*
29904 		 * We want to return the bp with a failure error code, but
29905 		 * we do not want a call to sd_start_cmds() to occur here,
29906 		 * so use sd_return_failed_command_no_restart() instead of
29907 		 * sd_return_failed_command().
29908 		 */
29909 		sd_return_failed_command_no_restart(un, bp, EIO);
29910 	}
29911 
29912 	/* Flush the xbuf queues if required. */
29913 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29914 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29915 	}
29916 
29917 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29918 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29919 }
29920 
29921 
29922 /*
29923  *    Function: sd_failfast_flushq_callback
29924  *
29925  * Description: Return TRUE if the given bp meets the criteria for failfast
29926  *		flushing. Used with ddi_xbuf_flushq(9F).
29927  *
29928  *   Arguments: bp - ptr to buf struct to be examined.
29929  *
29930  *     Context: Any
29931  */
29932 
29933 static int
29934 sd_failfast_flushq_callback(struct buf *bp)
29935 {
29936 	/*
29937 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29938 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29939 	 */
29940 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29941 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29942 }
29943 
29944 
29945 
29946 /*
29947  * Function: sd_setup_next_xfer
29948  *
29949  * Description: Prepare next I/O operation using DMA_PARTIAL
29950  *
29951  */
29952 
29953 static int
29954 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29955     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29956 {
29957 	ssize_t	num_blks_not_xfered;
29958 	daddr_t	strt_blk_num;
29959 	ssize_t	bytes_not_xfered;
29960 	int	rval;
29961 
29962 	ASSERT(pkt->pkt_resid == 0);
29963 
29964 	/*
29965 	 * Calculate next block number and amount to be transferred.
29966 	 *
29967 	 * How much data NOT transfered to the HBA yet.
29968 	 */
29969 	bytes_not_xfered = xp->xb_dma_resid;
29970 
29971 	/*
29972 	 * figure how many blocks NOT transfered to the HBA yet.
29973 	 */
29974 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29975 
29976 	/*
29977 	 * set starting block number to the end of what WAS transfered.
29978 	 */
29979 	strt_blk_num = xp->xb_blkno +
29980 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29981 
29982 	/*
29983 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29984 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29985 	 * the disk mutex here.
29986 	 */
29987 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29988 	    strt_blk_num, num_blks_not_xfered);
29989 
29990 	if (rval == 0) {
29991 
29992 		/*
29993 		 * Success.
29994 		 *
29995 		 * Adjust things if there are still more blocks to be
29996 		 * transfered.
29997 		 */
29998 		xp->xb_dma_resid = pkt->pkt_resid;
29999 		pkt->pkt_resid = 0;
30000 
30001 		return (1);
30002 	}
30003 
30004 	/*
30005 	 * There's really only one possible return value from
30006 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30007 	 * returns NULL.
30008 	 */
30009 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30010 
30011 	bp->b_resid = bp->b_bcount;
30012 	bp->b_flags |= B_ERROR;
30013 
30014 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30015 	    "Error setting up next portion of DMA transfer\n");
30016 
30017 	return (0);
30018 }
30019 
30020 /*
30021  *    Function: sd_panic_for_res_conflict
30022  *
30023  * Description: Call panic with a string formatted with "Reservation Conflict"
30024  *		and a human readable identifier indicating the SD instance
30025  *		that experienced the reservation conflict.
30026  *
30027  *   Arguments: un - pointer to the soft state struct for the instance.
30028  *
30029  *     Context: may execute in interrupt context.
30030  */
30031 
30032 #define	SD_RESV_CONFLICT_FMT_LEN 40
30033 void
30034 sd_panic_for_res_conflict(struct sd_lun *un)
30035 {
30036 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30037 	char path_str[MAXPATHLEN];
30038 
30039 	(void) snprintf(panic_str, sizeof (panic_str),
30040 	    "Reservation Conflict\nDisk: %s",
30041 	    ddi_pathname(SD_DEVINFO(un), path_str));
30042 
30043 	panic(panic_str);
30044 }
30045 
30046 /*
30047  * Note: The following sd_faultinjection_ioctl( ) routines implement
30048  * driver support for handling fault injection for error analysis
30049  * causing faults in multiple layers of the driver.
30050  *
30051  */
30052 
30053 #ifdef SD_FAULT_INJECTION
30054 static uint_t   sd_fault_injection_on = 0;
30055 
30056 /*
30057  *    Function: sd_faultinjection_ioctl()
30058  *
30059  * Description: This routine is the driver entry point for handling
30060  *              faultinjection ioctls to inject errors into the
30061  *              layer model
30062  *
30063  *   Arguments: cmd	- the ioctl cmd received
30064  *		arg	- the arguments from user and returns
30065  */
30066 
30067 static void
30068 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un)
30069 {
30070 	uint_t i = 0;
30071 	uint_t rval;
30072 
30073 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30074 
30075 	mutex_enter(SD_MUTEX(un));
30076 
30077 	switch (cmd) {
30078 	case SDIOCRUN:
30079 		/* Allow pushed faults to be injected */
30080 		SD_INFO(SD_LOG_SDTEST, un,
30081 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30082 
30083 		sd_fault_injection_on = 1;
30084 
30085 		SD_INFO(SD_LOG_IOERR, un,
30086 		    "sd_faultinjection_ioctl: run finished\n");
30087 		break;
30088 
30089 	case SDIOCSTART:
30090 		/* Start Injection Session */
30091 		SD_INFO(SD_LOG_SDTEST, un,
30092 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30093 
30094 		sd_fault_injection_on = 0;
30095 		un->sd_injection_mask = 0xFFFFFFFF;
30096 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30097 			un->sd_fi_fifo_pkt[i] = NULL;
30098 			un->sd_fi_fifo_xb[i] = NULL;
30099 			un->sd_fi_fifo_un[i] = NULL;
30100 			un->sd_fi_fifo_arq[i] = NULL;
30101 		}
30102 		un->sd_fi_fifo_start = 0;
30103 		un->sd_fi_fifo_end = 0;
30104 
30105 		mutex_enter(&(un->un_fi_mutex));
30106 		un->sd_fi_log[0] = '\0';
30107 		un->sd_fi_buf_len = 0;
30108 		mutex_exit(&(un->un_fi_mutex));
30109 
30110 		SD_INFO(SD_LOG_IOERR, un,
30111 		    "sd_faultinjection_ioctl: start finished\n");
30112 		break;
30113 
30114 	case SDIOCSTOP:
30115 		/* Stop Injection Session */
30116 		SD_INFO(SD_LOG_SDTEST, un,
30117 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30118 		sd_fault_injection_on = 0;
30119 		un->sd_injection_mask = 0x0;
30120 
30121 		/* Empty stray or unuseds structs from fifo */
30122 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30123 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30124 				kmem_free(un->sd_fi_fifo_pkt[i],
30125 				    sizeof (struct sd_fi_pkt));
30126 			}
30127 			if (un->sd_fi_fifo_xb[i] != NULL) {
30128 				kmem_free(un->sd_fi_fifo_xb[i],
30129 				    sizeof (struct sd_fi_xb));
30130 			}
30131 			if (un->sd_fi_fifo_un[i] != NULL) {
30132 				kmem_free(un->sd_fi_fifo_un[i],
30133 				    sizeof (struct sd_fi_un));
30134 			}
30135 			if (un->sd_fi_fifo_arq[i] != NULL) {
30136 				kmem_free(un->sd_fi_fifo_arq[i],
30137 				    sizeof (struct sd_fi_arq));
30138 			}
30139 			un->sd_fi_fifo_pkt[i] = NULL;
30140 			un->sd_fi_fifo_un[i] = NULL;
30141 			un->sd_fi_fifo_xb[i] = NULL;
30142 			un->sd_fi_fifo_arq[i] = NULL;
30143 		}
30144 		un->sd_fi_fifo_start = 0;
30145 		un->sd_fi_fifo_end = 0;
30146 
30147 		SD_INFO(SD_LOG_IOERR, un,
30148 		    "sd_faultinjection_ioctl: stop finished\n");
30149 		break;
30150 
30151 	case SDIOCINSERTPKT:
30152 		/* Store a packet struct to be pushed onto fifo */
30153 		SD_INFO(SD_LOG_SDTEST, un,
30154 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30155 
30156 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30157 
30158 		sd_fault_injection_on = 0;
30159 
30160 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30161 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30162 			kmem_free(un->sd_fi_fifo_pkt[i],
30163 			    sizeof (struct sd_fi_pkt));
30164 		}
30165 		if (arg != NULL) {
30166 			un->sd_fi_fifo_pkt[i] =
30167 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30168 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30169 				/* Alloc failed don't store anything */
30170 				break;
30171 			}
30172 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30173 			    sizeof (struct sd_fi_pkt), 0);
30174 			if (rval == -1) {
30175 				kmem_free(un->sd_fi_fifo_pkt[i],
30176 				    sizeof (struct sd_fi_pkt));
30177 				un->sd_fi_fifo_pkt[i] = NULL;
30178 			}
30179 		} else {
30180 			SD_INFO(SD_LOG_IOERR, un,
30181 			    "sd_faultinjection_ioctl: pkt null\n");
30182 		}
30183 		break;
30184 
30185 	case SDIOCINSERTXB:
30186 		/* Store a xb struct to be pushed onto fifo */
30187 		SD_INFO(SD_LOG_SDTEST, un,
30188 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30189 
30190 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30191 
30192 		sd_fault_injection_on = 0;
30193 
30194 		if (un->sd_fi_fifo_xb[i] != NULL) {
30195 			kmem_free(un->sd_fi_fifo_xb[i],
30196 			    sizeof (struct sd_fi_xb));
30197 			un->sd_fi_fifo_xb[i] = NULL;
30198 		}
30199 		if (arg != NULL) {
30200 			un->sd_fi_fifo_xb[i] =
30201 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30202 			if (un->sd_fi_fifo_xb[i] == NULL) {
30203 				/* Alloc failed don't store anything */
30204 				break;
30205 			}
30206 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30207 			    sizeof (struct sd_fi_xb), 0);
30208 
30209 			if (rval == -1) {
30210 				kmem_free(un->sd_fi_fifo_xb[i],
30211 				    sizeof (struct sd_fi_xb));
30212 				un->sd_fi_fifo_xb[i] = NULL;
30213 			}
30214 		} else {
30215 			SD_INFO(SD_LOG_IOERR, un,
30216 			    "sd_faultinjection_ioctl: xb null\n");
30217 		}
30218 		break;
30219 
30220 	case SDIOCINSERTUN:
30221 		/* Store a un struct to be pushed onto fifo */
30222 		SD_INFO(SD_LOG_SDTEST, un,
30223 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30224 
30225 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30226 
30227 		sd_fault_injection_on = 0;
30228 
30229 		if (un->sd_fi_fifo_un[i] != NULL) {
30230 			kmem_free(un->sd_fi_fifo_un[i],
30231 			    sizeof (struct sd_fi_un));
30232 			un->sd_fi_fifo_un[i] = NULL;
30233 		}
30234 		if (arg != NULL) {
30235 			un->sd_fi_fifo_un[i] =
30236 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30237 			if (un->sd_fi_fifo_un[i] == NULL) {
30238 				/* Alloc failed don't store anything */
30239 				break;
30240 			}
30241 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30242 			    sizeof (struct sd_fi_un), 0);
30243 			if (rval == -1) {
30244 				kmem_free(un->sd_fi_fifo_un[i],
30245 				    sizeof (struct sd_fi_un));
30246 				un->sd_fi_fifo_un[i] = NULL;
30247 			}
30248 
30249 		} else {
30250 			SD_INFO(SD_LOG_IOERR, un,
30251 			    "sd_faultinjection_ioctl: un null\n");
30252 		}
30253 
30254 		break;
30255 
30256 	case SDIOCINSERTARQ:
30257 		/* Store a arq struct to be pushed onto fifo */
30258 		SD_INFO(SD_LOG_SDTEST, un,
30259 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30260 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30261 
30262 		sd_fault_injection_on = 0;
30263 
30264 		if (un->sd_fi_fifo_arq[i] != NULL) {
30265 			kmem_free(un->sd_fi_fifo_arq[i],
30266 			    sizeof (struct sd_fi_arq));
30267 			un->sd_fi_fifo_arq[i] = NULL;
30268 		}
30269 		if (arg != NULL) {
30270 			un->sd_fi_fifo_arq[i] =
30271 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30272 			if (un->sd_fi_fifo_arq[i] == NULL) {
30273 				/* Alloc failed don't store anything */
30274 				break;
30275 			}
30276 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30277 			    sizeof (struct sd_fi_arq), 0);
30278 			if (rval == -1) {
30279 				kmem_free(un->sd_fi_fifo_arq[i],
30280 				    sizeof (struct sd_fi_arq));
30281 				un->sd_fi_fifo_arq[i] = NULL;
30282 			}
30283 
30284 		} else {
30285 			SD_INFO(SD_LOG_IOERR, un,
30286 			    "sd_faultinjection_ioctl: arq null\n");
30287 		}
30288 
30289 		break;
30290 
30291 	case SDIOCPUSH:
30292 		/* Push stored xb, pkt, un, and arq onto fifo */
30293 		sd_fault_injection_on = 0;
30294 
30295 		if (arg != NULL) {
30296 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30297 			if (rval != -1 &&
30298 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30299 				un->sd_fi_fifo_end += i;
30300 			}
30301 		} else {
30302 			SD_INFO(SD_LOG_IOERR, un,
30303 			    "sd_faultinjection_ioctl: push arg null\n");
30304 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30305 				un->sd_fi_fifo_end++;
30306 			}
30307 		}
30308 		SD_INFO(SD_LOG_IOERR, un,
30309 		    "sd_faultinjection_ioctl: push to end=%d\n",
30310 		    un->sd_fi_fifo_end);
30311 		break;
30312 
30313 	case SDIOCRETRIEVE:
30314 		/* Return buffer of log from Injection session */
30315 		SD_INFO(SD_LOG_SDTEST, un,
30316 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30317 
30318 		sd_fault_injection_on = 0;
30319 
30320 		mutex_enter(&(un->un_fi_mutex));
30321 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30322 		    un->sd_fi_buf_len+1, 0);
30323 		mutex_exit(&(un->un_fi_mutex));
30324 
30325 		if (rval == -1) {
30326 			/*
30327 			 * arg is possibly invalid setting
30328 			 * it to NULL for return
30329 			 */
30330 			arg = NULL;
30331 		}
30332 		break;
30333 	}
30334 
30335 	mutex_exit(SD_MUTEX(un));
30336 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: exit\n");
30337 }
30338 
30339 
30340 /*
30341  *    Function: sd_injection_log()
30342  *
30343  * Description: This routine adds buff to the already existing injection log
30344  *              for retrieval via faultinjection_ioctl for use in fault
30345  *              detection and recovery
30346  *
30347  *   Arguments: buf - the string to add to the log
30348  */
30349 
30350 static void
30351 sd_injection_log(char *buf, struct sd_lun *un)
30352 {
30353 	uint_t len;
30354 
30355 	ASSERT(un != NULL);
30356 	ASSERT(buf != NULL);
30357 
30358 	mutex_enter(&(un->un_fi_mutex));
30359 
30360 	len = min(strlen(buf), 255);
30361 	/* Add logged value to Injection log to be returned later */
30362 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30363 		uint_t	offset = strlen((char *)un->sd_fi_log);
30364 		char *destp = (char *)un->sd_fi_log + offset;
30365 		int i;
30366 		for (i = 0; i < len; i++) {
30367 			*destp++ = *buf++;
30368 		}
30369 		un->sd_fi_buf_len += len;
30370 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30371 	}
30372 
30373 	mutex_exit(&(un->un_fi_mutex));
30374 }
30375 
30376 
30377 /*
30378  *    Function: sd_faultinjection()
30379  *
30380  * Description: This routine takes the pkt and changes its
30381  *		content based on error injection scenerio.
30382  *
30383  *   Arguments: pktp	- packet to be changed
30384  */
30385 
30386 static void
30387 sd_faultinjection(struct scsi_pkt *pktp)
30388 {
30389 	uint_t i;
30390 	struct sd_fi_pkt *fi_pkt;
30391 	struct sd_fi_xb *fi_xb;
30392 	struct sd_fi_un *fi_un;
30393 	struct sd_fi_arq *fi_arq;
30394 	struct buf *bp;
30395 	struct sd_xbuf *xb;
30396 	struct sd_lun *un;
30397 
30398 	ASSERT(pktp != NULL);
30399 
30400 	/* pull bp xb and un from pktp */
30401 	bp = (struct buf *)pktp->pkt_private;
30402 	xb = SD_GET_XBUF(bp);
30403 	un = SD_GET_UN(bp);
30404 
30405 	ASSERT(un != NULL);
30406 
30407 	mutex_enter(SD_MUTEX(un));
30408 
30409 	SD_TRACE(SD_LOG_SDTEST, un,
30410 	    "sd_faultinjection: entry Injection from sdintr\n");
30411 
30412 	/* if injection is off return */
30413 	if (sd_fault_injection_on == 0 ||
30414 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30415 		mutex_exit(SD_MUTEX(un));
30416 		return;
30417 	}
30418 
30419 	SD_INFO(SD_LOG_SDTEST, un,
30420 	    "sd_faultinjection: is working for copying\n");
30421 
30422 	/* take next set off fifo */
30423 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30424 
30425 	fi_pkt = un->sd_fi_fifo_pkt[i];
30426 	fi_xb = un->sd_fi_fifo_xb[i];
30427 	fi_un = un->sd_fi_fifo_un[i];
30428 	fi_arq = un->sd_fi_fifo_arq[i];
30429 
30430 
30431 	/* set variables accordingly */
30432 	/* set pkt if it was on fifo */
30433 	if (fi_pkt != NULL) {
30434 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30435 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30436 		if (fi_pkt->pkt_cdbp != 0xff)
30437 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30438 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30439 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30440 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30441 
30442 	}
30443 	/* set xb if it was on fifo */
30444 	if (fi_xb != NULL) {
30445 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30446 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30447 		if (fi_xb->xb_retry_count != 0)
30448 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30449 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30450 		    "xb_victim_retry_count");
30451 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30452 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30453 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30454 
30455 		/* copy in block data from sense */
30456 		/*
30457 		 * if (fi_xb->xb_sense_data[0] != -1) {
30458 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30459 		 *	SENSE_LENGTH);
30460 		 * }
30461 		 */
30462 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30463 
30464 		/* copy in extended sense codes */
30465 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30466 		    xb, es_code, "es_code");
30467 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30468 		    xb, es_key, "es_key");
30469 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30470 		    xb, es_add_code, "es_add_code");
30471 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30472 		    xb, es_qual_code, "es_qual_code");
30473 		struct scsi_extended_sense *esp;
30474 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30475 		esp->es_class = CLASS_EXTENDED_SENSE;
30476 	}
30477 
30478 	/* set un if it was on fifo */
30479 	if (fi_un != NULL) {
30480 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30481 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30482 		SD_CONDSET(un, un, un_reset_retry_count,
30483 		    "un_reset_retry_count");
30484 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30485 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30486 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30487 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30488 		    "un_f_allow_bus_device_reset");
30489 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30490 
30491 	}
30492 
30493 	/* copy in auto request sense if it was on fifo */
30494 	if (fi_arq != NULL) {
30495 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30496 	}
30497 
30498 	/* free structs */
30499 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30500 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30501 	}
30502 	if (un->sd_fi_fifo_xb[i] != NULL) {
30503 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30504 	}
30505 	if (un->sd_fi_fifo_un[i] != NULL) {
30506 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30507 	}
30508 	if (un->sd_fi_fifo_arq[i] != NULL) {
30509 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30510 	}
30511 
30512 	/*
30513 	 * kmem_free does not gurantee to set to NULL
30514 	 * since we uses these to determine if we set
30515 	 * values or not lets confirm they are always
30516 	 * NULL after free
30517 	 */
30518 	un->sd_fi_fifo_pkt[i] = NULL;
30519 	un->sd_fi_fifo_un[i] = NULL;
30520 	un->sd_fi_fifo_xb[i] = NULL;
30521 	un->sd_fi_fifo_arq[i] = NULL;
30522 
30523 	un->sd_fi_fifo_start++;
30524 
30525 	mutex_exit(SD_MUTEX(un));
30526 
30527 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30528 }
30529 
30530 #endif /* SD_FAULT_INJECTION */
30531 
30532 /*
30533  * This routine is invoked in sd_unit_attach(). Before calling it, the
30534  * properties in conf file should be processed already, and "hotpluggable"
30535  * property was processed also.
30536  *
30537  * The sd driver distinguishes 3 different type of devices: removable media,
30538  * non-removable media, and hotpluggable. Below the differences are defined:
30539  *
30540  * 1. Device ID
30541  *
30542  *     The device ID of a device is used to identify this device. Refer to
30543  *     ddi_devid_register(9F).
30544  *
30545  *     For a non-removable media disk device which can provide 0x80 or 0x83
30546  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30547  *     device ID is created to identify this device. For other non-removable
30548  *     media devices, a default device ID is created only if this device has
30549  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30550  *
30551  *     -------------------------------------------------------
30552  *     removable media   hotpluggable  | Can Have Device ID
30553  *     -------------------------------------------------------
30554  *         false             false     |     Yes
30555  *         false             true      |     Yes
30556  *         true                x       |     No
30557  *     ------------------------------------------------------
30558  *
30559  *
30560  * 2. SCSI group 4 commands
30561  *
30562  *     In SCSI specs, only some commands in group 4 command set can use
30563  *     8-byte addresses that can be used to access >2TB storage spaces.
30564  *     Other commands have no such capability. Without supporting group4,
30565  *     it is impossible to make full use of storage spaces of a disk with
30566  *     capacity larger than 2TB.
30567  *
30568  *     -----------------------------------------------
30569  *     removable media   hotpluggable   LP64  |  Group
30570  *     -----------------------------------------------
30571  *           false          false       false |   1
30572  *           false          false       true  |   4
30573  *           false          true        false |   1
30574  *           false          true        true  |   4
30575  *           true             x           x   |   5
30576  *     -----------------------------------------------
30577  *
30578  *
30579  * 3. Check for VTOC Label
30580  *
30581  *     If a direct-access disk has no EFI label, sd will check if it has a
30582  *     valid VTOC label. Now, sd also does that check for removable media
30583  *     and hotpluggable devices.
30584  *
30585  *     --------------------------------------------------------------
30586  *     Direct-Access   removable media    hotpluggable |  Check Label
30587  *     -------------------------------------------------------------
30588  *         false          false           false        |   No
30589  *         false          false           true         |   No
30590  *         false          true            false        |   Yes
30591  *         false          true            true         |   Yes
30592  *         true            x                x          |   Yes
30593  *     --------------------------------------------------------------
30594  *
30595  *
30596  * 4. Building default VTOC label
30597  *
30598  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30599  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30600  *     create default VTOC for them. Currently sd creates default VTOC label
30601  *     for all devices on x86 platform (VTOC_16), but only for removable
30602  *     media devices on SPARC (VTOC_8).
30603  *
30604  *     -----------------------------------------------------------
30605  *       removable media hotpluggable platform   |   Default Label
30606  *     -----------------------------------------------------------
30607  *             false          false    sparc     |     No
30608  *             false          true      x86      |     Yes
30609  *             false          true     sparc     |     Yes
30610  *             true             x        x       |     Yes
30611  *     ----------------------------------------------------------
30612  *
30613  *
30614  * 5. Supported blocksizes of target devices
30615  *
30616  *     Sd supports non-512-byte blocksize for removable media devices only.
30617  *     For other devices, only 512-byte blocksize is supported. This may be
30618  *     changed in near future because some RAID devices require non-512-byte
30619  *     blocksize
30620  *
30621  *     -----------------------------------------------------------
30622  *     removable media    hotpluggable    | non-512-byte blocksize
30623  *     -----------------------------------------------------------
30624  *           false          false         |   No
30625  *           false          true          |   No
30626  *           true             x           |   Yes
30627  *     -----------------------------------------------------------
30628  *
30629  *
30630  * 6. Automatic mount & unmount
30631  *
30632  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30633  *     if a device is removable media device. It return 1 for removable media
30634  *     devices, and 0 for others.
30635  *
30636  *     The automatic mounting subsystem should distinguish between the types
30637  *     of devices and apply automounting policies to each.
30638  *
30639  *
30640  * 7. fdisk partition management
30641  *
30642  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30643  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30644  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30645  *     fdisk partitions on both x86 and SPARC platform.
30646  *
30647  *     -----------------------------------------------------------
30648  *       platform   removable media  USB/1394  |  fdisk supported
30649  *     -----------------------------------------------------------
30650  *        x86         X               X        |       true
30651  *     ------------------------------------------------------------
30652  *        sparc       X               X        |       false
30653  *     ------------------------------------------------------------
30654  *
30655  *
30656  * 8. MBOOT/MBR
30657  *
30658  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30659  *     read/write mboot for removable media devices on sparc platform.
30660  *
30661  *     -----------------------------------------------------------
30662  *       platform   removable media  USB/1394  |  mboot supported
30663  *     -----------------------------------------------------------
30664  *        x86         X               X        |       true
30665  *     ------------------------------------------------------------
30666  *        sparc      false           false     |       false
30667  *        sparc      false           true      |       true
30668  *        sparc      true            false     |       true
30669  *        sparc      true            true      |       true
30670  *     ------------------------------------------------------------
30671  *
30672  *
30673  * 9.  error handling during opening device
30674  *
30675  *     If failed to open a disk device, an errno is returned. For some kinds
30676  *     of errors, different errno is returned depending on if this device is
30677  *     a removable media device. This brings USB/1394 hard disks in line with
30678  *     expected hard disk behavior. It is not expected that this breaks any
30679  *     application.
30680  *
30681  *     ------------------------------------------------------
30682  *       removable media    hotpluggable   |  errno
30683  *     ------------------------------------------------------
30684  *             false          false        |   EIO
30685  *             false          true         |   EIO
30686  *             true             x          |   ENXIO
30687  *     ------------------------------------------------------
30688  *
30689  *
30690  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30691  *
30692  *     These IOCTLs are applicable only to removable media devices.
30693  *
30694  *     -----------------------------------------------------------
30695  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30696  *     -----------------------------------------------------------
30697  *             false          false        |     No
30698  *             false          true         |     No
30699  *             true            x           |     Yes
30700  *     -----------------------------------------------------------
30701  *
30702  *
30703  * 12. Kstats for partitions
30704  *
30705  *     sd creates partition kstat for non-removable media devices. USB and
30706  *     Firewire hard disks now have partition kstats
30707  *
30708  *      ------------------------------------------------------
30709  *       removable media    hotpluggable   |   kstat
30710  *      ------------------------------------------------------
30711  *             false          false        |    Yes
30712  *             false          true         |    Yes
30713  *             true             x          |    No
30714  *       ------------------------------------------------------
30715  *
30716  *
30717  * 13. Removable media & hotpluggable properties
30718  *
30719  *     Sd driver creates a "removable-media" property for removable media
30720  *     devices. Parent nexus drivers create a "hotpluggable" property if
30721  *     it supports hotplugging.
30722  *
30723  *     ---------------------------------------------------------------------
30724  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30725  *     ---------------------------------------------------------------------
30726  *       false            false       |    No                   No
30727  *       false            true        |    No                   Yes
30728  *       true             false       |    Yes                  No
30729  *       true             true        |    Yes                  Yes
30730  *     ---------------------------------------------------------------------
30731  *
30732  *
30733  * 14. Power Management
30734  *
30735  *     sd only power manages removable media devices or devices that support
30736  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30737  *
30738  *     A parent nexus that supports hotplugging can also set "pm-capable"
30739  *     if the disk can be power managed.
30740  *
30741  *     ------------------------------------------------------------
30742  *       removable media hotpluggable pm-capable  |   power manage
30743  *     ------------------------------------------------------------
30744  *             false          false     false     |     No
30745  *             false          false     true      |     Yes
30746  *             false          true      false     |     No
30747  *             false          true      true      |     Yes
30748  *             true             x        x        |     Yes
30749  *     ------------------------------------------------------------
30750  *
30751  *      USB and firewire hard disks can now be power managed independently
30752  *      of the framebuffer
30753  *
30754  *
30755  * 15. Support for USB disks with capacity larger than 1TB
30756  *
30757  *     Currently, sd doesn't permit a fixed disk device with capacity
30758  *     larger than 1TB to be used in a 32-bit operating system environment.
30759  *     However, sd doesn't do that for removable media devices. Instead, it
30760  *     assumes that removable media devices cannot have a capacity larger
30761  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30762  *     supported, which can cause some unexpected results.
30763  *
30764  *     ---------------------------------------------------------------------
30765  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30766  *     ---------------------------------------------------------------------
30767  *             false          false  |   true         |     no
30768  *             false          true   |   true         |     no
30769  *             true           false  |   true         |     Yes
30770  *             true           true   |   true         |     Yes
30771  *     ---------------------------------------------------------------------
30772  *
30773  *
30774  * 16. Check write-protection at open time
30775  *
30776  *     When a removable media device is being opened for writing without NDELAY
30777  *     flag, sd will check if this device is writable. If attempting to open
30778  *     without NDELAY flag a write-protected device, this operation will abort.
30779  *
30780  *     ------------------------------------------------------------
30781  *       removable media    USB/1394   |   WP Check
30782  *     ------------------------------------------------------------
30783  *             false          false    |     No
30784  *             false          true     |     No
30785  *             true           false    |     Yes
30786  *             true           true     |     Yes
30787  *     ------------------------------------------------------------
30788  *
30789  *
30790  * 17. syslog when corrupted VTOC is encountered
30791  *
30792  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30793  *      for fixed SCSI disks.
30794  *     ------------------------------------------------------------
30795  *       removable media    USB/1394   |   print syslog
30796  *     ------------------------------------------------------------
30797  *             false          false    |     Yes
30798  *             false          true     |     No
30799  *             true           false    |     No
30800  *             true           true     |     No
30801  *     ------------------------------------------------------------
30802  */
30803 static void
30804 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30805 {
30806 	int	pm_cap;
30807 
30808 	ASSERT(un->un_sd);
30809 	ASSERT(un->un_sd->sd_inq);
30810 
30811 	/*
30812 	 * Enable SYNC CACHE support for all devices.
30813 	 */
30814 	un->un_f_sync_cache_supported = TRUE;
30815 
30816 	/*
30817 	 * Set the sync cache required flag to false.
30818 	 * This would ensure that there is no SYNC CACHE
30819 	 * sent when there are no writes
30820 	 */
30821 	un->un_f_sync_cache_required = FALSE;
30822 
30823 	if (un->un_sd->sd_inq->inq_rmb) {
30824 		/*
30825 		 * The media of this device is removable. And for this kind
30826 		 * of devices, it is possible to change medium after opening
30827 		 * devices. Thus we should support this operation.
30828 		 */
30829 		un->un_f_has_removable_media = TRUE;
30830 
30831 		/*
30832 		 * support non-512-byte blocksize of removable media devices
30833 		 */
30834 		un->un_f_non_devbsize_supported = TRUE;
30835 
30836 		/*
30837 		 * Assume that all removable media devices support DOOR_LOCK
30838 		 */
30839 		un->un_f_doorlock_supported = TRUE;
30840 
30841 		/*
30842 		 * For a removable media device, it is possible to be opened
30843 		 * with NDELAY flag when there is no media in drive, in this
30844 		 * case we don't care if device is writable. But if without
30845 		 * NDELAY flag, we need to check if media is write-protected.
30846 		 */
30847 		un->un_f_chk_wp_open = TRUE;
30848 
30849 		/*
30850 		 * need to start a SCSI watch thread to monitor media state,
30851 		 * when media is being inserted or ejected, notify syseventd.
30852 		 */
30853 		un->un_f_monitor_media_state = TRUE;
30854 
30855 		/*
30856 		 * Some devices don't support START_STOP_UNIT command.
30857 		 * Therefore, we'd better check if a device supports it
30858 		 * before sending it.
30859 		 */
30860 		un->un_f_check_start_stop = TRUE;
30861 
30862 		/*
30863 		 * support eject media ioctl:
30864 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30865 		 */
30866 		un->un_f_eject_media_supported = TRUE;
30867 
30868 		/*
30869 		 * Because many removable-media devices don't support
30870 		 * LOG_SENSE, we couldn't use this command to check if
30871 		 * a removable media device support power-management.
30872 		 * We assume that they support power-management via
30873 		 * START_STOP_UNIT command and can be spun up and down
30874 		 * without limitations.
30875 		 */
30876 		un->un_f_pm_supported = TRUE;
30877 
30878 		/*
30879 		 * Need to create a zero length (Boolean) property
30880 		 * removable-media for the removable media devices.
30881 		 * Note that the return value of the property is not being
30882 		 * checked, since if unable to create the property
30883 		 * then do not want the attach to fail altogether. Consistent
30884 		 * with other property creation in attach.
30885 		 */
30886 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30887 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30888 
30889 	} else {
30890 		/*
30891 		 * create device ID for device
30892 		 */
30893 		un->un_f_devid_supported = TRUE;
30894 
30895 		/*
30896 		 * Spin up non-removable-media devices once it is attached
30897 		 */
30898 		un->un_f_attach_spinup = TRUE;
30899 
30900 		/*
30901 		 * According to SCSI specification, Sense data has two kinds of
30902 		 * format: fixed format, and descriptor format. At present, we
30903 		 * don't support descriptor format sense data for removable
30904 		 * media.
30905 		 */
30906 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30907 			un->un_f_descr_format_supported = TRUE;
30908 		}
30909 
30910 		/*
30911 		 * kstats are created only for non-removable media devices.
30912 		 *
30913 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30914 		 * default is 1, so they are enabled by default.
30915 		 */
30916 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30917 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30918 		    "enable-partition-kstats", 1));
30919 
30920 		/*
30921 		 * Check if HBA has set the "pm-capable" property.
30922 		 * If "pm-capable" exists and is non-zero then we can
30923 		 * power manage the device without checking the start/stop
30924 		 * cycle count log sense page.
30925 		 *
30926 		 * If "pm-capable" exists and is set to be false (0),
30927 		 * then we should not power manage the device.
30928 		 *
30929 		 * If "pm-capable" doesn't exist then pm_cap will
30930 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30931 		 * sd will check the start/stop cycle count log sense page
30932 		 * and power manage the device if the cycle count limit has
30933 		 * not been exceeded.
30934 		 */
30935 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30936 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30937 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30938 			un->un_f_log_sense_supported = TRUE;
30939 			if (!un->un_f_power_condition_disabled &&
30940 			    SD_INQUIRY(un)->inq_ansi == 6) {
30941 				un->un_f_power_condition_supported = TRUE;
30942 			}
30943 		} else {
30944 			/*
30945 			 * pm-capable property exists.
30946 			 *
30947 			 * Convert "TRUE" values for pm_cap to
30948 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30949 			 * later. "TRUE" values are any values defined in
30950 			 * inquiry.h.
30951 			 */
30952 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30953 				un->un_f_log_sense_supported = FALSE;
30954 			} else {
30955 				/* SD_PM_CAPABLE_IS_TRUE case */
30956 				un->un_f_pm_supported = TRUE;
30957 				if (!un->un_f_power_condition_disabled &&
30958 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30959 					un->un_f_power_condition_supported =
30960 					    TRUE;
30961 				}
30962 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30963 					un->un_f_log_sense_supported = TRUE;
30964 					un->un_f_pm_log_sense_smart =
30965 					    SD_PM_CAP_SMART_LOG(pm_cap);
30966 				}
30967 			}
30968 
30969 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30970 			    "sd_unit_attach: un:0x%p pm-capable "
30971 			    "property set to %d.\n", un, un->un_f_pm_supported);
30972 		}
30973 	}
30974 
30975 	if (un->un_f_is_hotpluggable) {
30976 
30977 		/*
30978 		 * Have to watch hotpluggable devices as well, since
30979 		 * that's the only way for userland applications to
30980 		 * detect hot removal while device is busy/mounted.
30981 		 */
30982 		un->un_f_monitor_media_state = TRUE;
30983 
30984 		un->un_f_check_start_stop = TRUE;
30985 
30986 	}
30987 }
30988 
30989 /*
30990  * sd_tg_rdwr:
30991  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30992  * in sys block size, req_length in bytes.
30993  *
30994  */
30995 static int
30996 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30997     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30998 {
30999 	struct sd_lun *un;
31000 	int path_flag = (int)(uintptr_t)tg_cookie;
31001 	char *dkl = NULL;
31002 	diskaddr_t real_addr = start_block;
31003 	diskaddr_t first_byte, end_block;
31004 
31005 	size_t	buffer_size = reqlength;
31006 	int rval = 0;
31007 	diskaddr_t	cap;
31008 	uint32_t	lbasize;
31009 	sd_ssc_t	*ssc;
31010 
31011 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31012 	if (un == NULL)
31013 		return (ENXIO);
31014 
31015 	if (cmd != TG_READ && cmd != TG_WRITE)
31016 		return (EINVAL);
31017 
31018 	ssc = sd_ssc_init(un);
31019 	mutex_enter(SD_MUTEX(un));
31020 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
31021 		mutex_exit(SD_MUTEX(un));
31022 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31023 		    &lbasize, path_flag);
31024 		if (rval != 0)
31025 			goto done1;
31026 		mutex_enter(SD_MUTEX(un));
31027 		sd_update_block_info(un, lbasize, cap);
31028 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
31029 			mutex_exit(SD_MUTEX(un));
31030 			rval = EIO;
31031 			goto done;
31032 		}
31033 	}
31034 
31035 	if (NOT_DEVBSIZE(un)) {
31036 		/*
31037 		 * sys_blocksize != tgt_blocksize, need to re-adjust
31038 		 * blkno and save the index to beginning of dk_label
31039 		 */
31040 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31041 		real_addr = first_byte / un->un_tgt_blocksize;
31042 
31043 		end_block = (first_byte + reqlength +
31044 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31045 
31046 		/* round up buffer size to multiple of target block size */
31047 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31048 
31049 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31050 		    "label_addr: 0x%x allocation size: 0x%x\n",
31051 		    real_addr, buffer_size);
31052 
31053 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
31054 		    (reqlength % un->un_tgt_blocksize) != 0)
31055 			/* the request is not aligned */
31056 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31057 	}
31058 
31059 	/*
31060 	 * The MMC standard allows READ CAPACITY to be
31061 	 * inaccurate by a bounded amount (in the interest of
31062 	 * response latency).  As a result, failed READs are
31063 	 * commonplace (due to the reading of metadata and not
31064 	 * data). Depending on the per-Vendor/drive Sense data,
31065 	 * the failed READ can cause many (unnecessary) retries.
31066 	 */
31067 
31068 	if (ISCD(un) && (cmd == TG_READ) &&
31069 	    (un->un_f_blockcount_is_valid == TRUE) &&
31070 	    ((start_block == (un->un_blockcount - 1))||
31071 	    (start_block == (un->un_blockcount - 2)))) {
31072 			path_flag = SD_PATH_DIRECT_PRIORITY;
31073 	}
31074 
31075 	mutex_exit(SD_MUTEX(un));
31076 	if (cmd == TG_READ) {
31077 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31078 		    buffer_size, real_addr, path_flag);
31079 		if (dkl != NULL)
31080 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31081 			    real_addr), bufaddr, reqlength);
31082 	} else {
31083 		if (dkl) {
31084 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31085 			    real_addr, path_flag);
31086 			if (rval) {
31087 				goto done1;
31088 			}
31089 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31090 			    real_addr), reqlength);
31091 		}
31092 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31093 		    buffer_size, real_addr, path_flag);
31094 	}
31095 
31096 done1:
31097 	if (dkl != NULL)
31098 		kmem_free(dkl, buffer_size);
31099 
31100 	if (rval != 0) {
31101 		if (rval == EIO)
31102 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31103 		else
31104 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31105 	}
31106 done:
31107 	sd_ssc_fini(ssc);
31108 	return (rval);
31109 }
31110 
31111 
31112 static int
31113 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31114 {
31115 
31116 	struct sd_lun *un;
31117 	diskaddr_t	cap;
31118 	uint32_t	lbasize;
31119 	int		path_flag = (int)(uintptr_t)tg_cookie;
31120 	int		ret = 0;
31121 
31122 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31123 	if (un == NULL)
31124 		return (ENXIO);
31125 
31126 	switch (cmd) {
31127 	case TG_GETPHYGEOM:
31128 	case TG_GETVIRTGEOM:
31129 	case TG_GETCAPACITY:
31130 	case TG_GETBLOCKSIZE:
31131 		mutex_enter(SD_MUTEX(un));
31132 
31133 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31134 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31135 			cap = un->un_blockcount;
31136 			lbasize = un->un_tgt_blocksize;
31137 			mutex_exit(SD_MUTEX(un));
31138 		} else {
31139 			sd_ssc_t	*ssc;
31140 			mutex_exit(SD_MUTEX(un));
31141 			ssc = sd_ssc_init(un);
31142 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31143 			    &lbasize, path_flag);
31144 			if (ret != 0) {
31145 				if (ret == EIO)
31146 					sd_ssc_assessment(ssc,
31147 					    SD_FMT_STATUS_CHECK);
31148 				else
31149 					sd_ssc_assessment(ssc,
31150 					    SD_FMT_IGNORE);
31151 				sd_ssc_fini(ssc);
31152 				return (ret);
31153 			}
31154 			sd_ssc_fini(ssc);
31155 			mutex_enter(SD_MUTEX(un));
31156 			sd_update_block_info(un, lbasize, cap);
31157 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31158 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31159 				mutex_exit(SD_MUTEX(un));
31160 				return (EIO);
31161 			}
31162 			mutex_exit(SD_MUTEX(un));
31163 		}
31164 
31165 		if (cmd == TG_GETCAPACITY) {
31166 			*(diskaddr_t *)arg = cap;
31167 			return (0);
31168 		}
31169 
31170 		if (cmd == TG_GETBLOCKSIZE) {
31171 			*(uint32_t *)arg = lbasize;
31172 			return (0);
31173 		}
31174 
31175 		if (cmd == TG_GETPHYGEOM)
31176 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31177 			    cap, lbasize, path_flag);
31178 		else
31179 			/* TG_GETVIRTGEOM */
31180 			ret = sd_get_virtual_geometry(un,
31181 			    (cmlb_geom_t *)arg, cap, lbasize);
31182 
31183 		return (ret);
31184 
31185 	case TG_GETATTR:
31186 		mutex_enter(SD_MUTEX(un));
31187 		((tg_attribute_t *)arg)->media_is_writable =
31188 		    un->un_f_mmc_writable_media;
31189 		((tg_attribute_t *)arg)->media_is_solid_state =
31190 		    un->un_f_is_solid_state;
31191 		mutex_exit(SD_MUTEX(un));
31192 		return (0);
31193 	default:
31194 		return (ENOTTY);
31195 
31196 	}
31197 }
31198 
31199 /*
31200  *    Function: sd_ssc_ereport_post
31201  *
31202  * Description: Will be called when SD driver need to post an ereport.
31203  *
31204  *    Context: Kernel thread or interrupt context.
31205  */
31206 
31207 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31208 
31209 static void
31210 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31211 {
31212 	int uscsi_path_instance = 0;
31213 	uchar_t	uscsi_pkt_reason;
31214 	uint32_t uscsi_pkt_state;
31215 	uint32_t uscsi_pkt_statistics;
31216 	uint64_t uscsi_ena;
31217 	uchar_t op_code;
31218 	uint8_t *sensep;
31219 	union scsi_cdb *cdbp;
31220 	uint_t cdblen = 0;
31221 	uint_t senlen = 0;
31222 	struct sd_lun *un;
31223 	dev_info_t *dip;
31224 	char *devid;
31225 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31226 	    SSC_FLAGS_INVALID_STATUS |
31227 	    SSC_FLAGS_INVALID_SENSE |
31228 	    SSC_FLAGS_INVALID_DATA;
31229 	char assessment[16];
31230 
31231 	ASSERT(ssc != NULL);
31232 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31233 	ASSERT(ssc->ssc_uscsi_info != NULL);
31234 
31235 	un = ssc->ssc_un;
31236 	ASSERT(un != NULL);
31237 
31238 	dip = un->un_sd->sd_dev;
31239 
31240 	/*
31241 	 * Get the devid:
31242 	 *	devid will only be passed to non-transport error reports.
31243 	 */
31244 	devid = DEVI(dip)->devi_devid_str;
31245 
31246 	/*
31247 	 * If we are syncing or dumping, the command will not be executed
31248 	 * so we bypass this situation.
31249 	 */
31250 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31251 	    (un->un_state == SD_STATE_DUMPING))
31252 		return;
31253 
31254 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31255 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31256 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31257 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31258 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31259 
31260 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31261 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31262 
31263 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31264 	if (cdbp == NULL) {
31265 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31266 		    "sd_ssc_ereport_post meet empty cdb\n");
31267 		return;
31268 	}
31269 
31270 	op_code = cdbp->scc_cmd;
31271 
31272 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31273 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31274 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31275 
31276 	if (senlen > 0)
31277 		ASSERT(sensep != NULL);
31278 
31279 	/*
31280 	 * Initialize drv_assess to corresponding values.
31281 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31282 	 * on the sense-key returned back.
31283 	 */
31284 	switch (drv_assess) {
31285 		case SD_FM_DRV_RECOVERY:
31286 			(void) sprintf(assessment, "%s", "recovered");
31287 			break;
31288 		case SD_FM_DRV_RETRY:
31289 			(void) sprintf(assessment, "%s", "retry");
31290 			break;
31291 		case SD_FM_DRV_NOTICE:
31292 			(void) sprintf(assessment, "%s", "info");
31293 			break;
31294 		case SD_FM_DRV_FATAL:
31295 		default:
31296 			(void) sprintf(assessment, "%s", "unknown");
31297 	}
31298 	/*
31299 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31300 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31301 	 * driver-assessment will always be "recovered" here.
31302 	 */
31303 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31304 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31305 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31306 		    DDI_NOSLEEP, NULL,
31307 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31308 		    DEVID_IF_KNOWN(devid),
31309 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31310 		    "op-code", DATA_TYPE_UINT8, op_code,
31311 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31312 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31313 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31314 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31315 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31316 		    NULL);
31317 		return;
31318 	}
31319 
31320 	/*
31321 	 * If there is un-expected/un-decodable data, we should post
31322 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31323 	 * driver-assessment will be set based on parameter drv_assess.
31324 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31325 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31326 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31327 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31328 	 */
31329 	if (ssc->ssc_flags & ssc_invalid_flags) {
31330 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31331 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31332 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31333 			    NULL, DDI_NOSLEEP, NULL,
31334 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31335 			    DEVID_IF_KNOWN(devid),
31336 			    "driver-assessment", DATA_TYPE_STRING,
31337 			    drv_assess == SD_FM_DRV_FATAL ?
31338 			    "fail" : assessment,
31339 			    "op-code", DATA_TYPE_UINT8, op_code,
31340 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31341 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31342 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31343 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31344 			    "pkt-stats", DATA_TYPE_UINT32,
31345 			    uscsi_pkt_statistics,
31346 			    "stat-code", DATA_TYPE_UINT8,
31347 			    ssc->ssc_uscsi_cmd->uscsi_status,
31348 			    "un-decode-info", DATA_TYPE_STRING,
31349 			    ssc->ssc_info,
31350 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31351 			    senlen, sensep,
31352 			    NULL);
31353 		} else {
31354 			/*
31355 			 * For other type of invalid data, the
31356 			 * un-decode-value field would be empty because the
31357 			 * un-decodable content could be seen from upper
31358 			 * level payload or inside un-decode-info.
31359 			 */
31360 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31361 			    NULL,
31362 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31363 			    NULL, DDI_NOSLEEP, NULL,
31364 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31365 			    DEVID_IF_KNOWN(devid),
31366 			    "driver-assessment", DATA_TYPE_STRING,
31367 			    drv_assess == SD_FM_DRV_FATAL ?
31368 			    "fail" : assessment,
31369 			    "op-code", DATA_TYPE_UINT8, op_code,
31370 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31371 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31372 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31373 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31374 			    "pkt-stats", DATA_TYPE_UINT32,
31375 			    uscsi_pkt_statistics,
31376 			    "stat-code", DATA_TYPE_UINT8,
31377 			    ssc->ssc_uscsi_cmd->uscsi_status,
31378 			    "un-decode-info", DATA_TYPE_STRING,
31379 			    ssc->ssc_info,
31380 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31381 			    0, NULL,
31382 			    NULL);
31383 		}
31384 		ssc->ssc_flags &= ~ssc_invalid_flags;
31385 		return;
31386 	}
31387 
31388 	if (uscsi_pkt_reason != CMD_CMPLT ||
31389 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31390 		/*
31391 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31392 		 * set inside sd_start_cmds due to errors(bad packet or
31393 		 * fatal transport error), we should take it as a
31394 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31395 		 * driver-assessment will be set based on drv_assess.
31396 		 * We will set devid to NULL because it is a transport
31397 		 * error.
31398 		 */
31399 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31400 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31401 
31402 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31403 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31404 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31405 		    DEVID_IF_KNOWN(devid),
31406 		    "driver-assessment", DATA_TYPE_STRING,
31407 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31408 		    "op-code", DATA_TYPE_UINT8, op_code,
31409 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31410 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31411 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31412 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31413 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31414 		    NULL);
31415 	} else {
31416 		/*
31417 		 * If we got here, we have a completed command, and we need
31418 		 * to further investigate the sense data to see what kind
31419 		 * of ereport we should post.
31420 		 * No ereport is needed if sense-key is KEY_RECOVERABLE_ERROR
31421 		 * and asc/ascq is "ATA PASS-THROUGH INFORMATION AVAILABLE".
31422 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr if sense-key is
31423 		 * KEY_MEDIUM_ERROR.
31424 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31425 		 * driver-assessment will be set based on the parameter
31426 		 * drv_assess.
31427 		 */
31428 		if (senlen > 0) {
31429 			/*
31430 			 * Here we have sense data available.
31431 			 */
31432 			uint8_t sense_key = scsi_sense_key(sensep);
31433 			uint8_t sense_asc = scsi_sense_asc(sensep);
31434 			uint8_t sense_ascq = scsi_sense_ascq(sensep);
31435 
31436 			if (sense_key == KEY_RECOVERABLE_ERROR &&
31437 			    sense_asc == 0x00 && sense_ascq == 0x1d)
31438 				return;
31439 
31440 			if (sense_key == KEY_MEDIUM_ERROR) {
31441 				/*
31442 				 * driver-assessment should be "fatal" if
31443 				 * drv_assess is SD_FM_DRV_FATAL.
31444 				 */
31445 				scsi_fm_ereport_post(un->un_sd,
31446 				    uscsi_path_instance, NULL,
31447 				    "cmd.disk.dev.rqs.merr",
31448 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31449 				    FM_VERSION, DATA_TYPE_UINT8,
31450 				    FM_EREPORT_VERS0,
31451 				    DEVID_IF_KNOWN(devid),
31452 				    "driver-assessment",
31453 				    DATA_TYPE_STRING,
31454 				    drv_assess == SD_FM_DRV_FATAL ?
31455 				    "fatal" : assessment,
31456 				    "op-code",
31457 				    DATA_TYPE_UINT8, op_code,
31458 				    "cdb",
31459 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31460 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31461 				    "pkt-reason",
31462 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31463 				    "pkt-state",
31464 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31465 				    "pkt-stats",
31466 				    DATA_TYPE_UINT32,
31467 				    uscsi_pkt_statistics,
31468 				    "stat-code",
31469 				    DATA_TYPE_UINT8,
31470 				    ssc->ssc_uscsi_cmd->uscsi_status,
31471 				    "key",
31472 				    DATA_TYPE_UINT8,
31473 				    scsi_sense_key(sensep),
31474 				    "asc",
31475 				    DATA_TYPE_UINT8,
31476 				    scsi_sense_asc(sensep),
31477 				    "ascq",
31478 				    DATA_TYPE_UINT8,
31479 				    scsi_sense_ascq(sensep),
31480 				    "sense-data",
31481 				    DATA_TYPE_UINT8_ARRAY,
31482 				    senlen, sensep,
31483 				    "lba",
31484 				    DATA_TYPE_UINT64,
31485 				    ssc->ssc_uscsi_info->ui_lba,
31486 				    NULL);
31487 			} else {
31488 				/*
31489 				 * if sense-key == 0x4(hardware
31490 				 * error), driver-assessment should
31491 				 * be "fatal" if drv_assess is
31492 				 * SD_FM_DRV_FATAL.
31493 				 */
31494 				scsi_fm_ereport_post(un->un_sd,
31495 				    uscsi_path_instance, NULL,
31496 				    "cmd.disk.dev.rqs.derr",
31497 				    uscsi_ena, devid,
31498 				    NULL, DDI_NOSLEEP, NULL,
31499 				    FM_VERSION,
31500 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31501 				    DEVID_IF_KNOWN(devid),
31502 				    "driver-assessment",
31503 				    DATA_TYPE_STRING,
31504 				    drv_assess == SD_FM_DRV_FATAL ?
31505 				    (sense_key == 0x4 ?
31506 				    "fatal" : "fail") : assessment,
31507 				    "op-code",
31508 				    DATA_TYPE_UINT8, op_code,
31509 				    "cdb",
31510 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31511 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31512 				    "pkt-reason",
31513 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31514 				    "pkt-state",
31515 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31516 				    "pkt-stats",
31517 				    DATA_TYPE_UINT32,
31518 				    uscsi_pkt_statistics,
31519 				    "stat-code",
31520 				    DATA_TYPE_UINT8,
31521 				    ssc->ssc_uscsi_cmd->uscsi_status,
31522 				    "key",
31523 				    DATA_TYPE_UINT8,
31524 				    scsi_sense_key(sensep),
31525 				    "asc",
31526 				    DATA_TYPE_UINT8,
31527 				    scsi_sense_asc(sensep),
31528 				    "ascq",
31529 				    DATA_TYPE_UINT8,
31530 				    scsi_sense_ascq(sensep),
31531 				    "sense-data",
31532 				    DATA_TYPE_UINT8_ARRAY,
31533 				    senlen, sensep,
31534 				    NULL);
31535 			}
31536 		} else {
31537 			/*
31538 			 * For stat_code == STATUS_GOOD, this is not a
31539 			 * hardware error.
31540 			 */
31541 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31542 				return;
31543 
31544 			/*
31545 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31546 			 * stat-code but with sense data unavailable.
31547 			 * driver-assessment will be set based on parameter
31548 			 * drv_assess.
31549 			 */
31550 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31551 			    NULL,
31552 			    "cmd.disk.dev.serr", uscsi_ena,
31553 			    devid, NULL, DDI_NOSLEEP, NULL,
31554 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31555 			    DEVID_IF_KNOWN(devid),
31556 			    "driver-assessment", DATA_TYPE_STRING,
31557 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31558 			    "op-code", DATA_TYPE_UINT8, op_code,
31559 			    "cdb",
31560 			    DATA_TYPE_UINT8_ARRAY,
31561 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31562 			    "pkt-reason",
31563 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31564 			    "pkt-state",
31565 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31566 			    "pkt-stats",
31567 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31568 			    "stat-code",
31569 			    DATA_TYPE_UINT8,
31570 			    ssc->ssc_uscsi_cmd->uscsi_status,
31571 			    NULL);
31572 		}
31573 	}
31574 }
31575 
31576 /*
31577  *     Function: sd_ssc_extract_info
31578  *
31579  * Description: Extract information available to help generate ereport.
31580  *
31581  *     Context: Kernel thread or interrupt context.
31582  */
31583 static void
31584 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31585     struct buf *bp, struct sd_xbuf *xp)
31586 {
31587 	size_t senlen = 0;
31588 	union scsi_cdb *cdbp;
31589 	int path_instance;
31590 	/*
31591 	 * Need scsi_cdb_size array to determine the cdb length.
31592 	 */
31593 	extern uchar_t	scsi_cdb_size[];
31594 
31595 	ASSERT(un != NULL);
31596 	ASSERT(pktp != NULL);
31597 	ASSERT(bp != NULL);
31598 	ASSERT(xp != NULL);
31599 	ASSERT(ssc != NULL);
31600 	ASSERT(mutex_owned(SD_MUTEX(un)));
31601 
31602 	/*
31603 	 * Transfer the cdb buffer pointer here.
31604 	 */
31605 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31606 
31607 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31608 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31609 
31610 	/*
31611 	 * Transfer the sense data buffer pointer if sense data is available,
31612 	 * calculate the sense data length first.
31613 	 */
31614 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31615 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31616 		/*
31617 		 * For arq case, we will enter here.
31618 		 */
31619 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31620 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31621 		} else {
31622 			senlen = SENSE_LENGTH;
31623 		}
31624 	} else {
31625 		/*
31626 		 * For non-arq case, we will enter this branch.
31627 		 */
31628 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31629 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31630 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31631 		}
31632 
31633 	}
31634 
31635 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31636 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31637 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31638 
31639 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31640 
31641 	/*
31642 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31643 	 */
31644 	path_instance = pktp->pkt_path_instance;
31645 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31646 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31647 	else
31648 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31649 
31650 	/*
31651 	 * Copy in the other fields we may need when posting ereport.
31652 	 */
31653 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31654 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31655 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31656 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31657 
31658 	/*
31659 	 * For partially read/write command, we will not create ena
31660 	 * in case of a successful command be reconized as recovered.
31661 	 */
31662 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31663 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31664 	    (senlen == 0)) {
31665 		return;
31666 	}
31667 
31668 	/*
31669 	 * To associate ereports of a single command execution flow, we
31670 	 * need a shared ena for a specific command.
31671 	 */
31672 	if (xp->xb_ena == 0)
31673 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31674 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31675 }
31676 
31677 
31678 /*
31679  *     Function: sd_check_solid_state
31680  *
31681  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31682  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31683  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31684  *              device is a solid state drive.
31685  *
31686  *     Context: Kernel thread or interrupt context.
31687  */
31688 
31689 static void
31690 sd_check_solid_state(sd_ssc_t *ssc)
31691 {
31692 	int		rval		= 0;
31693 	uchar_t		*inqb1		= NULL;
31694 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31695 	size_t		inqb1_resid	= 0;
31696 	struct sd_lun	*un;
31697 
31698 	ASSERT(ssc != NULL);
31699 	un = ssc->ssc_un;
31700 	ASSERT(un != NULL);
31701 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31702 
31703 	mutex_enter(SD_MUTEX(un));
31704 	un->un_f_is_solid_state = FALSE;
31705 
31706 	if (ISCD(un)) {
31707 		mutex_exit(SD_MUTEX(un));
31708 		return;
31709 	}
31710 
31711 	if (sd_check_vpd_page_support(ssc) == 0 &&
31712 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31713 		mutex_exit(SD_MUTEX(un));
31714 		/* collect page b1 data */
31715 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31716 
31717 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31718 		    0x01, 0xB1, &inqb1_resid);
31719 
31720 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31721 			SD_TRACE(SD_LOG_COMMON, un,
31722 			    "sd_check_solid_state: \
31723 			    successfully get VPD page: %x \
31724 			    PAGE LENGTH: %x BYTE 4: %x \
31725 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31726 			    inqb1[5]);
31727 
31728 			mutex_enter(SD_MUTEX(un));
31729 			/*
31730 			 * Check the MEDIUM ROTATION RATE. If it is set
31731 			 * to 1, the device is a solid state drive.
31732 			 */
31733 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31734 				un->un_f_is_solid_state = TRUE;
31735 				/* solid state drives don't need disksort */
31736 				un->un_f_disksort_disabled = TRUE;
31737 			}
31738 			mutex_exit(SD_MUTEX(un));
31739 		} else if (rval != 0) {
31740 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31741 		}
31742 
31743 		kmem_free(inqb1, inqb1_len);
31744 	} else {
31745 		mutex_exit(SD_MUTEX(un));
31746 	}
31747 }
31748 
31749 /*
31750  *	Function: sd_check_emulation_mode
31751  *
31752  *   Description: Check whether the SSD is at emulation mode
31753  *		  by issuing READ_CAPACITY_16 to see whether
31754  *		  we can get physical block size of the drive.
31755  *
31756  *	 Context: Kernel thread or interrupt context.
31757  */
31758 
31759 static void
31760 sd_check_emulation_mode(sd_ssc_t *ssc)
31761 {
31762 	int		rval = 0;
31763 	uint64_t	capacity;
31764 	uint_t		lbasize;
31765 	uint_t		pbsize;
31766 	int		i;
31767 	int		devid_len;
31768 	struct sd_lun	*un;
31769 
31770 	ASSERT(ssc != NULL);
31771 	un = ssc->ssc_un;
31772 	ASSERT(un != NULL);
31773 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31774 
31775 	mutex_enter(SD_MUTEX(un));
31776 	if (ISCD(un)) {
31777 		mutex_exit(SD_MUTEX(un));
31778 		return;
31779 	}
31780 
31781 	if (un->un_f_descr_format_supported) {
31782 		mutex_exit(SD_MUTEX(un));
31783 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31784 		    &pbsize, SD_PATH_DIRECT);
31785 		mutex_enter(SD_MUTEX(un));
31786 
31787 		if (rval != 0) {
31788 			un->un_phy_blocksize = DEV_BSIZE;
31789 		} else {
31790 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31791 				un->un_phy_blocksize = DEV_BSIZE;
31792 			} else if (pbsize > un->un_phy_blocksize) {
31793 				/*
31794 				 * Don't reset the physical blocksize
31795 				 * unless we've detected a larger value.
31796 				 */
31797 				un->un_phy_blocksize = pbsize;
31798 			}
31799 		}
31800 	}
31801 
31802 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31803 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31804 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31805 		    == SD_SUCCESS) {
31806 			un->un_phy_blocksize = SSD_SECSIZE;
31807 			if (un->un_f_is_solid_state &&
31808 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31809 				un->un_f_enable_rmw = TRUE;
31810 		}
31811 	}
31812 
31813 	mutex_exit(SD_MUTEX(un));
31814 }
31815