1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *
29  * nv_sata is a combo SATA HBA driver for ck804/mcp5x (mcp5x = mcp55/mcp51)
30  * based chipsets.
31  *
32  * NCQ
33  * ---
34  *
35  * A portion of the NCQ is in place, but is incomplete.  NCQ is disabled
36  * and is likely to be revisited in the future.
37  *
38  *
39  * Power Management
40  * ----------------
41  *
42  * Normally power management would be responsible for ensuring the device
43  * is quiescent and then changing power states to the device, such as
44  * powering down parts or all of the device.  mcp5x/ck804 is unique in
45  * that it is only available as part of a larger southbridge chipset, so
46  * removing power to the device isn't possible.  Switches to control
47  * power management states D0/D3 in the PCI configuration space appear to
48  * be supported but changes to these states are apparently are ignored.
49  * The only further PM that the driver _could_ do is shut down the PHY,
50  * but in order to deliver the first rev of the driver sooner than later,
51  * that will be deferred until some future phase.
52  *
53  * Since the driver currently will not directly change any power state to
54  * the device, no power() entry point will be required.  However, it is
55  * possible that in ACPI power state S3, aka suspend to RAM, that power
56  * can be removed to the device, and the driver cannot rely on BIOS to
57  * have reset any state.  For the time being, there is no known
58  * non-default configurations that need to be programmed.  This judgement
59  * is based on the port of the legacy ata driver not having any such
60  * functionality and based on conversations with the PM team.  If such a
61  * restoration is later deemed necessary it can be incorporated into the
62  * DDI_RESUME processing.
63  *
64  */
65 
66 #include <sys/scsi/scsi.h>
67 #include <sys/pci.h>
68 #include <sys/byteorder.h>
69 #include <sys/sunddi.h>
70 #include <sys/sata/sata_hba.h>
71 #ifdef SGPIO_SUPPORT
72 #include <sys/sata/adapters/nv_sata/nv_sgpio.h>
73 #include <sys/devctl.h>
74 #include <sys/sdt.h>
75 #endif
76 #include <sys/sata/adapters/nv_sata/nv_sata.h>
77 #include <sys/disp.h>
78 #include <sys/note.h>
79 #include <sys/promif.h>
80 
81 
82 /*
83  * Function prototypes for driver entry points
84  */
85 static int nv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
86 static int nv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
87 static int nv_quiesce(dev_info_t *dip);
88 static int nv_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd,
89     void *arg, void **result);
90 
91 /*
92  * Function prototypes for entry points from sata service module
93  * These functions are distinguished from other local functions
94  * by the prefix "nv_sata_"
95  */
96 static int nv_sata_start(dev_info_t *dip, sata_pkt_t *spkt);
97 static int nv_sata_abort(dev_info_t *dip, sata_pkt_t *spkt, int);
98 static int nv_sata_reset(dev_info_t *dip, sata_device_t *sd);
99 static int nv_sata_activate(dev_info_t *dip, sata_device_t *sd);
100 static int nv_sata_deactivate(dev_info_t *dip, sata_device_t *sd);
101 
102 /*
103  * Local function prototypes
104  */
105 static uint_t mcp5x_intr(caddr_t arg1, caddr_t arg2);
106 static uint_t ck804_intr(caddr_t arg1, caddr_t arg2);
107 static int nv_add_legacy_intrs(nv_ctl_t *nvc);
108 #ifdef NV_MSI_SUPPORTED
109 static int nv_add_msi_intrs(nv_ctl_t *nvc);
110 #endif
111 static void nv_rem_intrs(nv_ctl_t *nvc);
112 static int nv_start_common(nv_port_t *nvp, sata_pkt_t *spkt);
113 static int nv_start_nodata(nv_port_t *nvp, int slot);
114 static void nv_intr_nodata(nv_port_t *nvp, nv_slot_t *spkt);
115 static int nv_start_pio_in(nv_port_t *nvp, int slot);
116 static int nv_start_pio_out(nv_port_t *nvp, int slot);
117 static void nv_intr_pio_in(nv_port_t *nvp, nv_slot_t *spkt);
118 static void nv_intr_pio_out(nv_port_t *nvp, nv_slot_t *spkt);
119 static int nv_start_pkt_pio(nv_port_t *nvp, int slot);
120 static void nv_intr_pkt_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);
121 static int nv_start_dma(nv_port_t *nvp, int slot);
122 static void nv_intr_dma(nv_port_t *nvp, struct nv_slot *spkt);
123 static void nv_log(uint_t flag, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...);
124 static void nv_uninit_ctl(nv_ctl_t *nvc);
125 static void mcp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
126 static void ck804_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
127 static void nv_uninit_port(nv_port_t *nvp);
128 static int nv_init_port(nv_port_t *nvp);
129 static int nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
130 static int mcp5x_packet_complete_intr(nv_ctl_t *nvc, nv_port_t *nvp);
131 #ifdef NCQ
132 static int mcp5x_dma_setup_intr(nv_ctl_t *nvc, nv_port_t *nvp);
133 #endif
134 static void nv_start_dma_engine(nv_port_t *nvp, int slot);
135 static void nv_port_state_change(nv_port_t *nvp, int event, uint8_t addr_type,
136     int state);
137 static void nv_common_reg_init(nv_ctl_t *nvc);
138 static void ck804_intr_process(nv_ctl_t *nvc, uint8_t intr_status);
139 static void nv_reset(nv_port_t *nvp);
140 static void nv_complete_io(nv_port_t *nvp,  sata_pkt_t *spkt, int slot);
141 static void nv_timeout(void *);
142 static int nv_poll_wait(nv_port_t *nvp, sata_pkt_t *spkt);
143 static void nv_cmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...);
144 static void nv_read_signature(nv_port_t *nvp);
145 static void mcp5x_set_intr(nv_port_t *nvp, int flag);
146 static void ck804_set_intr(nv_port_t *nvp, int flag);
147 static void nv_resume(nv_port_t *nvp);
148 static void nv_suspend(nv_port_t *nvp);
149 static int nv_start_sync(nv_port_t *nvp, sata_pkt_t *spkt);
150 static int nv_abort_active(nv_port_t *nvp, sata_pkt_t *spkt, int abort_reason,
151     int flag);
152 static void nv_copy_registers(nv_port_t *nvp, sata_device_t *sd,
153     sata_pkt_t *spkt);
154 static void nv_report_add_remove(nv_port_t *nvp, int flags);
155 static int nv_start_async(nv_port_t *nvp, sata_pkt_t *spkt);
156 static int nv_wait3(nv_port_t *nvp, uchar_t onbits1, uchar_t offbits1,
157     uchar_t failure_onbits2, uchar_t failure_offbits2,
158     uchar_t failure_onbits3, uchar_t failure_offbits3,
159     uint_t timeout_usec, int type_wait);
160 static int nv_wait(nv_port_t *nvp, uchar_t onbits, uchar_t offbits,
161     uint_t timeout_usec, int type_wait);
162 static int nv_start_rqsense_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);
163 static void nv_init_port_link_processing(nv_ctl_t *nvc);
164 static void nv_setup_timeout(nv_port_t *nvp, int time);
165 static void nv_monitor_reset(nv_port_t *nvp);
166 static int nv_bm_status_clear(nv_port_t *nvp);
167 
168 #ifdef SGPIO_SUPPORT
169 static int nv_open(dev_t *devp, int flag, int otyp, cred_t *credp);
170 static int nv_close(dev_t dev, int flag, int otyp, cred_t *credp);
171 static int nv_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
172     cred_t *credp, int *rvalp);
173 
174 static void nv_sgp_led_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
175 static int nv_sgp_detect(ddi_acc_handle_t pci_conf_handle, uint16_t *csrpp,
176     uint32_t *cbpp);
177 static int nv_sgp_init(nv_ctl_t *nvc);
178 static int nv_sgp_check_set_cmn(nv_ctl_t *nvc);
179 static int nv_sgp_csr_read(nv_ctl_t *nvc);
180 static void nv_sgp_csr_write(nv_ctl_t *nvc, uint32_t val);
181 static int nv_sgp_write_data(nv_ctl_t *nvc);
182 static void nv_sgp_activity_led_ctl(void *arg);
183 static void nv_sgp_drive_connect(nv_ctl_t *nvc, int drive);
184 static void nv_sgp_drive_disconnect(nv_ctl_t *nvc, int drive);
185 static void nv_sgp_drive_active(nv_ctl_t *nvc, int drive);
186 static void nv_sgp_locate(nv_ctl_t *nvc, int drive, int value);
187 static void nv_sgp_error(nv_ctl_t *nvc, int drive, int value);
188 static void nv_sgp_cleanup(nv_ctl_t *nvc);
189 #endif
190 
191 
192 /*
193  * DMA attributes for the data buffer for x86.  dma_attr_burstsizes is unused.
194  * Verify if needed if ported to other ISA.
195  */
196 static ddi_dma_attr_t buffer_dma_attr = {
197 	DMA_ATTR_V0,		/* dma_attr_version */
198 	0,			/* dma_attr_addr_lo: lowest bus address */
199 	0xffffffffull,		/* dma_attr_addr_hi: */
200 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_count_max i.e for one cookie */
201 	4,			/* dma_attr_align */
202 	1,			/* dma_attr_burstsizes. */
203 	1,			/* dma_attr_minxfer */
204 	0xffffffffull,		/* dma_attr_maxxfer including all cookies */
205 	0xffffffffull,		/* dma_attr_seg */
206 	NV_DMA_NSEGS,		/* dma_attr_sgllen */
207 	512,			/* dma_attr_granular */
208 	0,			/* dma_attr_flags */
209 };
210 static ddi_dma_attr_t buffer_dma_40bit_attr = {
211 	DMA_ATTR_V0,		/* dma_attr_version */
212 	0,			/* dma_attr_addr_lo: lowest bus address */
213 	0xffffffffffull,	/* dma_attr_addr_hi: */
214 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_count_max i.e for one cookie */
215 	4,			/* dma_attr_align */
216 	1,			/* dma_attr_burstsizes. */
217 	1,			/* dma_attr_minxfer */
218 	0xffffffffull,		/* dma_attr_maxxfer including all cookies */
219 	0xffffffffull,		/* dma_attr_seg */
220 	NV_DMA_NSEGS,		/* dma_attr_sgllen */
221 	512,			/* dma_attr_granular */
222 	0,			/* dma_attr_flags */
223 };
224 
225 
226 /*
227  * DMA attributes for PRD tables
228  */
229 ddi_dma_attr_t nv_prd_dma_attr = {
230 	DMA_ATTR_V0,		/* dma_attr_version */
231 	0,			/* dma_attr_addr_lo */
232 	0xffffffffull,		/* dma_attr_addr_hi */
233 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_count_max */
234 	4,			/* dma_attr_align */
235 	1,			/* dma_attr_burstsizes */
236 	1,			/* dma_attr_minxfer */
237 	NV_BM_64K_BOUNDARY,	/* dma_attr_maxxfer */
238 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_seg */
239 	1,			/* dma_attr_sgllen */
240 	1,			/* dma_attr_granular */
241 	0			/* dma_attr_flags */
242 };
243 
244 /*
245  * Device access attributes
246  */
247 static ddi_device_acc_attr_t accattr = {
248     DDI_DEVICE_ATTR_V0,
249     DDI_STRUCTURE_LE_ACC,
250     DDI_STRICTORDER_ACC
251 };
252 
253 
254 #ifdef SGPIO_SUPPORT
255 static struct cb_ops nv_cb_ops = {
256 	nv_open,		/* open */
257 	nv_close,		/* close */
258 	nodev,			/* strategy (block) */
259 	nodev,			/* print (block) */
260 	nodev,			/* dump (block) */
261 	nodev,			/* read */
262 	nodev,			/* write */
263 	nv_ioctl,		/* ioctl */
264 	nodev,			/* devmap */
265 	nodev,			/* mmap */
266 	nodev,			/* segmap */
267 	nochpoll,		/* chpoll */
268 	ddi_prop_op,		/* prop_op */
269 	NULL,			/* streams */
270 	D_NEW | D_MP |
271 	D_64BIT | D_HOTPLUG,	/* flags */
272 	CB_REV			/* rev */
273 };
274 #endif  /* SGPIO_SUPPORT */
275 
276 
277 static struct dev_ops nv_dev_ops = {
278 	DEVO_REV,		/* devo_rev */
279 	0,			/* refcnt  */
280 	nv_getinfo,		/* info */
281 	nulldev,		/* identify */
282 	nulldev,		/* probe */
283 	nv_attach,		/* attach */
284 	nv_detach,		/* detach */
285 	nodev,			/* no reset */
286 #ifdef SGPIO_SUPPORT
287 	&nv_cb_ops,		/* driver operations */
288 #else
289 	(struct cb_ops *)0,	/* driver operations */
290 #endif
291 	NULL,			/* bus operations */
292 	NULL,			/* power */
293 	nv_quiesce		/* quiesce */
294 };
295 
296 
297 /*
298  * Request Sense CDB for ATAPI
299  */
300 static const uint8_t nv_rqsense_cdb[16] = {
301 	SCMD_REQUEST_SENSE,
302 	0,
303 	0,
304 	0,
305 	SATA_ATAPI_MIN_RQSENSE_LEN,
306 	0,
307 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/* pad out to max CDB length */
308 };
309 
310 
311 static sata_tran_hotplug_ops_t nv_hotplug_ops;
312 
313 extern struct mod_ops mod_driverops;
314 
315 static  struct modldrv modldrv = {
316 	&mod_driverops,	/* driverops */
317 	"Nvidia ck804/mcp51/mcp55 HBA",
318 	&nv_dev_ops,	/* driver ops */
319 };
320 
321 static  struct modlinkage modlinkage = {
322 	MODREV_1,
323 	&modldrv,
324 	NULL
325 };
326 
327 
328 /*
329  * Wait for a signature.
330  * If this variable is non-zero, the driver will wait for a device signature
331  * before reporting a device reset to the sata module.
332  * Some (most?) drives will not process commands sent to them before D2H FIS
333  * is sent to a host.
334  */
335 int nv_wait_for_signature = 1;
336 
337 /*
338  * Check for a signature availability.
339  * If this variable is non-zero, the driver will check task file error register
340  * for indication of a signature availability before reading a signature.
341  * Task file error register bit 0 set to 1 indicates that the drive
342  * is ready and it has sent the D2H FIS with a signature.
343  * This behavior of the error register is not reliable in the mcp5x controller.
344  */
345 int nv_check_tfr_error = 0;
346 
347 /*
348  * Max signature acquisition time, in milliseconds.
349  * The driver will try to acquire a device signature within specified time and
350  * quit acquisition operation if signature was not acquired.
351  */
352 long nv_sig_acquisition_time = NV_SIG_ACQUISITION_TIME;
353 
354 /*
355  * If this variable is non-zero, the driver will wait for a signature in the
356  * nv_monitor_reset function without any time limit.
357  * Used for debugging and drive evaluation.
358  */
359 int nv_wait_here_forever = 0;
360 
361 /*
362  * Reset after hotplug.
363  * If this variable is non-zero, driver will reset device after hotplug
364  * (device attached) interrupt.
365  * If the variable is zero, driver will not reset the new device nor will it
366  * try to read device signature.
367  * Chipset is generating a hotplug (device attached) interrupt with a delay, so
368  * the device should have already sent the D2H FIS with the signature.
369  */
370 int nv_reset_after_hotplug = 1;
371 
372 /*
373  * Delay after device hotplug.
374  * It specifies the time between detecting a hotplugged device and sending
375  * a notification to the SATA module.
376  * It is used when device is not reset after hotpugging and acquiring signature
377  * may be unreliable. The delay should be long enough for a device to become
378  * ready to accept commands.
379  */
380 int nv_hotplug_delay = NV_HOTPLUG_DELAY;
381 
382 
383 /*
384  * Maximum number of consecutive interrupts processed in the loop in the
385  * single invocation of the port interrupt routine.
386  */
387 int nv_max_intr_loops = NV_MAX_INTR_PER_DEV;
388 
389 
390 
391 /*
392  * wait between checks of reg status
393  */
394 int nv_usec_delay = NV_WAIT_REG_CHECK;
395 
396 /*
397  * The following is needed for nv_vcmn_err()
398  */
399 static kmutex_t nv_log_mutex; /* protects nv_log_buf */
400 static char nv_log_buf[NV_STRING_512];
401 int nv_debug_flags = NVDBG_ALWAYS;
402 int nv_log_to_console = B_FALSE;
403 
404 int nv_log_delay = 0;
405 int nv_prom_print = B_FALSE;
406 
407 /*
408  * for debugging
409  */
410 #ifdef DEBUG
411 int ncq_commands = 0;
412 int non_ncq_commands = 0;
413 #endif
414 
415 /*
416  * Opaque state pointer to be initialized by ddi_soft_state_init()
417  */
418 static void *nv_statep	= NULL;
419 
420 /*
421  * Map from CBP to shared space
422  *
423  * When a MCP55/IO55 parts supports SGPIO, there is a single CBP (SGPIO
424  * Control Block Pointer as well as the corresponding Control Block) that
425  * is shared across all driver instances associated with that part.  The
426  * Control Block is used to update and query the LED state for the devices
427  * on the controllers associated with those instances.  There is also some
428  * driver state (called the 'common' area here) associated with each SGPIO
429  * Control Block.  The nv_sgp_cpb2cmn is used to map a given CBP to its
430  * control area.
431  *
432  * The driver can also use this mapping array to determine whether the
433  * common area for a given CBP has been initialized, and, if it isn't
434  * initialized, initialize it.
435  *
436  * When a driver instance with a CBP value that is already in the array is
437  * initialized, it will use the pointer to the previously initialized common
438  * area associated with that SGPIO CBP value, rather than initialize it
439  * itself.
440  *
441  * nv_sgp_c2c_mutex is used to synchronize access to this mapping array.
442  */
443 #ifdef SGPIO_SUPPORT
444 static kmutex_t nv_sgp_c2c_mutex;
445 static struct nv_sgp_cbp2cmn nv_sgp_cbp2cmn[NV_MAX_CBPS];
446 #endif
447 
448 /* We still have problems in 40-bit DMA support, so disable it by default */
449 int nv_sata_40bit_dma = B_FALSE;
450 
451 static sata_tran_hotplug_ops_t nv_hotplug_ops = {
452 	SATA_TRAN_HOTPLUG_OPS_REV_1,	/* structure version */
453 	nv_sata_activate,	/* activate port. cfgadm -c connect */
454 	nv_sata_deactivate	/* deactivate port. cfgadm -c disconnect */
455 };
456 
457 
458 /*
459  *  nv module initialization
460  */
461 int
462 _init(void)
463 {
464 	int	error;
465 #ifdef SGPIO_SUPPORT
466 	int	i;
467 #endif
468 
469 	error = ddi_soft_state_init(&nv_statep, sizeof (nv_ctl_t), 0);
470 
471 	if (error != 0) {
472 
473 		return (error);
474 	}
475 
476 	mutex_init(&nv_log_mutex, NULL, MUTEX_DRIVER, NULL);
477 #ifdef SGPIO_SUPPORT
478 	mutex_init(&nv_sgp_c2c_mutex, NULL, MUTEX_DRIVER, NULL);
479 
480 	for (i = 0; i < NV_MAX_CBPS; i++) {
481 		nv_sgp_cbp2cmn[i].c2cm_cbp = 0;
482 		nv_sgp_cbp2cmn[i].c2cm_cmn = NULL;
483 	}
484 #endif
485 
486 	if ((error = sata_hba_init(&modlinkage)) != 0) {
487 		ddi_soft_state_fini(&nv_statep);
488 		mutex_destroy(&nv_log_mutex);
489 
490 		return (error);
491 	}
492 
493 	error = mod_install(&modlinkage);
494 	if (error != 0) {
495 		sata_hba_fini(&modlinkage);
496 		ddi_soft_state_fini(&nv_statep);
497 		mutex_destroy(&nv_log_mutex);
498 
499 		return (error);
500 	}
501 
502 	return (error);
503 }
504 
505 
506 /*
507  * nv module uninitialize
508  */
509 int
510 _fini(void)
511 {
512 	int	error;
513 
514 	error = mod_remove(&modlinkage);
515 
516 	if (error != 0) {
517 		return (error);
518 	}
519 
520 	/*
521 	 * remove the resources allocated in _init()
522 	 */
523 	mutex_destroy(&nv_log_mutex);
524 #ifdef SGPIO_SUPPORT
525 	mutex_destroy(&nv_sgp_c2c_mutex);
526 #endif
527 	sata_hba_fini(&modlinkage);
528 	ddi_soft_state_fini(&nv_statep);
529 
530 	return (error);
531 }
532 
533 
534 /*
535  * nv _info entry point
536  */
537 int
538 _info(struct modinfo *modinfop)
539 {
540 	return (mod_info(&modlinkage, modinfop));
541 }
542 
543 
544 /*
545  * these wrappers for ddi_{get,put}8 are for observability
546  * with dtrace
547  */
548 #ifdef DEBUG
549 
550 static void
551 nv_put8(ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t value)
552 {
553 	ddi_put8(handle, dev_addr, value);
554 }
555 
556 static void
557 nv_put32(ddi_acc_handle_t handle, uint32_t *dev_addr, uint32_t value)
558 {
559 	ddi_put32(handle, dev_addr, value);
560 }
561 
562 static uint32_t
563 nv_get32(ddi_acc_handle_t handle, uint32_t *dev_addr)
564 {
565 	return (ddi_get32(handle, dev_addr));
566 }
567 
568 static void
569 nv_put16(ddi_acc_handle_t handle, uint16_t *dev_addr, uint16_t value)
570 {
571 	ddi_put16(handle, dev_addr, value);
572 }
573 
574 static uint16_t
575 nv_get16(ddi_acc_handle_t handle, uint16_t *dev_addr)
576 {
577 	return (ddi_get16(handle, dev_addr));
578 }
579 
580 static uint8_t
581 nv_get8(ddi_acc_handle_t handle, uint8_t *dev_addr)
582 {
583 	return (ddi_get8(handle, dev_addr));
584 }
585 
586 #else
587 
588 #define	nv_put8 ddi_put8
589 #define	nv_put32 ddi_put32
590 #define	nv_get32 ddi_get32
591 #define	nv_put16 ddi_put16
592 #define	nv_get16 ddi_get16
593 #define	nv_get8 ddi_get8
594 
595 #endif
596 
597 
598 /*
599  * Driver attach
600  */
601 static int
602 nv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
603 {
604 	int status, attach_state, intr_types, bar, i, command;
605 	int inst = ddi_get_instance(dip);
606 	ddi_acc_handle_t pci_conf_handle;
607 	nv_ctl_t *nvc;
608 	uint8_t subclass;
609 	uint32_t reg32;
610 #ifdef SGPIO_SUPPORT
611 	pci_regspec_t *regs;
612 	int rlen;
613 #endif
614 
615 	switch (cmd) {
616 
617 	case DDI_ATTACH:
618 
619 		NVLOG((NVDBG_INIT, NULL, NULL,
620 		    "nv_attach(): DDI_ATTACH inst %d", inst));
621 
622 		attach_state = ATTACH_PROGRESS_NONE;
623 
624 		status = ddi_soft_state_zalloc(nv_statep, inst);
625 
626 		if (status != DDI_SUCCESS) {
627 			break;
628 		}
629 
630 		nvc = ddi_get_soft_state(nv_statep, inst);
631 
632 		nvc->nvc_dip = dip;
633 
634 		attach_state |= ATTACH_PROGRESS_STATEP_ALLOC;
635 
636 		if (pci_config_setup(dip, &pci_conf_handle) == DDI_SUCCESS) {
637 			nvc->nvc_revid = pci_config_get8(pci_conf_handle,
638 			    PCI_CONF_REVID);
639 			NVLOG((NVDBG_INIT, NULL, NULL,
640 			    "inst %d: silicon revid is %x nv_debug_flags=%x",
641 			    inst, nvc->nvc_revid, nv_debug_flags));
642 		} else {
643 			break;
644 		}
645 
646 		attach_state |= ATTACH_PROGRESS_CONF_HANDLE;
647 
648 		/*
649 		 * Set the PCI command register: enable IO/MEM/Master.
650 		 */
651 		command = pci_config_get16(pci_conf_handle, PCI_CONF_COMM);
652 		pci_config_put16(pci_conf_handle, PCI_CONF_COMM,
653 		    command|PCI_COMM_IO|PCI_COMM_MAE|PCI_COMM_ME);
654 
655 		subclass = pci_config_get8(pci_conf_handle, PCI_CONF_SUBCLASS);
656 
657 		if (subclass & PCI_MASS_RAID) {
658 			cmn_err(CE_WARN,
659 			    "attach failed: RAID mode not supported");
660 			break;
661 		}
662 
663 		/*
664 		 * the 6 bars of the controller are:
665 		 * 0: port 0 task file
666 		 * 1: port 0 status
667 		 * 2: port 1 task file
668 		 * 3: port 1 status
669 		 * 4: bus master for both ports
670 		 * 5: extended registers for SATA features
671 		 */
672 		for (bar = 0; bar < 6; bar++) {
673 			status = ddi_regs_map_setup(dip, bar + 1,
674 			    (caddr_t *)&nvc->nvc_bar_addr[bar], 0, 0, &accattr,
675 			    &nvc->nvc_bar_hdl[bar]);
676 
677 			if (status != DDI_SUCCESS) {
678 				NVLOG((NVDBG_INIT, nvc, NULL,
679 				    "ddi_regs_map_setup failure for bar"
680 				    " %d status = %d", bar, status));
681 				break;
682 			}
683 		}
684 
685 		attach_state |= ATTACH_PROGRESS_BARS;
686 
687 		/*
688 		 * initialize controller structures
689 		 */
690 		status = nv_init_ctl(nvc, pci_conf_handle);
691 
692 		if (status == NV_FAILURE) {
693 			NVLOG((NVDBG_INIT, nvc, NULL, "nv_init_ctl failed"));
694 
695 			break;
696 		}
697 
698 		attach_state |= ATTACH_PROGRESS_CTL_SETUP;
699 
700 		/*
701 		 * initialize mutexes
702 		 */
703 		mutex_init(&nvc->nvc_mutex, NULL, MUTEX_DRIVER,
704 		    DDI_INTR_PRI(nvc->nvc_intr_pri));
705 
706 		attach_state |= ATTACH_PROGRESS_MUTEX_INIT;
707 
708 		/*
709 		 * get supported interrupt types
710 		 */
711 		if (ddi_intr_get_supported_types(dip, &intr_types) !=
712 		    DDI_SUCCESS) {
713 			nv_cmn_err(CE_WARN, nvc, NULL,
714 			    "!ddi_intr_get_supported_types failed");
715 			NVLOG((NVDBG_INIT, nvc, NULL,
716 			    "interrupt supported types failed"));
717 
718 			break;
719 		}
720 
721 		NVLOG((NVDBG_INIT, nvc, NULL,
722 		    "ddi_intr_get_supported_types() returned: 0x%x",
723 		    intr_types));
724 
725 #ifdef NV_MSI_SUPPORTED
726 		if (intr_types & DDI_INTR_TYPE_MSI) {
727 			NVLOG((NVDBG_INIT, nvc, NULL,
728 			    "using MSI interrupt type"));
729 
730 			/*
731 			 * Try MSI first, but fall back to legacy if MSI
732 			 * attach fails
733 			 */
734 			if (nv_add_msi_intrs(nvc) == DDI_SUCCESS) {
735 				nvc->nvc_intr_type = DDI_INTR_TYPE_MSI;
736 				attach_state |= ATTACH_PROGRESS_INTR_ADDED;
737 				NVLOG((NVDBG_INIT, nvc, NULL,
738 				    "MSI interrupt setup done"));
739 			} else {
740 				nv_cmn_err(CE_CONT, nvc, NULL,
741 				    "!MSI registration failed "
742 				    "will try Legacy interrupts");
743 			}
744 		}
745 #endif
746 
747 		/*
748 		 * Either the MSI interrupt setup has failed or only
749 		 * the fixed interrupts are available on the system.
750 		 */
751 		if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED) &&
752 		    (intr_types & DDI_INTR_TYPE_FIXED)) {
753 
754 			NVLOG((NVDBG_INIT, nvc, NULL,
755 			    "using Legacy interrupt type"));
756 
757 			if (nv_add_legacy_intrs(nvc) == DDI_SUCCESS) {
758 				nvc->nvc_intr_type = DDI_INTR_TYPE_FIXED;
759 				attach_state |= ATTACH_PROGRESS_INTR_ADDED;
760 				NVLOG((NVDBG_INIT, nvc, NULL,
761 				    "Legacy interrupt setup done"));
762 			} else {
763 				nv_cmn_err(CE_WARN, nvc, NULL,
764 				    "!legacy interrupt setup failed");
765 				NVLOG((NVDBG_INIT, nvc, NULL,
766 				    "legacy interrupt setup failed"));
767 				break;
768 			}
769 		}
770 
771 		if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED)) {
772 			NVLOG((NVDBG_INIT, nvc, NULL,
773 			    "no interrupts registered"));
774 			break;
775 		}
776 
777 #ifdef SGPIO_SUPPORT
778 		/*
779 		 * save off the controller number
780 		 */
781 		(void) ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
782 		    "reg", (caddr_t)&regs, &rlen);
783 		nvc->nvc_ctlr_num = PCI_REG_FUNC_G(regs->pci_phys_hi);
784 		kmem_free(regs, rlen);
785 
786 		/*
787 		 * initialize SGPIO
788 		 */
789 		nv_sgp_led_init(nvc, pci_conf_handle);
790 #endif	/* SGPIO_SUPPORT */
791 
792 		/*
793 		 * Initiate link processing and device identification
794 		 */
795 		nv_init_port_link_processing(nvc);
796 		/*
797 		 * attach to sata module
798 		 */
799 		if (sata_hba_attach(nvc->nvc_dip,
800 		    &nvc->nvc_sata_hba_tran,
801 		    DDI_ATTACH) != DDI_SUCCESS) {
802 			attach_state |= ATTACH_PROGRESS_SATA_MODULE;
803 
804 			break;
805 		}
806 
807 		pci_config_teardown(&pci_conf_handle);
808 
809 		NVLOG((NVDBG_INIT, nvc, NULL, "nv_attach DDI_SUCCESS"));
810 
811 		return (DDI_SUCCESS);
812 
813 	case DDI_RESUME:
814 
815 		nvc = ddi_get_soft_state(nv_statep, inst);
816 
817 		NVLOG((NVDBG_INIT, nvc, NULL,
818 		    "nv_attach(): DDI_RESUME inst %d", inst));
819 
820 		if (pci_config_setup(dip, &pci_conf_handle) != DDI_SUCCESS) {
821 			return (DDI_FAILURE);
822 		}
823 
824 		/*
825 		 * Set the PCI command register: enable IO/MEM/Master.
826 		 */
827 		command = pci_config_get16(pci_conf_handle, PCI_CONF_COMM);
828 		pci_config_put16(pci_conf_handle, PCI_CONF_COMM,
829 		    command|PCI_COMM_IO|PCI_COMM_MAE|PCI_COMM_ME);
830 
831 		/*
832 		 * Need to set bit 2 to 1 at config offset 0x50
833 		 * to enable access to the bar5 registers.
834 		 */
835 		reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_20);
836 
837 		if ((reg32 & NV_BAR5_SPACE_EN) != NV_BAR5_SPACE_EN) {
838 			pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
839 			    reg32 | NV_BAR5_SPACE_EN);
840 		}
841 
842 		nvc->nvc_state &= ~NV_CTRL_SUSPEND;
843 
844 		for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
845 			nv_resume(&(nvc->nvc_port[i]));
846 		}
847 
848 		pci_config_teardown(&pci_conf_handle);
849 
850 		return (DDI_SUCCESS);
851 
852 	default:
853 		return (DDI_FAILURE);
854 	}
855 
856 
857 	/*
858 	 * DDI_ATTACH failure path starts here
859 	 */
860 
861 	if (attach_state & ATTACH_PROGRESS_INTR_ADDED) {
862 		nv_rem_intrs(nvc);
863 	}
864 
865 	if (attach_state & ATTACH_PROGRESS_SATA_MODULE) {
866 		/*
867 		 * Remove timers
868 		 */
869 		int port = 0;
870 		nv_port_t *nvp;
871 
872 		for (; port < NV_MAX_PORTS(nvc); port++) {
873 			nvp = &(nvc->nvc_port[port]);
874 			if (nvp->nvp_timeout_id != 0) {
875 				(void) untimeout(nvp->nvp_timeout_id);
876 			}
877 		}
878 	}
879 
880 	if (attach_state & ATTACH_PROGRESS_MUTEX_INIT) {
881 		mutex_destroy(&nvc->nvc_mutex);
882 	}
883 
884 	if (attach_state & ATTACH_PROGRESS_CTL_SETUP) {
885 		nv_uninit_ctl(nvc);
886 	}
887 
888 	if (attach_state & ATTACH_PROGRESS_BARS) {
889 		while (--bar >= 0) {
890 			ddi_regs_map_free(&nvc->nvc_bar_hdl[bar]);
891 		}
892 	}
893 
894 	if (attach_state & ATTACH_PROGRESS_STATEP_ALLOC) {
895 		ddi_soft_state_free(nv_statep, inst);
896 	}
897 
898 	if (attach_state & ATTACH_PROGRESS_CONF_HANDLE) {
899 		pci_config_teardown(&pci_conf_handle);
900 	}
901 
902 	cmn_err(CE_WARN, "nv_sata%d attach failed", inst);
903 
904 	return (DDI_FAILURE);
905 }
906 
907 
908 static int
909 nv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
910 {
911 	int i, port, inst = ddi_get_instance(dip);
912 	nv_ctl_t *nvc;
913 	nv_port_t *nvp;
914 
915 	nvc = ddi_get_soft_state(nv_statep, inst);
916 
917 	switch (cmd) {
918 
919 	case DDI_DETACH:
920 
921 		NVLOG((NVDBG_INIT, nvc, NULL, "nv_detach: DDI_DETACH"));
922 
923 		/*
924 		 * Remove interrupts
925 		 */
926 		nv_rem_intrs(nvc);
927 
928 		/*
929 		 * Remove timers
930 		 */
931 		for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
932 			nvp = &(nvc->nvc_port[port]);
933 			if (nvp->nvp_timeout_id != 0) {
934 				(void) untimeout(nvp->nvp_timeout_id);
935 			}
936 		}
937 
938 		/*
939 		 * Remove maps
940 		 */
941 		for (i = 0; i < 6; i++) {
942 			ddi_regs_map_free(&nvc->nvc_bar_hdl[i]);
943 		}
944 
945 		/*
946 		 * Destroy mutexes
947 		 */
948 		mutex_destroy(&nvc->nvc_mutex);
949 
950 		/*
951 		 * Uninitialize the controller structures
952 		 */
953 		nv_uninit_ctl(nvc);
954 
955 #ifdef SGPIO_SUPPORT
956 		/*
957 		 * release SGPIO resources
958 		 */
959 		nv_sgp_cleanup(nvc);
960 #endif
961 
962 		/*
963 		 * unregister from the sata module
964 		 */
965 		(void) sata_hba_detach(nvc->nvc_dip, DDI_DETACH);
966 
967 		/*
968 		 * Free soft state
969 		 */
970 		ddi_soft_state_free(nv_statep, inst);
971 
972 		return (DDI_SUCCESS);
973 
974 	case DDI_SUSPEND:
975 
976 		NVLOG((NVDBG_INIT, nvc, NULL, "nv_detach: DDI_SUSPEND"));
977 
978 		for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
979 			nv_suspend(&(nvc->nvc_port[i]));
980 		}
981 
982 		nvc->nvc_state |= NV_CTRL_SUSPEND;
983 
984 		return (DDI_SUCCESS);
985 
986 	default:
987 		return (DDI_FAILURE);
988 	}
989 }
990 
991 
992 /*ARGSUSED*/
993 static int
994 nv_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
995 {
996 	nv_ctl_t *nvc;
997 	int instance;
998 	dev_t dev;
999 
1000 	dev = (dev_t)arg;
1001 	instance = getminor(dev);
1002 
1003 	switch (infocmd) {
1004 	case DDI_INFO_DEVT2DEVINFO:
1005 		nvc = ddi_get_soft_state(nv_statep,  instance);
1006 		if (nvc != NULL) {
1007 			*result = nvc->nvc_dip;
1008 			return (DDI_SUCCESS);
1009 		} else {
1010 			*result = NULL;
1011 			return (DDI_FAILURE);
1012 		}
1013 	case DDI_INFO_DEVT2INSTANCE:
1014 		*(int *)result = instance;
1015 		break;
1016 	default:
1017 		break;
1018 	}
1019 	return (DDI_SUCCESS);
1020 }
1021 
1022 
1023 #ifdef SGPIO_SUPPORT
1024 /* ARGSUSED */
1025 static int
1026 nv_open(dev_t *devp, int flag, int otyp, cred_t *credp)
1027 {
1028 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, getminor(*devp));
1029 
1030 	if (nvc == NULL) {
1031 		return (ENXIO);
1032 	}
1033 
1034 	return (0);
1035 }
1036 
1037 
1038 /* ARGSUSED */
1039 static int
1040 nv_close(dev_t dev, int flag, int otyp, cred_t *credp)
1041 {
1042 	return (0);
1043 }
1044 
1045 
1046 /* ARGSUSED */
1047 static int
1048 nv_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1049 {
1050 	nv_ctl_t *nvc;
1051 	int inst;
1052 	int status;
1053 	int ctlr, port;
1054 	int drive;
1055 	uint8_t curr_led;
1056 	struct dc_led_ctl led;
1057 
1058 	inst = getminor(dev);
1059 	if (inst == -1) {
1060 		return (EBADF);
1061 	}
1062 
1063 	nvc = ddi_get_soft_state(nv_statep, inst);
1064 	if (nvc == NULL) {
1065 		return (EBADF);
1066 	}
1067 
1068 	if ((nvc->nvc_sgp_cbp == NULL) || (nvc->nvc_sgp_cmn == NULL)) {
1069 		return (EIO);
1070 	}
1071 
1072 	switch (cmd) {
1073 	case DEVCTL_SET_LED:
1074 		status = ddi_copyin((void *)arg, &led,
1075 		    sizeof (struct dc_led_ctl), mode);
1076 		if (status != 0)
1077 			return (EFAULT);
1078 
1079 		/*
1080 		 * Since only the first two controller currently support
1081 		 * SGPIO (as per NVIDIA docs), this code will as well.
1082 		 * Note that this validate the port value within led_state
1083 		 * as well.
1084 		 */
1085 
1086 		ctlr = SGP_DRV_TO_CTLR(led.led_number);
1087 		if ((ctlr != 0) && (ctlr != 1))
1088 			return (ENXIO);
1089 
1090 		if ((led.led_state & DCL_STATE_FAST_BLNK) ||
1091 		    (led.led_state & DCL_STATE_SLOW_BLNK)) {
1092 			return (EINVAL);
1093 		}
1094 
1095 		drive = led.led_number;
1096 
1097 		if ((led.led_ctl_active == DCL_CNTRL_OFF) ||
1098 		    (led.led_state == DCL_STATE_OFF)) {
1099 
1100 			if (led.led_type == DCL_TYPE_DEVICE_FAIL) {
1101 				nv_sgp_error(nvc, drive, TR_ERROR_DISABLE);
1102 			} else if (led.led_type == DCL_TYPE_DEVICE_OK2RM) {
1103 				nv_sgp_locate(nvc, drive, TR_LOCATE_DISABLE);
1104 			} else {
1105 				return (ENXIO);
1106 			}
1107 
1108 			port = SGP_DRV_TO_PORT(led.led_number);
1109 			nvc->nvc_port[port].nvp_sgp_ioctl_mod |= led.led_type;
1110 		}
1111 
1112 		if (led.led_ctl_active == DCL_CNTRL_ON) {
1113 			if (led.led_type == DCL_TYPE_DEVICE_FAIL) {
1114 				nv_sgp_error(nvc, drive, TR_ERROR_ENABLE);
1115 			} else if (led.led_type == DCL_TYPE_DEVICE_OK2RM) {
1116 				nv_sgp_locate(nvc, drive, TR_LOCATE_ENABLE);
1117 			} else {
1118 				return (ENXIO);
1119 			}
1120 
1121 			port = SGP_DRV_TO_PORT(led.led_number);
1122 			nvc->nvc_port[port].nvp_sgp_ioctl_mod |= led.led_type;
1123 		}
1124 
1125 		break;
1126 
1127 	case DEVCTL_GET_LED:
1128 		status = ddi_copyin((void *)arg, &led,
1129 		    sizeof (struct dc_led_ctl), mode);
1130 		if (status != 0)
1131 			return (EFAULT);
1132 
1133 		/*
1134 		 * Since only the first two controller currently support
1135 		 * SGPIO (as per NVIDIA docs), this code will as well.
1136 		 * Note that this validate the port value within led_state
1137 		 * as well.
1138 		 */
1139 
1140 		ctlr = SGP_DRV_TO_CTLR(led.led_number);
1141 		if ((ctlr != 0) && (ctlr != 1))
1142 			return (ENXIO);
1143 
1144 		curr_led = SGPIO0_TR_DRV(nvc->nvc_sgp_cbp->sgpio0_tr,
1145 		    led.led_number);
1146 
1147 		port = SGP_DRV_TO_PORT(led.led_number);
1148 		if (nvc->nvc_port[port].nvp_sgp_ioctl_mod & led.led_type) {
1149 			led.led_ctl_active = DCL_CNTRL_ON;
1150 
1151 			if (led.led_type == DCL_TYPE_DEVICE_FAIL) {
1152 				if (TR_ERROR(curr_led) == TR_ERROR_DISABLE)
1153 					led.led_state = DCL_STATE_OFF;
1154 				else
1155 					led.led_state = DCL_STATE_ON;
1156 			} else if (led.led_type == DCL_TYPE_DEVICE_OK2RM) {
1157 				if (TR_LOCATE(curr_led) == TR_LOCATE_DISABLE)
1158 					led.led_state = DCL_STATE_OFF;
1159 				else
1160 					led.led_state = DCL_STATE_ON;
1161 			} else {
1162 				return (ENXIO);
1163 			}
1164 		} else {
1165 			led.led_ctl_active = DCL_CNTRL_OFF;
1166 			/*
1167 			 * Not really off, but never set and no constant for
1168 			 * tri-state
1169 			 */
1170 			led.led_state = DCL_STATE_OFF;
1171 		}
1172 
1173 		status = ddi_copyout(&led, (void *)arg,
1174 		    sizeof (struct dc_led_ctl), mode);
1175 		if (status != 0)
1176 			return (EFAULT);
1177 
1178 		break;
1179 
1180 	case DEVCTL_NUM_LEDS:
1181 		led.led_number = SGPIO_DRV_CNT_VALUE;
1182 		led.led_ctl_active = 1;
1183 		led.led_type = 3;
1184 
1185 		/*
1186 		 * According to documentation, NVIDIA SGPIO is supposed to
1187 		 * support blinking, but it does not seem to work in practice.
1188 		 */
1189 		led.led_state = DCL_STATE_ON;
1190 
1191 		status = ddi_copyout(&led, (void *)arg,
1192 		    sizeof (struct dc_led_ctl), mode);
1193 		if (status != 0)
1194 			return (EFAULT);
1195 
1196 		break;
1197 
1198 	default:
1199 		return (EINVAL);
1200 	}
1201 
1202 	return (0);
1203 }
1204 #endif	/* SGPIO_SUPPORT */
1205 
1206 
1207 /*
1208  * Called by sata module to probe a port.  Port and device state
1209  * are not changed here... only reported back to the sata module.
1210  *
1211  */
1212 static int
1213 nv_sata_probe(dev_info_t *dip, sata_device_t *sd)
1214 {
1215 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1216 	uint8_t cport = sd->satadev_addr.cport;
1217 	uint8_t pmport = sd->satadev_addr.pmport;
1218 	uint8_t qual = sd->satadev_addr.qual;
1219 	nv_port_t *nvp;
1220 
1221 	if (cport >= NV_MAX_PORTS(nvc)) {
1222 		sd->satadev_type = SATA_DTYPE_NONE;
1223 		sd->satadev_state = SATA_STATE_UNKNOWN;
1224 
1225 		return (SATA_FAILURE);
1226 	}
1227 
1228 	ASSERT(nvc->nvc_port != NULL);
1229 	nvp = &(nvc->nvc_port[cport]);
1230 	ASSERT(nvp != NULL);
1231 
1232 	NVLOG((NVDBG_RESET, nvc, nvp,
1233 	    "nv_sata_probe: enter cport: 0x%x, pmport: 0x%x, "
1234 	    "qual: 0x%x", cport, pmport, qual));
1235 
1236 	mutex_enter(&nvp->nvp_mutex);
1237 
1238 	/*
1239 	 * This check seems to be done in the SATA module.
1240 	 * It may not be required here
1241 	 */
1242 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
1243 		nv_cmn_err(CE_WARN, nvc, nvp,
1244 		    "port inactive.  Use cfgadm to activate");
1245 		sd->satadev_type = SATA_DTYPE_UNKNOWN;
1246 		sd->satadev_state = SATA_PSTATE_SHUTDOWN;
1247 		mutex_exit(&nvp->nvp_mutex);
1248 
1249 		return (SATA_SUCCESS);
1250 	}
1251 
1252 	if (nvp->nvp_state & NV_PORT_FAILED) {
1253 		NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
1254 		    "probe: port failed"));
1255 		sd->satadev_type = SATA_DTYPE_NONE;
1256 		sd->satadev_state = SATA_PSTATE_FAILED;
1257 		mutex_exit(&nvp->nvp_mutex);
1258 
1259 		return (SATA_SUCCESS);
1260 	}
1261 
1262 	if (qual == SATA_ADDR_PMPORT) {
1263 		sd->satadev_type = SATA_DTYPE_NONE;
1264 		sd->satadev_state = SATA_STATE_UNKNOWN;
1265 		mutex_exit(&nvp->nvp_mutex);
1266 		nv_cmn_err(CE_WARN, nvc, nvp,
1267 		    "controller does not support port multiplier");
1268 
1269 		return (SATA_SUCCESS);
1270 	}
1271 
1272 	sd->satadev_state = SATA_PSTATE_PWRON;
1273 
1274 	nv_copy_registers(nvp, sd, NULL);
1275 
1276 	if (nvp->nvp_state & (NV_PORT_RESET | NV_PORT_RESET_RETRY)) {
1277 		/*
1278 		 * We are waiting for reset to complete and to fetch
1279 		 * a signature.
1280 		 * Reset will cause the link to go down for a short period of
1281 		 * time.  If reset processing continues for less than
1282 		 * NV_LINK_DOWN_TIMEOUT, fake the status of the link so that
1283 		 * we will not report intermittent link down.
1284 		 * Maybe we should report previous link state?
1285 		 */
1286 		if (TICK_TO_MSEC(ddi_get_lbolt() - nvp->nvp_reset_time) <
1287 		    NV_LINK_DOWN_TIMEOUT) {
1288 			SSTATUS_SET_IPM(sd->satadev_scr.sstatus,
1289 			    SSTATUS_IPM_ACTIVE);
1290 			SSTATUS_SET_DET(sd->satadev_scr.sstatus,
1291 			    SSTATUS_DET_DEVPRE_PHYCOM);
1292 			sd->satadev_type = nvp->nvp_type;
1293 			mutex_exit(&nvp->nvp_mutex);
1294 
1295 			return (SATA_SUCCESS);
1296 		}
1297 	}
1298 	/*
1299 	 * Just report the current port state
1300 	 */
1301 	sd->satadev_type = nvp->nvp_type;
1302 	sd->satadev_state = nvp->nvp_state | SATA_PSTATE_PWRON;
1303 	mutex_exit(&nvp->nvp_mutex);
1304 
1305 #ifdef SGPIO_SUPPORT
1306 	if (nvp->nvp_type == SATA_DTYPE_ATADISK) {
1307 		nv_sgp_drive_connect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
1308 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
1309 	} else {
1310 		nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
1311 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
1312 	}
1313 #endif
1314 
1315 	return (SATA_SUCCESS);
1316 }
1317 
1318 
1319 /*
1320  * Called by sata module to start a new command.
1321  */
1322 static int
1323 nv_sata_start(dev_info_t *dip, sata_pkt_t *spkt)
1324 {
1325 	int cport = spkt->satapkt_device.satadev_addr.cport;
1326 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1327 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1328 	int ret;
1329 
1330 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_start: opmode: 0x%x cmd=%x",
1331 	    spkt->satapkt_op_mode, spkt->satapkt_cmd.satacmd_cmd_reg));
1332 
1333 	mutex_enter(&nvp->nvp_mutex);
1334 
1335 	if ((nvp->nvp_state & NV_PORT_INIT) == 0) {
1336 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1337 		NVLOG((NVDBG_ERRS, nvc, nvp,
1338 		    "nv_sata_start: port not yet initialized"));
1339 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1340 		mutex_exit(&nvp->nvp_mutex);
1341 
1342 		return (SATA_TRAN_PORT_ERROR);
1343 	}
1344 
1345 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
1346 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1347 		NVLOG((NVDBG_ERRS, nvc, nvp,
1348 		    "nv_sata_start: NV_PORT_INACTIVE"));
1349 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1350 		mutex_exit(&nvp->nvp_mutex);
1351 
1352 		return (SATA_TRAN_PORT_ERROR);
1353 	}
1354 
1355 	if (nvp->nvp_state & NV_PORT_FAILED) {
1356 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1357 		NVLOG((NVDBG_ERRS, nvc, nvp,
1358 		    "nv_sata_start: NV_PORT_FAILED state"));
1359 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1360 		mutex_exit(&nvp->nvp_mutex);
1361 
1362 		return (SATA_TRAN_PORT_ERROR);
1363 	}
1364 
1365 	if (nvp->nvp_state & NV_PORT_RESET) {
1366 		NVLOG((NVDBG_VERBOSE, nvc, nvp,
1367 		    "still waiting for reset completion"));
1368 		spkt->satapkt_reason = SATA_PKT_BUSY;
1369 		mutex_exit(&nvp->nvp_mutex);
1370 
1371 		/*
1372 		 * If in panic, timeouts do not occur, so fake one
1373 		 * so that the signature can be acquired to complete
1374 		 * the reset handling.
1375 		 */
1376 		if (ddi_in_panic()) {
1377 			nv_timeout(nvp);
1378 		}
1379 
1380 		return (SATA_TRAN_BUSY);
1381 	}
1382 
1383 	if (nvp->nvp_type == SATA_DTYPE_NONE) {
1384 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1385 		NVLOG((NVDBG_ERRS, nvc, nvp,
1386 		    "nv_sata_start: SATA_DTYPE_NONE"));
1387 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1388 		mutex_exit(&nvp->nvp_mutex);
1389 
1390 		return (SATA_TRAN_PORT_ERROR);
1391 	}
1392 
1393 	if (spkt->satapkt_device.satadev_type == SATA_DTYPE_PMULT) {
1394 		ASSERT(nvp->nvp_type == SATA_DTYPE_PMULT);
1395 		nv_cmn_err(CE_WARN, nvc, nvp,
1396 		    "port multipliers not supported by controller");
1397 		spkt->satapkt_reason = SATA_PKT_CMD_UNSUPPORTED;
1398 		mutex_exit(&nvp->nvp_mutex);
1399 
1400 		return (SATA_TRAN_CMD_UNSUPPORTED);
1401 	}
1402 
1403 	/*
1404 	 * after a device reset, and then when sata module restore processing
1405 	 * is complete, the sata module will set sata_clear_dev_reset which
1406 	 * indicates that restore processing has completed and normal
1407 	 * non-restore related commands should be processed.
1408 	 */
1409 	if (spkt->satapkt_cmd.satacmd_flags.sata_clear_dev_reset) {
1410 		nvp->nvp_state &= ~NV_PORT_RESTORE;
1411 		NVLOG((NVDBG_RESET, nvc, nvp,
1412 		    "nv_sata_start: clearing NV_PORT_RESTORE"));
1413 	}
1414 
1415 	/*
1416 	 * if the device was recently reset as indicated by NV_PORT_RESTORE,
1417 	 * only allow commands which restore device state.  The sata module
1418 	 * marks such commands with with sata_ignore_dev_reset.
1419 	 *
1420 	 * during coredump, nv_reset is called and but then the restore
1421 	 * doesn't happen.  For now, workaround by ignoring the wait for
1422 	 * restore if the system is panicing.
1423 	 */
1424 	if ((nvp->nvp_state & NV_PORT_RESTORE) &&
1425 	    !(spkt->satapkt_cmd.satacmd_flags.sata_ignore_dev_reset) &&
1426 	    (ddi_in_panic() == 0)) {
1427 		spkt->satapkt_reason = SATA_PKT_BUSY;
1428 		NVLOG((NVDBG_VERBOSE, nvc, nvp,
1429 		    "nv_sata_start: waiting for restore "));
1430 		mutex_exit(&nvp->nvp_mutex);
1431 
1432 		return (SATA_TRAN_BUSY);
1433 	}
1434 
1435 	if (nvp->nvp_state & NV_PORT_ABORTING) {
1436 		spkt->satapkt_reason = SATA_PKT_BUSY;
1437 		NVLOG((NVDBG_ERRS, nvc, nvp,
1438 		    "nv_sata_start: NV_PORT_ABORTING"));
1439 		mutex_exit(&nvp->nvp_mutex);
1440 
1441 		return (SATA_TRAN_BUSY);
1442 	}
1443 
1444 	/* Clear SError to be able to check errors after the command failure */
1445 	nv_put32(nvp->nvp_ctlp->nvc_bar_hdl[5], nvp->nvp_serror, 0xffffffff);
1446 
1447 	if (spkt->satapkt_op_mode &
1448 	    (SATA_OPMODE_POLLING|SATA_OPMODE_SYNCH)) {
1449 
1450 		ret = nv_start_sync(nvp, spkt);
1451 
1452 		mutex_exit(&nvp->nvp_mutex);
1453 
1454 		return (ret);
1455 	}
1456 
1457 	/*
1458 	 * start command asynchronous command
1459 	 */
1460 	ret = nv_start_async(nvp, spkt);
1461 
1462 	mutex_exit(&nvp->nvp_mutex);
1463 
1464 	return (ret);
1465 }
1466 
1467 
1468 /*
1469  * SATA_OPMODE_POLLING implies the driver is in a
1470  * synchronous mode, and SATA_OPMODE_SYNCH is also set.
1471  * If only SATA_OPMODE_SYNCH is set, the driver can use
1472  * interrupts and sleep wait on a cv.
1473  *
1474  * If SATA_OPMODE_POLLING is set, the driver can't use
1475  * interrupts and must busy wait and simulate the
1476  * interrupts by waiting for BSY to be cleared.
1477  *
1478  * Synchronous mode has to return BUSY if there are
1479  * any other commands already on the drive.
1480  */
1481 static int
1482 nv_start_sync(nv_port_t *nvp, sata_pkt_t *spkt)
1483 {
1484 	nv_ctl_t *nvc = nvp->nvp_ctlp;
1485 	int ret;
1486 
1487 	NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp, "nv_sata_satapkt_sync: entry"));
1488 
1489 	if (nvp->nvp_ncq_run != 0 || nvp->nvp_non_ncq_run != 0) {
1490 		spkt->satapkt_reason = SATA_PKT_BUSY;
1491 		NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp,
1492 		    "nv_sata_satapkt_sync: device is busy, sync cmd rejected"
1493 		    "ncq_run: %d non_ncq_run: %d  spkt: %p",
1494 		    nvp->nvp_ncq_run, nvp->nvp_non_ncq_run,
1495 		    (&(nvp->nvp_slot[0]))->nvslot_spkt));
1496 
1497 		return (SATA_TRAN_BUSY);
1498 	}
1499 
1500 	/*
1501 	 * if SYNC but not POLL, verify that this is not on interrupt thread.
1502 	 */
1503 	if (!(spkt->satapkt_op_mode & SATA_OPMODE_POLLING) &&
1504 	    servicing_interrupt()) {
1505 		spkt->satapkt_reason = SATA_PKT_BUSY;
1506 		NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp,
1507 		    "SYNC mode not allowed during interrupt"));
1508 
1509 		return (SATA_TRAN_BUSY);
1510 
1511 	}
1512 
1513 	/*
1514 	 * disable interrupt generation if in polled mode
1515 	 */
1516 	if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
1517 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
1518 	}
1519 
1520 	if ((ret = nv_start_common(nvp, spkt)) != SATA_TRAN_ACCEPTED) {
1521 		if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
1522 			(*(nvc->nvc_set_intr))(nvp, NV_INTR_ENABLE);
1523 		}
1524 
1525 		return (ret);
1526 	}
1527 
1528 	if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
1529 		mutex_exit(&nvp->nvp_mutex);
1530 		ret = nv_poll_wait(nvp, spkt);
1531 		mutex_enter(&nvp->nvp_mutex);
1532 
1533 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_ENABLE);
1534 
1535 		NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp, "nv_sata_satapkt_sync:"
1536 		    " done % reason %d", ret));
1537 
1538 		return (ret);
1539 	}
1540 
1541 	/*
1542 	 * non-polling synchronous mode handling.  The interrupt will signal
1543 	 * when the IO is completed.
1544 	 */
1545 	cv_wait(&nvp->nvp_poll_cv, &nvp->nvp_mutex);
1546 
1547 	if (spkt->satapkt_reason != SATA_PKT_COMPLETED) {
1548 
1549 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
1550 	}
1551 
1552 	NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp, "nv_sata_satapkt_sync:"
1553 	    " done % reason %d", spkt->satapkt_reason));
1554 
1555 	return (SATA_TRAN_ACCEPTED);
1556 }
1557 
1558 
1559 static int
1560 nv_poll_wait(nv_port_t *nvp, sata_pkt_t *spkt)
1561 {
1562 	int ret;
1563 	nv_ctl_t *nvc = nvp->nvp_ctlp;
1564 #if ! defined(__lock_lint)
1565 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[0]); /* not NCQ aware */
1566 #endif
1567 
1568 	NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: enter"));
1569 
1570 	for (;;) {
1571 
1572 		NV_DELAY_NSEC(400);
1573 
1574 		NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: before nv_wait"));
1575 		if (nv_wait(nvp, 0, SATA_STATUS_BSY,
1576 		    NV_SEC2USEC(spkt->satapkt_time), NV_NOSLEEP) == B_FALSE) {
1577 			mutex_enter(&nvp->nvp_mutex);
1578 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
1579 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
1580 			nvp->nvp_state |= NV_PORT_RESET;
1581 			nvp->nvp_state &= ~(NV_PORT_RESTORE |
1582 			    NV_PORT_RESET_RETRY);
1583 			nv_reset(nvp);
1584 			nv_complete_io(nvp, spkt, 0);
1585 			mutex_exit(&nvp->nvp_mutex);
1586 			NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: "
1587 			    "SATA_STATUS_BSY"));
1588 
1589 			return (SATA_TRAN_ACCEPTED);
1590 		}
1591 
1592 		NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: before nvc_intr"));
1593 
1594 		/*
1595 		 * Simulate interrupt.
1596 		 */
1597 		ret = (*(nvc->nvc_interrupt))((caddr_t)nvc, NULL);
1598 		NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: after nvc_intr"));
1599 
1600 		if (ret != DDI_INTR_CLAIMED) {
1601 			NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait:"
1602 			    " unclaimed -- resetting"));
1603 			mutex_enter(&nvp->nvp_mutex);
1604 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
1605 			nvp->nvp_state |= NV_PORT_RESET;
1606 			nvp->nvp_state &= ~(NV_PORT_RESTORE |
1607 			    NV_PORT_RESET_RETRY);
1608 			nv_reset(nvp);
1609 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
1610 			nv_complete_io(nvp, spkt, 0);
1611 			mutex_exit(&nvp->nvp_mutex);
1612 
1613 			return (SATA_TRAN_ACCEPTED);
1614 		}
1615 
1616 #if ! defined(__lock_lint)
1617 		if (nv_slotp->nvslot_flags == NVSLOT_COMPLETE) {
1618 			/*
1619 			 * packet is complete
1620 			 */
1621 			return (SATA_TRAN_ACCEPTED);
1622 		}
1623 #endif
1624 	}
1625 	/*NOTREACHED*/
1626 }
1627 
1628 
1629 /*
1630  * Called by sata module to abort outstanding packets.
1631  */
1632 /*ARGSUSED*/
1633 static int
1634 nv_sata_abort(dev_info_t *dip, sata_pkt_t *spkt, int flag)
1635 {
1636 	int cport = spkt->satapkt_device.satadev_addr.cport;
1637 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1638 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1639 	int c_a, ret;
1640 
1641 	ASSERT(cport < NV_MAX_PORTS(nvc));
1642 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_abort %d %p", flag, spkt));
1643 
1644 	mutex_enter(&nvp->nvp_mutex);
1645 
1646 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
1647 		mutex_exit(&nvp->nvp_mutex);
1648 		nv_cmn_err(CE_WARN, nvc, nvp,
1649 		    "abort request failed: port inactive");
1650 
1651 		return (SATA_FAILURE);
1652 	}
1653 
1654 	/*
1655 	 * spkt == NULL then abort all commands
1656 	 */
1657 	c_a = nv_abort_active(nvp, spkt, SATA_PKT_ABORTED, B_TRUE);
1658 
1659 	if (c_a) {
1660 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1661 		    "packets aborted running=%d", c_a));
1662 		ret = SATA_SUCCESS;
1663 	} else {
1664 		if (spkt == NULL) {
1665 			NVLOG((NVDBG_ENTRY, nvc, nvp, "no spkts to abort"));
1666 		} else {
1667 			NVLOG((NVDBG_ENTRY, nvc, nvp,
1668 			    "can't find spkt to abort"));
1669 		}
1670 		ret = SATA_FAILURE;
1671 	}
1672 
1673 	mutex_exit(&nvp->nvp_mutex);
1674 
1675 	return (ret);
1676 }
1677 
1678 
1679 /*
1680  * if spkt == NULL abort all pkts running, otherwise
1681  * abort the requested packet.  must be called with nv_mutex
1682  * held and returns with it held.  Not NCQ aware.
1683  */
1684 static int
1685 nv_abort_active(nv_port_t *nvp, sata_pkt_t *spkt, int abort_reason, int flag)
1686 {
1687 	int aborted = 0, i, reset_once = B_FALSE;
1688 	struct nv_slot *nv_slotp;
1689 	sata_pkt_t *spkt_slot;
1690 
1691 	ASSERT(MUTEX_HELD(&nvp->nvp_mutex));
1692 
1693 	/*
1694 	 * return if the port is not configured
1695 	 */
1696 	if (nvp->nvp_slot == NULL) {
1697 		NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp,
1698 		    "nv_abort_active: not configured so returning"));
1699 
1700 		return (0);
1701 	}
1702 
1703 	NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp, "nv_abort_active"));
1704 
1705 	nvp->nvp_state |= NV_PORT_ABORTING;
1706 
1707 	for (i = 0; i < nvp->nvp_queue_depth; i++) {
1708 
1709 		nv_slotp = &(nvp->nvp_slot[i]);
1710 		spkt_slot = nv_slotp->nvslot_spkt;
1711 
1712 		/*
1713 		 * skip if not active command in slot
1714 		 */
1715 		if (spkt_slot == NULL) {
1716 			continue;
1717 		}
1718 
1719 		/*
1720 		 * if a specific packet was requested, skip if
1721 		 * this is not a match
1722 		 */
1723 		if ((spkt != NULL) && (spkt != spkt_slot)) {
1724 			continue;
1725 		}
1726 
1727 		/*
1728 		 * stop the hardware.  This could need reworking
1729 		 * when NCQ is enabled in the driver.
1730 		 */
1731 		if (reset_once == B_FALSE) {
1732 			ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
1733 
1734 			/*
1735 			 * stop DMA engine
1736 			 */
1737 			nv_put8(bmhdl, nvp->nvp_bmicx,  0);
1738 
1739 			/*
1740 			 * Reset only if explicitly specified by the arg flag
1741 			 */
1742 			if (flag == B_TRUE) {
1743 				reset_once = B_TRUE;
1744 				nvp->nvp_state |= NV_PORT_RESET;
1745 				nvp->nvp_state &= ~(NV_PORT_RESTORE |
1746 				    NV_PORT_RESET_RETRY);
1747 				nv_reset(nvp);
1748 			}
1749 		}
1750 
1751 		spkt_slot->satapkt_reason = abort_reason;
1752 		nv_complete_io(nvp, spkt_slot, i);
1753 		aborted++;
1754 	}
1755 
1756 	nvp->nvp_state &= ~NV_PORT_ABORTING;
1757 
1758 	return (aborted);
1759 }
1760 
1761 
1762 /*
1763  * Called by sata module to reset a port, device, or the controller.
1764  */
1765 static int
1766 nv_sata_reset(dev_info_t *dip, sata_device_t *sd)
1767 {
1768 	int cport = sd->satadev_addr.cport;
1769 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1770 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1771 	int ret = SATA_SUCCESS;
1772 
1773 	ASSERT(cport < NV_MAX_PORTS(nvc));
1774 
1775 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_reset"));
1776 
1777 	mutex_enter(&nvp->nvp_mutex);
1778 
1779 	switch (sd->satadev_addr.qual) {
1780 
1781 	case SATA_ADDR_CPORT:
1782 		/*FALLTHROUGH*/
1783 	case SATA_ADDR_DCPORT:
1784 		nvp->nvp_state |= NV_PORT_RESET;
1785 		nvp->nvp_state &= ~NV_PORT_RESTORE;
1786 		nv_reset(nvp);
1787 		(void) nv_abort_active(nvp, NULL, SATA_PKT_RESET, B_FALSE);
1788 
1789 		break;
1790 	case SATA_ADDR_CNTRL:
1791 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1792 		    "nv_sata_reset: constroller reset not supported"));
1793 
1794 		break;
1795 	case SATA_ADDR_PMPORT:
1796 	case SATA_ADDR_DPMPORT:
1797 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1798 		    "nv_sata_reset: port multipliers not supported"));
1799 		/*FALLTHROUGH*/
1800 	default:
1801 		/*
1802 		 * unsupported case
1803 		 */
1804 		ret = SATA_FAILURE;
1805 		break;
1806 	}
1807 
1808 	if (ret == SATA_SUCCESS) {
1809 		/*
1810 		 * If the port is inactive, do a quiet reset and don't attempt
1811 		 * to wait for reset completion or do any post reset processing
1812 		 */
1813 		if (nvp->nvp_state & NV_PORT_INACTIVE) {
1814 			nvp->nvp_state &= ~NV_PORT_RESET;
1815 			nvp->nvp_reset_time = 0;
1816 		}
1817 
1818 		/*
1819 		 * clear the port failed flag
1820 		 */
1821 		nvp->nvp_state &= ~NV_PORT_FAILED;
1822 	}
1823 
1824 	mutex_exit(&nvp->nvp_mutex);
1825 
1826 	return (ret);
1827 }
1828 
1829 
1830 /*
1831  * Sata entry point to handle port activation.  cfgadm -c connect
1832  */
1833 static int
1834 nv_sata_activate(dev_info_t *dip, sata_device_t *sd)
1835 {
1836 	int cport = sd->satadev_addr.cport;
1837 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1838 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1839 
1840 	ASSERT(cport < NV_MAX_PORTS(nvc));
1841 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_activate"));
1842 
1843 	mutex_enter(&nvp->nvp_mutex);
1844 
1845 	sd->satadev_state = SATA_STATE_READY;
1846 
1847 	nv_copy_registers(nvp, sd, NULL);
1848 
1849 	(*(nvc->nvc_set_intr))(nvp, NV_INTR_ENABLE);
1850 
1851 	nvp->nvp_state &= ~NV_PORT_INACTIVE;
1852 	/* Initiate link probing and device signature acquisition */
1853 	nvp->nvp_type = SATA_DTYPE_NONE;
1854 	nvp->nvp_signature = 0;
1855 	nvp->nvp_state |= NV_PORT_RESET; /* | NV_PORT_PROBE; */
1856 	nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
1857 	nv_reset(nvp);
1858 
1859 	mutex_exit(&nvp->nvp_mutex);
1860 
1861 	return (SATA_SUCCESS);
1862 }
1863 
1864 
1865 /*
1866  * Sata entry point to handle port deactivation.  cfgadm -c disconnect
1867  */
1868 static int
1869 nv_sata_deactivate(dev_info_t *dip, sata_device_t *sd)
1870 {
1871 	int cport = sd->satadev_addr.cport;
1872 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1873 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1874 
1875 	ASSERT(cport < NV_MAX_PORTS(nvc));
1876 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_deactivate"));
1877 
1878 	mutex_enter(&nvp->nvp_mutex);
1879 
1880 	(void) nv_abort_active(nvp, NULL, SATA_PKT_ABORTED, B_FALSE);
1881 
1882 	/*
1883 	 * make the device inaccessible
1884 	 */
1885 	nvp->nvp_state |= NV_PORT_INACTIVE;
1886 
1887 	/*
1888 	 * disable the interrupts on port
1889 	 */
1890 	(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
1891 
1892 	sd->satadev_state = SATA_PSTATE_SHUTDOWN;
1893 	nv_copy_registers(nvp, sd, NULL);
1894 
1895 	mutex_exit(&nvp->nvp_mutex);
1896 
1897 	return (SATA_SUCCESS);
1898 }
1899 
1900 
1901 /*
1902  * find an empty slot in the driver's queue, increment counters,
1903  * and then invoke the appropriate PIO or DMA start routine.
1904  */
1905 static int
1906 nv_start_common(nv_port_t *nvp, sata_pkt_t *spkt)
1907 {
1908 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
1909 	int on_bit = 0x01, slot, sactive, ret, ncq = 0;
1910 	uint8_t cmd = spkt->satapkt_cmd.satacmd_cmd_reg;
1911 	int direction = sata_cmdp->satacmd_flags.sata_data_direction;
1912 	nv_ctl_t *nvc = nvp->nvp_ctlp;
1913 	nv_slot_t *nv_slotp;
1914 	boolean_t dma_cmd;
1915 
1916 	NVLOG((NVDBG_DELIVER, nvc, nvp, "nv_start_common  entered: cmd: 0x%x",
1917 	    sata_cmdp->satacmd_cmd_reg));
1918 
1919 	if ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
1920 	    (cmd == SATAC_READ_FPDMA_QUEUED)) {
1921 		nvp->nvp_ncq_run++;
1922 		/*
1923 		 * search for an empty NCQ slot.  by the time, it's already
1924 		 * been determined by the caller that there is room on the
1925 		 * queue.
1926 		 */
1927 		for (slot = 0; slot < nvp->nvp_queue_depth; slot++,
1928 		    on_bit <<= 1) {
1929 			if ((nvp->nvp_sactive_cache & on_bit) == 0) {
1930 				break;
1931 			}
1932 		}
1933 
1934 		/*
1935 		 * the first empty slot found, should not exceed the queue
1936 		 * depth of the drive.  if it does it's an error.
1937 		 */
1938 		ASSERT(slot != nvp->nvp_queue_depth);
1939 
1940 		sactive = nv_get32(nvc->nvc_bar_hdl[5],
1941 		    nvp->nvp_sactive);
1942 		ASSERT((sactive & on_bit) == 0);
1943 		nv_put32(nvc->nvc_bar_hdl[5], nvp->nvp_sactive, on_bit);
1944 		NVLOG((NVDBG_INIT, nvc, nvp, "setting SACTIVE onbit: %X",
1945 		    on_bit));
1946 		nvp->nvp_sactive_cache |= on_bit;
1947 
1948 		ncq = NVSLOT_NCQ;
1949 
1950 	} else {
1951 		nvp->nvp_non_ncq_run++;
1952 		slot = 0;
1953 	}
1954 
1955 	nv_slotp = (nv_slot_t *)&nvp->nvp_slot[slot];
1956 
1957 	ASSERT(nv_slotp->nvslot_spkt == NULL);
1958 
1959 	nv_slotp->nvslot_spkt = spkt;
1960 	nv_slotp->nvslot_flags = ncq;
1961 
1962 	/*
1963 	 * the sata module doesn't indicate which commands utilize the
1964 	 * DMA engine, so find out using this switch table.
1965 	 */
1966 	switch (spkt->satapkt_cmd.satacmd_cmd_reg) {
1967 	case SATAC_READ_DMA_EXT:
1968 	case SATAC_WRITE_DMA_EXT:
1969 	case SATAC_WRITE_DMA:
1970 	case SATAC_READ_DMA:
1971 	case SATAC_READ_DMA_QUEUED:
1972 	case SATAC_READ_DMA_QUEUED_EXT:
1973 	case SATAC_WRITE_DMA_QUEUED:
1974 	case SATAC_WRITE_DMA_QUEUED_EXT:
1975 	case SATAC_READ_FPDMA_QUEUED:
1976 	case SATAC_WRITE_FPDMA_QUEUED:
1977 		dma_cmd = B_TRUE;
1978 		break;
1979 	default:
1980 		dma_cmd = B_FALSE;
1981 	}
1982 
1983 	if (sata_cmdp->satacmd_num_dma_cookies != 0 && dma_cmd == B_TRUE) {
1984 		NVLOG((NVDBG_DELIVER, nvc,  nvp, "DMA command"));
1985 		nv_slotp->nvslot_start = nv_start_dma;
1986 		nv_slotp->nvslot_intr = nv_intr_dma;
1987 	} else if (spkt->satapkt_cmd.satacmd_cmd_reg == SATAC_PACKET) {
1988 		NVLOG((NVDBG_DELIVER, nvc,  nvp, "packet command"));
1989 		nv_slotp->nvslot_start = nv_start_pkt_pio;
1990 		nv_slotp->nvslot_intr = nv_intr_pkt_pio;
1991 		if ((direction == SATA_DIR_READ) ||
1992 		    (direction == SATA_DIR_WRITE)) {
1993 			nv_slotp->nvslot_byte_count =
1994 			    spkt->satapkt_cmd.satacmd_bp->b_bcount;
1995 			nv_slotp->nvslot_v_addr =
1996 			    spkt->satapkt_cmd.satacmd_bp->b_un.b_addr;
1997 			/*
1998 			 * Freeing DMA resources allocated by the framework
1999 			 * now to avoid buffer overwrite (dma sync) problems
2000 			 * when the buffer is released at command completion.
2001 			 * Primarily an issue on systems with more than
2002 			 * 4GB of memory.
2003 			 */
2004 			sata_free_dma_resources(spkt);
2005 		}
2006 	} else if (direction == SATA_DIR_NODATA_XFER) {
2007 		NVLOG((NVDBG_DELIVER, nvc, nvp, "non-data command"));
2008 		nv_slotp->nvslot_start = nv_start_nodata;
2009 		nv_slotp->nvslot_intr = nv_intr_nodata;
2010 	} else if (direction == SATA_DIR_READ) {
2011 		NVLOG((NVDBG_DELIVER, nvc, nvp, "pio in command"));
2012 		nv_slotp->nvslot_start = nv_start_pio_in;
2013 		nv_slotp->nvslot_intr = nv_intr_pio_in;
2014 		nv_slotp->nvslot_byte_count =
2015 		    spkt->satapkt_cmd.satacmd_bp->b_bcount;
2016 		nv_slotp->nvslot_v_addr =
2017 		    spkt->satapkt_cmd.satacmd_bp->b_un.b_addr;
2018 		/*
2019 		 * Freeing DMA resources allocated by the framework now to
2020 		 * avoid buffer overwrite (dma sync) problems when the buffer
2021 		 * is released at command completion.  This is not an issue
2022 		 * for write because write does not update the buffer.
2023 		 * Primarily an issue on systems with more than 4GB of memory.
2024 		 */
2025 		sata_free_dma_resources(spkt);
2026 	} else if (direction == SATA_DIR_WRITE) {
2027 		NVLOG((NVDBG_DELIVER, nvc, nvp, "pio out command"));
2028 		nv_slotp->nvslot_start = nv_start_pio_out;
2029 		nv_slotp->nvslot_intr = nv_intr_pio_out;
2030 		nv_slotp->nvslot_byte_count =
2031 		    spkt->satapkt_cmd.satacmd_bp->b_bcount;
2032 		nv_slotp->nvslot_v_addr =
2033 		    spkt->satapkt_cmd.satacmd_bp->b_un.b_addr;
2034 	} else {
2035 		nv_cmn_err(CE_WARN, nvc, nvp, "malformed command: direction"
2036 		    " %d cookies %d cmd %x",
2037 		    sata_cmdp->satacmd_flags.sata_data_direction,
2038 		    sata_cmdp->satacmd_num_dma_cookies,  cmd);
2039 		spkt->satapkt_reason = SATA_PKT_CMD_UNSUPPORTED;
2040 		ret = SATA_TRAN_CMD_UNSUPPORTED;
2041 
2042 		goto fail;
2043 	}
2044 
2045 	if ((ret = (*nv_slotp->nvslot_start)(nvp, slot)) ==
2046 	    SATA_TRAN_ACCEPTED) {
2047 #ifdef SGPIO_SUPPORT
2048 		nv_sgp_drive_active(nvp->nvp_ctlp,
2049 		    (nvp->nvp_ctlp->nvc_ctlr_num * 2) + nvp->nvp_port_num);
2050 #endif
2051 		nv_slotp->nvslot_stime = ddi_get_lbolt();
2052 
2053 		/*
2054 		 * start timer if it's not already running and this packet
2055 		 * is not requesting polled mode.
2056 		 */
2057 		if ((nvp->nvp_timeout_id == 0) &&
2058 		    ((spkt->satapkt_op_mode & SATA_OPMODE_POLLING) == 0)) {
2059 			nv_setup_timeout(nvp, NV_ONE_SEC);
2060 		}
2061 
2062 		nvp->nvp_previous_cmd = nvp->nvp_last_cmd;
2063 		nvp->nvp_last_cmd = spkt->satapkt_cmd.satacmd_cmd_reg;
2064 
2065 		return (SATA_TRAN_ACCEPTED);
2066 	}
2067 
2068 	fail:
2069 
2070 	spkt->satapkt_reason = SATA_TRAN_PORT_ERROR;
2071 
2072 	if (ncq == NVSLOT_NCQ) {
2073 		nvp->nvp_ncq_run--;
2074 		nvp->nvp_sactive_cache &= ~on_bit;
2075 	} else {
2076 		nvp->nvp_non_ncq_run--;
2077 	}
2078 	nv_slotp->nvslot_spkt = NULL;
2079 	nv_slotp->nvslot_flags = 0;
2080 
2081 	return (ret);
2082 }
2083 
2084 
2085 /*
2086  * Check if the signature is ready and if non-zero translate
2087  * it into a solaris sata defined type.
2088  */
2089 static void
2090 nv_read_signature(nv_port_t *nvp)
2091 {
2092 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
2093 
2094 	/*
2095 	 * Task file error register bit 0 set to 1 indicate that drive
2096 	 * is ready and have sent D2H FIS with a signature.
2097 	 */
2098 	if (nv_check_tfr_error != 0) {
2099 		uint8_t tfr_error = nv_get8(cmdhdl, nvp->nvp_error);
2100 		if (!(tfr_error & SATA_ERROR_ILI)) {
2101 			NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
2102 			    "nv_read_signature: signature not ready"));
2103 			return;
2104 		}
2105 	}
2106 
2107 	nvp->nvp_signature = nv_get8(cmdhdl, nvp->nvp_count);
2108 	nvp->nvp_signature |= (nv_get8(cmdhdl, nvp->nvp_sect) << 8);
2109 	nvp->nvp_signature |= (nv_get8(cmdhdl, nvp->nvp_lcyl) << 16);
2110 	nvp->nvp_signature |= (nv_get8(cmdhdl, nvp->nvp_hcyl) << 24);
2111 
2112 	NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp,
2113 	    "nv_read_signature: 0x%x ", nvp->nvp_signature));
2114 
2115 	switch (nvp->nvp_signature) {
2116 
2117 	case NV_SIG_DISK:
2118 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "drive is a disk"));
2119 		nvp->nvp_type = SATA_DTYPE_ATADISK;
2120 		break;
2121 	case NV_SIG_ATAPI:
2122 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2123 		    "drive is an optical device"));
2124 		nvp->nvp_type = SATA_DTYPE_ATAPICD;
2125 		break;
2126 	case NV_SIG_PM:
2127 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2128 		    "device is a port multiplier"));
2129 		nvp->nvp_type = SATA_DTYPE_PMULT;
2130 		break;
2131 	case NV_SIG_NOTREADY:
2132 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2133 		    "signature not ready"));
2134 		nvp->nvp_type = SATA_DTYPE_UNKNOWN;
2135 		break;
2136 	default:
2137 		nv_cmn_err(CE_WARN, nvp->nvp_ctlp, nvp, "signature %X not"
2138 		    " recognized", nvp->nvp_signature);
2139 		nvp->nvp_type = SATA_DTYPE_UNKNOWN;
2140 		break;
2141 	}
2142 
2143 	if (nvp->nvp_signature) {
2144 		nvp->nvp_state &= ~(NV_PORT_RESET_RETRY | NV_PORT_RESET);
2145 	}
2146 
2147 #ifdef SGPIO_SUPPORT
2148 	if (nvp->nvp_signature == NV_SIG_DISK) {
2149 		nv_sgp_drive_connect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
2150 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
2151 	} else {
2152 		nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
2153 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
2154 	}
2155 #endif
2156 }
2157 
2158 
2159 /*
2160  * Set up a new timeout or complete a timeout.
2161  * Timeout value has to be specified in microseconds. If time is zero, no new
2162  * timeout is scheduled.
2163  * Must be called at the end of the timeout routine.
2164  */
2165 static void
2166 nv_setup_timeout(nv_port_t *nvp, int time)
2167 {
2168 	clock_t old_duration = nvp->nvp_timeout_duration;
2169 
2170 	ASSERT(time != 0);
2171 
2172 	if (nvp->nvp_timeout_id != 0 && nvp->nvp_timeout_duration == 0) {
2173 		/*
2174 		 * Since we are dropping the mutex for untimeout,
2175 		 * the timeout may be executed while we are trying to
2176 		 * untimeout and setting up a new timeout.
2177 		 * If nvp_timeout_duration is 0, then this function
2178 		 * was re-entered. Just exit.
2179 		 */
2180 	cmn_err(CE_WARN, "nv_setup_timeout re-entered");
2181 		return;
2182 	}
2183 	nvp->nvp_timeout_duration = 0;
2184 	if (nvp->nvp_timeout_id == 0) {
2185 		/* Start new timer */
2186 		nvp->nvp_timeout_id = timeout(nv_timeout, (void *)nvp,
2187 		    drv_usectohz(time));
2188 	} else {
2189 		/*
2190 		 * If the currently running timeout is due later than the
2191 		 * requested one, restart it with a new expiration.
2192 		 * Our timeouts do not need to be accurate - we would be just
2193 		 * checking that the specified time was exceeded.
2194 		 */
2195 		if (old_duration > time) {
2196 			mutex_exit(&nvp->nvp_mutex);
2197 			(void) untimeout(nvp->nvp_timeout_id);
2198 			mutex_enter(&nvp->nvp_mutex);
2199 			nvp->nvp_timeout_id = timeout(nv_timeout, (void *)nvp,
2200 			    drv_usectohz(time));
2201 		}
2202 	}
2203 	nvp->nvp_timeout_duration = time;
2204 }
2205 
2206 
2207 
2208 int nv_reset_length = NV_RESET_LENGTH;
2209 
2210 /*
2211  * Reset the port
2212  *
2213  * Entered with nvp mutex held
2214  */
2215 static void
2216 nv_reset(nv_port_t *nvp)
2217 {
2218 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
2219 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
2220 	nv_ctl_t *nvc = nvp->nvp_ctlp;
2221 	uint32_t sctrl, serr, sstatus;
2222 	uint8_t bmicx;
2223 	int i, j, reset = 0;
2224 
2225 	ASSERT(mutex_owned(&nvp->nvp_mutex));
2226 
2227 	NVLOG((NVDBG_RESET, nvc, nvp, "nv_reset()"));
2228 	serr = nv_get32(bar5_hdl, nvp->nvp_serror);
2229 	NVLOG((NVDBG_RESET, nvc, nvp, "nv_reset: serr 0x%x", serr));
2230 
2231 	/*
2232 	 * stop DMA engine.
2233 	 */
2234 	bmicx = nv_get8(nvp->nvp_bm_hdl, nvp->nvp_bmicx);
2235 	nv_put8(nvp->nvp_bm_hdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
2236 
2237 	nvp->nvp_state |= NV_PORT_RESET;
2238 	nvp->nvp_reset_time = ddi_get_lbolt();
2239 
2240 	/*
2241 	 * Issue hardware reset; retry if necessary.
2242 	 */
2243 	for (i = 0; i < NV_RESET_ATTEMPTS; i++) {
2244 		/*
2245 		 * Clear signature registers
2246 		 */
2247 		nv_put8(cmdhdl, nvp->nvp_sect, 0);
2248 		nv_put8(cmdhdl, nvp->nvp_lcyl, 0);
2249 		nv_put8(cmdhdl, nvp->nvp_hcyl, 0);
2250 		nv_put8(cmdhdl, nvp->nvp_count, 0);
2251 
2252 		/* Clear task file error register */
2253 		nv_put8(nvp->nvp_cmd_hdl, nvp->nvp_error, 0);
2254 
2255 		/*
2256 		 * assert reset in PHY by writing a 1 to bit 0 scontrol
2257 		 */
2258 		sctrl = nv_get32(bar5_hdl, nvp->nvp_sctrl);
2259 		nv_put32(bar5_hdl, nvp->nvp_sctrl,
2260 		    sctrl | SCONTROL_DET_COMRESET);
2261 
2262 		/* Wait at least 1ms, as required by the spec */
2263 		drv_usecwait(nv_reset_length);
2264 
2265 		/* Reset all accumulated error bits */
2266 		nv_put32(bar5_hdl, nvp->nvp_serror, 0xffffffff);
2267 
2268 		sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
2269 		sctrl = nv_get32(bar5_hdl, nvp->nvp_sctrl);
2270 		NVLOG((NVDBG_RESET, nvc, nvp, "nv_reset: applied (%d); "
2271 		    "sctrl 0x%x, sstatus 0x%x", i, sctrl, sstatus));
2272 
2273 		/* de-assert reset in PHY */
2274 		nv_put32(bar5_hdl, nvp->nvp_sctrl,
2275 		    sctrl & ~SCONTROL_DET_COMRESET);
2276 
2277 		/*
2278 		 * Wait up to 10ms for COMINIT to arrive, indicating that
2279 		 * the device recognized COMRESET.
2280 		 */
2281 		for (j = 0; j < 10; j++) {
2282 			drv_usecwait(NV_ONE_MSEC);
2283 			sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
2284 			if ((SSTATUS_GET_IPM(sstatus) == SSTATUS_IPM_ACTIVE) &&
2285 			    (SSTATUS_GET_DET(sstatus) ==
2286 			    SSTATUS_DET_DEVPRE_PHYCOM)) {
2287 				reset = 1;
2288 				break;
2289 			}
2290 		}
2291 		if (reset == 1)
2292 			break;
2293 	}
2294 	serr = nv_get32(bar5_hdl, nvp->nvp_serror);
2295 	if (reset == 0) {
2296 		NVLOG((NVDBG_RESET, nvc, nvp, "nv_reset not succeeded "
2297 		    "(serr 0x%x) after %d attempts", serr, i));
2298 	} else {
2299 		NVLOG((NVDBG_RESET, nvc, nvp, "nv_reset succeeded (serr 0x%x)"
2300 		    "after %dms", serr, TICK_TO_MSEC(ddi_get_lbolt() -
2301 		    nvp->nvp_reset_time)));
2302 	}
2303 	nvp->nvp_reset_time = ddi_get_lbolt();
2304 
2305 	if (servicing_interrupt()) {
2306 		nv_setup_timeout(nvp, NV_ONE_MSEC);
2307 	} else if (!(nvp->nvp_state & NV_PORT_RESET_RETRY)) {
2308 		nv_monitor_reset(nvp);
2309 	}
2310 }
2311 
2312 
2313 /*
2314  * Initialize register handling specific to mcp51/mcp55
2315  */
2316 /* ARGSUSED */
2317 static void
2318 mcp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2319 {
2320 	nv_port_t *nvp;
2321 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
2322 	uint8_t off, port;
2323 
2324 	nvc->nvc_mcp5x_ctl = (uint32_t *)(bar5 + MCP5X_CTL);
2325 	nvc->nvc_mcp5x_ncq = (uint32_t *)(bar5 + MCP5X_NCQ);
2326 
2327 	for (port = 0, off = 0; port < NV_MAX_PORTS(nvc); port++, off += 2) {
2328 		nvp = &(nvc->nvc_port[port]);
2329 		nvp->nvp_mcp5x_int_status =
2330 		    (uint16_t *)(bar5 + MCP5X_INT_STATUS + off);
2331 		nvp->nvp_mcp5x_int_ctl =
2332 		    (uint16_t *)(bar5 + MCP5X_INT_CTL + off);
2333 
2334 		/*
2335 		 * clear any previous interrupts asserted
2336 		 */
2337 		nv_put16(nvc->nvc_bar_hdl[5], nvp->nvp_mcp5x_int_status,
2338 		    MCP5X_INT_CLEAR);
2339 
2340 		/*
2341 		 * These are the interrupts to accept for now.  The spec
2342 		 * says these are enable bits, but nvidia has indicated
2343 		 * these are masking bits.  Even though they may be masked
2344 		 * out to prevent asserting the main interrupt, they can
2345 		 * still be asserted while reading the interrupt status
2346 		 * register, so that needs to be considered in the interrupt
2347 		 * handler.
2348 		 */
2349 		nv_put16(nvc->nvc_bar_hdl[5], nvp->nvp_mcp5x_int_ctl,
2350 		    ~(MCP5X_INT_IGNORE));
2351 	}
2352 
2353 	/*
2354 	 * Allow the driver to program the BM on the first command instead
2355 	 * of waiting for an interrupt.
2356 	 */
2357 #ifdef NCQ
2358 	flags = MCP_SATA_AE_NCQ_PDEV_FIRST_CMD | MCP_SATA_AE_NCQ_SDEV_FIRST_CMD;
2359 	nv_put32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ncq, flags);
2360 	flags = MCP_SATA_AE_CTL_PRI_SWNCQ | MCP_SATA_AE_CTL_SEC_SWNCQ;
2361 	nv_put32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ctl, flags);
2362 #endif
2363 
2364 	/*
2365 	 * mcp55 rev A03 and above supports 40-bit physical addressing.
2366 	 * Enable DMA to take advantage of that.
2367 	 *
2368 	 */
2369 	if (nvc->nvc_revid >= 0xa3) {
2370 		if (nv_sata_40bit_dma == B_TRUE) {
2371 			uint32_t reg32;
2372 			NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2373 			    "rev id is %X and"
2374 			    " is capable of 40-bit DMA addressing",
2375 			    nvc->nvc_revid));
2376 			nvc->dma_40bit = B_TRUE;
2377 			reg32 = pci_config_get32(pci_conf_handle,
2378 			    NV_SATA_CFG_20);
2379 			pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
2380 			    reg32 | NV_40BIT_PRD);
2381 		} else {
2382 			NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2383 			    "40-bit DMA disabled by nv_sata_40bit_dma"));
2384 		}
2385 	} else {
2386 		nv_cmn_err(CE_NOTE, nvp->nvp_ctlp, nvp, "rev id is %X and is "
2387 		    "not capable of 40-bit DMA addressing", nvc->nvc_revid);
2388 	}
2389 }
2390 
2391 
2392 /*
2393  * Initialize register handling specific to ck804
2394  */
2395 static void
2396 ck804_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2397 {
2398 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
2399 	uint32_t reg32;
2400 	uint16_t reg16;
2401 	nv_port_t *nvp;
2402 	int j;
2403 
2404 	/*
2405 	 * delay hotplug interrupts until PHYRDY.
2406 	 */
2407 	reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_42);
2408 	pci_config_put32(pci_conf_handle, NV_SATA_CFG_42,
2409 	    reg32 | CK804_CFG_DELAY_HOTPLUG_INTR);
2410 
2411 	/*
2412 	 * enable hot plug interrupts for channel x and y
2413 	 */
2414 	reg16 = nv_get16(nvc->nvc_bar_hdl[5],
2415 	    (uint16_t *)(bar5 + NV_ADMACTL_X));
2416 	nv_put16(nvc->nvc_bar_hdl[5], (uint16_t *)(bar5 + NV_ADMACTL_X),
2417 	    NV_HIRQ_EN | reg16);
2418 
2419 
2420 	reg16 = nv_get16(nvc->nvc_bar_hdl[5],
2421 	    (uint16_t *)(bar5 + NV_ADMACTL_Y));
2422 	nv_put16(nvc->nvc_bar_hdl[5], (uint16_t *)(bar5 + NV_ADMACTL_Y),
2423 	    NV_HIRQ_EN | reg16);
2424 
2425 	nvc->nvc_ck804_int_status = (uint8_t *)(bar5 + CK804_SATA_INT_STATUS);
2426 
2427 	/*
2428 	 * clear any existing interrupt pending then enable
2429 	 */
2430 	for (j = 0; j < NV_MAX_PORTS(nvc); j++) {
2431 		nvp = &(nvc->nvc_port[j]);
2432 		mutex_enter(&nvp->nvp_mutex);
2433 		(*(nvp->nvp_ctlp->nvc_set_intr))(nvp,
2434 		    NV_INTR_CLEAR_ALL|NV_INTR_ENABLE);
2435 		mutex_exit(&nvp->nvp_mutex);
2436 	}
2437 }
2438 
2439 
2440 /*
2441  * Initialize the controller and set up driver data structures.
2442  * determine if ck804 or mcp5x class.
2443  */
2444 static int
2445 nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2446 {
2447 	struct sata_hba_tran stran;
2448 	nv_port_t *nvp;
2449 	int j, ck804;
2450 	uchar_t *cmd_addr, *ctl_addr, *bm_addr;
2451 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2452 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
2453 	uint32_t reg32;
2454 	uint8_t reg8, reg8_save;
2455 
2456 	NVLOG((NVDBG_INIT, nvc, NULL, "nv_init_ctl entered"));
2457 
2458 	ck804 = B_TRUE;
2459 #ifdef SGPIO_SUPPORT
2460 	nvc->nvc_mcp5x_flag = B_FALSE;
2461 #endif
2462 
2463 	/*
2464 	 * Need to set bit 2 to 1 at config offset 0x50
2465 	 * to enable access to the bar5 registers.
2466 	 */
2467 	reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_20);
2468 	if (!(reg32 & NV_BAR5_SPACE_EN)) {
2469 		pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
2470 		    reg32 | NV_BAR5_SPACE_EN);
2471 	}
2472 
2473 	/*
2474 	 * Determine if this is ck804 or mcp5x.  ck804 will map in the
2475 	 * task file registers into bar5 while mcp5x won't.  The offset of
2476 	 * the task file registers in mcp5x's space is unused, so it will
2477 	 * return zero.  So check one of the task file registers to see if it is
2478 	 * writable and reads back what was written.  If it's mcp5x it will
2479 	 * return back 0xff whereas ck804 will return the value written.
2480 	 */
2481 	reg8_save = nv_get8(bar5_hdl,
2482 	    (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X));
2483 
2484 
2485 	for (j = 1; j < 3; j++) {
2486 
2487 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X), j);
2488 		reg8 = nv_get8(bar5_hdl,
2489 		    (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X));
2490 
2491 		if (reg8 != j) {
2492 			ck804 = B_FALSE;
2493 			nvc->nvc_mcp5x_flag = B_TRUE;
2494 			break;
2495 		}
2496 	}
2497 
2498 	nv_put8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X), reg8_save);
2499 
2500 	if (ck804 == B_TRUE) {
2501 		NVLOG((NVDBG_INIT, nvc, NULL, "controller is CK804"));
2502 		nvc->nvc_interrupt = ck804_intr;
2503 		nvc->nvc_reg_init = ck804_reg_init;
2504 		nvc->nvc_set_intr = ck804_set_intr;
2505 	} else {
2506 		NVLOG((NVDBG_INIT, nvc, NULL, "controller is MCP51/MCP55"));
2507 		nvc->nvc_interrupt = mcp5x_intr;
2508 		nvc->nvc_reg_init = mcp5x_reg_init;
2509 		nvc->nvc_set_intr = mcp5x_set_intr;
2510 	}
2511 
2512 
2513 	stran.sata_tran_hba_rev = SATA_TRAN_HBA_REV;
2514 	stran.sata_tran_hba_dip = nvc->nvc_dip;
2515 	stran.sata_tran_hba_num_cports = NV_NUM_CPORTS;
2516 	stran.sata_tran_hba_features_support =
2517 	    SATA_CTLF_HOTPLUG | SATA_CTLF_ASN | SATA_CTLF_ATAPI;
2518 	stran.sata_tran_hba_qdepth = NV_QUEUE_SLOTS;
2519 	stran.sata_tran_probe_port = nv_sata_probe;
2520 	stran.sata_tran_start = nv_sata_start;
2521 	stran.sata_tran_abort = nv_sata_abort;
2522 	stran.sata_tran_reset_dport = nv_sata_reset;
2523 	stran.sata_tran_selftest = NULL;
2524 	stran.sata_tran_hotplug_ops = &nv_hotplug_ops;
2525 	stran.sata_tran_pwrmgt_ops = NULL;
2526 	stran.sata_tran_ioctl = NULL;
2527 	nvc->nvc_sata_hba_tran = stran;
2528 
2529 	nvc->nvc_port = kmem_zalloc(sizeof (nv_port_t) * NV_MAX_PORTS(nvc),
2530 	    KM_SLEEP);
2531 
2532 	/*
2533 	 * initialize registers common to all chipsets
2534 	 */
2535 	nv_common_reg_init(nvc);
2536 
2537 	for (j = 0; j < NV_MAX_PORTS(nvc); j++) {
2538 		nvp = &(nvc->nvc_port[j]);
2539 
2540 		cmd_addr = nvp->nvp_cmd_addr;
2541 		ctl_addr = nvp->nvp_ctl_addr;
2542 		bm_addr = nvp->nvp_bm_addr;
2543 
2544 		mutex_init(&nvp->nvp_mutex, NULL, MUTEX_DRIVER,
2545 		    DDI_INTR_PRI(nvc->nvc_intr_pri));
2546 
2547 		cv_init(&nvp->nvp_poll_cv, NULL, CV_DRIVER, NULL);
2548 
2549 		nvp->nvp_data	= cmd_addr + NV_DATA;
2550 		nvp->nvp_error	= cmd_addr + NV_ERROR;
2551 		nvp->nvp_feature = cmd_addr + NV_FEATURE;
2552 		nvp->nvp_count	= cmd_addr + NV_COUNT;
2553 		nvp->nvp_sect	= cmd_addr + NV_SECT;
2554 		nvp->nvp_lcyl	= cmd_addr + NV_LCYL;
2555 		nvp->nvp_hcyl	= cmd_addr + NV_HCYL;
2556 		nvp->nvp_drvhd	= cmd_addr + NV_DRVHD;
2557 		nvp->nvp_status	= cmd_addr + NV_STATUS;
2558 		nvp->nvp_cmd	= cmd_addr + NV_CMD;
2559 		nvp->nvp_altstatus = ctl_addr + NV_ALTSTATUS;
2560 		nvp->nvp_devctl	= ctl_addr + NV_DEVCTL;
2561 
2562 		nvp->nvp_bmicx	= bm_addr + BMICX_REG;
2563 		nvp->nvp_bmisx	= bm_addr + BMISX_REG;
2564 		nvp->nvp_bmidtpx = (uint32_t *)(bm_addr + BMIDTPX_REG);
2565 
2566 		nvp->nvp_state = 0;
2567 
2568 		/*
2569 		 * Initialize dma handles, etc.
2570 		 * If it fails, the port is in inactive state.
2571 		 */
2572 		(void) nv_init_port(nvp);
2573 	}
2574 
2575 	/*
2576 	 * initialize register by calling chip specific reg initialization
2577 	 */
2578 	(*(nvc->nvc_reg_init))(nvc, pci_conf_handle);
2579 
2580 	/* initialize the hba dma attribute */
2581 	if (nvc->dma_40bit == B_TRUE)
2582 		nvc->nvc_sata_hba_tran.sata_tran_hba_dma_attr =
2583 		    &buffer_dma_40bit_attr;
2584 	else
2585 		nvc->nvc_sata_hba_tran.sata_tran_hba_dma_attr =
2586 		    &buffer_dma_attr;
2587 
2588 	return (NV_SUCCESS);
2589 }
2590 
2591 
2592 /*
2593  * Initialize data structures with enough slots to handle queuing, if
2594  * enabled.  NV_QUEUE_SLOTS will be set to 1 or 32, depending on whether
2595  * NCQ support is built into the driver and enabled.  It might have been
2596  * better to derive the true size from the drive itself, but the sata
2597  * module only sends down that information on the first NCQ command,
2598  * which means possibly re-sizing the structures on an interrupt stack,
2599  * making error handling more messy.  The easy way is to just allocate
2600  * all 32 slots, which is what most drives support anyway.
2601  */
2602 static int
2603 nv_init_port(nv_port_t *nvp)
2604 {
2605 	nv_ctl_t *nvc = nvp->nvp_ctlp;
2606 	size_t	prd_size = sizeof (prde_t) * NV_DMA_NSEGS;
2607 	dev_info_t *dip = nvc->nvc_dip;
2608 	ddi_device_acc_attr_t dev_attr;
2609 	size_t buf_size;
2610 	ddi_dma_cookie_t cookie;
2611 	uint_t count;
2612 	int rc, i;
2613 
2614 	dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
2615 	dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
2616 	dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
2617 
2618 	if (nvp->nvp_state & NV_PORT_INIT) {
2619 		NVLOG((NVDBG_INIT, nvc, nvp,
2620 		    "nv_init_port previously initialized"));
2621 
2622 		return (NV_SUCCESS);
2623 	} else {
2624 		NVLOG((NVDBG_INIT, nvc, nvp, "nv_init_port initializing"));
2625 	}
2626 
2627 	nvp->nvp_sg_dma_hdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
2628 	    NV_QUEUE_SLOTS, KM_SLEEP);
2629 
2630 	nvp->nvp_sg_acc_hdl = kmem_zalloc(sizeof (ddi_acc_handle_t) *
2631 	    NV_QUEUE_SLOTS, KM_SLEEP);
2632 
2633 	nvp->nvp_sg_addr = kmem_zalloc(sizeof (caddr_t) *
2634 	    NV_QUEUE_SLOTS, KM_SLEEP);
2635 
2636 	nvp->nvp_sg_paddr = kmem_zalloc(sizeof (uint32_t) *
2637 	    NV_QUEUE_SLOTS, KM_SLEEP);
2638 
2639 	nvp->nvp_slot = kmem_zalloc(sizeof (nv_slot_t) * NV_QUEUE_SLOTS,
2640 	    KM_SLEEP);
2641 
2642 	for (i = 0; i < NV_QUEUE_SLOTS; i++) {
2643 
2644 		rc = ddi_dma_alloc_handle(dip, &nv_prd_dma_attr,
2645 		    DDI_DMA_SLEEP, NULL, &(nvp->nvp_sg_dma_hdl[i]));
2646 
2647 		if (rc != DDI_SUCCESS) {
2648 			nv_uninit_port(nvp);
2649 
2650 			return (NV_FAILURE);
2651 		}
2652 
2653 		rc = ddi_dma_mem_alloc(nvp->nvp_sg_dma_hdl[i], prd_size,
2654 		    &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
2655 		    NULL, &(nvp->nvp_sg_addr[i]), &buf_size,
2656 		    &(nvp->nvp_sg_acc_hdl[i]));
2657 
2658 		if (rc != DDI_SUCCESS) {
2659 			nv_uninit_port(nvp);
2660 
2661 			return (NV_FAILURE);
2662 		}
2663 
2664 		rc = ddi_dma_addr_bind_handle(nvp->nvp_sg_dma_hdl[i], NULL,
2665 		    nvp->nvp_sg_addr[i], buf_size,
2666 		    DDI_DMA_WRITE | DDI_DMA_CONSISTENT,
2667 		    DDI_DMA_SLEEP, NULL, &cookie, &count);
2668 
2669 		if (rc != DDI_DMA_MAPPED) {
2670 			nv_uninit_port(nvp);
2671 
2672 			return (NV_FAILURE);
2673 		}
2674 
2675 		ASSERT(count == 1);
2676 		ASSERT((cookie.dmac_address & (sizeof (int) - 1)) == 0);
2677 
2678 		ASSERT(cookie.dmac_laddress <= UINT32_MAX);
2679 
2680 		nvp->nvp_sg_paddr[i] = cookie.dmac_address;
2681 	}
2682 
2683 	/*
2684 	 * nvp_queue_depth represents the actual drive queue depth, not the
2685 	 * number of slots allocated in the structures (which may be more).
2686 	 * Actual queue depth is only learned after the first NCQ command, so
2687 	 * initialize it to 1 for now.
2688 	 */
2689 	nvp->nvp_queue_depth = 1;
2690 
2691 	/*
2692 	 * Port is initialized whether the device is attached or not.
2693 	 * Link processing and device identification will be started later,
2694 	 * after interrupts are initialized.
2695 	 */
2696 	nvp->nvp_type = SATA_DTYPE_NONE;
2697 	nvp->nvp_signature = 0;
2698 
2699 	nvp->nvp_state |= NV_PORT_INIT;
2700 
2701 	return (NV_SUCCESS);
2702 }
2703 
2704 
2705 /*
2706  * Establish initial link & device type
2707  * Called only from nv_attach
2708  * Loops up to approximately 210ms; can exit earlier.
2709  * The time includes wait for the link up and completion of the initial
2710  * signature gathering operation.
2711  */
2712 static void
2713 nv_init_port_link_processing(nv_ctl_t *nvc)
2714 {
2715 	ddi_acc_handle_t bar5_hdl;
2716 	nv_port_t *nvp;
2717 	volatile uint32_t sstatus;
2718 	int port, links_up, ready_ports, i;
2719 
2720 
2721 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2722 		nvp = &(nvc->nvc_port[port]);
2723 		if (nvp != NULL && (nvp->nvp_state & NV_PORT_INIT)) {
2724 			/*
2725 			 * Initiate device identification, if any is attached
2726 			 * and reset was not already applied by hot-plug
2727 			 * event processing.
2728 			 */
2729 			mutex_enter(&nvp->nvp_mutex);
2730 			if (!(nvp->nvp_state & NV_PORT_RESET)) {
2731 				nvp->nvp_state |= NV_PORT_RESET | NV_PORT_PROBE;
2732 				nv_reset(nvp);
2733 			}
2734 			mutex_exit(&nvp->nvp_mutex);
2735 		}
2736 	}
2737 	/*
2738 	 * Wait up to 10ms for links up.
2739 	 * Spec says that link should be up in 1ms.
2740 	 */
2741 	for (i = 0; i < 10; i++) {
2742 		drv_usecwait(NV_ONE_MSEC);
2743 		links_up = 0;
2744 		for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2745 			nvp = &(nvc->nvc_port[port]);
2746 			mutex_enter(&nvp->nvp_mutex);
2747 			bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
2748 			sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
2749 			if ((SSTATUS_GET_IPM(sstatus) == SSTATUS_IPM_ACTIVE) &&
2750 			    (SSTATUS_GET_DET(sstatus) ==
2751 			    SSTATUS_DET_DEVPRE_PHYCOM)) {
2752 				if ((nvp->nvp_state & NV_PORT_RESET) &&
2753 				    nvp->nvp_type == SATA_DTYPE_NONE) {
2754 					nvp->nvp_type = SATA_DTYPE_UNKNOWN;
2755 				}
2756 				NVLOG((NVDBG_INIT, nvc, nvp,
2757 				    "nv_init_port_link_processing()"
2758 				    "link up; time from reset %dms",
2759 				    TICK_TO_MSEC(ddi_get_lbolt() -
2760 				    nvp->nvp_reset_time)));
2761 				links_up++;
2762 			}
2763 			mutex_exit(&nvp->nvp_mutex);
2764 		}
2765 		if (links_up == NV_MAX_PORTS(nvc)) {
2766 			break;
2767 		}
2768 	}
2769 	NVLOG((NVDBG_RESET, nvc, nvp, "nv_init_port_link_processing():"
2770 	    "%d links up", links_up));
2771 	/*
2772 	 * At this point, if any device is attached, the link is established.
2773 	 * Wait till devices are ready to be accessed, no more than 200ms.
2774 	 * 200ms is empirical time in which a signature should be available.
2775 	 */
2776 	for (i = 0; i < 200; i++) {
2777 		ready_ports = 0;
2778 		for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2779 			nvp = &(nvc->nvc_port[port]);
2780 			mutex_enter(&nvp->nvp_mutex);
2781 			bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
2782 			sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
2783 			if ((SSTATUS_GET_IPM(sstatus) == SSTATUS_IPM_ACTIVE) &&
2784 			    (SSTATUS_GET_DET(sstatus) ==
2785 			    SSTATUS_DET_DEVPRE_PHYCOM) &&
2786 			    !(nvp->nvp_state & (NV_PORT_RESET |
2787 			    NV_PORT_RESET_RETRY))) {
2788 				/*
2789 				 * Reset already processed
2790 				 */
2791 				NVLOG((NVDBG_RESET, nvc, nvp,
2792 				    "nv_init_port_link_processing()"
2793 				    "device ready; port state %x; "
2794 				    "time from reset %dms", nvp->nvp_state,
2795 				    TICK_TO_MSEC(ddi_get_lbolt() -
2796 				    nvp->nvp_reset_time)));
2797 
2798 				ready_ports++;
2799 			}
2800 			mutex_exit(&nvp->nvp_mutex);
2801 		}
2802 		if (ready_ports == links_up) {
2803 			break;
2804 		}
2805 		drv_usecwait(NV_ONE_MSEC);
2806 	}
2807 	NVLOG((NVDBG_RESET, nvc, nvp, "nv_init_port_link_processing():"
2808 	    "%d devices ready", ready_ports));
2809 }
2810 
2811 /*
2812  * Free dynamically allocated structures for port.
2813  */
2814 static void
2815 nv_uninit_port(nv_port_t *nvp)
2816 {
2817 	int i;
2818 
2819 	/*
2820 	 * It is possible to reach here before a port has been initialized or
2821 	 * after it has already been uninitialized.  Just return in that case.
2822 	 */
2823 	if (nvp->nvp_slot == NULL) {
2824 
2825 		return;
2826 	}
2827 	/*
2828 	 * Mark port unusable now.
2829 	 */
2830 	nvp->nvp_state &= ~NV_PORT_INIT;
2831 
2832 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2833 	    "nv_uninit_port uninitializing"));
2834 
2835 #ifdef SGPIO_SUPPORT
2836 	if (nvp->nvp_type == SATA_DTYPE_ATADISK) {
2837 		nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
2838 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
2839 	}
2840 #endif
2841 
2842 	nvp->nvp_type = SATA_DTYPE_NONE;
2843 
2844 	for (i = 0; i < NV_QUEUE_SLOTS; i++) {
2845 		if (nvp->nvp_sg_paddr[i]) {
2846 			(void) ddi_dma_unbind_handle(nvp->nvp_sg_dma_hdl[i]);
2847 		}
2848 
2849 		if (nvp->nvp_sg_acc_hdl[i] != NULL) {
2850 			ddi_dma_mem_free(&(nvp->nvp_sg_acc_hdl[i]));
2851 		}
2852 
2853 		if (nvp->nvp_sg_dma_hdl[i] != NULL) {
2854 			ddi_dma_free_handle(&(nvp->nvp_sg_dma_hdl[i]));
2855 		}
2856 	}
2857 
2858 	kmem_free(nvp->nvp_slot, sizeof (nv_slot_t) * NV_QUEUE_SLOTS);
2859 	nvp->nvp_slot = NULL;
2860 
2861 	kmem_free(nvp->nvp_sg_dma_hdl,
2862 	    sizeof (ddi_dma_handle_t) * NV_QUEUE_SLOTS);
2863 	nvp->nvp_sg_dma_hdl = NULL;
2864 
2865 	kmem_free(nvp->nvp_sg_acc_hdl,
2866 	    sizeof (ddi_acc_handle_t) * NV_QUEUE_SLOTS);
2867 	nvp->nvp_sg_acc_hdl = NULL;
2868 
2869 	kmem_free(nvp->nvp_sg_addr, sizeof (caddr_t) * NV_QUEUE_SLOTS);
2870 	nvp->nvp_sg_addr = NULL;
2871 
2872 	kmem_free(nvp->nvp_sg_paddr, sizeof (uint32_t) * NV_QUEUE_SLOTS);
2873 	nvp->nvp_sg_paddr = NULL;
2874 }
2875 
2876 
2877 /*
2878  * Cache register offsets and access handles to frequently accessed registers
2879  * which are common to either chipset.
2880  */
2881 static void
2882 nv_common_reg_init(nv_ctl_t *nvc)
2883 {
2884 	uchar_t *bar5_addr = nvc->nvc_bar_addr[5];
2885 	uchar_t *bm_addr_offset, *sreg_offset;
2886 	uint8_t bar, port;
2887 	nv_port_t *nvp;
2888 
2889 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2890 		if (port == 0) {
2891 			bar = NV_BAR_0;
2892 			bm_addr_offset = 0;
2893 			sreg_offset = (uchar_t *)(CH0_SREG_OFFSET + bar5_addr);
2894 		} else {
2895 			bar = NV_BAR_2;
2896 			bm_addr_offset = (uchar_t *)8;
2897 			sreg_offset = (uchar_t *)(CH1_SREG_OFFSET + bar5_addr);
2898 		}
2899 
2900 		nvp = &(nvc->nvc_port[port]);
2901 		nvp->nvp_ctlp = nvc;
2902 		nvp->nvp_port_num = port;
2903 		NVLOG((NVDBG_INIT, nvc, nvp, "setting up port mappings"));
2904 
2905 		nvp->nvp_cmd_hdl = nvc->nvc_bar_hdl[bar];
2906 		nvp->nvp_cmd_addr = nvc->nvc_bar_addr[bar];
2907 		nvp->nvp_ctl_hdl = nvc->nvc_bar_hdl[bar + 1];
2908 		nvp->nvp_ctl_addr = nvc->nvc_bar_addr[bar + 1];
2909 		nvp->nvp_bm_hdl = nvc->nvc_bar_hdl[NV_BAR_4];
2910 		nvp->nvp_bm_addr = nvc->nvc_bar_addr[NV_BAR_4] +
2911 		    (long)bm_addr_offset;
2912 
2913 		nvp->nvp_sstatus = (uint32_t *)(sreg_offset + NV_SSTATUS);
2914 		nvp->nvp_serror = (uint32_t *)(sreg_offset + NV_SERROR);
2915 		nvp->nvp_sactive = (uint32_t *)(sreg_offset + NV_SACTIVE);
2916 		nvp->nvp_sctrl = (uint32_t *)(sreg_offset + NV_SCTRL);
2917 	}
2918 }
2919 
2920 
2921 static void
2922 nv_uninit_ctl(nv_ctl_t *nvc)
2923 {
2924 	int port;
2925 	nv_port_t *nvp;
2926 
2927 	NVLOG((NVDBG_INIT, nvc, NULL, "nv_uninit_ctl entered"));
2928 
2929 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2930 		nvp = &(nvc->nvc_port[port]);
2931 		mutex_enter(&nvp->nvp_mutex);
2932 		NVLOG((NVDBG_INIT, nvc, nvp, "uninitializing port"));
2933 		nv_uninit_port(nvp);
2934 		mutex_exit(&nvp->nvp_mutex);
2935 		mutex_destroy(&nvp->nvp_mutex);
2936 		cv_destroy(&nvp->nvp_poll_cv);
2937 	}
2938 
2939 	kmem_free(nvc->nvc_port, NV_MAX_PORTS(nvc) * sizeof (nv_port_t));
2940 	nvc->nvc_port = NULL;
2941 }
2942 
2943 
2944 /*
2945  * ck804 interrupt.  This is a wrapper around ck804_intr_process so
2946  * that interrupts from other devices can be disregarded while dtracing.
2947  */
2948 /* ARGSUSED */
2949 static uint_t
2950 ck804_intr(caddr_t arg1, caddr_t arg2)
2951 {
2952 	nv_ctl_t *nvc = (nv_ctl_t *)arg1;
2953 	uint8_t intr_status;
2954 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2955 
2956 	if (nvc->nvc_state & NV_CTRL_SUSPEND)
2957 		return (DDI_INTR_UNCLAIMED);
2958 
2959 	intr_status = ddi_get8(bar5_hdl, nvc->nvc_ck804_int_status);
2960 
2961 	if (intr_status == 0) {
2962 
2963 		return (DDI_INTR_UNCLAIMED);
2964 	}
2965 
2966 	ck804_intr_process(nvc, intr_status);
2967 
2968 	return (DDI_INTR_CLAIMED);
2969 }
2970 
2971 
2972 /*
2973  * Main interrupt handler for ck804.  handles normal device
2974  * interrupts as well as port hot plug and remove interrupts.
2975  *
2976  */
2977 static void
2978 ck804_intr_process(nv_ctl_t *nvc, uint8_t intr_status)
2979 {
2980 
2981 	int port, i;
2982 	nv_port_t *nvp;
2983 	nv_slot_t *nv_slotp;
2984 	uchar_t	status;
2985 	sata_pkt_t *spkt;
2986 	uint8_t bmstatus, clear_bits;
2987 	ddi_acc_handle_t bmhdl;
2988 	int nvcleared = 0;
2989 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2990 	uint32_t sstatus;
2991 	int port_mask_hot[] = {
2992 		CK804_INT_PDEV_HOT, CK804_INT_SDEV_HOT,
2993 	};
2994 	int port_mask_pm[] = {
2995 		CK804_INT_PDEV_PM, CK804_INT_SDEV_PM,
2996 	};
2997 
2998 	NVLOG((NVDBG_INTR, nvc, NULL,
2999 	    "ck804_intr_process entered intr_status=%x", intr_status));
3000 
3001 	/*
3002 	 * For command completion interrupt, explicit clear is not required.
3003 	 * however, for the error cases explicit clear is performed.
3004 	 */
3005 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
3006 
3007 		int port_mask[] = {CK804_INT_PDEV_INT, CK804_INT_SDEV_INT};
3008 
3009 		if ((port_mask[port] & intr_status) == 0) {
3010 			continue;
3011 		}
3012 
3013 		NVLOG((NVDBG_INTR, nvc, NULL,
3014 		    "ck804_intr_process interrupt on port %d", port));
3015 
3016 		nvp = &(nvc->nvc_port[port]);
3017 
3018 		mutex_enter(&nvp->nvp_mutex);
3019 
3020 		/*
3021 		 * there was a corner case found where an interrupt
3022 		 * arrived before nvp_slot was set.  Should
3023 		 * probably should track down why that happens and try
3024 		 * to eliminate that source and then get rid of this
3025 		 * check.
3026 		 */
3027 		if (nvp->nvp_slot == NULL) {
3028 			status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_status);
3029 			NVLOG((NVDBG_ALWAYS, nvc, nvp, "spurious interrupt "
3030 			    "received before initialization "
3031 			    "completed status=%x", status));
3032 			mutex_exit(&nvp->nvp_mutex);
3033 
3034 			/*
3035 			 * clear interrupt bits
3036 			 */
3037 			nv_put8(bar5_hdl, nvc->nvc_ck804_int_status,
3038 			    port_mask[port]);
3039 
3040 			continue;
3041 		}
3042 
3043 		if ((&(nvp->nvp_slot[0]))->nvslot_spkt == NULL)  {
3044 			status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_status);
3045 			NVLOG((NVDBG_ALWAYS, nvc, nvp, "spurious interrupt "
3046 			    " no command in progress status=%x", status));
3047 			mutex_exit(&nvp->nvp_mutex);
3048 
3049 			/*
3050 			 * clear interrupt bits
3051 			 */
3052 			nv_put8(bar5_hdl, nvc->nvc_ck804_int_status,
3053 			    port_mask[port]);
3054 
3055 			continue;
3056 		}
3057 
3058 		bmhdl = nvp->nvp_bm_hdl;
3059 		bmstatus = nv_get8(bmhdl, nvp->nvp_bmisx);
3060 
3061 		if (!(bmstatus & BMISX_IDEINTS)) {
3062 			mutex_exit(&nvp->nvp_mutex);
3063 
3064 			continue;
3065 		}
3066 
3067 		status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_altstatus);
3068 
3069 		if (status & SATA_STATUS_BSY) {
3070 			mutex_exit(&nvp->nvp_mutex);
3071 
3072 			continue;
3073 		}
3074 
3075 		nv_slotp = &(nvp->nvp_slot[0]);
3076 
3077 		ASSERT(nv_slotp);
3078 
3079 		spkt = nv_slotp->nvslot_spkt;
3080 
3081 		if (spkt == NULL) {
3082 			mutex_exit(&nvp->nvp_mutex);
3083 
3084 			continue;
3085 		}
3086 
3087 		(*nv_slotp->nvslot_intr)(nvp, nv_slotp);
3088 
3089 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
3090 
3091 		if (nv_slotp->nvslot_flags == NVSLOT_COMPLETE) {
3092 
3093 			nv_complete_io(nvp, spkt, 0);
3094 		}
3095 
3096 		mutex_exit(&nvp->nvp_mutex);
3097 	}
3098 
3099 	/*
3100 	 * ck804 often doesn't correctly distinguish hot add/remove
3101 	 * interrupts.  Frequently both the ADD and the REMOVE bits
3102 	 * are asserted, whether it was a remove or add.  Use sstatus
3103 	 * to distinguish hot add from hot remove.
3104 	 */
3105 
3106 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
3107 		clear_bits = 0;
3108 
3109 		nvp = &(nvc->nvc_port[port]);
3110 		mutex_enter(&nvp->nvp_mutex);
3111 
3112 		if ((port_mask_pm[port] & intr_status) != 0) {
3113 			clear_bits = port_mask_pm[port];
3114 			NVLOG((NVDBG_HOT, nvc, nvp,
3115 			    "clearing PM interrupt bit: %x",
3116 			    intr_status & port_mask_pm[port]));
3117 		}
3118 
3119 		if ((port_mask_hot[port] & intr_status) == 0) {
3120 			if (clear_bits != 0) {
3121 				goto clear;
3122 			} else {
3123 				mutex_exit(&nvp->nvp_mutex);
3124 				continue;
3125 			}
3126 		}
3127 
3128 		/*
3129 		 * reaching here means there was a hot add or remove.
3130 		 */
3131 		clear_bits |= port_mask_hot[port];
3132 
3133 		ASSERT(nvc->nvc_port[port].nvp_sstatus);
3134 
3135 		sstatus = nv_get32(bar5_hdl,
3136 		    nvc->nvc_port[port].nvp_sstatus);
3137 
3138 		if ((sstatus & SSTATUS_DET_DEVPRE_PHYCOM) ==
3139 		    SSTATUS_DET_DEVPRE_PHYCOM) {
3140 			nv_report_add_remove(nvp, 0);
3141 		} else {
3142 			nv_report_add_remove(nvp, NV_PORT_HOTREMOVED);
3143 		}
3144 	clear:
3145 		/*
3146 		 * clear interrupt bits.  explicit interrupt clear is
3147 		 * required for hotplug interrupts.
3148 		 */
3149 		nv_put8(bar5_hdl, nvc->nvc_ck804_int_status, clear_bits);
3150 
3151 		/*
3152 		 * make sure it's flushed and cleared.  If not try
3153 		 * again.  Sometimes it has been observed to not clear
3154 		 * on the first try.
3155 		 */
3156 		intr_status = nv_get8(bar5_hdl, nvc->nvc_ck804_int_status);
3157 
3158 		/*
3159 		 * make 10 additional attempts to clear the interrupt
3160 		 */
3161 		for (i = 0; (intr_status & clear_bits) && (i < 10); i++) {
3162 			NVLOG((NVDBG_ALWAYS, nvc, nvp, "inst_status=%x "
3163 			    "still not clear try=%d", intr_status,
3164 			    ++nvcleared));
3165 			nv_put8(bar5_hdl, nvc->nvc_ck804_int_status,
3166 			    clear_bits);
3167 			intr_status = nv_get8(bar5_hdl,
3168 			    nvc->nvc_ck804_int_status);
3169 		}
3170 
3171 		/*
3172 		 * if still not clear, log a message and disable the
3173 		 * port. highly unlikely that this path is taken, but it
3174 		 * gives protection against a wedged interrupt.
3175 		 */
3176 		if (intr_status & clear_bits) {
3177 			(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
3178 			nv_port_state_change(nvp, SATA_EVNT_PORT_FAILED,
3179 			    SATA_ADDR_CPORT, SATA_PSTATE_FAILED);
3180 			nvp->nvp_state |= NV_PORT_FAILED;
3181 			(void) nv_abort_active(nvp, NULL, SATA_PKT_DEV_ERROR,
3182 			    B_TRUE);
3183 			nv_cmn_err(CE_WARN, nvc, nvp, "unable to clear "
3184 			    "interrupt.  disabling port intr_status=%X",
3185 			    intr_status);
3186 		}
3187 
3188 		mutex_exit(&nvp->nvp_mutex);
3189 	}
3190 }
3191 
3192 
3193 /*
3194  * Interrupt handler for mcp5x.  It is invoked by the wrapper for each port
3195  * on the controller, to handle completion and hot plug and remove events.
3196  *
3197  */
3198 static uint_t
3199 mcp5x_intr_port(nv_port_t *nvp)
3200 {
3201 	nv_ctl_t *nvc = nvp->nvp_ctlp;
3202 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
3203 	uint8_t clear = 0, intr_cycles = 0;
3204 	int ret = DDI_INTR_UNCLAIMED;
3205 	uint16_t int_status;
3206 	clock_t intr_time;
3207 	int loop_cnt = 0;
3208 
3209 	nvp->intr_start_time = ddi_get_lbolt();
3210 
3211 	NVLOG((NVDBG_INTR, nvc, nvp, "mcp55_intr_port entered"));
3212 
3213 	do {
3214 		/*
3215 		 * read current interrupt status
3216 		 */
3217 		int_status = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_status);
3218 
3219 		NVLOG((NVDBG_INTR, nvc, nvp, "int_status = %x", int_status));
3220 
3221 		/*
3222 		 * MCP5X_INT_IGNORE interrupts will show up in the status,
3223 		 * but are masked out from causing an interrupt to be generated
3224 		 * to the processor.  Ignore them here by masking them out.
3225 		 */
3226 		int_status &= ~(MCP5X_INT_IGNORE);
3227 
3228 		/*
3229 		 * exit the loop when no more interrupts to process
3230 		 */
3231 		if (int_status == 0) {
3232 
3233 			break;
3234 		}
3235 
3236 		if (int_status & MCP5X_INT_COMPLETE) {
3237 			NVLOG((NVDBG_INTR, nvc, nvp,
3238 			    "mcp5x_packet_complete_intr"));
3239 			/*
3240 			 * since int_status was set, return DDI_INTR_CLAIMED
3241 			 * from the DDI's perspective even though the packet
3242 			 * completion may not have succeeded.  If it fails,
3243 			 * need to manually clear the interrupt, otherwise
3244 			 * clearing is implicit.
3245 			 */
3246 			ret = DDI_INTR_CLAIMED;
3247 			if (mcp5x_packet_complete_intr(nvc, nvp) ==
3248 			    NV_FAILURE) {
3249 				clear |= MCP5X_INT_COMPLETE;
3250 			} else {
3251 				intr_cycles = 0;
3252 			}
3253 		}
3254 
3255 		if (int_status & MCP5X_INT_DMA_SETUP) {
3256 			NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_dma_setup_intr"));
3257 
3258 			/*
3259 			 * Needs to be cleared before starting the BM, so do it
3260 			 * now.  make sure this is still working.
3261 			 */
3262 			nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_status,
3263 			    MCP5X_INT_DMA_SETUP);
3264 #ifdef NCQ
3265 			ret = mcp5x_dma_setup_intr(nvc, nvp);
3266 #endif
3267 		}
3268 
3269 		if (int_status & MCP5X_INT_REM) {
3270 			NVLOG((NVDBG_HOT, nvc, nvp, "mcp5x device removed"));
3271 			clear |= MCP5X_INT_REM;
3272 			ret = DDI_INTR_CLAIMED;
3273 
3274 			mutex_enter(&nvp->nvp_mutex);
3275 			nv_report_add_remove(nvp, NV_PORT_HOTREMOVED);
3276 			mutex_exit(&nvp->nvp_mutex);
3277 
3278 		} else if (int_status & MCP5X_INT_ADD) {
3279 			NVLOG((NVDBG_HOT, nvc, nvp, "mcp5x device added"));
3280 			clear |= MCP5X_INT_ADD;
3281 			ret = DDI_INTR_CLAIMED;
3282 
3283 			mutex_enter(&nvp->nvp_mutex);
3284 			nv_report_add_remove(nvp, 0);
3285 			mutex_exit(&nvp->nvp_mutex);
3286 		}
3287 		if (clear) {
3288 			nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_status, clear);
3289 			clear = 0;
3290 		}
3291 		/* Protect against a stuck interrupt */
3292 		if (intr_cycles++ == NV_MAX_INTR_LOOP) {
3293 			nv_cmn_err(CE_WARN, nvc, nvp, "excessive interrupt "
3294 			    "processing.  Disabling port int_status=%X"
3295 			    " clear=%X", int_status, clear);
3296 			mutex_enter(&nvp->nvp_mutex);
3297 			(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
3298 			nv_port_state_change(nvp, SATA_EVNT_PORT_FAILED,
3299 			    SATA_ADDR_CPORT, SATA_PSTATE_FAILED);
3300 			nvp->nvp_state |= NV_PORT_FAILED;
3301 			(void) nv_abort_active(nvp, NULL, SATA_PKT_DEV_ERROR,
3302 			    B_TRUE);
3303 			mutex_exit(&nvp->nvp_mutex);
3304 		}
3305 
3306 	} while (loop_cnt++ < nv_max_intr_loops);
3307 
3308 	if (loop_cnt > nvp->intr_loop_cnt) {
3309 		NVLOG((NVDBG_INTR, nvp->nvp_ctlp, nvp,
3310 		    "Exiting with multiple intr loop count %d", loop_cnt));
3311 		nvp->intr_loop_cnt = loop_cnt;
3312 	}
3313 
3314 	if ((nv_debug_flags & (NVDBG_INTR | NVDBG_VERBOSE)) ==
3315 	    (NVDBG_INTR | NVDBG_VERBOSE)) {
3316 		uint8_t status, bmstatus;
3317 		uint16_t int_status2;
3318 
3319 		if (int_status & MCP5X_INT_COMPLETE) {
3320 			status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_altstatus);
3321 			bmstatus = nv_get8(nvp->nvp_bm_hdl, nvp->nvp_bmisx);
3322 			int_status2 = nv_get16(nvp->nvp_ctlp->nvc_bar_hdl[5],
3323 			    nvp->nvp_mcp5x_int_status);
3324 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
3325 			    "mcp55_intr_port: Exiting with altstatus %x, "
3326 			    "bmicx %x, int_status2 %X, int_status %X, ret %x,"
3327 			    " loop_cnt %d ", status, bmstatus, int_status2,
3328 			    int_status, ret, loop_cnt));
3329 		}
3330 	}
3331 
3332 	NVLOG((NVDBG_INTR, nvc, nvp, "mcp55_intr_port: finished ret=%d", ret));
3333 
3334 	/*
3335 	 * To facilitate debugging, keep track of the length of time spent in
3336 	 * the port interrupt routine.
3337 	 */
3338 	intr_time = ddi_get_lbolt() - nvp->intr_start_time;
3339 	if (intr_time > nvp->intr_duration)
3340 		nvp->intr_duration = intr_time;
3341 
3342 	return (ret);
3343 }
3344 
3345 
3346 /* ARGSUSED */
3347 static uint_t
3348 mcp5x_intr(caddr_t arg1, caddr_t arg2)
3349 {
3350 	nv_ctl_t *nvc = (nv_ctl_t *)arg1;
3351 	int ret;
3352 
3353 	if (nvc->nvc_state & NV_CTRL_SUSPEND)
3354 		return (DDI_INTR_UNCLAIMED);
3355 
3356 	ret = mcp5x_intr_port(&(nvc->nvc_port[0]));
3357 	ret |= mcp5x_intr_port(&(nvc->nvc_port[1]));
3358 
3359 	return (ret);
3360 }
3361 
3362 
3363 #ifdef NCQ
3364 /*
3365  * with software driven NCQ on mcp5x, an interrupt occurs right
3366  * before the drive is ready to do a DMA transfer.  At this point,
3367  * the PRD table needs to be programmed and the DMA engine enabled
3368  * and ready to go.
3369  *
3370  * -- MCP_SATA_AE_INT_STATUS_SDEV_DMA_SETUP indicates the interrupt
3371  * -- MCP_SATA_AE_NCQ_PDEV_DMA_SETUP_TAG shows which command is ready
3372  * -- clear bit 0 of master command reg
3373  * -- program PRD
3374  * -- clear the interrupt status bit for the DMA Setup FIS
3375  * -- set bit 0 of the bus master command register
3376  */
3377 static int
3378 mcp5x_dma_setup_intr(nv_ctl_t *nvc, nv_port_t *nvp)
3379 {
3380 	int slot;
3381 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
3382 	uint8_t bmicx;
3383 	int port = nvp->nvp_port_num;
3384 	uint8_t tag_shift[] = {MCP_SATA_AE_NCQ_PDEV_DMA_SETUP_TAG_SHIFT,
3385 	    MCP_SATA_AE_NCQ_SDEV_DMA_SETUP_TAG_SHIFT};
3386 
3387 	nv_cmn_err(CE_PANIC, nvc, nvp,
3388 	    "this is should not be executed at all until NCQ");
3389 
3390 	mutex_enter(&nvp->nvp_mutex);
3391 
3392 	slot = nv_get32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ncq);
3393 
3394 	slot = (slot >> tag_shift[port]) & MCP_SATA_AE_NCQ_DMA_SETUP_TAG_MASK;
3395 
3396 	NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_dma_setup_intr slot %d"
3397 	    " nvp_slot_sactive %X", slot, nvp->nvp_sactive_cache));
3398 
3399 	/*
3400 	 * halt the DMA engine.  This step is necessary according to
3401 	 * the mcp5x spec, probably since there may have been a "first" packet
3402 	 * that already programmed the DMA engine, but may not turn out to
3403 	 * be the first one processed.
3404 	 */
3405 	bmicx = nv_get8(bmhdl, nvp->nvp_bmicx);
3406 
3407 	if (bmicx & BMICX_SSBM) {
3408 		NVLOG((NVDBG_INTR, nvc, nvp, "BM was already enabled for "
3409 		    "another packet.  Cancelling and reprogramming"));
3410 		nv_put8(bmhdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
3411 	}
3412 	nv_put8(bmhdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
3413 
3414 	nv_start_dma_engine(nvp, slot);
3415 
3416 	mutex_exit(&nvp->nvp_mutex);
3417 
3418 	return (DDI_INTR_CLAIMED);
3419 }
3420 #endif /* NCQ */
3421 
3422 
3423 /*
3424  * packet completion interrupt.  If the packet is complete, invoke
3425  * the packet completion callback.
3426  */
3427 static int
3428 mcp5x_packet_complete_intr(nv_ctl_t *nvc, nv_port_t *nvp)
3429 {
3430 	uint8_t status, bmstatus;
3431 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
3432 	int sactive;
3433 	int active_pkt_bit = 0, active_pkt = 0, ncq_command = B_FALSE;
3434 	sata_pkt_t *spkt;
3435 	nv_slot_t *nv_slotp;
3436 
3437 	mutex_enter(&nvp->nvp_mutex);
3438 
3439 	bmstatus = nv_get8(bmhdl, nvp->nvp_bmisx);
3440 
3441 	if (!(bmstatus & (BMISX_IDEINTS | BMISX_IDERR))) {
3442 		NVLOG((NVDBG_INTR, nvc, nvp, "BMISX_IDEINTS not set"));
3443 		mutex_exit(&nvp->nvp_mutex);
3444 
3445 		return (NV_FAILURE);
3446 	}
3447 
3448 	/*
3449 	 * Commands may have been processed by abort or timeout before
3450 	 * interrupt processing acquired the mutex. So we may be processing
3451 	 * an interrupt for packets that were already removed.
3452 	 * For functionning NCQ processing all slots may be checked, but
3453 	 * with NCQ disabled (current code), relying on *_run flags is OK.
3454 	 */
3455 	if (nvp->nvp_non_ncq_run) {
3456 		/*
3457 		 * If the just completed item is a non-ncq command, the busy
3458 		 * bit should not be set
3459 		 */
3460 		status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_altstatus);
3461 		if (status & SATA_STATUS_BSY) {
3462 			nv_cmn_err(CE_WARN, nvc, nvp,
3463 			    "unexpected SATA_STATUS_BSY set");
3464 			mutex_exit(&nvp->nvp_mutex);
3465 			/*
3466 			 * calling function will clear interrupt.  then
3467 			 * the real interrupt will either arrive or the
3468 			 * packet timeout handling will take over and
3469 			 * reset.
3470 			 */
3471 			return (NV_FAILURE);
3472 		}
3473 		ASSERT(nvp->nvp_ncq_run == 0);
3474 	} else {
3475 		ASSERT(nvp->nvp_non_ncq_run == 0);
3476 		/*
3477 		 * Pre-NCQ code!
3478 		 * Nothing to do. The packet for the command that just
3479 		 * completed is already gone. Just clear the interrupt.
3480 		 */
3481 		(void) nv_bm_status_clear(nvp);
3482 		(void) nv_get8(nvp->nvp_cmd_hdl, nvp->nvp_status);
3483 		mutex_exit(&nvp->nvp_mutex);
3484 		return (NV_SUCCESS);
3485 
3486 		/*
3487 		 * NCQ check for BSY here and wait if still bsy before
3488 		 * continuing. Rather than wait for it to be cleared
3489 		 * when starting a packet and wasting CPU time, the starting
3490 		 * thread can exit immediate, but might have to spin here
3491 		 * for a bit possibly.  Needs more work and experimentation.
3492 		 *
3493 		 */
3494 	}
3495 
3496 	/*
3497 	 * active_pkt_bit will represent the bitmap of the single completed
3498 	 * packet.  Because of the nature of sw assisted NCQ, only one
3499 	 * command will complete per interrupt.
3500 	 */
3501 
3502 	if (ncq_command == B_FALSE) {
3503 		active_pkt = 0;
3504 	} else {
3505 		/*
3506 		 * NCQ: determine which command just completed, by examining
3507 		 * which bit cleared in the register since last written.
3508 		 */
3509 		sactive = nv_get32(nvc->nvc_bar_hdl[5], nvp->nvp_sactive);
3510 
3511 		active_pkt_bit = ~sactive & nvp->nvp_sactive_cache;
3512 
3513 		ASSERT(active_pkt_bit);
3514 
3515 
3516 		/*
3517 		 * this failure path needs more work to handle the
3518 		 * error condition and recovery.
3519 		 */
3520 		if (active_pkt_bit == 0) {
3521 			ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
3522 
3523 			nv_cmn_err(CE_CONT, nvc, nvp, "ERROR sactive = %X  "
3524 			    "nvp->nvp_sactive %X", sactive,
3525 			    nvp->nvp_sactive_cache);
3526 
3527 			(void) nv_get8(cmdhdl, nvp->nvp_status);
3528 
3529 			mutex_exit(&nvp->nvp_mutex);
3530 
3531 			return (NV_FAILURE);
3532 		}
3533 
3534 		for (active_pkt = 0; (active_pkt_bit & 0x1) != 0x1;
3535 		    active_pkt++, active_pkt_bit >>= 1) {
3536 		}
3537 
3538 		/*
3539 		 * make sure only one bit is ever turned on
3540 		 */
3541 		ASSERT(active_pkt_bit == 1);
3542 
3543 		nvp->nvp_sactive_cache &= ~(0x01 << active_pkt);
3544 	}
3545 
3546 	nv_slotp = &(nvp->nvp_slot[active_pkt]);
3547 
3548 	spkt = nv_slotp->nvslot_spkt;
3549 
3550 	ASSERT(spkt != NULL);
3551 
3552 	(*nv_slotp->nvslot_intr)(nvp, nv_slotp);
3553 
3554 	nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
3555 
3556 	if (nv_slotp->nvslot_flags == NVSLOT_COMPLETE) {
3557 
3558 		nv_complete_io(nvp, spkt, active_pkt);
3559 	}
3560 
3561 	mutex_exit(&nvp->nvp_mutex);
3562 
3563 	return (NV_SUCCESS);
3564 }
3565 
3566 
3567 static void
3568 nv_complete_io(nv_port_t *nvp, sata_pkt_t *spkt, int slot)
3569 {
3570 
3571 	ASSERT(MUTEX_HELD(&nvp->nvp_mutex));
3572 
3573 	if ((&(nvp->nvp_slot[slot]))->nvslot_flags & NVSLOT_NCQ) {
3574 		nvp->nvp_ncq_run--;
3575 	} else {
3576 		nvp->nvp_non_ncq_run--;
3577 	}
3578 
3579 	/*
3580 	 * mark the packet slot idle so it can be reused.  Do this before
3581 	 * calling satapkt_comp so the slot can be reused.
3582 	 */
3583 	(&(nvp->nvp_slot[slot]))->nvslot_spkt = NULL;
3584 
3585 	if (spkt->satapkt_op_mode & SATA_OPMODE_SYNCH) {
3586 		/*
3587 		 * If this is not timed polled mode cmd, which has an
3588 		 * active thread monitoring for completion, then need
3589 		 * to signal the sleeping thread that the cmd is complete.
3590 		 */
3591 		if ((spkt->satapkt_op_mode & SATA_OPMODE_POLLING) == 0) {
3592 			cv_signal(&nvp->nvp_poll_cv);
3593 		}
3594 
3595 		return;
3596 	}
3597 
3598 	if (spkt->satapkt_comp != NULL) {
3599 		mutex_exit(&nvp->nvp_mutex);
3600 		(*spkt->satapkt_comp)(spkt);
3601 		mutex_enter(&nvp->nvp_mutex);
3602 	}
3603 }
3604 
3605 
3606 /*
3607  * check whether packet is ncq command or not.  for ncq command,
3608  * start it if there is still room on queue.  for non-ncq command only
3609  * start if no other command is running.
3610  */
3611 static int
3612 nv_start_async(nv_port_t *nvp, sata_pkt_t *spkt)
3613 {
3614 	uint8_t cmd, ncq;
3615 
3616 	NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp, "nv_start_async: entry"));
3617 
3618 	cmd = spkt->satapkt_cmd.satacmd_cmd_reg;
3619 
3620 	ncq = ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
3621 	    (cmd == SATAC_READ_FPDMA_QUEUED));
3622 
3623 	if (ncq == B_FALSE) {
3624 
3625 		if ((nvp->nvp_non_ncq_run == 1) ||
3626 		    (nvp->nvp_ncq_run > 0)) {
3627 			/*
3628 			 * next command is non-ncq which can't run
3629 			 * concurrently.  exit and return queue full.
3630 			 */
3631 			spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
3632 
3633 			return (SATA_TRAN_QUEUE_FULL);
3634 		}
3635 
3636 		return (nv_start_common(nvp, spkt));
3637 	}
3638 
3639 	/*
3640 	 * ncq == B_TRUE
3641 	 */
3642 	if (nvp->nvp_non_ncq_run == 1) {
3643 		/*
3644 		 * cannot start any NCQ commands when there
3645 		 * is a non-NCQ command running.
3646 		 */
3647 		spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
3648 
3649 		return (SATA_TRAN_QUEUE_FULL);
3650 	}
3651 
3652 #ifdef NCQ
3653 	/*
3654 	 * this is not compiled for now as satapkt_device.satadev_qdepth
3655 	 * is being pulled out until NCQ support is later addressed
3656 	 *
3657 	 * nvp_queue_depth is initialized by the first NCQ command
3658 	 * received.
3659 	 */
3660 	if (nvp->nvp_queue_depth == 1) {
3661 		nvp->nvp_queue_depth =
3662 		    spkt->satapkt_device.satadev_qdepth;
3663 
3664 		ASSERT(nvp->nvp_queue_depth > 1);
3665 
3666 		NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp,
3667 		    "nv_process_queue: nvp_queue_depth set to %d",
3668 		    nvp->nvp_queue_depth));
3669 	}
3670 #endif
3671 
3672 	if (nvp->nvp_ncq_run >= nvp->nvp_queue_depth) {
3673 		/*
3674 		 * max number of NCQ commands already active
3675 		 */
3676 		spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
3677 
3678 		return (SATA_TRAN_QUEUE_FULL);
3679 	}
3680 
3681 	return (nv_start_common(nvp, spkt));
3682 }
3683 
3684 
3685 /*
3686  * configure INTx and legacy interrupts
3687  */
3688 static int
3689 nv_add_legacy_intrs(nv_ctl_t *nvc)
3690 {
3691 	dev_info_t	*devinfo = nvc->nvc_dip;
3692 	int		actual, count = 0;
3693 	int		x, y, rc, inum = 0;
3694 
3695 	NVLOG((NVDBG_ENTRY, nvc, NULL, "nv_add_legacy_intrs"));
3696 
3697 	/*
3698 	 * get number of interrupts
3699 	 */
3700 	rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &count);
3701 	if ((rc != DDI_SUCCESS) || (count == 0)) {
3702 		NVLOG((NVDBG_INTR, nvc, NULL,
3703 		    "ddi_intr_get_nintrs() failed, "
3704 		    "rc %d count %d", rc, count));
3705 
3706 		return (DDI_FAILURE);
3707 	}
3708 
3709 	/*
3710 	 * allocate an array of interrupt handles
3711 	 */
3712 	nvc->nvc_intr_size = count * sizeof (ddi_intr_handle_t);
3713 	nvc->nvc_htable = kmem_zalloc(nvc->nvc_intr_size, KM_SLEEP);
3714 
3715 	/*
3716 	 * call ddi_intr_alloc()
3717 	 */
3718 	rc = ddi_intr_alloc(devinfo, nvc->nvc_htable, DDI_INTR_TYPE_FIXED,
3719 	    inum, count, &actual, DDI_INTR_ALLOC_STRICT);
3720 
3721 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
3722 		nv_cmn_err(CE_WARN, nvc, NULL,
3723 		    "ddi_intr_alloc() failed, rc %d", rc);
3724 		kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3725 
3726 		return (DDI_FAILURE);
3727 	}
3728 
3729 	if (actual < count) {
3730 		nv_cmn_err(CE_WARN, nvc, NULL,
3731 		    "ddi_intr_alloc: requested: %d, received: %d",
3732 		    count, actual);
3733 
3734 		goto failure;
3735 	}
3736 
3737 	nvc->nvc_intr_cnt = actual;
3738 
3739 	/*
3740 	 * get intr priority
3741 	 */
3742 	if (ddi_intr_get_pri(nvc->nvc_htable[0], &nvc->nvc_intr_pri) !=
3743 	    DDI_SUCCESS) {
3744 		nv_cmn_err(CE_WARN, nvc, NULL, "ddi_intr_get_pri() failed");
3745 
3746 		goto failure;
3747 	}
3748 
3749 	/*
3750 	 * Test for high level mutex
3751 	 */
3752 	if (nvc->nvc_intr_pri >= ddi_intr_get_hilevel_pri()) {
3753 		nv_cmn_err(CE_WARN, nvc, NULL,
3754 		    "nv_add_legacy_intrs: high level intr not supported");
3755 
3756 		goto failure;
3757 	}
3758 
3759 	for (x = 0; x < actual; x++) {
3760 		if (ddi_intr_add_handler(nvc->nvc_htable[x],
3761 		    nvc->nvc_interrupt, (caddr_t)nvc, NULL) != DDI_SUCCESS) {
3762 			nv_cmn_err(CE_WARN, nvc, NULL,
3763 			    "ddi_intr_add_handler() failed");
3764 
3765 			goto failure;
3766 		}
3767 	}
3768 
3769 	/*
3770 	 * call ddi_intr_enable() for legacy interrupts
3771 	 */
3772 	for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3773 		(void) ddi_intr_enable(nvc->nvc_htable[x]);
3774 	}
3775 
3776 	return (DDI_SUCCESS);
3777 
3778 	failure:
3779 	/*
3780 	 * free allocated intr and nvc_htable
3781 	 */
3782 	for (y = 0; y < actual; y++) {
3783 		(void) ddi_intr_free(nvc->nvc_htable[y]);
3784 	}
3785 
3786 	kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3787 
3788 	return (DDI_FAILURE);
3789 }
3790 
3791 #ifdef	NV_MSI_SUPPORTED
3792 /*
3793  * configure MSI interrupts
3794  */
3795 static int
3796 nv_add_msi_intrs(nv_ctl_t *nvc)
3797 {
3798 	dev_info_t	*devinfo = nvc->nvc_dip;
3799 	int		count, avail, actual;
3800 	int		x, y, rc, inum = 0;
3801 
3802 	NVLOG((NVDBG_ENTRY, nvc, NULL, "nv_add_msi_intrs"));
3803 
3804 	/*
3805 	 * get number of interrupts
3806 	 */
3807 	rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count);
3808 	if ((rc != DDI_SUCCESS) || (count == 0)) {
3809 		nv_cmn_err(CE_WARN, nvc, NULL,
3810 		    "ddi_intr_get_nintrs() failed, "
3811 		    "rc %d count %d", rc, count);
3812 
3813 		return (DDI_FAILURE);
3814 	}
3815 
3816 	/*
3817 	 * get number of available interrupts
3818 	 */
3819 	rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail);
3820 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
3821 		nv_cmn_err(CE_WARN, nvc, NULL,
3822 		    "ddi_intr_get_navail() failed, "
3823 		    "rc %d avail %d", rc, avail);
3824 
3825 		return (DDI_FAILURE);
3826 	}
3827 
3828 	if (avail < count) {
3829 		nv_cmn_err(CE_WARN, nvc, NULL,
3830 		    "ddi_intr_get_nvail returned %d ddi_intr_get_nintrs: %d",
3831 		    avail, count);
3832 	}
3833 
3834 	/*
3835 	 * allocate an array of interrupt handles
3836 	 */
3837 	nvc->nvc_intr_size = count * sizeof (ddi_intr_handle_t);
3838 	nvc->nvc_htable = kmem_alloc(nvc->nvc_intr_size, KM_SLEEP);
3839 
3840 	rc = ddi_intr_alloc(devinfo, nvc->nvc_htable, DDI_INTR_TYPE_MSI,
3841 	    inum, count, &actual, DDI_INTR_ALLOC_NORMAL);
3842 
3843 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
3844 		nv_cmn_err(CE_WARN, nvc, NULL,
3845 		    "ddi_intr_alloc() failed, rc %d", rc);
3846 		kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3847 
3848 		return (DDI_FAILURE);
3849 	}
3850 
3851 	/*
3852 	 * Use interrupt count returned or abort?
3853 	 */
3854 	if (actual < count) {
3855 		NVLOG((NVDBG_INIT, nvc, NULL,
3856 		    "Requested: %d, Received: %d", count, actual));
3857 	}
3858 
3859 	nvc->nvc_intr_cnt = actual;
3860 
3861 	/*
3862 	 * get priority for first msi, assume remaining are all the same
3863 	 */
3864 	if (ddi_intr_get_pri(nvc->nvc_htable[0], &nvc->nvc_intr_pri) !=
3865 	    DDI_SUCCESS) {
3866 		nv_cmn_err(CE_WARN, nvc, NULL, "ddi_intr_get_pri() failed");
3867 
3868 		goto failure;
3869 	}
3870 
3871 	/*
3872 	 * test for high level mutex
3873 	 */
3874 	if (nvc->nvc_intr_pri >= ddi_intr_get_hilevel_pri()) {
3875 		nv_cmn_err(CE_WARN, nvc, NULL,
3876 		    "nv_add_msi_intrs: high level intr not supported");
3877 
3878 		goto failure;
3879 	}
3880 
3881 	/*
3882 	 * Call ddi_intr_add_handler()
3883 	 */
3884 	for (x = 0; x < actual; x++) {
3885 		if (ddi_intr_add_handler(nvc->nvc_htable[x],
3886 		    nvc->nvc_interrupt, (caddr_t)nvc, NULL) != DDI_SUCCESS) {
3887 			nv_cmn_err(CE_WARN, nvc, NULL,
3888 			    "ddi_intr_add_handler() failed");
3889 
3890 			goto failure;
3891 		}
3892 	}
3893 
3894 	(void) ddi_intr_get_cap(nvc->nvc_htable[0], &nvc->nvc_intr_cap);
3895 
3896 	if (nvc->nvc_intr_cap & DDI_INTR_FLAG_BLOCK) {
3897 		(void) ddi_intr_block_enable(nvc->nvc_htable,
3898 		    nvc->nvc_intr_cnt);
3899 	} else {
3900 		/*
3901 		 * Call ddi_intr_enable() for MSI non block enable
3902 		 */
3903 		for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3904 			(void) ddi_intr_enable(nvc->nvc_htable[x]);
3905 		}
3906 	}
3907 
3908 	return (DDI_SUCCESS);
3909 
3910 	failure:
3911 	/*
3912 	 * free allocated intr and nvc_htable
3913 	 */
3914 	for (y = 0; y < actual; y++) {
3915 		(void) ddi_intr_free(nvc->nvc_htable[y]);
3916 	}
3917 
3918 	kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3919 
3920 	return (DDI_FAILURE);
3921 }
3922 #endif
3923 
3924 
3925 static void
3926 nv_rem_intrs(nv_ctl_t *nvc)
3927 {
3928 	int x, i;
3929 	nv_port_t *nvp;
3930 
3931 	NVLOG((NVDBG_ENTRY, nvc, NULL, "nv_rem_intrs"));
3932 
3933 	/*
3934 	 * prevent controller from generating interrupts by
3935 	 * masking them out.  This is an extra precaution.
3936 	 */
3937 	for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
3938 		nvp = (&nvc->nvc_port[i]);
3939 		mutex_enter(&nvp->nvp_mutex);
3940 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
3941 		mutex_exit(&nvp->nvp_mutex);
3942 	}
3943 
3944 	/*
3945 	 * disable all interrupts
3946 	 */
3947 	if ((nvc->nvc_intr_type == DDI_INTR_TYPE_MSI) &&
3948 	    (nvc->nvc_intr_cap & DDI_INTR_FLAG_BLOCK)) {
3949 		(void) ddi_intr_block_disable(nvc->nvc_htable,
3950 		    nvc->nvc_intr_cnt);
3951 	} else {
3952 		for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3953 			(void) ddi_intr_disable(nvc->nvc_htable[x]);
3954 		}
3955 	}
3956 
3957 	for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3958 		(void) ddi_intr_remove_handler(nvc->nvc_htable[x]);
3959 		(void) ddi_intr_free(nvc->nvc_htable[x]);
3960 	}
3961 
3962 	kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3963 }
3964 
3965 
3966 /*
3967  * variable argument wrapper for cmn_err.  prefixes the instance and port
3968  * number if possible
3969  */
3970 static void
3971 nv_vcmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, va_list ap)
3972 {
3973 	char port[NV_STRING_10];
3974 	char inst[NV_STRING_10];
3975 
3976 	mutex_enter(&nv_log_mutex);
3977 
3978 	if (nvc) {
3979 		(void) snprintf(inst, NV_STRING_10, "inst %d",
3980 		    ddi_get_instance(nvc->nvc_dip));
3981 	} else {
3982 		inst[0] = '\0';
3983 	}
3984 
3985 	if (nvp) {
3986 		(void) sprintf(port, " port %d", nvp->nvp_port_num);
3987 	} else {
3988 		port[0] = '\0';
3989 	}
3990 
3991 	(void) sprintf(nv_log_buf, "nv_sata %s%s%s", inst, port,
3992 	    (inst[0]|port[0] ? ": " :""));
3993 
3994 	(void) vsnprintf(&nv_log_buf[strlen(nv_log_buf)],
3995 	    NV_STRING_512 - strlen(nv_log_buf), fmt, ap);
3996 
3997 	/*
3998 	 * normally set to log to console but in some debug situations it
3999 	 * may be useful to log only to a file.
4000 	 */
4001 	if (nv_log_to_console) {
4002 		if (nv_prom_print) {
4003 			prom_printf("%s\n", nv_log_buf);
4004 		} else {
4005 			cmn_err(ce, "%s", nv_log_buf);
4006 		}
4007 
4008 
4009 	} else {
4010 		cmn_err(ce, "!%s", nv_log_buf);
4011 	}
4012 
4013 	mutex_exit(&nv_log_mutex);
4014 }
4015 
4016 
4017 /*
4018  * wrapper for cmn_err
4019  */
4020 static void
4021 nv_cmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...)
4022 {
4023 	va_list ap;
4024 
4025 	va_start(ap, fmt);
4026 	nv_vcmn_err(ce, nvc, nvp, fmt, ap);
4027 	va_end(ap);
4028 }
4029 
4030 
4031 #if defined(DEBUG)
4032 /*
4033  * prefixes the instance and port number if possible to the debug message
4034  */
4035 static void
4036 nv_log(uint_t flag, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...)
4037 {
4038 	va_list ap;
4039 
4040 	if ((nv_debug_flags & flag) == 0) {
4041 		return;
4042 	}
4043 
4044 	va_start(ap, fmt);
4045 	nv_vcmn_err(CE_NOTE, nvc, nvp, fmt, ap);
4046 	va_end(ap);
4047 
4048 	/*
4049 	 * useful for some debugging situations
4050 	 */
4051 	if (nv_log_delay) {
4052 		drv_usecwait(nv_log_delay);
4053 	}
4054 
4055 }
4056 #endif /* DEBUG */
4057 
4058 
4059 /*
4060  * program registers which are common to all commands
4061  */
4062 static void
4063 nv_program_taskfile_regs(nv_port_t *nvp, int slot)
4064 {
4065 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4066 	sata_pkt_t *spkt;
4067 	sata_cmd_t *satacmd;
4068 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4069 	uint8_t cmd, ncq = B_FALSE;
4070 
4071 	spkt = nv_slotp->nvslot_spkt;
4072 	satacmd = &spkt->satapkt_cmd;
4073 	cmd = satacmd->satacmd_cmd_reg;
4074 
4075 	ASSERT(nvp->nvp_slot);
4076 
4077 	if ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
4078 	    (cmd == SATAC_READ_FPDMA_QUEUED)) {
4079 		ncq = B_TRUE;
4080 	}
4081 
4082 	/*
4083 	 * select the drive
4084 	 */
4085 	nv_put8(cmdhdl, nvp->nvp_drvhd, satacmd->satacmd_device_reg);
4086 
4087 	/*
4088 	 * make certain the drive selected
4089 	 */
4090 	if (nv_wait(nvp, SATA_STATUS_DRDY, SATA_STATUS_BSY,
4091 	    NV_SEC2USEC(5), 0) == B_FALSE) {
4092 
4093 		return;
4094 	}
4095 
4096 	switch (spkt->satapkt_cmd.satacmd_addr_type) {
4097 
4098 	case ATA_ADDR_LBA:
4099 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp, "ATA_ADDR_LBA mode"));
4100 
4101 		nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
4102 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
4103 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
4104 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
4105 
4106 		break;
4107 
4108 	case ATA_ADDR_LBA28:
4109 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
4110 		    "ATA_ADDR_LBA28 mode"));
4111 		/*
4112 		 * NCQ only uses 48-bit addressing
4113 		 */
4114 		ASSERT(ncq != B_TRUE);
4115 
4116 		nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
4117 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
4118 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
4119 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
4120 
4121 		break;
4122 
4123 	case ATA_ADDR_LBA48:
4124 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
4125 		    "ATA_ADDR_LBA48 mode"));
4126 
4127 		/*
4128 		 * for NCQ, tag goes into count register and real sector count
4129 		 * into features register.  The sata module does the translation
4130 		 * in the satacmd.
4131 		 */
4132 		if (ncq == B_TRUE) {
4133 			nv_put8(cmdhdl, nvp->nvp_count, slot << 3);
4134 			nv_put8(cmdhdl, nvp->nvp_feature,
4135 			    satacmd->satacmd_features_reg_ext);
4136 			nv_put8(cmdhdl, nvp->nvp_feature,
4137 			    satacmd->satacmd_features_reg);
4138 		} else {
4139 			nv_put8(cmdhdl, nvp->nvp_count,
4140 			    satacmd->satacmd_sec_count_msb);
4141 			nv_put8(cmdhdl, nvp->nvp_count,
4142 			    satacmd->satacmd_sec_count_lsb);
4143 		}
4144 
4145 		/*
4146 		 * send the high-order half first
4147 		 */
4148 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_msb);
4149 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_msb);
4150 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_msb);
4151 		/*
4152 		 * Send the low-order half
4153 		 */
4154 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
4155 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
4156 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
4157 
4158 		break;
4159 
4160 	case 0:
4161 		/*
4162 		 * non-media access commands such as identify and features
4163 		 * take this path.
4164 		 */
4165 		nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
4166 		nv_put8(cmdhdl, nvp->nvp_feature,
4167 		    satacmd->satacmd_features_reg);
4168 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
4169 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
4170 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
4171 
4172 		break;
4173 
4174 	default:
4175 		break;
4176 	}
4177 
4178 	ASSERT(nvp->nvp_slot);
4179 }
4180 
4181 
4182 /*
4183  * start a command that involves no media access
4184  */
4185 static int
4186 nv_start_nodata(nv_port_t *nvp, int slot)
4187 {
4188 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4189 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4190 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4191 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4192 
4193 	nv_program_taskfile_regs(nvp, slot);
4194 
4195 	/*
4196 	 * This next one sets the controller in motion
4197 	 */
4198 	nv_put8(cmdhdl, nvp->nvp_cmd, sata_cmdp->satacmd_cmd_reg);
4199 
4200 	return (SATA_TRAN_ACCEPTED);
4201 }
4202 
4203 
4204 static int
4205 nv_bm_status_clear(nv_port_t *nvp)
4206 {
4207 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
4208 	uchar_t	status, ret;
4209 
4210 	/*
4211 	 * Get the current BM status
4212 	 */
4213 	ret = status = nv_get8(bmhdl, nvp->nvp_bmisx);
4214 
4215 	status = (status & BMISX_MASK) | BMISX_IDERR | BMISX_IDEINTS;
4216 
4217 	/*
4218 	 * Clear the latches (and preserve the other bits)
4219 	 */
4220 	nv_put8(bmhdl, nvp->nvp_bmisx, status);
4221 
4222 	return (ret);
4223 }
4224 
4225 
4226 /*
4227  * program the bus master DMA engine with the PRD address for
4228  * the active slot command, and start the DMA engine.
4229  */
4230 static void
4231 nv_start_dma_engine(nv_port_t *nvp, int slot)
4232 {
4233 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4234 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
4235 	uchar_t direction;
4236 
4237 	ASSERT(nv_slotp->nvslot_spkt != NULL);
4238 
4239 	if (nv_slotp->nvslot_spkt->satapkt_cmd.satacmd_flags.sata_data_direction
4240 	    == SATA_DIR_READ) {
4241 		direction = BMICX_RWCON_WRITE_TO_MEMORY;
4242 	} else {
4243 		direction = BMICX_RWCON_READ_FROM_MEMORY;
4244 	}
4245 
4246 	NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
4247 	    "nv_start_dma_engine entered"));
4248 
4249 #if NOT_USED
4250 	/*
4251 	 * NOT NEEDED. Left here of historical reason.
4252 	 * Reset the controller's interrupt and error status bits.
4253 	 */
4254 	(void) nv_bm_status_clear(nvp);
4255 #endif
4256 	/*
4257 	 * program the PRD table physical start address
4258 	 */
4259 	nv_put32(bmhdl, nvp->nvp_bmidtpx, nvp->nvp_sg_paddr[slot]);
4260 
4261 	/*
4262 	 * set the direction control and start the DMA controller
4263 	 */
4264 	nv_put8(bmhdl, nvp->nvp_bmicx, direction | BMICX_SSBM);
4265 }
4266 
4267 /*
4268  * start dma command, either in or out
4269  */
4270 static int
4271 nv_start_dma(nv_port_t *nvp, int slot)
4272 {
4273 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4274 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4275 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4276 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4277 	uint8_t cmd = sata_cmdp->satacmd_cmd_reg;
4278 #ifdef NCQ
4279 	uint8_t ncq = B_FALSE;
4280 #endif
4281 	ddi_acc_handle_t sghdl = nvp->nvp_sg_acc_hdl[slot];
4282 	uint_t *dstp = (uint_t *)nvp->nvp_sg_addr[slot];
4283 	int sg_count = sata_cmdp->satacmd_num_dma_cookies, idx;
4284 	ddi_dma_cookie_t  *srcp = sata_cmdp->satacmd_dma_cookie_list;
4285 
4286 	ASSERT(sg_count != 0);
4287 
4288 	if (sata_cmdp->satacmd_num_dma_cookies > NV_DMA_NSEGS) {
4289 		nv_cmn_err(CE_WARN, nvp->nvp_ctlp, nvp, "NV_DMA_NSEGS=%d <"
4290 		    " satacmd_num_dma_cookies=%d", NV_DMA_NSEGS,
4291 		    sata_cmdp->satacmd_num_dma_cookies);
4292 
4293 		return (NV_FAILURE);
4294 	}
4295 
4296 	nv_program_taskfile_regs(nvp, slot);
4297 
4298 	/*
4299 	 * start the drive in motion
4300 	 */
4301 	nv_put8(cmdhdl, nvp->nvp_cmd, cmd);
4302 
4303 	/*
4304 	 * the drive starts processing the transaction when the cmd register
4305 	 * is written.  This is done here before programming the DMA engine to
4306 	 * parallelize and save some time.  In the event that the drive is ready
4307 	 * before DMA, it will wait.
4308 	 */
4309 #ifdef NCQ
4310 	if ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
4311 	    (cmd == SATAC_READ_FPDMA_QUEUED)) {
4312 		ncq = B_TRUE;
4313 	}
4314 #endif
4315 
4316 	/*
4317 	 * copy the PRD list to PRD table in DMA accessible memory
4318 	 * so that the controller can access it.
4319 	 */
4320 	for (idx = 0; idx < sg_count; idx++, srcp++) {
4321 		uint32_t size;
4322 
4323 		nv_put32(sghdl, dstp++, srcp->dmac_address);
4324 
4325 		/* Set the number of bytes to transfer, 0 implies 64KB */
4326 		size = srcp->dmac_size;
4327 		if (size == 0x10000)
4328 			size = 0;
4329 
4330 		/*
4331 		 * If this is a 40-bit address, copy bits 32-40 of the
4332 		 * physical address to bits 16-24 of the PRD count.
4333 		 */
4334 		if (srcp->dmac_laddress > UINT32_MAX) {
4335 			size |= ((srcp->dmac_laddress & 0xff00000000) >> 16);
4336 		}
4337 
4338 		/*
4339 		 * set the end of table flag for the last entry
4340 		 */
4341 		if (idx == (sg_count - 1)) {
4342 			size |= PRDE_EOT;
4343 		}
4344 
4345 		nv_put32(sghdl, dstp++, size);
4346 	}
4347 
4348 	(void) ddi_dma_sync(nvp->nvp_sg_dma_hdl[slot], 0,
4349 	    sizeof (prde_t) * NV_DMA_NSEGS, DDI_DMA_SYNC_FORDEV);
4350 
4351 	nv_start_dma_engine(nvp, slot);
4352 
4353 #ifdef NCQ
4354 	/*
4355 	 * optimization:  for SWNCQ, start DMA engine if this is the only
4356 	 * command running.  Preliminary NCQ efforts indicated this needs
4357 	 * more debugging.
4358 	 *
4359 	 * if (nvp->nvp_ncq_run <= 1)
4360 	 */
4361 
4362 	if (ncq == B_FALSE) {
4363 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
4364 		    "NOT NCQ so starting DMA NOW non_ncq_commands=%d"
4365 		    " cmd = %X", non_ncq_commands++, cmd));
4366 		nv_start_dma_engine(nvp, slot);
4367 	} else {
4368 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp, "?NCQ, so program "
4369 		    "DMA later ncq_commands=%d cmd = %X", ncq_commands++, cmd));
4370 	}
4371 #endif /* NCQ */
4372 
4373 	return (SATA_TRAN_ACCEPTED);
4374 }
4375 
4376 
4377 /*
4378  * start a PIO data-in ATA command
4379  */
4380 static int
4381 nv_start_pio_in(nv_port_t *nvp, int slot)
4382 {
4383 
4384 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4385 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4386 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4387 
4388 	nv_program_taskfile_regs(nvp, slot);
4389 
4390 	/*
4391 	 * This next one sets the drive in motion
4392 	 */
4393 	nv_put8(cmdhdl, nvp->nvp_cmd, spkt->satapkt_cmd.satacmd_cmd_reg);
4394 
4395 	return (SATA_TRAN_ACCEPTED);
4396 }
4397 
4398 
4399 /*
4400  * start a PIO data-out ATA command
4401  */
4402 static int
4403 nv_start_pio_out(nv_port_t *nvp, int slot)
4404 {
4405 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4406 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4407 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4408 
4409 	nv_program_taskfile_regs(nvp, slot);
4410 
4411 	/*
4412 	 * this next one sets the drive in motion
4413 	 */
4414 	nv_put8(cmdhdl, nvp->nvp_cmd, spkt->satapkt_cmd.satacmd_cmd_reg);
4415 
4416 	/*
4417 	 * wait for the busy bit to settle
4418 	 */
4419 	NV_DELAY_NSEC(400);
4420 
4421 	/*
4422 	 * wait for the drive to assert DRQ to send the first chunk
4423 	 * of data. Have to busy wait because there's no interrupt for
4424 	 * the first chunk. This is bad... uses a lot of cycles if the
4425 	 * drive responds too slowly or if the wait loop granularity
4426 	 * is too large. It's even worse if the drive is defective and
4427 	 * the loop times out.
4428 	 */
4429 	if (nv_wait3(nvp, SATA_STATUS_DRQ, SATA_STATUS_BSY, /* okay */
4430 	    SATA_STATUS_ERR, SATA_STATUS_BSY, /* cmd failed */
4431 	    SATA_STATUS_DF, SATA_STATUS_BSY, /* drive failed */
4432 	    4000000, 0) == B_FALSE) {
4433 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4434 
4435 		goto error;
4436 	}
4437 
4438 	/*
4439 	 * send the first block.
4440 	 */
4441 	nv_intr_pio_out(nvp, nv_slotp);
4442 
4443 	/*
4444 	 * If nvslot_flags is not set to COMPLETE yet, then processing
4445 	 * is OK so far, so return.  Otherwise, fall into error handling
4446 	 * below.
4447 	 */
4448 	if (nv_slotp->nvslot_flags != NVSLOT_COMPLETE) {
4449 
4450 		return (SATA_TRAN_ACCEPTED);
4451 	}
4452 
4453 	error:
4454 	/*
4455 	 * there was an error so reset the device and complete the packet.
4456 	 */
4457 	nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4458 	nv_complete_io(nvp, spkt, 0);
4459 	nvp->nvp_state |= NV_PORT_RESET;
4460 	nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
4461 	nv_reset(nvp);
4462 
4463 	return (SATA_TRAN_PORT_ERROR);
4464 }
4465 
4466 
4467 /*
4468  * start a ATAPI Packet command (PIO data in or out)
4469  */
4470 static int
4471 nv_start_pkt_pio(nv_port_t *nvp, int slot)
4472 {
4473 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4474 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4475 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4476 	sata_cmd_t *satacmd = &spkt->satapkt_cmd;
4477 
4478 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4479 	    "nv_start_pkt_pio: start"));
4480 
4481 	/*
4482 	 * Write the PACKET command to the command register.  Normally
4483 	 * this would be done through nv_program_taskfile_regs().  It
4484 	 * is done here because some values need to be overridden.
4485 	 */
4486 
4487 	/* select the drive */
4488 	nv_put8(cmdhdl, nvp->nvp_drvhd, satacmd->satacmd_device_reg);
4489 
4490 	/* make certain the drive selected */
4491 	if (nv_wait(nvp, SATA_STATUS_DRDY, SATA_STATUS_BSY,
4492 	    NV_SEC2USEC(5), 0) == B_FALSE) {
4493 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4494 		    "nv_start_pkt_pio: drive select failed"));
4495 		return (SATA_TRAN_PORT_ERROR);
4496 	}
4497 
4498 	/*
4499 	 * The command is always sent via PIO, despite whatever the SATA
4500 	 * framework sets in the command.  Overwrite the DMA bit to do this.
4501 	 * Also, overwrite the overlay bit to be safe (it shouldn't be set).
4502 	 */
4503 	nv_put8(cmdhdl, nvp->nvp_feature, 0);	/* deassert DMA and OVL */
4504 
4505 	/* set appropriately by the sata framework */
4506 	nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
4507 	nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
4508 	nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
4509 	nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
4510 
4511 	/* initiate the command by writing the command register last */
4512 	nv_put8(cmdhdl, nvp->nvp_cmd, spkt->satapkt_cmd.satacmd_cmd_reg);
4513 
4514 	/* Give the host controller time to do its thing */
4515 	NV_DELAY_NSEC(400);
4516 
4517 	/*
4518 	 * Wait for the device to indicate that it is ready for the command
4519 	 * ATAPI protocol state - HP0: Check_Status_A
4520 	 */
4521 
4522 	if (nv_wait3(nvp, SATA_STATUS_DRQ, SATA_STATUS_BSY, /* okay */
4523 	    SATA_STATUS_ERR, SATA_STATUS_BSY, /* cmd failed */
4524 	    SATA_STATUS_DF, SATA_STATUS_BSY, /* drive failed */
4525 	    4000000, 0) == B_FALSE) {
4526 		/*
4527 		 * Either an error or device fault occurred or the wait
4528 		 * timed out.  According to the ATAPI protocol, command
4529 		 * completion is also possible.  Other implementations of
4530 		 * this protocol don't handle this last case, so neither
4531 		 * does this code.
4532 		 */
4533 
4534 		if (nv_get8(cmdhdl, nvp->nvp_status) &
4535 		    (SATA_STATUS_ERR | SATA_STATUS_DF)) {
4536 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4537 
4538 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4539 			    "nv_start_pkt_pio: device error (HP0)"));
4540 		} else {
4541 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4542 
4543 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4544 			    "nv_start_pkt_pio: timeout (HP0)"));
4545 		}
4546 
4547 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4548 		nv_complete_io(nvp, spkt, 0);
4549 		nvp->nvp_state |= NV_PORT_RESET;
4550 		nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
4551 		nv_reset(nvp);
4552 
4553 		return (SATA_TRAN_PORT_ERROR);
4554 	}
4555 
4556 	/*
4557 	 * Put the ATAPI command in the data register
4558 	 * ATAPI protocol state - HP1: Send_Packet
4559 	 */
4560 
4561 	ddi_rep_put16(cmdhdl, (ushort_t *)spkt->satapkt_cmd.satacmd_acdb,
4562 	    (ushort_t *)nvp->nvp_data,
4563 	    (spkt->satapkt_cmd.satacmd_acdb_len >> 1), DDI_DEV_NO_AUTOINCR);
4564 
4565 	/*
4566 	 * See you in nv_intr_pkt_pio.
4567 	 * ATAPI protocol state - HP3: INTRQ_wait
4568 	 */
4569 
4570 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4571 	    "nv_start_pkt_pio: exiting into HP3"));
4572 
4573 	return (SATA_TRAN_ACCEPTED);
4574 }
4575 
4576 
4577 /*
4578  * Interrupt processing for a non-data ATA command.
4579  */
4580 static void
4581 nv_intr_nodata(nv_port_t *nvp, nv_slot_t *nv_slotp)
4582 {
4583 	uchar_t status;
4584 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4585 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4586 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4587 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4588 
4589 	NVLOG((NVDBG_INTR, nvp->nvp_ctlp, nvp, "nv_intr_nodata entered"));
4590 
4591 	status = nv_get8(cmdhdl, nvp->nvp_status);
4592 
4593 	/*
4594 	 * check for errors
4595 	 */
4596 	if (status & (SATA_STATUS_DF | SATA_STATUS_ERR)) {
4597 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4598 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4599 		    nvp->nvp_altstatus);
4600 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4601 	} else {
4602 		spkt->satapkt_reason = SATA_PKT_COMPLETED;
4603 	}
4604 
4605 	nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4606 }
4607 
4608 
4609 /*
4610  * ATA command, PIO data in
4611  */
4612 static void
4613 nv_intr_pio_in(nv_port_t *nvp, nv_slot_t *nv_slotp)
4614 {
4615 	uchar_t	status;
4616 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4617 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4618 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4619 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4620 	int count;
4621 
4622 	status = nv_get8(cmdhdl, nvp->nvp_status);
4623 
4624 	if (status & SATA_STATUS_BSY) {
4625 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4626 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4627 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4628 		    nvp->nvp_altstatus);
4629 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4630 		nvp->nvp_state |= NV_PORT_RESET;
4631 		nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
4632 		nv_reset(nvp);
4633 
4634 		return;
4635 	}
4636 
4637 	/*
4638 	 * check for errors
4639 	 */
4640 	if ((status & (SATA_STATUS_DRQ | SATA_STATUS_DF |
4641 	    SATA_STATUS_ERR)) != SATA_STATUS_DRQ) {
4642 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4643 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4644 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4645 
4646 		return;
4647 	}
4648 
4649 	/*
4650 	 * read the next chunk of data (if any)
4651 	 */
4652 	count = min(nv_slotp->nvslot_byte_count, NV_BYTES_PER_SEC);
4653 
4654 	/*
4655 	 * read count bytes
4656 	 */
4657 	ASSERT(count != 0);
4658 
4659 	ddi_rep_get16(cmdhdl, (ushort_t *)nv_slotp->nvslot_v_addr,
4660 	    (ushort_t *)nvp->nvp_data, (count >> 1), DDI_DEV_NO_AUTOINCR);
4661 
4662 	nv_slotp->nvslot_v_addr += count;
4663 	nv_slotp->nvslot_byte_count -= count;
4664 
4665 
4666 	if (nv_slotp->nvslot_byte_count != 0) {
4667 		/*
4668 		 * more to transfer.  Wait for next interrupt.
4669 		 */
4670 		return;
4671 	}
4672 
4673 	/*
4674 	 * transfer is complete. wait for the busy bit to settle.
4675 	 */
4676 	NV_DELAY_NSEC(400);
4677 
4678 	spkt->satapkt_reason = SATA_PKT_COMPLETED;
4679 	nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4680 }
4681 
4682 
4683 /*
4684  * ATA command PIO data out
4685  */
4686 static void
4687 nv_intr_pio_out(nv_port_t *nvp, nv_slot_t *nv_slotp)
4688 {
4689 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4690 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4691 	uchar_t status;
4692 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4693 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4694 	int count;
4695 
4696 	/*
4697 	 * clear the IRQ
4698 	 */
4699 	status = nv_get8(cmdhdl, nvp->nvp_status);
4700 
4701 	if (status & SATA_STATUS_BSY) {
4702 		/*
4703 		 * this should not happen
4704 		 */
4705 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4706 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4707 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4708 		    nvp->nvp_altstatus);
4709 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4710 
4711 		return;
4712 	}
4713 
4714 	/*
4715 	 * check for errors
4716 	 */
4717 	if (status & (SATA_STATUS_DF | SATA_STATUS_ERR)) {
4718 		nv_copy_registers(nvp,  &spkt->satapkt_device, spkt);
4719 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4720 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4721 
4722 		return;
4723 	}
4724 
4725 	/*
4726 	 * this is the condition which signals the drive is
4727 	 * no longer ready to transfer.  Likely that the transfer
4728 	 * completed successfully, but check that byte_count is
4729 	 * zero.
4730 	 */
4731 	if ((status & SATA_STATUS_DRQ) == 0) {
4732 
4733 		if (nv_slotp->nvslot_byte_count == 0) {
4734 			/*
4735 			 * complete; successful transfer
4736 			 */
4737 			spkt->satapkt_reason = SATA_PKT_COMPLETED;
4738 		} else {
4739 			/*
4740 			 * error condition, incomplete transfer
4741 			 */
4742 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4743 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4744 		}
4745 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4746 
4747 		return;
4748 	}
4749 
4750 	/*
4751 	 * write the next chunk of data
4752 	 */
4753 	count = min(nv_slotp->nvslot_byte_count, NV_BYTES_PER_SEC);
4754 
4755 	/*
4756 	 * read or write count bytes
4757 	 */
4758 
4759 	ASSERT(count != 0);
4760 
4761 	ddi_rep_put16(cmdhdl, (ushort_t *)nv_slotp->nvslot_v_addr,
4762 	    (ushort_t *)nvp->nvp_data, (count >> 1), DDI_DEV_NO_AUTOINCR);
4763 
4764 	nv_slotp->nvslot_v_addr += count;
4765 	nv_slotp->nvslot_byte_count -= count;
4766 }
4767 
4768 
4769 /*
4770  * ATAPI PACKET command, PIO in/out interrupt
4771  *
4772  * Under normal circumstances, one of four different interrupt scenarios
4773  * will result in this function being called:
4774  *
4775  * 1. Packet command data transfer
4776  * 2. Packet command completion
4777  * 3. Request sense data transfer
4778  * 4. Request sense command completion
4779  */
4780 static void
4781 nv_intr_pkt_pio(nv_port_t *nvp, nv_slot_t *nv_slotp)
4782 {
4783 	uchar_t	status;
4784 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4785 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4786 	int direction = sata_cmdp->satacmd_flags.sata_data_direction;
4787 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4788 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4789 	uint16_t ctlr_count;
4790 	int count;
4791 
4792 	/* ATAPI protocol state - HP2: Check_Status_B */
4793 
4794 	status = nv_get8(cmdhdl, nvp->nvp_status);
4795 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4796 	    "nv_intr_pkt_pio: status 0x%x", status));
4797 
4798 	if (status & SATA_STATUS_BSY) {
4799 		if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) != 0) {
4800 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4801 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4802 		} else {
4803 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4804 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4805 			nvp->nvp_state |= NV_PORT_RESET;
4806 			nvp->nvp_state &= ~(NV_PORT_RESTORE |
4807 			    NV_PORT_RESET_RETRY);
4808 			nv_reset(nvp);
4809 		}
4810 
4811 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4812 		    "nv_intr_pkt_pio: busy - status 0x%x", status));
4813 
4814 		return;
4815 	}
4816 
4817 	if ((status & SATA_STATUS_DF) != 0) {
4818 		/*
4819 		 * On device fault, just clean up and bail.  Request sense
4820 		 * will just default to its NO SENSE initialized value.
4821 		 */
4822 
4823 		if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) == 0) {
4824 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4825 		}
4826 
4827 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4828 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4829 
4830 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4831 		    nvp->nvp_altstatus);
4832 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl,
4833 		    nvp->nvp_error);
4834 
4835 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4836 		    "nv_intr_pkt_pio: device fault"));
4837 
4838 		return;
4839 	}
4840 
4841 	if ((status & SATA_STATUS_ERR) != 0) {
4842 		/*
4843 		 * On command error, figure out whether we are processing a
4844 		 * request sense.  If so, clean up and bail.  Otherwise,
4845 		 * do a REQUEST SENSE.
4846 		 */
4847 
4848 		if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) == 0) {
4849 			nv_slotp->nvslot_flags |= NVSLOT_RQSENSE;
4850 			if (nv_start_rqsense_pio(nvp, nv_slotp) ==
4851 			    NV_FAILURE) {
4852 				nv_copy_registers(nvp, &spkt->satapkt_device,
4853 				    spkt);
4854 				nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4855 				spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4856 			}
4857 
4858 			sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4859 			    nvp->nvp_altstatus);
4860 			sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl,
4861 			    nvp->nvp_error);
4862 		} else {
4863 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4864 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4865 
4866 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4867 		}
4868 
4869 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4870 		    "nv_intr_pkt_pio: error (status 0x%x)", status));
4871 
4872 		return;
4873 	}
4874 
4875 	if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) != 0) {
4876 		/*
4877 		 * REQUEST SENSE command processing
4878 		 */
4879 
4880 		if ((status & (SATA_STATUS_DRQ)) != 0) {
4881 			/* ATAPI state - HP4: Transfer_Data */
4882 
4883 			/* read the byte count from the controller */
4884 			ctlr_count =
4885 			    (uint16_t)nv_get8(cmdhdl, nvp->nvp_hcyl) << 8;
4886 			ctlr_count |= nv_get8(cmdhdl, nvp->nvp_lcyl);
4887 
4888 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4889 			    "nv_intr_pkt_pio: ctlr byte count - %d",
4890 			    ctlr_count));
4891 
4892 			if (ctlr_count == 0) {
4893 				/* no data to transfer - some devices do this */
4894 
4895 				spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4896 				nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4897 
4898 				NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4899 				    "nv_intr_pkt_pio: done (no data)"));
4900 
4901 				return;
4902 			}
4903 
4904 			count = min(ctlr_count, SATA_ATAPI_RQSENSE_LEN);
4905 
4906 			/* transfer the data */
4907 			ddi_rep_get16(cmdhdl,
4908 			    (ushort_t *)nv_slotp->nvslot_rqsense_buff,
4909 			    (ushort_t *)nvp->nvp_data, (count >> 1),
4910 			    DDI_DEV_NO_AUTOINCR);
4911 
4912 			/* consume residual bytes */
4913 			ctlr_count -= count;
4914 
4915 			if (ctlr_count > 0) {
4916 				for (; ctlr_count > 0; ctlr_count -= 2)
4917 					(void) ddi_get16(cmdhdl,
4918 					    (ushort_t *)nvp->nvp_data);
4919 			}
4920 
4921 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4922 			    "nv_intr_pkt_pio: transition to HP2"));
4923 		} else {
4924 			/* still in ATAPI state - HP2 */
4925 
4926 			/*
4927 			 * In order to avoid clobbering the rqsense data
4928 			 * set by the SATA framework, the sense data read
4929 			 * from the device is put in a separate buffer and
4930 			 * copied into the packet after the request sense
4931 			 * command successfully completes.
4932 			 */
4933 			bcopy(nv_slotp->nvslot_rqsense_buff,
4934 			    spkt->satapkt_cmd.satacmd_rqsense,
4935 			    SATA_ATAPI_RQSENSE_LEN);
4936 
4937 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4938 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4939 
4940 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4941 			    "nv_intr_pkt_pio: request sense done"));
4942 		}
4943 
4944 		return;
4945 	}
4946 
4947 	/*
4948 	 * Normal command processing
4949 	 */
4950 
4951 	if ((status & (SATA_STATUS_DRQ)) != 0) {
4952 		/* ATAPI protocol state - HP4: Transfer_Data */
4953 
4954 		/* read the byte count from the controller */
4955 		ctlr_count = (uint16_t)nv_get8(cmdhdl, nvp->nvp_hcyl) << 8;
4956 		ctlr_count |= nv_get8(cmdhdl, nvp->nvp_lcyl);
4957 
4958 		if (ctlr_count == 0) {
4959 			/* no data to transfer - some devices do this */
4960 
4961 			spkt->satapkt_reason = SATA_PKT_COMPLETED;
4962 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4963 
4964 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4965 			    "nv_intr_pkt_pio: done (no data)"));
4966 
4967 			return;
4968 		}
4969 
4970 		count = min(ctlr_count, nv_slotp->nvslot_byte_count);
4971 
4972 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4973 		    "nv_intr_pkt_pio: drive_bytes 0x%x", ctlr_count));
4974 
4975 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4976 		    "nv_intr_pkt_pio: byte_count 0x%x",
4977 		    nv_slotp->nvslot_byte_count));
4978 
4979 		/* transfer the data */
4980 
4981 		if (direction == SATA_DIR_READ) {
4982 			ddi_rep_get16(cmdhdl,
4983 			    (ushort_t *)nv_slotp->nvslot_v_addr,
4984 			    (ushort_t *)nvp->nvp_data, (count >> 1),
4985 			    DDI_DEV_NO_AUTOINCR);
4986 
4987 			ctlr_count -= count;
4988 
4989 			if (ctlr_count > 0) {
4990 				/* consume remainding bytes */
4991 
4992 				for (; ctlr_count > 0;
4993 				    ctlr_count -= 2)
4994 					(void) ddi_get16(cmdhdl,
4995 					    (ushort_t *)nvp->nvp_data);
4996 
4997 				NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4998 				    "nv_intr_pkt_pio: bytes remained"));
4999 			}
5000 		} else {
5001 			ddi_rep_put16(cmdhdl,
5002 			    (ushort_t *)nv_slotp->nvslot_v_addr,
5003 			    (ushort_t *)nvp->nvp_data, (count >> 1),
5004 			    DDI_DEV_NO_AUTOINCR);
5005 		}
5006 
5007 		nv_slotp->nvslot_v_addr += count;
5008 		nv_slotp->nvslot_byte_count -= count;
5009 
5010 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5011 		    "nv_intr_pkt_pio: transition to HP2"));
5012 	} else {
5013 		/* still in ATAPI state - HP2 */
5014 
5015 		spkt->satapkt_reason = SATA_PKT_COMPLETED;
5016 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
5017 
5018 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5019 		    "nv_intr_pkt_pio: done"));
5020 	}
5021 }
5022 
5023 
5024 /*
5025  * ATA command, DMA data in/out
5026  */
5027 static void
5028 nv_intr_dma(nv_port_t *nvp, struct nv_slot *nv_slotp)
5029 {
5030 	uchar_t status;
5031 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
5032 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
5033 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
5034 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
5035 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
5036 	uchar_t	bmicx;
5037 	uchar_t bm_status;
5038 
5039 	nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
5040 
5041 	/*
5042 	 * stop DMA engine.
5043 	 */
5044 	bmicx = nv_get8(bmhdl, nvp->nvp_bmicx);
5045 	nv_put8(bmhdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
5046 
5047 	/*
5048 	 * get the status and clear the IRQ, and check for DMA error
5049 	 */
5050 	status = nv_get8(cmdhdl, nvp->nvp_status);
5051 
5052 	/*
5053 	 * check for drive errors
5054 	 */
5055 	if (status & (SATA_STATUS_DF | SATA_STATUS_ERR)) {
5056 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
5057 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
5058 		(void) nv_bm_status_clear(nvp);
5059 
5060 		return;
5061 	}
5062 
5063 	bm_status = nv_bm_status_clear(nvp);
5064 
5065 	/*
5066 	 * check for bus master errors
5067 	 */
5068 	if (bm_status & BMISX_IDERR) {
5069 		spkt->satapkt_reason = SATA_PKT_RESET;   /* ? */
5070 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
5071 		    nvp->nvp_altstatus);
5072 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
5073 		nvp->nvp_state |= NV_PORT_RESET;
5074 		nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
5075 		nv_reset(nvp);
5076 
5077 		return;
5078 	}
5079 
5080 	spkt->satapkt_reason = SATA_PKT_COMPLETED;
5081 }
5082 
5083 
5084 /*
5085  * Wait for a register of a controller to achieve a specific state.
5086  * To return normally, all the bits in the first sub-mask must be ON,
5087  * all the bits in the second sub-mask must be OFF.
5088  * If timeout_usec microseconds pass without the controller achieving
5089  * the desired bit configuration, return TRUE, else FALSE.
5090  *
5091  * hybrid waiting algorithm: if not in interrupt context, busy looping will
5092  * occur for the first 250 us, then switch over to a sleeping wait.
5093  *
5094  */
5095 int
5096 nv_wait(nv_port_t *nvp, uchar_t onbits, uchar_t offbits, uint_t timeout_usec,
5097     int type_wait)
5098 {
5099 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
5100 	hrtime_t end, cur, start_sleep, start;
5101 	int first_time = B_TRUE;
5102 	ushort_t val;
5103 
5104 	for (;;) {
5105 		val = nv_get8(ctlhdl, nvp->nvp_altstatus);
5106 
5107 		if ((val & onbits) == onbits && (val & offbits) == 0) {
5108 
5109 			return (B_TRUE);
5110 		}
5111 
5112 		cur = gethrtime();
5113 
5114 		/*
5115 		 * store the start time and calculate the end
5116 		 * time.  also calculate "start_sleep" which is
5117 		 * the point after which the driver will stop busy
5118 		 * waiting and change to sleep waiting.
5119 		 */
5120 		if (first_time) {
5121 			first_time = B_FALSE;
5122 			/*
5123 			 * start and end are in nanoseconds
5124 			 */
5125 			start = cur;
5126 			end = start + timeout_usec * 1000;
5127 			/*
5128 			 * add 1 ms to start
5129 			 */
5130 			start_sleep =  start + 250000;
5131 
5132 			if (servicing_interrupt()) {
5133 				type_wait = NV_NOSLEEP;
5134 			}
5135 		}
5136 
5137 		if (cur > end) {
5138 
5139 			break;
5140 		}
5141 
5142 		if ((type_wait != NV_NOSLEEP) && (cur > start_sleep)) {
5143 #if ! defined(__lock_lint)
5144 			delay(1);
5145 #endif
5146 		} else {
5147 			drv_usecwait(nv_usec_delay);
5148 		}
5149 	}
5150 
5151 	return (B_FALSE);
5152 }
5153 
5154 
5155 /*
5156  * This is a slightly more complicated version that checks
5157  * for error conditions and bails-out rather than looping
5158  * until the timeout is exceeded.
5159  *
5160  * hybrid waiting algorithm: if not in interrupt context, busy looping will
5161  * occur for the first 250 us, then switch over to a sleeping wait.
5162  */
5163 int
5164 nv_wait3(
5165 	nv_port_t	*nvp,
5166 	uchar_t		onbits1,
5167 	uchar_t		offbits1,
5168 	uchar_t		failure_onbits2,
5169 	uchar_t		failure_offbits2,
5170 	uchar_t		failure_onbits3,
5171 	uchar_t		failure_offbits3,
5172 	uint_t		timeout_usec,
5173 	int		type_wait)
5174 {
5175 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
5176 	hrtime_t end, cur, start_sleep, start;
5177 	int first_time = B_TRUE;
5178 	ushort_t val;
5179 
5180 	for (;;) {
5181 		val = nv_get8(ctlhdl, nvp->nvp_altstatus);
5182 
5183 		/*
5184 		 * check for expected condition
5185 		 */
5186 		if ((val & onbits1) == onbits1 && (val & offbits1) == 0) {
5187 
5188 			return (B_TRUE);
5189 		}
5190 
5191 		/*
5192 		 * check for error conditions
5193 		 */
5194 		if ((val & failure_onbits2) == failure_onbits2 &&
5195 		    (val & failure_offbits2) == 0) {
5196 
5197 			return (B_FALSE);
5198 		}
5199 
5200 		if ((val & failure_onbits3) == failure_onbits3 &&
5201 		    (val & failure_offbits3) == 0) {
5202 
5203 			return (B_FALSE);
5204 		}
5205 
5206 		/*
5207 		 * store the start time and calculate the end
5208 		 * time.  also calculate "start_sleep" which is
5209 		 * the point after which the driver will stop busy
5210 		 * waiting and change to sleep waiting.
5211 		 */
5212 		if (first_time) {
5213 			first_time = B_FALSE;
5214 			/*
5215 			 * start and end are in nanoseconds
5216 			 */
5217 			cur = start = gethrtime();
5218 			end = start + timeout_usec * 1000;
5219 			/*
5220 			 * add 1 ms to start
5221 			 */
5222 			start_sleep =  start + 250000;
5223 
5224 			if (servicing_interrupt()) {
5225 				type_wait = NV_NOSLEEP;
5226 			}
5227 		} else {
5228 			cur = gethrtime();
5229 		}
5230 
5231 		if (cur > end) {
5232 
5233 			break;
5234 		}
5235 
5236 		if ((type_wait != NV_NOSLEEP) && (cur > start_sleep)) {
5237 #if ! defined(__lock_lint)
5238 			delay(1);
5239 #endif
5240 		} else {
5241 			drv_usecwait(nv_usec_delay);
5242 		}
5243 	}
5244 
5245 	return (B_FALSE);
5246 }
5247 
5248 
5249 /*
5250  * nv_port_state_change() reports the state of the port to the
5251  * sata module by calling sata_hba_event_notify().  This
5252  * function is called any time the state of the port is changed
5253  */
5254 static void
5255 nv_port_state_change(nv_port_t *nvp, int event, uint8_t addr_type, int state)
5256 {
5257 	sata_device_t sd;
5258 
5259 	NVLOG((NVDBG_EVENT, nvp->nvp_ctlp, nvp,
5260 	    "nv_port_state_change: event 0x%x type 0x%x state 0x%x "
5261 	    "time %ld (ticks)", event, addr_type, state, ddi_get_lbolt()));
5262 
5263 	bzero((void *)&sd, sizeof (sata_device_t));
5264 	sd.satadev_rev = SATA_DEVICE_REV;
5265 	nv_copy_registers(nvp, &sd, NULL);
5266 
5267 	/*
5268 	 * When NCQ is implemented sactive and snotific field need to be
5269 	 * updated.
5270 	 */
5271 	sd.satadev_addr.cport = nvp->nvp_port_num;
5272 	sd.satadev_addr.qual = addr_type;
5273 	sd.satadev_state = state;
5274 
5275 	sata_hba_event_notify(nvp->nvp_ctlp->nvc_dip, &sd, event);
5276 }
5277 
5278 
5279 
5280 /*
5281  * Monitor reset progress and signature gathering.
5282  * This function may loop, so it should not be called from interrupt
5283  * context.
5284  *
5285  * Entered with nvp mutex held.
5286  */
5287 static void
5288 nv_monitor_reset(nv_port_t *nvp)
5289 {
5290 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
5291 	uint32_t sstatus;
5292 	int send_notification = B_FALSE;
5293 	uint8_t dev_type;
5294 
5295 	sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
5296 
5297 	/*
5298 	 * We do not know here the reason for port reset.
5299 	 * Check the link status. The link needs to be active before
5300 	 * we can check the link's status.
5301 	 */
5302 	if ((SSTATUS_GET_IPM(sstatus) != SSTATUS_IPM_ACTIVE) ||
5303 	    (SSTATUS_GET_DET(sstatus) != SSTATUS_DET_DEVPRE_PHYCOM)) {
5304 		/*
5305 		 * Either link is not active or there is no device
5306 		 * If the link remains down for more than NV_LINK_DOWN_TIMEOUT
5307 		 * (milliseconds), abort signature acquisition and complete
5308 		 * reset processing.
5309 		 * The link will go down when COMRESET is sent by nv_reset(),
5310 		 * so it is practically nvp_reset_time milliseconds.
5311 		 */
5312 
5313 		if (TICK_TO_MSEC(ddi_get_lbolt() - nvp->nvp_reset_time) >=
5314 		    NV_LINK_DOWN_TIMEOUT) {
5315 			NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5316 			    "nv_monitor_reset: no link - ending signature "
5317 			    "acquisition; time after reset %ldms",
5318 			    TICK_TO_MSEC(ddi_get_lbolt() -
5319 			    nvp->nvp_reset_time)));
5320 		}
5321 		nvp->nvp_state &= ~(NV_PORT_RESET | NV_PORT_RESET_RETRY |
5322 		    NV_PORT_PROBE | NV_PORT_HOTPLUG_DELAY);
5323 		/*
5324 		 * Else, if the link was lost (i.e. was present before)
5325 		 * the controller should generate a 'remove' interrupt
5326 		 * that will cause the appropriate event notification.
5327 		 */
5328 		return;
5329 	}
5330 
5331 	NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5332 	    "nv_monitor_reset: link up after reset; time %ldms",
5333 	    TICK_TO_MSEC(ddi_get_lbolt() - nvp->nvp_reset_time)));
5334 
5335 sig_read:
5336 	if (nvp->nvp_signature != 0) {
5337 		/*
5338 		 * The link is up. The signature was acquired before (device
5339 		 * was present).
5340 		 * But we may need to wait for the signature (D2H FIS) before
5341 		 * accessing the drive.
5342 		 */
5343 		if (nv_wait_for_signature != 0) {
5344 			uint32_t old_signature;
5345 			uint8_t old_type;
5346 
5347 			old_signature = nvp->nvp_signature;
5348 			old_type = nvp->nvp_type;
5349 			nvp->nvp_signature = 0;
5350 			nv_read_signature(nvp);
5351 			if (nvp->nvp_signature == 0) {
5352 				nvp->nvp_signature = old_signature;
5353 				nvp->nvp_type = old_type;
5354 
5355 #ifdef NV_DEBUG
5356 				/* FOR DEBUGGING */
5357 				if (nv_wait_here_forever) {
5358 					drv_usecwait(1000);
5359 					goto sig_read;
5360 				}
5361 #endif
5362 				/*
5363 				 * Wait, but not endlessly.
5364 				 */
5365 				if (TICK_TO_MSEC(ddi_get_lbolt() -
5366 				    nvp->nvp_reset_time) <
5367 				    nv_sig_acquisition_time) {
5368 					drv_usecwait(1000);
5369 					goto sig_read;
5370 				} else if (!(nvp->nvp_state &
5371 				    NV_PORT_RESET_RETRY)) {
5372 					/*
5373 					 * Retry reset.
5374 					 */
5375 					NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5376 					    "nv_monitor_reset: retrying reset "
5377 					    "time after first reset: %ldms",
5378 					    TICK_TO_MSEC(ddi_get_lbolt() -
5379 					    nvp->nvp_reset_time)));
5380 					nvp->nvp_state |= NV_PORT_RESET_RETRY;
5381 					nv_reset(nvp);
5382 					goto sig_read;
5383 				}
5384 
5385 				NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5386 				    "nv_monitor_reset: terminating signature "
5387 				    "acquisition (1); time after reset: %ldms",
5388 				    TICK_TO_MSEC(ddi_get_lbolt() -
5389 				    nvp->nvp_reset_time)));
5390 			} else {
5391 				NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5392 				    "nv_monitor_reset: signature acquired; "
5393 				    "time after reset: %ldms",
5394 				    TICK_TO_MSEC(ddi_get_lbolt() -
5395 				    nvp->nvp_reset_time)));
5396 			}
5397 		}
5398 		/*
5399 		 * Clear reset state, set device reset recovery state
5400 		 */
5401 		nvp->nvp_state &= ~(NV_PORT_RESET | NV_PORT_RESET_RETRY |
5402 		    NV_PORT_PROBE);
5403 		nvp->nvp_state |= NV_PORT_RESTORE;
5404 
5405 		/*
5406 		 * Need to send reset event notification
5407 		 */
5408 		send_notification = B_TRUE;
5409 	} else {
5410 		/*
5411 		 * The link is up. The signature was not acquired before.
5412 		 * We can try to fetch a device signature.
5413 		 */
5414 		dev_type = nvp->nvp_type;
5415 
5416 acquire_signature:
5417 		nv_read_signature(nvp);
5418 		if (nvp->nvp_signature != 0) {
5419 			/*
5420 			 * Got device signature.
5421 			 */
5422 			NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5423 			    "nv_monitor_reset: signature acquired; "
5424 			    "time after reset: %ldms",
5425 			    TICK_TO_MSEC(ddi_get_lbolt() -
5426 			    nvp->nvp_reset_time)));
5427 
5428 			/* Clear internal reset state */
5429 			nvp->nvp_state &=
5430 			    ~(NV_PORT_RESET | NV_PORT_RESET_RETRY);
5431 
5432 			if (dev_type != SATA_DTYPE_NONE) {
5433 				/*
5434 				 * We acquired the signature for a
5435 				 * pre-existing device that was not identified
5436 				 * before and and was reset.
5437 				 * Need to enter the device reset recovery
5438 				 * state and to send the reset notification.
5439 				 */
5440 				nvp->nvp_state |= NV_PORT_RESTORE;
5441 				send_notification = B_TRUE;
5442 			} else {
5443 				/*
5444 				 * Else, We acquired the signature because a new
5445 				 * device was attached (the driver attach or
5446 				 * a hot-plugged device). There is no need to
5447 				 * enter the device reset recovery state or to
5448 				 * send the reset notification, but we may need
5449 				 * to send a device attached notification.
5450 				 */
5451 				if (nvp->nvp_state & NV_PORT_PROBE) {
5452 					nv_port_state_change(nvp,
5453 					    SATA_EVNT_DEVICE_ATTACHED,
5454 					    SATA_ADDR_CPORT, 0);
5455 					nvp->nvp_state &= ~NV_PORT_PROBE;
5456 				}
5457 			}
5458 		} else {
5459 			if (TICK_TO_MSEC(ddi_get_lbolt() -
5460 			    nvp->nvp_reset_time) < nv_sig_acquisition_time) {
5461 				drv_usecwait(1000);
5462 				goto acquire_signature;
5463 			} else if (!(nvp->nvp_state & NV_PORT_RESET_RETRY)) {
5464 				/*
5465 				 * Some drives may require additional
5466 				 * reset(s) to get a valid signature
5467 				 * (indicating that the drive is ready).
5468 				 * If a drive was not just powered
5469 				 * up, the signature should be available
5470 				 * within few hundred milliseconds
5471 				 * after reset.  Therefore, if more than
5472 				 * NV_SIG_ACQUISITION_TIME has elapsed
5473 				 * while waiting for a signature, reset
5474 				 * device again.
5475 				 */
5476 				NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5477 				    "nv_monitor_reset: retrying reset "
5478 				    "time after first reset: %ldms",
5479 				    TICK_TO_MSEC(ddi_get_lbolt() -
5480 				    nvp->nvp_reset_time)));
5481 				nvp->nvp_state |= NV_PORT_RESET_RETRY;
5482 				nv_reset(nvp);
5483 				drv_usecwait(1000);
5484 				goto acquire_signature;
5485 			}
5486 			/*
5487 			 * Terminating signature acquisition.
5488 			 * Hopefully, the drive is ready.
5489 			 * The SATA module can deal with this as long as it
5490 			 * knows that some device is attached and a device
5491 			 * responds to commands.
5492 			 */
5493 			if (!(nvp->nvp_state & NV_PORT_PROBE)) {
5494 				send_notification = B_TRUE;
5495 			}
5496 			nvp->nvp_state &= ~(NV_PORT_RESET |
5497 			    NV_PORT_RESET_RETRY);
5498 			nvp->nvp_type = SATA_DTYPE_UNKNOWN;
5499 			if (nvp->nvp_state & NV_PORT_PROBE) {
5500 				nv_port_state_change(nvp,
5501 				    SATA_EVNT_DEVICE_ATTACHED,
5502 				    SATA_ADDR_CPORT, 0);
5503 				nvp->nvp_state &= ~NV_PORT_PROBE;
5504 			}
5505 			nvp->nvp_type = dev_type;
5506 			NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5507 			    "nv_monitor_reset: terminating signature "
5508 			    "acquisition (2); time after reset: %ldms",
5509 			    TICK_TO_MSEC(ddi_get_lbolt() -
5510 			    nvp->nvp_reset_time)));
5511 		}
5512 	}
5513 
5514 	if (send_notification) {
5515 		nv_port_state_change(nvp, SATA_EVNT_DEVICE_RESET,
5516 		    SATA_ADDR_DCPORT,
5517 		    SATA_DSTATE_RESET | SATA_DSTATE_PWR_ACTIVE);
5518 	}
5519 
5520 #ifdef SGPIO_SUPPORT
5521 	if (nvp->nvp_type == SATA_DTYPE_ATADISK) {
5522 		nv_sgp_drive_connect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
5523 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
5524 	} else {
5525 		nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
5526 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
5527 	}
5528 #endif
5529 }
5530 
5531 
5532 /*
5533  * Send a hotplug (add device) notification at the appropriate time after
5534  * hotplug detection.
5535  * Relies on nvp_reset_time set at a hotplug detection time.
5536  * Called only from nv_timeout when NV_PORT_HOTPLUG_DELAY flag is set in
5537  * the nvp_state.
5538  */
5539 static void
5540 nv_delay_hotplug_notification(nv_port_t *nvp)
5541 {
5542 
5543 	if (TICK_TO_MSEC(ddi_get_lbolt() - nvp->nvp_reset_time) >=
5544 	    nv_hotplug_delay) {
5545 		NVLOG((NVDBG_RESET, nvp->nvp_ctlp, nvp,
5546 		    "nv_delay_hotplug_notification: notifying framework after "
5547 		    "%dms delay", TICK_TO_MSEC(ddi_get_lbolt() -
5548 		    nvp->nvp_reset_time)));
5549 		nvp->nvp_state &= ~NV_PORT_HOTPLUG_DELAY;
5550 		nv_port_state_change(nvp, SATA_EVNT_DEVICE_ATTACHED,
5551 		    SATA_ADDR_CPORT, 0);
5552 	}
5553 }
5554 
5555 /*
5556  * timeout processing:
5557  *
5558  * Check if any packets have crossed a timeout threshold.  If so,
5559  * abort the packet.  This function is not NCQ-aware.
5560  *
5561  * If reset was invoked, call reset monitoring function.
5562  *
5563  * Timeout frequency may be lower for checking packet timeout (1s)
5564  * and higher for reset monitoring (1ms)
5565  *
5566  */
5567 static void
5568 nv_timeout(void *arg)
5569 {
5570 	nv_port_t *nvp = arg;
5571 	nv_slot_t *nv_slotp;
5572 	int next_timeout = NV_ONE_SEC;	/* Default */
5573 	uint16_t int_status;
5574 	uint8_t status, bmstatus;
5575 	static int intr_warn_once = 0;
5576 
5577 	ASSERT(nvp != NULL);
5578 
5579 	mutex_enter(&nvp->nvp_mutex);
5580 	nvp->nvp_timeout_id = 0;
5581 
5582 	/*
5583 	 * If the port is not in the init state, ignore it.
5584 	 */
5585 	if ((nvp->nvp_state & NV_PORT_INIT) == 0) {
5586 		NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5587 		    "nv_timeout: port uninitialized"));
5588 		next_timeout = 0;
5589 
5590 		goto finished;
5591 	}
5592 
5593 	if (nvp->nvp_state & (NV_PORT_RESET | NV_PORT_RESET_RETRY)) {
5594 		nv_monitor_reset(nvp);
5595 		next_timeout = NV_ONE_MSEC;	/* at least 1ms */
5596 
5597 		goto finished;
5598 	}
5599 
5600 	if ((nvp->nvp_state & NV_PORT_HOTPLUG_DELAY) != 0) {
5601 		nv_delay_hotplug_notification(nvp);
5602 		next_timeout = NV_ONE_MSEC;	/* at least 1ms */
5603 
5604 		goto finished;
5605 	}
5606 
5607 	/*
5608 	 * Not yet NCQ-aware - there is only one command active.
5609 	 */
5610 	nv_slotp = &(nvp->nvp_slot[0]);
5611 
5612 	/*
5613 	 * perform timeout checking and processing only if there is an
5614 	 * active packet on the port
5615 	 */
5616 	if (nv_slotp != NULL && nv_slotp->nvslot_spkt != NULL)  {
5617 		sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
5618 		sata_cmd_t *satacmd = &spkt->satapkt_cmd;
5619 		uint8_t cmd = satacmd->satacmd_cmd_reg;
5620 		uint64_t lba;
5621 
5622 #if ! defined(__lock_lint) && defined(DEBUG)
5623 
5624 		lba = (uint64_t)satacmd->satacmd_lba_low_lsb |
5625 		    ((uint64_t)satacmd->satacmd_lba_mid_lsb << 8) |
5626 		    ((uint64_t)satacmd->satacmd_lba_high_lsb << 16) |
5627 		    ((uint64_t)satacmd->satacmd_lba_low_msb << 24) |
5628 		    ((uint64_t)satacmd->satacmd_lba_mid_msb << 32) |
5629 		    ((uint64_t)satacmd->satacmd_lba_high_msb << 40);
5630 #endif
5631 
5632 		/*
5633 		 * timeout not needed if there is a polling thread
5634 		 */
5635 		if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
5636 			next_timeout = 0;
5637 
5638 			goto finished;
5639 		}
5640 
5641 		if (TICK_TO_SEC(ddi_get_lbolt() - nv_slotp->nvslot_stime) >
5642 		    spkt->satapkt_time) {
5643 
5644 			uint32_t serr = nv_get32(nvp->nvp_ctlp->nvc_bar_hdl[5],
5645 			    nvp->nvp_serror);
5646 
5647 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5648 			    "nv_timeout: aborting: "
5649 			    "nvslot_stime: %ld max ticks till timeout: "
5650 			    "%ld cur_time: %ld cmd=%x lba=%d",
5651 			    nv_slotp->nvslot_stime,
5652 			    drv_usectohz(MICROSEC *
5653 			    spkt->satapkt_time), ddi_get_lbolt(),
5654 			    cmd, lba));
5655 
5656 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5657 			    "nv_timeout: SError at timeout: 0x%x", serr));
5658 
5659 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5660 			    "nv_timeout: previous cmd=%x",
5661 			    nvp->nvp_previous_cmd));
5662 
5663 			if (nvp->nvp_mcp5x_int_status != NULL) {
5664 				status = nv_get8(nvp->nvp_ctl_hdl,
5665 				    nvp->nvp_altstatus);
5666 				bmstatus = nv_get8(nvp->nvp_bm_hdl,
5667 				    nvp->nvp_bmisx);
5668 				int_status = nv_get16(
5669 				    nvp->nvp_ctlp->nvc_bar_hdl[5],
5670 				    nvp->nvp_mcp5x_int_status);
5671 				NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5672 				    "nv_timeout: altstatus %x, bmicx %x, "
5673 				    "int_status %X", status, bmstatus,
5674 				    int_status));
5675 
5676 				if (int_status & MCP5X_INT_COMPLETE) {
5677 					/*
5678 					 * Completion interrupt was missed!
5679 					 * Issue warning message once
5680 					 */
5681 					if (!intr_warn_once) {
5682 						cmn_err(CE_WARN,
5683 						    "nv_sata: missing command "
5684 						    "completion interrupt(s)!");
5685 						intr_warn_once = 1;
5686 					}
5687 					NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp,
5688 					    nvp, "timeout detected with "
5689 					    "interrupt ready - calling "
5690 					    "int directly"));
5691 					mutex_exit(&nvp->nvp_mutex);
5692 					(void) mcp5x_intr_port(nvp);
5693 					mutex_enter(&nvp->nvp_mutex);
5694 				} else {
5695 					/*
5696 					 * True timeout and not a missing
5697 					 * interrupt.
5698 					 */
5699 					(void) nv_abort_active(nvp, spkt,
5700 					    SATA_PKT_TIMEOUT, B_TRUE);
5701 				}
5702 			} else {
5703 				(void) nv_abort_active(nvp, spkt,
5704 				    SATA_PKT_TIMEOUT, B_TRUE);
5705 			}
5706 
5707 		} else {
5708 #ifdef NV_DEBUG
5709 			if (nv_debug_flags & NVDBG_VERBOSE) {
5710 				NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5711 				    "nv_timeout:"
5712 				    " still in use so restarting timeout"));
5713 			}
5714 #endif
5715 			next_timeout = NV_ONE_SEC;
5716 		}
5717 	} else {
5718 		/*
5719 		 * there was no active packet, so do not re-enable timeout
5720 		 */
5721 		next_timeout = 0;
5722 #ifdef NV_DEBUG
5723 		if (nv_debug_flags & NVDBG_VERBOSE) {
5724 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5725 			    "nv_timeout: no active packet so not re-arming "
5726 			    "timeout"));
5727 		}
5728 #endif
5729 	}
5730 
5731 finished:
5732 	if (next_timeout != 0) {
5733 		nv_setup_timeout(nvp, next_timeout);
5734 	}
5735 	mutex_exit(&nvp->nvp_mutex);
5736 }
5737 
5738 
5739 /*
5740  * enable or disable the 3 interrupt types the driver is
5741  * interested in: completion, add and remove.
5742  */
5743 static void
5744 ck804_set_intr(nv_port_t *nvp, int flag)
5745 {
5746 	nv_ctl_t *nvc = nvp->nvp_ctlp;
5747 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
5748 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
5749 	uint8_t intr_bits[] = { CK804_INT_PDEV_HOT|CK804_INT_PDEV_INT,
5750 	    CK804_INT_SDEV_HOT|CK804_INT_SDEV_INT };
5751 	uint8_t clear_all_bits[] = { CK804_INT_PDEV_ALL, CK804_INT_SDEV_ALL };
5752 	uint8_t int_en, port = nvp->nvp_port_num, intr_status;
5753 
5754 	if (flag & NV_INTR_DISABLE_NON_BLOCKING) {
5755 		int_en = nv_get8(bar5_hdl,
5756 		    (uint8_t *)(bar5 + CK804_SATA_INT_EN));
5757 		int_en &= ~intr_bits[port];
5758 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + CK804_SATA_INT_EN),
5759 		    int_en);
5760 		return;
5761 	}
5762 
5763 	ASSERT(mutex_owned(&nvp->nvp_mutex));
5764 
5765 	/*
5766 	 * controller level lock also required since access to an 8-bit
5767 	 * interrupt register is shared between both channels.
5768 	 */
5769 	mutex_enter(&nvc->nvc_mutex);
5770 
5771 	if (flag & NV_INTR_CLEAR_ALL) {
5772 		NVLOG((NVDBG_INTR, nvc, nvp,
5773 		    "ck804_set_intr: NV_INTR_CLEAR_ALL"));
5774 
5775 		intr_status = nv_get8(nvc->nvc_bar_hdl[5],
5776 		    (uint8_t *)(nvc->nvc_ck804_int_status));
5777 
5778 		if (intr_status & clear_all_bits[port]) {
5779 
5780 			nv_put8(nvc->nvc_bar_hdl[5],
5781 			    (uint8_t *)(nvc->nvc_ck804_int_status),
5782 			    clear_all_bits[port]);
5783 
5784 			NVLOG((NVDBG_INTR, nvc, nvp,
5785 			    "interrupt bits cleared %x",
5786 			    intr_status & clear_all_bits[port]));
5787 		}
5788 	}
5789 
5790 	if (flag & NV_INTR_DISABLE) {
5791 		NVLOG((NVDBG_INTR, nvc, nvp,
5792 		    "ck804_set_intr: NV_INTR_DISABLE"));
5793 		int_en = nv_get8(bar5_hdl,
5794 		    (uint8_t *)(bar5 + CK804_SATA_INT_EN));
5795 		int_en &= ~intr_bits[port];
5796 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + CK804_SATA_INT_EN),
5797 		    int_en);
5798 	}
5799 
5800 	if (flag & NV_INTR_ENABLE) {
5801 		NVLOG((NVDBG_INTR, nvc, nvp, "ck804_set_intr: NV_INTR_ENABLE"));
5802 		int_en = nv_get8(bar5_hdl,
5803 		    (uint8_t *)(bar5 + CK804_SATA_INT_EN));
5804 		int_en |= intr_bits[port];
5805 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + CK804_SATA_INT_EN),
5806 		    int_en);
5807 	}
5808 
5809 	mutex_exit(&nvc->nvc_mutex);
5810 }
5811 
5812 
5813 /*
5814  * enable or disable the 3 interrupts the driver is interested in:
5815  * completion interrupt, hot add, and hot remove interrupt.
5816  */
5817 static void
5818 mcp5x_set_intr(nv_port_t *nvp, int flag)
5819 {
5820 	nv_ctl_t *nvc = nvp->nvp_ctlp;
5821 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
5822 	uint16_t intr_bits =
5823 	    MCP5X_INT_ADD|MCP5X_INT_REM|MCP5X_INT_COMPLETE;
5824 	uint16_t int_en;
5825 
5826 	if (flag & NV_INTR_DISABLE_NON_BLOCKING) {
5827 		int_en = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_ctl);
5828 		int_en &= ~intr_bits;
5829 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_ctl, int_en);
5830 		return;
5831 	}
5832 
5833 	ASSERT(mutex_owned(&nvp->nvp_mutex));
5834 
5835 	NVLOG((NVDBG_HOT, nvc, nvp, "mcp055_set_intr: enter flag: %d", flag));
5836 
5837 	if (flag & NV_INTR_CLEAR_ALL) {
5838 		NVLOG((NVDBG_INTR, nvc, nvp,
5839 		    "mcp5x_set_intr: NV_INTR_CLEAR_ALL"));
5840 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_status, MCP5X_INT_CLEAR);
5841 	}
5842 
5843 	if (flag & NV_INTR_ENABLE) {
5844 		NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_set_intr: NV_INTR_ENABLE"));
5845 		int_en = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_ctl);
5846 		int_en |= intr_bits;
5847 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_ctl, int_en);
5848 	}
5849 
5850 	if (flag & NV_INTR_DISABLE) {
5851 		NVLOG((NVDBG_INTR, nvc, nvp,
5852 		    "mcp5x_set_intr: NV_INTR_DISABLE"));
5853 		int_en = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_ctl);
5854 		int_en &= ~intr_bits;
5855 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_ctl, int_en);
5856 	}
5857 }
5858 
5859 
5860 static void
5861 nv_resume(nv_port_t *nvp)
5862 {
5863 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "nv_resume()"));
5864 
5865 	mutex_enter(&nvp->nvp_mutex);
5866 
5867 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
5868 		mutex_exit(&nvp->nvp_mutex);
5869 
5870 		return;
5871 	}
5872 
5873 	/* Enable interrupt */
5874 	(*(nvp->nvp_ctlp->nvc_set_intr))(nvp, NV_INTR_CLEAR_ALL|NV_INTR_ENABLE);
5875 
5876 	/*
5877 	 * Power may have been removed to the port and the
5878 	 * drive, and/or a drive may have been added or removed.
5879 	 * Force a reset which will cause a probe and re-establish
5880 	 * any state needed on the drive.
5881 	 */
5882 	nvp->nvp_state |= NV_PORT_RESET;
5883 	nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
5884 	nv_reset(nvp);
5885 
5886 	mutex_exit(&nvp->nvp_mutex);
5887 }
5888 
5889 
5890 static void
5891 nv_suspend(nv_port_t *nvp)
5892 {
5893 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "nv_suspend()"));
5894 
5895 	mutex_enter(&nvp->nvp_mutex);
5896 
5897 #ifdef SGPIO_SUPPORT
5898 	if (nvp->nvp_type == SATA_DTYPE_ATADISK) {
5899 		nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
5900 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
5901 	}
5902 #endif
5903 
5904 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
5905 		mutex_exit(&nvp->nvp_mutex);
5906 
5907 		return;
5908 	}
5909 
5910 	/*
5911 	 * Stop the timeout handler.
5912 	 * (It will be restarted in nv_reset() during nv_resume().)
5913 	 */
5914 	if (nvp->nvp_timeout_id) {
5915 		(void) untimeout(nvp->nvp_timeout_id);
5916 		nvp->nvp_timeout_id = 0;
5917 	}
5918 
5919 	/* Disable interrupt */
5920 	(*(nvp->nvp_ctlp->nvc_set_intr))(nvp,
5921 	    NV_INTR_CLEAR_ALL|NV_INTR_DISABLE);
5922 
5923 	mutex_exit(&nvp->nvp_mutex);
5924 }
5925 
5926 
5927 static void
5928 nv_copy_registers(nv_port_t *nvp, sata_device_t *sd, sata_pkt_t *spkt)
5929 {
5930 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
5931 	sata_cmd_t *scmd = &spkt->satapkt_cmd;
5932 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
5933 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
5934 	uchar_t status;
5935 	struct sata_cmd_flags flags;
5936 
5937 	sd->satadev_scr.sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
5938 	sd->satadev_scr.serror = nv_get32(bar5_hdl, nvp->nvp_serror);
5939 	sd->satadev_scr.scontrol = nv_get32(bar5_hdl, nvp->nvp_sctrl);
5940 
5941 	if (spkt == NULL) {
5942 
5943 		return;
5944 	}
5945 
5946 	/*
5947 	 * in the error case, implicitly set the return of regs needed
5948 	 * for error handling.
5949 	 */
5950 	status = scmd->satacmd_status_reg = nv_get8(ctlhdl,
5951 	    nvp->nvp_altstatus);
5952 
5953 	flags = scmd->satacmd_flags;
5954 
5955 	if (status & SATA_STATUS_ERR) {
5956 		flags.sata_copy_out_lba_low_msb = B_TRUE;
5957 		flags.sata_copy_out_lba_mid_msb = B_TRUE;
5958 		flags.sata_copy_out_lba_high_msb = B_TRUE;
5959 		flags.sata_copy_out_lba_low_lsb = B_TRUE;
5960 		flags.sata_copy_out_lba_mid_lsb = B_TRUE;
5961 		flags.sata_copy_out_lba_high_lsb = B_TRUE;
5962 		flags.sata_copy_out_error_reg = B_TRUE;
5963 		flags.sata_copy_out_sec_count_msb = B_TRUE;
5964 		flags.sata_copy_out_sec_count_lsb = B_TRUE;
5965 		scmd->satacmd_status_reg = status;
5966 	}
5967 
5968 	if (scmd->satacmd_addr_type & ATA_ADDR_LBA48) {
5969 
5970 		/*
5971 		 * set HOB so that high byte will be read
5972 		 */
5973 		nv_put8(ctlhdl, nvp->nvp_devctl, ATDC_HOB|ATDC_D3);
5974 
5975 		/*
5976 		 * get the requested high bytes
5977 		 */
5978 		if (flags.sata_copy_out_sec_count_msb) {
5979 			scmd->satacmd_sec_count_msb =
5980 			    nv_get8(cmdhdl, nvp->nvp_count);
5981 		}
5982 
5983 		if (flags.sata_copy_out_lba_low_msb) {
5984 			scmd->satacmd_lba_low_msb =
5985 			    nv_get8(cmdhdl, nvp->nvp_sect);
5986 		}
5987 
5988 		if (flags.sata_copy_out_lba_mid_msb) {
5989 			scmd->satacmd_lba_mid_msb =
5990 			    nv_get8(cmdhdl, nvp->nvp_lcyl);
5991 		}
5992 
5993 		if (flags.sata_copy_out_lba_high_msb) {
5994 			scmd->satacmd_lba_high_msb =
5995 			    nv_get8(cmdhdl, nvp->nvp_hcyl);
5996 		}
5997 	}
5998 
5999 	/*
6000 	 * disable HOB so that low byte is read
6001 	 */
6002 	nv_put8(ctlhdl, nvp->nvp_devctl, ATDC_D3);
6003 
6004 	/*
6005 	 * get the requested low bytes
6006 	 */
6007 	if (flags.sata_copy_out_sec_count_lsb) {
6008 		scmd->satacmd_sec_count_lsb = nv_get8(cmdhdl, nvp->nvp_count);
6009 	}
6010 
6011 	if (flags.sata_copy_out_lba_low_lsb) {
6012 		scmd->satacmd_lba_low_lsb = nv_get8(cmdhdl, nvp->nvp_sect);
6013 	}
6014 
6015 	if (flags.sata_copy_out_lba_mid_lsb) {
6016 		scmd->satacmd_lba_mid_lsb = nv_get8(cmdhdl, nvp->nvp_lcyl);
6017 	}
6018 
6019 	if (flags.sata_copy_out_lba_high_lsb) {
6020 		scmd->satacmd_lba_high_lsb = nv_get8(cmdhdl, nvp->nvp_hcyl);
6021 	}
6022 
6023 	/*
6024 	 * get the device register if requested
6025 	 */
6026 	if (flags.sata_copy_out_device_reg) {
6027 		scmd->satacmd_device_reg =  nv_get8(cmdhdl, nvp->nvp_drvhd);
6028 	}
6029 
6030 	/*
6031 	 * get the error register if requested
6032 	 */
6033 	if (flags.sata_copy_out_error_reg) {
6034 		scmd->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
6035 	}
6036 }
6037 
6038 
6039 /*
6040  * Hot plug and remove interrupts can occur when the device is reset.  Just
6041  * masking the interrupt doesn't always work well because if a
6042  * different interrupt arrives on the other port, the driver can still
6043  * end up checking the state of the other port and discover the hot
6044  * interrupt flag is set even though it was masked.  Checking for recent
6045  * reset activity and then ignoring turns out to be the easiest way.
6046  *
6047  * Entered with nvp mutex held.
6048  */
6049 static void
6050 nv_report_add_remove(nv_port_t *nvp, int flags)
6051 {
6052 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
6053 	uint32_t sstatus;
6054 	int i;
6055 	clock_t nv_lbolt = ddi_get_lbolt();
6056 
6057 
6058 	NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp, "nv_report_add_remove() - "
6059 	    "time (ticks) %d", nv_lbolt));
6060 
6061 	/*
6062 	 * wait up to 1ms for sstatus to settle and reflect the true
6063 	 * status of the port.  Failure to do so can create confusion
6064 	 * in probe, where the incorrect sstatus value can still
6065 	 * persist.
6066 	 */
6067 	for (i = 0; i < 1000; i++) {
6068 		sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
6069 
6070 		if ((flags == NV_PORT_HOTREMOVED) &&
6071 		    ((sstatus & SSTATUS_DET_DEVPRE_PHYCOM) !=
6072 		    SSTATUS_DET_DEVPRE_PHYCOM)) {
6073 			break;
6074 		}
6075 
6076 		if ((flags != NV_PORT_HOTREMOVED) &&
6077 		    ((sstatus & SSTATUS_DET_DEVPRE_PHYCOM) ==
6078 		    SSTATUS_DET_DEVPRE_PHYCOM)) {
6079 			break;
6080 		}
6081 		drv_usecwait(1);
6082 	}
6083 
6084 	NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
6085 	    "sstatus took %d us for DEVPRE_PHYCOM to settle", i));
6086 
6087 	if (flags == NV_PORT_HOTREMOVED) {
6088 
6089 		(void) nv_abort_active(nvp, NULL, SATA_PKT_PORT_ERROR,
6090 		    B_FALSE);
6091 
6092 		/*
6093 		 * No device, no point of bothering with device reset
6094 		 */
6095 		nvp->nvp_type = SATA_DTYPE_NONE;
6096 		nvp->nvp_signature = 0;
6097 		nvp->nvp_state &= ~(NV_PORT_RESET | NV_PORT_RESET_RETRY |
6098 		    NV_PORT_RESTORE);
6099 		NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
6100 		    "nv_report_add_remove() hot removed"));
6101 		nv_port_state_change(nvp,
6102 		    SATA_EVNT_DEVICE_DETACHED,
6103 		    SATA_ADDR_CPORT, 0);
6104 
6105 #ifdef SGPIO_SUPPORT
6106 		nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
6107 		    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
6108 #endif
6109 	} else {
6110 		/*
6111 		 * This is a hot plug or link up indication
6112 		 * Now, re-check the link state - no link, no device
6113 		 */
6114 		if ((SSTATUS_GET_IPM(sstatus) == SSTATUS_IPM_ACTIVE) &&
6115 		    (SSTATUS_GET_DET(sstatus) == SSTATUS_DET_DEVPRE_PHYCOM)) {
6116 
6117 			if (nvp->nvp_type == SATA_DTYPE_NONE) {
6118 				/*
6119 				 * Real device attach - there was no device
6120 				 * attached to this port before this report
6121 				 */
6122 				NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
6123 				    "nv_report_add_remove() new device hot"
6124 				    "plugged"));
6125 				nvp->nvp_reset_time = ddi_get_lbolt();
6126 				if (!(nvp->nvp_state &
6127 				    (NV_PORT_RESET_RETRY | NV_PORT_RESET))) {
6128 
6129 					nvp->nvp_signature = 0;
6130 					if (nv_reset_after_hotplug != 0) {
6131 
6132 						/*
6133 						 * Send reset to obtain a device
6134 						 * signature
6135 						 */
6136 						nvp->nvp_state |=
6137 						    NV_PORT_RESET |
6138 						    NV_PORT_PROBE;
6139 						nv_reset(nvp);
6140 						NVLOG((NVDBG_HOT,
6141 						    nvp->nvp_ctlp, nvp,
6142 						    "nv_report_add_remove() "
6143 						    "resetting device"));
6144 					} else {
6145 						nvp->nvp_type =
6146 						    SATA_DTYPE_UNKNOWN;
6147 					}
6148 				}
6149 
6150 				if (!(nvp->nvp_state & NV_PORT_PROBE)) {
6151 					if (nv_reset_after_hotplug == 0) {
6152 						/*
6153 						 * In case a hotplug interrupt
6154 						 * is generated right after a
6155 						 * link is up, delay reporting
6156 						 * a hotplug event to let the
6157 						 * drive to initialize and to
6158 						 * send a D2H FIS with a
6159 						 * signature.
6160 						 * The timeout will issue an
6161 						 * event notification after
6162 						 * the NV_HOTPLUG_DELAY
6163 						 * milliseconds delay.
6164 						 */
6165 						nvp->nvp_state |=
6166 						    NV_PORT_HOTPLUG_DELAY;
6167 						nvp->nvp_type =
6168 						    SATA_DTYPE_UNKNOWN;
6169 						/*
6170 						 * Make sure timer is running.
6171 						 */
6172 						nv_setup_timeout(nvp,
6173 						    NV_ONE_MSEC);
6174 					} else {
6175 						nv_port_state_change(nvp,
6176 						    SATA_EVNT_DEVICE_ATTACHED,
6177 						    SATA_ADDR_CPORT, 0);
6178 					}
6179 				}
6180 				return;
6181 			}
6182 			/*
6183 			 * Othervise it is a bogus attach, indicating recovered
6184 			 * link loss. No real need to report it after-the-fact.
6185 			 * But we may keep some statistics, or notify the
6186 			 * sata module by reporting LINK_LOST/LINK_ESTABLISHED
6187 			 * events to keep track of such occurrences.
6188 			 * Anyhow, we may want to terminate signature
6189 			 * acquisition.
6190 			 */
6191 			NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
6192 			    "nv_report_add_remove() ignoring plug interrupt "
6193 			    "- recovered link?"));
6194 
6195 			if (nvp->nvp_state &
6196 			    (NV_PORT_RESET_RETRY | NV_PORT_RESET)) {
6197 				NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
6198 				    "nv_report_add_remove() - "
6199 				    "time since last reset %dms",
6200 				    TICK_TO_MSEC(ddi_get_lbolt() -
6201 				    nvp->nvp_reset_time)));
6202 				/*
6203 				 * If the driver does not have to wait for
6204 				 * a signature, then terminate reset processing
6205 				 * now.
6206 				 */
6207 				if (nv_wait_for_signature == 0) {
6208 					NVLOG((NVDBG_RESET, nvp->nvp_ctlp,
6209 					    nvp, "nv_report_add_remove() - ",
6210 					    "terminating signature acquisition",
6211 					    ", time after reset: %dms",
6212 					    TICK_TO_MSEC(ddi_get_lbolt() -
6213 					    nvp->nvp_reset_time)));
6214 
6215 					nvp->nvp_state &= ~(NV_PORT_RESET |
6216 					    NV_PORT_RESET_RETRY);
6217 
6218 					if (!(nvp->nvp_state & NV_PORT_PROBE)) {
6219 						nvp->nvp_state |=
6220 						    NV_PORT_RESTORE;
6221 						nvp->nvp_state &=
6222 						    ~NV_PORT_PROBE;
6223 
6224 						/*
6225 						 * It is not the initial device
6226 						 * probing, so notify sata
6227 						 * module that device was
6228 						 * reset
6229 						 */
6230 						nv_port_state_change(nvp,
6231 						    SATA_EVNT_DEVICE_RESET,
6232 						    SATA_ADDR_DCPORT,
6233 						    SATA_DSTATE_RESET |
6234 						    SATA_DSTATE_PWR_ACTIVE);
6235 					}
6236 
6237 				}
6238 			}
6239 			return;
6240 		}
6241 		NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp, "nv_report_add_remove()"
6242 		    "ignoring add dev interrupt - "
6243 		    "link is down or no device!"));
6244 	}
6245 
6246 }
6247 
6248 /*
6249  * Get request sense data and stuff it the command's sense buffer.
6250  * Start a request sense command in order to get sense data to insert
6251  * in the sata packet's rqsense buffer.  The command completion
6252  * processing is in nv_intr_pkt_pio.
6253  *
6254  * The sata framework provides a function to allocate and set-up a
6255  * request sense packet command. The reasons it is not being used here is:
6256  * a) it cannot be called in an interrupt context and this function is
6257  *    called in an interrupt context.
6258  * b) it allocates DMA resources that are not used here because this is
6259  *    implemented using PIO.
6260  *
6261  * If, in the future, this is changed to use DMA, the sata framework should
6262  * be used to allocate and set-up the error retrieval (request sense)
6263  * command.
6264  */
6265 static int
6266 nv_start_rqsense_pio(nv_port_t *nvp, nv_slot_t *nv_slotp)
6267 {
6268 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
6269 	sata_cmd_t *satacmd = &spkt->satapkt_cmd;
6270 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
6271 	int cdb_len = spkt->satapkt_cmd.satacmd_acdb_len;
6272 
6273 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
6274 	    "nv_start_rqsense_pio: start"));
6275 
6276 	/* clear the local request sense buffer before starting the command */
6277 	bzero(nv_slotp->nvslot_rqsense_buff, SATA_ATAPI_RQSENSE_LEN);
6278 
6279 	/* Write the request sense PACKET command */
6280 
6281 	/* select the drive */
6282 	nv_put8(cmdhdl, nvp->nvp_drvhd, satacmd->satacmd_device_reg);
6283 
6284 	/* make certain the drive selected */
6285 	if (nv_wait(nvp, SATA_STATUS_DRDY, SATA_STATUS_BSY,
6286 	    NV_SEC2USEC(5), 0) == B_FALSE) {
6287 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
6288 		    "nv_start_rqsense_pio: drive select failed"));
6289 		return (NV_FAILURE);
6290 	}
6291 
6292 	/* set up the command */
6293 	nv_put8(cmdhdl, nvp->nvp_feature, 0);	/* deassert DMA and OVL */
6294 	nv_put8(cmdhdl, nvp->nvp_hcyl, SATA_ATAPI_MAX_BYTES_PER_DRQ >> 8);
6295 	nv_put8(cmdhdl, nvp->nvp_lcyl, SATA_ATAPI_MAX_BYTES_PER_DRQ & 0xff);
6296 	nv_put8(cmdhdl, nvp->nvp_sect, 0);
6297 	nv_put8(cmdhdl, nvp->nvp_count, 0);	/* no tag */
6298 
6299 	/* initiate the command by writing the command register last */
6300 	nv_put8(cmdhdl, nvp->nvp_cmd, SATAC_PACKET);
6301 
6302 	/* Give the host ctlr time to do its thing, according to ATA/ATAPI */
6303 	NV_DELAY_NSEC(400);
6304 
6305 	/*
6306 	 * Wait for the device to indicate that it is ready for the command
6307 	 * ATAPI protocol state - HP0: Check_Status_A
6308 	 */
6309 
6310 	if (nv_wait3(nvp, SATA_STATUS_DRQ, SATA_STATUS_BSY, /* okay */
6311 	    SATA_STATUS_ERR, SATA_STATUS_BSY, /* cmd failed */
6312 	    SATA_STATUS_DF, SATA_STATUS_BSY, /* drive failed */
6313 	    4000000, 0) == B_FALSE) {
6314 		if (nv_get8(cmdhdl, nvp->nvp_status) &
6315 		    (SATA_STATUS_ERR | SATA_STATUS_DF)) {
6316 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
6317 			    "nv_start_rqsense_pio: rqsense dev error (HP0)"));
6318 		} else {
6319 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
6320 			    "nv_start_rqsense_pio: rqsense timeout (HP0)"));
6321 		}
6322 
6323 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
6324 		nv_complete_io(nvp, spkt, 0);
6325 		nvp->nvp_state |= NV_PORT_RESET;
6326 		nvp->nvp_state &= ~(NV_PORT_RESTORE | NV_PORT_RESET_RETRY);
6327 		nv_reset(nvp);
6328 
6329 		return (NV_FAILURE);
6330 	}
6331 
6332 	/*
6333 	 * Put the ATAPI command in the data register
6334 	 * ATAPI protocol state - HP1: Send_Packet
6335 	 */
6336 
6337 	ddi_rep_put16(cmdhdl, (ushort_t *)nv_rqsense_cdb,
6338 	    (ushort_t *)nvp->nvp_data,
6339 	    (cdb_len >> 1), DDI_DEV_NO_AUTOINCR);
6340 
6341 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
6342 	    "nv_start_rqsense_pio: exiting into HP3"));
6343 
6344 	return (NV_SUCCESS);
6345 }
6346 
6347 /*
6348  * quiesce(9E) entry point.
6349  *
6350  * This function is called when the system is single-threaded at high
6351  * PIL with preemption disabled. Therefore, this function must not be
6352  * blocked.
6353  *
6354  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6355  * DDI_FAILURE indicates an error condition and should almost never happen.
6356  */
6357 static int
6358 nv_quiesce(dev_info_t *dip)
6359 {
6360 	int port, instance = ddi_get_instance(dip);
6361 	nv_ctl_t *nvc;
6362 
6363 	if ((nvc = (nv_ctl_t *)ddi_get_soft_state(nv_statep, instance)) == NULL)
6364 		return (DDI_FAILURE);
6365 
6366 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
6367 		nv_port_t *nvp = &(nvc->nvc_port[port]);
6368 		ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
6369 		ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
6370 		uint32_t sctrl;
6371 
6372 		/*
6373 		 * Stop the controllers from generating interrupts.
6374 		 */
6375 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE_NON_BLOCKING);
6376 
6377 		/*
6378 		 * clear signature registers
6379 		 */
6380 		nv_put8(cmdhdl, nvp->nvp_sect, 0);
6381 		nv_put8(cmdhdl, nvp->nvp_lcyl, 0);
6382 		nv_put8(cmdhdl, nvp->nvp_hcyl, 0);
6383 		nv_put8(cmdhdl, nvp->nvp_count, 0);
6384 
6385 		nvp->nvp_signature = 0;
6386 		nvp->nvp_type = 0;
6387 		nvp->nvp_state |= NV_PORT_RESET;
6388 		nvp->nvp_reset_time = ddi_get_lbolt();
6389 
6390 		/*
6391 		 * assert reset in PHY by writing a 1 to bit 0 scontrol
6392 		 */
6393 		sctrl = nv_get32(bar5_hdl, nvp->nvp_sctrl);
6394 
6395 		nv_put32(bar5_hdl, nvp->nvp_sctrl,
6396 		    sctrl | SCONTROL_DET_COMRESET);
6397 
6398 		/*
6399 		 * wait 1ms
6400 		 */
6401 		drv_usecwait(1000);
6402 
6403 		/*
6404 		 * de-assert reset in PHY
6405 		 */
6406 		nv_put32(bar5_hdl, nvp->nvp_sctrl, sctrl);
6407 	}
6408 
6409 	return (DDI_SUCCESS);
6410 }
6411 
6412 
6413 #ifdef SGPIO_SUPPORT
6414 /*
6415  * NVIDIA specific SGPIO LED support
6416  * Please refer to the NVIDIA documentation for additional details
6417  */
6418 
6419 /*
6420  * nv_sgp_led_init
6421  * Detect SGPIO support.  If present, initialize.
6422  */
6423 static void
6424 nv_sgp_led_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
6425 {
6426 	uint16_t csrp;		/* SGPIO_CSRP from PCI config space */
6427 	uint32_t cbp;		/* SGPIO_CBP from PCI config space */
6428 	nv_sgp_cmn_t *cmn;	/* shared data structure */
6429 	int i;
6430 	char tqname[SGPIO_TQ_NAME_LEN];
6431 	extern caddr_t psm_map_phys_new(paddr_t, size_t, int);
6432 
6433 	/*
6434 	 * Initialize with appropriately invalid values in case this function
6435 	 * exits without initializing SGPIO (for example, there is no SGPIO
6436 	 * support).
6437 	 */
6438 	nvc->nvc_sgp_csr = 0;
6439 	nvc->nvc_sgp_cbp = NULL;
6440 	nvc->nvc_sgp_cmn = NULL;
6441 
6442 	/*
6443 	 * Only try to initialize SGPIO LED support if this property
6444 	 * indicates it should be.
6445 	 */
6446 	if (ddi_getprop(DDI_DEV_T_ANY, nvc->nvc_dip, DDI_PROP_DONTPASS,
6447 	    "enable-sgpio-leds", 0) != 1)
6448 		return;
6449 
6450 	/*
6451 	 * CK804 can pass the sgpio_detect test even though it does not support
6452 	 * SGPIO, so don't even look at a CK804.
6453 	 */
6454 	if (nvc->nvc_mcp5x_flag != B_TRUE)
6455 		return;
6456 
6457 	/*
6458 	 * The NVIDIA SGPIO support can nominally handle 6 drives.
6459 	 * However, the current implementation only supports 4 drives.
6460 	 * With two drives per controller, that means only look at the
6461 	 * first two controllers.
6462 	 */
6463 	if ((nvc->nvc_ctlr_num != 0) && (nvc->nvc_ctlr_num != 1))
6464 		return;
6465 
6466 	/* confirm that the SGPIO registers are there */
6467 	if (nv_sgp_detect(pci_conf_handle, &csrp, &cbp) != NV_SUCCESS) {
6468 		NVLOG((NVDBG_INIT, nvc, NULL,
6469 		    "SGPIO registers not detected"));
6470 		return;
6471 	}
6472 
6473 	/* save off the SGPIO_CSR I/O address */
6474 	nvc->nvc_sgp_csr = csrp;
6475 
6476 	/* map in Control Block */
6477 	nvc->nvc_sgp_cbp = (nv_sgp_cb_t *)psm_map_phys_new(cbp,
6478 	    sizeof (nv_sgp_cb_t), PROT_READ | PROT_WRITE);
6479 
6480 	/* initialize the SGPIO h/w */
6481 	if (nv_sgp_init(nvc) == NV_FAILURE) {
6482 		nv_cmn_err(CE_WARN, nvc, NULL,
6483 		    "!Unable to initialize SGPIO");
6484 	}
6485 
6486 	/*
6487 	 * Initialize the shared space for this instance.  This could
6488 	 * involve allocating the space, saving a pointer to the space
6489 	 * and starting the taskq that actually turns the LEDs on and off.
6490 	 * Or, it could involve just getting the pointer to the already
6491 	 * allocated space.
6492 	 */
6493 
6494 	mutex_enter(&nv_sgp_c2c_mutex);
6495 
6496 	/* try and find our CBP in the mapping table */
6497 	cmn = NULL;
6498 	for (i = 0; i < NV_MAX_CBPS; i++) {
6499 		if (nv_sgp_cbp2cmn[i].c2cm_cbp == cbp) {
6500 			cmn = nv_sgp_cbp2cmn[i].c2cm_cmn;
6501 			break;
6502 		}
6503 
6504 		if (nv_sgp_cbp2cmn[i].c2cm_cbp == 0)
6505 			break;
6506 	}
6507 
6508 	if (i >= NV_MAX_CBPS) {
6509 		/*
6510 		 * CBP to shared space mapping table is full
6511 		 */
6512 		nvc->nvc_sgp_cmn = NULL;
6513 		nv_cmn_err(CE_WARN, nvc, NULL,
6514 		    "!LED handling not initialized - too many controllers");
6515 	} else if (cmn == NULL) {
6516 		/*
6517 		 * Allocate the shared space, point the SGPIO scratch register
6518 		 * at it and start the led update taskq.
6519 		 */
6520 
6521 		/* allocate shared space */
6522 		cmn = (nv_sgp_cmn_t *)kmem_zalloc(sizeof (nv_sgp_cmn_t),
6523 		    KM_SLEEP);
6524 		if (cmn == NULL) {
6525 			nv_cmn_err(CE_WARN, nvc, NULL,
6526 			    "!Failed to allocate shared data");
6527 			return;
6528 		}
6529 
6530 		nvc->nvc_sgp_cmn = cmn;
6531 
6532 		/* initialize the shared data structure */
6533 		cmn->nvs_in_use = (1 << nvc->nvc_ctlr_num);
6534 		cmn->nvs_connected = 0;
6535 		cmn->nvs_activity = 0;
6536 		cmn->nvs_cbp = cbp;
6537 
6538 		mutex_init(&cmn->nvs_slock, NULL, MUTEX_DRIVER, NULL);
6539 		mutex_init(&cmn->nvs_tlock, NULL, MUTEX_DRIVER, NULL);
6540 		cv_init(&cmn->nvs_cv, NULL, CV_DRIVER, NULL);
6541 
6542 		/* put the address in the SGPIO scratch register */
6543 #if defined(__amd64)
6544 		nvc->nvc_sgp_cbp->sgpio_sr = (uint64_t)cmn;
6545 #else
6546 		nvc->nvc_sgp_cbp->sgpio_sr = (uint32_t)cmn;
6547 #endif
6548 
6549 		/* add an entry to the cbp to cmn mapping table */
6550 
6551 		/* i should be the next available table position */
6552 		nv_sgp_cbp2cmn[i].c2cm_cbp = cbp;
6553 		nv_sgp_cbp2cmn[i].c2cm_cmn = cmn;
6554 
6555 		/* start the activity LED taskq */
6556 
6557 		/*
6558 		 * The taskq name should be unique and the time
6559 		 */
6560 		(void) snprintf(tqname, SGPIO_TQ_NAME_LEN,
6561 		    "nvSataLed%x", (short)(ddi_get_lbolt() & 0xffff));
6562 		cmn->nvs_taskq = ddi_taskq_create(nvc->nvc_dip, tqname, 1,
6563 		    TASKQ_DEFAULTPRI, 0);
6564 		if (cmn->nvs_taskq == NULL) {
6565 			cmn->nvs_taskq_delay = 0;
6566 			nv_cmn_err(CE_WARN, nvc, NULL,
6567 			    "!Failed to start activity LED taskq");
6568 		} else {
6569 			cmn->nvs_taskq_delay = SGPIO_LOOP_WAIT_USECS;
6570 			(void) ddi_taskq_dispatch(cmn->nvs_taskq,
6571 			    nv_sgp_activity_led_ctl, nvc, DDI_SLEEP);
6572 		}
6573 	} else {
6574 		nvc->nvc_sgp_cmn = cmn;
6575 		cmn->nvs_in_use |= (1 << nvc->nvc_ctlr_num);
6576 	}
6577 
6578 	mutex_exit(&nv_sgp_c2c_mutex);
6579 }
6580 
6581 /*
6582  * nv_sgp_detect
6583  * Read the SGPIO_CSR and SGPIO_CBP values from PCI config space and
6584  * report back whether both were readable.
6585  */
6586 static int
6587 nv_sgp_detect(ddi_acc_handle_t pci_conf_handle, uint16_t *csrpp,
6588     uint32_t *cbpp)
6589 {
6590 	/* get the SGPIO_CSRP */
6591 	*csrpp = pci_config_get16(pci_conf_handle, SGPIO_CSRP);
6592 	if (*csrpp == 0) {
6593 		return (NV_FAILURE);
6594 	}
6595 
6596 	/* SGPIO_CSRP is good, get the SGPIO_CBP */
6597 	*cbpp = pci_config_get32(pci_conf_handle, SGPIO_CBP);
6598 	if (*cbpp == 0) {
6599 		return (NV_FAILURE);
6600 	}
6601 
6602 	/* SGPIO_CBP is good, so we must support SGPIO */
6603 	return (NV_SUCCESS);
6604 }
6605 
6606 /*
6607  * nv_sgp_init
6608  * Initialize SGPIO.
6609  * The initialization process is described by NVIDIA, but the hardware does
6610  * not always behave as documented, so several steps have been changed and/or
6611  * omitted.
6612  */
6613 static int
6614 nv_sgp_init(nv_ctl_t *nvc)
6615 {
6616 	int seq;
6617 	int rval = NV_SUCCESS;
6618 	hrtime_t start, end;
6619 	uint32_t cmd;
6620 	uint32_t status;
6621 	int drive_count;
6622 
6623 	status = nv_sgp_csr_read(nvc);
6624 	if (SGPIO_CSR_SSTAT(status) == SGPIO_STATE_RESET) {
6625 		/* SGPIO logic is in reset state and requires initialization */
6626 
6627 		/* noting the Sequence field value */
6628 		seq = SGPIO_CSR_SEQ(status);
6629 
6630 		/* issue SGPIO_CMD_READ_PARAMS command */
6631 		cmd = SGPIO_CSR_CMD_SET(SGPIO_CMD_READ_PARAMS);
6632 		nv_sgp_csr_write(nvc, cmd);
6633 
6634 		DTRACE_PROBE2(sgpio__cmd, int, cmd, int, status);
6635 
6636 		/* poll for command completion */
6637 		start = gethrtime();
6638 		end = start + NV_SGP_CMD_TIMEOUT;
6639 		for (;;) {
6640 			status = nv_sgp_csr_read(nvc);
6641 
6642 			/* break on error */
6643 			if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_ERROR) {
6644 				NVLOG((NVDBG_ALWAYS, nvc, NULL,
6645 				    "Command error during initialization"));
6646 				rval = NV_FAILURE;
6647 				break;
6648 			}
6649 
6650 			/* command processing is taking place */
6651 			if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_OK) {
6652 				if (SGPIO_CSR_SEQ(status) != seq) {
6653 					NVLOG((NVDBG_ALWAYS, nvc, NULL,
6654 					    "Sequence number change error"));
6655 				}
6656 
6657 				break;
6658 			}
6659 
6660 			/* if completion not detected in 2000ms ... */
6661 
6662 			if (gethrtime() > end)
6663 				break;
6664 
6665 			/* wait 400 ns before checking again */
6666 			NV_DELAY_NSEC(400);
6667 		}
6668 	}
6669 
6670 	if (rval == NV_FAILURE)
6671 		return (rval);
6672 
6673 	if (SGPIO_CSR_SSTAT(status) != SGPIO_STATE_OPERATIONAL) {
6674 		NVLOG((NVDBG_ALWAYS, nvc, NULL,
6675 		    "SGPIO logic not operational after init - state %d",
6676 		    SGPIO_CSR_SSTAT(status)));
6677 		/*
6678 		 * Should return (NV_FAILURE) but the hardware can be
6679 		 * operational even if the SGPIO Status does not indicate
6680 		 * this.
6681 		 */
6682 	}
6683 
6684 	/*
6685 	 * NVIDIA recommends reading the supported drive count even
6686 	 * though they also indicate that it is always 4 at this time.
6687 	 */
6688 	drive_count = SGP_CR0_DRV_CNT(nvc->nvc_sgp_cbp->sgpio_cr0);
6689 	if (drive_count != SGPIO_DRV_CNT_VALUE) {
6690 		NVLOG((NVDBG_INIT, nvc, NULL,
6691 		    "SGPIO reported undocumented drive count - %d",
6692 		    drive_count));
6693 	}
6694 
6695 	NVLOG((NVDBG_INIT, nvc, NULL,
6696 	    "initialized ctlr: %d csr: 0x%08x",
6697 	    nvc->nvc_ctlr_num, nvc->nvc_sgp_csr));
6698 
6699 	return (rval);
6700 }
6701 
6702 static int
6703 nv_sgp_check_set_cmn(nv_ctl_t *nvc)
6704 {
6705 	nv_sgp_cmn_t *cmn = nvc->nvc_sgp_cmn;
6706 
6707 	if (cmn == NULL)
6708 		return (NV_FAILURE);
6709 
6710 	mutex_enter(&cmn->nvs_slock);
6711 	cmn->nvs_in_use |= (1 << nvc->nvc_ctlr_num);
6712 	mutex_exit(&cmn->nvs_slock);
6713 
6714 	return (NV_SUCCESS);
6715 }
6716 
6717 /*
6718  * nv_sgp_csr_read
6719  * This is just a 32-bit port read from the value that was obtained from the
6720  * PCI config space.
6721  *
6722  * XXX It was advised to use the in[bwl] function for this, even though they
6723  * are obsolete interfaces.
6724  */
6725 static int
6726 nv_sgp_csr_read(nv_ctl_t *nvc)
6727 {
6728 	return (inl(nvc->nvc_sgp_csr));
6729 }
6730 
6731 /*
6732  * nv_sgp_csr_write
6733  * This is just a 32-bit I/O port write.  The port number was obtained from
6734  * the PCI config space.
6735  *
6736  * XXX It was advised to use the out[bwl] function for this, even though they
6737  * are obsolete interfaces.
6738  */
6739 static void
6740 nv_sgp_csr_write(nv_ctl_t *nvc, uint32_t val)
6741 {
6742 	outl(nvc->nvc_sgp_csr, val);
6743 }
6744 
6745 /*
6746  * nv_sgp_write_data
6747  * Cause SGPIO to send Control Block data
6748  */
6749 static int
6750 nv_sgp_write_data(nv_ctl_t *nvc)
6751 {
6752 	hrtime_t start, end;
6753 	uint32_t status;
6754 	uint32_t cmd;
6755 
6756 	/* issue command */
6757 	cmd = SGPIO_CSR_CMD_SET(SGPIO_CMD_WRITE_DATA);
6758 	nv_sgp_csr_write(nvc, cmd);
6759 
6760 	/* poll for completion */
6761 	start = gethrtime();
6762 	end = start + NV_SGP_CMD_TIMEOUT;
6763 	for (;;) {
6764 		status = nv_sgp_csr_read(nvc);
6765 
6766 		/* break on error completion */
6767 		if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_ERROR)
6768 			break;
6769 
6770 		/* break on successful completion */
6771 		if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_OK)
6772 			break;
6773 
6774 		/* Wait 400 ns and try again */
6775 		NV_DELAY_NSEC(400);
6776 
6777 		if (gethrtime() > end)
6778 			break;
6779 	}
6780 
6781 	if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_OK)
6782 		return (NV_SUCCESS);
6783 
6784 	return (NV_FAILURE);
6785 }
6786 
6787 /*
6788  * nv_sgp_activity_led_ctl
6789  * This is run as a taskq.  It wakes up at a fixed interval and checks to
6790  * see if any of the activity LEDs need to be changed.
6791  */
6792 static void
6793 nv_sgp_activity_led_ctl(void *arg)
6794 {
6795 	nv_ctl_t *nvc = (nv_ctl_t *)arg;
6796 	nv_sgp_cmn_t *cmn;
6797 	volatile nv_sgp_cb_t *cbp;
6798 	clock_t ticks;
6799 	uint8_t drv_leds;
6800 	uint32_t old_leds;
6801 	uint32_t new_led_state;
6802 	int i;
6803 
6804 	cmn = nvc->nvc_sgp_cmn;
6805 	cbp = nvc->nvc_sgp_cbp;
6806 
6807 	do {
6808 		/* save off the old state of all of the LEDs */
6809 		old_leds = cbp->sgpio0_tr;
6810 
6811 		DTRACE_PROBE3(sgpio__activity__state,
6812 		    int, cmn->nvs_connected, int, cmn->nvs_activity,
6813 		    int, old_leds);
6814 
6815 		new_led_state = 0;
6816 
6817 		/* for each drive */
6818 		for (i = 0; i < SGPIO_DRV_CNT_VALUE; i++) {
6819 
6820 			/* get the current state of the LEDs for the drive */
6821 			drv_leds = SGPIO0_TR_DRV(old_leds, i);
6822 
6823 			if ((cmn->nvs_connected & (1 << i)) == 0) {
6824 				/* if not connected, turn off activity */
6825 				drv_leds &= ~TR_ACTIVE_MASK;
6826 				drv_leds |= TR_ACTIVE_SET(TR_ACTIVE_DISABLE);
6827 
6828 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6829 				new_led_state |=
6830 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6831 
6832 				continue;
6833 			}
6834 
6835 			if ((cmn->nvs_activity & (1 << i)) == 0) {
6836 				/* connected, but not active */
6837 				drv_leds &= ~TR_ACTIVE_MASK;
6838 				drv_leds |= TR_ACTIVE_SET(TR_ACTIVE_ENABLE);
6839 
6840 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6841 				new_led_state |=
6842 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6843 
6844 				continue;
6845 			}
6846 
6847 			/* connected and active */
6848 			if (TR_ACTIVE(drv_leds) == TR_ACTIVE_ENABLE) {
6849 				/* was enabled, so disable */
6850 				drv_leds &= ~TR_ACTIVE_MASK;
6851 				drv_leds |=
6852 				    TR_ACTIVE_SET(TR_ACTIVE_DISABLE);
6853 
6854 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6855 				new_led_state |=
6856 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6857 			} else {
6858 				/* was disabled, so enable */
6859 				drv_leds &= ~TR_ACTIVE_MASK;
6860 				drv_leds |= TR_ACTIVE_SET(TR_ACTIVE_ENABLE);
6861 
6862 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6863 				new_led_state |=
6864 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6865 			}
6866 
6867 			/*
6868 			 * clear the activity bit
6869 			 * if there is drive activity again within the
6870 			 * loop interval (now 1/16 second), nvs_activity
6871 			 * will be reset and the "connected and active"
6872 			 * condition above will cause the LED to blink
6873 			 * off and on at the loop interval rate.  The
6874 			 * rate may be increased (interval shortened) as
6875 			 * long as it is not more than 1/30 second.
6876 			 */
6877 			mutex_enter(&cmn->nvs_slock);
6878 			cmn->nvs_activity &= ~(1 << i);
6879 			mutex_exit(&cmn->nvs_slock);
6880 		}
6881 
6882 		DTRACE_PROBE1(sgpio__new__led__state, int, new_led_state);
6883 
6884 		/* write out LED values */
6885 
6886 		mutex_enter(&cmn->nvs_slock);
6887 		cbp->sgpio0_tr &= ~TR_ACTIVE_MASK_ALL;
6888 		cbp->sgpio0_tr |= new_led_state;
6889 		cbp->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
6890 		mutex_exit(&cmn->nvs_slock);
6891 
6892 		if (nv_sgp_write_data(nvc) == NV_FAILURE) {
6893 			NVLOG((NVDBG_VERBOSE, nvc, NULL,
6894 			    "nv_sgp_write_data failure updating active LED"));
6895 		}
6896 
6897 		/* now rest for the interval */
6898 		mutex_enter(&cmn->nvs_tlock);
6899 		ticks = drv_usectohz(cmn->nvs_taskq_delay);
6900 		if (ticks > 0)
6901 			(void) cv_timedwait(&cmn->nvs_cv, &cmn->nvs_tlock,
6902 			    ddi_get_lbolt() + ticks);
6903 		mutex_exit(&cmn->nvs_tlock);
6904 	} while (ticks > 0);
6905 }
6906 
6907 /*
6908  * nv_sgp_drive_connect
6909  * Set the flag used to indicate that the drive is attached to the HBA.
6910  * Used to let the taskq know that it should turn the Activity LED on.
6911  */
6912 static void
6913 nv_sgp_drive_connect(nv_ctl_t *nvc, int drive)
6914 {
6915 	nv_sgp_cmn_t *cmn;
6916 
6917 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6918 		return;
6919 	cmn = nvc->nvc_sgp_cmn;
6920 
6921 	mutex_enter(&cmn->nvs_slock);
6922 	cmn->nvs_connected |= (1 << drive);
6923 	mutex_exit(&cmn->nvs_slock);
6924 }
6925 
6926 /*
6927  * nv_sgp_drive_disconnect
6928  * Clears the flag used to indicate that the drive is no longer attached
6929  * to the HBA.  Used to let the taskq know that it should turn the
6930  * Activity LED off.  The flag that indicates that the drive is in use is
6931  * also cleared.
6932  */
6933 static void
6934 nv_sgp_drive_disconnect(nv_ctl_t *nvc, int drive)
6935 {
6936 	nv_sgp_cmn_t *cmn;
6937 
6938 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6939 		return;
6940 	cmn = nvc->nvc_sgp_cmn;
6941 
6942 	mutex_enter(&cmn->nvs_slock);
6943 	cmn->nvs_connected &= ~(1 << drive);
6944 	cmn->nvs_activity &= ~(1 << drive);
6945 	mutex_exit(&cmn->nvs_slock);
6946 }
6947 
6948 /*
6949  * nv_sgp_drive_active
6950  * Sets the flag used to indicate that the drive has been accessed and the
6951  * LED should be flicked off, then on.  It is cleared at a fixed time
6952  * interval by the LED taskq and set by the sata command start.
6953  */
6954 static void
6955 nv_sgp_drive_active(nv_ctl_t *nvc, int drive)
6956 {
6957 	nv_sgp_cmn_t *cmn;
6958 
6959 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6960 		return;
6961 	cmn = nvc->nvc_sgp_cmn;
6962 
6963 	DTRACE_PROBE1(sgpio__active, int, drive);
6964 
6965 	mutex_enter(&cmn->nvs_slock);
6966 	cmn->nvs_activity |= (1 << drive);
6967 	mutex_exit(&cmn->nvs_slock);
6968 }
6969 
6970 
6971 /*
6972  * nv_sgp_locate
6973  * Turns the Locate/OK2RM LED off or on for a particular drive.  State is
6974  * maintained in the SGPIO Control Block.
6975  */
6976 static void
6977 nv_sgp_locate(nv_ctl_t *nvc, int drive, int value)
6978 {
6979 	uint8_t leds;
6980 	volatile nv_sgp_cb_t *cb = nvc->nvc_sgp_cbp;
6981 	nv_sgp_cmn_t *cmn;
6982 
6983 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6984 		return;
6985 	cmn = nvc->nvc_sgp_cmn;
6986 
6987 	if ((drive < 0) || (drive >= SGPIO_DRV_CNT_VALUE))
6988 		return;
6989 
6990 	DTRACE_PROBE2(sgpio__locate, int, drive, int, value);
6991 
6992 	mutex_enter(&cmn->nvs_slock);
6993 
6994 	leds = SGPIO0_TR_DRV(cb->sgpio0_tr, drive);
6995 
6996 	leds &= ~TR_LOCATE_MASK;
6997 	leds |= TR_LOCATE_SET(value);
6998 
6999 	cb->sgpio0_tr &= SGPIO0_TR_DRV_CLR(drive);
7000 	cb->sgpio0_tr |= SGPIO0_TR_DRV_SET(leds, drive);
7001 
7002 	cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
7003 
7004 	mutex_exit(&cmn->nvs_slock);
7005 
7006 	if (nv_sgp_write_data(nvc) == NV_FAILURE) {
7007 		nv_cmn_err(CE_WARN, nvc, NULL,
7008 		    "!nv_sgp_write_data failure updating OK2RM/Locate LED");
7009 	}
7010 }
7011 
7012 /*
7013  * nv_sgp_error
7014  * Turns the Error/Failure LED off or on for a particular drive.  State is
7015  * maintained in the SGPIO Control Block.
7016  */
7017 static void
7018 nv_sgp_error(nv_ctl_t *nvc, int drive, int value)
7019 {
7020 	uint8_t leds;
7021 	volatile nv_sgp_cb_t *cb = nvc->nvc_sgp_cbp;
7022 	nv_sgp_cmn_t *cmn;
7023 
7024 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
7025 		return;
7026 	cmn = nvc->nvc_sgp_cmn;
7027 
7028 	if ((drive < 0) || (drive >= SGPIO_DRV_CNT_VALUE))
7029 		return;
7030 
7031 	DTRACE_PROBE2(sgpio__error, int, drive, int, value);
7032 
7033 	mutex_enter(&cmn->nvs_slock);
7034 
7035 	leds = SGPIO0_TR_DRV(cb->sgpio0_tr, drive);
7036 
7037 	leds &= ~TR_ERROR_MASK;
7038 	leds |= TR_ERROR_SET(value);
7039 
7040 	cb->sgpio0_tr &= SGPIO0_TR_DRV_CLR(drive);
7041 	cb->sgpio0_tr |= SGPIO0_TR_DRV_SET(leds, drive);
7042 
7043 	cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
7044 
7045 	mutex_exit(&cmn->nvs_slock);
7046 
7047 	if (nv_sgp_write_data(nvc) == NV_FAILURE) {
7048 		nv_cmn_err(CE_WARN, nvc, NULL,
7049 		    "!nv_sgp_write_data failure updating Fail/Error LED");
7050 	}
7051 }
7052 
7053 static void
7054 nv_sgp_cleanup(nv_ctl_t *nvc)
7055 {
7056 	int drive, i;
7057 	uint8_t drv_leds;
7058 	uint32_t led_state;
7059 	volatile nv_sgp_cb_t *cb = nvc->nvc_sgp_cbp;
7060 	nv_sgp_cmn_t *cmn = nvc->nvc_sgp_cmn;
7061 	extern void psm_unmap_phys(caddr_t, size_t);
7062 
7063 	/*
7064 	 * If the SGPIO Control Block isn't mapped or the shared data
7065 	 * structure isn't present in this instance, there isn't much that
7066 	 * can be cleaned up.
7067 	 */
7068 	if ((cb == NULL) || (cmn == NULL))
7069 		return;
7070 
7071 	/* turn off activity LEDs for this controller */
7072 	drv_leds = TR_ACTIVE_SET(TR_ACTIVE_DISABLE);
7073 
7074 	/* get the existing LED state */
7075 	led_state = cb->sgpio0_tr;
7076 
7077 	/* turn off port 0 */
7078 	drive = SGP_CTLR_PORT_TO_DRV(nvc->nvc_ctlr_num, 0);
7079 	led_state &= SGPIO0_TR_DRV_CLR(drive);
7080 	led_state |= SGPIO0_TR_DRV_SET(drv_leds, drive);
7081 
7082 	/* turn off port 1 */
7083 	drive = SGP_CTLR_PORT_TO_DRV(nvc->nvc_ctlr_num, 1);
7084 	led_state &= SGPIO0_TR_DRV_CLR(drive);
7085 	led_state |= SGPIO0_TR_DRV_SET(drv_leds, drive);
7086 
7087 	/* set the new led state, which should turn off this ctrl's LEDs */
7088 	cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
7089 	(void) nv_sgp_write_data(nvc);
7090 
7091 	/* clear the controller's in use bit */
7092 	mutex_enter(&cmn->nvs_slock);
7093 	cmn->nvs_in_use &= ~(1 << nvc->nvc_ctlr_num);
7094 	mutex_exit(&cmn->nvs_slock);
7095 
7096 	if (cmn->nvs_in_use == 0) {
7097 		/* if all "in use" bits cleared, take everything down */
7098 
7099 		if (cmn->nvs_taskq != NULL) {
7100 			/* allow activity taskq to exit */
7101 			cmn->nvs_taskq_delay = 0;
7102 			cv_broadcast(&cmn->nvs_cv);
7103 
7104 			/* then destroy it */
7105 			ddi_taskq_destroy(cmn->nvs_taskq);
7106 		}
7107 
7108 		/* turn off all of the LEDs */
7109 		cb->sgpio0_tr = 0;
7110 		cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
7111 		(void) nv_sgp_write_data(nvc);
7112 
7113 		cb->sgpio_sr = NULL;
7114 
7115 		/* zero out the CBP to cmn mapping */
7116 		for (i = 0; i < NV_MAX_CBPS; i++) {
7117 			if (nv_sgp_cbp2cmn[i].c2cm_cbp == cmn->nvs_cbp) {
7118 				nv_sgp_cbp2cmn[i].c2cm_cmn = NULL;
7119 				break;
7120 			}
7121 
7122 			if (nv_sgp_cbp2cmn[i].c2cm_cbp == 0)
7123 				break;
7124 		}
7125 
7126 		/* free resources */
7127 		cv_destroy(&cmn->nvs_cv);
7128 		mutex_destroy(&cmn->nvs_tlock);
7129 		mutex_destroy(&cmn->nvs_slock);
7130 
7131 		kmem_free(nvc->nvc_sgp_cmn, sizeof (nv_sgp_cmn_t));
7132 	}
7133 
7134 	nvc->nvc_sgp_cmn = NULL;
7135 
7136 	/* unmap the SGPIO Control Block */
7137 	psm_unmap_phys((caddr_t)nvc->nvc_sgp_cbp, sizeof (nv_sgp_cb_t));
7138 }
7139 #endif	/* SGPIO_SUPPORT */
7140